xref: /linux/include/linux/blkdev.h (revision 504fbcff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern const struct device_type part_type;
46 extern const struct class block_class;
47 
48 /*
49  * Maximum number of blkcg policies allowed to be registered concurrently.
50  * Defined here to simplify include dependency.
51  */
52 #define BLKCG_MAX_POLS		6
53 
54 #define DISK_MAX_PARTS			256
55 #define DISK_NAME_LEN			32
56 
57 #define PARTITION_META_INFO_VOLNAMELTH	64
58 /*
59  * Enough for the string representation of any kind of UUID plus NULL.
60  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
61  */
62 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
63 
64 struct partition_meta_info {
65 	char uuid[PARTITION_META_INFO_UUIDLTH];
66 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
67 };
68 
69 /**
70  * DOC: genhd capability flags
71  *
72  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
73  * removable media.  When set, the device remains present even when media is not
74  * inserted.  Shall not be set for devices which are removed entirely when the
75  * media is removed.
76  *
77  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
78  * doesn't appear in sysfs, and can't be opened from userspace or using
79  * blkdev_get*. Used for the underlying components of multipath devices.
80  *
81  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
82  * scan for partitions from add_disk, and users can't add partitions manually.
83  *
84  */
85 enum {
86 	GENHD_FL_REMOVABLE			= 1 << 0,
87 	GENHD_FL_HIDDEN				= 1 << 1,
88 	GENHD_FL_NO_PART			= 1 << 2,
89 };
90 
91 enum {
92 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
93 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
94 };
95 
96 enum {
97 	/* Poll even if events_poll_msecs is unset */
98 	DISK_EVENT_FLAG_POLL			= 1 << 0,
99 	/* Forward events to udev */
100 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
101 	/* Block event polling when open for exclusive write */
102 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
103 };
104 
105 struct disk_events;
106 struct badblocks;
107 
108 struct blk_integrity {
109 	const struct blk_integrity_profile	*profile;
110 	unsigned char				flags;
111 	unsigned char				tuple_size;
112 	unsigned char				pi_offset;
113 	unsigned char				interval_exp;
114 	unsigned char				tag_size;
115 };
116 
117 typedef unsigned int __bitwise blk_mode_t;
118 
119 /* open for reading */
120 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
121 /* open for writing */
122 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
123 /* open exclusively (vs other exclusive openers */
124 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
125 /* opened with O_NDELAY */
126 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
127 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
128 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
129 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
130 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
131 /* return partition scanning errors */
132 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
133 
134 struct gendisk {
135 	/*
136 	 * major/first_minor/minors should not be set by any new driver, the
137 	 * block core will take care of allocating them automatically.
138 	 */
139 	int major;
140 	int first_minor;
141 	int minors;
142 
143 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
144 
145 	unsigned short events;		/* supported events */
146 	unsigned short event_flags;	/* flags related to event processing */
147 
148 	struct xarray part_tbl;
149 	struct block_device *part0;
150 
151 	const struct block_device_operations *fops;
152 	struct request_queue *queue;
153 	void *private_data;
154 
155 	struct bio_set bio_split;
156 
157 	int flags;
158 	unsigned long state;
159 #define GD_NEED_PART_SCAN		0
160 #define GD_READ_ONLY			1
161 #define GD_DEAD				2
162 #define GD_NATIVE_CAPACITY		3
163 #define GD_ADDED			4
164 #define GD_SUPPRESS_PART_SCAN		5
165 #define GD_OWNS_QUEUE			6
166 
167 	struct mutex open_mutex;	/* open/close mutex */
168 	unsigned open_partitions;	/* number of open partitions */
169 
170 	struct backing_dev_info	*bdi;
171 	struct kobject queue_kobj;	/* the queue/ directory */
172 	struct kobject *slave_dir;
173 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
174 	struct list_head slave_bdevs;
175 #endif
176 	struct timer_rand_state *random;
177 	atomic_t sync_io;		/* RAID */
178 	struct disk_events *ev;
179 
180 #ifdef CONFIG_BLK_DEV_ZONED
181 	/*
182 	 * Zoned block device information. Reads of this information must be
183 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
184 	 * information is only allowed while no requests are being processed.
185 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
186 	 */
187 	unsigned int		nr_zones;
188 	unsigned int		zone_capacity;
189 	unsigned long		*conv_zones_bitmap;
190 	unsigned int            zone_wplugs_hash_bits;
191 	spinlock_t              zone_wplugs_lock;
192 	struct mempool_s	*zone_wplugs_pool;
193 	struct hlist_head       *zone_wplugs_hash;
194 	struct list_head        zone_wplugs_err_list;
195 	struct work_struct	zone_wplugs_work;
196 	struct workqueue_struct *zone_wplugs_wq;
197 #endif /* CONFIG_BLK_DEV_ZONED */
198 
199 #if IS_ENABLED(CONFIG_CDROM)
200 	struct cdrom_device_info *cdi;
201 #endif
202 	int node_id;
203 	struct badblocks *bb;
204 	struct lockdep_map lockdep_map;
205 	u64 diskseq;
206 	blk_mode_t open_mode;
207 
208 	/*
209 	 * Independent sector access ranges. This is always NULL for
210 	 * devices that do not have multiple independent access ranges.
211 	 */
212 	struct blk_independent_access_ranges *ia_ranges;
213 };
214 
disk_live(struct gendisk * disk)215 static inline bool disk_live(struct gendisk *disk)
216 {
217 	return !inode_unhashed(disk->part0->bd_inode);
218 }
219 
220 /**
221  * disk_openers - returns how many openers are there for a disk
222  * @disk: disk to check
223  *
224  * This returns the number of openers for a disk.  Note that this value is only
225  * stable if disk->open_mutex is held.
226  *
227  * Note: Due to a quirk in the block layer open code, each open partition is
228  * only counted once even if there are multiple openers.
229  */
disk_openers(struct gendisk * disk)230 static inline unsigned int disk_openers(struct gendisk *disk)
231 {
232 	return atomic_read(&disk->part0->bd_openers);
233 }
234 
235 /**
236  * disk_has_partscan - return %true if partition scanning is enabled on a disk
237  * @disk: disk to check
238  *
239  * Returns %true if partitions scanning is enabled for @disk, or %false if
240  * partition scanning is disabled either permanently or temporarily.
241  */
disk_has_partscan(struct gendisk * disk)242 static inline bool disk_has_partscan(struct gendisk *disk)
243 {
244 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
245 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
246 }
247 
248 /*
249  * The gendisk is refcounted by the part0 block_device, and the bd_device
250  * therein is also used for device model presentation in sysfs.
251  */
252 #define dev_to_disk(device) \
253 	(dev_to_bdev(device)->bd_disk)
254 #define disk_to_dev(disk) \
255 	(&((disk)->part0->bd_device))
256 
257 #if IS_REACHABLE(CONFIG_CDROM)
258 #define disk_to_cdi(disk)	((disk)->cdi)
259 #else
260 #define disk_to_cdi(disk)	NULL
261 #endif
262 
disk_devt(struct gendisk * disk)263 static inline dev_t disk_devt(struct gendisk *disk)
264 {
265 	return MKDEV(disk->major, disk->first_minor);
266 }
267 
blk_validate_block_size(unsigned long bsize)268 static inline int blk_validate_block_size(unsigned long bsize)
269 {
270 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
271 		return -EINVAL;
272 
273 	return 0;
274 }
275 
blk_op_is_passthrough(blk_opf_t op)276 static inline bool blk_op_is_passthrough(blk_opf_t op)
277 {
278 	op &= REQ_OP_MASK;
279 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
280 }
281 
282 /*
283  * BLK_BOUNCE_NONE:	never bounce (default)
284  * BLK_BOUNCE_HIGH:	bounce all highmem pages
285  */
286 enum blk_bounce {
287 	BLK_BOUNCE_NONE,
288 	BLK_BOUNCE_HIGH,
289 };
290 
291 struct queue_limits {
292 	enum blk_bounce		bounce;
293 	unsigned long		seg_boundary_mask;
294 	unsigned long		virt_boundary_mask;
295 
296 	unsigned int		max_hw_sectors;
297 	unsigned int		max_dev_sectors;
298 	unsigned int		chunk_sectors;
299 	unsigned int		max_sectors;
300 	unsigned int		max_user_sectors;
301 	unsigned int		max_segment_size;
302 	unsigned int		physical_block_size;
303 	unsigned int		logical_block_size;
304 	unsigned int		alignment_offset;
305 	unsigned int		io_min;
306 	unsigned int		io_opt;
307 	unsigned int		max_discard_sectors;
308 	unsigned int		max_hw_discard_sectors;
309 	unsigned int		max_user_discard_sectors;
310 	unsigned int		max_secure_erase_sectors;
311 	unsigned int		max_write_zeroes_sectors;
312 	unsigned int		max_zone_append_sectors;
313 	unsigned int		discard_granularity;
314 	unsigned int		discard_alignment;
315 	unsigned int		zone_write_granularity;
316 
317 	unsigned short		max_segments;
318 	unsigned short		max_integrity_segments;
319 	unsigned short		max_discard_segments;
320 
321 	unsigned char		misaligned;
322 	unsigned char		discard_misaligned;
323 	unsigned char		raid_partial_stripes_expensive;
324 	bool			zoned;
325 	unsigned int		max_open_zones;
326 	unsigned int		max_active_zones;
327 
328 	/*
329 	 * Drivers that set dma_alignment to less than 511 must be prepared to
330 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
331 	 * due to possible offsets.
332 	 */
333 	unsigned int		dma_alignment;
334 };
335 
336 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
337 			       void *data);
338 
339 void disk_set_zoned(struct gendisk *disk);
340 
341 #define BLK_ALL_ZONES  ((unsigned int)-1)
342 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
343 		unsigned int nr_zones, report_zones_cb cb, void *data);
344 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
345 		sector_t sectors, sector_t nr_sectors);
346 int blk_revalidate_disk_zones(struct gendisk *disk);
347 
348 /*
349  * Independent access ranges: struct blk_independent_access_range describes
350  * a range of contiguous sectors that can be accessed using device command
351  * execution resources that are independent from the resources used for
352  * other access ranges. This is typically found with single-LUN multi-actuator
353  * HDDs where each access range is served by a different set of heads.
354  * The set of independent ranges supported by the device is defined using
355  * struct blk_independent_access_ranges. The independent ranges must not overlap
356  * and must include all sectors within the disk capacity (no sector holes
357  * allowed).
358  * For a device with multiple ranges, requests targeting sectors in different
359  * ranges can be executed in parallel. A request can straddle an access range
360  * boundary.
361  */
362 struct blk_independent_access_range {
363 	struct kobject		kobj;
364 	sector_t		sector;
365 	sector_t		nr_sectors;
366 };
367 
368 struct blk_independent_access_ranges {
369 	struct kobject				kobj;
370 	bool					sysfs_registered;
371 	unsigned int				nr_ia_ranges;
372 	struct blk_independent_access_range	ia_range[];
373 };
374 
375 struct request_queue {
376 	/*
377 	 * The queue owner gets to use this for whatever they like.
378 	 * ll_rw_blk doesn't touch it.
379 	 */
380 	void			*queuedata;
381 
382 	struct elevator_queue	*elevator;
383 
384 	const struct blk_mq_ops	*mq_ops;
385 
386 	/* sw queues */
387 	struct blk_mq_ctx __percpu	*queue_ctx;
388 
389 	/*
390 	 * various queue flags, see QUEUE_* below
391 	 */
392 	unsigned long		queue_flags;
393 
394 	unsigned int		rq_timeout;
395 
396 	unsigned int		queue_depth;
397 
398 	refcount_t		refs;
399 
400 	/* hw dispatch queues */
401 	unsigned int		nr_hw_queues;
402 	struct xarray		hctx_table;
403 
404 	struct percpu_ref	q_usage_counter;
405 
406 	struct request		*last_merge;
407 
408 	spinlock_t		queue_lock;
409 
410 	int			quiesce_depth;
411 
412 	struct gendisk		*disk;
413 
414 	/*
415 	 * mq queue kobject
416 	 */
417 	struct kobject *mq_kobj;
418 
419 	struct queue_limits	limits;
420 
421 #ifdef  CONFIG_BLK_DEV_INTEGRITY
422 	struct blk_integrity integrity;
423 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
424 
425 #ifdef CONFIG_PM
426 	struct device		*dev;
427 	enum rpm_status		rpm_status;
428 #endif
429 
430 	/*
431 	 * Number of contexts that have called blk_set_pm_only(). If this
432 	 * counter is above zero then only RQF_PM requests are processed.
433 	 */
434 	atomic_t		pm_only;
435 
436 	struct blk_queue_stats	*stats;
437 	struct rq_qos		*rq_qos;
438 	struct mutex		rq_qos_mutex;
439 
440 	/*
441 	 * ida allocated id for this queue.  Used to index queues from
442 	 * ioctx.
443 	 */
444 	int			id;
445 
446 	unsigned int		dma_pad_mask;
447 
448 	/*
449 	 * queue settings
450 	 */
451 	unsigned long		nr_requests;	/* Max # of requests */
452 
453 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
454 	struct blk_crypto_profile *crypto_profile;
455 	struct kobject *crypto_kobject;
456 #endif
457 
458 	struct timer_list	timeout;
459 	struct work_struct	timeout_work;
460 
461 	atomic_t		nr_active_requests_shared_tags;
462 
463 	struct blk_mq_tags	*sched_shared_tags;
464 
465 	struct list_head	icq_list;
466 #ifdef CONFIG_BLK_CGROUP
467 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
468 	struct blkcg_gq		*root_blkg;
469 	struct list_head	blkg_list;
470 	struct mutex		blkcg_mutex;
471 #endif
472 
473 	int			node;
474 
475 	spinlock_t		requeue_lock;
476 	struct list_head	requeue_list;
477 	struct delayed_work	requeue_work;
478 
479 #ifdef CONFIG_BLK_DEV_IO_TRACE
480 	struct blk_trace __rcu	*blk_trace;
481 #endif
482 	/*
483 	 * for flush operations
484 	 */
485 	struct blk_flush_queue	*fq;
486 	struct list_head	flush_list;
487 
488 	struct mutex		sysfs_lock;
489 	struct mutex		sysfs_dir_lock;
490 	struct mutex		limits_lock;
491 
492 	/*
493 	 * for reusing dead hctx instance in case of updating
494 	 * nr_hw_queues
495 	 */
496 	struct list_head	unused_hctx_list;
497 	spinlock_t		unused_hctx_lock;
498 
499 	int			mq_freeze_depth;
500 
501 #ifdef CONFIG_BLK_DEV_THROTTLING
502 	/* Throttle data */
503 	struct throtl_data *td;
504 #endif
505 	struct rcu_head		rcu_head;
506 	wait_queue_head_t	mq_freeze_wq;
507 	/*
508 	 * Protect concurrent access to q_usage_counter by
509 	 * percpu_ref_kill() and percpu_ref_reinit().
510 	 */
511 	struct mutex		mq_freeze_lock;
512 
513 	struct blk_mq_tag_set	*tag_set;
514 	struct list_head	tag_set_list;
515 
516 	struct dentry		*debugfs_dir;
517 	struct dentry		*sched_debugfs_dir;
518 	struct dentry		*rqos_debugfs_dir;
519 	/*
520 	 * Serializes all debugfs metadata operations using the above dentries.
521 	 */
522 	struct mutex		debugfs_mutex;
523 
524 	bool			mq_sysfs_init_done;
525 };
526 
527 /* Keep blk_queue_flag_name[] in sync with the definitions below */
528 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
529 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
530 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
531 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
532 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
533 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
534 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
535 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
536 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
537 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
538 #define QUEUE_FLAG_SYNCHRONOUS	11	/* always completes in submit context */
539 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
540 #define QUEUE_FLAG_HW_WC	13	/* Write back caching supported */
541 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
542 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
543 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
544 #define QUEUE_FLAG_WC		17	/* Write back caching */
545 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
546 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
547 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
548 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
549 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
550 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
551 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
552 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
553 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
554 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
555 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
556 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE	31 /* quiesce_tagset skip the queue*/
557 
558 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
559 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
560 				 (1UL << QUEUE_FLAG_NOWAIT))
561 
562 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
563 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
564 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
565 
566 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
567 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
568 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
569 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
570 #define blk_queue_noxmerges(q)	\
571 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
572 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
573 #define blk_queue_stable_writes(q) \
574 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
575 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
576 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
577 #define blk_queue_zone_resetall(q)	\
578 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
579 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
580 #define blk_queue_pci_p2pdma(q)	\
581 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
582 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
583 #define blk_queue_rq_alloc_time(q)	\
584 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
585 #else
586 #define blk_queue_rq_alloc_time(q)	false
587 #endif
588 
589 #define blk_noretry_request(rq) \
590 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
591 			     REQ_FAILFAST_DRIVER))
592 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
593 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
594 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
595 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
596 #define blk_queue_skip_tagset_quiesce(q) \
597 	test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
598 
599 extern void blk_set_pm_only(struct request_queue *q);
600 extern void blk_clear_pm_only(struct request_queue *q);
601 
602 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
603 
604 #define dma_map_bvec(dev, bv, dir, attrs) \
605 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
606 	(dir), (attrs))
607 
queue_is_mq(struct request_queue * q)608 static inline bool queue_is_mq(struct request_queue *q)
609 {
610 	return q->mq_ops;
611 }
612 
613 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)614 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
615 {
616 	return q->rpm_status;
617 }
618 #else
queue_rpm_status(struct request_queue * q)619 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
620 {
621 	return RPM_ACTIVE;
622 }
623 #endif
624 
blk_queue_is_zoned(struct request_queue * q)625 static inline bool blk_queue_is_zoned(struct request_queue *q)
626 {
627 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && q->limits.zoned;
628 }
629 
630 #ifdef CONFIG_BLK_DEV_ZONED
631 unsigned int bdev_nr_zones(struct block_device *bdev);
632 
disk_nr_zones(struct gendisk * disk)633 static inline unsigned int disk_nr_zones(struct gendisk *disk)
634 {
635 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
636 }
637 
disk_zone_no(struct gendisk * disk,sector_t sector)638 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
639 {
640 	if (!blk_queue_is_zoned(disk->queue))
641 		return 0;
642 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
643 }
644 
disk_set_max_open_zones(struct gendisk * disk,unsigned int max_open_zones)645 static inline void disk_set_max_open_zones(struct gendisk *disk,
646 		unsigned int max_open_zones)
647 {
648 	disk->queue->limits.max_open_zones = max_open_zones;
649 }
650 
disk_set_max_active_zones(struct gendisk * disk,unsigned int max_active_zones)651 static inline void disk_set_max_active_zones(struct gendisk *disk,
652 		unsigned int max_active_zones)
653 {
654 	disk->queue->limits.max_active_zones = max_active_zones;
655 }
656 
bdev_max_open_zones(struct block_device * bdev)657 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
658 {
659 	return bdev->bd_disk->queue->limits.max_open_zones;
660 }
661 
bdev_max_active_zones(struct block_device * bdev)662 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
663 {
664 	return bdev->bd_disk->queue->limits.max_active_zones;
665 }
666 
667 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
668 #else /* CONFIG_BLK_DEV_ZONED */
bdev_nr_zones(struct block_device * bdev)669 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
670 {
671 	return 0;
672 }
673 
disk_nr_zones(struct gendisk * disk)674 static inline unsigned int disk_nr_zones(struct gendisk *disk)
675 {
676 	return 0;
677 }
disk_zone_no(struct gendisk * disk,sector_t sector)678 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
679 {
680 	return 0;
681 }
bdev_max_open_zones(struct block_device * bdev)682 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
683 {
684 	return 0;
685 }
686 
bdev_max_active_zones(struct block_device * bdev)687 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
688 {
689 	return 0;
690 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)691 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
692 {
693 	return false;
694 }
695 #endif /* CONFIG_BLK_DEV_ZONED */
696 
blk_queue_depth(struct request_queue * q)697 static inline unsigned int blk_queue_depth(struct request_queue *q)
698 {
699 	if (q->queue_depth)
700 		return q->queue_depth;
701 
702 	return q->nr_requests;
703 }
704 
705 /*
706  * default timeout for SG_IO if none specified
707  */
708 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
709 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
710 
711 /* This should not be used directly - use rq_for_each_segment */
712 #define for_each_bio(_bio)		\
713 	for (; _bio; _bio = _bio->bi_next)
714 
715 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
716 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)717 static inline int __must_check add_disk(struct gendisk *disk)
718 {
719 	return device_add_disk(NULL, disk, NULL);
720 }
721 void del_gendisk(struct gendisk *gp);
722 void invalidate_disk(struct gendisk *disk);
723 void set_disk_ro(struct gendisk *disk, bool read_only);
724 void disk_uevent(struct gendisk *disk, enum kobject_action action);
725 
get_disk_ro(struct gendisk * disk)726 static inline int get_disk_ro(struct gendisk *disk)
727 {
728 	return disk->part0->bd_read_only ||
729 		test_bit(GD_READ_ONLY, &disk->state);
730 }
731 
bdev_read_only(struct block_device * bdev)732 static inline int bdev_read_only(struct block_device *bdev)
733 {
734 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
735 }
736 
737 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
738 void disk_force_media_change(struct gendisk *disk);
739 void bdev_mark_dead(struct block_device *bdev, bool surprise);
740 
741 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
742 void rand_initialize_disk(struct gendisk *disk);
743 
get_start_sect(struct block_device * bdev)744 static inline sector_t get_start_sect(struct block_device *bdev)
745 {
746 	return bdev->bd_start_sect;
747 }
748 
bdev_nr_sectors(struct block_device * bdev)749 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
750 {
751 	return bdev->bd_nr_sectors;
752 }
753 
bdev_nr_bytes(struct block_device * bdev)754 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
755 {
756 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
757 }
758 
get_capacity(struct gendisk * disk)759 static inline sector_t get_capacity(struct gendisk *disk)
760 {
761 	return bdev_nr_sectors(disk->part0);
762 }
763 
sb_bdev_nr_blocks(struct super_block * sb)764 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
765 {
766 	return bdev_nr_sectors(sb->s_bdev) >>
767 		(sb->s_blocksize_bits - SECTOR_SHIFT);
768 }
769 
770 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
771 
772 void put_disk(struct gendisk *disk);
773 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
774 		struct lock_class_key *lkclass);
775 
776 /**
777  * blk_alloc_disk - allocate a gendisk structure
778  * @lim: queue limits to be used for this disk.
779  * @node_id: numa node to allocate on
780  *
781  * Allocate and pre-initialize a gendisk structure for use with BIO based
782  * drivers.
783  *
784  * Returns an ERR_PTR on error, else the allocated disk.
785  *
786  * Context: can sleep
787  */
788 #define blk_alloc_disk(lim, node_id)					\
789 ({									\
790 	static struct lock_class_key __key;				\
791 									\
792 	__blk_alloc_disk(lim, node_id, &__key);				\
793 })
794 
795 int __register_blkdev(unsigned int major, const char *name,
796 		void (*probe)(dev_t devt));
797 #define register_blkdev(major, name) \
798 	__register_blkdev(major, name, NULL)
799 void unregister_blkdev(unsigned int major, const char *name);
800 
801 bool disk_check_media_change(struct gendisk *disk);
802 void set_capacity(struct gendisk *disk, sector_t size);
803 
804 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
805 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
806 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
807 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)808 static inline int bd_link_disk_holder(struct block_device *bdev,
809 				      struct gendisk *disk)
810 {
811 	return 0;
812 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)813 static inline void bd_unlink_disk_holder(struct block_device *bdev,
814 					 struct gendisk *disk)
815 {
816 }
817 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
818 
819 dev_t part_devt(struct gendisk *disk, u8 partno);
820 void inc_diskseq(struct gendisk *disk);
821 void blk_request_module(dev_t devt);
822 
823 extern int blk_register_queue(struct gendisk *disk);
824 extern void blk_unregister_queue(struct gendisk *disk);
825 void submit_bio_noacct(struct bio *bio);
826 struct bio *bio_split_to_limits(struct bio *bio);
827 
828 extern int blk_lld_busy(struct request_queue *q);
829 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
830 extern void blk_queue_exit(struct request_queue *q);
831 extern void blk_sync_queue(struct request_queue *q);
832 
833 /* Helper to convert REQ_OP_XXX to its string format XXX */
834 extern const char *blk_op_str(enum req_op op);
835 
836 int blk_status_to_errno(blk_status_t status);
837 blk_status_t errno_to_blk_status(int errno);
838 const char *blk_status_to_str(blk_status_t status);
839 
840 /* only poll the hardware once, don't continue until a completion was found */
841 #define BLK_POLL_ONESHOT		(1 << 0)
842 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
843 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
844 			unsigned int flags);
845 
bdev_get_queue(struct block_device * bdev)846 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
847 {
848 	return bdev->bd_queue;	/* this is never NULL */
849 }
850 
851 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
852 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
853 
bio_zone_no(struct bio * bio)854 static inline unsigned int bio_zone_no(struct bio *bio)
855 {
856 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
857 }
858 
bio_straddles_zones(struct bio * bio)859 static inline bool bio_straddles_zones(struct bio *bio)
860 {
861 	return bio_sectors(bio) &&
862 		bio_zone_no(bio) !=
863 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
864 }
865 
866 /*
867  * Return how much of the chunk is left to be used for I/O at a given offset.
868  */
blk_chunk_sectors_left(sector_t offset,unsigned int chunk_sectors)869 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
870 		unsigned int chunk_sectors)
871 {
872 	if (unlikely(!is_power_of_2(chunk_sectors)))
873 		return chunk_sectors - sector_div(offset, chunk_sectors);
874 	return chunk_sectors - (offset & (chunk_sectors - 1));
875 }
876 
877 /**
878  * queue_limits_start_update - start an atomic update of queue limits
879  * @q:		queue to update
880  *
881  * This functions starts an atomic update of the queue limits.  It takes a lock
882  * to prevent other updates and returns a snapshot of the current limits that
883  * the caller can modify.  The caller must call queue_limits_commit_update()
884  * to finish the update.
885  *
886  * Context: process context.  The caller must have frozen the queue or ensured
887  * that there is outstanding I/O by other means.
888  */
889 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)890 queue_limits_start_update(struct request_queue *q)
891 	__acquires(q->limits_lock)
892 {
893 	mutex_lock(&q->limits_lock);
894 	return q->limits;
895 }
896 int queue_limits_commit_update(struct request_queue *q,
897 		struct queue_limits *lim);
898 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
899 
900 /**
901  * queue_limits_cancel_update - cancel an atomic update of queue limits
902  * @q:		queue to update
903  *
904  * This functions cancels an atomic update of the queue limits started by
905  * queue_limits_start_update() and should be used when an error occurs after
906  * starting update.
907  */
queue_limits_cancel_update(struct request_queue * q)908 static inline void queue_limits_cancel_update(struct request_queue *q)
909 {
910 	mutex_unlock(&q->limits_lock);
911 }
912 
913 /*
914  * Access functions for manipulating queue properties
915  */
916 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
917 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
918 		unsigned int max_sectors);
919 extern void blk_queue_max_discard_sectors(struct request_queue *q,
920 		unsigned int max_discard_sectors);
921 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
922 		unsigned int max_write_same_sectors);
923 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
924 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
925 		unsigned int max_zone_append_sectors);
926 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
927 void blk_queue_zone_write_granularity(struct request_queue *q,
928 				      unsigned int size);
929 extern void blk_queue_alignment_offset(struct request_queue *q,
930 				       unsigned int alignment);
931 void disk_update_readahead(struct gendisk *disk);
932 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
933 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
934 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
935 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
936 extern void blk_set_stacking_limits(struct queue_limits *lim);
937 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
938 			    sector_t offset);
939 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
940 		sector_t offset, const char *pfx);
941 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
942 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
943 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
944 
945 struct blk_independent_access_ranges *
946 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
947 void disk_set_independent_access_ranges(struct gendisk *disk,
948 				struct blk_independent_access_ranges *iars);
949 
950 bool __must_check blk_get_queue(struct request_queue *);
951 extern void blk_put_queue(struct request_queue *);
952 
953 void blk_mark_disk_dead(struct gendisk *disk);
954 
955 #ifdef CONFIG_BLOCK
956 /*
957  * blk_plug permits building a queue of related requests by holding the I/O
958  * fragments for a short period. This allows merging of sequential requests
959  * into single larger request. As the requests are moved from a per-task list to
960  * the device's request_queue in a batch, this results in improved scalability
961  * as the lock contention for request_queue lock is reduced.
962  *
963  * It is ok not to disable preemption when adding the request to the plug list
964  * or when attempting a merge. For details, please see schedule() where
965  * blk_flush_plug() is called.
966  */
967 struct blk_plug {
968 	struct request *mq_list; /* blk-mq requests */
969 
970 	/* if ios_left is > 1, we can batch tag/rq allocations */
971 	struct request *cached_rq;
972 	u64 cur_ktime;
973 	unsigned short nr_ios;
974 
975 	unsigned short rq_count;
976 
977 	bool multiple_queues;
978 	bool has_elevator;
979 
980 	struct list_head cb_list; /* md requires an unplug callback */
981 };
982 
983 struct blk_plug_cb;
984 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
985 struct blk_plug_cb {
986 	struct list_head list;
987 	blk_plug_cb_fn callback;
988 	void *data;
989 };
990 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
991 					     void *data, int size);
992 extern void blk_start_plug(struct blk_plug *);
993 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
994 extern void blk_finish_plug(struct blk_plug *);
995 
996 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)997 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
998 {
999 	if (plug)
1000 		__blk_flush_plug(plug, async);
1001 }
1002 
1003 /*
1004  * tsk == current here
1005  */
blk_plug_invalidate_ts(struct task_struct * tsk)1006 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1007 {
1008 	struct blk_plug *plug = tsk->plug;
1009 
1010 	if (plug)
1011 		plug->cur_ktime = 0;
1012 	current->flags &= ~PF_BLOCK_TS;
1013 }
1014 
1015 int blkdev_issue_flush(struct block_device *bdev);
1016 long nr_blockdev_pages(void);
1017 #else /* CONFIG_BLOCK */
1018 struct blk_plug {
1019 };
1020 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1021 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1022 					 unsigned short nr_ios)
1023 {
1024 }
1025 
blk_start_plug(struct blk_plug * plug)1026 static inline void blk_start_plug(struct blk_plug *plug)
1027 {
1028 }
1029 
blk_finish_plug(struct blk_plug * plug)1030 static inline void blk_finish_plug(struct blk_plug *plug)
1031 {
1032 }
1033 
blk_flush_plug(struct blk_plug * plug,bool async)1034 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1035 {
1036 }
1037 
blk_plug_invalidate_ts(struct task_struct * tsk)1038 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1039 {
1040 }
1041 
blkdev_issue_flush(struct block_device * bdev)1042 static inline int blkdev_issue_flush(struct block_device *bdev)
1043 {
1044 	return 0;
1045 }
1046 
nr_blockdev_pages(void)1047 static inline long nr_blockdev_pages(void)
1048 {
1049 	return 0;
1050 }
1051 #endif /* CONFIG_BLOCK */
1052 
1053 extern void blk_io_schedule(void);
1054 
1055 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1056 		sector_t nr_sects, gfp_t gfp_mask);
1057 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1058 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1059 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1060 		sector_t nr_sects, gfp_t gfp);
1061 
1062 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1063 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1064 
1065 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1066 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1067 		unsigned flags);
1068 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1069 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1070 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1071 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1072 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1073 {
1074 	return blkdev_issue_discard(sb->s_bdev,
1075 				    block << (sb->s_blocksize_bits -
1076 					      SECTOR_SHIFT),
1077 				    nr_blocks << (sb->s_blocksize_bits -
1078 						  SECTOR_SHIFT),
1079 				    gfp_mask);
1080 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1081 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1082 		sector_t nr_blocks, gfp_t gfp_mask)
1083 {
1084 	return blkdev_issue_zeroout(sb->s_bdev,
1085 				    block << (sb->s_blocksize_bits -
1086 					      SECTOR_SHIFT),
1087 				    nr_blocks << (sb->s_blocksize_bits -
1088 						  SECTOR_SHIFT),
1089 				    gfp_mask, 0);
1090 }
1091 
bdev_is_partition(struct block_device * bdev)1092 static inline bool bdev_is_partition(struct block_device *bdev)
1093 {
1094 	return bdev->bd_partno;
1095 }
1096 
1097 enum blk_default_limits {
1098 	BLK_MAX_SEGMENTS	= 128,
1099 	BLK_SAFE_MAX_SECTORS	= 255,
1100 	BLK_MAX_SEGMENT_SIZE	= 65536,
1101 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1102 };
1103 
1104 /*
1105  * Default upper limit for the software max_sectors limit used for
1106  * regular file system I/O.  This can be increased through sysfs.
1107  *
1108  * Not to be confused with the max_hw_sector limit that is entirely
1109  * controlled by the driver, usually based on hardware limits.
1110  */
1111 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1112 
queue_segment_boundary(const struct request_queue * q)1113 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1114 {
1115 	return q->limits.seg_boundary_mask;
1116 }
1117 
queue_virt_boundary(const struct request_queue * q)1118 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1119 {
1120 	return q->limits.virt_boundary_mask;
1121 }
1122 
queue_max_sectors(const struct request_queue * q)1123 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1124 {
1125 	return q->limits.max_sectors;
1126 }
1127 
queue_max_bytes(struct request_queue * q)1128 static inline unsigned int queue_max_bytes(struct request_queue *q)
1129 {
1130 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1131 }
1132 
queue_max_hw_sectors(const struct request_queue * q)1133 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1134 {
1135 	return q->limits.max_hw_sectors;
1136 }
1137 
queue_max_segments(const struct request_queue * q)1138 static inline unsigned short queue_max_segments(const struct request_queue *q)
1139 {
1140 	return q->limits.max_segments;
1141 }
1142 
queue_max_discard_segments(const struct request_queue * q)1143 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1144 {
1145 	return q->limits.max_discard_segments;
1146 }
1147 
queue_max_segment_size(const struct request_queue * q)1148 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1149 {
1150 	return q->limits.max_segment_size;
1151 }
1152 
queue_limits_max_zone_append_sectors(struct queue_limits * l)1153 static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l)
1154 {
1155 	unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors);
1156 
1157 	return min_not_zero(l->max_zone_append_sectors, max_sectors);
1158 }
1159 
queue_max_zone_append_sectors(struct request_queue * q)1160 static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q)
1161 {
1162 	if (!blk_queue_is_zoned(q))
1163 		return 0;
1164 
1165 	return queue_limits_max_zone_append_sectors(&q->limits);
1166 }
1167 
queue_emulates_zone_append(struct request_queue * q)1168 static inline bool queue_emulates_zone_append(struct request_queue *q)
1169 {
1170 	return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors;
1171 }
1172 
bdev_emulates_zone_append(struct block_device * bdev)1173 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1174 {
1175 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1176 }
1177 
1178 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1179 bdev_max_zone_append_sectors(struct block_device *bdev)
1180 {
1181 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1182 }
1183 
bdev_max_segments(struct block_device * bdev)1184 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1185 {
1186 	return queue_max_segments(bdev_get_queue(bdev));
1187 }
1188 
queue_logical_block_size(const struct request_queue * q)1189 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1190 {
1191 	int retval = 512;
1192 
1193 	if (q && q->limits.logical_block_size)
1194 		retval = q->limits.logical_block_size;
1195 
1196 	return retval;
1197 }
1198 
bdev_logical_block_size(struct block_device * bdev)1199 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1200 {
1201 	return queue_logical_block_size(bdev_get_queue(bdev));
1202 }
1203 
queue_physical_block_size(const struct request_queue * q)1204 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1205 {
1206 	return q->limits.physical_block_size;
1207 }
1208 
bdev_physical_block_size(struct block_device * bdev)1209 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1210 {
1211 	return queue_physical_block_size(bdev_get_queue(bdev));
1212 }
1213 
queue_io_min(const struct request_queue * q)1214 static inline unsigned int queue_io_min(const struct request_queue *q)
1215 {
1216 	return q->limits.io_min;
1217 }
1218 
bdev_io_min(struct block_device * bdev)1219 static inline int bdev_io_min(struct block_device *bdev)
1220 {
1221 	return queue_io_min(bdev_get_queue(bdev));
1222 }
1223 
queue_io_opt(const struct request_queue * q)1224 static inline unsigned int queue_io_opt(const struct request_queue *q)
1225 {
1226 	return q->limits.io_opt;
1227 }
1228 
bdev_io_opt(struct block_device * bdev)1229 static inline int bdev_io_opt(struct block_device *bdev)
1230 {
1231 	return queue_io_opt(bdev_get_queue(bdev));
1232 }
1233 
1234 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1235 queue_zone_write_granularity(const struct request_queue *q)
1236 {
1237 	return q->limits.zone_write_granularity;
1238 }
1239 
1240 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1241 bdev_zone_write_granularity(struct block_device *bdev)
1242 {
1243 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1244 }
1245 
1246 int bdev_alignment_offset(struct block_device *bdev);
1247 unsigned int bdev_discard_alignment(struct block_device *bdev);
1248 
bdev_max_discard_sectors(struct block_device * bdev)1249 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1250 {
1251 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1252 }
1253 
bdev_discard_granularity(struct block_device * bdev)1254 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1255 {
1256 	return bdev_get_queue(bdev)->limits.discard_granularity;
1257 }
1258 
1259 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1260 bdev_max_secure_erase_sectors(struct block_device *bdev)
1261 {
1262 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1263 }
1264 
bdev_write_zeroes_sectors(struct block_device * bdev)1265 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1266 {
1267 	struct request_queue *q = bdev_get_queue(bdev);
1268 
1269 	if (q)
1270 		return q->limits.max_write_zeroes_sectors;
1271 
1272 	return 0;
1273 }
1274 
bdev_nonrot(struct block_device * bdev)1275 static inline bool bdev_nonrot(struct block_device *bdev)
1276 {
1277 	return blk_queue_nonrot(bdev_get_queue(bdev));
1278 }
1279 
bdev_synchronous(struct block_device * bdev)1280 static inline bool bdev_synchronous(struct block_device *bdev)
1281 {
1282 	return test_bit(QUEUE_FLAG_SYNCHRONOUS,
1283 			&bdev_get_queue(bdev)->queue_flags);
1284 }
1285 
bdev_stable_writes(struct block_device * bdev)1286 static inline bool bdev_stable_writes(struct block_device *bdev)
1287 {
1288 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1289 			&bdev_get_queue(bdev)->queue_flags);
1290 }
1291 
bdev_write_cache(struct block_device * bdev)1292 static inline bool bdev_write_cache(struct block_device *bdev)
1293 {
1294 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1295 }
1296 
bdev_fua(struct block_device * bdev)1297 static inline bool bdev_fua(struct block_device *bdev)
1298 {
1299 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1300 }
1301 
bdev_nowait(struct block_device * bdev)1302 static inline bool bdev_nowait(struct block_device *bdev)
1303 {
1304 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1305 }
1306 
bdev_is_zoned(struct block_device * bdev)1307 static inline bool bdev_is_zoned(struct block_device *bdev)
1308 {
1309 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1310 }
1311 
bdev_zone_no(struct block_device * bdev,sector_t sec)1312 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1313 {
1314 	return disk_zone_no(bdev->bd_disk, sec);
1315 }
1316 
bdev_zone_sectors(struct block_device * bdev)1317 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1318 {
1319 	struct request_queue *q = bdev_get_queue(bdev);
1320 
1321 	if (!blk_queue_is_zoned(q))
1322 		return 0;
1323 	return q->limits.chunk_sectors;
1324 }
1325 
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1326 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1327 						   sector_t sector)
1328 {
1329 	return sector & (bdev_zone_sectors(bdev) - 1);
1330 }
1331 
bio_offset_from_zone_start(struct bio * bio)1332 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1333 {
1334 	return bdev_offset_from_zone_start(bio->bi_bdev,
1335 					   bio->bi_iter.bi_sector);
1336 }
1337 
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1338 static inline bool bdev_is_zone_start(struct block_device *bdev,
1339 				      sector_t sector)
1340 {
1341 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1342 }
1343 
queue_dma_alignment(const struct request_queue * q)1344 static inline int queue_dma_alignment(const struct request_queue *q)
1345 {
1346 	return q ? q->limits.dma_alignment : 511;
1347 }
1348 
bdev_dma_alignment(struct block_device * bdev)1349 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1350 {
1351 	return queue_dma_alignment(bdev_get_queue(bdev));
1352 }
1353 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1354 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1355 					struct iov_iter *iter)
1356 {
1357 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1358 				   bdev_logical_block_size(bdev) - 1);
1359 }
1360 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1361 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1362 				 unsigned int len)
1363 {
1364 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1365 	return !(addr & alignment) && !(len & alignment);
1366 }
1367 
1368 /* assumes size > 256 */
blksize_bits(unsigned int size)1369 static inline unsigned int blksize_bits(unsigned int size)
1370 {
1371 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1372 }
1373 
block_size(struct block_device * bdev)1374 static inline unsigned int block_size(struct block_device *bdev)
1375 {
1376 	return 1 << bdev->bd_inode->i_blkbits;
1377 }
1378 
1379 int kblockd_schedule_work(struct work_struct *work);
1380 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1381 
1382 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1383 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1384 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1385 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1386 
1387 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1388 
1389 bool blk_crypto_register(struct blk_crypto_profile *profile,
1390 			 struct request_queue *q);
1391 
1392 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1393 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1394 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1395 				       struct request_queue *q)
1396 {
1397 	return true;
1398 }
1399 
1400 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1401 
1402 enum blk_unique_id {
1403 	/* these match the Designator Types specified in SPC */
1404 	BLK_UID_T10	= 1,
1405 	BLK_UID_EUI64	= 2,
1406 	BLK_UID_NAA	= 3,
1407 };
1408 
1409 struct block_device_operations {
1410 	void (*submit_bio)(struct bio *bio);
1411 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1412 			unsigned int flags);
1413 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1414 	void (*release)(struct gendisk *disk);
1415 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1416 			unsigned cmd, unsigned long arg);
1417 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1418 			unsigned cmd, unsigned long arg);
1419 	unsigned int (*check_events) (struct gendisk *disk,
1420 				      unsigned int clearing);
1421 	void (*unlock_native_capacity) (struct gendisk *);
1422 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1423 	int (*set_read_only)(struct block_device *bdev, bool ro);
1424 	void (*free_disk)(struct gendisk *disk);
1425 	/* this callback is with swap_lock and sometimes page table lock held */
1426 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1427 	int (*report_zones)(struct gendisk *, sector_t sector,
1428 			unsigned int nr_zones, report_zones_cb cb, void *data);
1429 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1430 	/* returns the length of the identifier or a negative errno: */
1431 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1432 			enum blk_unique_id id_type);
1433 	struct module *owner;
1434 	const struct pr_ops *pr_ops;
1435 
1436 	/*
1437 	 * Special callback for probing GPT entry at a given sector.
1438 	 * Needed by Android devices, used by GPT scanner and MMC blk
1439 	 * driver.
1440 	 */
1441 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1442 };
1443 
1444 #ifdef CONFIG_COMPAT
1445 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1446 				      unsigned int, unsigned long);
1447 #else
1448 #define blkdev_compat_ptr_ioctl NULL
1449 #endif
1450 
blk_wake_io_task(struct task_struct * waiter)1451 static inline void blk_wake_io_task(struct task_struct *waiter)
1452 {
1453 	/*
1454 	 * If we're polling, the task itself is doing the completions. For
1455 	 * that case, we don't need to signal a wakeup, it's enough to just
1456 	 * mark us as RUNNING.
1457 	 */
1458 	if (waiter == current)
1459 		__set_current_state(TASK_RUNNING);
1460 	else
1461 		wake_up_process(waiter);
1462 }
1463 
1464 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1465 				 unsigned long start_time);
1466 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1467 		      unsigned int sectors, unsigned long start_time);
1468 
1469 unsigned long bio_start_io_acct(struct bio *bio);
1470 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1471 		struct block_device *orig_bdev);
1472 
1473 /**
1474  * bio_end_io_acct - end I/O accounting for bio based drivers
1475  * @bio:	bio to end account for
1476  * @start_time:	start time returned by bio_start_io_acct()
1477  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1478 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1479 {
1480 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1481 }
1482 
1483 int bdev_read_only(struct block_device *bdev);
1484 int set_blocksize(struct block_device *bdev, int size);
1485 
1486 int lookup_bdev(const char *pathname, dev_t *dev);
1487 
1488 void blkdev_show(struct seq_file *seqf, off_t offset);
1489 
1490 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1491 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1492 #ifdef CONFIG_BLOCK
1493 #define BLKDEV_MAJOR_MAX	512
1494 #else
1495 #define BLKDEV_MAJOR_MAX	0
1496 #endif
1497 
1498 struct blk_holder_ops {
1499 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1500 
1501 	/*
1502 	 * Sync the file system mounted on the block device.
1503 	 */
1504 	void (*sync)(struct block_device *bdev);
1505 
1506 	/*
1507 	 * Freeze the file system mounted on the block device.
1508 	 */
1509 	int (*freeze)(struct block_device *bdev);
1510 
1511 	/*
1512 	 * Thaw the file system mounted on the block device.
1513 	 */
1514 	int (*thaw)(struct block_device *bdev);
1515 };
1516 
1517 /*
1518  * For filesystems using @fs_holder_ops, the @holder argument passed to
1519  * helpers used to open and claim block devices via
1520  * bd_prepare_to_claim() must point to a superblock.
1521  */
1522 extern const struct blk_holder_ops fs_holder_ops;
1523 
1524 /*
1525  * Return the correct open flags for blkdev_get_by_* for super block flags
1526  * as stored in sb->s_flags.
1527  */
1528 #define sb_open_mode(flags) \
1529 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1530 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1531 
1532 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1533 		const struct blk_holder_ops *hops);
1534 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1535 		void *holder, const struct blk_holder_ops *hops);
1536 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1537 		const struct blk_holder_ops *hops);
1538 void bd_abort_claiming(struct block_device *bdev, void *holder);
1539 
1540 /* just for blk-cgroup, don't use elsewhere */
1541 struct block_device *blkdev_get_no_open(dev_t dev);
1542 void blkdev_put_no_open(struct block_device *bdev);
1543 
1544 struct block_device *I_BDEV(struct inode *inode);
1545 struct block_device *file_bdev(struct file *bdev_file);
1546 
1547 #ifdef CONFIG_BLOCK
1548 void invalidate_bdev(struct block_device *bdev);
1549 int sync_blockdev(struct block_device *bdev);
1550 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1551 int sync_blockdev_nowait(struct block_device *bdev);
1552 void sync_bdevs(bool wait);
1553 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1554 void printk_all_partitions(void);
1555 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1556 #else
invalidate_bdev(struct block_device * bdev)1557 static inline void invalidate_bdev(struct block_device *bdev)
1558 {
1559 }
sync_blockdev(struct block_device * bdev)1560 static inline int sync_blockdev(struct block_device *bdev)
1561 {
1562 	return 0;
1563 }
sync_blockdev_nowait(struct block_device * bdev)1564 static inline int sync_blockdev_nowait(struct block_device *bdev)
1565 {
1566 	return 0;
1567 }
sync_bdevs(bool wait)1568 static inline void sync_bdevs(bool wait)
1569 {
1570 }
bdev_statx_dioalign(struct inode * inode,struct kstat * stat)1571 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1572 {
1573 }
printk_all_partitions(void)1574 static inline void printk_all_partitions(void)
1575 {
1576 }
early_lookup_bdev(const char * pathname,dev_t * dev)1577 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1578 {
1579 	return -EINVAL;
1580 }
1581 #endif /* CONFIG_BLOCK */
1582 
1583 int bdev_freeze(struct block_device *bdev);
1584 int bdev_thaw(struct block_device *bdev);
1585 void bdev_fput(struct file *bdev_file);
1586 
1587 struct io_comp_batch {
1588 	struct request *req_list;
1589 	bool need_ts;
1590 	void (*complete)(struct io_comp_batch *);
1591 };
1592 
1593 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1594 
1595 #endif /* _LINUX_BLKDEV_H */
1596