1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstdint>
37 #include <optional>
38 
39 using namespace clang;
40 using namespace ento;
41 
StoreManager(ProgramStateManager & stateMgr)42 StoreManager::StoreManager(ProgramStateManager &stateMgr)
43     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
enterStackFrame(Store OldStore,const CallEvent & Call,const StackFrameContext * LCtx)46 StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                        const CallEvent &Call,
48                                        const StackFrameContext *LCtx) {
49   StoreRef Store = StoreRef(OldStore, *this);
50 
51   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52   Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54   for (const auto &I : InitialBindings)
55     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56 
57   return Store;
58 }
59 
MakeElementRegion(const SubRegion * Base,QualType EleTy,uint64_t index)60 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                      QualType EleTy,
62                                                      uint64_t index) {
63   NonLoc idx = svalBuilder.makeArrayIndex(index);
64   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
GetElementZeroRegion(const SubRegion * R,QualType T)67 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                         QualType T) {
69   NonLoc idx = svalBuilder.makeZeroArrayIndex();
70   assert(!T.isNull());
71   return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
castRegion(const MemRegion * R,QualType CastToTy)74 std::optional<const MemRegion *> StoreManager::castRegion(const MemRegion *R,
75                                                           QualType CastToTy) {
76   ASTContext &Ctx = StateMgr.getContext();
77 
78   // Handle casts to Objective-C objects.
79   if (CastToTy->isObjCObjectPointerType())
80     return R->StripCasts();
81 
82   if (CastToTy->isBlockPointerType()) {
83     // FIXME: We may need different solutions, depending on the symbol
84     // involved.  Blocks can be casted to/from 'id', as they can be treated
85     // as Objective-C objects.  This could possibly be handled by enhancing
86     // our reasoning of downcasts of symbolic objects.
87     if (isa<CodeTextRegion, SymbolicRegion>(R))
88       return R;
89 
90     // We don't know what to make of it.  Return a NULL region, which
91     // will be interpreted as UnknownVal.
92     return std::nullopt;
93   }
94 
95   // Now assume we are casting from pointer to pointer. Other cases should
96   // already be handled.
97   QualType PointeeTy = CastToTy->getPointeeType();
98   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
99   CanonPointeeTy = CanonPointeeTy.getLocalUnqualifiedType();
100 
101   // Handle casts to void*.  We just pass the region through.
102   if (CanonPointeeTy == Ctx.VoidTy)
103     return R;
104 
105   const auto IsSameRegionType = [&Ctx](const MemRegion *R, QualType OtherTy) {
106     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
107       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
108       if (OtherTy == ObjTy.getLocalUnqualifiedType())
109         return true;
110     }
111     return false;
112   };
113 
114   // Handle casts from compatible types.
115   if (R->isBoundable() && IsSameRegionType(R, CanonPointeeTy))
116     return R;
117 
118   // Process region cast according to the kind of the region being cast.
119   switch (R->getKind()) {
120     case MemRegion::CXXThisRegionKind:
121     case MemRegion::CodeSpaceRegionKind:
122     case MemRegion::StackLocalsSpaceRegionKind:
123     case MemRegion::StackArgumentsSpaceRegionKind:
124     case MemRegion::HeapSpaceRegionKind:
125     case MemRegion::UnknownSpaceRegionKind:
126     case MemRegion::StaticGlobalSpaceRegionKind:
127     case MemRegion::GlobalInternalSpaceRegionKind:
128     case MemRegion::GlobalSystemSpaceRegionKind:
129     case MemRegion::GlobalImmutableSpaceRegionKind: {
130       llvm_unreachable("Invalid region cast");
131     }
132 
133     case MemRegion::FunctionCodeRegionKind:
134     case MemRegion::BlockCodeRegionKind:
135     case MemRegion::BlockDataRegionKind:
136     case MemRegion::StringRegionKind:
137       // FIXME: Need to handle arbitrary downcasts.
138     case MemRegion::SymbolicRegionKind:
139     case MemRegion::AllocaRegionKind:
140     case MemRegion::CompoundLiteralRegionKind:
141     case MemRegion::FieldRegionKind:
142     case MemRegion::ObjCIvarRegionKind:
143     case MemRegion::ObjCStringRegionKind:
144     case MemRegion::NonParamVarRegionKind:
145     case MemRegion::ParamVarRegionKind:
146     case MemRegion::CXXTempObjectRegionKind:
147     case MemRegion::CXXBaseObjectRegionKind:
148     case MemRegion::CXXDerivedObjectRegionKind:
149       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
150 
151     case MemRegion::ElementRegionKind: {
152       // If we are casting from an ElementRegion to another type, the
153       // algorithm is as follows:
154       //
155       // (1) Compute the "raw offset" of the ElementRegion from the
156       //     base region.  This is done by calling 'getAsRawOffset()'.
157       //
158       // (2a) If we get a 'RegionRawOffset' after calling
159       //      'getAsRawOffset()', determine if the absolute offset
160       //      can be exactly divided into chunks of the size of the
161       //      casted-pointee type.  If so, create a new ElementRegion with
162       //      the pointee-cast type as the new ElementType and the index
163       //      being the offset divded by the chunk size.  If not, create
164       //      a new ElementRegion at offset 0 off the raw offset region.
165       //
166       // (2b) If we don't a get a 'RegionRawOffset' after calling
167       //      'getAsRawOffset()', it means that we are at offset 0.
168       //
169       // FIXME: Handle symbolic raw offsets.
170 
171       const ElementRegion *elementR = cast<ElementRegion>(R);
172       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
173       const MemRegion *baseR = rawOff.getRegion();
174 
175       // If we cannot compute a raw offset, throw up our hands and return
176       // a NULL MemRegion*.
177       if (!baseR)
178         return std::nullopt;
179 
180       CharUnits off = rawOff.getOffset();
181 
182       if (off.isZero()) {
183         // Edge case: we are at 0 bytes off the beginning of baseR. We check to
184         // see if the type we are casting to is the same as the type of the base
185         // region. If so, just return the base region.
186         if (IsSameRegionType(baseR, CanonPointeeTy))
187           return baseR;
188         // Otherwise, create a new ElementRegion at offset 0.
189         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
190       }
191 
192       // We have a non-zero offset from the base region.  We want to determine
193       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
194       // we create an ElementRegion whose index is that value.  Otherwise, we
195       // create two ElementRegions, one that reflects a raw offset and the other
196       // that reflects the cast.
197 
198       // Compute the index for the new ElementRegion.
199       int64_t newIndex = 0;
200       const MemRegion *newSuperR = nullptr;
201 
202       // We can only compute sizeof(PointeeTy) if it is a complete type.
203       if (!PointeeTy->isIncompleteType()) {
204         // Compute the size in **bytes**.
205         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
206         if (!pointeeTySize.isZero()) {
207           // Is the offset a multiple of the size?  If so, we can layer the
208           // ElementRegion (with elementType == PointeeTy) directly on top of
209           // the base region.
210           if (off % pointeeTySize == 0) {
211             newIndex = off / pointeeTySize;
212             newSuperR = baseR;
213           }
214         }
215       }
216 
217       if (!newSuperR) {
218         // Create an intermediate ElementRegion to represent the raw byte.
219         // This will be the super region of the final ElementRegion.
220         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
221                                       off.getQuantity());
222       }
223 
224       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
225     }
226   }
227 
228   llvm_unreachable("unreachable");
229 }
230 
regionMatchesCXXRecordType(SVal V,QualType Ty)231 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
232   const MemRegion *MR = V.getAsRegion();
233   if (!MR)
234     return true;
235 
236   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
237   if (!TVR)
238     return true;
239 
240   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
241   if (!RD)
242     return true;
243 
244   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
245   if (!Expected)
246     Expected = Ty->getAsCXXRecordDecl();
247 
248   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
249 }
250 
evalDerivedToBase(SVal Derived,const CastExpr * Cast)251 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
252   // Early return to avoid doing the wrong thing in the face of
253   // reinterpret_cast.
254   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
255     return UnknownVal();
256 
257   // Walk through the cast path to create nested CXXBaseRegions.
258   SVal Result = Derived;
259   for (CastExpr::path_const_iterator I = Cast->path_begin(),
260                                      E = Cast->path_end();
261        I != E; ++I) {
262     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
263   }
264   return Result;
265 }
266 
evalDerivedToBase(SVal Derived,const CXXBasePath & Path)267 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
268   // Walk through the path to create nested CXXBaseRegions.
269   SVal Result = Derived;
270   for (const auto &I : Path)
271     Result = evalDerivedToBase(Result, I.Base->getType(),
272                                I.Base->isVirtual());
273   return Result;
274 }
275 
evalDerivedToBase(SVal Derived,QualType BaseType,bool IsVirtual)276 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
277                                      bool IsVirtual) {
278   const MemRegion *DerivedReg = Derived.getAsRegion();
279   if (!DerivedReg)
280     return Derived;
281 
282   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
283   if (!BaseDecl)
284     BaseDecl = BaseType->getAsCXXRecordDecl();
285   assert(BaseDecl && "not a C++ object?");
286 
287   if (const auto *AlreadyDerivedReg =
288           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
289     if (const auto *SR =
290             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
291       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
292         return loc::MemRegionVal(SR);
293 
294     DerivedReg = AlreadyDerivedReg->getSuperRegion();
295   }
296 
297   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
298       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
299 
300   return loc::MemRegionVal(BaseReg);
301 }
302 
303 /// Returns the static type of the given region, if it represents a C++ class
304 /// object.
305 ///
306 /// This handles both fully-typed regions, where the dynamic type is known, and
307 /// symbolic regions, where the dynamic type is merely bounded (and even then,
308 /// only ostensibly!), but does not take advantage of any dynamic type info.
getCXXRecordType(const MemRegion * MR)309 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
310   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
311     return TVR->getValueType()->getAsCXXRecordDecl();
312   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
313     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
314   return nullptr;
315 }
316 
evalBaseToDerived(SVal Base,QualType TargetType)317 std::optional<SVal> StoreManager::evalBaseToDerived(SVal Base,
318                                                     QualType TargetType) {
319   const MemRegion *MR = Base.getAsRegion();
320   if (!MR)
321     return UnknownVal();
322 
323   // Assume the derived class is a pointer or a reference to a CXX record.
324   TargetType = TargetType->getPointeeType();
325   assert(!TargetType.isNull());
326   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
327   if (!TargetClass && !TargetType->isVoidType())
328     return UnknownVal();
329 
330   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331   // derived to base).
332   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
333     // If found the derived class, the cast succeeds.
334     if (MRClass == TargetClass)
335       return loc::MemRegionVal(MR);
336 
337     // We skip over incomplete types. They must be the result of an earlier
338     // reinterpret_cast, as one can only dynamic_cast between types in the same
339     // class hierarchy.
340     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
341       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342       // only happen when multiple or virtual inheritance is involved.
343       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344                          /*DetectVirtual=*/false);
345       if (MRClass->isDerivedFrom(TargetClass, Paths))
346         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
347     }
348 
349     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
350       // Drill down the chain to get the derived classes.
351       MR = BaseR->getSuperRegion();
352       continue;
353     }
354 
355     // If this is a cast to void*, return the region.
356     if (TargetType->isVoidType())
357       return loc::MemRegionVal(MR);
358 
359     // Strange use of reinterpret_cast can give us paths we don't reason
360     // about well, by putting in ElementRegions where we'd expect
361     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362     // derived class has a zero offset from the base class), then it's safe
363     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364     // catch it. In the interest of performance, the analyzer will silently
365     // do the wrong thing in the invalid case (because offsets for subregions
366     // will be wrong).
367     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
368     if (Uncasted == MR) {
369       // We reached the bottom of the hierarchy and did not find the derived
370       // class. We must be casting the base to derived, so the cast should
371       // fail.
372       break;
373     }
374 
375     MR = Uncasted;
376   }
377 
378   // If we're casting a symbolic base pointer to a derived class, use
379   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380   // unrelated type, it must be a weird reinterpret_cast and we have to
381   // be fine with ElementRegion. TODO: Should we instead make
382   // Derived{TargetClass, Element{SourceClass, SR}}?
383   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
384     QualType T = SR->getSymbol()->getType();
385     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
386     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
387       return loc::MemRegionVal(
388           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
389     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
390   }
391 
392   // We failed if the region we ended up with has perfect type info.
393   if (isa<TypedValueRegion>(MR))
394     return std::nullopt;
395 
396   return UnknownVal();
397 }
398 
getLValueFieldOrIvar(const Decl * D,SVal Base)399 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
400   if (Base.isUnknownOrUndef())
401     return Base;
402 
403   Loc BaseL = Base.castAs<Loc>();
404   const SubRegion* BaseR = nullptr;
405 
406   switch (BaseL.getSubKind()) {
407   case loc::MemRegionValKind:
408     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
409     break;
410 
411   case loc::GotoLabelKind:
412     // These are anormal cases. Flag an undefined value.
413     return UndefinedVal();
414 
415   case loc::ConcreteIntKind:
416     // While these seem funny, this can happen through casts.
417     // FIXME: What we should return is the field offset, not base. For example,
418     //  add the field offset to the integer value.  That way things
419     //  like this work properly:  &(((struct foo *) 0xa)->f)
420     //  However, that's not easy to fix without reducing our abilities
421     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
422     //  is a null dereference even though we're dereferencing offset of f
423     //  rather than null. Coming up with an approach that computes offsets
424     //  over null pointers properly while still being able to catch null
425     //  dereferences might be worth it.
426     return Base;
427 
428   default:
429     llvm_unreachable("Unhandled Base.");
430   }
431 
432   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
433   // of FieldDecl.
434   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
435     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
436 
437   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
438 }
439 
getLValueIvar(const ObjCIvarDecl * decl,SVal base)440 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
441   return getLValueFieldOrIvar(decl, base);
442 }
443 
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)444 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
445                                     SVal Base) {
446 
447   // Special case, if index is 0, return the same type as if
448   // this was not an array dereference.
449   if (Offset.isZeroConstant()) {
450     QualType BT = Base.getType(this->Ctx);
451     if (!BT.isNull() && !elementType.isNull()) {
452       QualType PointeeTy = BT->getPointeeType();
453       if (!PointeeTy.isNull() &&
454           PointeeTy.getCanonicalType() == elementType.getCanonicalType())
455         return Base;
456     }
457   }
458 
459   // If the base is an unknown or undefined value, just return it back.
460   // FIXME: For absolute pointer addresses, we just return that value back as
461   //  well, although in reality we should return the offset added to that
462   //  value. See also the similar FIXME in getLValueFieldOrIvar().
463   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
464     return Base;
465 
466   if (isa<loc::GotoLabel>(Base))
467     return UnknownVal();
468 
469   const SubRegion *BaseRegion =
470       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
471 
472   // Pointer of any type can be cast and used as array base.
473   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
474 
475   // Convert the offset to the appropriate size and signedness.
476   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
477 
478   if (!ElemR) {
479     // If the base region is not an ElementRegion, create one.
480     // This can happen in the following example:
481     //
482     //   char *p = __builtin_alloc(10);
483     //   p[1] = 8;
484     //
485     //  Observe that 'p' binds to an AllocaRegion.
486     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
487                                                     BaseRegion, Ctx));
488   }
489 
490   SVal BaseIdx = ElemR->getIndex();
491 
492   if (!isa<nonloc::ConcreteInt>(BaseIdx))
493     return UnknownVal();
494 
495   const llvm::APSInt &BaseIdxI =
496       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
497 
498   // Only allow non-integer offsets if the base region has no offset itself.
499   // FIXME: This is a somewhat arbitrary restriction. We should be using
500   // SValBuilder here to add the two offsets without checking their types.
501   if (!isa<nonloc::ConcreteInt>(Offset)) {
502     if (isa<ElementRegion>(BaseRegion->StripCasts()))
503       return UnknownVal();
504 
505     return loc::MemRegionVal(MRMgr.getElementRegion(
506         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
507   }
508 
509   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
510   assert(BaseIdxI.isSigned());
511 
512   // Compute the new index.
513   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
514                                                                     OffI));
515 
516   // Construct the new ElementRegion.
517   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
518   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
519                                                   Ctx));
520 }
521 
522 StoreManager::BindingsHandler::~BindingsHandler() = default;
523 
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal val)524 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
525                                                     Store store,
526                                                     const MemRegion* R,
527                                                     SVal val) {
528   SymbolRef SymV = val.getAsLocSymbol();
529   if (!SymV || SymV != Sym)
530     return true;
531 
532   if (Binding) {
533     First = false;
534     return false;
535   }
536   else
537     Binding = R;
538 
539   return true;
540 }
541