1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares codegen opcodes and related utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ISDOPCODES_H
14 #define LLVM_CODEGEN_ISDOPCODES_H
15 
16 #include "llvm/CodeGen/ValueTypes.h"
17 
18 namespace llvm {
19 
20 /// ISD namespace - This namespace contains an enum which represents all of the
21 /// SelectionDAG node types and value types.
22 ///
23 namespace ISD {
24 
25 //===--------------------------------------------------------------------===//
26 /// ISD::NodeType enum - This enum defines the target-independent operators
27 /// for a SelectionDAG.
28 ///
29 /// Targets may also define target-dependent operator codes for SDNodes. For
30 /// example, on x86, these are the enum values in the X86ISD namespace.
31 /// Targets should aim to use target-independent operators to model their
32 /// instruction sets as much as possible, and only use target-dependent
33 /// operators when they have special requirements.
34 ///
35 /// Finally, during and after selection proper, SNodes may use special
36 /// operator codes that correspond directly with MachineInstr opcodes. These
37 /// are used to represent selected instructions. See the isMachineOpcode()
38 /// and getMachineOpcode() member functions of SDNode.
39 ///
40 enum NodeType {
41 
42   /// DELETED_NODE - This is an illegal value that is used to catch
43   /// errors.  This opcode is not a legal opcode for any node.
44   DELETED_NODE,
45 
46   /// EntryToken - This is the marker used to indicate the start of a region.
47   EntryToken,
48 
49   /// TokenFactor - This node takes multiple tokens as input and produces a
50   /// single token result. This is used to represent the fact that the operand
51   /// operators are independent of each other.
52   TokenFactor,
53 
54   /// AssertSext, AssertZext - These nodes record if a register contains a
55   /// value that has already been zero or sign extended from a narrower type.
56   /// These nodes take two operands.  The first is the node that has already
57   /// been extended, and the second is a value type node indicating the width
58   /// of the extension.
59   /// NOTE: In case of the source value (or any vector element value) is
60   /// poisoned the assertion will not be true for that value.
61   AssertSext,
62   AssertZext,
63 
64   /// AssertAlign - These nodes record if a register contains a value that
65   /// has a known alignment and the trailing bits are known to be zero.
66   /// NOTE: In case of the source value (or any vector element value) is
67   /// poisoned the assertion will not be true for that value.
68   AssertAlign,
69 
70   /// Various leaf nodes.
71   BasicBlock,
72   VALUETYPE,
73   CONDCODE,
74   Register,
75   RegisterMask,
76   Constant,
77   ConstantFP,
78   GlobalAddress,
79   GlobalTLSAddress,
80   FrameIndex,
81   JumpTable,
82   ConstantPool,
83   ExternalSymbol,
84   BlockAddress,
85 
86   /// The address of the GOT
87   GLOBAL_OFFSET_TABLE,
88 
89   /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
90   /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
91   /// of the frame or return address to return.  An index of zero corresponds
92   /// to the current function's frame or return address, an index of one to
93   /// the parent's frame or return address, and so on.
94   FRAMEADDR,
95   RETURNADDR,
96 
97   /// ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
98   /// This node takes no operand, returns a target-specific pointer to the
99   /// place in the stack frame where the return address of the current
100   /// function is stored.
101   ADDROFRETURNADDR,
102 
103   /// SPONENTRY - Represents the llvm.sponentry intrinsic. Takes no argument
104   /// and returns the stack pointer value at the entry of the current
105   /// function calling this intrinsic.
106   SPONENTRY,
107 
108   /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
109   /// Materializes the offset from the local object pointer of another
110   /// function to a particular local object passed to llvm.localescape. The
111   /// operand is the MCSymbol label used to represent this offset, since
112   /// typically the offset is not known until after code generation of the
113   /// parent.
114   LOCAL_RECOVER,
115 
116   /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
117   /// the DAG, which implements the named register global variables extension.
118   READ_REGISTER,
119   WRITE_REGISTER,
120 
121   /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
122   /// first (possible) on-stack argument. This is needed for correct stack
123   /// adjustment during unwind.
124   FRAME_TO_ARGS_OFFSET,
125 
126   /// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
127   /// Frame Address (CFA), generally the value of the stack pointer at the
128   /// call site in the previous frame.
129   EH_DWARF_CFA,
130 
131   /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132   /// 'eh_return' gcc dwarf builtin, which is used to return from
133   /// exception. The general meaning is: adjust stack by OFFSET and pass
134   /// execution to HANDLER. Many platform-related details also :)
135   EH_RETURN,
136 
137   /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
138   /// This corresponds to the eh.sjlj.setjmp intrinsic.
139   /// It takes an input chain and a pointer to the jump buffer as inputs
140   /// and returns an outchain.
141   EH_SJLJ_SETJMP,
142 
143   /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
144   /// This corresponds to the eh.sjlj.longjmp intrinsic.
145   /// It takes an input chain and a pointer to the jump buffer as inputs
146   /// and returns an outchain.
147   EH_SJLJ_LONGJMP,
148 
149   /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
150   /// The target initializes the dispatch table here.
151   EH_SJLJ_SETUP_DISPATCH,
152 
153   /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
154   /// simplification, or lowering of the constant. They are used for constants
155   /// which are known to fit in the immediate fields of their users, or for
156   /// carrying magic numbers which are not values which need to be
157   /// materialized in registers.
158   TargetConstant,
159   TargetConstantFP,
160 
161   /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
162   /// anything else with this node, and this is valid in the target-specific
163   /// dag, turning into a GlobalAddress operand.
164   TargetGlobalAddress,
165   TargetGlobalTLSAddress,
166   TargetFrameIndex,
167   TargetJumpTable,
168   TargetConstantPool,
169   TargetExternalSymbol,
170   TargetBlockAddress,
171 
172   MCSymbol,
173 
174   /// TargetIndex - Like a constant pool entry, but with completely
175   /// target-dependent semantics. Holds target flags, a 32-bit index, and a
176   /// 64-bit index. Targets can use this however they like.
177   TargetIndex,
178 
179   /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
180   /// This node represents a target intrinsic function with no side effects.
181   /// The first operand is the ID number of the intrinsic from the
182   /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
183   /// node returns the result of the intrinsic.
184   INTRINSIC_WO_CHAIN,
185 
186   /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
187   /// This node represents a target intrinsic function with side effects that
188   /// returns a result.  The first operand is a chain pointer.  The second is
189   /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
190   /// operands to the intrinsic follow.  The node has two results, the result
191   /// of the intrinsic and an output chain.
192   INTRINSIC_W_CHAIN,
193 
194   /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
195   /// This node represents a target intrinsic function with side effects that
196   /// does not return a result.  The first operand is a chain pointer.  The
197   /// second is the ID number of the intrinsic from the llvm::Intrinsic
198   /// namespace.  The operands to the intrinsic follow.
199   INTRINSIC_VOID,
200 
201   /// CopyToReg - This node has three operands: a chain, a register number to
202   /// set to this value, and a value.
203   CopyToReg,
204 
205   /// CopyFromReg - This node indicates that the input value is a virtual or
206   /// physical register that is defined outside of the scope of this
207   /// SelectionDAG.  The register is available from the RegisterSDNode object.
208   CopyFromReg,
209 
210   /// UNDEF - An undefined node.
211   UNDEF,
212 
213   // FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or
214   // is evaluated to UNDEF), or returns VAL otherwise. Note that each
215   // read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.
216   FREEZE,
217 
218   /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
219   /// a Constant, which is required to be operand #1) half of the integer or
220   /// float value specified as operand #0.  This is only for use before
221   /// legalization, for values that will be broken into multiple registers.
222   EXTRACT_ELEMENT,
223 
224   /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
225   /// Given two values of the same integer value type, this produces a value
226   /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
227   /// legalization. The lower part of the composite value should be in
228   /// element 0 and the upper part should be in element 1.
229   BUILD_PAIR,
230 
231   /// MERGE_VALUES - This node takes multiple discrete operands and returns
232   /// them all as its individual results.  This nodes has exactly the same
233   /// number of inputs and outputs. This node is useful for some pieces of the
234   /// code generator that want to think about a single node with multiple
235   /// results, not multiple nodes.
236   MERGE_VALUES,
237 
238   /// Simple integer binary arithmetic operators.
239   ADD,
240   SUB,
241   MUL,
242   SDIV,
243   UDIV,
244   SREM,
245   UREM,
246 
247   /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
248   /// a signed/unsigned value of type i[2*N], and return the full value as
249   /// two results, each of type iN.
250   SMUL_LOHI,
251   UMUL_LOHI,
252 
253   /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
254   /// remainder result.
255   SDIVREM,
256   UDIVREM,
257 
258   /// CARRY_FALSE - This node is used when folding other nodes,
259   /// like ADDC/SUBC, which indicate the carry result is always false.
260   CARRY_FALSE,
261 
262   /// Carry-setting nodes for multiple precision addition and subtraction.
263   /// These nodes take two operands of the same value type, and produce two
264   /// results.  The first result is the normal add or sub result, the second
265   /// result is the carry flag result.
266   /// FIXME: These nodes are deprecated in favor of UADDO_CARRY and USUBO_CARRY.
267   /// They are kept around for now to provide a smooth transition path
268   /// toward the use of UADDO_CARRY/USUBO_CARRY and will eventually be removed.
269   ADDC,
270   SUBC,
271 
272   /// Carry-using nodes for multiple precision addition and subtraction. These
273   /// nodes take three operands: The first two are the normal lhs and rhs to
274   /// the add or sub, and the third is the input carry flag.  These nodes
275   /// produce two results; the normal result of the add or sub, and the output
276   /// carry flag.  These nodes both read and write a carry flag to allow them
277   /// to them to be chained together for add and sub of arbitrarily large
278   /// values.
279   ADDE,
280   SUBE,
281 
282   /// Carry-using nodes for multiple precision addition and subtraction.
283   /// These nodes take three operands: The first two are the normal lhs and
284   /// rhs to the add or sub, and the third is a boolean value that is 1 if and
285   /// only if there is an incoming carry/borrow. These nodes produce two
286   /// results: the normal result of the add or sub, and a boolean value that is
287   /// 1 if and only if there is an outgoing carry/borrow.
288   ///
289   /// Care must be taken if these opcodes are lowered to hardware instructions
290   /// that use the inverse logic -- 0 if and only if there is an
291   /// incoming/outgoing carry/borrow.  In such cases, you must preserve the
292   /// semantics of these opcodes by inverting the incoming carry/borrow, feeding
293   /// it to the add/sub hardware instruction, and then inverting the outgoing
294   /// carry/borrow.
295   ///
296   /// The use of these opcodes is preferable to adde/sube if the target supports
297   /// it, as the carry is a regular value rather than a glue, which allows
298   /// further optimisation.
299   ///
300   /// These opcodes are different from [US]{ADD,SUB}O in that
301   /// U{ADD,SUB}O_CARRY consume and produce a carry/borrow, whereas
302   /// [US]{ADD,SUB}O produce an overflow.
303   UADDO_CARRY,
304   USUBO_CARRY,
305 
306   /// Carry-using overflow-aware nodes for multiple precision addition and
307   /// subtraction. These nodes take three operands: The first two are normal lhs
308   /// and rhs to the add or sub, and the third is a boolean indicating if there
309   /// is an incoming carry. They produce two results: the normal result of the
310   /// add or sub, and a boolean that indicates if an overflow occurred (*not*
311   /// flag, because it may be a store to memory, etc.). If the type of the
312   /// boolean is not i1 then the high bits conform to getBooleanContents.
313   SADDO_CARRY,
314   SSUBO_CARRY,
315 
316   /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
317   /// These nodes take two operands: the normal LHS and RHS to the add. They
318   /// produce two results: the normal result of the add, and a boolean that
319   /// indicates if an overflow occurred (*not* a flag, because it may be store
320   /// to memory, etc.).  If the type of the boolean is not i1 then the high
321   /// bits conform to getBooleanContents.
322   /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
323   SADDO,
324   UADDO,
325 
326   /// Same for subtraction.
327   SSUBO,
328   USUBO,
329 
330   /// Same for multiplication.
331   SMULO,
332   UMULO,
333 
334   /// RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2
335   /// integers with the same bit width (W). If the true value of LHS + RHS
336   /// exceeds the largest value that can be represented by W bits, the
337   /// resulting value is this maximum value. Otherwise, if this value is less
338   /// than the smallest value that can be represented by W bits, the
339   /// resulting value is this minimum value.
340   SADDSAT,
341   UADDSAT,
342 
343   /// RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2
344   /// integers with the same bit width (W). If the true value of LHS - RHS
345   /// exceeds the largest value that can be represented by W bits, the
346   /// resulting value is this maximum value. Otherwise, if this value is less
347   /// than the smallest value that can be represented by W bits, the
348   /// resulting value is this minimum value.
349   SSUBSAT,
350   USUBSAT,
351 
352   /// RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift. The first
353   /// operand is the value to be shifted, and the second argument is the amount
354   /// to shift by. Both must be integers of the same bit width (W). If the true
355   /// value of LHS << RHS exceeds the largest value that can be represented by
356   /// W bits, the resulting value is this maximum value, Otherwise, if this
357   /// value is less than the smallest value that can be represented by W bits,
358   /// the resulting value is this minimum value.
359   SSHLSAT,
360   USHLSAT,
361 
362   /// RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication
363   /// on 2 integers with the same width and scale. SCALE represents the scale
364   /// of both operands as fixed point numbers. This SCALE parameter must be a
365   /// constant integer. A scale of zero is effectively performing
366   /// multiplication on 2 integers.
367   SMULFIX,
368   UMULFIX,
369 
370   /// Same as the corresponding unsaturated fixed point instructions, but the
371   /// result is clamped between the min and max values representable by the
372   /// bits of the first 2 operands.
373   SMULFIXSAT,
374   UMULFIXSAT,
375 
376   /// RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on
377   /// 2 integers with the same width and scale. SCALE represents the scale
378   /// of both operands as fixed point numbers. This SCALE parameter must be a
379   /// constant integer.
380   SDIVFIX,
381   UDIVFIX,
382 
383   /// Same as the corresponding unsaturated fixed point instructions, but the
384   /// result is clamped between the min and max values representable by the
385   /// bits of the first 2 operands.
386   SDIVFIXSAT,
387   UDIVFIXSAT,
388 
389   /// Simple binary floating point operators.
390   FADD,
391   FSUB,
392   FMUL,
393   FDIV,
394   FREM,
395 
396   /// Constrained versions of the binary floating point operators.
397   /// These will be lowered to the simple operators before final selection.
398   /// They are used to limit optimizations while the DAG is being
399   /// optimized.
400   STRICT_FADD,
401   STRICT_FSUB,
402   STRICT_FMUL,
403   STRICT_FDIV,
404   STRICT_FREM,
405   STRICT_FMA,
406 
407   /// Constrained versions of libm-equivalent floating point intrinsics.
408   /// These will be lowered to the equivalent non-constrained pseudo-op
409   /// (or expanded to the equivalent library call) before final selection.
410   /// They are used to limit optimizations while the DAG is being optimized.
411   STRICT_FSQRT,
412   STRICT_FPOW,
413   STRICT_FPOWI,
414   STRICT_FLDEXP,
415   STRICT_FSIN,
416   STRICT_FCOS,
417   STRICT_FEXP,
418   STRICT_FEXP2,
419   STRICT_FLOG,
420   STRICT_FLOG10,
421   STRICT_FLOG2,
422   STRICT_FRINT,
423   STRICT_FNEARBYINT,
424   STRICT_FMAXNUM,
425   STRICT_FMINNUM,
426   STRICT_FCEIL,
427   STRICT_FFLOOR,
428   STRICT_FROUND,
429   STRICT_FROUNDEVEN,
430   STRICT_FTRUNC,
431   STRICT_LROUND,
432   STRICT_LLROUND,
433   STRICT_LRINT,
434   STRICT_LLRINT,
435   STRICT_FMAXIMUM,
436   STRICT_FMINIMUM,
437 
438   /// STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or
439   /// unsigned integer. These have the same semantics as fptosi and fptoui
440   /// in IR.
441   /// They are used to limit optimizations while the DAG is being optimized.
442   STRICT_FP_TO_SINT,
443   STRICT_FP_TO_UINT,
444 
445   /// STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to
446   /// a floating point value. These have the same semantics as sitofp and
447   /// uitofp in IR.
448   /// They are used to limit optimizations while the DAG is being optimized.
449   STRICT_SINT_TO_FP,
450   STRICT_UINT_TO_FP,
451 
452   /// X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating
453   /// point type down to the precision of the destination VT.  TRUNC is a
454   /// flag, which is always an integer that is zero or one.  If TRUNC is 0,
455   /// this is a normal rounding, if it is 1, this FP_ROUND is known to not
456   /// change the value of Y.
457   ///
458   /// The TRUNC = 1 case is used in cases where we know that the value will
459   /// not be modified by the node, because Y is not using any of the extra
460   /// precision of source type.  This allows certain transformations like
461   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for
462   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't
463   /// removed.
464   /// It is used to limit optimizations while the DAG is being optimized.
465   STRICT_FP_ROUND,
466 
467   /// X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP
468   /// type.
469   /// It is used to limit optimizations while the DAG is being optimized.
470   STRICT_FP_EXTEND,
471 
472   /// STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used
473   /// for floating-point operands only.  STRICT_FSETCC performs a quiet
474   /// comparison operation, while STRICT_FSETCCS performs a signaling
475   /// comparison operation.
476   STRICT_FSETCC,
477   STRICT_FSETCCS,
478 
479   // FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
480   FPTRUNC_ROUND,
481 
482   /// FMA - Perform a * b + c with no intermediate rounding step.
483   FMA,
484 
485   /// FMAD - Perform a * b + c, while getting the same result as the
486   /// separately rounded operations.
487   FMAD,
488 
489   /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
490   /// DAG node does not require that X and Y have the same type, just that
491   /// they are both floating point.  X and the result must have the same type.
492   /// FCOPYSIGN(f32, f64) is allowed.
493   FCOPYSIGN,
494 
495   /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
496   /// value as an integer 0/1 value.
497   FGETSIGN,
498 
499   /// Returns platform specific canonical encoding of a floating point number.
500   FCANONICALIZE,
501 
502   /// Performs a check of floating point class property, defined by IEEE-754.
503   /// The first operand is the floating point value to check. The second operand
504   /// specifies the checked property and is a TargetConstant which specifies
505   /// test in the same way as intrinsic 'is_fpclass'.
506   /// Returns boolean value.
507   IS_FPCLASS,
508 
509   /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector
510   /// with the specified, possibly variable, elements. The types of the
511   /// operands must match the vector element type, except that integer types
512   /// are allowed to be larger than the element type, in which case the
513   /// operands are implicitly truncated. The types of the operands must all
514   /// be the same.
515   BUILD_VECTOR,
516 
517   /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
518   /// at IDX replaced with VAL. If the type of VAL is larger than the vector
519   /// element type then VAL is truncated before replacement.
520   ///
521   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
522   /// vector width. IDX is not first scaled by the runtime scaling factor of
523   /// VECTOR.
524   INSERT_VECTOR_ELT,
525 
526   /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
527   /// identified by the (potentially variable) element number IDX. If the return
528   /// type is an integer type larger than the element type of the vector, the
529   /// result is extended to the width of the return type. In that case, the high
530   /// bits are undefined.
531   ///
532   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
533   /// vector width. IDX is not first scaled by the runtime scaling factor of
534   /// VECTOR.
535   EXTRACT_VECTOR_ELT,
536 
537   /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
538   /// vector type with the same length and element type, this produces a
539   /// concatenated vector result value, with length equal to the sum of the
540   /// lengths of the input vectors. If VECTOR0 is a fixed-width vector, then
541   /// VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0
542   /// is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.
543   CONCAT_VECTORS,
544 
545   /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2
546   /// inserted into VECTOR1. IDX represents the starting element number at which
547   /// VECTOR2 will be inserted. IDX must be a constant multiple of T's known
548   /// minimum vector length. Let the type of VECTOR2 be T, then if T is a
549   /// scalable vector, IDX is first scaled by the runtime scaling factor of T.
550   /// The elements of VECTOR1 starting at IDX are overwritten with VECTOR2.
551   /// Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1
552   /// indices. If this condition cannot be determined statically but is false at
553   /// runtime, then the result vector is undefined. The IDX parameter must be a
554   /// vector index constant type, which for most targets will be an integer
555   /// pointer type.
556   ///
557   /// This operation supports inserting a fixed-width vector into a scalable
558   /// vector, but not the other way around.
559   INSERT_SUBVECTOR,
560 
561   /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
562   /// Let the result type be T, then IDX represents the starting element number
563   /// from which a subvector of type T is extracted. IDX must be a constant
564   /// multiple of T's known minimum vector length. If T is a scalable vector,
565   /// IDX is first scaled by the runtime scaling factor of T. Elements IDX
566   /// through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this
567   /// condition cannot be determined statically but is false at runtime, then
568   /// the result vector is undefined. The IDX parameter must be a vector index
569   /// constant type, which for most targets will be an integer pointer type.
570   ///
571   /// This operation supports extracting a fixed-width vector from a scalable
572   /// vector, but not the other way around.
573   EXTRACT_SUBVECTOR,
574 
575   /// VECTOR_DEINTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and
576   /// output vectors having the same type. The first output contains the even
577   /// indices from CONCAT_VECTORS(VEC1, VEC2), with the second output
578   /// containing the odd indices. The relative order of elements within an
579   /// output match that of the concatenated input.
580   VECTOR_DEINTERLEAVE,
581 
582   /// VECTOR_INTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and
583   /// output vectors having the same type. The first output contains the
584   /// result of interleaving the low half of CONCAT_VECTORS(VEC1, VEC2), with
585   /// the second output containing the result of interleaving the high half.
586   VECTOR_INTERLEAVE,
587 
588   /// VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR,
589   /// whose elements are shuffled using the following algorithm:
590   ///   RESULT[i] = VECTOR[VECTOR.ElementCount - 1 - i]
591   VECTOR_REVERSE,
592 
593   /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
594   /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
595   /// values that indicate which value (or undef) each result element will
596   /// get.  These constant ints are accessible through the
597   /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
598   /// 'vperm' instruction, except that the indices must be constants and are
599   /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
600   VECTOR_SHUFFLE,
601 
602   /// VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as
603   /// VEC1/VEC2 from CONCAT_VECTORS(VEC1, VEC2), based on the IMM in two ways.
604   /// Let the result type be T, if IMM is positive it represents the starting
605   /// element number (an index) from which a subvector of type T is extracted
606   /// from CONCAT_VECTORS(VEC1, VEC2). If IMM is negative it represents a count
607   /// specifying the number of trailing elements to extract from VEC1, where the
608   /// elements of T are selected using the following algorithm:
609   ///   RESULT[i] = CONCAT_VECTORS(VEC1,VEC2)[VEC1.ElementCount - ABS(IMM) + i]
610   /// If IMM is not in the range [-VL, VL-1] the result vector is undefined. IMM
611   /// is a constant integer.
612   VECTOR_SPLICE,
613 
614   /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
615   /// scalar value into element 0 of the resultant vector type.  The top
616   /// elements 1 to N-1 of the N-element vector are undefined.  The type
617   /// of the operand must match the vector element type, except when they
618   /// are integer types.  In this case the operand is allowed to be wider
619   /// than the vector element type, and is implicitly truncated to it.
620   SCALAR_TO_VECTOR,
621 
622   /// SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL
623   /// duplicated in all lanes. The type of the operand must match the vector
624   /// element type, except when they are integer types.  In this case the
625   /// operand is allowed to be wider than the vector element type, and is
626   /// implicitly truncated to it.
627   SPLAT_VECTOR,
628 
629   /// SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the
630   /// scalar values joined together and then duplicated in all lanes. This
631   /// represents a SPLAT_VECTOR that has had its scalar operand expanded. This
632   /// allows representing a 64-bit splat on a target with 32-bit integers. The
633   /// total width of the scalars must cover the element width. SCALAR1 contains
634   /// the least significant bits of the value regardless of endianness and all
635   /// scalars should have the same type.
636   SPLAT_VECTOR_PARTS,
637 
638   /// STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised
639   /// of a linear sequence of unsigned values starting from 0 with a step of
640   /// IMM, where IMM must be a TargetConstant with type equal to the vector
641   /// element type. The arithmetic is performed modulo the bitwidth of the
642   /// element.
643   ///
644   /// The operation does not support returning fixed-width vectors or
645   /// non-constant operands.
646   STEP_VECTOR,
647 
648   /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
649   /// producing an unsigned/signed value of type i[2*N], then return the top
650   /// part.
651   MULHU,
652   MULHS,
653 
654   /// AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of
655   /// type i[N+1], halving the result by shifting it one bit right.
656   /// shr(add(ext(X), ext(Y)), 1)
657   AVGFLOORS,
658   AVGFLOORU,
659   /// AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an
660   /// integer of type i[N+2], add 1 and halve the result by shifting it one bit
661   /// right. shr(add(ext(X), ext(Y), 1), 1)
662   AVGCEILS,
663   AVGCEILU,
664 
665   // ABDS/ABDU - Absolute difference - Return the absolute difference between
666   // two numbers interpreted as signed/unsigned.
667   // i.e trunc(abs(sext(Op0) - sext(Op1))) becomes abds(Op0, Op1)
668   //  or trunc(abs(zext(Op0) - zext(Op1))) becomes abdu(Op0, Op1)
669   ABDS,
670   ABDU,
671 
672   /// [US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned
673   /// integers.
674   SMIN,
675   SMAX,
676   UMIN,
677   UMAX,
678 
679   /// Bitwise operators - logical and, logical or, logical xor.
680   AND,
681   OR,
682   XOR,
683 
684   /// ABS - Determine the unsigned absolute value of a signed integer value of
685   /// the same bitwidth.
686   /// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
687   /// is performed.
688   ABS,
689 
690   /// Shift and rotation operations.  After legalization, the type of the
691   /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
692   /// the shift amount can be any type, but care must be taken to ensure it is
693   /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
694   /// legalization, types like i1024 can occur and i8 doesn't have enough bits
695   /// to represent the shift amount.
696   /// When the 1st operand is a vector, the shift amount must be in the same
697   /// type. (TLI.getShiftAmountTy() will return the same type when the input
698   /// type is a vector.)
699   /// For rotates and funnel shifts, the shift amount is treated as an unsigned
700   /// amount modulo the element size of the first operand.
701   ///
702   /// Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.
703   /// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
704   /// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
705   SHL,
706   SRA,
707   SRL,
708   ROTL,
709   ROTR,
710   FSHL,
711   FSHR,
712 
713   /// Byte Swap and Counting operators.
714   BSWAP,
715   CTTZ,
716   CTLZ,
717   CTPOP,
718   BITREVERSE,
719   PARITY,
720 
721   /// Bit counting operators with an undefined result for zero inputs.
722   CTTZ_ZERO_UNDEF,
723   CTLZ_ZERO_UNDEF,
724 
725   /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
726   /// i1 then the high bits must conform to getBooleanContents.
727   SELECT,
728 
729   /// Select with a vector condition (op #0) and two vector operands (ops #1
730   /// and #2), returning a vector result.  All vectors have the same length.
731   /// Much like the scalar select and setcc, each bit in the condition selects
732   /// whether the corresponding result element is taken from op #1 or op #2.
733   /// At first, the VSELECT condition is of vXi1 type. Later, targets may
734   /// change the condition type in order to match the VSELECT node using a
735   /// pattern. The condition follows the BooleanContent format of the target.
736   VSELECT,
737 
738   /// Select with condition operator - This selects between a true value and
739   /// a false value (ops #2 and #3) based on the boolean result of comparing
740   /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
741   /// condition code in op #4, a CondCodeSDNode.
742   SELECT_CC,
743 
744   /// SetCC operator - This evaluates to a true value iff the condition is
745   /// true.  If the result value type is not i1 then the high bits conform
746   /// to getBooleanContents.  The operands to this are the left and right
747   /// operands to compare (ops #0, and #1) and the condition code to compare
748   /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
749   /// then the result type must also be a vector type.
750   SETCC,
751 
752   /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
753   /// op #2 is a boolean indicating if there is an incoming carry. This
754   /// operator checks the result of "LHS - RHS - Carry", and can be used to
755   /// compare two wide integers:
756   /// (setcccarry lhshi rhshi (usubo_carry lhslo rhslo) cc).
757   /// Only valid for integers.
758   SETCCCARRY,
759 
760   /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
761   /// integer shift operations.  The operation ordering is:
762   ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
763   SHL_PARTS,
764   SRA_PARTS,
765   SRL_PARTS,
766 
767   /// Conversion operators.  These are all single input single output
768   /// operations.  For all of these, the result type must be strictly
769   /// wider or narrower (depending on the operation) than the source
770   /// type.
771 
772   /// SIGN_EXTEND - Used for integer types, replicating the sign bit
773   /// into new bits.
774   SIGN_EXTEND,
775 
776   /// ZERO_EXTEND - Used for integer types, zeroing the new bits. Can carry
777   /// the NonNeg SDNodeFlag to indicate that the input is known to be
778   /// non-negative. If the flag is present and the input is negative, the result
779   /// is poison.
780   ZERO_EXTEND,
781 
782   /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
783   ANY_EXTEND,
784 
785   /// TRUNCATE - Completely drop the high bits.
786   TRUNCATE,
787 
788   /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
789   /// depends on the first letter) to floating point.
790   SINT_TO_FP,
791   UINT_TO_FP,
792 
793   /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
794   /// sign extend a small value in a large integer register (e.g. sign
795   /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
796   /// with the 7th bit).  The size of the smaller type is indicated by the 1th
797   /// operand, a ValueType node.
798   SIGN_EXTEND_INREG,
799 
800   /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
801   /// in-register any-extension of the low lanes of an integer vector. The
802   /// result type must have fewer elements than the operand type, and those
803   /// elements must be larger integer types such that the total size of the
804   /// operand type is less than or equal to the size of the result type. Each
805   /// of the low operand elements is any-extended into the corresponding,
806   /// wider result elements with the high bits becoming undef.
807   /// NOTE: The type legalizer prefers to make the operand and result size
808   /// the same to allow expansion to shuffle vector during op legalization.
809   ANY_EXTEND_VECTOR_INREG,
810 
811   /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
812   /// in-register sign-extension of the low lanes of an integer vector. The
813   /// result type must have fewer elements than the operand type, and those
814   /// elements must be larger integer types such that the total size of the
815   /// operand type is less than or equal to the size of the result type. Each
816   /// of the low operand elements is sign-extended into the corresponding,
817   /// wider result elements.
818   /// NOTE: The type legalizer prefers to make the operand and result size
819   /// the same to allow expansion to shuffle vector during op legalization.
820   SIGN_EXTEND_VECTOR_INREG,
821 
822   /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
823   /// in-register zero-extension of the low lanes of an integer vector. The
824   /// result type must have fewer elements than the operand type, and those
825   /// elements must be larger integer types such that the total size of the
826   /// operand type is less than or equal to the size of the result type. Each
827   /// of the low operand elements is zero-extended into the corresponding,
828   /// wider result elements.
829   /// NOTE: The type legalizer prefers to make the operand and result size
830   /// the same to allow expansion to shuffle vector during op legalization.
831   ZERO_EXTEND_VECTOR_INREG,
832 
833   /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
834   /// integer. These have the same semantics as fptosi and fptoui in IR. If
835   /// the FP value cannot fit in the integer type, the results are undefined.
836   FP_TO_SINT,
837   FP_TO_UINT,
838 
839   /// FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a
840   /// signed or unsigned scalar integer type given in operand 1 with the
841   /// following semantics:
842   ///
843   ///  * If the value is NaN, zero is returned.
844   ///  * If the value is larger/smaller than the largest/smallest integer,
845   ///    the largest/smallest integer is returned (saturation).
846   ///  * Otherwise the result of rounding the value towards zero is returned.
847   ///
848   /// The scalar width of the type given in operand 1 must be equal to, or
849   /// smaller than, the scalar result type width. It may end up being smaller
850   /// than the result width as a result of integer type legalization.
851   ///
852   /// After converting to the scalar integer type in operand 1, the value is
853   /// extended to the result VT. FP_TO_SINT_SAT sign extends and FP_TO_UINT_SAT
854   /// zero extends.
855   FP_TO_SINT_SAT,
856   FP_TO_UINT_SAT,
857 
858   /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
859   /// down to the precision of the destination VT.  TRUNC is a flag, which is
860   /// always an integer that is zero or one.  If TRUNC is 0, this is a
861   /// normal rounding, if it is 1, this FP_ROUND is known to not change the
862   /// value of Y.
863   ///
864   /// The TRUNC = 1 case is used in cases where we know that the value will
865   /// not be modified by the node, because Y is not using any of the extra
866   /// precision of source type.  This allows certain transformations like
867   /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
868   /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
869   FP_ROUND,
870 
871   /// Returns current rounding mode:
872   /// -1 Undefined
873   ///  0 Round to 0
874   ///  1 Round to nearest, ties to even
875   ///  2 Round to +inf
876   ///  3 Round to -inf
877   ///  4 Round to nearest, ties to zero
878   ///  Other values are target dependent.
879   /// Result is rounding mode and chain. Input is a chain.
880   GET_ROUNDING,
881 
882   /// Set rounding mode.
883   /// The first operand is a chain pointer. The second specifies the required
884   /// rounding mode, encoded in the same way as used in '``GET_ROUNDING``'.
885   SET_ROUNDING,
886 
887   /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
888   FP_EXTEND,
889 
890   /// BITCAST - This operator converts between integer, vector and FP
891   /// values, as if the value was stored to memory with one type and loaded
892   /// from the same address with the other type (or equivalently for vector
893   /// format conversions, etc).  The source and result are required to have
894   /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
895   /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
896   /// getNode().
897   ///
898   /// This operator is subtly different from the bitcast instruction from
899   /// LLVM-IR since this node may change the bits in the register. For
900   /// example, this occurs on big-endian NEON and big-endian MSA where the
901   /// layout of the bits in the register depends on the vector type and this
902   /// operator acts as a shuffle operation for some vector type combinations.
903   BITCAST,
904 
905   /// ADDRSPACECAST - This operator converts between pointers of different
906   /// address spaces.
907   ADDRSPACECAST,
908 
909   /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
910   /// and truncation for half-precision (16 bit) floating numbers. These nodes
911   /// form a semi-softened interface for dealing with f16 (as an i16), which
912   /// is often a storage-only type but has native conversions.
913   FP16_TO_FP,
914   FP_TO_FP16,
915   STRICT_FP16_TO_FP,
916   STRICT_FP_TO_FP16,
917 
918   /// BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions
919   /// and truncation for bfloat16. These nodes form a semi-softened interface
920   /// for dealing with bf16 (as an i16), which is often a storage-only type but
921   /// has native conversions.
922   BF16_TO_FP,
923   FP_TO_BF16,
924 
925   /// Perform various unary floating-point operations inspired by libm. For
926   /// FPOWI, the result is undefined if the integer operand doesn't fit into
927   /// sizeof(int).
928   FNEG,
929   FABS,
930   FSQRT,
931   FCBRT,
932   FSIN,
933   FCOS,
934   FPOW,
935   FPOWI,
936   /// FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
937   FLDEXP,
938 
939   /// FFREXP - frexp, extract fractional and exponent component of a
940   /// floating-point value. Returns the two components as separate return
941   /// values.
942   FFREXP,
943 
944   FLOG,
945   FLOG2,
946   FLOG10,
947   FEXP,
948   FEXP2,
949   FEXP10,
950   FCEIL,
951   FTRUNC,
952   FRINT,
953   FNEARBYINT,
954   FROUND,
955   FROUNDEVEN,
956   FFLOOR,
957   LROUND,
958   LLROUND,
959   LRINT,
960   LLRINT,
961 
962   /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
963   /// values.
964   //
965   /// In the case where a single input is a NaN (either signaling or quiet),
966   /// the non-NaN input is returned.
967   ///
968   /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
969   FMINNUM,
970   FMAXNUM,
971 
972   /// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
973   /// two values, following the IEEE-754 2008 definition. This differs from
974   /// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
975   /// signaling NaN, returns a quiet NaN.
976   FMINNUM_IEEE,
977   FMAXNUM_IEEE,
978 
979   /// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
980   /// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
981   /// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
982   FMINIMUM,
983   FMAXIMUM,
984 
985   /// FSINCOS - Compute both fsin and fcos as a single operation.
986   FSINCOS,
987 
988   /// Gets the current floating-point environment. The first operand is a token
989   /// chain. The results are FP environment, represented by an integer value,
990   /// and a token chain.
991   GET_FPENV,
992 
993   /// Sets the current floating-point environment. The first operand is a token
994   /// chain, the second is FP environment, represented by an integer value. The
995   /// result is a token chain.
996   SET_FPENV,
997 
998   /// Set floating-point environment to default state. The first operand and the
999   /// result are token chains.
1000   RESET_FPENV,
1001 
1002   /// Gets the current floating-point environment. The first operand is a token
1003   /// chain, the second is a pointer to memory, where FP environment is stored
1004   /// to. The result is a token chain.
1005   GET_FPENV_MEM,
1006 
1007   /// Sets the current floating point environment. The first operand is a token
1008   /// chain, the second is a pointer to memory, where FP environment is loaded
1009   /// from. The result is a token chain.
1010   SET_FPENV_MEM,
1011 
1012   /// Reads the current dynamic floating-point control modes. The operand is
1013   /// a token chain.
1014   GET_FPMODE,
1015 
1016   /// Sets the current dynamic floating-point control modes. The first operand
1017   /// is a token chain, the second is control modes set represented as integer
1018   /// value.
1019   SET_FPMODE,
1020 
1021   /// Sets default dynamic floating-point control modes. The operand is a
1022   /// token chain.
1023   RESET_FPMODE,
1024 
1025   /// LOAD and STORE have token chains as their first operand, then the same
1026   /// operands as an LLVM load/store instruction, then an offset node that
1027   /// is added / subtracted from the base pointer to form the address (for
1028   /// indexed memory ops).
1029   LOAD,
1030   STORE,
1031 
1032   /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
1033   /// to a specified boundary.  This node always has two return values: a new
1034   /// stack pointer value and a chain. The first operand is the token chain,
1035   /// the second is the number of bytes to allocate, and the third is the
1036   /// alignment boundary.  The size is guaranteed to be a multiple of the
1037   /// stack alignment, and the alignment is guaranteed to be bigger than the
1038   /// stack alignment (if required) or 0 to get standard stack alignment.
1039   DYNAMIC_STACKALLOC,
1040 
1041   /// Control flow instructions.  These all have token chains.
1042 
1043   /// BR - Unconditional branch.  The first operand is the chain
1044   /// operand, the second is the MBB to branch to.
1045   BR,
1046 
1047   /// BRIND - Indirect branch.  The first operand is the chain, the second
1048   /// is the value to branch to, which must be of the same type as the
1049   /// target's pointer type.
1050   BRIND,
1051 
1052   /// BR_JT - Jumptable branch. The first operand is the chain, the second
1053   /// is the jumptable index, the last one is the jumptable entry index.
1054   BR_JT,
1055 
1056   /// JUMP_TABLE_DEBUG_INFO - Jumptable debug info. The first operand is the
1057   /// chain, the second is the jumptable index.
1058   JUMP_TABLE_DEBUG_INFO,
1059 
1060   /// BRCOND - Conditional branch.  The first operand is the chain, the
1061   /// second is the condition, the third is the block to branch to if the
1062   /// condition is true.  If the type of the condition is not i1, then the
1063   /// high bits must conform to getBooleanContents. If the condition is undef,
1064   /// it nondeterministically jumps to the block.
1065   /// TODO: Its semantics w.r.t undef requires further discussion; we need to
1066   /// make it sure that it is consistent with optimizations in MIR & the
1067   /// meaning of IMPLICIT_DEF. See https://reviews.llvm.org/D92015
1068   BRCOND,
1069 
1070   /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
1071   /// that the condition is represented as condition code, and two nodes to
1072   /// compare, rather than as a combined SetCC node.  The operands in order
1073   /// are chain, cc, lhs, rhs, block to branch to if condition is true. If
1074   /// condition is undef, it nondeterministically jumps to the block.
1075   BR_CC,
1076 
1077   /// INLINEASM - Represents an inline asm block.  This node always has two
1078   /// return values: a chain and a flag result.  The inputs are as follows:
1079   ///   Operand #0  : Input chain.
1080   ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
1081   ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
1082   ///   Operand #3  : HasSideEffect, IsAlignStack bits.
1083   ///   After this, it is followed by a list of operands with this format:
1084   ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
1085   ///                     of operands that follow, etc.  See InlineAsm.h.
1086   ///     ... however many operands ...
1087   ///   Operand #last: Optional, an incoming flag.
1088   ///
1089   /// The variable width operands are required to represent target addressing
1090   /// modes as a single "operand", even though they may have multiple
1091   /// SDOperands.
1092   INLINEASM,
1093 
1094   /// INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
1095   INLINEASM_BR,
1096 
1097   /// EH_LABEL - Represents a label in mid basic block used to track
1098   /// locations needed for debug and exception handling tables.  These nodes
1099   /// take a chain as input and return a chain.
1100   EH_LABEL,
1101 
1102   /// ANNOTATION_LABEL - Represents a mid basic block label used by
1103   /// annotations. This should remain within the basic block and be ordered
1104   /// with respect to other call instructions, but loads and stores may float
1105   /// past it.
1106   ANNOTATION_LABEL,
1107 
1108   /// CATCHRET - Represents a return from a catch block funclet. Used for
1109   /// MSVC compatible exception handling. Takes a chain operand and a
1110   /// destination basic block operand.
1111   CATCHRET,
1112 
1113   /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
1114   /// MSVC compatible exception handling. Takes only a chain operand.
1115   CLEANUPRET,
1116 
1117   /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
1118   /// value, the same type as the pointer type for the system, and an output
1119   /// chain.
1120   STACKSAVE,
1121 
1122   /// STACKRESTORE has two operands, an input chain and a pointer to restore
1123   /// to it returns an output chain.
1124   STACKRESTORE,
1125 
1126   /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
1127   /// of a call sequence, and carry arbitrary information that target might
1128   /// want to know.  The first operand is a chain, the rest are specified by
1129   /// the target and not touched by the DAG optimizers.
1130   /// Targets that may use stack to pass call arguments define additional
1131   /// operands:
1132   /// - size of the call frame part that must be set up within the
1133   ///   CALLSEQ_START..CALLSEQ_END pair,
1134   /// - part of the call frame prepared prior to CALLSEQ_START.
1135   /// Both these parameters must be constants, their sum is the total call
1136   /// frame size.
1137   /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
1138   CALLSEQ_START, // Beginning of a call sequence
1139   CALLSEQ_END,   // End of a call sequence
1140 
1141   /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
1142   /// and the alignment. It returns a pair of values: the vaarg value and a
1143   /// new chain.
1144   VAARG,
1145 
1146   /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
1147   /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
1148   /// source.
1149   VACOPY,
1150 
1151   /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
1152   /// pointer, and a SRCVALUE.
1153   VAEND,
1154   VASTART,
1155 
1156   // PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE
1157   // with the preallocated call Value.
1158   PREALLOCATED_SETUP,
1159   // PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE
1160   // with the preallocated call Value, and a constant int.
1161   PREALLOCATED_ARG,
1162 
1163   /// SRCVALUE - This is a node type that holds a Value* that is used to
1164   /// make reference to a value in the LLVM IR.
1165   SRCVALUE,
1166 
1167   /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
1168   /// reference metadata in the IR.
1169   MDNODE_SDNODE,
1170 
1171   /// PCMARKER - This corresponds to the pcmarker intrinsic.
1172   PCMARKER,
1173 
1174   /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
1175   /// It produces a chain and one i64 value. The only operand is a chain.
1176   /// If i64 is not legal, the result will be expanded into smaller values.
1177   /// Still, it returns an i64, so targets should set legality for i64.
1178   /// The result is the content of the architecture-specific cycle
1179   /// counter-like register (or other high accuracy low latency clock source).
1180   READCYCLECOUNTER,
1181 
1182   /// HANDLENODE node - Used as a handle for various purposes.
1183   HANDLENODE,
1184 
1185   /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
1186   /// takes as input a token chain, the pointer to the trampoline, the pointer
1187   /// to the nested function, the pointer to pass for the 'nest' parameter, a
1188   /// SRCVALUE for the trampoline and another for the nested function
1189   /// (allowing targets to access the original Function*).
1190   /// It produces a token chain as output.
1191   INIT_TRAMPOLINE,
1192 
1193   /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
1194   /// It takes a pointer to the trampoline and produces a (possibly) new
1195   /// pointer to the same trampoline with platform-specific adjustments
1196   /// applied.  The pointer it returns points to an executable block of code.
1197   ADJUST_TRAMPOLINE,
1198 
1199   /// TRAP - Trapping instruction
1200   TRAP,
1201 
1202   /// DEBUGTRAP - Trap intended to get the attention of a debugger.
1203   DEBUGTRAP,
1204 
1205   /// UBSANTRAP - Trap with an immediate describing the kind of sanitizer
1206   /// failure.
1207   UBSANTRAP,
1208 
1209   /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
1210   /// is the chain.  The other operands are the address to prefetch,
1211   /// read / write specifier, locality specifier and instruction / data cache
1212   /// specifier.
1213   PREFETCH,
1214 
1215   /// ARITH_FENCE - This corresponds to a arithmetic fence intrinsic. Both its
1216   /// operand and output are the same floating type.
1217   ARITH_FENCE,
1218 
1219   /// MEMBARRIER - Compiler barrier only; generate a no-op.
1220   MEMBARRIER,
1221 
1222   /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
1223   /// This corresponds to the fence instruction. It takes an input chain, and
1224   /// two integer constants: an AtomicOrdering and a SynchronizationScope.
1225   ATOMIC_FENCE,
1226 
1227   /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
1228   /// This corresponds to "load atomic" instruction.
1229   ATOMIC_LOAD,
1230 
1231   /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
1232   /// This corresponds to "store atomic" instruction.
1233   ATOMIC_STORE,
1234 
1235   /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
1236   /// For double-word atomic operations:
1237   /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
1238   ///                                          swapLo, swapHi)
1239   /// This corresponds to the cmpxchg instruction.
1240   ATOMIC_CMP_SWAP,
1241 
1242   /// Val, Success, OUTCHAIN
1243   ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
1244   /// N.b. this is still a strong cmpxchg operation, so
1245   /// Success == "Val == cmp".
1246   ATOMIC_CMP_SWAP_WITH_SUCCESS,
1247 
1248   /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
1249   /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
1250   /// For double-word atomic operations:
1251   /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
1252   /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
1253   /// These correspond to the atomicrmw instruction.
1254   ATOMIC_SWAP,
1255   ATOMIC_LOAD_ADD,
1256   ATOMIC_LOAD_SUB,
1257   ATOMIC_LOAD_AND,
1258   ATOMIC_LOAD_CLR,
1259   ATOMIC_LOAD_OR,
1260   ATOMIC_LOAD_XOR,
1261   ATOMIC_LOAD_NAND,
1262   ATOMIC_LOAD_MIN,
1263   ATOMIC_LOAD_MAX,
1264   ATOMIC_LOAD_UMIN,
1265   ATOMIC_LOAD_UMAX,
1266   ATOMIC_LOAD_FADD,
1267   ATOMIC_LOAD_FSUB,
1268   ATOMIC_LOAD_FMAX,
1269   ATOMIC_LOAD_FMIN,
1270   ATOMIC_LOAD_UINC_WRAP,
1271   ATOMIC_LOAD_UDEC_WRAP,
1272 
1273   // Masked load and store - consecutive vector load and store operations
1274   // with additional mask operand that prevents memory accesses to the
1275   // masked-off lanes.
1276   //
1277   // Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
1278   // OutChain = MSTORE(Value, BasePtr, Mask)
1279   MLOAD,
1280   MSTORE,
1281 
1282   // Masked gather and scatter - load and store operations for a vector of
1283   // random addresses with additional mask operand that prevents memory
1284   // accesses to the masked-off lanes.
1285   //
1286   // Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
1287   // OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)
1288   //
1289   // The Index operand can have more vector elements than the other operands
1290   // due to type legalization. The extra elements are ignored.
1291   MGATHER,
1292   MSCATTER,
1293 
1294   /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
1295   /// is the chain and the second operand is the alloca pointer.
1296   LIFETIME_START,
1297   LIFETIME_END,
1298 
1299   /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
1300   /// beginning and end of GC transition  sequence, and carry arbitrary
1301   /// information that target might need for lowering.  The first operand is
1302   /// a chain, the rest are specified by the target and not touched by the DAG
1303   /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
1304   /// nested.
1305   GC_TRANSITION_START,
1306   GC_TRANSITION_END,
1307 
1308   /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
1309   /// the most recent dynamic alloca. For most targets that would be 0, but
1310   /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
1311   /// known nonzero constant. The only operand here is the chain.
1312   GET_DYNAMIC_AREA_OFFSET,
1313 
1314   /// Pseudo probe for AutoFDO, as a place holder in a basic block to improve
1315   /// the sample counts quality.
1316   PSEUDO_PROBE,
1317 
1318   /// VSCALE(IMM) - Returns the runtime scaling factor used to calculate the
1319   /// number of elements within a scalable vector. IMM is a constant integer
1320   /// multiplier that is applied to the runtime value.
1321   VSCALE,
1322 
1323   /// Generic reduction nodes. These nodes represent horizontal vector
1324   /// reduction operations, producing a scalar result.
1325   /// The SEQ variants perform reductions in sequential order. The first
1326   /// operand is an initial scalar accumulator value, and the second operand
1327   /// is the vector to reduce.
1328   /// E.g. RES = VECREDUCE_SEQ_FADD f32 ACC, <4 x f32> SRC_VEC
1329   ///  ... is equivalent to
1330   /// RES = (((ACC + SRC_VEC[0]) + SRC_VEC[1]) + SRC_VEC[2]) + SRC_VEC[3]
1331   VECREDUCE_SEQ_FADD,
1332   VECREDUCE_SEQ_FMUL,
1333 
1334   /// These reductions have relaxed evaluation order semantics, and have a
1335   /// single vector operand. The order of evaluation is unspecified. For
1336   /// pow-of-2 vectors, one valid legalizer expansion is to use a tree
1337   /// reduction, i.e.:
1338   /// For RES = VECREDUCE_FADD <8 x f16> SRC_VEC
1339   ///   PART_RDX = FADD SRC_VEC[0:3], SRC_VEC[4:7]
1340   ///   PART_RDX2 = FADD PART_RDX[0:1], PART_RDX[2:3]
1341   ///   RES = FADD PART_RDX2[0], PART_RDX2[1]
1342   /// For non-pow-2 vectors, this can be computed by extracting each element
1343   /// and performing the operation as if it were scalarized.
1344   VECREDUCE_FADD,
1345   VECREDUCE_FMUL,
1346   /// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
1347   VECREDUCE_FMAX,
1348   VECREDUCE_FMIN,
1349   /// FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the
1350   /// llvm.minimum and llvm.maximum semantics.
1351   VECREDUCE_FMAXIMUM,
1352   VECREDUCE_FMINIMUM,
1353   /// Integer reductions may have a result type larger than the vector element
1354   /// type. However, the reduction is performed using the vector element type
1355   /// and the value in the top bits is unspecified.
1356   VECREDUCE_ADD,
1357   VECREDUCE_MUL,
1358   VECREDUCE_AND,
1359   VECREDUCE_OR,
1360   VECREDUCE_XOR,
1361   VECREDUCE_SMAX,
1362   VECREDUCE_SMIN,
1363   VECREDUCE_UMAX,
1364   VECREDUCE_UMIN,
1365 
1366   // The `llvm.experimental.stackmap` intrinsic.
1367   // Operands: input chain, glue, <id>, <numShadowBytes>, [live0[, live1...]]
1368   // Outputs: output chain, glue
1369   STACKMAP,
1370 
1371   // The `llvm.experimental.patchpoint.*` intrinsic.
1372   // Operands: input chain, [glue], reg-mask, <id>, <numShadowBytes>, callee,
1373   //   <numArgs>, cc, ...
1374   // Outputs: [rv], output chain, glue
1375   PATCHPOINT,
1376 
1377 // Vector Predication
1378 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) VPSDID,
1379 #include "llvm/IR/VPIntrinsics.def"
1380 
1381   /// BUILTIN_OP_END - This must be the last enum value in this list.
1382   /// The target-specific pre-isel opcode values start here.
1383   BUILTIN_OP_END
1384 };
1385 
1386 /// FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations
1387 /// which cannot raise FP exceptions should be less than this value.
1388 /// Those that do must not be less than this value.
1389 static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400;
1390 
1391 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
1392 /// which do not reference a specific memory location should be less than
1393 /// this value. Those that do must not be less than this value, and can
1394 /// be used with SelectionDAG::getMemIntrinsicNode.
1395 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500;
1396 
1397 /// Whether this is bitwise logic opcode.
isBitwiseLogicOp(unsigned Opcode)1398 inline bool isBitwiseLogicOp(unsigned Opcode) {
1399   return Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR;
1400 }
1401 
1402 /// Get underlying scalar opcode for VECREDUCE opcode.
1403 /// For example ISD::AND for ISD::VECREDUCE_AND.
1404 NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode);
1405 
1406 /// Whether this is a vector-predicated Opcode.
1407 bool isVPOpcode(unsigned Opcode);
1408 
1409 /// Whether this is a vector-predicated binary operation opcode.
1410 bool isVPBinaryOp(unsigned Opcode);
1411 
1412 /// Whether this is a vector-predicated reduction opcode.
1413 bool isVPReduction(unsigned Opcode);
1414 
1415 /// The operand position of the vector mask.
1416 std::optional<unsigned> getVPMaskIdx(unsigned Opcode);
1417 
1418 /// The operand position of the explicit vector length parameter.
1419 std::optional<unsigned> getVPExplicitVectorLengthIdx(unsigned Opcode);
1420 
1421 /// Translate this VP Opcode to its corresponding non-VP Opcode.
1422 std::optional<unsigned> getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept);
1423 
1424 /// Translate this non-VP Opcode to its corresponding VP Opcode.
1425 unsigned getVPForBaseOpcode(unsigned Opcode);
1426 
1427 //===--------------------------------------------------------------------===//
1428 /// MemIndexedMode enum - This enum defines the load / store indexed
1429 /// addressing modes.
1430 ///
1431 /// UNINDEXED    "Normal" load / store. The effective address is already
1432 ///              computed and is available in the base pointer. The offset
1433 ///              operand is always undefined. In addition to producing a
1434 ///              chain, an unindexed load produces one value (result of the
1435 ///              load); an unindexed store does not produce a value.
1436 ///
1437 /// PRE_INC      Similar to the unindexed mode where the effective address is
1438 /// PRE_DEC      the value of the base pointer add / subtract the offset.
1439 ///              It considers the computation as being folded into the load /
1440 ///              store operation (i.e. the load / store does the address
1441 ///              computation as well as performing the memory transaction).
1442 ///              The base operand is always undefined. In addition to
1443 ///              producing a chain, pre-indexed load produces two values
1444 ///              (result of the load and the result of the address
1445 ///              computation); a pre-indexed store produces one value (result
1446 ///              of the address computation).
1447 ///
1448 /// POST_INC     The effective address is the value of the base pointer. The
1449 /// POST_DEC     value of the offset operand is then added to / subtracted
1450 ///              from the base after memory transaction. In addition to
1451 ///              producing a chain, post-indexed load produces two values
1452 ///              (the result of the load and the result of the base +/- offset
1453 ///              computation); a post-indexed store produces one value (the
1454 ///              the result of the base +/- offset computation).
1455 enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC };
1456 
1457 static const int LAST_INDEXED_MODE = POST_DEC + 1;
1458 
1459 //===--------------------------------------------------------------------===//
1460 /// MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's
1461 /// index parameter when calculating addresses.
1462 ///
1463 /// SIGNED_SCALED     Addr = Base + ((signed)Index * Scale)
1464 /// UNSIGNED_SCALED   Addr = Base + ((unsigned)Index * Scale)
1465 ///
1466 /// NOTE: The value of Scale is typically only known to the node owning the
1467 /// IndexType, with a value of 1 the equivalent of being unscaled.
1468 enum MemIndexType { SIGNED_SCALED = 0, UNSIGNED_SCALED };
1469 
1470 static const int LAST_MEM_INDEX_TYPE = UNSIGNED_SCALED + 1;
1471 
isIndexTypeSigned(MemIndexType IndexType)1472 inline bool isIndexTypeSigned(MemIndexType IndexType) {
1473   return IndexType == SIGNED_SCALED;
1474 }
1475 
1476 //===--------------------------------------------------------------------===//
1477 /// LoadExtType enum - This enum defines the three variants of LOADEXT
1478 /// (load with extension).
1479 ///
1480 /// SEXTLOAD loads the integer operand and sign extends it to a larger
1481 ///          integer result type.
1482 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
1483 ///          integer result type.
1484 /// EXTLOAD  is used for two things: floating point extending loads and
1485 ///          integer extending loads [the top bits are undefined].
1486 enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD };
1487 
1488 static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
1489 
1490 NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
1491 
1492 //===--------------------------------------------------------------------===//
1493 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
1494 /// below work out, when considering SETFALSE (something that never exists
1495 /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
1496 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
1497 /// to.  If the "N" column is 1, the result of the comparison is undefined if
1498 /// the input is a NAN.
1499 ///
1500 /// All of these (except for the 'always folded ops') should be handled for
1501 /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
1502 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
1503 ///
1504 /// Note that these are laid out in a specific order to allow bit-twiddling
1505 /// to transform conditions.
1506 enum CondCode {
1507   // Opcode       N U L G E       Intuitive operation
1508   SETFALSE, //      0 0 0 0       Always false (always folded)
1509   SETOEQ,   //      0 0 0 1       True if ordered and equal
1510   SETOGT,   //      0 0 1 0       True if ordered and greater than
1511   SETOGE,   //      0 0 1 1       True if ordered and greater than or equal
1512   SETOLT,   //      0 1 0 0       True if ordered and less than
1513   SETOLE,   //      0 1 0 1       True if ordered and less than or equal
1514   SETONE,   //      0 1 1 0       True if ordered and operands are unequal
1515   SETO,     //      0 1 1 1       True if ordered (no nans)
1516   SETUO,    //      1 0 0 0       True if unordered: isnan(X) | isnan(Y)
1517   SETUEQ,   //      1 0 0 1       True if unordered or equal
1518   SETUGT,   //      1 0 1 0       True if unordered or greater than
1519   SETUGE,   //      1 0 1 1       True if unordered, greater than, or equal
1520   SETULT,   //      1 1 0 0       True if unordered or less than
1521   SETULE,   //      1 1 0 1       True if unordered, less than, or equal
1522   SETUNE,   //      1 1 1 0       True if unordered or not equal
1523   SETTRUE,  //      1 1 1 1       Always true (always folded)
1524   // Don't care operations: undefined if the input is a nan.
1525   SETFALSE2, //   1 X 0 0 0       Always false (always folded)
1526   SETEQ,     //   1 X 0 0 1       True if equal
1527   SETGT,     //   1 X 0 1 0       True if greater than
1528   SETGE,     //   1 X 0 1 1       True if greater than or equal
1529   SETLT,     //   1 X 1 0 0       True if less than
1530   SETLE,     //   1 X 1 0 1       True if less than or equal
1531   SETNE,     //   1 X 1 1 0       True if not equal
1532   SETTRUE2,  //   1 X 1 1 1       Always true (always folded)
1533 
1534   SETCC_INVALID // Marker value.
1535 };
1536 
1537 /// Return true if this is a setcc instruction that performs a signed
1538 /// comparison when used with integer operands.
isSignedIntSetCC(CondCode Code)1539 inline bool isSignedIntSetCC(CondCode Code) {
1540   return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
1541 }
1542 
1543 /// Return true if this is a setcc instruction that performs an unsigned
1544 /// comparison when used with integer operands.
isUnsignedIntSetCC(CondCode Code)1545 inline bool isUnsignedIntSetCC(CondCode Code) {
1546   return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
1547 }
1548 
1549 /// Return true if this is a setcc instruction that performs an equality
1550 /// comparison when used with integer operands.
isIntEqualitySetCC(CondCode Code)1551 inline bool isIntEqualitySetCC(CondCode Code) {
1552   return Code == SETEQ || Code == SETNE;
1553 }
1554 
1555 /// Return true if this is a setcc instruction that performs an equality
1556 /// comparison when used with floating point operands.
isFPEqualitySetCC(CondCode Code)1557 inline bool isFPEqualitySetCC(CondCode Code) {
1558   return Code == SETOEQ || Code == SETONE || Code == SETUEQ || Code == SETUNE;
1559 }
1560 
1561 /// Return true if the specified condition returns true if the two operands to
1562 /// the condition are equal. Note that if one of the two operands is a NaN,
1563 /// this value is meaningless.
isTrueWhenEqual(CondCode Cond)1564 inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; }
1565 
1566 /// This function returns 0 if the condition is always false if an operand is
1567 /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
1568 /// the condition is undefined if the operand is a NaN.
getUnorderedFlavor(CondCode Cond)1569 inline unsigned getUnorderedFlavor(CondCode Cond) {
1570   return ((int)Cond >> 3) & 3;
1571 }
1572 
1573 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1574 /// SetCC operation.
1575 CondCode getSetCCInverse(CondCode Operation, EVT Type);
1576 
isExtOpcode(unsigned Opcode)1577 inline bool isExtOpcode(unsigned Opcode) {
1578   return Opcode == ISD::ANY_EXTEND || Opcode == ISD::ZERO_EXTEND ||
1579          Opcode == ISD::SIGN_EXTEND;
1580 }
1581 
isExtVecInRegOpcode(unsigned Opcode)1582 inline bool isExtVecInRegOpcode(unsigned Opcode) {
1583   return Opcode == ISD::ANY_EXTEND_VECTOR_INREG ||
1584          Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
1585          Opcode == ISD::SIGN_EXTEND_VECTOR_INREG;
1586 }
1587 
1588 namespace GlobalISel {
1589 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1590 /// SetCC operation. The U bit of the condition code has different meanings
1591 /// between floating point and integer comparisons and LLT's don't provide
1592 /// this distinction. As such we need to be told whether the comparison is
1593 /// floating point or integer-like. Pointers should use integer-like
1594 /// comparisons.
1595 CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike);
1596 } // end namespace GlobalISel
1597 
1598 /// Return the operation corresponding to (Y op X) when given the operation
1599 /// for (X op Y).
1600 CondCode getSetCCSwappedOperands(CondCode Operation);
1601 
1602 /// Return the result of a logical OR between different comparisons of
1603 /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
1604 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1605 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type);
1606 
1607 /// Return the result of a logical AND between different comparisons of
1608 /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
1609 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1610 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type);
1611 
1612 } // namespace ISD
1613 
1614 } // namespace llvm
1615 
1616 #endif
1617