1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandOptionArgumentTable.h"
17 #include "lldb/Interpreter/CommandReturnObject.h"
18 #include "lldb/Interpreter/OptionArgParser.h"
19 #include "lldb/Interpreter/OptionGroupFormat.h"
20 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
21 #include "lldb/Interpreter/OptionGroupOutputFile.h"
22 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
23 #include "lldb/Interpreter/OptionValueLanguage.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/Options.h"
26 #include "lldb/Symbol/SymbolFile.h"
27 #include "lldb/Symbol/TypeList.h"
28 #include "lldb/Target/ABI.h"
29 #include "lldb/Target/Language.h"
30 #include "lldb/Target/MemoryHistory.h"
31 #include "lldb/Target/MemoryRegionInfo.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/StackFrame.h"
34 #include "lldb/Target/Target.h"
35 #include "lldb/Target/Thread.h"
36 #include "lldb/Utility/Args.h"
37 #include "lldb/Utility/DataBufferHeap.h"
38 #include "lldb/Utility/StreamString.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <cinttypes>
41 #include <memory>
42 #include <optional>
43
44 using namespace lldb;
45 using namespace lldb_private;
46
47 #define LLDB_OPTIONS_memory_read
48 #include "CommandOptions.inc"
49
50 class OptionGroupReadMemory : public OptionGroup {
51 public:
OptionGroupReadMemory()52 OptionGroupReadMemory()
53 : m_num_per_line(1, 1), m_offset(0, 0),
54 m_language_for_type(eLanguageTypeUnknown) {}
55
56 ~OptionGroupReadMemory() override = default;
57
GetDefinitions()58 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
59 return llvm::ArrayRef(g_memory_read_options);
60 }
61
SetOptionValue(uint32_t option_idx,llvm::StringRef option_value,ExecutionContext * execution_context)62 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
63 ExecutionContext *execution_context) override {
64 Status error;
65 const int short_option = g_memory_read_options[option_idx].short_option;
66
67 switch (short_option) {
68 case 'l':
69 error = m_num_per_line.SetValueFromString(option_value);
70 if (m_num_per_line.GetCurrentValue() == 0)
71 error.SetErrorStringWithFormat(
72 "invalid value for --num-per-line option '%s'",
73 option_value.str().c_str());
74 break;
75
76 case 'b':
77 m_output_as_binary = true;
78 break;
79
80 case 't':
81 error = m_view_as_type.SetValueFromString(option_value);
82 break;
83
84 case 'r':
85 m_force = true;
86 break;
87
88 case 'x':
89 error = m_language_for_type.SetValueFromString(option_value);
90 break;
91
92 case 'E':
93 error = m_offset.SetValueFromString(option_value);
94 break;
95
96 default:
97 llvm_unreachable("Unimplemented option");
98 }
99 return error;
100 }
101
OptionParsingStarting(ExecutionContext * execution_context)102 void OptionParsingStarting(ExecutionContext *execution_context) override {
103 m_num_per_line.Clear();
104 m_output_as_binary = false;
105 m_view_as_type.Clear();
106 m_force = false;
107 m_offset.Clear();
108 m_language_for_type.Clear();
109 }
110
FinalizeSettings(Target * target,OptionGroupFormat & format_options)111 Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
112 Status error;
113 OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
114 OptionValueUInt64 &count_value = format_options.GetCountValue();
115 const bool byte_size_option_set = byte_size_value.OptionWasSet();
116 const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
117 const bool count_option_set = format_options.GetCountValue().OptionWasSet();
118
119 switch (format_options.GetFormat()) {
120 default:
121 break;
122
123 case eFormatBoolean:
124 if (!byte_size_option_set)
125 byte_size_value = 1;
126 if (!num_per_line_option_set)
127 m_num_per_line = 1;
128 if (!count_option_set)
129 format_options.GetCountValue() = 8;
130 break;
131
132 case eFormatCString:
133 break;
134
135 case eFormatInstruction:
136 if (count_option_set)
137 byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
138 m_num_per_line = 1;
139 break;
140
141 case eFormatAddressInfo:
142 if (!byte_size_option_set)
143 byte_size_value = target->GetArchitecture().GetAddressByteSize();
144 m_num_per_line = 1;
145 if (!count_option_set)
146 format_options.GetCountValue() = 8;
147 break;
148
149 case eFormatPointer:
150 byte_size_value = target->GetArchitecture().GetAddressByteSize();
151 if (!num_per_line_option_set)
152 m_num_per_line = 4;
153 if (!count_option_set)
154 format_options.GetCountValue() = 8;
155 break;
156
157 case eFormatBinary:
158 case eFormatFloat:
159 case eFormatOctal:
160 case eFormatDecimal:
161 case eFormatEnum:
162 case eFormatUnicode8:
163 case eFormatUnicode16:
164 case eFormatUnicode32:
165 case eFormatUnsigned:
166 case eFormatHexFloat:
167 if (!byte_size_option_set)
168 byte_size_value = 4;
169 if (!num_per_line_option_set)
170 m_num_per_line = 1;
171 if (!count_option_set)
172 format_options.GetCountValue() = 8;
173 break;
174
175 case eFormatBytes:
176 case eFormatBytesWithASCII:
177 if (byte_size_option_set) {
178 if (byte_size_value > 1)
179 error.SetErrorStringWithFormat(
180 "display format (bytes/bytes with ASCII) conflicts with the "
181 "specified byte size %" PRIu64 "\n"
182 "\tconsider using a different display format or don't specify "
183 "the byte size.",
184 byte_size_value.GetCurrentValue());
185 } else
186 byte_size_value = 1;
187 if (!num_per_line_option_set)
188 m_num_per_line = 16;
189 if (!count_option_set)
190 format_options.GetCountValue() = 32;
191 break;
192
193 case eFormatCharArray:
194 case eFormatChar:
195 case eFormatCharPrintable:
196 if (!byte_size_option_set)
197 byte_size_value = 1;
198 if (!num_per_line_option_set)
199 m_num_per_line = 32;
200 if (!count_option_set)
201 format_options.GetCountValue() = 64;
202 break;
203
204 case eFormatComplex:
205 if (!byte_size_option_set)
206 byte_size_value = 8;
207 if (!num_per_line_option_set)
208 m_num_per_line = 1;
209 if (!count_option_set)
210 format_options.GetCountValue() = 8;
211 break;
212
213 case eFormatComplexInteger:
214 if (!byte_size_option_set)
215 byte_size_value = 8;
216 if (!num_per_line_option_set)
217 m_num_per_line = 1;
218 if (!count_option_set)
219 format_options.GetCountValue() = 8;
220 break;
221
222 case eFormatHex:
223 if (!byte_size_option_set)
224 byte_size_value = 4;
225 if (!num_per_line_option_set) {
226 switch (byte_size_value) {
227 case 1:
228 case 2:
229 m_num_per_line = 8;
230 break;
231 case 4:
232 m_num_per_line = 4;
233 break;
234 case 8:
235 m_num_per_line = 2;
236 break;
237 default:
238 m_num_per_line = 1;
239 break;
240 }
241 }
242 if (!count_option_set)
243 count_value = 8;
244 break;
245
246 case eFormatVectorOfChar:
247 case eFormatVectorOfSInt8:
248 case eFormatVectorOfUInt8:
249 case eFormatVectorOfSInt16:
250 case eFormatVectorOfUInt16:
251 case eFormatVectorOfSInt32:
252 case eFormatVectorOfUInt32:
253 case eFormatVectorOfSInt64:
254 case eFormatVectorOfUInt64:
255 case eFormatVectorOfFloat16:
256 case eFormatVectorOfFloat32:
257 case eFormatVectorOfFloat64:
258 case eFormatVectorOfUInt128:
259 if (!byte_size_option_set)
260 byte_size_value = 128;
261 if (!num_per_line_option_set)
262 m_num_per_line = 1;
263 if (!count_option_set)
264 count_value = 4;
265 break;
266 }
267 return error;
268 }
269
AnyOptionWasSet() const270 bool AnyOptionWasSet() const {
271 return m_num_per_line.OptionWasSet() || m_output_as_binary ||
272 m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
273 m_language_for_type.OptionWasSet();
274 }
275
276 OptionValueUInt64 m_num_per_line;
277 bool m_output_as_binary = false;
278 OptionValueString m_view_as_type;
279 bool m_force = false;
280 OptionValueUInt64 m_offset;
281 OptionValueLanguage m_language_for_type;
282 };
283
284 // Read memory from the inferior process
285 class CommandObjectMemoryRead : public CommandObjectParsed {
286 public:
CommandObjectMemoryRead(CommandInterpreter & interpreter)287 CommandObjectMemoryRead(CommandInterpreter &interpreter)
288 : CommandObjectParsed(
289 interpreter, "memory read",
290 "Read from the memory of the current target process.", nullptr,
291 eCommandRequiresTarget | eCommandProcessMustBePaused),
292 m_format_options(eFormatBytesWithASCII, 1, 8),
293 m_memory_tag_options(/*note_binary=*/true),
294 m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
295 CommandArgumentEntry arg1;
296 CommandArgumentEntry arg2;
297 CommandArgumentData start_addr_arg;
298 CommandArgumentData end_addr_arg;
299
300 // Define the first (and only) variant of this arg.
301 start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302 start_addr_arg.arg_repetition = eArgRepeatPlain;
303
304 // There is only one variant this argument could be; put it into the
305 // argument entry.
306 arg1.push_back(start_addr_arg);
307
308 // Define the first (and only) variant of this arg.
309 end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310 end_addr_arg.arg_repetition = eArgRepeatOptional;
311
312 // There is only one variant this argument could be; put it into the
313 // argument entry.
314 arg2.push_back(end_addr_arg);
315
316 // Push the data for the first argument into the m_arguments vector.
317 m_arguments.push_back(arg1);
318 m_arguments.push_back(arg2);
319
320 // Add the "--format" and "--count" options to group 1 and 3
321 m_option_group.Append(&m_format_options,
322 OptionGroupFormat::OPTION_GROUP_FORMAT |
323 OptionGroupFormat::OPTION_GROUP_COUNT,
324 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325 m_option_group.Append(&m_format_options,
326 OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327 LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328 // Add the "--size" option to group 1 and 2
329 m_option_group.Append(&m_format_options,
330 OptionGroupFormat::OPTION_GROUP_SIZE,
331 LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332 m_option_group.Append(&m_memory_options);
333 m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335 m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336 m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
337 LLDB_OPT_SET_ALL);
338 m_option_group.Finalize();
339 }
340
341 ~CommandObjectMemoryRead() override = default;
342
GetOptions()343 Options *GetOptions() override { return &m_option_group; }
344
GetRepeatCommand(Args & current_command_args,uint32_t index)345 std::optional<std::string> GetRepeatCommand(Args ¤t_command_args,
346 uint32_t index) override {
347 return m_cmd_name;
348 }
349
350 protected:
DoExecute(Args & command,CommandReturnObject & result)351 bool DoExecute(Args &command, CommandReturnObject &result) override {
352 // No need to check "target" for validity as eCommandRequiresTarget ensures
353 // it is valid
354 Target *target = m_exe_ctx.GetTargetPtr();
355
356 const size_t argc = command.GetArgumentCount();
357
358 if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
359 result.AppendErrorWithFormat("%s takes a start address expression with "
360 "an optional end address expression.\n",
361 m_cmd_name.c_str());
362 result.AppendWarning("Expressions should be quoted if they contain "
363 "spaces or other special characters.");
364 return false;
365 }
366
367 CompilerType compiler_type;
368 Status error;
369
370 const char *view_as_type_cstr =
371 m_memory_options.m_view_as_type.GetCurrentValue();
372 if (view_as_type_cstr && view_as_type_cstr[0]) {
373 // We are viewing memory as a type
374
375 const bool exact_match = false;
376 TypeList type_list;
377 uint32_t reference_count = 0;
378 uint32_t pointer_count = 0;
379 size_t idx;
380
381 #define ALL_KEYWORDS \
382 KEYWORD("const") \
383 KEYWORD("volatile") \
384 KEYWORD("restrict") \
385 KEYWORD("struct") \
386 KEYWORD("class") \
387 KEYWORD("union")
388
389 #define KEYWORD(s) s,
390 static const char *g_keywords[] = {ALL_KEYWORDS};
391 #undef KEYWORD
392
393 #define KEYWORD(s) (sizeof(s) - 1),
394 static const int g_keyword_lengths[] = {ALL_KEYWORDS};
395 #undef KEYWORD
396
397 #undef ALL_KEYWORDS
398
399 static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
400 std::string type_str(view_as_type_cstr);
401
402 // Remove all instances of g_keywords that are followed by spaces
403 for (size_t i = 0; i < g_num_keywords; ++i) {
404 const char *keyword = g_keywords[i];
405 int keyword_len = g_keyword_lengths[i];
406
407 idx = 0;
408 while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
409 if (type_str[idx + keyword_len] == ' ' ||
410 type_str[idx + keyword_len] == '\t') {
411 type_str.erase(idx, keyword_len + 1);
412 idx = 0;
413 } else {
414 idx += keyword_len;
415 }
416 }
417 }
418 bool done = type_str.empty();
419 //
420 idx = type_str.find_first_not_of(" \t");
421 if (idx > 0 && idx != std::string::npos)
422 type_str.erase(0, idx);
423 while (!done) {
424 // Strip trailing spaces
425 if (type_str.empty())
426 done = true;
427 else {
428 switch (type_str[type_str.size() - 1]) {
429 case '*':
430 ++pointer_count;
431 [[fallthrough]];
432 case ' ':
433 case '\t':
434 type_str.erase(type_str.size() - 1);
435 break;
436
437 case '&':
438 if (reference_count == 0) {
439 reference_count = 1;
440 type_str.erase(type_str.size() - 1);
441 } else {
442 result.AppendErrorWithFormat("invalid type string: '%s'\n",
443 view_as_type_cstr);
444 return false;
445 }
446 break;
447
448 default:
449 done = true;
450 break;
451 }
452 }
453 }
454
455 llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
456 ConstString lookup_type_name(type_str.c_str());
457 StackFrame *frame = m_exe_ctx.GetFramePtr();
458 ModuleSP search_first;
459 if (frame) {
460 search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
461 }
462 target->GetImages().FindTypes(search_first.get(), lookup_type_name,
463 exact_match, 1, searched_symbol_files,
464 type_list);
465
466 if (type_list.GetSize() == 0 && lookup_type_name.GetCString()) {
467 LanguageType language_for_type =
468 m_memory_options.m_language_for_type.GetCurrentValue();
469 std::set<LanguageType> languages_to_check;
470 if (language_for_type != eLanguageTypeUnknown) {
471 languages_to_check.insert(language_for_type);
472 } else {
473 languages_to_check = Language::GetSupportedLanguages();
474 }
475
476 std::set<CompilerType> user_defined_types;
477 for (auto lang : languages_to_check) {
478 if (auto *persistent_vars =
479 target->GetPersistentExpressionStateForLanguage(lang)) {
480 if (std::optional<CompilerType> type =
481 persistent_vars->GetCompilerTypeFromPersistentDecl(
482 lookup_type_name)) {
483 user_defined_types.emplace(*type);
484 }
485 }
486 }
487
488 if (user_defined_types.size() > 1) {
489 result.AppendErrorWithFormat(
490 "Mutiple types found matching raw type '%s', please disambiguate "
491 "by specifying the language with -x",
492 lookup_type_name.GetCString());
493 return false;
494 }
495
496 if (user_defined_types.size() == 1) {
497 compiler_type = *user_defined_types.begin();
498 }
499 }
500
501 if (!compiler_type.IsValid()) {
502 if (type_list.GetSize() == 0) {
503 result.AppendErrorWithFormat("unable to find any types that match "
504 "the raw type '%s' for full type '%s'\n",
505 lookup_type_name.GetCString(),
506 view_as_type_cstr);
507 return false;
508 } else {
509 TypeSP type_sp(type_list.GetTypeAtIndex(0));
510 compiler_type = type_sp->GetFullCompilerType();
511 }
512 }
513
514 while (pointer_count > 0) {
515 CompilerType pointer_type = compiler_type.GetPointerType();
516 if (pointer_type.IsValid())
517 compiler_type = pointer_type;
518 else {
519 result.AppendError("unable make a pointer type\n");
520 return false;
521 }
522 --pointer_count;
523 }
524
525 std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
526 if (!size) {
527 result.AppendErrorWithFormat(
528 "unable to get the byte size of the type '%s'\n",
529 view_as_type_cstr);
530 return false;
531 }
532 m_format_options.GetByteSizeValue() = *size;
533
534 if (!m_format_options.GetCountValue().OptionWasSet())
535 m_format_options.GetCountValue() = 1;
536 } else {
537 error = m_memory_options.FinalizeSettings(target, m_format_options);
538 }
539
540 // Look for invalid combinations of settings
541 if (error.Fail()) {
542 result.AppendError(error.AsCString());
543 return false;
544 }
545
546 lldb::addr_t addr;
547 size_t total_byte_size = 0;
548 if (argc == 0) {
549 // Use the last address and byte size and all options as they were if no
550 // options have been set
551 addr = m_next_addr;
552 total_byte_size = m_prev_byte_size;
553 compiler_type = m_prev_compiler_type;
554 if (!m_format_options.AnyOptionWasSet() &&
555 !m_memory_options.AnyOptionWasSet() &&
556 !m_outfile_options.AnyOptionWasSet() &&
557 !m_varobj_options.AnyOptionWasSet() &&
558 !m_memory_tag_options.AnyOptionWasSet()) {
559 m_format_options = m_prev_format_options;
560 m_memory_options = m_prev_memory_options;
561 m_outfile_options = m_prev_outfile_options;
562 m_varobj_options = m_prev_varobj_options;
563 m_memory_tag_options = m_prev_memory_tag_options;
564 }
565 }
566
567 size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
568
569 // TODO For non-8-bit byte addressable architectures this needs to be
570 // revisited to fully support all lldb's range of formatting options.
571 // Furthermore code memory reads (for those architectures) will not be
572 // correctly formatted even w/o formatting options.
573 size_t item_byte_size =
574 target->GetArchitecture().GetDataByteSize() > 1
575 ? target->GetArchitecture().GetDataByteSize()
576 : m_format_options.GetByteSizeValue().GetCurrentValue();
577
578 const size_t num_per_line =
579 m_memory_options.m_num_per_line.GetCurrentValue();
580
581 if (total_byte_size == 0) {
582 total_byte_size = item_count * item_byte_size;
583 if (total_byte_size == 0)
584 total_byte_size = 32;
585 }
586
587 if (argc > 0)
588 addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
589 LLDB_INVALID_ADDRESS, &error);
590
591 if (addr == LLDB_INVALID_ADDRESS) {
592 result.AppendError("invalid start address expression.");
593 result.AppendError(error.AsCString());
594 return false;
595 }
596
597 ABISP abi;
598 if (Process *proc = m_exe_ctx.GetProcessPtr())
599 abi = proc->GetABI();
600
601 if (abi)
602 addr = abi->FixDataAddress(addr);
603
604 if (argc == 2) {
605 lldb::addr_t end_addr = OptionArgParser::ToAddress(
606 &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
607 if (end_addr != LLDB_INVALID_ADDRESS && abi)
608 end_addr = abi->FixDataAddress(end_addr);
609
610 if (end_addr == LLDB_INVALID_ADDRESS) {
611 result.AppendError("invalid end address expression.");
612 result.AppendError(error.AsCString());
613 return false;
614 } else if (end_addr <= addr) {
615 result.AppendErrorWithFormat(
616 "end address (0x%" PRIx64
617 ") must be greater than the start address (0x%" PRIx64 ").\n",
618 end_addr, addr);
619 return false;
620 } else if (m_format_options.GetCountValue().OptionWasSet()) {
621 result.AppendErrorWithFormat(
622 "specify either the end address (0x%" PRIx64
623 ") or the count (--count %" PRIu64 "), not both.\n",
624 end_addr, (uint64_t)item_count);
625 return false;
626 }
627
628 total_byte_size = end_addr - addr;
629 item_count = total_byte_size / item_byte_size;
630 }
631
632 uint32_t max_unforced_size = target->GetMaximumMemReadSize();
633
634 if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
635 result.AppendErrorWithFormat(
636 "Normally, \'memory read\' will not read over %" PRIu32
637 " bytes of data.\n",
638 max_unforced_size);
639 result.AppendErrorWithFormat(
640 "Please use --force to override this restriction just once.\n");
641 result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
642 "will often need a larger limit.\n");
643 return false;
644 }
645
646 WritableDataBufferSP data_sp;
647 size_t bytes_read = 0;
648 if (compiler_type.GetOpaqueQualType()) {
649 // Make sure we don't display our type as ASCII bytes like the default
650 // memory read
651 if (!m_format_options.GetFormatValue().OptionWasSet())
652 m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
653
654 std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
655 if (!size) {
656 result.AppendError("can't get size of type");
657 return false;
658 }
659 bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
660
661 if (argc > 0)
662 addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
663 } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
664 eFormatCString) {
665 data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
666 if (data_sp->GetBytes() == nullptr) {
667 result.AppendErrorWithFormat(
668 "can't allocate 0x%" PRIx32
669 " bytes for the memory read buffer, specify a smaller size to read",
670 (uint32_t)total_byte_size);
671 return false;
672 }
673
674 Address address(addr, nullptr);
675 bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
676 data_sp->GetByteSize(), error, true);
677 if (bytes_read == 0) {
678 const char *error_cstr = error.AsCString();
679 if (error_cstr && error_cstr[0]) {
680 result.AppendError(error_cstr);
681 } else {
682 result.AppendErrorWithFormat(
683 "failed to read memory from 0x%" PRIx64 ".\n", addr);
684 }
685 return false;
686 }
687
688 if (bytes_read < total_byte_size)
689 result.AppendWarningWithFormat(
690 "Not all bytes (%" PRIu64 "/%" PRIu64
691 ") were able to be read from 0x%" PRIx64 ".\n",
692 (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
693 } else {
694 // we treat c-strings as a special case because they do not have a fixed
695 // size
696 if (m_format_options.GetByteSizeValue().OptionWasSet() &&
697 !m_format_options.HasGDBFormat())
698 item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
699 else
700 item_byte_size = target->GetMaximumSizeOfStringSummary();
701 if (!m_format_options.GetCountValue().OptionWasSet())
702 item_count = 1;
703 data_sp = std::make_shared<DataBufferHeap>(
704 (item_byte_size + 1) * item_count,
705 '\0'); // account for NULLs as necessary
706 if (data_sp->GetBytes() == nullptr) {
707 result.AppendErrorWithFormat(
708 "can't allocate 0x%" PRIx64
709 " bytes for the memory read buffer, specify a smaller size to read",
710 (uint64_t)((item_byte_size + 1) * item_count));
711 return false;
712 }
713 uint8_t *data_ptr = data_sp->GetBytes();
714 auto data_addr = addr;
715 auto count = item_count;
716 item_count = 0;
717 bool break_on_no_NULL = false;
718 while (item_count < count) {
719 std::string buffer;
720 buffer.resize(item_byte_size + 1, 0);
721 Status error;
722 size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
723 item_byte_size + 1, error);
724 if (error.Fail()) {
725 result.AppendErrorWithFormat(
726 "failed to read memory from 0x%" PRIx64 ".\n", addr);
727 return false;
728 }
729
730 if (item_byte_size == read) {
731 result.AppendWarningWithFormat(
732 "unable to find a NULL terminated string at 0x%" PRIx64
733 ". Consider increasing the maximum read length.\n",
734 data_addr);
735 --read;
736 break_on_no_NULL = true;
737 } else
738 ++read; // account for final NULL byte
739
740 memcpy(data_ptr, &buffer[0], read);
741 data_ptr += read;
742 data_addr += read;
743 bytes_read += read;
744 item_count++; // if we break early we know we only read item_count
745 // strings
746
747 if (break_on_no_NULL)
748 break;
749 }
750 data_sp =
751 std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
752 }
753
754 m_next_addr = addr + bytes_read;
755 m_prev_byte_size = bytes_read;
756 m_prev_format_options = m_format_options;
757 m_prev_memory_options = m_memory_options;
758 m_prev_outfile_options = m_outfile_options;
759 m_prev_varobj_options = m_varobj_options;
760 m_prev_memory_tag_options = m_memory_tag_options;
761 m_prev_compiler_type = compiler_type;
762
763 std::unique_ptr<Stream> output_stream_storage;
764 Stream *output_stream_p = nullptr;
765 const FileSpec &outfile_spec =
766 m_outfile_options.GetFile().GetCurrentValue();
767
768 std::string path = outfile_spec.GetPath();
769 if (outfile_spec) {
770
771 File::OpenOptions open_options =
772 File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
773 const bool append = m_outfile_options.GetAppend().GetCurrentValue();
774 open_options |=
775 append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
776
777 auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
778
779 if (outfile) {
780 auto outfile_stream_up =
781 std::make_unique<StreamFile>(std::move(outfile.get()));
782 if (m_memory_options.m_output_as_binary) {
783 const size_t bytes_written =
784 outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
785 if (bytes_written > 0) {
786 result.GetOutputStream().Printf(
787 "%zi bytes %s to '%s'\n", bytes_written,
788 append ? "appended" : "written", path.c_str());
789 return true;
790 } else {
791 result.AppendErrorWithFormat("Failed to write %" PRIu64
792 " bytes to '%s'.\n",
793 (uint64_t)bytes_read, path.c_str());
794 return false;
795 }
796 } else {
797 // We are going to write ASCII to the file just point the
798 // output_stream to our outfile_stream...
799 output_stream_storage = std::move(outfile_stream_up);
800 output_stream_p = output_stream_storage.get();
801 }
802 } else {
803 result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
804 path.c_str(), append ? "append" : "write");
805
806 result.AppendError(llvm::toString(outfile.takeError()));
807 return false;
808 }
809 } else {
810 output_stream_p = &result.GetOutputStream();
811 }
812
813 ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
814 if (compiler_type.GetOpaqueQualType()) {
815 for (uint32_t i = 0; i < item_count; ++i) {
816 addr_t item_addr = addr + (i * item_byte_size);
817 Address address(item_addr);
818 StreamString name_strm;
819 name_strm.Printf("0x%" PRIx64, item_addr);
820 ValueObjectSP valobj_sp(ValueObjectMemory::Create(
821 exe_scope, name_strm.GetString(), address, compiler_type));
822 if (valobj_sp) {
823 Format format = m_format_options.GetFormat();
824 if (format != eFormatDefault)
825 valobj_sp->SetFormat(format);
826
827 DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
828 eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
829
830 valobj_sp->Dump(*output_stream_p, options);
831 } else {
832 result.AppendErrorWithFormat(
833 "failed to create a value object for: (%s) %s\n",
834 view_as_type_cstr, name_strm.GetData());
835 return false;
836 }
837 }
838 return true;
839 }
840
841 result.SetStatus(eReturnStatusSuccessFinishResult);
842 DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
843 target->GetArchitecture().GetAddressByteSize(),
844 target->GetArchitecture().GetDataByteSize());
845
846 Format format = m_format_options.GetFormat();
847 if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
848 (item_byte_size != 1)) {
849 // if a count was not passed, or it is 1
850 if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
851 // this turns requests such as
852 // memory read -fc -s10 -c1 *charPtrPtr
853 // which make no sense (what is a char of size 10?) into a request for
854 // fetching 10 chars of size 1 from the same memory location
855 format = eFormatCharArray;
856 item_count = item_byte_size;
857 item_byte_size = 1;
858 } else {
859 // here we passed a count, and it was not 1 so we have a byte_size and
860 // a count we could well multiply those, but instead let's just fail
861 result.AppendErrorWithFormat(
862 "reading memory as characters of size %" PRIu64 " is not supported",
863 (uint64_t)item_byte_size);
864 return false;
865 }
866 }
867
868 assert(output_stream_p);
869 size_t bytes_dumped = DumpDataExtractor(
870 data, output_stream_p, 0, format, item_byte_size, item_count,
871 num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
872 exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
873 m_next_addr = addr + bytes_dumped;
874 output_stream_p->EOL();
875 return true;
876 }
877
878 OptionGroupOptions m_option_group;
879 OptionGroupFormat m_format_options;
880 OptionGroupReadMemory m_memory_options;
881 OptionGroupOutputFile m_outfile_options;
882 OptionGroupValueObjectDisplay m_varobj_options;
883 OptionGroupMemoryTag m_memory_tag_options;
884 lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
885 lldb::addr_t m_prev_byte_size = 0;
886 OptionGroupFormat m_prev_format_options;
887 OptionGroupReadMemory m_prev_memory_options;
888 OptionGroupOutputFile m_prev_outfile_options;
889 OptionGroupValueObjectDisplay m_prev_varobj_options;
890 OptionGroupMemoryTag m_prev_memory_tag_options;
891 CompilerType m_prev_compiler_type;
892 };
893
894 #define LLDB_OPTIONS_memory_find
895 #include "CommandOptions.inc"
896
897 // Find the specified data in memory
898 class CommandObjectMemoryFind : public CommandObjectParsed {
899 public:
900 class OptionGroupFindMemory : public OptionGroup {
901 public:
OptionGroupFindMemory()902 OptionGroupFindMemory() : m_count(1), m_offset(0) {}
903
904 ~OptionGroupFindMemory() override = default;
905
GetDefinitions()906 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
907 return llvm::ArrayRef(g_memory_find_options);
908 }
909
SetOptionValue(uint32_t option_idx,llvm::StringRef option_value,ExecutionContext * execution_context)910 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
911 ExecutionContext *execution_context) override {
912 Status error;
913 const int short_option = g_memory_find_options[option_idx].short_option;
914
915 switch (short_option) {
916 case 'e':
917 m_expr.SetValueFromString(option_value);
918 break;
919
920 case 's':
921 m_string.SetValueFromString(option_value);
922 break;
923
924 case 'c':
925 if (m_count.SetValueFromString(option_value).Fail())
926 error.SetErrorString("unrecognized value for count");
927 break;
928
929 case 'o':
930 if (m_offset.SetValueFromString(option_value).Fail())
931 error.SetErrorString("unrecognized value for dump-offset");
932 break;
933
934 default:
935 llvm_unreachable("Unimplemented option");
936 }
937 return error;
938 }
939
OptionParsingStarting(ExecutionContext * execution_context)940 void OptionParsingStarting(ExecutionContext *execution_context) override {
941 m_expr.Clear();
942 m_string.Clear();
943 m_count.Clear();
944 }
945
946 OptionValueString m_expr;
947 OptionValueString m_string;
948 OptionValueUInt64 m_count;
949 OptionValueUInt64 m_offset;
950 };
951
CommandObjectMemoryFind(CommandInterpreter & interpreter)952 CommandObjectMemoryFind(CommandInterpreter &interpreter)
953 : CommandObjectParsed(
954 interpreter, "memory find",
955 "Find a value in the memory of the current target process.",
956 nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
957 CommandArgumentEntry arg1;
958 CommandArgumentEntry arg2;
959 CommandArgumentData addr_arg;
960 CommandArgumentData value_arg;
961
962 // Define the first (and only) variant of this arg.
963 addr_arg.arg_type = eArgTypeAddressOrExpression;
964 addr_arg.arg_repetition = eArgRepeatPlain;
965
966 // There is only one variant this argument could be; put it into the
967 // argument entry.
968 arg1.push_back(addr_arg);
969
970 // Define the first (and only) variant of this arg.
971 value_arg.arg_type = eArgTypeAddressOrExpression;
972 value_arg.arg_repetition = eArgRepeatPlain;
973
974 // There is only one variant this argument could be; put it into the
975 // argument entry.
976 arg2.push_back(value_arg);
977
978 // Push the data for the first argument into the m_arguments vector.
979 m_arguments.push_back(arg1);
980 m_arguments.push_back(arg2);
981
982 m_option_group.Append(&m_memory_options);
983 m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
984 LLDB_OPT_SET_ALL);
985 m_option_group.Finalize();
986 }
987
988 ~CommandObjectMemoryFind() override = default;
989
GetOptions()990 Options *GetOptions() override { return &m_option_group; }
991
992 protected:
993 class ProcessMemoryIterator {
994 public:
ProcessMemoryIterator(ProcessSP process_sp,lldb::addr_t base)995 ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
996 : m_process_sp(process_sp), m_base_addr(base) {
997 lldbassert(process_sp.get() != nullptr);
998 }
999
IsValid()1000 bool IsValid() { return m_is_valid; }
1001
operator [](lldb::addr_t offset)1002 uint8_t operator[](lldb::addr_t offset) {
1003 if (!IsValid())
1004 return 0;
1005
1006 uint8_t retval = 0;
1007 Status error;
1008 if (0 ==
1009 m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
1010 m_is_valid = false;
1011 return 0;
1012 }
1013
1014 return retval;
1015 }
1016
1017 private:
1018 ProcessSP m_process_sp;
1019 lldb::addr_t m_base_addr;
1020 bool m_is_valid = true;
1021 };
DoExecute(Args & command,CommandReturnObject & result)1022 bool DoExecute(Args &command, CommandReturnObject &result) override {
1023 // No need to check "process" for validity as eCommandRequiresProcess
1024 // ensures it is valid
1025 Process *process = m_exe_ctx.GetProcessPtr();
1026
1027 const size_t argc = command.GetArgumentCount();
1028
1029 if (argc != 2) {
1030 result.AppendError("two addresses needed for memory find");
1031 return false;
1032 }
1033
1034 Status error;
1035 lldb::addr_t low_addr = OptionArgParser::ToAddress(
1036 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1037 if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1038 result.AppendError("invalid low address");
1039 return false;
1040 }
1041 lldb::addr_t high_addr = OptionArgParser::ToAddress(
1042 &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1043 if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1044 result.AppendError("invalid high address");
1045 return false;
1046 }
1047
1048 ABISP abi = m_exe_ctx.GetProcessPtr()->GetABI();
1049 if (abi) {
1050 low_addr = abi->FixDataAddress(low_addr);
1051 high_addr = abi->FixDataAddress(high_addr);
1052 }
1053
1054 if (high_addr <= low_addr) {
1055 result.AppendError(
1056 "starting address must be smaller than ending address");
1057 return false;
1058 }
1059
1060 lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1061
1062 DataBufferHeap buffer;
1063
1064 if (m_memory_options.m_string.OptionWasSet()) {
1065 llvm::StringRef str = m_memory_options.m_string.GetStringValue();
1066 if (str.empty()) {
1067 result.AppendError("search string must have non-zero length.");
1068 return false;
1069 }
1070 buffer.CopyData(str);
1071 } else if (m_memory_options.m_expr.OptionWasSet()) {
1072 StackFrame *frame = m_exe_ctx.GetFramePtr();
1073 ValueObjectSP result_sp;
1074 if ((eExpressionCompleted ==
1075 process->GetTarget().EvaluateExpression(
1076 m_memory_options.m_expr.GetStringValue(), frame, result_sp)) &&
1077 result_sp) {
1078 uint64_t value = result_sp->GetValueAsUnsigned(0);
1079 std::optional<uint64_t> size =
1080 result_sp->GetCompilerType().GetByteSize(nullptr);
1081 if (!size)
1082 return false;
1083 switch (*size) {
1084 case 1: {
1085 uint8_t byte = (uint8_t)value;
1086 buffer.CopyData(&byte, 1);
1087 } break;
1088 case 2: {
1089 uint16_t word = (uint16_t)value;
1090 buffer.CopyData(&word, 2);
1091 } break;
1092 case 4: {
1093 uint32_t lword = (uint32_t)value;
1094 buffer.CopyData(&lword, 4);
1095 } break;
1096 case 8: {
1097 buffer.CopyData(&value, 8);
1098 } break;
1099 case 3:
1100 case 5:
1101 case 6:
1102 case 7:
1103 result.AppendError("unknown type. pass a string instead");
1104 return false;
1105 default:
1106 result.AppendError(
1107 "result size larger than 8 bytes. pass a string instead");
1108 return false;
1109 }
1110 } else {
1111 result.AppendError(
1112 "expression evaluation failed. pass a string instead");
1113 return false;
1114 }
1115 } else {
1116 result.AppendError(
1117 "please pass either a block of text, or an expression to evaluate.");
1118 return false;
1119 }
1120
1121 size_t count = m_memory_options.m_count.GetCurrentValue();
1122 found_location = low_addr;
1123 bool ever_found = false;
1124 while (count) {
1125 found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
1126 buffer.GetByteSize());
1127 if (found_location == LLDB_INVALID_ADDRESS) {
1128 if (!ever_found) {
1129 result.AppendMessage("data not found within the range.\n");
1130 result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1131 } else
1132 result.AppendMessage("no more matches within the range.\n");
1133 break;
1134 }
1135 result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1136 found_location);
1137
1138 DataBufferHeap dumpbuffer(32, 0);
1139 process->ReadMemory(
1140 found_location + m_memory_options.m_offset.GetCurrentValue(),
1141 dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1142 if (!error.Fail()) {
1143 DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1144 process->GetByteOrder(),
1145 process->GetAddressByteSize());
1146 DumpDataExtractor(
1147 data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1148 dumpbuffer.GetByteSize(), 16,
1149 found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1150 m_exe_ctx.GetBestExecutionContextScope(),
1151 m_memory_tag_options.GetShowTags().GetCurrentValue());
1152 result.GetOutputStream().EOL();
1153 }
1154
1155 --count;
1156 found_location++;
1157 ever_found = true;
1158 }
1159
1160 result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1161 return true;
1162 }
1163
FastSearch(lldb::addr_t low,lldb::addr_t high,uint8_t * buffer,size_t buffer_size)1164 lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
1165 size_t buffer_size) {
1166 const size_t region_size = high - low;
1167
1168 if (region_size < buffer_size)
1169 return LLDB_INVALID_ADDRESS;
1170
1171 std::vector<size_t> bad_char_heuristic(256, buffer_size);
1172 ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1173 ProcessMemoryIterator iterator(process_sp, low);
1174
1175 for (size_t idx = 0; idx < buffer_size - 1; idx++) {
1176 decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
1177 bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
1178 }
1179 for (size_t s = 0; s <= (region_size - buffer_size);) {
1180 int64_t j = buffer_size - 1;
1181 while (j >= 0 && buffer[j] == iterator[s + j])
1182 j--;
1183 if (j < 0)
1184 return low + s;
1185 else
1186 s += bad_char_heuristic[iterator[s + buffer_size - 1]];
1187 }
1188
1189 return LLDB_INVALID_ADDRESS;
1190 }
1191
1192 OptionGroupOptions m_option_group;
1193 OptionGroupFindMemory m_memory_options;
1194 OptionGroupMemoryTag m_memory_tag_options;
1195 };
1196
1197 #define LLDB_OPTIONS_memory_write
1198 #include "CommandOptions.inc"
1199
1200 // Write memory to the inferior process
1201 class CommandObjectMemoryWrite : public CommandObjectParsed {
1202 public:
1203 class OptionGroupWriteMemory : public OptionGroup {
1204 public:
1205 OptionGroupWriteMemory() = default;
1206
1207 ~OptionGroupWriteMemory() override = default;
1208
GetDefinitions()1209 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1210 return llvm::ArrayRef(g_memory_write_options);
1211 }
1212
SetOptionValue(uint32_t option_idx,llvm::StringRef option_value,ExecutionContext * execution_context)1213 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1214 ExecutionContext *execution_context) override {
1215 Status error;
1216 const int short_option = g_memory_write_options[option_idx].short_option;
1217
1218 switch (short_option) {
1219 case 'i':
1220 m_infile.SetFile(option_value, FileSpec::Style::native);
1221 FileSystem::Instance().Resolve(m_infile);
1222 if (!FileSystem::Instance().Exists(m_infile)) {
1223 m_infile.Clear();
1224 error.SetErrorStringWithFormat("input file does not exist: '%s'",
1225 option_value.str().c_str());
1226 }
1227 break;
1228
1229 case 'o': {
1230 if (option_value.getAsInteger(0, m_infile_offset)) {
1231 m_infile_offset = 0;
1232 error.SetErrorStringWithFormat("invalid offset string '%s'",
1233 option_value.str().c_str());
1234 }
1235 } break;
1236
1237 default:
1238 llvm_unreachable("Unimplemented option");
1239 }
1240 return error;
1241 }
1242
OptionParsingStarting(ExecutionContext * execution_context)1243 void OptionParsingStarting(ExecutionContext *execution_context) override {
1244 m_infile.Clear();
1245 m_infile_offset = 0;
1246 }
1247
1248 FileSpec m_infile;
1249 off_t m_infile_offset;
1250 };
1251
CommandObjectMemoryWrite(CommandInterpreter & interpreter)1252 CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1253 : CommandObjectParsed(
1254 interpreter, "memory write",
1255 "Write to the memory of the current target process.", nullptr,
1256 eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1257 m_format_options(
1258 eFormatBytes, 1, UINT64_MAX,
1259 {std::make_tuple(
1260 eArgTypeFormat,
1261 "The format to use for each of the value to be written."),
1262 std::make_tuple(eArgTypeByteSize,
1263 "The size in bytes to write from input file or "
1264 "each value.")}) {
1265 CommandArgumentEntry arg1;
1266 CommandArgumentEntry arg2;
1267 CommandArgumentData addr_arg;
1268 CommandArgumentData value_arg;
1269
1270 // Define the first (and only) variant of this arg.
1271 addr_arg.arg_type = eArgTypeAddress;
1272 addr_arg.arg_repetition = eArgRepeatPlain;
1273
1274 // There is only one variant this argument could be; put it into the
1275 // argument entry.
1276 arg1.push_back(addr_arg);
1277
1278 // Define the first (and only) variant of this arg.
1279 value_arg.arg_type = eArgTypeValue;
1280 value_arg.arg_repetition = eArgRepeatPlus;
1281 value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1282
1283 // There is only one variant this argument could be; put it into the
1284 // argument entry.
1285 arg2.push_back(value_arg);
1286
1287 // Push the data for the first argument into the m_arguments vector.
1288 m_arguments.push_back(arg1);
1289 m_arguments.push_back(arg2);
1290
1291 m_option_group.Append(&m_format_options,
1292 OptionGroupFormat::OPTION_GROUP_FORMAT,
1293 LLDB_OPT_SET_1);
1294 m_option_group.Append(&m_format_options,
1295 OptionGroupFormat::OPTION_GROUP_SIZE,
1296 LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1297 m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1298 m_option_group.Finalize();
1299 }
1300
1301 ~CommandObjectMemoryWrite() override = default;
1302
GetOptions()1303 Options *GetOptions() override { return &m_option_group; }
1304
1305 protected:
DoExecute(Args & command,CommandReturnObject & result)1306 bool DoExecute(Args &command, CommandReturnObject &result) override {
1307 // No need to check "process" for validity as eCommandRequiresProcess
1308 // ensures it is valid
1309 Process *process = m_exe_ctx.GetProcessPtr();
1310
1311 const size_t argc = command.GetArgumentCount();
1312
1313 if (m_memory_options.m_infile) {
1314 if (argc < 1) {
1315 result.AppendErrorWithFormat(
1316 "%s takes a destination address when writing file contents.\n",
1317 m_cmd_name.c_str());
1318 return false;
1319 }
1320 if (argc > 1) {
1321 result.AppendErrorWithFormat(
1322 "%s takes only a destination address when writing file contents.\n",
1323 m_cmd_name.c_str());
1324 return false;
1325 }
1326 } else if (argc < 2) {
1327 result.AppendErrorWithFormat(
1328 "%s takes a destination address and at least one value.\n",
1329 m_cmd_name.c_str());
1330 return false;
1331 }
1332
1333 StreamString buffer(
1334 Stream::eBinary,
1335 process->GetTarget().GetArchitecture().GetAddressByteSize(),
1336 process->GetTarget().GetArchitecture().GetByteOrder());
1337
1338 OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1339 size_t item_byte_size = byte_size_value.GetCurrentValue();
1340
1341 Status error;
1342 lldb::addr_t addr = OptionArgParser::ToAddress(
1343 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1344
1345 if (addr == LLDB_INVALID_ADDRESS) {
1346 result.AppendError("invalid address expression\n");
1347 result.AppendError(error.AsCString());
1348 return false;
1349 }
1350
1351 if (m_memory_options.m_infile) {
1352 size_t length = SIZE_MAX;
1353 if (item_byte_size > 1)
1354 length = item_byte_size;
1355 auto data_sp = FileSystem::Instance().CreateDataBuffer(
1356 m_memory_options.m_infile.GetPath(), length,
1357 m_memory_options.m_infile_offset);
1358 if (data_sp) {
1359 length = data_sp->GetByteSize();
1360 if (length > 0) {
1361 Status error;
1362 size_t bytes_written =
1363 process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1364
1365 if (bytes_written == length) {
1366 // All bytes written
1367 result.GetOutputStream().Printf(
1368 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1369 (uint64_t)bytes_written, addr);
1370 result.SetStatus(eReturnStatusSuccessFinishResult);
1371 } else if (bytes_written > 0) {
1372 // Some byte written
1373 result.GetOutputStream().Printf(
1374 "%" PRIu64 " bytes of %" PRIu64
1375 " requested were written to 0x%" PRIx64 "\n",
1376 (uint64_t)bytes_written, (uint64_t)length, addr);
1377 result.SetStatus(eReturnStatusSuccessFinishResult);
1378 } else {
1379 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1380 " failed: %s.\n",
1381 addr, error.AsCString());
1382 }
1383 }
1384 } else {
1385 result.AppendErrorWithFormat("Unable to read contents of file.\n");
1386 }
1387 return result.Succeeded();
1388 } else if (item_byte_size == 0) {
1389 if (m_format_options.GetFormat() == eFormatPointer)
1390 item_byte_size = buffer.GetAddressByteSize();
1391 else
1392 item_byte_size = 1;
1393 }
1394
1395 command.Shift(); // shift off the address argument
1396 uint64_t uval64;
1397 int64_t sval64;
1398 bool success = false;
1399 for (auto &entry : command) {
1400 switch (m_format_options.GetFormat()) {
1401 case kNumFormats:
1402 case eFormatFloat: // TODO: add support for floats soon
1403 case eFormatCharPrintable:
1404 case eFormatBytesWithASCII:
1405 case eFormatComplex:
1406 case eFormatEnum:
1407 case eFormatUnicode8:
1408 case eFormatUnicode16:
1409 case eFormatUnicode32:
1410 case eFormatVectorOfChar:
1411 case eFormatVectorOfSInt8:
1412 case eFormatVectorOfUInt8:
1413 case eFormatVectorOfSInt16:
1414 case eFormatVectorOfUInt16:
1415 case eFormatVectorOfSInt32:
1416 case eFormatVectorOfUInt32:
1417 case eFormatVectorOfSInt64:
1418 case eFormatVectorOfUInt64:
1419 case eFormatVectorOfFloat16:
1420 case eFormatVectorOfFloat32:
1421 case eFormatVectorOfFloat64:
1422 case eFormatVectorOfUInt128:
1423 case eFormatOSType:
1424 case eFormatComplexInteger:
1425 case eFormatAddressInfo:
1426 case eFormatHexFloat:
1427 case eFormatInstruction:
1428 case eFormatVoid:
1429 result.AppendError("unsupported format for writing memory");
1430 return false;
1431
1432 case eFormatDefault:
1433 case eFormatBytes:
1434 case eFormatHex:
1435 case eFormatHexUppercase:
1436 case eFormatPointer: {
1437 // Decode hex bytes
1438 // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1439 // have to special case that:
1440 bool success = false;
1441 if (entry.ref().startswith("0x"))
1442 success = !entry.ref().getAsInteger(0, uval64);
1443 if (!success)
1444 success = !entry.ref().getAsInteger(16, uval64);
1445 if (!success) {
1446 result.AppendErrorWithFormat(
1447 "'%s' is not a valid hex string value.\n", entry.c_str());
1448 return false;
1449 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1450 result.AppendErrorWithFormat("Value 0x%" PRIx64
1451 " is too large to fit in a %" PRIu64
1452 " byte unsigned integer value.\n",
1453 uval64, (uint64_t)item_byte_size);
1454 return false;
1455 }
1456 buffer.PutMaxHex64(uval64, item_byte_size);
1457 break;
1458 }
1459 case eFormatBoolean:
1460 uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1461 if (!success) {
1462 result.AppendErrorWithFormat(
1463 "'%s' is not a valid boolean string value.\n", entry.c_str());
1464 return false;
1465 }
1466 buffer.PutMaxHex64(uval64, item_byte_size);
1467 break;
1468
1469 case eFormatBinary:
1470 if (entry.ref().getAsInteger(2, uval64)) {
1471 result.AppendErrorWithFormat(
1472 "'%s' is not a valid binary string value.\n", entry.c_str());
1473 return false;
1474 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1475 result.AppendErrorWithFormat("Value 0x%" PRIx64
1476 " is too large to fit in a %" PRIu64
1477 " byte unsigned integer value.\n",
1478 uval64, (uint64_t)item_byte_size);
1479 return false;
1480 }
1481 buffer.PutMaxHex64(uval64, item_byte_size);
1482 break;
1483
1484 case eFormatCharArray:
1485 case eFormatChar:
1486 case eFormatCString: {
1487 if (entry.ref().empty())
1488 break;
1489
1490 size_t len = entry.ref().size();
1491 // Include the NULL for C strings...
1492 if (m_format_options.GetFormat() == eFormatCString)
1493 ++len;
1494 Status error;
1495 if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1496 addr += len;
1497 } else {
1498 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1499 " failed: %s.\n",
1500 addr, error.AsCString());
1501 return false;
1502 }
1503 break;
1504 }
1505 case eFormatDecimal:
1506 if (entry.ref().getAsInteger(0, sval64)) {
1507 result.AppendErrorWithFormat(
1508 "'%s' is not a valid signed decimal value.\n", entry.c_str());
1509 return false;
1510 } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1511 result.AppendErrorWithFormat(
1512 "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1513 " byte signed integer value.\n",
1514 sval64, (uint64_t)item_byte_size);
1515 return false;
1516 }
1517 buffer.PutMaxHex64(sval64, item_byte_size);
1518 break;
1519
1520 case eFormatUnsigned:
1521
1522 if (entry.ref().getAsInteger(0, uval64)) {
1523 result.AppendErrorWithFormat(
1524 "'%s' is not a valid unsigned decimal string value.\n",
1525 entry.c_str());
1526 return false;
1527 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1528 result.AppendErrorWithFormat("Value %" PRIu64
1529 " is too large to fit in a %" PRIu64
1530 " byte unsigned integer value.\n",
1531 uval64, (uint64_t)item_byte_size);
1532 return false;
1533 }
1534 buffer.PutMaxHex64(uval64, item_byte_size);
1535 break;
1536
1537 case eFormatOctal:
1538 if (entry.ref().getAsInteger(8, uval64)) {
1539 result.AppendErrorWithFormat(
1540 "'%s' is not a valid octal string value.\n", entry.c_str());
1541 return false;
1542 } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1543 result.AppendErrorWithFormat("Value %" PRIo64
1544 " is too large to fit in a %" PRIu64
1545 " byte unsigned integer value.\n",
1546 uval64, (uint64_t)item_byte_size);
1547 return false;
1548 }
1549 buffer.PutMaxHex64(uval64, item_byte_size);
1550 break;
1551 }
1552 }
1553
1554 if (!buffer.GetString().empty()) {
1555 Status error;
1556 if (process->WriteMemory(addr, buffer.GetString().data(),
1557 buffer.GetString().size(),
1558 error) == buffer.GetString().size())
1559 return true;
1560 else {
1561 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1562 " failed: %s.\n",
1563 addr, error.AsCString());
1564 return false;
1565 }
1566 }
1567 return true;
1568 }
1569
1570 OptionGroupOptions m_option_group;
1571 OptionGroupFormat m_format_options;
1572 OptionGroupWriteMemory m_memory_options;
1573 };
1574
1575 // Get malloc/free history of a memory address.
1576 class CommandObjectMemoryHistory : public CommandObjectParsed {
1577 public:
CommandObjectMemoryHistory(CommandInterpreter & interpreter)1578 CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1579 : CommandObjectParsed(interpreter, "memory history",
1580 "Print recorded stack traces for "
1581 "allocation/deallocation events "
1582 "associated with an address.",
1583 nullptr,
1584 eCommandRequiresTarget | eCommandRequiresProcess |
1585 eCommandProcessMustBePaused |
1586 eCommandProcessMustBeLaunched) {
1587 CommandArgumentEntry arg1;
1588 CommandArgumentData addr_arg;
1589
1590 // Define the first (and only) variant of this arg.
1591 addr_arg.arg_type = eArgTypeAddress;
1592 addr_arg.arg_repetition = eArgRepeatPlain;
1593
1594 // There is only one variant this argument could be; put it into the
1595 // argument entry.
1596 arg1.push_back(addr_arg);
1597
1598 // Push the data for the first argument into the m_arguments vector.
1599 m_arguments.push_back(arg1);
1600 }
1601
1602 ~CommandObjectMemoryHistory() override = default;
1603
GetRepeatCommand(Args & current_command_args,uint32_t index)1604 std::optional<std::string> GetRepeatCommand(Args ¤t_command_args,
1605 uint32_t index) override {
1606 return m_cmd_name;
1607 }
1608
1609 protected:
DoExecute(Args & command,CommandReturnObject & result)1610 bool DoExecute(Args &command, CommandReturnObject &result) override {
1611 const size_t argc = command.GetArgumentCount();
1612
1613 if (argc == 0 || argc > 1) {
1614 result.AppendErrorWithFormat("%s takes an address expression",
1615 m_cmd_name.c_str());
1616 return false;
1617 }
1618
1619 Status error;
1620 lldb::addr_t addr = OptionArgParser::ToAddress(
1621 &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1622
1623 if (addr == LLDB_INVALID_ADDRESS) {
1624 result.AppendError("invalid address expression");
1625 result.AppendError(error.AsCString());
1626 return false;
1627 }
1628
1629 Stream *output_stream = &result.GetOutputStream();
1630
1631 const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1632 const MemoryHistorySP &memory_history =
1633 MemoryHistory::FindPlugin(process_sp);
1634
1635 if (!memory_history) {
1636 result.AppendError("no available memory history provider");
1637 return false;
1638 }
1639
1640 HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1641
1642 const bool stop_format = false;
1643 for (auto thread : thread_list) {
1644 thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1645 }
1646
1647 result.SetStatus(eReturnStatusSuccessFinishResult);
1648
1649 return true;
1650 }
1651 };
1652
1653 // CommandObjectMemoryRegion
1654 #pragma mark CommandObjectMemoryRegion
1655
1656 #define LLDB_OPTIONS_memory_region
1657 #include "CommandOptions.inc"
1658
1659 class CommandObjectMemoryRegion : public CommandObjectParsed {
1660 public:
1661 class OptionGroupMemoryRegion : public OptionGroup {
1662 public:
OptionGroupMemoryRegion()1663 OptionGroupMemoryRegion() : m_all(false, false) {}
1664
1665 ~OptionGroupMemoryRegion() override = default;
1666
GetDefinitions()1667 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1668 return llvm::ArrayRef(g_memory_region_options);
1669 }
1670
SetOptionValue(uint32_t option_idx,llvm::StringRef option_value,ExecutionContext * execution_context)1671 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1672 ExecutionContext *execution_context) override {
1673 Status status;
1674 const int short_option = g_memory_region_options[option_idx].short_option;
1675
1676 switch (short_option) {
1677 case 'a':
1678 m_all.SetCurrentValue(true);
1679 m_all.SetOptionWasSet();
1680 break;
1681 default:
1682 llvm_unreachable("Unimplemented option");
1683 }
1684
1685 return status;
1686 }
1687
OptionParsingStarting(ExecutionContext * execution_context)1688 void OptionParsingStarting(ExecutionContext *execution_context) override {
1689 m_all.Clear();
1690 }
1691
1692 OptionValueBoolean m_all;
1693 };
1694
CommandObjectMemoryRegion(CommandInterpreter & interpreter)1695 CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1696 : CommandObjectParsed(interpreter, "memory region",
1697 "Get information on the memory region containing "
1698 "an address in the current target process.",
1699 "memory region <address-expression> (or --all)",
1700 eCommandRequiresProcess | eCommandTryTargetAPILock |
1701 eCommandProcessMustBeLaunched) {
1702 // Address in option set 1.
1703 m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1704 eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1705 // "--all" will go in option set 2.
1706 m_option_group.Append(&m_memory_region_options);
1707 m_option_group.Finalize();
1708 }
1709
1710 ~CommandObjectMemoryRegion() override = default;
1711
GetOptions()1712 Options *GetOptions() override { return &m_option_group; }
1713
1714 protected:
DumpRegion(CommandReturnObject & result,Target & target,const MemoryRegionInfo & range_info,lldb::addr_t load_addr)1715 void DumpRegion(CommandReturnObject &result, Target &target,
1716 const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1717 lldb_private::Address addr;
1718 ConstString section_name;
1719 if (target.ResolveLoadAddress(load_addr, addr)) {
1720 SectionSP section_sp(addr.GetSection());
1721 if (section_sp) {
1722 // Got the top most section, not the deepest section
1723 while (section_sp->GetParent())
1724 section_sp = section_sp->GetParent();
1725 section_name = section_sp->GetName();
1726 }
1727 }
1728
1729 ConstString name = range_info.GetName();
1730 result.AppendMessageWithFormatv(
1731 "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1732 range_info.GetRange().GetRangeBase(),
1733 range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1734 range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1735 name, section_name ? " " : "", section_name);
1736 MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1737 if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1738 result.AppendMessage("memory tagging: enabled");
1739
1740 const std::optional<std::vector<addr_t>> &dirty_page_list =
1741 range_info.GetDirtyPageList();
1742 if (dirty_page_list) {
1743 const size_t page_count = dirty_page_list->size();
1744 result.AppendMessageWithFormat(
1745 "Modified memory (dirty) page list provided, %zu entries.\n",
1746 page_count);
1747 if (page_count > 0) {
1748 bool print_comma = false;
1749 result.AppendMessageWithFormat("Dirty pages: ");
1750 for (size_t i = 0; i < page_count; i++) {
1751 if (print_comma)
1752 result.AppendMessageWithFormat(", ");
1753 else
1754 print_comma = true;
1755 result.AppendMessageWithFormat("0x%" PRIx64, (*dirty_page_list)[i]);
1756 }
1757 result.AppendMessageWithFormat(".\n");
1758 }
1759 }
1760 }
1761
DoExecute(Args & command,CommandReturnObject & result)1762 bool DoExecute(Args &command, CommandReturnObject &result) override {
1763 ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1764 if (!process_sp) {
1765 m_prev_end_addr = LLDB_INVALID_ADDRESS;
1766 result.AppendError("invalid process");
1767 return false;
1768 }
1769
1770 Status error;
1771 lldb::addr_t load_addr = m_prev_end_addr;
1772 m_prev_end_addr = LLDB_INVALID_ADDRESS;
1773
1774 const size_t argc = command.GetArgumentCount();
1775 const lldb::ABISP &abi = process_sp->GetABI();
1776
1777 if (argc == 1) {
1778 if (m_memory_region_options.m_all) {
1779 result.AppendError(
1780 "The \"--all\" option cannot be used when an address "
1781 "argument is given");
1782 return false;
1783 }
1784
1785 auto load_addr_str = command[0].ref();
1786 // Non-address bits in this will be handled later by GetMemoryRegion
1787 load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1788 LLDB_INVALID_ADDRESS, &error);
1789 if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1790 result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1791 command[0].c_str(), error.AsCString());
1792 return false;
1793 }
1794 } else if (argc > 1 ||
1795 // When we're repeating the command, the previous end address is
1796 // used for load_addr. If that was 0xF...F then we must have
1797 // reached the end of memory.
1798 (argc == 0 && !m_memory_region_options.m_all &&
1799 load_addr == LLDB_INVALID_ADDRESS) ||
1800 // If the target has non-address bits (tags, limited virtual
1801 // address size, etc.), the end of mappable memory will be lower
1802 // than that. So if we find any non-address bit set, we must be
1803 // at the end of the mappable range.
1804 (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1805 result.AppendErrorWithFormat(
1806 "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1807 m_cmd_name.c_str(), m_cmd_syntax.c_str());
1808 return false;
1809 }
1810
1811 // Is is important that we track the address used to request the region as
1812 // this will give the correct section name in the case that regions overlap.
1813 // On Windows we get mutliple regions that start at the same place but are
1814 // different sizes and refer to different sections.
1815 std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1816 region_list;
1817 if (m_memory_region_options.m_all) {
1818 // We don't use GetMemoryRegions here because it doesn't include unmapped
1819 // areas like repeating the command would. So instead, emulate doing that.
1820 lldb::addr_t addr = 0;
1821 while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1822 // When there are non-address bits the last range will not extend
1823 // to LLDB_INVALID_ADDRESS but to the max virtual address.
1824 // This prevents us looping forever if that is the case.
1825 (!abi || (abi->FixAnyAddress(addr) == addr))) {
1826 lldb_private::MemoryRegionInfo region_info;
1827 error = process_sp->GetMemoryRegionInfo(addr, region_info);
1828
1829 if (error.Success()) {
1830 region_list.push_back({region_info, addr});
1831 addr = region_info.GetRange().GetRangeEnd();
1832 }
1833 }
1834 } else {
1835 lldb_private::MemoryRegionInfo region_info;
1836 error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1837 if (error.Success())
1838 region_list.push_back({region_info, load_addr});
1839 }
1840
1841 if (error.Success()) {
1842 for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1843 DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1844 m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1845 }
1846
1847 result.SetStatus(eReturnStatusSuccessFinishResult);
1848 return true;
1849 }
1850
1851 result.AppendErrorWithFormat("%s\n", error.AsCString());
1852 return false;
1853 }
1854
GetRepeatCommand(Args & current_command_args,uint32_t index)1855 std::optional<std::string> GetRepeatCommand(Args ¤t_command_args,
1856 uint32_t index) override {
1857 // If we repeat this command, repeat it without any arguments so we can
1858 // show the next memory range
1859 return m_cmd_name;
1860 }
1861
1862 lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1863
1864 OptionGroupOptions m_option_group;
1865 OptionGroupMemoryRegion m_memory_region_options;
1866 };
1867
1868 // CommandObjectMemory
1869
CommandObjectMemory(CommandInterpreter & interpreter)1870 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1871 : CommandObjectMultiword(
1872 interpreter, "memory",
1873 "Commands for operating on memory in the current target process.",
1874 "memory <subcommand> [<subcommand-options>]") {
1875 LoadSubCommand("find",
1876 CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1877 LoadSubCommand("read",
1878 CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1879 LoadSubCommand("write",
1880 CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1881 LoadSubCommand("history",
1882 CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1883 LoadSubCommand("region",
1884 CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1885 LoadSubCommand("tag",
1886 CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1887 }
1888
1889 CommandObjectMemory::~CommandObjectMemory() = default;
1890