xref: /openbsd/sys/dev/usb/utpms.c (revision 81508fe3)
1 /*	$OpenBSD: utpms.c,v 1.14 2024/05/23 03:21:09 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 2005, Johan Wall�n
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the copyright holder may not be used to endorse or
16  *    promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * The utpms driver provides support for the trackpad on new (post
34  * February 2005) Apple PowerBooks and iBooks that are not standard
35  * USB HID mice.
36  */
37 
38 /*
39  * The protocol (that is, the interpretation of the data generated by
40  * the trackpad) is taken from the Linux appletouch driver version
41  * 0.08 by Johannes Berg, Stelian Pop and Frank Arnold.  The method
42  * used to detect fingers on the trackpad is also taken from that
43  * driver.
44  */
45 
46 /*
47  * PROTOCOL:
48  *
49  * The driver transfers continuously 81 byte events.  The last byte is
50  * 1 if the button is pressed, and is 0 otherwise. Of the remaining
51  * bytes, 26 + 16 = 42 are sensors detecting pressure in the X or
52  * horizontal, and Y or vertical directions, respectively.  On 12 and
53  * 15 inch PowerBooks, only the 16 first sensors in the X-direction
54  * are used. In the X-direction, the sensors correspond to byte
55  * positions
56  *
57  *   2, 7, 12, 17, 22, 27, 32, 37, 4, 9, 14, 19, 24, 29, 34, 39, 42,
58  *   47, 52, 57, 62, 67, 72, 77, 44 and 49;
59  *
60  * in the Y direction, the sensors correspond to byte positions
61  *
62  *   1, 6, 11, 16, 21, 26, 31, 36, 3, 8, 13, 18, 23, 28, 33 and 38.
63  *
64  * The change in the sensor values over time is more interesting than
65  * their absolute values: if the pressure increases, we know that the
66  * finger has just moved there.
67  *
68  * We keep track of the previous sample (of sensor values in the X and
69  * Y directions) and the accumulated change for each sensor.  When we
70  * receive a new sample, we add the difference of the new sensor value
71  * and the old value to the accumulated change.  If the accumulator
72  * becomes negative, we set it to zero.  The effect is that the
73  * accumulator is large for sensors whose pressure has recently
74  * increased.  If there is little change in pressure (or if the
75  * pressure decreases), the accumulator drifts back to zero.
76  *
77  * Since there is some fluctuations, we ignore accumulator values
78  * below a threshold.  The raw finger position is computed as a
79  * weighted average of the other sensors (the weights are the
80  * accumulated changes).
81  *
82  * For smoothing, we keep track of the previous raw finger position,
83  * and the virtual position reported to wsmouse.  The new raw position
84  * is computed as a weighted average of the old raw position and the
85  * computed raw position.  Since this still generates some noise, we
86  * compute a new virtual position as a weighted average of the previous
87  * virtual position and the new raw position.  The weights are
88  * controlled by the raw change and a noise parameter.  The position
89  * is reported as a relative position.
90  */
91 
92 /*
93  * TODO:
94  *
95  * Add support for other drivers of the same type.
96  *
97  * Add support for tapping and two-finger scrolling?  The
98  * implementation already detects two fingers, so this should be
99  * relatively easy.
100  *
101  * Implement some of the mouse ioctls?
102  *
103  * Take care of the XXXs.
104  *
105  */
106 
107 #include <sys/param.h>
108 #include <sys/device.h>
109 #include <sys/errno.h>
110 #include <sys/systm.h>
111 
112 #include <dev/usb/usb.h>
113 #include <dev/usb/usbdi.h>
114 #include <dev/usb/usbdi_util.h>
115 #include <dev/usb/usbdevs.h>
116 #include <dev/usb/uhidev.h>
117 
118 #include <dev/wscons/wsconsio.h>
119 #include <dev/wscons/wsmousevar.h>
120 
121 /* The amount of data transferred by the USB device. */
122 #define UTPMS_DATA_LEN 81
123 
124 /* The maximum number of sensors. */
125 #define UTPMS_X_SENSORS 26
126 #define UTPMS_Y_SENSORS 16
127 #define UTPMS_SENSORS (UTPMS_X_SENSORS + UTPMS_Y_SENSORS)
128 
129 /*
130  * Parameters for supported devices.  For generality, these parameters
131  * can be different for each device.  The meanings of the parameters
132  * are as follows.
133  *
134  * type:      Type of the trackpad device, used for dmesg output, and
135  *            to know some of the device parameters.
136  *
137  * noise:     Amount of noise in the computed position. This controls
138  *            how large a change must be to get reported, and how
139  *            large enough changes are smoothed.  A good value can
140  *            probably only be found experimentally, but something around
141  *            16 seems suitable.
142  *
143  * product:   The product ID of the trackpad.
144  *
145  *
146  * threshold: Accumulated changes less than this are ignored.  A good
147  *            value could be determined experimentally, but 5 is a
148  *            reasonable guess.
149  *
150  * vendor:    The vendor ID.  Currently USB_VENDOR_APPLE for all devices.
151  *
152  * x_factor:  Factor used in computations with X-coordinates.  If the
153  *            x-resolution of the display is x, this should be
154  *            (x + 1) / (x_sensors - 1).  Other values work fine, but
155  *            then the aspect ratio is not necessarily kept.
156  *
157  * x_sensors: The number of sensors in the X-direction.
158  *
159  * y_factor:  As x_factors, but for Y-coordinates.
160  *
161  * y_sensors: The number of sensors in the Y-direction.
162  */
163 
164 struct utpms_dev {
165 	int type;	   /* Type of the trackpad. */
166 #define FOUNTAIN	0x00
167 #define GEYSER1		0x01
168 #define GEYSER2		0x02
169 	int noise;	   /* Amount of noise in the computed position. */
170 	int threshold;	   /* Changes less than this are ignored. */
171 	int x_factor;	   /* Factor used in computation with X-coordinates. */
172 	int x_sensors;	   /* The number of X-sensors. */
173 	int y_factor;	   /* Factor used in computation with Y-coordinates. */
174 	int y_sensors;	   /* The number of Y-sensors. */
175 	uint16_t product;  /* Product ID. */
176 	uint16_t vendor;   /* The vendor ID. */
177 };
178 
179 static struct utpms_dev utpms_devices[] = {
180 #define UTPMS_TOUCHPAD(ttype, prod, x_fact, x_sens, y_fact)		\
181        {								\
182 		.type = (ttype),					\
183 		.vendor = USB_VENDOR_APPLE,				\
184 		.product = (prod),					\
185 		.noise = 16,						\
186 		.threshold = 5,						\
187 		.x_factor = (x_fact),					\
188 		.x_sensors = (x_sens),					\
189 		.y_factor = (y_fact),					\
190 		.y_sensors = 16						\
191        }
192        /* 12 inch PowerBooks */
193        UTPMS_TOUCHPAD(FOUNTAIN, 0x030a, 69, 16, 52),
194        /* 12 and 14 inch iBook G4 */
195        UTPMS_TOUCHPAD(GEYSER1, 0x030b, 69, 16, 52),
196        /* 15 inch PowerBooks */
197        UTPMS_TOUCHPAD(FOUNTAIN, 0x020e, 85, 16, 57),
198        UTPMS_TOUCHPAD(FOUNTAIN, 0x020f, 85, 16, 57),
199        UTPMS_TOUCHPAD(GEYSER2, 0x0214, 90, 15, 107),
200        UTPMS_TOUCHPAD(GEYSER2, 0x0215, 90, 15, 107),
201        UTPMS_TOUCHPAD(GEYSER2, 0x0216, 90, 15, 107),
202        /* 17 inch PowerBooks */
203        UTPMS_TOUCHPAD(FOUNTAIN, 0x020d, 71, 26, 68),
204 #undef UTPMS_TOUCHPAD
205 };
206 
207 struct utpms_softc {
208 	struct uhidev sc_hdev;	      /* USB parent (got the struct device). */
209 	int sc_type;		      /* Type of the trackpad */
210 	int sc_datalen;
211 	int sc_acc[UTPMS_SENSORS];     /* Accumulated sensor values. */
212 	unsigned char sc_prev[UTPMS_SENSORS];   /* Previous sample. */
213 	unsigned char sc_sample[UTPMS_SENSORS]; /* Current sample. */
214 	struct device *sc_wsmousedev; /* WSMouse device. */
215 	int sc_noise;		      /* Amount of noise. */
216 	int sc_threshold;	      /* Threshold value. */
217 	int sc_x;		      /* Virtual position in horizontal
218 				       * direction (wsmouse position). */
219 	int sc_x_factor;	      /* X-coordinate factor. */
220 	int sc_x_raw;		      /* X-position of finger on trackpad. */
221 	int sc_x_sensors;	      /* Number of X-sensors. */
222 	int sc_y;		      /* Virtual position in vertical direction
223 				       * (wsmouse position). */
224 	int sc_y_factor;	      /* Y-coordinate factor. */
225 	int sc_y_raw;		      /* Y-position of finger on trackpad. */
226 	int sc_y_sensors;	      /* Number of Y-sensors. */
227 	uint32_t sc_buttons;	      /* Button state. */
228 	uint32_t sc_status;	      /* Status flags. */
229 #define UTPMS_ENABLED 1		      /* Is the device enabled? */
230 #define UTPMS_VALID 4		      /* Is the previous sample valid? */
231 };
232 
233 void	utpms_intr(struct uhidev *, void *, unsigned int);
234 int	utpms_enable(void *);
235 void	utpms_disable(void *);
236 int	utpms_ioctl(void *, unsigned long, caddr_t, int, struct proc *);
237 void	reorder_sample(struct utpms_softc*, unsigned char *, unsigned char *);
238 int	compute_delta(struct utpms_softc *, int *, int *, int *, uint32_t *);
239 int	detect_pos(int *, int, int, int, int *, int *);
240 int	smooth_pos(int, int, int);
241 
242 const struct wsmouse_accessops utpms_accessops = {
243 	utpms_enable,
244 	utpms_ioctl,
245 	utpms_disable,
246 };
247 
248 int	utpms_match(struct device *, void *, void *);
249 void	utpms_attach(struct device *, struct device *, void *);
250 int	utpms_detach(struct device *, int);
251 int	utpms_activate(struct device *, int);
252 
253 struct cfdriver utpms_cd = {
254 	NULL, "utpms", DV_DULL
255 };
256 
257 const struct cfattach utpms_ca = {
258 	sizeof(struct utpms_softc), utpms_match, utpms_attach, utpms_detach,
259 	utpms_activate,
260 };
261 
262 int
utpms_match(struct device * parent,void * match,void * aux)263 utpms_match(struct device *parent, void *match, void *aux)
264 {
265 	struct uhidev_attach_arg *uha = (struct uhidev_attach_arg *)aux;
266 	usb_interface_descriptor_t *id;
267 	int i;
268 
269 	if (UHIDEV_CLAIM_MULTIPLE_REPORTID(uha))
270 		return (UMATCH_NONE);
271 
272 	id = usbd_get_interface_descriptor(uha->uaa->iface);
273 	if (id == NULL ||
274 	    id->bInterfaceSubClass != UISUBCLASS_BOOT ||
275 	    id->bInterfaceProtocol != UIPROTO_BOOT_MOUSE)
276 		return (UMATCH_NONE);
277 
278 	/*
279 	 * We just check if the vendor and product IDs have the magic numbers
280 	 * we expect.
281 	 */
282 	for (i = 0; i < nitems(utpms_devices); i++) {
283 		if (uha->uaa->vendor == utpms_devices[i].vendor &&
284 		    uha->uaa->product == utpms_devices[i].product)
285 			return (UMATCH_IFACECLASS);
286 	}
287 
288 	return (UMATCH_NONE);
289 }
290 
291 void
utpms_attach(struct device * parent,struct device * self,void * aux)292 utpms_attach(struct device *parent, struct device *self, void *aux)
293 {
294 	struct utpms_softc *sc = (struct utpms_softc *)self;
295 	struct uhidev_attach_arg *uha = (struct uhidev_attach_arg *)aux;
296 	struct wsmousedev_attach_args a;
297 	struct utpms_dev *pd;
298 	usb_device_descriptor_t *udd;
299 	int i;
300 	uint16_t vendor, product;
301 
302 	sc->sc_datalen = UTPMS_DATA_LEN;
303 	sc->sc_hdev.sc_udev = uha->uaa->device;
304 
305 	usbd_set_idle(uha->parent->sc_udev, uha->parent->sc_ifaceno, 0, 0);
306 
307 	/* Fill in device-specific parameters. */
308 	if ((udd = usbd_get_device_descriptor(uha->parent->sc_udev)) != NULL) {
309 		product = UGETW(udd->idProduct);
310 		vendor = UGETW(udd->idVendor);
311 		for (i = 0; i < nitems(utpms_devices); i++) {
312 			pd = &utpms_devices[i];
313 			if (product == pd->product && vendor == pd->vendor) {
314 				sc->sc_noise = pd->noise;
315 				sc->sc_threshold = pd->threshold;
316 				sc->sc_x_factor = pd->x_factor;
317 				sc->sc_x_sensors = pd->x_sensors;
318 				sc->sc_y_factor = pd->y_factor;
319 				sc->sc_y_sensors = pd->y_sensors;
320 				switch (pd->type) {
321 				case FOUNTAIN:
322 					printf(": Fountain");
323 					break;
324 				case GEYSER1:
325 					printf(": Geyser");
326 					break;
327 				case GEYSER2:
328 					sc->sc_type = GEYSER2;
329 					sc->sc_datalen = 64;
330 					sc->sc_y_sensors = 9;
331 					printf(": Geyser 2");
332 					break;
333 				}
334 				printf(" Trackpad\n");
335 				break;
336 			}
337 		}
338 	}
339 	if (sc->sc_x_sensors <= 0 || sc->sc_x_sensors > UTPMS_X_SENSORS ||
340 	    sc->sc_y_sensors <= 0 || sc->sc_y_sensors > UTPMS_Y_SENSORS) {
341 		printf(": unexpected sensors configuration (%d:%d)\n",
342 		    sc->sc_x_sensors, sc->sc_y_sensors);
343 		return;
344 	}
345 
346 	sc->sc_hdev.sc_intr = utpms_intr;
347 	sc->sc_hdev.sc_parent = uha->parent;
348 	sc->sc_hdev.sc_report_id = uha->reportid;
349 
350 	sc->sc_status = 0;
351 
352 	a.accessops = &utpms_accessops;
353 	a.accesscookie = sc;
354 	sc->sc_wsmousedev = config_found(self, &a, wsmousedevprint);
355 }
356 
357 int
utpms_detach(struct device * self,int flags)358 utpms_detach(struct device *self, int flags)
359 {
360 	struct utpms_softc *sc = (struct utpms_softc *)self;
361 	int ret = 0;
362 
363 	/* The wsmouse driver does all the work. */
364 	if (sc->sc_wsmousedev != NULL)
365 		ret = config_detach(sc->sc_wsmousedev, flags);
366 
367 	return (ret);
368 }
369 
370 int
utpms_activate(struct device * self,int act)371 utpms_activate(struct device *self, int act)
372 {
373 	struct utpms_softc *sc = (struct utpms_softc *)self;
374 	int rv = 0;
375 
376 	if (act == DVACT_DEACTIVATE) {
377 		if (sc->sc_wsmousedev != NULL)
378 			rv = config_deactivate(sc->sc_wsmousedev);
379 	}
380 
381 	return (rv);
382 }
383 
384 int
utpms_enable(void * v)385 utpms_enable(void *v)
386 {
387 	struct utpms_softc *sc = v;
388 
389 	/* Check that we are not detaching or already enabled. */
390 	if (sc->sc_status & usbd_is_dying(sc->sc_hdev.sc_udev))
391 		return (EIO);
392 	if (sc->sc_status & UTPMS_ENABLED)
393 		return (EBUSY);
394 
395 	sc->sc_status |= UTPMS_ENABLED;
396 	sc->sc_status &= ~UTPMS_VALID;
397 	sc->sc_buttons = 0;
398 	bzero(sc->sc_sample, sizeof(sc->sc_sample));
399 
400 	return (uhidev_open(&sc->sc_hdev));
401 }
402 
403 void
utpms_disable(void * v)404 utpms_disable(void *v)
405 {
406 	struct utpms_softc *sc = v;
407 
408 	if (!(sc->sc_status & UTPMS_ENABLED))
409 		return;
410 
411 	sc->sc_status &= ~UTPMS_ENABLED;
412 	uhidev_close(&sc->sc_hdev);
413 }
414 
415 int
utpms_ioctl(void * v,unsigned long cmd,caddr_t data,int flag,struct proc * p)416 utpms_ioctl(void *v, unsigned long cmd, caddr_t data, int flag, struct proc *p)
417 {
418 	switch (cmd) {
419 	case WSMOUSEIO_GTYPE:
420 		*(u_int *)data = WSMOUSE_TYPE_USB;
421 		return (0);
422 	}
423 
424 	return (-1);
425 }
426 
427 void
utpms_intr(struct uhidev * addr,void * ibuf,unsigned int len)428 utpms_intr(struct uhidev *addr, void *ibuf, unsigned int len)
429 {
430 	struct utpms_softc *sc = (struct utpms_softc *)addr;
431 	unsigned char *data;
432 	int dx, dy, dz, i, s;
433 	uint32_t buttons;
434 
435 	/* Ignore incomplete data packets. */
436 	if (len != sc->sc_datalen)
437 		return;
438 	data = ibuf;
439 
440 	/* The last byte is 1 if the button is pressed and 0 otherwise. */
441 	buttons = !!data[sc->sc_datalen - 1];
442 
443 	/* Everything below assumes that the sample is reordered. */
444 	reorder_sample(sc, sc->sc_sample, data);
445 
446 	/* Is this the first sample? */
447 	if (!(sc->sc_status & UTPMS_VALID)) {
448 		sc->sc_status |= UTPMS_VALID;
449 		sc->sc_x = sc->sc_y = -1;
450 		sc->sc_x_raw = sc->sc_y_raw = -1;
451 		memcpy(sc->sc_prev, sc->sc_sample, sizeof(sc->sc_prev));
452 		bzero(sc->sc_acc, sizeof(sc->sc_acc));
453 		return;
454 	}
455 	/* Accumulate the sensor change while keeping it nonnegative. */
456 	for (i = 0; i < UTPMS_SENSORS; i++) {
457 		sc->sc_acc[i] +=
458 			(signed char)(sc->sc_sample[i] - sc->sc_prev[i]);
459 
460 		if (sc->sc_acc[i] < 0)
461 			sc->sc_acc[i] = 0;
462 	}
463 	memcpy(sc->sc_prev, sc->sc_sample, sizeof(sc->sc_prev));
464 
465 	/* Compute change. */
466 	dx = dy = dz = 0;
467 	if (!compute_delta(sc, &dx, &dy, &dz, &buttons))
468 		return;
469 
470 	/* Report to wsmouse. */
471 	if ((dx != 0 || dy != 0 || dz != 0 || buttons != sc->sc_buttons) &&
472 	    sc->sc_wsmousedev != NULL) {
473 		s = spltty();
474 		WSMOUSE_INPUT(sc->sc_wsmousedev, buttons, dx, -dy, dz, 0);
475 		splx(s);
476 	}
477 	sc->sc_buttons = buttons;
478 }
479 
480 /*
481  * Reorder the sensor values so that all the X-sensors are before the
482  * Y-sensors in the natural order. Note that this might have to be
483  * rewritten if UTPMS_X_SENSORS or UTPMS_Y_SENSORS change.
484  */
485 void
reorder_sample(struct utpms_softc * sc,unsigned char * to,unsigned char * from)486 reorder_sample(struct utpms_softc *sc, unsigned char *to, unsigned char *from)
487 {
488 	int i;
489 
490 	if (sc->sc_type == GEYSER2) {
491 		int j;
492 
493 		bzero(to, UTPMS_SENSORS);
494 		for (i = 0, j = 19; i < 20; i += 2, j += 3) {
495 			to[i] = from[j];
496 			to[i + 1] = from[j + 1];
497 		}
498 		for (i = 0, j = 1; i < 9; i += 2, j += 3) {
499 			to[UTPMS_X_SENSORS + i] = from[j];
500 			to[UTPMS_X_SENSORS + i + 1] = from[j + 1];
501 		}
502 	} else {
503 		for (i = 0; i < 8; i++) {
504 			/* X-sensors. */
505 			to[i] = from[5 * i + 2];
506 			to[i + 8] = from[5 * i + 4];
507 			to[i + 16] = from[5 * i + 42];
508 #if 0
509 			/*
510 			 * XXX This seems to introduce random vertical jumps,
511 			 * so we ignore these sensors until we figure out
512 			 * their meaning.
513 			 */
514 			if (i < 2)
515 				to[i + 24] = from[5 * i + 44];
516 #endif /* 0 */
517 			/* Y-sensors. */
518 			to[i + 26] = from[5 * i + 1];
519 			to[i + 34] = from[5 * i + 3];
520 		}
521 	}
522 }
523 
524 /*
525  * Compute the change in x, y and z direction, update the button state
526  * (to simulate more than one button, scrolling etc.), and update the
527  * history. Note that dx, dy, dz and buttons are modified only if
528  * corresponding pressure is detected and should thus be initialised
529  * before the call.  Return 0 on error.
530  *
531  * XXX Could we report something useful in dz?
532  */
533 int
compute_delta(struct utpms_softc * sc,int * dx,int * dy,int * dz,uint32_t * buttons)534 compute_delta(struct utpms_softc *sc, int *dx, int *dy, int *dz,
535 	      uint32_t * buttons)
536 {
537 	int x_det, y_det, x_raw, y_raw, x_fingers, y_fingers, fingers, x, y;
538 
539 	x_det = detect_pos(sc->sc_acc, sc->sc_x_sensors, sc->sc_threshold,
540 			   sc->sc_x_factor, &x_raw, &x_fingers);
541 	y_det = detect_pos(sc->sc_acc + UTPMS_X_SENSORS, sc->sc_y_sensors,
542 			   sc->sc_threshold, sc->sc_y_factor,
543 			   &y_raw, &y_fingers);
544 	fingers = max(x_fingers, y_fingers);
545 
546 	/* Check the number of fingers and if we have detected a position. */
547 	if (x_det == 0 && y_det == 0) {
548 		/* No position detected, resetting. */
549 		bzero(sc->sc_acc, sizeof(sc->sc_acc));
550 		sc->sc_x_raw = sc->sc_y_raw = sc->sc_x = sc->sc_y = -1;
551 	} else if (x_det > 0 && y_det > 0) {
552 		switch (fingers) {
553 		case 1:
554 			/* Smooth position. */
555 			if (sc->sc_x_raw >= 0) {
556 				sc->sc_x_raw = (3 * sc->sc_x_raw + x_raw) / 4;
557 				sc->sc_y_raw = (3 * sc->sc_y_raw + y_raw) / 4;
558 				/*
559 				 * Compute virtual position and change if we
560 				 * already have a decent position.
561 				 */
562 				if (sc->sc_x >= 0) {
563 					x = smooth_pos(sc->sc_x, sc->sc_x_raw,
564 						       sc->sc_noise);
565 					y = smooth_pos(sc->sc_y, sc->sc_y_raw,
566 						       sc->sc_noise);
567 					*dx = x - sc->sc_x;
568 					*dy = y - sc->sc_y;
569 					sc->sc_x = x;
570 					sc->sc_y = y;
571 				} else {
572 					/* Initialise virtual position. */
573 					sc->sc_x = sc->sc_x_raw;
574 					sc->sc_y = sc->sc_y_raw;
575 				}
576 			} else {
577 				/* Initialise raw position. */
578 				sc->sc_x_raw = x_raw;
579 				sc->sc_y_raw = y_raw;
580 			}
581 			break;
582 		case 2:
583 			if (*buttons == 1)
584 				*buttons = 4;
585 			break;
586 		case 3:
587 			if (*buttons == 1)
588 				*buttons = 2;
589 			break;
590 		}
591 	}
592 	return (1);
593 }
594 
595 /*
596  * Compute the new smoothed position from the previous smoothed position
597  * and the raw position.
598  */
599 int
smooth_pos(int pos_old,int pos_raw,int noise)600 smooth_pos(int pos_old, int pos_raw, int noise)
601 {
602 	int ad, delta;
603 
604 	delta = pos_raw - pos_old;
605 	ad = abs(delta);
606 
607 	/* Too small changes are ignored. */
608 	if (ad < noise / 2)
609 		delta = 0;
610 	/* A bit larger changes are smoothed. */
611 	else if (ad < noise)
612 		delta /= 4;
613 	else if (ad < 2 * noise)
614 		delta /= 2;
615 
616 	return (pos_old + delta);
617 }
618 
619 /*
620  * Detect the position of the finger.  Returns the total pressure.
621  * The position is returned in pos_ret and the number of fingers
622  * is returned in fingers_ret.  The position returned in pos_ret
623  * is in [0, (n_sensors - 1) * factor - 1].
624  */
625 int
detect_pos(int * sensors,int n_sensors,int threshold,int fact,int * pos_ret,int * fingers_ret)626 detect_pos(int *sensors, int n_sensors, int threshold, int fact,
627 	   int *pos_ret, int *fingers_ret)
628 {
629 	int i, w, s;
630 
631 	/*
632 	 * Compute the number of fingers, total pressure, and weighted
633 	 * position of the fingers.
634 	 */
635 	*fingers_ret = 0;
636 	w = s = 0;
637 	for (i = 0; i < n_sensors; i++) {
638 		if (sensors[i] >= threshold) {
639 			if (i == 0 || sensors[i - 1] < threshold)
640 				*fingers_ret += 1;
641 			s += sensors[i] - threshold;
642 			w += (sensors[i] - threshold) * i;
643 		}
644 	}
645 
646 	if (s > 0)
647 		*pos_ret = w * fact / s;
648 
649 	return (s);
650 }
651