1 //===-- RenderScriptRuntime.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "RenderScriptRuntime.h"
10 #include "RenderScriptScriptGroup.h"
11
12 #include "lldb/Breakpoint/StoppointCallbackContext.h"
13 #include "lldb/Core/Debugger.h"
14 #include "lldb/Core/DumpDataExtractor.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/ValueObjectVariable.h"
17 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
18 #include "lldb/Expression/UserExpression.h"
19 #include "lldb/Host/OptionParser.h"
20 #include "lldb/Interpreter/CommandInterpreter.h"
21 #include "lldb/Interpreter/CommandObjectMultiword.h"
22 #include "lldb/Interpreter/CommandReturnObject.h"
23 #include "lldb/Interpreter/Options.h"
24 #include "lldb/Symbol/Function.h"
25 #include "lldb/Symbol/Symbol.h"
26 #include "lldb/Symbol/Type.h"
27 #include "lldb/Symbol/VariableList.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/RegisterContext.h"
30 #include "lldb/Target/SectionLoadList.h"
31 #include "lldb/Target/Target.h"
32 #include "lldb/Target/Thread.h"
33 #include "lldb/Utility/Args.h"
34 #include "lldb/Utility/ConstString.h"
35 #include "lldb/Utility/LLDBLog.h"
36 #include "lldb/Utility/Log.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/RegularExpression.h"
39 #include "lldb/Utility/Status.h"
40
41 #include "llvm/ADT/StringSwitch.h"
42
43 #include <memory>
44
45 using namespace lldb;
46 using namespace lldb_private;
47 using namespace lldb_renderscript;
48
49 LLDB_PLUGIN_DEFINE(RenderScriptRuntime)
50
51 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")"
52
53 char RenderScriptRuntime::ID = 0;
54
55 namespace {
56
57 // The empirical_type adds a basic level of validation to arbitrary data
58 // allowing us to track if data has been discovered and stored or not. An
59 // empirical_type will be marked as valid only if it has been explicitly
60 // assigned to.
61 template <typename type_t> class empirical_type {
62 public:
63 // Ctor. Contents is invalid when constructed.
64 empirical_type() = default;
65
66 // Return true and copy contents to out if valid, else return false.
get(type_t & out) const67 bool get(type_t &out) const {
68 if (valid)
69 out = data;
70 return valid;
71 }
72
73 // Return a pointer to the contents or nullptr if it was not valid.
get() const74 const type_t *get() const { return valid ? &data : nullptr; }
75
76 // Assign data explicitly.
set(const type_t in)77 void set(const type_t in) {
78 data = in;
79 valid = true;
80 }
81
82 // Mark contents as invalid.
invalidate()83 void invalidate() { valid = false; }
84
85 // Returns true if this type contains valid data.
isValid() const86 bool isValid() const { return valid; }
87
88 // Assignment operator.
operator =(const type_t in)89 empirical_type<type_t> &operator=(const type_t in) {
90 set(in);
91 return *this;
92 }
93
94 // Dereference operator returns contents.
95 // Warning: Will assert if not valid so use only when you know data is valid.
operator *() const96 const type_t &operator*() const {
97 assert(valid);
98 return data;
99 }
100
101 protected:
102 bool valid = false;
103 type_t data;
104 };
105
106 // ArgItem is used by the GetArgs() function when reading function arguments
107 // from the target.
108 struct ArgItem {
109 enum { ePointer, eInt32, eInt64, eLong, eBool } type;
110
111 uint64_t value;
112
operator uint64_t__anonb765b1c70111::ArgItem113 explicit operator uint64_t() const { return value; }
114 };
115
116 // Context structure to be passed into GetArgsXXX(), argument reading functions
117 // below.
118 struct GetArgsCtx {
119 RegisterContext *reg_ctx;
120 Process *process;
121 };
122
GetArgsX86(const GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)123 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
124 Log *log = GetLog(LLDBLog::Language);
125
126 Status err;
127
128 // get the current stack pointer
129 uint64_t sp = ctx.reg_ctx->GetSP();
130
131 for (size_t i = 0; i < num_args; ++i) {
132 ArgItem &arg = arg_list[i];
133 // advance up the stack by one argument
134 sp += sizeof(uint32_t);
135 // get the argument type size
136 size_t arg_size = sizeof(uint32_t);
137 // read the argument from memory
138 arg.value = 0;
139 Status err;
140 size_t read =
141 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err);
142 if (read != arg_size || !err.Success()) {
143 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 " '%s'",
144 __FUNCTION__, uint64_t(i), err.AsCString());
145 return false;
146 }
147 }
148 return true;
149 }
150
GetArgsX86_64(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)151 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
152 Log *log = GetLog(LLDBLog::Language);
153
154 // number of arguments passed in registers
155 static const uint32_t args_in_reg = 6;
156 // register passing order
157 static const std::array<const char *, args_in_reg> reg_names{
158 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
159 // argument type to size mapping
160 static const std::array<size_t, 5> arg_size{{
161 8, // ePointer,
162 4, // eInt32,
163 8, // eInt64,
164 8, // eLong,
165 4, // eBool,
166 }};
167
168 Status err;
169
170 // get the current stack pointer
171 uint64_t sp = ctx.reg_ctx->GetSP();
172 // step over the return address
173 sp += sizeof(uint64_t);
174
175 // check the stack alignment was correct (16 byte aligned)
176 if ((sp & 0xf) != 0x0) {
177 LLDB_LOGF(log, "%s - stack misaligned", __FUNCTION__);
178 return false;
179 }
180
181 // find the start of arguments on the stack
182 uint64_t sp_offset = 0;
183 for (uint32_t i = args_in_reg; i < num_args; ++i) {
184 sp_offset += arg_size[arg_list[i].type];
185 }
186 // round up to multiple of 16
187 sp_offset = (sp_offset + 0xf) & 0xf;
188 sp += sp_offset;
189
190 for (size_t i = 0; i < num_args; ++i) {
191 bool success = false;
192 ArgItem &arg = arg_list[i];
193 // arguments passed in registers
194 if (i < args_in_reg) {
195 const RegisterInfo *reg =
196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]);
197 RegisterValue reg_val;
198 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
199 arg.value = reg_val.GetAsUInt64(0, &success);
200 }
201 // arguments passed on the stack
202 else {
203 // get the argument type size
204 const size_t size = arg_size[arg_list[i].type];
205 // read the argument from memory
206 arg.value = 0;
207 // note: due to little endian layout reading 4 or 8 bytes will give the
208 // correct value.
209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err);
210 success = (err.Success() && read == size);
211 // advance past this argument
212 sp -= size;
213 }
214 // fail if we couldn't read this argument
215 if (!success) {
216 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
217 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
218 return false;
219 }
220 }
221 return true;
222 }
223
GetArgsArm(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)224 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
225 // number of arguments passed in registers
226 static const uint32_t args_in_reg = 4;
227
228 Log *log = GetLog(LLDBLog::Language);
229
230 Status err;
231
232 // get the current stack pointer
233 uint64_t sp = ctx.reg_ctx->GetSP();
234
235 for (size_t i = 0; i < num_args; ++i) {
236 bool success = false;
237 ArgItem &arg = arg_list[i];
238 // arguments passed in registers
239 if (i < args_in_reg) {
240 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
241 RegisterValue reg_val;
242 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
243 arg.value = reg_val.GetAsUInt32(0, &success);
244 }
245 // arguments passed on the stack
246 else {
247 // get the argument type size
248 const size_t arg_size = sizeof(uint32_t);
249 // clear all 64bits
250 arg.value = 0;
251 // read this argument from memory
252 size_t bytes_read =
253 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
254 success = (err.Success() && bytes_read == arg_size);
255 // advance the stack pointer
256 sp += sizeof(uint32_t);
257 }
258 // fail if we couldn't read this argument
259 if (!success) {
260 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
261 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
262 return false;
263 }
264 }
265 return true;
266 }
267
GetArgsAarch64(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)268 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
269 // number of arguments passed in registers
270 static const uint32_t args_in_reg = 8;
271
272 Log *log = GetLog(LLDBLog::Language);
273
274 for (size_t i = 0; i < num_args; ++i) {
275 bool success = false;
276 ArgItem &arg = arg_list[i];
277 // arguments passed in registers
278 if (i < args_in_reg) {
279 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
280 RegisterValue reg_val;
281 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
282 arg.value = reg_val.GetAsUInt64(0, &success);
283 }
284 // arguments passed on the stack
285 else {
286 LLDB_LOGF(log, "%s - reading arguments spilled to stack not implemented",
287 __FUNCTION__);
288 }
289 // fail if we couldn't read this argument
290 if (!success) {
291 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64, __FUNCTION__,
292 uint64_t(i));
293 return false;
294 }
295 }
296 return true;
297 }
298
GetArgsMipsel(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)299 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
300 // number of arguments passed in registers
301 static const uint32_t args_in_reg = 4;
302 // register file offset to first argument
303 static const uint32_t reg_offset = 4;
304
305 Log *log = GetLog(LLDBLog::Language);
306
307 Status err;
308
309 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow
310 // space)
311 uint64_t sp = ctx.reg_ctx->GetSP() + 16;
312
313 for (size_t i = 0; i < num_args; ++i) {
314 bool success = false;
315 ArgItem &arg = arg_list[i];
316 // arguments passed in registers
317 if (i < args_in_reg) {
318 const RegisterInfo *reg =
319 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
320 RegisterValue reg_val;
321 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
322 arg.value = reg_val.GetAsUInt64(0, &success);
323 }
324 // arguments passed on the stack
325 else {
326 const size_t arg_size = sizeof(uint32_t);
327 arg.value = 0;
328 size_t bytes_read =
329 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
330 success = (err.Success() && bytes_read == arg_size);
331 // advance the stack pointer
332 sp += arg_size;
333 }
334 // fail if we couldn't read this argument
335 if (!success) {
336 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
337 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
338 return false;
339 }
340 }
341 return true;
342 }
343
GetArgsMips64el(GetArgsCtx & ctx,ArgItem * arg_list,size_t num_args)344 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
345 // number of arguments passed in registers
346 static const uint32_t args_in_reg = 8;
347 // register file offset to first argument
348 static const uint32_t reg_offset = 4;
349
350 Log *log = GetLog(LLDBLog::Language);
351
352 Status err;
353
354 // get the current stack pointer
355 uint64_t sp = ctx.reg_ctx->GetSP();
356
357 for (size_t i = 0; i < num_args; ++i) {
358 bool success = false;
359 ArgItem &arg = arg_list[i];
360 // arguments passed in registers
361 if (i < args_in_reg) {
362 const RegisterInfo *reg =
363 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset);
364 RegisterValue reg_val;
365 if (ctx.reg_ctx->ReadRegister(reg, reg_val))
366 arg.value = reg_val.GetAsUInt64(0, &success);
367 }
368 // arguments passed on the stack
369 else {
370 // get the argument type size
371 const size_t arg_size = sizeof(uint64_t);
372 // clear all 64bits
373 arg.value = 0;
374 // read this argument from memory
375 size_t bytes_read =
376 ctx.process->ReadMemory(sp, &arg.value, arg_size, err);
377 success = (err.Success() && bytes_read == arg_size);
378 // advance the stack pointer
379 sp += arg_size;
380 }
381 // fail if we couldn't read this argument
382 if (!success) {
383 LLDB_LOGF(log, "%s - error reading argument: %" PRIu64 ", reason: %s",
384 __FUNCTION__, uint64_t(i), err.AsCString("n/a"));
385 return false;
386 }
387 }
388 return true;
389 }
390
GetArgs(ExecutionContext & exe_ctx,ArgItem * arg_list,size_t num_args)391 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) {
392 Log *log = GetLog(LLDBLog::Language);
393
394 // verify that we have a target
395 if (!exe_ctx.GetTargetPtr()) {
396 LLDB_LOGF(log, "%s - invalid target", __FUNCTION__);
397 return false;
398 }
399
400 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()};
401 assert(ctx.reg_ctx && ctx.process);
402
403 // dispatch based on architecture
404 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) {
405 case llvm::Triple::ArchType::x86:
406 return GetArgsX86(ctx, arg_list, num_args);
407
408 case llvm::Triple::ArchType::x86_64:
409 return GetArgsX86_64(ctx, arg_list, num_args);
410
411 case llvm::Triple::ArchType::arm:
412 return GetArgsArm(ctx, arg_list, num_args);
413
414 case llvm::Triple::ArchType::aarch64:
415 return GetArgsAarch64(ctx, arg_list, num_args);
416
417 case llvm::Triple::ArchType::mipsel:
418 return GetArgsMipsel(ctx, arg_list, num_args);
419
420 case llvm::Triple::ArchType::mips64el:
421 return GetArgsMips64el(ctx, arg_list, num_args);
422
423 default:
424 // unsupported architecture
425 if (log) {
426 LLDB_LOGF(log, "%s - architecture not supported: '%s'", __FUNCTION__,
427 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName());
428 }
429 return false;
430 }
431 }
432
IsRenderScriptScriptModule(ModuleSP module)433 bool IsRenderScriptScriptModule(ModuleSP module) {
434 if (!module)
435 return false;
436 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
437 eSymbolTypeData) != nullptr;
438 }
439
ParseCoordinate(llvm::StringRef coord_s,RSCoordinate & coord)440 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) {
441 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a
442 // comma separated 1,2 or 3-dimensional coordinate with the whitespace
443 // trimmed. Missing coordinates are defaulted to zero. If parsing of any
444 // elements fails the contents of &coord are undefined and `false` is
445 // returned, `true` otherwise
446
447 llvm::SmallVector<llvm::StringRef, 4> matches;
448
449 if (!RegularExpression("^([0-9]+),([0-9]+),([0-9]+)$")
450 .Execute(coord_s, &matches) &&
451 !RegularExpression("^([0-9]+),([0-9]+)$").Execute(coord_s, &matches) &&
452 !RegularExpression("^([0-9]+)$").Execute(coord_s, &matches))
453 return false;
454
455 auto get_index = [&](size_t idx, uint32_t &i) -> bool {
456 std::string group;
457 errno = 0;
458 if (idx + 1 < matches.size()) {
459 return !llvm::StringRef(matches[idx + 1]).getAsInteger<uint32_t>(10, i);
460 }
461 return true;
462 };
463
464 return get_index(0, coord.x) && get_index(1, coord.y) &&
465 get_index(2, coord.z);
466 }
467
SkipPrologue(lldb::ModuleSP & module,Address & addr)468 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) {
469 Log *log = GetLog(LLDBLog::Language);
470 SymbolContext sc;
471 uint32_t resolved_flags =
472 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc);
473 if (resolved_flags & eSymbolContextFunction) {
474 if (sc.function) {
475 const uint32_t offset = sc.function->GetPrologueByteSize();
476 ConstString name = sc.GetFunctionName();
477 if (offset)
478 addr.Slide(offset);
479 LLDB_LOGF(log, "%s: Prologue offset for %s is %" PRIu32, __FUNCTION__,
480 name.AsCString(), offset);
481 }
482 return true;
483 } else
484 return false;
485 }
486 } // anonymous namespace
487
488 // The ScriptDetails class collects data associated with a single script
489 // instance.
490 struct RenderScriptRuntime::ScriptDetails {
491 ~ScriptDetails() = default;
492
493 enum ScriptType { eScript, eScriptC };
494
495 // The derived type of the script.
496 empirical_type<ScriptType> type;
497 // The name of the original source file.
498 empirical_type<std::string> res_name;
499 // Path to script .so file on the device.
500 empirical_type<std::string> shared_lib;
501 // Directory where kernel objects are cached on device.
502 empirical_type<std::string> cache_dir;
503 // Pointer to the context which owns this script.
504 empirical_type<lldb::addr_t> context;
505 // Pointer to the script object itself.
506 empirical_type<lldb::addr_t> script;
507 };
508
509 // This Element class represents the Element object in RS, defining the type
510 // associated with an Allocation.
511 struct RenderScriptRuntime::Element {
512 // Taken from rsDefines.h
513 enum DataKind {
514 RS_KIND_USER,
515 RS_KIND_PIXEL_L = 7,
516 RS_KIND_PIXEL_A,
517 RS_KIND_PIXEL_LA,
518 RS_KIND_PIXEL_RGB,
519 RS_KIND_PIXEL_RGBA,
520 RS_KIND_PIXEL_DEPTH,
521 RS_KIND_PIXEL_YUV,
522 RS_KIND_INVALID = 100
523 };
524
525 // Taken from rsDefines.h
526 enum DataType {
527 RS_TYPE_NONE = 0,
528 RS_TYPE_FLOAT_16,
529 RS_TYPE_FLOAT_32,
530 RS_TYPE_FLOAT_64,
531 RS_TYPE_SIGNED_8,
532 RS_TYPE_SIGNED_16,
533 RS_TYPE_SIGNED_32,
534 RS_TYPE_SIGNED_64,
535 RS_TYPE_UNSIGNED_8,
536 RS_TYPE_UNSIGNED_16,
537 RS_TYPE_UNSIGNED_32,
538 RS_TYPE_UNSIGNED_64,
539 RS_TYPE_BOOLEAN,
540
541 RS_TYPE_UNSIGNED_5_6_5,
542 RS_TYPE_UNSIGNED_5_5_5_1,
543 RS_TYPE_UNSIGNED_4_4_4_4,
544
545 RS_TYPE_MATRIX_4X4,
546 RS_TYPE_MATRIX_3X3,
547 RS_TYPE_MATRIX_2X2,
548
549 RS_TYPE_ELEMENT = 1000,
550 RS_TYPE_TYPE,
551 RS_TYPE_ALLOCATION,
552 RS_TYPE_SAMPLER,
553 RS_TYPE_SCRIPT,
554 RS_TYPE_MESH,
555 RS_TYPE_PROGRAM_FRAGMENT,
556 RS_TYPE_PROGRAM_VERTEX,
557 RS_TYPE_PROGRAM_RASTER,
558 RS_TYPE_PROGRAM_STORE,
559 RS_TYPE_FONT,
560
561 RS_TYPE_INVALID = 10000
562 };
563
564 std::vector<Element> children; // Child Element fields for structs
565 empirical_type<lldb::addr_t>
566 element_ptr; // Pointer to the RS Element of the Type
567 empirical_type<DataType>
568 type; // Type of each data pointer stored by the allocation
569 empirical_type<DataKind>
570 type_kind; // Defines pixel type if Allocation is created from an image
571 empirical_type<uint32_t>
572 type_vec_size; // Vector size of each data point, e.g '4' for uchar4
573 empirical_type<uint32_t> field_count; // Number of Subelements
574 empirical_type<uint32_t> datum_size; // Size of a single Element with padding
575 empirical_type<uint32_t> padding; // Number of padding bytes
576 empirical_type<uint32_t>
577 array_size; // Number of items in array, only needed for structs
578 ConstString type_name; // Name of type, only needed for structs
579
580 static ConstString
581 GetFallbackStructName(); // Print this as the type name of a struct Element
582 // If we can't resolve the actual struct name
583
ShouldRefreshRenderScriptRuntime::Element584 bool ShouldRefresh() const {
585 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
586 const bool valid_type =
587 type.isValid() && type_vec_size.isValid() && type_kind.isValid();
588 return !valid_ptr || !valid_type || !datum_size.isValid();
589 }
590 };
591
592 // This AllocationDetails class collects data associated with a single
593 // allocation instance.
594 struct RenderScriptRuntime::AllocationDetails {
595 struct Dimension {
596 uint32_t dim_1;
597 uint32_t dim_2;
598 uint32_t dim_3;
599 uint32_t cube_map;
600
DimensionRenderScriptRuntime::AllocationDetails::Dimension601 Dimension() {
602 dim_1 = 0;
603 dim_2 = 0;
604 dim_3 = 0;
605 cube_map = 0;
606 }
607 };
608
609 // The FileHeader struct specifies the header we use for writing allocations
610 // to a binary file. Our format begins with the ASCII characters "RSAD",
611 // identifying the file as an allocation dump. Member variables dims and
612 // hdr_size are then written consecutively, immediately followed by an
613 // instance of the ElementHeader struct. Because Elements can contain
614 // subelements, there may be more than one instance of the ElementHeader
615 // struct. With this first instance being the root element, and the other
616 // instances being the root's descendants. To identify which instances are an
617 // ElementHeader's children, each struct is immediately followed by a
618 // sequence of consecutive offsets to the start of its child structs. These
619 // offsets are
620 // 4 bytes in size, and the 0 offset signifies no more children.
621 struct FileHeader {
622 uint8_t ident[4]; // ASCII 'RSAD' identifying the file
623 uint32_t dims[3]; // Dimensions
624 uint16_t hdr_size; // Header size in bytes, including all element headers
625 };
626
627 struct ElementHeader {
628 uint16_t type; // DataType enum
629 uint32_t kind; // DataKind enum
630 uint32_t element_size; // Size of a single element, including padding
631 uint16_t vector_size; // Vector width
632 uint32_t array_size; // Number of elements in array
633 };
634
635 // Monotonically increasing from 1
636 static uint32_t ID;
637
638 // Maps Allocation DataType enum and vector size to printable strings using
639 // mapping from RenderScript numerical types summary documentation
640 static const char *RsDataTypeToString[][4];
641
642 // Maps Allocation DataKind enum to printable strings
643 static const char *RsDataKindToString[];
644
645 // Maps allocation types to format sizes for printing.
646 static const uint32_t RSTypeToFormat[][3];
647
648 // Give each allocation an ID as a way
649 // for commands to reference it.
650 const uint32_t id;
651
652 // Allocation Element type
653 RenderScriptRuntime::Element element;
654 // Dimensions of the Allocation
655 empirical_type<Dimension> dimension;
656 // Pointer to address of the RS Allocation
657 empirical_type<lldb::addr_t> address;
658 // Pointer to the data held by the Allocation
659 empirical_type<lldb::addr_t> data_ptr;
660 // Pointer to the RS Type of the Allocation
661 empirical_type<lldb::addr_t> type_ptr;
662 // Pointer to the RS Context of the Allocation
663 empirical_type<lldb::addr_t> context;
664 // Size of the allocation
665 empirical_type<uint32_t> size;
666 // Stride between rows of the allocation
667 empirical_type<uint32_t> stride;
668
669 // Give each allocation an id, so we can reference it in user commands.
AllocationDetailsRenderScriptRuntime::AllocationDetails670 AllocationDetails() : id(ID++) {}
671
ShouldRefreshRenderScriptRuntime::AllocationDetails672 bool ShouldRefresh() const {
673 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
674 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
675 return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
676 element.ShouldRefresh();
677 }
678 };
679
GetFallbackStructName()680 ConstString RenderScriptRuntime::Element::GetFallbackStructName() {
681 static const ConstString FallbackStructName("struct");
682 return FallbackStructName;
683 }
684
685 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
686
687 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
688 "User", "Undefined", "Undefined", "Undefined",
689 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
690 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel",
691 "RGBA Pixel", "Pixel Depth", "YUV Pixel"};
692
693 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
694 {"None", "None", "None", "None"},
695 {"half", "half2", "half3", "half4"},
696 {"float", "float2", "float3", "float4"},
697 {"double", "double2", "double3", "double4"},
698 {"char", "char2", "char3", "char4"},
699 {"short", "short2", "short3", "short4"},
700 {"int", "int2", "int3", "int4"},
701 {"long", "long2", "long3", "long4"},
702 {"uchar", "uchar2", "uchar3", "uchar4"},
703 {"ushort", "ushort2", "ushort3", "ushort4"},
704 {"uint", "uint2", "uint3", "uint4"},
705 {"ulong", "ulong2", "ulong3", "ulong4"},
706 {"bool", "bool2", "bool3", "bool4"},
707 {"packed_565", "packed_565", "packed_565", "packed_565"},
708 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
709 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
710 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
711 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
712 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
713
714 // Handlers
715 {"RS Element", "RS Element", "RS Element", "RS Element"},
716 {"RS Type", "RS Type", "RS Type", "RS Type"},
717 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
718 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
719 {"RS Script", "RS Script", "RS Script", "RS Script"},
720
721 // Deprecated
722 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
723 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
724 "RS Program Fragment"},
725 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
726 "RS Program Vertex"},
727 {"RS Program Raster", "RS Program Raster", "RS Program Raster",
728 "RS Program Raster"},
729 {"RS Program Store", "RS Program Store", "RS Program Store",
730 "RS Program Store"},
731 {"RS Font", "RS Font", "RS Font", "RS Font"}};
732
733 // Used as an index into the RSTypeToFormat array elements
734 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
735
736 // { format enum of single element, format enum of element vector, size of
737 // element}
738 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
739 // RS_TYPE_NONE
740 {eFormatHex, eFormatHex, 1},
741 // RS_TYPE_FLOAT_16
742 {eFormatFloat, eFormatVectorOfFloat16, 2},
743 // RS_TYPE_FLOAT_32
744 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)},
745 // RS_TYPE_FLOAT_64
746 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)},
747 // RS_TYPE_SIGNED_8
748 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)},
749 // RS_TYPE_SIGNED_16
750 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)},
751 // RS_TYPE_SIGNED_32
752 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)},
753 // RS_TYPE_SIGNED_64
754 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)},
755 // RS_TYPE_UNSIGNED_8
756 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)},
757 // RS_TYPE_UNSIGNED_16
758 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)},
759 // RS_TYPE_UNSIGNED_32
760 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)},
761 // RS_TYPE_UNSIGNED_64
762 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)},
763 // RS_TYPE_BOOL
764 {eFormatBoolean, eFormatBoolean, 1},
765 // RS_TYPE_UNSIGNED_5_6_5
766 {eFormatHex, eFormatHex, sizeof(uint16_t)},
767 // RS_TYPE_UNSIGNED_5_5_5_1
768 {eFormatHex, eFormatHex, sizeof(uint16_t)},
769 // RS_TYPE_UNSIGNED_4_4_4_4
770 {eFormatHex, eFormatHex, sizeof(uint16_t)},
771 // RS_TYPE_MATRIX_4X4
772 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16},
773 // RS_TYPE_MATRIX_3X3
774 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9},
775 // RS_TYPE_MATRIX_2X2
776 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}};
777
778 // Static Functions
779 LanguageRuntime *
CreateInstance(Process * process,lldb::LanguageType language)780 RenderScriptRuntime::CreateInstance(Process *process,
781 lldb::LanguageType language) {
782
783 if (language == eLanguageTypeExtRenderScript)
784 return new RenderScriptRuntime(process);
785 else
786 return nullptr;
787 }
788
789 // Callback with a module to search for matching symbols. We first check that
790 // the module contains RS kernels. Then look for a symbol which matches our
791 // kernel name. The breakpoint address is finally set using the address of this
792 // symbol.
793 Searcher::CallbackReturn
SearchCallback(SearchFilter & filter,SymbolContext & context,Address *)794 RSBreakpointResolver::SearchCallback(SearchFilter &filter,
795 SymbolContext &context, Address *) {
796 BreakpointSP breakpoint_sp = GetBreakpoint();
797 assert(breakpoint_sp);
798
799 ModuleSP module = context.module_sp;
800
801 if (!module || !IsRenderScriptScriptModule(module))
802 return Searcher::eCallbackReturnContinue;
803
804 // Attempt to set a breakpoint on the kernel name symbol within the module
805 // library. If it's not found, it's likely debug info is unavailable - try to
806 // set a breakpoint on <name>.expand.
807 const Symbol *kernel_sym =
808 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
809 if (!kernel_sym) {
810 std::string kernel_name_expanded(m_kernel_name.AsCString());
811 kernel_name_expanded.append(".expand");
812 kernel_sym = module->FindFirstSymbolWithNameAndType(
813 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
814 }
815
816 if (kernel_sym) {
817 Address bp_addr = kernel_sym->GetAddress();
818 if (filter.AddressPasses(bp_addr))
819 breakpoint_sp->AddLocation(bp_addr);
820 }
821
822 return Searcher::eCallbackReturnContinue;
823 }
824
825 Searcher::CallbackReturn
SearchCallback(lldb_private::SearchFilter & filter,lldb_private::SymbolContext & context,Address *)826 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter,
827 lldb_private::SymbolContext &context,
828 Address *) {
829 BreakpointSP breakpoint_sp = GetBreakpoint();
830 assert(breakpoint_sp);
831
832 // We need to have access to the list of reductions currently parsed, as
833 // reduce names don't actually exist as symbols in a module. They are only
834 // identifiable by parsing the .rs.info packet, or finding the expand symbol.
835 // We therefore need access to the list of parsed rs modules to properly
836 // resolve reduction names.
837 Log *log = GetLog(LLDBLog::Breakpoints);
838 ModuleSP module = context.module_sp;
839
840 if (!module || !IsRenderScriptScriptModule(module))
841 return Searcher::eCallbackReturnContinue;
842
843 if (!m_rsmodules)
844 return Searcher::eCallbackReturnContinue;
845
846 for (const auto &module_desc : *m_rsmodules) {
847 if (module_desc->m_module != module)
848 continue;
849
850 for (const auto &reduction : module_desc->m_reductions) {
851 if (reduction.m_reduce_name != m_reduce_name)
852 continue;
853
854 std::array<std::pair<ConstString, int>, 5> funcs{
855 {{reduction.m_init_name, eKernelTypeInit},
856 {reduction.m_accum_name, eKernelTypeAccum},
857 {reduction.m_comb_name, eKernelTypeComb},
858 {reduction.m_outc_name, eKernelTypeOutC},
859 {reduction.m_halter_name, eKernelTypeHalter}}};
860
861 for (const auto &kernel : funcs) {
862 // Skip constituent functions that don't match our spec
863 if (!(m_kernel_types & kernel.second))
864 continue;
865
866 const auto kernel_name = kernel.first;
867 const auto symbol = module->FindFirstSymbolWithNameAndType(
868 kernel_name, eSymbolTypeCode);
869 if (!symbol)
870 continue;
871
872 auto address = symbol->GetAddress();
873 if (filter.AddressPasses(address)) {
874 bool new_bp;
875 if (!SkipPrologue(module, address)) {
876 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
877 }
878 breakpoint_sp->AddLocation(address, &new_bp);
879 LLDB_LOGF(log, "%s: %s reduction breakpoint on %s in %s",
880 __FUNCTION__, new_bp ? "new" : "existing",
881 kernel_name.GetCString(),
882 address.GetModule()->GetFileSpec().GetPath().c_str());
883 }
884 }
885 }
886 }
887 return eCallbackReturnContinue;
888 }
889
SearchCallback(SearchFilter & filter,SymbolContext & context,Address * addr)890 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback(
891 SearchFilter &filter, SymbolContext &context, Address *addr) {
892
893 BreakpointSP breakpoint_sp = GetBreakpoint();
894 if (!breakpoint_sp)
895 return eCallbackReturnContinue;
896
897 Log *log = GetLog(LLDBLog::Breakpoints);
898 ModuleSP &module = context.module_sp;
899
900 if (!module || !IsRenderScriptScriptModule(module))
901 return Searcher::eCallbackReturnContinue;
902
903 std::vector<std::string> names;
904 Breakpoint& breakpoint = *breakpoint_sp;
905 breakpoint.GetNames(names);
906 if (names.empty())
907 return eCallbackReturnContinue;
908
909 for (auto &name : names) {
910 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name));
911 if (!sg) {
912 LLDB_LOGF(log, "%s: could not find script group for %s", __FUNCTION__,
913 name.c_str());
914 continue;
915 }
916
917 LLDB_LOGF(log, "%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str());
918
919 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) {
920 if (log) {
921 LLDB_LOGF(log, "%s: Adding breakpoint for %s", __FUNCTION__,
922 k.m_name.AsCString());
923 LLDB_LOGF(log, "%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr);
924 }
925
926 const lldb_private::Symbol *sym =
927 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode);
928 if (!sym) {
929 LLDB_LOGF(log, "%s: Unable to find symbol for %s", __FUNCTION__,
930 k.m_name.AsCString());
931 continue;
932 }
933
934 if (log) {
935 LLDB_LOGF(log, "%s: Found symbol name is %s", __FUNCTION__,
936 sym->GetName().AsCString());
937 }
938
939 auto address = sym->GetAddress();
940 if (!SkipPrologue(module, address)) {
941 LLDB_LOGF(log, "%s: Error trying to skip prologue", __FUNCTION__);
942 }
943
944 bool new_bp;
945 breakpoint.AddLocation(address, &new_bp);
946
947 LLDB_LOGF(log, "%s: Placed %sbreakpoint on %s", __FUNCTION__,
948 new_bp ? "new " : "", k.m_name.AsCString());
949
950 // exit after placing the first breakpoint if we do not intend to stop on
951 // all kernels making up this script group
952 if (!m_stop_on_all)
953 break;
954 }
955 }
956
957 return eCallbackReturnContinue;
958 }
959
Initialize()960 void RenderScriptRuntime::Initialize() {
961 PluginManager::RegisterPlugin(GetPluginNameStatic(),
962 "RenderScript language support", CreateInstance,
963 GetCommandObject);
964 }
965
Terminate()966 void RenderScriptRuntime::Terminate() {
967 PluginManager::UnregisterPlugin(CreateInstance);
968 }
969
970 RenderScriptRuntime::ModuleKind
GetModuleKind(const lldb::ModuleSP & module_sp)971 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
972 if (module_sp) {
973 if (IsRenderScriptScriptModule(module_sp))
974 return eModuleKindKernelObj;
975
976 // Is this the main RS runtime library
977 const ConstString rs_lib("libRS.so");
978 if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
979 return eModuleKindLibRS;
980 }
981
982 const ConstString rs_driverlib("libRSDriver.so");
983 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
984 return eModuleKindDriver;
985 }
986
987 const ConstString rs_cpureflib("libRSCpuRef.so");
988 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
989 return eModuleKindImpl;
990 }
991 }
992 return eModuleKindIgnored;
993 }
994
IsRenderScriptModule(const lldb::ModuleSP & module_sp)995 bool RenderScriptRuntime::IsRenderScriptModule(
996 const lldb::ModuleSP &module_sp) {
997 return GetModuleKind(module_sp) != eModuleKindIgnored;
998 }
999
ModulesDidLoad(const ModuleList & module_list)1000 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
1001 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
1002
1003 size_t num_modules = module_list.GetSize();
1004 for (size_t i = 0; i < num_modules; i++) {
1005 auto mod = module_list.GetModuleAtIndex(i);
1006 if (IsRenderScriptModule(mod)) {
1007 LoadModule(mod);
1008 }
1009 }
1010 }
1011
GetDynamicTypeAndAddress(ValueObject & in_value,lldb::DynamicValueType use_dynamic,TypeAndOrName & class_type_or_name,Address & address,Value::ValueType & value_type)1012 bool RenderScriptRuntime::GetDynamicTypeAndAddress(
1013 ValueObject &in_value, lldb::DynamicValueType use_dynamic,
1014 TypeAndOrName &class_type_or_name, Address &address,
1015 Value::ValueType &value_type) {
1016 return false;
1017 }
1018
1019 TypeAndOrName
FixUpDynamicType(const TypeAndOrName & type_and_or_name,ValueObject & static_value)1020 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
1021 ValueObject &static_value) {
1022 return type_and_or_name;
1023 }
1024
CouldHaveDynamicValue(ValueObject & in_value)1025 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
1026 return false;
1027 }
1028
1029 lldb::BreakpointResolverSP
CreateExceptionResolver(const lldb::BreakpointSP & bp,bool catch_bp,bool throw_bp)1030 RenderScriptRuntime::CreateExceptionResolver(const lldb::BreakpointSP &bp,
1031 bool catch_bp, bool throw_bp) {
1032 BreakpointResolverSP resolver_sp;
1033 return resolver_sp;
1034 }
1035
1036 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
1037 {
1038 // rsdScript
1039 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
1040 "NS0_7ScriptCEPKcS7_PKhjj",
1041 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
1042 "7ScriptCEPKcS7_PKhmj",
1043 0, RenderScriptRuntime::eModuleKindDriver,
1044 &lldb_private::RenderScriptRuntime::CaptureScriptInit},
1045 {"rsdScriptInvokeForEachMulti",
1046 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1047 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
1048 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
1049 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
1050 0, RenderScriptRuntime::eModuleKindDriver,
1051 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
1052 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
1053 "script7ContextEPKNS0_6ScriptEjPvj",
1054 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
1055 "6ScriptEjPvm",
1056 0, RenderScriptRuntime::eModuleKindDriver,
1057 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
1058
1059 // rsdAllocation
1060 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
1061 "ontextEPNS0_10AllocationEb",
1062 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
1063 "10AllocationEb",
1064 0, RenderScriptRuntime::eModuleKindDriver,
1065 &lldb_private::RenderScriptRuntime::CaptureAllocationInit},
1066 {"rsdAllocationRead2D",
1067 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1068 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
1069 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
1070 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
1071 0, RenderScriptRuntime::eModuleKindDriver, nullptr},
1072 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
1073 "ript7ContextEPNS0_10AllocationE",
1074 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
1075 "10AllocationE",
1076 0, RenderScriptRuntime::eModuleKindDriver,
1077 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
1078
1079 // renderscript script groups
1080 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip"
1081 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver"
1082 "InfojjjEj",
1083 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan"
1084 "dKernelDriverInfojjjEj",
1085 0, RenderScriptRuntime::eModuleKindImpl,
1086 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}};
1087
1088 const size_t RenderScriptRuntime::s_runtimeHookCount =
1089 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
1090
HookCallback(void * baton,StoppointCallbackContext * ctx,lldb::user_id_t break_id,lldb::user_id_t break_loc_id)1091 bool RenderScriptRuntime::HookCallback(void *baton,
1092 StoppointCallbackContext *ctx,
1093 lldb::user_id_t break_id,
1094 lldb::user_id_t break_loc_id) {
1095 RuntimeHook *hook = (RuntimeHook *)baton;
1096 ExecutionContext exe_ctx(ctx->exe_ctx_ref);
1097
1098 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>(
1099 exe_ctx.GetProcessPtr()->GetLanguageRuntime(
1100 eLanguageTypeExtRenderScript));
1101
1102 lang_rt->HookCallback(hook, exe_ctx);
1103
1104 return false;
1105 }
1106
HookCallback(RuntimeHook * hook,ExecutionContext & exe_ctx)1107 void RenderScriptRuntime::HookCallback(RuntimeHook *hook,
1108 ExecutionContext &exe_ctx) {
1109 Log *log = GetLog(LLDBLog::Language);
1110
1111 LLDB_LOGF(log, "%s - '%s'", __FUNCTION__, hook->defn->name);
1112
1113 if (hook->defn->grabber) {
1114 (this->*(hook->defn->grabber))(hook, exe_ctx);
1115 }
1116 }
1117
CaptureDebugHintScriptGroup2(RuntimeHook * hook_info,ExecutionContext & context)1118 void RenderScriptRuntime::CaptureDebugHintScriptGroup2(
1119 RuntimeHook *hook_info, ExecutionContext &context) {
1120 Log *log = GetLog(LLDBLog::Language);
1121
1122 enum {
1123 eGroupName = 0,
1124 eGroupNameSize,
1125 eKernel,
1126 eKernelCount,
1127 };
1128
1129 std::array<ArgItem, 4> args{{
1130 {ArgItem::ePointer, 0}, // const char *groupName
1131 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize
1132 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel
1133 {ArgItem::eInt32, 0}, // const uint32_t kernelCount
1134 }};
1135
1136 if (!GetArgs(context, args.data(), args.size())) {
1137 LLDB_LOGF(log, "%s - Error while reading the function parameters",
1138 __FUNCTION__);
1139 return;
1140 } else if (log) {
1141 LLDB_LOGF(log, "%s - groupName : 0x%" PRIx64, __FUNCTION__,
1142 addr_t(args[eGroupName]));
1143 LLDB_LOGF(log, "%s - groupNameSize: %" PRIu64, __FUNCTION__,
1144 uint64_t(args[eGroupNameSize]));
1145 LLDB_LOGF(log, "%s - kernel : 0x%" PRIx64, __FUNCTION__,
1146 addr_t(args[eKernel]));
1147 LLDB_LOGF(log, "%s - kernelCount : %" PRIu64, __FUNCTION__,
1148 uint64_t(args[eKernelCount]));
1149 }
1150
1151 // parse script group name
1152 ConstString group_name;
1153 {
1154 Status err;
1155 const uint64_t len = uint64_t(args[eGroupNameSize]);
1156 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]);
1157 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err);
1158 buffer.get()[len] = '\0';
1159 if (!err.Success()) {
1160 LLDB_LOGF(log, "Error reading scriptgroup name from target");
1161 return;
1162 } else {
1163 LLDB_LOGF(log, "Extracted scriptgroup name %s", buffer.get());
1164 }
1165 // write back the script group name
1166 group_name.SetCString(buffer.get());
1167 }
1168
1169 // create or access existing script group
1170 RSScriptGroupDescriptorSP group;
1171 {
1172 // search for existing script group
1173 for (auto sg : m_scriptGroups) {
1174 if (sg->m_name == group_name) {
1175 group = sg;
1176 break;
1177 }
1178 }
1179 if (!group) {
1180 group = std::make_shared<RSScriptGroupDescriptor>();
1181 group->m_name = group_name;
1182 m_scriptGroups.push_back(group);
1183 } else {
1184 // already have this script group
1185 LLDB_LOGF(log, "Attempt to add duplicate script group %s",
1186 group_name.AsCString());
1187 return;
1188 }
1189 }
1190 assert(group);
1191
1192 const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1193 std::vector<addr_t> kernels;
1194 // parse kernel addresses in script group
1195 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) {
1196 RSScriptGroupDescriptor::Kernel kernel;
1197 // extract script group kernel addresses from the target
1198 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size;
1199 uint64_t kernel_addr = 0;
1200 Status err;
1201 size_t read =
1202 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err);
1203 if (!err.Success() || read != target_ptr_size) {
1204 LLDB_LOGF(log, "Error parsing kernel address %" PRIu64 " in script group",
1205 i);
1206 return;
1207 }
1208 LLDB_LOGF(log, "Extracted scriptgroup kernel address - 0x%" PRIx64,
1209 kernel_addr);
1210 kernel.m_addr = kernel_addr;
1211
1212 // try to resolve the associated kernel name
1213 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) {
1214 LLDB_LOGF(log, "Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i,
1215 kernel_addr);
1216 return;
1217 }
1218
1219 // try to find the non '.expand' function
1220 {
1221 const llvm::StringRef expand(".expand");
1222 const llvm::StringRef name_ref = kernel.m_name.GetStringRef();
1223 if (name_ref.endswith(expand)) {
1224 const ConstString base_kernel(name_ref.drop_back(expand.size()));
1225 // verify this function is a valid kernel
1226 if (IsKnownKernel(base_kernel)) {
1227 kernel.m_name = base_kernel;
1228 LLDB_LOGF(log, "%s - found non expand version '%s'", __FUNCTION__,
1229 base_kernel.GetCString());
1230 }
1231 }
1232 }
1233 // add to a list of script group kernels we know about
1234 group->m_kernels.push_back(kernel);
1235 }
1236
1237 // Resolve any pending scriptgroup breakpoints
1238 {
1239 Target &target = m_process->GetTarget();
1240 const BreakpointList &list = target.GetBreakpointList();
1241 const size_t num_breakpoints = list.GetSize();
1242 LLDB_LOGF(log, "Resolving %zu breakpoints", num_breakpoints);
1243 for (size_t i = 0; i < num_breakpoints; ++i) {
1244 const BreakpointSP bp = list.GetBreakpointAtIndex(i);
1245 if (bp) {
1246 if (bp->MatchesName(group_name.AsCString())) {
1247 LLDB_LOGF(log, "Found breakpoint with name %s",
1248 group_name.AsCString());
1249 bp->ResolveBreakpoint();
1250 }
1251 }
1252 }
1253 }
1254 }
1255
CaptureScriptInvokeForEachMulti(RuntimeHook * hook,ExecutionContext & exe_ctx)1256 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
1257 RuntimeHook *hook, ExecutionContext &exe_ctx) {
1258 Log *log = GetLog(LLDBLog::Language);
1259
1260 enum {
1261 eRsContext = 0,
1262 eRsScript,
1263 eRsSlot,
1264 eRsAIns,
1265 eRsInLen,
1266 eRsAOut,
1267 eRsUsr,
1268 eRsUsrLen,
1269 eRsSc,
1270 };
1271
1272 std::array<ArgItem, 9> args{{
1273 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc
1274 ArgItem{ArgItem::ePointer, 0}, // Script *s
1275 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot
1276 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns
1277 ArgItem{ArgItem::eInt32, 0}, // size_t inLen
1278 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout
1279 ArgItem{ArgItem::ePointer, 0}, // const void *usr
1280 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen
1281 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc
1282 }};
1283
1284 bool success = GetArgs(exe_ctx, &args[0], args.size());
1285 if (!success) {
1286 LLDB_LOGF(log, "%s - Error while reading the function parameters",
1287 __FUNCTION__);
1288 return;
1289 }
1290
1291 const uint32_t target_ptr_size = m_process->GetAddressByteSize();
1292 Status err;
1293 std::vector<uint64_t> allocs;
1294
1295 // traverse allocation list
1296 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
1297 // calculate offest to allocation pointer
1298 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
1299
1300 // Note: due to little endian layout, reading 32bits or 64bits into res
1301 // will give the correct results.
1302 uint64_t result = 0;
1303 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err);
1304 if (read != target_ptr_size || !err.Success()) {
1305 LLDB_LOGF(log,
1306 "%s - Error while reading allocation list argument %" PRIu64,
1307 __FUNCTION__, i);
1308 } else {
1309 allocs.push_back(result);
1310 }
1311 }
1312
1313 // if there is an output allocation track it
1314 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) {
1315 allocs.push_back(alloc_out);
1316 }
1317
1318 // for all allocations we have found
1319 for (const uint64_t alloc_addr : allocs) {
1320 AllocationDetails *alloc = LookUpAllocation(alloc_addr);
1321 if (!alloc)
1322 alloc = CreateAllocation(alloc_addr);
1323
1324 if (alloc) {
1325 // save the allocation address
1326 if (alloc->address.isValid()) {
1327 // check the allocation address we already have matches
1328 assert(*alloc->address.get() == alloc_addr);
1329 } else {
1330 alloc->address = alloc_addr;
1331 }
1332
1333 // save the context
1334 if (log) {
1335 if (alloc->context.isValid() &&
1336 *alloc->context.get() != addr_t(args[eRsContext]))
1337 LLDB_LOGF(log, "%s - Allocation used by multiple contexts",
1338 __FUNCTION__);
1339 }
1340 alloc->context = addr_t(args[eRsContext]);
1341 }
1342 }
1343
1344 // make sure we track this script object
1345 if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
1346 LookUpScript(addr_t(args[eRsScript]), true)) {
1347 if (log) {
1348 if (script->context.isValid() &&
1349 *script->context.get() != addr_t(args[eRsContext]))
1350 LLDB_LOGF(log, "%s - Script used by multiple contexts", __FUNCTION__);
1351 }
1352 script->context = addr_t(args[eRsContext]);
1353 }
1354 }
1355
CaptureSetGlobalVar(RuntimeHook * hook,ExecutionContext & context)1356 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook,
1357 ExecutionContext &context) {
1358 Log *log = GetLog(LLDBLog::Language);
1359
1360 enum {
1361 eRsContext,
1362 eRsScript,
1363 eRsId,
1364 eRsData,
1365 eRsLength,
1366 };
1367
1368 std::array<ArgItem, 5> args{{
1369 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1370 ArgItem{ArgItem::ePointer, 0}, // eRsScript
1371 ArgItem{ArgItem::eInt32, 0}, // eRsId
1372 ArgItem{ArgItem::ePointer, 0}, // eRsData
1373 ArgItem{ArgItem::eInt32, 0}, // eRsLength
1374 }};
1375
1376 bool success = GetArgs(context, &args[0], args.size());
1377 if (!success) {
1378 LLDB_LOGF(log, "%s - error reading the function parameters.", __FUNCTION__);
1379 return;
1380 }
1381
1382 if (log) {
1383 LLDB_LOGF(log,
1384 "%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
1385 ":%" PRIu64 "bytes.",
1386 __FUNCTION__, uint64_t(args[eRsContext]),
1387 uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
1388 uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
1389
1390 addr_t script_addr = addr_t(args[eRsScript]);
1391 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
1392 auto rsm = m_scriptMappings[script_addr];
1393 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
1394 auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
1395 LLDB_LOGF(log, "%s - Setting of '%s' within '%s' inferred",
1396 __FUNCTION__, rsg.m_name.AsCString(),
1397 rsm->m_module->GetFileSpec().GetFilename().AsCString());
1398 }
1399 }
1400 }
1401 }
1402
CaptureAllocationInit(RuntimeHook * hook,ExecutionContext & exe_ctx)1403 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook,
1404 ExecutionContext &exe_ctx) {
1405 Log *log = GetLog(LLDBLog::Language);
1406
1407 enum { eRsContext, eRsAlloc, eRsForceZero };
1408
1409 std::array<ArgItem, 3> args{{
1410 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1411 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1412 ArgItem{ArgItem::eBool, 0}, // eRsForceZero
1413 }};
1414
1415 bool success = GetArgs(exe_ctx, &args[0], args.size());
1416 if (!success) {
1417 LLDB_LOGF(log, "%s - error while reading the function parameters",
1418 __FUNCTION__);
1419 return;
1420 }
1421
1422 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
1423 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]),
1424 uint64_t(args[eRsForceZero]));
1425
1426 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
1427 if (alloc)
1428 alloc->context = uint64_t(args[eRsContext]);
1429 }
1430
CaptureAllocationDestroy(RuntimeHook * hook,ExecutionContext & exe_ctx)1431 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook,
1432 ExecutionContext &exe_ctx) {
1433 Log *log = GetLog(LLDBLog::Language);
1434
1435 enum {
1436 eRsContext,
1437 eRsAlloc,
1438 };
1439
1440 std::array<ArgItem, 2> args{{
1441 ArgItem{ArgItem::ePointer, 0}, // eRsContext
1442 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
1443 }};
1444
1445 bool success = GetArgs(exe_ctx, &args[0], args.size());
1446 if (!success) {
1447 LLDB_LOGF(log, "%s - error while reading the function parameters.",
1448 __FUNCTION__);
1449 return;
1450 }
1451
1452 LLDB_LOGF(log, "%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
1453 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
1454
1455 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
1456 auto &allocation_up = *iter; // get the unique pointer
1457 if (allocation_up->address.isValid() &&
1458 *allocation_up->address.get() == addr_t(args[eRsAlloc])) {
1459 m_allocations.erase(iter);
1460 LLDB_LOGF(log, "%s - deleted allocation entry.", __FUNCTION__);
1461 return;
1462 }
1463 }
1464
1465 LLDB_LOGF(log, "%s - couldn't find destroyed allocation.", __FUNCTION__);
1466 }
1467
CaptureScriptInit(RuntimeHook * hook,ExecutionContext & exe_ctx)1468 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook,
1469 ExecutionContext &exe_ctx) {
1470 Log *log = GetLog(LLDBLog::Language);
1471
1472 Status err;
1473 Process *process = exe_ctx.GetProcessPtr();
1474
1475 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
1476
1477 std::array<ArgItem, 4> args{
1478 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
1479 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
1480 bool success = GetArgs(exe_ctx, &args[0], args.size());
1481 if (!success) {
1482 LLDB_LOGF(log, "%s - error while reading the function parameters.",
1483 __FUNCTION__);
1484 return;
1485 }
1486
1487 std::string res_name;
1488 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err);
1489 if (err.Fail()) {
1490 LLDB_LOGF(log, "%s - error reading res_name: %s.", __FUNCTION__,
1491 err.AsCString());
1492 }
1493
1494 std::string cache_dir;
1495 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err);
1496 if (err.Fail()) {
1497 LLDB_LOGF(log, "%s - error reading cache_dir: %s.", __FUNCTION__,
1498 err.AsCString());
1499 }
1500
1501 LLDB_LOGF(log, "%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
1502 __FUNCTION__, uint64_t(args[eRsContext]), uint64_t(args[eRsScript]),
1503 res_name.c_str(), cache_dir.c_str());
1504
1505 if (res_name.size() > 0) {
1506 StreamString strm;
1507 strm.Printf("librs.%s.so", res_name.c_str());
1508
1509 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
1510 if (script) {
1511 script->type = ScriptDetails::eScriptC;
1512 script->cache_dir = cache_dir;
1513 script->res_name = res_name;
1514 script->shared_lib = std::string(strm.GetString());
1515 script->context = addr_t(args[eRsContext]);
1516 }
1517
1518 LLDB_LOGF(log,
1519 "%s - '%s' tagged with context 0x%" PRIx64
1520 " and script 0x%" PRIx64 ".",
1521 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
1522 uint64_t(args[eRsScript]));
1523 } else if (log) {
1524 LLDB_LOGF(log, "%s - resource name invalid, Script not tagged.",
1525 __FUNCTION__);
1526 }
1527 }
1528
LoadRuntimeHooks(lldb::ModuleSP module,ModuleKind kind)1529 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
1530 ModuleKind kind) {
1531 Log *log = GetLog(LLDBLog::Language);
1532
1533 if (!module) {
1534 return;
1535 }
1536
1537 Target &target = GetProcess()->GetTarget();
1538 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine();
1539
1540 if (machine != llvm::Triple::ArchType::x86 &&
1541 machine != llvm::Triple::ArchType::arm &&
1542 machine != llvm::Triple::ArchType::aarch64 &&
1543 machine != llvm::Triple::ArchType::mipsel &&
1544 machine != llvm::Triple::ArchType::mips64el &&
1545 machine != llvm::Triple::ArchType::x86_64) {
1546 LLDB_LOGF(log, "%s - unable to hook runtime functions.", __FUNCTION__);
1547 return;
1548 }
1549
1550 const uint32_t target_ptr_size =
1551 target.GetArchitecture().GetAddressByteSize();
1552
1553 std::array<bool, s_runtimeHookCount> hook_placed;
1554 hook_placed.fill(false);
1555
1556 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
1557 const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
1558 if (hook_defn->kind != kind) {
1559 continue;
1560 }
1561
1562 const char *symbol_name = (target_ptr_size == 4)
1563 ? hook_defn->symbol_name_m32
1564 : hook_defn->symbol_name_m64;
1565
1566 const Symbol *sym = module->FindFirstSymbolWithNameAndType(
1567 ConstString(symbol_name), eSymbolTypeCode);
1568 if (!sym) {
1569 if (log) {
1570 LLDB_LOGF(log, "%s - symbol '%s' related to the function %s not found",
1571 __FUNCTION__, symbol_name, hook_defn->name);
1572 }
1573 continue;
1574 }
1575
1576 addr_t addr = sym->GetLoadAddress(&target);
1577 if (addr == LLDB_INVALID_ADDRESS) {
1578 LLDB_LOGF(log,
1579 "%s - unable to resolve the address of hook function '%s' "
1580 "with symbol '%s'.",
1581 __FUNCTION__, hook_defn->name, symbol_name);
1582 continue;
1583 } else {
1584 LLDB_LOGF(log, "%s - function %s, address resolved at 0x%" PRIx64,
1585 __FUNCTION__, hook_defn->name, addr);
1586 }
1587
1588 RuntimeHookSP hook(new RuntimeHook());
1589 hook->address = addr;
1590 hook->defn = hook_defn;
1591 hook->bp_sp = target.CreateBreakpoint(addr, true, false);
1592 hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
1593 m_runtimeHooks[addr] = hook;
1594 if (log) {
1595 LLDB_LOGF(log,
1596 "%s - successfully hooked '%s' in '%s' version %" PRIu64
1597 " at 0x%" PRIx64 ".",
1598 __FUNCTION__, hook_defn->name,
1599 module->GetFileSpec().GetFilename().AsCString(),
1600 (uint64_t)hook_defn->version, (uint64_t)addr);
1601 }
1602 hook_placed[idx] = true;
1603 }
1604
1605 // log any unhooked function
1606 if (log) {
1607 for (size_t i = 0; i < hook_placed.size(); ++i) {
1608 if (hook_placed[i])
1609 continue;
1610 const HookDefn &hook_defn = s_runtimeHookDefns[i];
1611 if (hook_defn.kind != kind)
1612 continue;
1613 LLDB_LOGF(log, "%s - function %s was not hooked", __FUNCTION__,
1614 hook_defn.name);
1615 }
1616 }
1617 }
1618
FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)1619 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
1620 if (!rsmodule_sp)
1621 return;
1622
1623 Log *log = GetLog(LLDBLog::Language);
1624
1625 const ModuleSP module = rsmodule_sp->m_module;
1626 const FileSpec &file = module->GetPlatformFileSpec();
1627
1628 // Iterate over all of the scripts that we currently know of. Note: We cant
1629 // push or pop to m_scripts here or it may invalidate rs_script.
1630 for (const auto &rs_script : m_scripts) {
1631 // Extract the expected .so file path for this script.
1632 std::string shared_lib;
1633 if (!rs_script->shared_lib.get(shared_lib))
1634 continue;
1635
1636 // Only proceed if the module that has loaded corresponds to this script.
1637 if (file.GetFilename() != ConstString(shared_lib.c_str()))
1638 continue;
1639
1640 // Obtain the script address which we use as a key.
1641 lldb::addr_t script;
1642 if (!rs_script->script.get(script))
1643 continue;
1644
1645 // If we have a script mapping for the current script.
1646 if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
1647 // if the module we have stored is different to the one we just received.
1648 if (m_scriptMappings[script] != rsmodule_sp) {
1649 LLDB_LOGF(
1650 log,
1651 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
1652 __FUNCTION__, (uint64_t)script,
1653 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1654 }
1655 }
1656 // We don't have a script mapping for the current script.
1657 else {
1658 // Obtain the script resource name.
1659 std::string res_name;
1660 if (rs_script->res_name.get(res_name))
1661 // Set the modules resource name.
1662 rsmodule_sp->m_resname = res_name;
1663 // Add Script/Module pair to map.
1664 m_scriptMappings[script] = rsmodule_sp;
1665 LLDB_LOGF(log, "%s - script %" PRIx64 " associated with rsmodule '%s'.",
1666 __FUNCTION__, (uint64_t)script,
1667 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
1668 }
1669 }
1670 }
1671
1672 // Uses the Target API to evaluate the expression passed as a parameter to the
1673 // function The result of that expression is returned an unsigned 64 bit int,
1674 // via the result* parameter. Function returns true on success, and false on
1675 // failure
EvalRSExpression(const char * expr,StackFrame * frame_ptr,uint64_t * result)1676 bool RenderScriptRuntime::EvalRSExpression(const char *expr,
1677 StackFrame *frame_ptr,
1678 uint64_t *result) {
1679 Log *log = GetLog(LLDBLog::Language);
1680 LLDB_LOGF(log, "%s(%s)", __FUNCTION__, expr);
1681
1682 ValueObjectSP expr_result;
1683 EvaluateExpressionOptions options;
1684 options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
1685 // Perform the actual expression evaluation
1686 auto &target = GetProcess()->GetTarget();
1687 target.EvaluateExpression(expr, frame_ptr, expr_result, options);
1688
1689 if (!expr_result) {
1690 LLDB_LOGF(log, "%s: couldn't evaluate expression.", __FUNCTION__);
1691 return false;
1692 }
1693
1694 // The result of the expression is invalid
1695 if (!expr_result->GetError().Success()) {
1696 Status err = expr_result->GetError();
1697 // Expression returned is void, so this is actually a success
1698 if (err.GetError() == UserExpression::kNoResult) {
1699 LLDB_LOGF(log, "%s - expression returned void.", __FUNCTION__);
1700
1701 result = nullptr;
1702 return true;
1703 }
1704
1705 LLDB_LOGF(log, "%s - error evaluating expression result: %s", __FUNCTION__,
1706 err.AsCString());
1707 return false;
1708 }
1709
1710 bool success = false;
1711 // We only read the result as an uint32_t.
1712 *result = expr_result->GetValueAsUnsigned(0, &success);
1713
1714 if (!success) {
1715 LLDB_LOGF(log, "%s - couldn't convert expression result to uint32_t",
1716 __FUNCTION__);
1717 return false;
1718 }
1719
1720 return true;
1721 }
1722
1723 namespace {
1724 // Used to index expression format strings
1725 enum ExpressionStrings {
1726 eExprGetOffsetPtr = 0,
1727 eExprAllocGetType,
1728 eExprTypeDimX,
1729 eExprTypeDimY,
1730 eExprTypeDimZ,
1731 eExprTypeElemPtr,
1732 eExprElementType,
1733 eExprElementKind,
1734 eExprElementVec,
1735 eExprElementFieldCount,
1736 eExprSubelementsId,
1737 eExprSubelementsName,
1738 eExprSubelementsArrSize,
1739
1740 _eExprLast // keep at the end, implicit size of the array runtime_expressions
1741 };
1742
1743 // max length of an expanded expression
1744 const int jit_max_expr_size = 512;
1745
1746 // Retrieve the string to JIT for the given expression
1747 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); "
JITTemplate(ExpressionStrings e)1748 const char *JITTemplate(ExpressionStrings e) {
1749 // Format strings containing the expressions we may need to evaluate.
1750 static std::array<const char *, _eExprLast> runtime_expressions = {
1751 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
1752 "(int*)_"
1753 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
1754 "CubemapFace"
1755 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr
1756
1757 // Type* rsaAllocationGetType(Context*, Allocation*)
1758 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType
1759
1760 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the
1761 // data in the following way mHal.state.dimX; mHal.state.dimY;
1762 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement;
1763 // into typeData Need to specify 32 or 64 bit for uint_t since this
1764 // differs between devices
1765 JIT_TEMPLATE_CONTEXT
1766 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1767 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX
1768 JIT_TEMPLATE_CONTEXT
1769 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1770 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY
1771 JIT_TEMPLATE_CONTEXT
1772 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1773 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ
1774 JIT_TEMPLATE_CONTEXT
1775 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt"
1776 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr
1777
1778 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
1779 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
1780 // elemData
1781 JIT_TEMPLATE_CONTEXT
1782 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1783 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType
1784 JIT_TEMPLATE_CONTEXT
1785 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1786 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind
1787 JIT_TEMPLATE_CONTEXT
1788 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1789 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec
1790 JIT_TEMPLATE_CONTEXT
1791 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt"
1792 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount
1793
1794 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
1795 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize)
1796 // Needed for Allocations of structs to gather details about
1797 // fields/Subelements Element* of field
1798 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1799 "]; size_t arr_size[%" PRIu32 "];"
1800 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1801 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId
1802
1803 // Name of field
1804 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1805 "]; size_t arr_size[%" PRIu32 "];"
1806 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1807 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName
1808
1809 // Array size of field
1810 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32
1811 "]; size_t arr_size[%" PRIu32 "];"
1812 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64
1813 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize
1814
1815 return runtime_expressions[e];
1816 }
1817 } // end of the anonymous namespace
1818
1819 // JITs the RS runtime for the internal data pointer of an allocation. Is
1820 // passed x,y,z coordinates for the pointer to a specific element. Then sets
1821 // the data_ptr member in Allocation with the result. Returns true on success,
1822 // false otherwise
JITDataPointer(AllocationDetails * alloc,StackFrame * frame_ptr,uint32_t x,uint32_t y,uint32_t z)1823 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc,
1824 StackFrame *frame_ptr, uint32_t x,
1825 uint32_t y, uint32_t z) {
1826 Log *log = GetLog(LLDBLog::Language);
1827
1828 if (!alloc->address.isValid()) {
1829 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1830 return false;
1831 }
1832
1833 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
1834 char expr_buf[jit_max_expr_size];
1835
1836 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1837 *alloc->address.get(), x, y, z);
1838 if (written < 0) {
1839 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1840 return false;
1841 } else if (written >= jit_max_expr_size) {
1842 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1843 return false;
1844 }
1845
1846 uint64_t result = 0;
1847 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1848 return false;
1849
1850 addr_t data_ptr = static_cast<lldb::addr_t>(result);
1851 alloc->data_ptr = data_ptr;
1852
1853 return true;
1854 }
1855
1856 // JITs the RS runtime for the internal pointer to the RS Type of an allocation
1857 // Then sets the type_ptr member in Allocation with the result. Returns true on
1858 // success, false otherwise
JITTypePointer(AllocationDetails * alloc,StackFrame * frame_ptr)1859 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc,
1860 StackFrame *frame_ptr) {
1861 Log *log = GetLog(LLDBLog::Language);
1862
1863 if (!alloc->address.isValid() || !alloc->context.isValid()) {
1864 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1865 return false;
1866 }
1867
1868 const char *fmt_str = JITTemplate(eExprAllocGetType);
1869 char expr_buf[jit_max_expr_size];
1870
1871 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
1872 *alloc->context.get(), *alloc->address.get());
1873 if (written < 0) {
1874 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1875 return false;
1876 } else if (written >= jit_max_expr_size) {
1877 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1878 return false;
1879 }
1880
1881 uint64_t result = 0;
1882 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
1883 return false;
1884
1885 addr_t type_ptr = static_cast<lldb::addr_t>(result);
1886 alloc->type_ptr = type_ptr;
1887
1888 return true;
1889 }
1890
1891 // JITs the RS runtime for information about the dimensions and type of an
1892 // allocation Then sets dimension and element_ptr members in Allocation with
1893 // the result. Returns true on success, false otherwise
JITTypePacked(AllocationDetails * alloc,StackFrame * frame_ptr)1894 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc,
1895 StackFrame *frame_ptr) {
1896 Log *log = GetLog(LLDBLog::Language);
1897
1898 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) {
1899 LLDB_LOGF(log, "%s - Failed to find allocation details.", __FUNCTION__);
1900 return false;
1901 }
1902
1903 // Expression is different depending on if device is 32 or 64 bit
1904 uint32_t target_ptr_size =
1905 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
1906 const uint32_t bits = target_ptr_size == 4 ? 32 : 64;
1907
1908 // We want 4 elements from packed data
1909 const uint32_t num_exprs = 4;
1910 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1),
1911 "Invalid number of expressions");
1912
1913 char expr_bufs[num_exprs][jit_max_expr_size];
1914 uint64_t results[num_exprs];
1915
1916 for (uint32_t i = 0; i < num_exprs; ++i) {
1917 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
1918 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str,
1919 *alloc->context.get(), bits, *alloc->type_ptr.get());
1920 if (written < 0) {
1921 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1922 return false;
1923 } else if (written >= jit_max_expr_size) {
1924 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1925 return false;
1926 }
1927
1928 // Perform expression evaluation
1929 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1930 return false;
1931 }
1932
1933 // Assign results to allocation members
1934 AllocationDetails::Dimension dims;
1935 dims.dim_1 = static_cast<uint32_t>(results[0]);
1936 dims.dim_2 = static_cast<uint32_t>(results[1]);
1937 dims.dim_3 = static_cast<uint32_t>(results[2]);
1938 alloc->dimension = dims;
1939
1940 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]);
1941 alloc->element.element_ptr = element_ptr;
1942
1943 LLDB_LOGF(log,
1944 "%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
1945 ") Element*: 0x%" PRIx64 ".",
1946 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr);
1947
1948 return true;
1949 }
1950
1951 // JITs the RS runtime for information about the Element of an allocation Then
1952 // sets type, type_vec_size, field_count and type_kind members in Element with
1953 // the result. Returns true on success, false otherwise
JITElementPacked(Element & elem,const lldb::addr_t context,StackFrame * frame_ptr)1954 bool RenderScriptRuntime::JITElementPacked(Element &elem,
1955 const lldb::addr_t context,
1956 StackFrame *frame_ptr) {
1957 Log *log = GetLog(LLDBLog::Language);
1958
1959 if (!elem.element_ptr.isValid()) {
1960 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
1961 return false;
1962 }
1963
1964 // We want 4 elements from packed data
1965 const uint32_t num_exprs = 4;
1966 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1),
1967 "Invalid number of expressions");
1968
1969 char expr_bufs[num_exprs][jit_max_expr_size];
1970 uint64_t results[num_exprs];
1971
1972 for (uint32_t i = 0; i < num_exprs; i++) {
1973 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i));
1974 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context,
1975 *elem.element_ptr.get());
1976 if (written < 0) {
1977 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
1978 return false;
1979 } else if (written >= jit_max_expr_size) {
1980 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
1981 return false;
1982 }
1983
1984 // Perform expression evaluation
1985 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i]))
1986 return false;
1987 }
1988
1989 // Assign results to allocation members
1990 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
1991 elem.type_kind =
1992 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
1993 elem.type_vec_size = static_cast<uint32_t>(results[2]);
1994 elem.field_count = static_cast<uint32_t>(results[3]);
1995
1996 LLDB_LOGF(log,
1997 "%s - data type %" PRIu32 ", pixel type %" PRIu32
1998 ", vector size %" PRIu32 ", field count %" PRIu32,
1999 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
2000 *elem.type_vec_size.get(), *elem.field_count.get());
2001
2002 // If this Element has subelements then JIT rsaElementGetSubElements() for
2003 // details about its fields
2004 return !(*elem.field_count.get() > 0 &&
2005 !JITSubelements(elem, context, frame_ptr));
2006 }
2007
2008 // JITs the RS runtime for information about the subelements/fields of a struct
2009 // allocation This is necessary for infering the struct type so we can pretty
2010 // print the allocation's contents. Returns true on success, false otherwise
JITSubelements(Element & elem,const lldb::addr_t context,StackFrame * frame_ptr)2011 bool RenderScriptRuntime::JITSubelements(Element &elem,
2012 const lldb::addr_t context,
2013 StackFrame *frame_ptr) {
2014 Log *log = GetLog(LLDBLog::Language);
2015
2016 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
2017 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2018 return false;
2019 }
2020
2021 const short num_exprs = 3;
2022 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1),
2023 "Invalid number of expressions");
2024
2025 char expr_buffer[jit_max_expr_size];
2026 uint64_t results;
2027
2028 // Iterate over struct fields.
2029 const uint32_t field_count = *elem.field_count.get();
2030 for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
2031 Element child;
2032 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
2033 const char *fmt_str =
2034 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
2035 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str,
2036 context, field_count, field_count, field_count,
2037 *elem.element_ptr.get(), field_count, field_index);
2038 if (written < 0) {
2039 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2040 return false;
2041 } else if (written >= jit_max_expr_size) {
2042 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2043 return false;
2044 }
2045
2046 // Perform expression evaluation
2047 if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
2048 return false;
2049
2050 LLDB_LOGF(log, "%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
2051
2052 switch (expr_index) {
2053 case 0: // Element* of child
2054 child.element_ptr = static_cast<addr_t>(results);
2055 break;
2056 case 1: // Name of child
2057 {
2058 lldb::addr_t address = static_cast<addr_t>(results);
2059 Status err;
2060 std::string name;
2061 GetProcess()->ReadCStringFromMemory(address, name, err);
2062 if (!err.Fail())
2063 child.type_name = ConstString(name);
2064 else {
2065 LLDB_LOGF(log, "%s - warning: Couldn't read field name.",
2066 __FUNCTION__);
2067 }
2068 break;
2069 }
2070 case 2: // Array size of child
2071 child.array_size = static_cast<uint32_t>(results);
2072 break;
2073 }
2074 }
2075
2076 // We need to recursively JIT each Element field of the struct since
2077 // structs can be nested inside structs.
2078 if (!JITElementPacked(child, context, frame_ptr))
2079 return false;
2080 elem.children.push_back(child);
2081 }
2082
2083 // Try to infer the name of the struct type so we can pretty print the
2084 // allocation contents.
2085 FindStructTypeName(elem, frame_ptr);
2086
2087 return true;
2088 }
2089
2090 // JITs the RS runtime for the address of the last element in the allocation.
2091 // The `elem_size` parameter represents the size of a single element, including
2092 // padding. Which is needed as an offset from the last element pointer. Using
2093 // this offset minus the starting address we can calculate the size of the
2094 // allocation. Returns true on success, false otherwise
JITAllocationSize(AllocationDetails * alloc,StackFrame * frame_ptr)2095 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc,
2096 StackFrame *frame_ptr) {
2097 Log *log = GetLog(LLDBLog::Language);
2098
2099 if (!alloc->address.isValid() || !alloc->dimension.isValid() ||
2100 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) {
2101 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2102 return false;
2103 }
2104
2105 // Find dimensions
2106 uint32_t dim_x = alloc->dimension.get()->dim_1;
2107 uint32_t dim_y = alloc->dimension.get()->dim_2;
2108 uint32_t dim_z = alloc->dimension.get()->dim_3;
2109
2110 // Our plan of jitting the last element address doesn't seem to work for
2111 // struct Allocations` Instead try to infer the size ourselves without any
2112 // inter element padding.
2113 if (alloc->element.children.size() > 0) {
2114 if (dim_x == 0)
2115 dim_x = 1;
2116 if (dim_y == 0)
2117 dim_y = 1;
2118 if (dim_z == 0)
2119 dim_z = 1;
2120
2121 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get();
2122
2123 LLDB_LOGF(log, "%s - inferred size of struct allocation %" PRIu32 ".",
2124 __FUNCTION__, *alloc->size.get());
2125 return true;
2126 }
2127
2128 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2129 char expr_buf[jit_max_expr_size];
2130
2131 // Calculate last element
2132 dim_x = dim_x == 0 ? 0 : dim_x - 1;
2133 dim_y = dim_y == 0 ? 0 : dim_y - 1;
2134 dim_z = dim_z == 0 ? 0 : dim_z - 1;
2135
2136 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2137 *alloc->address.get(), dim_x, dim_y, dim_z);
2138 if (written < 0) {
2139 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2140 return false;
2141 } else if (written >= jit_max_expr_size) {
2142 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2143 return false;
2144 }
2145
2146 uint64_t result = 0;
2147 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2148 return false;
2149
2150 addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2151 // Find pointer to last element and add on size of an element
2152 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) +
2153 *alloc->element.datum_size.get();
2154
2155 return true;
2156 }
2157
2158 // JITs the RS runtime for information about the stride between rows in the
2159 // allocation. This is done to detect padding, since allocated memory is
2160 // 16-byte aligned. Returns true on success, false otherwise
JITAllocationStride(AllocationDetails * alloc,StackFrame * frame_ptr)2161 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc,
2162 StackFrame *frame_ptr) {
2163 Log *log = GetLog(LLDBLog::Language);
2164
2165 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) {
2166 LLDB_LOGF(log, "%s - failed to find allocation details.", __FUNCTION__);
2167 return false;
2168 }
2169
2170 const char *fmt_str = JITTemplate(eExprGetOffsetPtr);
2171 char expr_buf[jit_max_expr_size];
2172
2173 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str,
2174 *alloc->address.get(), 0, 1, 0);
2175 if (written < 0) {
2176 LLDB_LOGF(log, "%s - encoding error in snprintf().", __FUNCTION__);
2177 return false;
2178 } else if (written >= jit_max_expr_size) {
2179 LLDB_LOGF(log, "%s - expression too long.", __FUNCTION__);
2180 return false;
2181 }
2182
2183 uint64_t result = 0;
2184 if (!EvalRSExpression(expr_buf, frame_ptr, &result))
2185 return false;
2186
2187 addr_t mem_ptr = static_cast<lldb::addr_t>(result);
2188 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get());
2189
2190 return true;
2191 }
2192
2193 // JIT all the current runtime info regarding an allocation
RefreshAllocation(AllocationDetails * alloc,StackFrame * frame_ptr)2194 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc,
2195 StackFrame *frame_ptr) {
2196 // GetOffsetPointer()
2197 if (!JITDataPointer(alloc, frame_ptr))
2198 return false;
2199
2200 // rsaAllocationGetType()
2201 if (!JITTypePointer(alloc, frame_ptr))
2202 return false;
2203
2204 // rsaTypeGetNativeData()
2205 if (!JITTypePacked(alloc, frame_ptr))
2206 return false;
2207
2208 // rsaElementGetNativeData()
2209 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr))
2210 return false;
2211
2212 // Sets the datum_size member in Element
2213 SetElementSize(alloc->element);
2214
2215 // Use GetOffsetPointer() to infer size of the allocation
2216 return JITAllocationSize(alloc, frame_ptr);
2217 }
2218
2219 // Function attempts to set the type_name member of the parameterised Element
2220 // object. This string should be the name of the struct type the Element
2221 // represents. We need this string for pretty printing the Element to users.
FindStructTypeName(Element & elem,StackFrame * frame_ptr)2222 void RenderScriptRuntime::FindStructTypeName(Element &elem,
2223 StackFrame *frame_ptr) {
2224 Log *log = GetLog(LLDBLog::Language);
2225
2226 if (!elem.type_name.IsEmpty()) // Name already set
2227 return;
2228 else
2229 elem.type_name = Element::GetFallbackStructName(); // Default type name if
2230 // we don't succeed
2231
2232 // Find all the global variables from the script rs modules
2233 VariableList var_list;
2234 for (auto module_sp : m_rsmodules)
2235 module_sp->m_module->FindGlobalVariables(
2236 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list);
2237
2238 // Iterate over all the global variables looking for one with a matching type
2239 // to the Element. We make the assumption a match exists since there needs to
2240 // be a global variable to reflect the struct type back into java host code.
2241 for (const VariableSP &var_sp : var_list) {
2242 if (!var_sp)
2243 continue;
2244
2245 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
2246 if (!valobj_sp)
2247 continue;
2248
2249 // Find the number of variable fields.
2250 // If it has no fields, or more fields than our Element, then it can't be
2251 // the struct we're looking for. Don't check for equality since RS can add
2252 // extra struct members for padding.
2253 size_t num_children = valobj_sp->GetNumChildren();
2254 if (num_children > elem.children.size() || num_children == 0)
2255 continue;
2256
2257 // Iterate over children looking for members with matching field names. If
2258 // all the field names match, this is likely the struct we want.
2259 // TODO: This could be made more robust by also checking children data
2260 // sizes, or array size
2261 bool found = true;
2262 for (size_t i = 0; i < num_children; ++i) {
2263 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true);
2264 if (!child || (child->GetName() != elem.children[i].type_name)) {
2265 found = false;
2266 break;
2267 }
2268 }
2269
2270 // RS can add extra struct members for padding in the format
2271 // '#rs_padding_[0-9]+'
2272 if (found && num_children < elem.children.size()) {
2273 const uint32_t size_diff = elem.children.size() - num_children;
2274 LLDB_LOGF(log, "%s - %" PRIu32 " padding struct entries", __FUNCTION__,
2275 size_diff);
2276
2277 for (uint32_t i = 0; i < size_diff; ++i) {
2278 ConstString name = elem.children[num_children + i].type_name;
2279 if (strcmp(name.AsCString(), "#rs_padding") < 0)
2280 found = false;
2281 }
2282 }
2283
2284 // We've found a global variable with matching type
2285 if (found) {
2286 // Dereference since our Element type isn't a pointer.
2287 if (valobj_sp->IsPointerType()) {
2288 Status err;
2289 ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
2290 if (!err.Fail())
2291 valobj_sp = deref_valobj;
2292 }
2293
2294 // Save name of variable in Element.
2295 elem.type_name = valobj_sp->GetTypeName();
2296 LLDB_LOGF(log, "%s - element name set to %s", __FUNCTION__,
2297 elem.type_name.AsCString());
2298
2299 return;
2300 }
2301 }
2302 }
2303
2304 // Function sets the datum_size member of Element. Representing the size of a
2305 // single instance including padding. Assumes the relevant allocation
2306 // information has already been jitted.
SetElementSize(Element & elem)2307 void RenderScriptRuntime::SetElementSize(Element &elem) {
2308 Log *log = GetLog(LLDBLog::Language);
2309 const Element::DataType type = *elem.type.get();
2310 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
2311 "Invalid allocation type");
2312
2313 const uint32_t vec_size = *elem.type_vec_size.get();
2314 uint32_t data_size = 0;
2315 uint32_t padding = 0;
2316
2317 // Element is of a struct type, calculate size recursively.
2318 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
2319 for (Element &child : elem.children) {
2320 SetElementSize(child);
2321 const uint32_t array_size =
2322 child.array_size.isValid() ? *child.array_size.get() : 1;
2323 data_size += *child.datum_size.get() * array_size;
2324 }
2325 }
2326 // These have been packed already
2327 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
2328 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
2329 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
2330 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
2331 } else if (type < Element::RS_TYPE_ELEMENT) {
2332 data_size =
2333 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
2334 if (vec_size == 3)
2335 padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
2336 } else
2337 data_size =
2338 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
2339
2340 elem.padding = padding;
2341 elem.datum_size = data_size + padding;
2342 LLDB_LOGF(log, "%s - element size set to %" PRIu32, __FUNCTION__,
2343 data_size + padding);
2344 }
2345
2346 // Given an allocation, this function copies the allocation contents from
2347 // device into a buffer on the heap. Returning a shared pointer to the buffer
2348 // containing the data.
2349 std::shared_ptr<uint8_t>
GetAllocationData(AllocationDetails * alloc,StackFrame * frame_ptr)2350 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc,
2351 StackFrame *frame_ptr) {
2352 Log *log = GetLog(LLDBLog::Language);
2353
2354 // JIT all the allocation details
2355 if (alloc->ShouldRefresh()) {
2356 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info",
2357 __FUNCTION__);
2358
2359 if (!RefreshAllocation(alloc, frame_ptr)) {
2360 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2361 return nullptr;
2362 }
2363 }
2364
2365 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2366 alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2367 "Allocation information not available");
2368
2369 // Allocate a buffer to copy data into
2370 const uint32_t size = *alloc->size.get();
2371 std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
2372 if (!buffer) {
2373 LLDB_LOGF(log, "%s - couldn't allocate a %" PRIu32 " byte buffer",
2374 __FUNCTION__, size);
2375 return nullptr;
2376 }
2377
2378 // Read the inferior memory
2379 Status err;
2380 lldb::addr_t data_ptr = *alloc->data_ptr.get();
2381 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err);
2382 if (err.Fail()) {
2383 LLDB_LOGF(log,
2384 "%s - '%s' Couldn't read %" PRIu32
2385 " bytes of allocation data from 0x%" PRIx64,
2386 __FUNCTION__, err.AsCString(), size, data_ptr);
2387 return nullptr;
2388 }
2389
2390 return buffer;
2391 }
2392
2393 // Function copies data from a binary file into an allocation. There is a
2394 // header at the start of the file, FileHeader, before the data content itself.
2395 // Information from this header is used to display warnings to the user about
2396 // incompatibilities
LoadAllocation(Stream & strm,const uint32_t alloc_id,const char * path,StackFrame * frame_ptr)2397 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
2398 const char *path,
2399 StackFrame *frame_ptr) {
2400 Log *log = GetLog(LLDBLog::Language);
2401
2402 // Find allocation with the given id
2403 AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2404 if (!alloc)
2405 return false;
2406
2407 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
2408 *alloc->address.get());
2409
2410 // JIT all the allocation details
2411 if (alloc->ShouldRefresh()) {
2412 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2413 __FUNCTION__);
2414
2415 if (!RefreshAllocation(alloc, frame_ptr)) {
2416 LLDB_LOGF(log, "%s - couldn't JIT allocation details", __FUNCTION__);
2417 return false;
2418 }
2419 }
2420
2421 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2422 alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
2423 alloc->element.datum_size.isValid() &&
2424 "Allocation information not available");
2425
2426 // Check we can read from file
2427 FileSpec file(path);
2428 FileSystem::Instance().Resolve(file);
2429 if (!FileSystem::Instance().Exists(file)) {
2430 strm.Printf("Error: File %s does not exist", path);
2431 strm.EOL();
2432 return false;
2433 }
2434
2435 if (!FileSystem::Instance().Readable(file)) {
2436 strm.Printf("Error: File %s does not have readable permissions", path);
2437 strm.EOL();
2438 return false;
2439 }
2440
2441 // Read file into data buffer
2442 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath());
2443
2444 // Cast start of buffer to FileHeader and use pointer to read metadata
2445 const void *file_buf = data_sp->GetBytes();
2446 if (file_buf == nullptr ||
2447 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
2448 sizeof(AllocationDetails::ElementHeader))) {
2449 strm.Printf("Error: File %s does not contain enough data for header", path);
2450 strm.EOL();
2451 return false;
2452 }
2453 const AllocationDetails::FileHeader *file_header =
2454 static_cast<const AllocationDetails::FileHeader *>(file_buf);
2455
2456 // Check file starts with ascii characters "RSAD"
2457 if (memcmp(file_header->ident, "RSAD", 4)) {
2458 strm.Printf("Error: File doesn't contain identifier for an RS allocation "
2459 "dump. Are you sure this is the correct file?");
2460 strm.EOL();
2461 return false;
2462 }
2463
2464 // Look at the type of the root element in the header
2465 AllocationDetails::ElementHeader root_el_hdr;
2466 memcpy(&root_el_hdr,
2467 static_cast<const uint8_t *>(file_buf) +
2468 sizeof(AllocationDetails::FileHeader),
2469 sizeof(AllocationDetails::ElementHeader));
2470
2471 LLDB_LOGF(log, "%s - header type %" PRIu32 ", element size %" PRIu32,
2472 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size);
2473
2474 // Check if the target allocation and file both have the same number of bytes
2475 // for an Element
2476 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) {
2477 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
2478 " bytes, allocation %" PRIu32 " bytes",
2479 root_el_hdr.element_size, *alloc->element.datum_size.get());
2480 strm.EOL();
2481 }
2482
2483 // Check if the target allocation and file both have the same type
2484 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
2485 const uint32_t file_type = root_el_hdr.type;
2486
2487 if (file_type > Element::RS_TYPE_FONT) {
2488 strm.Printf("Warning: File has unknown allocation type");
2489 strm.EOL();
2490 } else if (alloc_type != file_type) {
2491 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString
2492 // array
2493 uint32_t target_type_name_idx = alloc_type;
2494 uint32_t head_type_name_idx = file_type;
2495 if (alloc_type >= Element::RS_TYPE_ELEMENT &&
2496 alloc_type <= Element::RS_TYPE_FONT)
2497 target_type_name_idx = static_cast<Element::DataType>(
2498 (alloc_type - Element::RS_TYPE_ELEMENT) +
2499 Element::RS_TYPE_MATRIX_2X2 + 1);
2500
2501 if (file_type >= Element::RS_TYPE_ELEMENT &&
2502 file_type <= Element::RS_TYPE_FONT)
2503 head_type_name_idx = static_cast<Element::DataType>(
2504 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
2505 1);
2506
2507 const char *head_type_name =
2508 AllocationDetails::RsDataTypeToString[head_type_name_idx][0];
2509 const char *target_type_name =
2510 AllocationDetails::RsDataTypeToString[target_type_name_idx][0];
2511
2512 strm.Printf(
2513 "Warning: Mismatched Types - file '%s' type, allocation '%s' type",
2514 head_type_name, target_type_name);
2515 strm.EOL();
2516 }
2517
2518 // Advance buffer past header
2519 file_buf = static_cast<const uint8_t *>(file_buf) + file_header->hdr_size;
2520
2521 // Calculate size of allocation data in file
2522 size_t size = data_sp->GetByteSize() - file_header->hdr_size;
2523
2524 // Check if the target allocation and file both have the same total data
2525 // size.
2526 const uint32_t alloc_size = *alloc->size.get();
2527 if (alloc_size != size) {
2528 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
2529 " bytes, allocation 0x%" PRIx32 " bytes",
2530 (uint64_t)size, alloc_size);
2531 strm.EOL();
2532 // Set length to copy to minimum
2533 size = alloc_size < size ? alloc_size : size;
2534 }
2535
2536 // Copy file data from our buffer into the target allocation.
2537 lldb::addr_t alloc_data = *alloc->data_ptr.get();
2538 Status err;
2539 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err);
2540 if (!err.Success() || written != size) {
2541 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString());
2542 strm.EOL();
2543 return false;
2544 }
2545
2546 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path,
2547 alloc->id);
2548 strm.EOL();
2549
2550 return true;
2551 }
2552
2553 // Function takes as parameters a byte buffer, which will eventually be written
2554 // to file as the element header, an offset into that buffer, and an Element
2555 // that will be saved into the buffer at the parametrised offset. Return value
2556 // is the new offset after writing the element into the buffer. Elements are
2557 // saved to the file as the ElementHeader struct followed by offsets to the
2558 // structs of all the element's children.
PopulateElementHeaders(const std::shared_ptr<uint8_t> header_buffer,size_t offset,const Element & elem)2559 size_t RenderScriptRuntime::PopulateElementHeaders(
2560 const std::shared_ptr<uint8_t> header_buffer, size_t offset,
2561 const Element &elem) {
2562 // File struct for an element header with all the relevant details copied
2563 // from elem. We assume members are valid already.
2564 AllocationDetails::ElementHeader elem_header;
2565 elem_header.type = *elem.type.get();
2566 elem_header.kind = *elem.type_kind.get();
2567 elem_header.element_size = *elem.datum_size.get();
2568 elem_header.vector_size = *elem.type_vec_size.get();
2569 elem_header.array_size =
2570 elem.array_size.isValid() ? *elem.array_size.get() : 0;
2571 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
2572
2573 // Copy struct into buffer and advance offset We assume that header_buffer
2574 // has been checked for nullptr before this method is called
2575 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
2576 offset += elem_header_size;
2577
2578 // Starting offset of child ElementHeader struct
2579 size_t child_offset =
2580 offset + ((elem.children.size() + 1) * sizeof(uint32_t));
2581 for (const RenderScriptRuntime::Element &child : elem.children) {
2582 // Recursively populate the buffer with the element header structs of
2583 // children. Then save the offsets where they were set after the parent
2584 // element header.
2585 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
2586 offset += sizeof(uint32_t);
2587
2588 child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
2589 }
2590
2591 // Zero indicates no more children
2592 memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
2593
2594 return child_offset;
2595 }
2596
2597 // Given an Element object this function returns the total size needed in the
2598 // file header to store the element's details. Taking into account the size of
2599 // the element header struct, plus the offsets to all the element's children.
2600 // Function is recursive so that the size of all ancestors is taken into
2601 // account.
CalculateElementHeaderSize(const Element & elem)2602 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
2603 // Offsets to children plus zero terminator
2604 size_t size = (elem.children.size() + 1) * sizeof(uint32_t);
2605 // Size of header struct with type details
2606 size += sizeof(AllocationDetails::ElementHeader);
2607
2608 // Calculate recursively for all descendants
2609 for (const Element &child : elem.children)
2610 size += CalculateElementHeaderSize(child);
2611
2612 return size;
2613 }
2614
2615 // Function copies allocation contents into a binary file. This file can then
2616 // be loaded later into a different allocation. There is a header, FileHeader,
2617 // before the allocation data containing meta-data.
SaveAllocation(Stream & strm,const uint32_t alloc_id,const char * path,StackFrame * frame_ptr)2618 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
2619 const char *path,
2620 StackFrame *frame_ptr) {
2621 Log *log = GetLog(LLDBLog::Language);
2622
2623 // Find allocation with the given id
2624 AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
2625 if (!alloc)
2626 return false;
2627
2628 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
2629 *alloc->address.get());
2630
2631 // JIT all the allocation details
2632 if (alloc->ShouldRefresh()) {
2633 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
2634 __FUNCTION__);
2635
2636 if (!RefreshAllocation(alloc, frame_ptr)) {
2637 LLDB_LOGF(log, "%s - couldn't JIT allocation details.", __FUNCTION__);
2638 return false;
2639 }
2640 }
2641
2642 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
2643 alloc->element.type_vec_size.isValid() &&
2644 alloc->element.datum_size.get() &&
2645 alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
2646 "Allocation information not available");
2647
2648 // Check we can create writable file
2649 FileSpec file_spec(path);
2650 FileSystem::Instance().Resolve(file_spec);
2651 auto file = FileSystem::Instance().Open(
2652 file_spec, File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate |
2653 File::eOpenOptionTruncate);
2654
2655 if (!file) {
2656 std::string error = llvm::toString(file.takeError());
2657 strm.Printf("Error: Failed to open '%s' for writing: %s", path,
2658 error.c_str());
2659 strm.EOL();
2660 return false;
2661 }
2662
2663 // Read allocation into buffer of heap memory
2664 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
2665 if (!buffer) {
2666 strm.Printf("Error: Couldn't read allocation data into buffer");
2667 strm.EOL();
2668 return false;
2669 }
2670
2671 // Create the file header
2672 AllocationDetails::FileHeader head;
2673 memcpy(head.ident, "RSAD", 4);
2674 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
2675 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
2676 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
2677
2678 const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
2679 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
2680 UINT16_MAX &&
2681 "Element header too large");
2682 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
2683 element_header_size);
2684
2685 // Write the file header
2686 size_t num_bytes = sizeof(AllocationDetails::FileHeader);
2687 LLDB_LOGF(log, "%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
2688 (uint64_t)num_bytes);
2689
2690 Status err = file.get()->Write(&head, num_bytes);
2691 if (!err.Success()) {
2692 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2693 strm.EOL();
2694 return false;
2695 }
2696
2697 // Create the headers describing the element type of the allocation.
2698 std::shared_ptr<uint8_t> element_header_buffer(
2699 new uint8_t[element_header_size]);
2700 if (element_header_buffer == nullptr) {
2701 strm.Printf("Internal Error: Couldn't allocate %" PRIu64
2702 " bytes on the heap",
2703 (uint64_t)element_header_size);
2704 strm.EOL();
2705 return false;
2706 }
2707
2708 PopulateElementHeaders(element_header_buffer, 0, alloc->element);
2709
2710 // Write headers for allocation element type to file
2711 num_bytes = element_header_size;
2712 LLDB_LOGF(log, "%s - writing element headers, 0x%" PRIx64 " bytes.",
2713 __FUNCTION__, (uint64_t)num_bytes);
2714
2715 err = file.get()->Write(element_header_buffer.get(), num_bytes);
2716 if (!err.Success()) {
2717 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2718 strm.EOL();
2719 return false;
2720 }
2721
2722 // Write allocation data to file
2723 num_bytes = static_cast<size_t>(*alloc->size.get());
2724 LLDB_LOGF(log, "%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
2725 (uint64_t)num_bytes);
2726
2727 err = file.get()->Write(buffer.get(), num_bytes);
2728 if (!err.Success()) {
2729 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path);
2730 strm.EOL();
2731 return false;
2732 }
2733
2734 strm.Printf("Allocation written to file '%s'", path);
2735 strm.EOL();
2736 return true;
2737 }
2738
LoadModule(const lldb::ModuleSP & module_sp)2739 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
2740 Log *log = GetLog(LLDBLog::Language);
2741
2742 if (module_sp) {
2743 for (const auto &rs_module : m_rsmodules) {
2744 if (rs_module->m_module == module_sp) {
2745 // Check if the user has enabled automatically breaking on all RS
2746 // kernels.
2747 if (m_breakAllKernels)
2748 BreakOnModuleKernels(rs_module);
2749
2750 return false;
2751 }
2752 }
2753 bool module_loaded = false;
2754 switch (GetModuleKind(module_sp)) {
2755 case eModuleKindKernelObj: {
2756 RSModuleDescriptorSP module_desc;
2757 module_desc = std::make_shared<RSModuleDescriptor>(module_sp);
2758 if (module_desc->ParseRSInfo()) {
2759 m_rsmodules.push_back(module_desc);
2760 module_desc->WarnIfVersionMismatch(GetProcess()
2761 ->GetTarget()
2762 .GetDebugger()
2763 .GetAsyncOutputStream()
2764 .get());
2765 module_loaded = true;
2766 }
2767 if (module_loaded) {
2768 FixupScriptDetails(module_desc);
2769 }
2770 break;
2771 }
2772 case eModuleKindDriver: {
2773 if (!m_libRSDriver) {
2774 m_libRSDriver = module_sp;
2775 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
2776 }
2777 break;
2778 }
2779 case eModuleKindImpl: {
2780 if (!m_libRSCpuRef) {
2781 m_libRSCpuRef = module_sp;
2782 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl);
2783 }
2784 break;
2785 }
2786 case eModuleKindLibRS: {
2787 if (!m_libRS) {
2788 m_libRS = module_sp;
2789 static ConstString gDbgPresentStr("gDebuggerPresent");
2790 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
2791 gDbgPresentStr, eSymbolTypeData);
2792 if (debug_present) {
2793 Status err;
2794 uint32_t flag = 0x00000001U;
2795 Target &target = GetProcess()->GetTarget();
2796 addr_t addr = debug_present->GetLoadAddress(&target);
2797 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err);
2798 if (err.Success()) {
2799 LLDB_LOGF(log, "%s - debugger present flag set on debugee.",
2800 __FUNCTION__);
2801
2802 m_debuggerPresentFlagged = true;
2803 } else if (log) {
2804 LLDB_LOGF(log, "%s - error writing debugger present flags '%s' ",
2805 __FUNCTION__, err.AsCString());
2806 }
2807 } else if (log) {
2808 LLDB_LOGF(
2809 log,
2810 "%s - error writing debugger present flags - symbol not found",
2811 __FUNCTION__);
2812 }
2813 }
2814 break;
2815 }
2816 default:
2817 break;
2818 }
2819 if (module_loaded)
2820 Update();
2821 return module_loaded;
2822 }
2823 return false;
2824 }
2825
Update()2826 void RenderScriptRuntime::Update() {
2827 if (m_rsmodules.size() > 0) {
2828 if (!m_initiated) {
2829 Initiate();
2830 }
2831 }
2832 }
2833
WarnIfVersionMismatch(lldb_private::Stream * s) const2834 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const {
2835 if (!s)
2836 return;
2837
2838 if (m_slang_version.empty() || m_bcc_version.empty()) {
2839 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug "
2840 "experience may be unreliable");
2841 s->EOL();
2842 } else if (m_slang_version != m_bcc_version) {
2843 s->Printf("WARNING: The debug info emitted by the slang frontend "
2844 "(llvm-rs-cc) used to build this module (%s) does not match the "
2845 "version of bcc used to generate the debug information (%s). "
2846 "This is an unsupported configuration and may result in a poor "
2847 "debugging experience; proceed with caution",
2848 m_slang_version.c_str(), m_bcc_version.c_str());
2849 s->EOL();
2850 }
2851 }
2852
ParsePragmaCount(llvm::StringRef * lines,size_t n_lines)2853 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines,
2854 size_t n_lines) {
2855 // Skip the pragma prototype line
2856 ++lines;
2857 for (; n_lines--; ++lines) {
2858 const auto kv_pair = lines->split(" - ");
2859 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str();
2860 }
2861 return true;
2862 }
2863
ParseExportReduceCount(llvm::StringRef * lines,size_t n_lines)2864 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines,
2865 size_t n_lines) {
2866 // The list of reduction kernels in the `.rs.info` symbol is of the form
2867 // "signature - accumulatordatasize - reduction_name - initializer_name -
2868 // accumulator_name - combiner_name - outconverter_name - halter_name" Where
2869 // a function is not explicitly named by the user, or is not generated by the
2870 // compiler, it is named "." so the dash separated list should always be 8
2871 // items long
2872 Log *log = GetLog(LLDBLog::Language);
2873 // Skip the exportReduceCount line
2874 ++lines;
2875 for (; n_lines--; ++lines) {
2876 llvm::SmallVector<llvm::StringRef, 8> spec;
2877 lines->split(spec, " - ");
2878 if (spec.size() != 8) {
2879 if (spec.size() < 8) {
2880 if (log)
2881 log->Error("Error parsing RenderScript reduction spec. wrong number "
2882 "of fields");
2883 return false;
2884 } else if (log)
2885 log->Warning("Extraneous members in reduction spec: '%s'",
2886 lines->str().c_str());
2887 }
2888
2889 const auto sig_s = spec[0];
2890 uint32_t sig;
2891 if (sig_s.getAsInteger(10, sig)) {
2892 if (log)
2893 log->Error("Error parsing Renderscript reduction spec: invalid kernel "
2894 "signature: '%s'",
2895 sig_s.str().c_str());
2896 return false;
2897 }
2898
2899 const auto accum_data_size_s = spec[1];
2900 uint32_t accum_data_size;
2901 if (accum_data_size_s.getAsInteger(10, accum_data_size)) {
2902 if (log)
2903 log->Error("Error parsing Renderscript reduction spec: invalid "
2904 "accumulator data size %s",
2905 accum_data_size_s.str().c_str());
2906 return false;
2907 }
2908
2909 LLDB_LOGF(log, "Found RenderScript reduction '%s'", spec[2].str().c_str());
2910
2911 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size,
2912 spec[2], spec[3], spec[4],
2913 spec[5], spec[6], spec[7]));
2914 }
2915 return true;
2916 }
2917
ParseVersionInfo(llvm::StringRef * lines,size_t n_lines)2918 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines,
2919 size_t n_lines) {
2920 // Skip the versionInfo line
2921 ++lines;
2922 for (; n_lines--; ++lines) {
2923 // We're only interested in bcc and slang versions, and ignore all other
2924 // versionInfo lines
2925 const auto kv_pair = lines->split(" - ");
2926 if (kv_pair.first == "slang")
2927 m_slang_version = kv_pair.second.str();
2928 else if (kv_pair.first == "bcc")
2929 m_bcc_version = kv_pair.second.str();
2930 }
2931 return true;
2932 }
2933
ParseExportForeachCount(llvm::StringRef * lines,size_t n_lines)2934 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines,
2935 size_t n_lines) {
2936 // Skip the exportForeachCount line
2937 ++lines;
2938 for (; n_lines--; ++lines) {
2939 uint32_t slot;
2940 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name"
2941 // pair per line
2942 const auto kv_pair = lines->split(" - ");
2943 if (kv_pair.first.getAsInteger(10, slot))
2944 return false;
2945 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot));
2946 }
2947 return true;
2948 }
2949
ParseExportVarCount(llvm::StringRef * lines,size_t n_lines)2950 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines,
2951 size_t n_lines) {
2952 // Skip the ExportVarCount line
2953 ++lines;
2954 for (; n_lines--; ++lines)
2955 m_globals.push_back(RSGlobalDescriptor(this, *lines));
2956 return true;
2957 }
2958
2959 // The .rs.info symbol in renderscript modules contains a string which needs to
2960 // be parsed. The string is basic and is parsed on a line by line basis.
ParseRSInfo()2961 bool RSModuleDescriptor::ParseRSInfo() {
2962 assert(m_module);
2963 Log *log = GetLog(LLDBLog::Language);
2964 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
2965 ConstString(".rs.info"), eSymbolTypeData);
2966 if (!info_sym)
2967 return false;
2968
2969 const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
2970 if (addr == LLDB_INVALID_ADDRESS)
2971 return false;
2972
2973 const addr_t size = info_sym->GetByteSize();
2974 const FileSpec fs = m_module->GetFileSpec();
2975
2976 auto buffer =
2977 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr);
2978 if (!buffer)
2979 return false;
2980
2981 // split rs.info. contents into lines
2982 llvm::SmallVector<llvm::StringRef, 128> info_lines;
2983 {
2984 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes());
2985 raw_rs_info.split(info_lines, '\n');
2986 LLDB_LOGF(log, "'.rs.info symbol for '%s':\n%s",
2987 m_module->GetFileSpec().GetPath().c_str(),
2988 raw_rs_info.str().c_str());
2989 }
2990
2991 enum {
2992 eExportVar,
2993 eExportForEach,
2994 eExportReduce,
2995 ePragma,
2996 eBuildChecksum,
2997 eObjectSlot,
2998 eVersionInfo,
2999 };
3000
3001 const auto rs_info_handler = [](llvm::StringRef name) -> int {
3002 return llvm::StringSwitch<int>(name)
3003 // The number of visible global variables in the script
3004 .Case("exportVarCount", eExportVar)
3005 // The number of RenderScrip `forEach` kernels __attribute__((kernel))
3006 .Case("exportForEachCount", eExportForEach)
3007 // The number of generalreductions: This marked in the script by
3008 // `#pragma reduce()`
3009 .Case("exportReduceCount", eExportReduce)
3010 // Total count of all RenderScript specific `#pragmas` used in the
3011 // script
3012 .Case("pragmaCount", ePragma)
3013 .Case("objectSlotCount", eObjectSlot)
3014 .Case("versionInfo", eVersionInfo)
3015 .Default(-1);
3016 };
3017
3018 // parse all text lines of .rs.info
3019 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
3020 const auto kv_pair = line->split(": ");
3021 const auto key = kv_pair.first;
3022 const auto val = kv_pair.second.trim();
3023
3024 const auto handler = rs_info_handler(key);
3025 if (handler == -1)
3026 continue;
3027 // getAsInteger returns `true` on an error condition - we're only
3028 // interested in numeric fields at the moment
3029 uint64_t n_lines;
3030 if (val.getAsInteger(10, n_lines)) {
3031 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}",
3032 line->str());
3033 continue;
3034 }
3035 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines)
3036 return false;
3037
3038 bool success = false;
3039 switch (handler) {
3040 case eExportVar:
3041 success = ParseExportVarCount(line, n_lines);
3042 break;
3043 case eExportForEach:
3044 success = ParseExportForeachCount(line, n_lines);
3045 break;
3046 case eExportReduce:
3047 success = ParseExportReduceCount(line, n_lines);
3048 break;
3049 case ePragma:
3050 success = ParsePragmaCount(line, n_lines);
3051 break;
3052 case eVersionInfo:
3053 success = ParseVersionInfo(line, n_lines);
3054 break;
3055 default: {
3056 LLDB_LOGF(log, "%s - skipping .rs.info field '%s'", __FUNCTION__,
3057 line->str().c_str());
3058 continue;
3059 }
3060 }
3061 if (!success)
3062 return false;
3063 line += n_lines;
3064 }
3065 return info_lines.size() > 0;
3066 }
3067
DumpStatus(Stream & strm) const3068 void RenderScriptRuntime::DumpStatus(Stream &strm) const {
3069 if (m_libRS) {
3070 strm.Printf("Runtime Library discovered.");
3071 strm.EOL();
3072 }
3073 if (m_libRSDriver) {
3074 strm.Printf("Runtime Driver discovered.");
3075 strm.EOL();
3076 }
3077 if (m_libRSCpuRef) {
3078 strm.Printf("CPU Reference Implementation discovered.");
3079 strm.EOL();
3080 }
3081
3082 if (m_runtimeHooks.size()) {
3083 strm.Printf("Runtime functions hooked:");
3084 strm.EOL();
3085 for (auto b : m_runtimeHooks) {
3086 strm.Indent(b.second->defn->name);
3087 strm.EOL();
3088 }
3089 } else {
3090 strm.Printf("Runtime is not hooked.");
3091 strm.EOL();
3092 }
3093 }
3094
DumpContexts(Stream & strm) const3095 void RenderScriptRuntime::DumpContexts(Stream &strm) const {
3096 strm.Printf("Inferred RenderScript Contexts:");
3097 strm.EOL();
3098 strm.IndentMore();
3099
3100 std::map<addr_t, uint64_t> contextReferences;
3101
3102 // Iterate over all of the currently discovered scripts. Note: We cant push
3103 // or pop from m_scripts inside this loop or it may invalidate script.
3104 for (const auto &script : m_scripts) {
3105 if (!script->context.isValid())
3106 continue;
3107 lldb::addr_t context = *script->context;
3108
3109 if (contextReferences.find(context) != contextReferences.end()) {
3110 contextReferences[context]++;
3111 } else {
3112 contextReferences[context] = 1;
3113 }
3114 }
3115
3116 for (const auto &cRef : contextReferences) {
3117 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
3118 cRef.first, cRef.second);
3119 strm.EOL();
3120 }
3121 strm.IndentLess();
3122 }
3123
DumpKernels(Stream & strm) const3124 void RenderScriptRuntime::DumpKernels(Stream &strm) const {
3125 strm.Printf("RenderScript Kernels:");
3126 strm.EOL();
3127 strm.IndentMore();
3128 for (const auto &module : m_rsmodules) {
3129 strm.Printf("Resource '%s':", module->m_resname.c_str());
3130 strm.EOL();
3131 for (const auto &kernel : module->m_kernels) {
3132 strm.Indent(kernel.m_name.GetStringRef());
3133 strm.EOL();
3134 }
3135 }
3136 strm.IndentLess();
3137 }
3138
3139 RenderScriptRuntime::AllocationDetails *
FindAllocByID(Stream & strm,const uint32_t alloc_id)3140 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
3141 AllocationDetails *alloc = nullptr;
3142
3143 // See if we can find allocation using id as an index;
3144 if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
3145 m_allocations[alloc_id - 1]->id == alloc_id) {
3146 alloc = m_allocations[alloc_id - 1].get();
3147 return alloc;
3148 }
3149
3150 // Fallback to searching
3151 for (const auto &a : m_allocations) {
3152 if (a->id == alloc_id) {
3153 alloc = a.get();
3154 break;
3155 }
3156 }
3157
3158 if (alloc == nullptr) {
3159 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
3160 alloc_id);
3161 strm.EOL();
3162 }
3163
3164 return alloc;
3165 }
3166
3167 // Prints the contents of an allocation to the output stream, which may be a
3168 // file
DumpAllocation(Stream & strm,StackFrame * frame_ptr,const uint32_t id)3169 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
3170 const uint32_t id) {
3171 Log *log = GetLog(LLDBLog::Language);
3172
3173 // Check we can find the desired allocation
3174 AllocationDetails *alloc = FindAllocByID(strm, id);
3175 if (!alloc)
3176 return false; // FindAllocByID() will print error message for us here
3177
3178 LLDB_LOGF(log, "%s - found allocation 0x%" PRIx64, __FUNCTION__,
3179 *alloc->address.get());
3180
3181 // Check we have information about the allocation, if not calculate it
3182 if (alloc->ShouldRefresh()) {
3183 LLDB_LOGF(log, "%s - allocation details not calculated yet, jitting info.",
3184 __FUNCTION__);
3185
3186 // JIT all the allocation information
3187 if (!RefreshAllocation(alloc, frame_ptr)) {
3188 strm.Printf("Error: Couldn't JIT allocation details");
3189 strm.EOL();
3190 return false;
3191 }
3192 }
3193
3194 // Establish format and size of each data element
3195 const uint32_t vec_size = *alloc->element.type_vec_size.get();
3196 const Element::DataType type = *alloc->element.type.get();
3197
3198 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
3199 "Invalid allocation type");
3200
3201 lldb::Format format;
3202 if (type >= Element::RS_TYPE_ELEMENT)
3203 format = eFormatHex;
3204 else
3205 format = vec_size == 1
3206 ? static_cast<lldb::Format>(
3207 AllocationDetails::RSTypeToFormat[type][eFormatSingle])
3208 : static_cast<lldb::Format>(
3209 AllocationDetails::RSTypeToFormat[type][eFormatVector]);
3210
3211 const uint32_t data_size = *alloc->element.datum_size.get();
3212
3213 LLDB_LOGF(log, "%s - element size %" PRIu32 " bytes, including padding",
3214 __FUNCTION__, data_size);
3215
3216 // Allocate a buffer to copy data into
3217 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
3218 if (!buffer) {
3219 strm.Printf("Error: Couldn't read allocation data");
3220 strm.EOL();
3221 return false;
3222 }
3223
3224 // Calculate stride between rows as there may be padding at end of rows since
3225 // allocated memory is 16-byte aligned
3226 if (!alloc->stride.isValid()) {
3227 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
3228 alloc->stride = 0;
3229 else if (!JITAllocationStride(alloc, frame_ptr)) {
3230 strm.Printf("Error: Couldn't calculate allocation row stride");
3231 strm.EOL();
3232 return false;
3233 }
3234 }
3235 const uint32_t stride = *alloc->stride.get();
3236 const uint32_t size = *alloc->size.get(); // Size of whole allocation
3237 const uint32_t padding =
3238 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
3239 LLDB_LOGF(log,
3240 "%s - stride %" PRIu32 " bytes, size %" PRIu32
3241 " bytes, padding %" PRIu32,
3242 __FUNCTION__, stride, size, padding);
3243
3244 // Find dimensions used to index loops, so need to be non-zero
3245 uint32_t dim_x = alloc->dimension.get()->dim_1;
3246 dim_x = dim_x == 0 ? 1 : dim_x;
3247
3248 uint32_t dim_y = alloc->dimension.get()->dim_2;
3249 dim_y = dim_y == 0 ? 1 : dim_y;
3250
3251 uint32_t dim_z = alloc->dimension.get()->dim_3;
3252 dim_z = dim_z == 0 ? 1 : dim_z;
3253
3254 // Use data extractor to format output
3255 const uint32_t target_ptr_size =
3256 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
3257 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
3258 target_ptr_size);
3259
3260 uint32_t offset = 0; // Offset in buffer to next element to be printed
3261 uint32_t prev_row = 0; // Offset to the start of the previous row
3262
3263 // Iterate over allocation dimensions, printing results to user
3264 strm.Printf("Data (X, Y, Z):");
3265 for (uint32_t z = 0; z < dim_z; ++z) {
3266 for (uint32_t y = 0; y < dim_y; ++y) {
3267 // Use stride to index start of next row.
3268 if (!(y == 0 && z == 0))
3269 offset = prev_row + stride;
3270 prev_row = offset;
3271
3272 // Print each element in the row individually
3273 for (uint32_t x = 0; x < dim_x; ++x) {
3274 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
3275 if ((type == Element::RS_TYPE_NONE) &&
3276 (alloc->element.children.size() > 0) &&
3277 (alloc->element.type_name != Element::GetFallbackStructName())) {
3278 // Here we are dumping an Element of struct type. This is done using
3279 // expression evaluation with the name of the struct type and pointer
3280 // to element. Don't print the name of the resulting expression,
3281 // since this will be '$[0-9]+'
3282 DumpValueObjectOptions expr_options;
3283 expr_options.SetHideName(true);
3284
3285 // Setup expression as dereferencing a pointer cast to element
3286 // address.
3287 char expr_char_buffer[jit_max_expr_size];
3288 int written =
3289 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
3290 alloc->element.type_name.AsCString(),
3291 *alloc->data_ptr.get() + offset);
3292
3293 if (written < 0 || written >= jit_max_expr_size) {
3294 LLDB_LOGF(log, "%s - error in snprintf().", __FUNCTION__);
3295 continue;
3296 }
3297
3298 // Evaluate expression
3299 ValueObjectSP expr_result;
3300 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
3301 frame_ptr, expr_result);
3302
3303 // Print the results to our stream.
3304 expr_result->Dump(strm, expr_options);
3305 } else {
3306 DumpDataExtractor(alloc_data, &strm, offset, format,
3307 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0,
3308 0);
3309 }
3310 offset += data_size;
3311 }
3312 }
3313 }
3314 strm.EOL();
3315
3316 return true;
3317 }
3318
3319 // Function recalculates all our cached information about allocations by
3320 // jitting the RS runtime regarding each allocation we know about. Returns true
3321 // if all allocations could be recomputed, false otherwise.
RecomputeAllAllocations(Stream & strm,StackFrame * frame_ptr)3322 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
3323 StackFrame *frame_ptr) {
3324 bool success = true;
3325 for (auto &alloc : m_allocations) {
3326 // JIT current allocation information
3327 if (!RefreshAllocation(alloc.get(), frame_ptr)) {
3328 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
3329 "\n",
3330 alloc->id);
3331 success = false;
3332 }
3333 }
3334
3335 if (success)
3336 strm.Printf("All allocations successfully recomputed");
3337 strm.EOL();
3338
3339 return success;
3340 }
3341
3342 // Prints information regarding currently loaded allocations. These details are
3343 // gathered by jitting the runtime, which has as latency. Index parameter
3344 // specifies a single allocation ID to print, or a zero value to print them all
ListAllocations(Stream & strm,StackFrame * frame_ptr,const uint32_t index)3345 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
3346 const uint32_t index) {
3347 strm.Printf("RenderScript Allocations:");
3348 strm.EOL();
3349 strm.IndentMore();
3350
3351 for (auto &alloc : m_allocations) {
3352 // index will only be zero if we want to print all allocations
3353 if (index != 0 && index != alloc->id)
3354 continue;
3355
3356 // JIT current allocation information
3357 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
3358 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
3359 alloc->id);
3360 strm.EOL();
3361 continue;
3362 }
3363
3364 strm.Printf("%" PRIu32 ":", alloc->id);
3365 strm.EOL();
3366 strm.IndentMore();
3367
3368 strm.Indent("Context: ");
3369 if (!alloc->context.isValid())
3370 strm.Printf("unknown\n");
3371 else
3372 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
3373
3374 strm.Indent("Address: ");
3375 if (!alloc->address.isValid())
3376 strm.Printf("unknown\n");
3377 else
3378 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
3379
3380 strm.Indent("Data pointer: ");
3381 if (!alloc->data_ptr.isValid())
3382 strm.Printf("unknown\n");
3383 else
3384 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
3385
3386 strm.Indent("Dimensions: ");
3387 if (!alloc->dimension.isValid())
3388 strm.Printf("unknown\n");
3389 else
3390 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
3391 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
3392 alloc->dimension.get()->dim_3);
3393
3394 strm.Indent("Data Type: ");
3395 if (!alloc->element.type.isValid() ||
3396 !alloc->element.type_vec_size.isValid())
3397 strm.Printf("unknown\n");
3398 else {
3399 const int vector_size = *alloc->element.type_vec_size.get();
3400 Element::DataType type = *alloc->element.type.get();
3401
3402 if (!alloc->element.type_name.IsEmpty())
3403 strm.Printf("%s\n", alloc->element.type_name.AsCString());
3404 else {
3405 // Enum value isn't monotonous, so doesn't always index
3406 // RsDataTypeToString array
3407 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
3408 type =
3409 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
3410 Element::RS_TYPE_MATRIX_2X2 + 1);
3411
3412 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
3413 sizeof(AllocationDetails::RsDataTypeToString[0])) ||
3414 vector_size > 4 || vector_size < 1)
3415 strm.Printf("invalid type\n");
3416 else
3417 strm.Printf(
3418 "%s\n",
3419 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
3420 [vector_size - 1]);
3421 }
3422 }
3423
3424 strm.Indent("Data Kind: ");
3425 if (!alloc->element.type_kind.isValid())
3426 strm.Printf("unknown\n");
3427 else {
3428 const Element::DataKind kind = *alloc->element.type_kind.get();
3429 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
3430 strm.Printf("invalid kind\n");
3431 else
3432 strm.Printf(
3433 "%s\n",
3434 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
3435 }
3436
3437 strm.EOL();
3438 strm.IndentLess();
3439 }
3440 strm.IndentLess();
3441 }
3442
3443 // Set breakpoints on every kernel found in RS module
BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)3444 void RenderScriptRuntime::BreakOnModuleKernels(
3445 const RSModuleDescriptorSP rsmodule_sp) {
3446 for (const auto &kernel : rsmodule_sp->m_kernels) {
3447 // Don't set breakpoint on 'root' kernel
3448 if (strcmp(kernel.m_name.AsCString(), "root") == 0)
3449 continue;
3450
3451 CreateKernelBreakpoint(kernel.m_name);
3452 }
3453 }
3454
3455 // Method is internally called by the 'kernel breakpoint all' command to enable
3456 // or disable breaking on all kernels. When do_break is true we want to enable
3457 // this functionality. When do_break is false we want to disable it.
SetBreakAllKernels(bool do_break,TargetSP target)3458 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
3459 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3460
3461 InitSearchFilter(target);
3462
3463 // Set breakpoints on all the kernels
3464 if (do_break && !m_breakAllKernels) {
3465 m_breakAllKernels = true;
3466
3467 for (const auto &module : m_rsmodules)
3468 BreakOnModuleKernels(module);
3469
3470 LLDB_LOGF(log,
3471 "%s(True) - breakpoints set on all currently loaded kernels.",
3472 __FUNCTION__);
3473 } else if (!do_break &&
3474 m_breakAllKernels) // Breakpoints won't be set on any new kernels.
3475 {
3476 m_breakAllKernels = false;
3477
3478 LLDB_LOGF(log, "%s(False) - breakpoints no longer automatically set.",
3479 __FUNCTION__);
3480 }
3481 }
3482
3483 // Given the name of a kernel this function creates a breakpoint using our own
3484 // breakpoint resolver, and returns the Breakpoint shared pointer.
3485 BreakpointSP
CreateKernelBreakpoint(ConstString name)3486 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) {
3487 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3488
3489 if (!m_filtersp) {
3490 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3491 __FUNCTION__);
3492 return nullptr;
3493 }
3494
3495 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
3496 Target &target = GetProcess()->GetTarget();
3497 BreakpointSP bp = target.CreateBreakpoint(
3498 m_filtersp, resolver_sp, false, false, false);
3499
3500 // Give RS breakpoints a specific name, so the user can manipulate them as a
3501 // group.
3502 Status err;
3503 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err);
3504 if (err.Fail() && log)
3505 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3506 err.AsCString());
3507
3508 return bp;
3509 }
3510
3511 BreakpointSP
CreateReductionBreakpoint(ConstString name,int kernel_types)3512 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name,
3513 int kernel_types) {
3514 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3515
3516 if (!m_filtersp) {
3517 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3518 __FUNCTION__);
3519 return nullptr;
3520 }
3521
3522 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver(
3523 nullptr, name, &m_rsmodules, kernel_types));
3524 Target &target = GetProcess()->GetTarget();
3525 BreakpointSP bp = target.CreateBreakpoint(
3526 m_filtersp, resolver_sp, false, false, false);
3527
3528 // Give RS breakpoints a specific name, so the user can manipulate them as a
3529 // group.
3530 Status err;
3531 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err);
3532 if (err.Fail() && log)
3533 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3534 err.AsCString());
3535
3536 return bp;
3537 }
3538
3539 // Given an expression for a variable this function tries to calculate the
3540 // variable's value. If this is possible it returns true and sets the uint64_t
3541 // parameter to the variables unsigned value. Otherwise function returns false.
GetFrameVarAsUnsigned(const StackFrameSP frame_sp,const char * var_name,uint64_t & val)3542 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
3543 const char *var_name,
3544 uint64_t &val) {
3545 Log *log = GetLog(LLDBLog::Language);
3546 Status err;
3547 VariableSP var_sp;
3548
3549 // Find variable in stack frame
3550 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
3551 var_name, eNoDynamicValues,
3552 StackFrame::eExpressionPathOptionCheckPtrVsMember |
3553 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
3554 var_sp, err));
3555 if (!err.Success()) {
3556 LLDB_LOGF(log, "%s - error, couldn't find '%s' in frame", __FUNCTION__,
3557 var_name);
3558 return false;
3559 }
3560
3561 // Find the uint32_t value for the variable
3562 bool success = false;
3563 val = value_sp->GetValueAsUnsigned(0, &success);
3564 if (!success) {
3565 LLDB_LOGF(log, "%s - error, couldn't parse '%s' as an uint32_t.",
3566 __FUNCTION__, var_name);
3567 return false;
3568 }
3569
3570 return true;
3571 }
3572
3573 // Function attempts to find the current coordinate of a kernel invocation by
3574 // investigating the values of frame variables in the .expand function. These
3575 // coordinates are returned via the coord array reference parameter. Returns
3576 // true if the coordinates could be found, and false otherwise.
GetKernelCoordinate(RSCoordinate & coord,Thread * thread_ptr)3577 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
3578 Thread *thread_ptr) {
3579 static const char *const x_expr = "rsIndex";
3580 static const char *const y_expr = "p->current.y";
3581 static const char *const z_expr = "p->current.z";
3582
3583 Log *log = GetLog(LLDBLog::Language);
3584
3585 if (!thread_ptr) {
3586 LLDB_LOGF(log, "%s - Error, No thread pointer", __FUNCTION__);
3587
3588 return false;
3589 }
3590
3591 // Walk the call stack looking for a function whose name has the suffix
3592 // '.expand' and contains the variables we're looking for.
3593 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
3594 if (!thread_ptr->SetSelectedFrameByIndex(i))
3595 continue;
3596
3597 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
3598 if (!frame_sp)
3599 continue;
3600
3601 // Find the function name
3602 const SymbolContext sym_ctx =
3603 frame_sp->GetSymbolContext(eSymbolContextFunction);
3604 const ConstString func_name = sym_ctx.GetFunctionName();
3605 if (!func_name)
3606 continue;
3607
3608 LLDB_LOGF(log, "%s - Inspecting function '%s'", __FUNCTION__,
3609 func_name.GetCString());
3610
3611 // Check if function name has .expand suffix
3612 if (!func_name.GetStringRef().endswith(".expand"))
3613 continue;
3614
3615 LLDB_LOGF(log, "%s - Found .expand function '%s'", __FUNCTION__,
3616 func_name.GetCString());
3617
3618 // Get values for variables in .expand frame that tell us the current
3619 // kernel invocation
3620 uint64_t x, y, z;
3621 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) &&
3622 GetFrameVarAsUnsigned(frame_sp, y_expr, y) &&
3623 GetFrameVarAsUnsigned(frame_sp, z_expr, z);
3624
3625 if (found) {
3626 // The RenderScript runtime uses uint32_t for these vars. If they're not
3627 // within bounds, our frame parsing is garbage
3628 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX);
3629 coord.x = (uint32_t)x;
3630 coord.y = (uint32_t)y;
3631 coord.z = (uint32_t)z;
3632 return true;
3633 }
3634 }
3635 return false;
3636 }
3637
3638 // Callback when a kernel breakpoint hits and we're looking for a specific
3639 // coordinate. Baton parameter contains a pointer to the target coordinate we
3640 // want to break on. Function then checks the .expand frame for the current
3641 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id
3642 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the
3643 // id for the BreakpointLocation which was hit, a single logical breakpoint can
3644 // have multiple addresses.
KernelBreakpointHit(void * baton,StoppointCallbackContext * ctx,user_id_t break_id,user_id_t break_loc_id)3645 bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
3646 StoppointCallbackContext *ctx,
3647 user_id_t break_id,
3648 user_id_t break_loc_id) {
3649 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3650
3651 assert(baton &&
3652 "Error: null baton in conditional kernel breakpoint callback");
3653
3654 // Coordinate we want to stop on
3655 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton);
3656
3657 LLDB_LOGF(log, "%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__,
3658 break_id, target_coord.x, target_coord.y, target_coord.z);
3659
3660 // Select current thread
3661 ExecutionContext context(ctx->exe_ctx_ref);
3662 Thread *thread_ptr = context.GetThreadPtr();
3663 assert(thread_ptr && "Null thread pointer");
3664
3665 // Find current kernel invocation from .expand frame variables
3666 RSCoordinate current_coord{};
3667 if (!GetKernelCoordinate(current_coord, thread_ptr)) {
3668 LLDB_LOGF(log, "%s - Error, couldn't select .expand stack frame",
3669 __FUNCTION__);
3670 return false;
3671 }
3672
3673 LLDB_LOGF(log, "%s - " FMT_COORD, __FUNCTION__, current_coord.x,
3674 current_coord.y, current_coord.z);
3675
3676 // Check if the current kernel invocation coordinate matches our target
3677 // coordinate
3678 if (target_coord == current_coord) {
3679 LLDB_LOGF(log, "%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x,
3680 current_coord.y, current_coord.z);
3681
3682 BreakpointSP breakpoint_sp =
3683 context.GetTargetPtr()->GetBreakpointByID(break_id);
3684 assert(breakpoint_sp != nullptr &&
3685 "Error: Couldn't find breakpoint matching break id for callback");
3686 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
3687 // should only be hit once.
3688 return true;
3689 }
3690
3691 // No match on coordinate
3692 return false;
3693 }
3694
SetConditional(BreakpointSP bp,Stream & messages,const RSCoordinate & coord)3695 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages,
3696 const RSCoordinate &coord) {
3697 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD,
3698 coord.x, coord.y, coord.z);
3699 messages.EOL();
3700
3701 // Allocate memory for the baton, and copy over coordinate
3702 RSCoordinate *baton = new RSCoordinate(coord);
3703
3704 // Create a callback that will be invoked every time the breakpoint is hit.
3705 // The baton object passed to the handler is the target coordinate we want to
3706 // break on.
3707 bp->SetCallback(KernelBreakpointHit, baton, true);
3708
3709 // Store a shared pointer to the baton, so the memory will eventually be
3710 // cleaned up after destruction
3711 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton);
3712 }
3713
3714 // Tries to set a breakpoint on the start of a kernel, resolved using the
3715 // kernel name. Argument 'coords', represents a three dimensional coordinate
3716 // which can be used to specify a single kernel instance to break on. If this
3717 // is set then we add a callback to the breakpoint.
PlaceBreakpointOnKernel(TargetSP target,Stream & messages,const char * name,const RSCoordinate * coord)3718 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target,
3719 Stream &messages,
3720 const char *name,
3721 const RSCoordinate *coord) {
3722 if (!name)
3723 return false;
3724
3725 InitSearchFilter(target);
3726
3727 ConstString kernel_name(name);
3728 BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
3729 if (!bp)
3730 return false;
3731
3732 // We have a conditional breakpoint on a specific coordinate
3733 if (coord)
3734 SetConditional(bp, messages, *coord);
3735
3736 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3737
3738 return true;
3739 }
3740
3741 BreakpointSP
CreateScriptGroupBreakpoint(ConstString name,bool stop_on_all)3742 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name,
3743 bool stop_on_all) {
3744 Log *log = GetLog(LLDBLog::Language | LLDBLog::Breakpoints);
3745
3746 if (!m_filtersp) {
3747 LLDB_LOGF(log, "%s - error, no breakpoint search filter set.",
3748 __FUNCTION__);
3749 return nullptr;
3750 }
3751
3752 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver(
3753 nullptr, name, m_scriptGroups, stop_on_all));
3754 Target &target = GetProcess()->GetTarget();
3755 BreakpointSP bp = target.CreateBreakpoint(
3756 m_filtersp, resolver_sp, false, false, false);
3757 // Give RS breakpoints a specific name, so the user can manipulate them as a
3758 // group.
3759 Status err;
3760 target.AddNameToBreakpoint(bp, name.GetCString(), err);
3761 if (err.Fail() && log)
3762 LLDB_LOGF(log, "%s - error setting break name, '%s'.", __FUNCTION__,
3763 err.AsCString());
3764 // ask the breakpoint to resolve itself
3765 bp->ResolveBreakpoint();
3766 return bp;
3767 }
3768
PlaceBreakpointOnScriptGroup(TargetSP target,Stream & strm,ConstString name,bool multi)3769 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target,
3770 Stream &strm,
3771 ConstString name,
3772 bool multi) {
3773 InitSearchFilter(target);
3774 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi);
3775 if (bp)
3776 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
3777 return bool(bp);
3778 }
3779
PlaceBreakpointOnReduction(TargetSP target,Stream & messages,const char * reduce_name,const RSCoordinate * coord,int kernel_types)3780 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target,
3781 Stream &messages,
3782 const char *reduce_name,
3783 const RSCoordinate *coord,
3784 int kernel_types) {
3785 if (!reduce_name)
3786 return false;
3787
3788 InitSearchFilter(target);
3789 BreakpointSP bp =
3790 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types);
3791 if (!bp)
3792 return false;
3793
3794 if (coord)
3795 SetConditional(bp, messages, *coord);
3796
3797 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false);
3798
3799 return true;
3800 }
3801
DumpModules(Stream & strm) const3802 void RenderScriptRuntime::DumpModules(Stream &strm) const {
3803 strm.Printf("RenderScript Modules:");
3804 strm.EOL();
3805 strm.IndentMore();
3806 for (const auto &module : m_rsmodules) {
3807 module->Dump(strm);
3808 }
3809 strm.IndentLess();
3810 }
3811
3812 RenderScriptRuntime::ScriptDetails *
LookUpScript(addr_t address,bool create)3813 RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
3814 for (const auto &s : m_scripts) {
3815 if (s->script.isValid())
3816 if (*s->script == address)
3817 return s.get();
3818 }
3819 if (create) {
3820 std::unique_ptr<ScriptDetails> s(new ScriptDetails);
3821 s->script = address;
3822 m_scripts.push_back(std::move(s));
3823 return m_scripts.back().get();
3824 }
3825 return nullptr;
3826 }
3827
3828 RenderScriptRuntime::AllocationDetails *
LookUpAllocation(addr_t address)3829 RenderScriptRuntime::LookUpAllocation(addr_t address) {
3830 for (const auto &a : m_allocations) {
3831 if (a->address.isValid())
3832 if (*a->address == address)
3833 return a.get();
3834 }
3835 return nullptr;
3836 }
3837
3838 RenderScriptRuntime::AllocationDetails *
CreateAllocation(addr_t address)3839 RenderScriptRuntime::CreateAllocation(addr_t address) {
3840 Log *log = GetLog(LLDBLog::Language);
3841
3842 // Remove any previous allocation which contains the same address
3843 auto it = m_allocations.begin();
3844 while (it != m_allocations.end()) {
3845 if (*((*it)->address) == address) {
3846 LLDB_LOGF(log, "%s - Removing allocation id: %d, address: 0x%" PRIx64,
3847 __FUNCTION__, (*it)->id, address);
3848
3849 it = m_allocations.erase(it);
3850 } else {
3851 it++;
3852 }
3853 }
3854
3855 std::unique_ptr<AllocationDetails> a(new AllocationDetails);
3856 a->address = address;
3857 m_allocations.push_back(std::move(a));
3858 return m_allocations.back().get();
3859 }
3860
ResolveKernelName(lldb::addr_t kernel_addr,ConstString & name)3861 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr,
3862 ConstString &name) {
3863 Log *log = GetLog(LLDBLog::Symbols);
3864
3865 Target &target = GetProcess()->GetTarget();
3866 Address resolved;
3867 // RenderScript module
3868 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) {
3869 LLDB_LOGF(log, "%s: unable to resolve 0x%" PRIx64 " to a loaded symbol",
3870 __FUNCTION__, kernel_addr);
3871 return false;
3872 }
3873
3874 Symbol *sym = resolved.CalculateSymbolContextSymbol();
3875 if (!sym)
3876 return false;
3877
3878 name = sym->GetName();
3879 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule()));
3880 LLDB_LOGF(log, "%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__,
3881 kernel_addr, name.GetCString());
3882 return true;
3883 }
3884
Dump(Stream & strm) const3885 void RSModuleDescriptor::Dump(Stream &strm) const {
3886 int indent = strm.GetIndentLevel();
3887
3888 strm.Indent();
3889 m_module->GetFileSpec().Dump(strm.AsRawOstream());
3890 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded."
3891 : "Debug info does not exist.");
3892 strm.EOL();
3893 strm.IndentMore();
3894
3895 strm.Indent();
3896 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
3897 strm.EOL();
3898 strm.IndentMore();
3899 for (const auto &global : m_globals) {
3900 global.Dump(strm);
3901 }
3902 strm.IndentLess();
3903
3904 strm.Indent();
3905 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
3906 strm.EOL();
3907 strm.IndentMore();
3908 for (const auto &kernel : m_kernels) {
3909 kernel.Dump(strm);
3910 }
3911 strm.IndentLess();
3912
3913 strm.Indent();
3914 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
3915 strm.EOL();
3916 strm.IndentMore();
3917 for (const auto &key_val : m_pragmas) {
3918 strm.Indent();
3919 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
3920 strm.EOL();
3921 }
3922 strm.IndentLess();
3923
3924 strm.Indent();
3925 strm.Printf("Reductions: %" PRIu64,
3926 static_cast<uint64_t>(m_reductions.size()));
3927 strm.EOL();
3928 strm.IndentMore();
3929 for (const auto &reduction : m_reductions) {
3930 reduction.Dump(strm);
3931 }
3932
3933 strm.SetIndentLevel(indent);
3934 }
3935
Dump(Stream & strm) const3936 void RSGlobalDescriptor::Dump(Stream &strm) const {
3937 strm.Indent(m_name.GetStringRef());
3938 VariableList var_list;
3939 m_module->m_module->FindGlobalVariables(m_name, CompilerDeclContext(), 1U,
3940 var_list);
3941 if (var_list.GetSize() == 1) {
3942 auto var = var_list.GetVariableAtIndex(0);
3943 auto type = var->GetType();
3944 if (type) {
3945 strm.Printf(" - ");
3946 type->DumpTypeName(&strm);
3947 } else {
3948 strm.Printf(" - Unknown Type");
3949 }
3950 } else {
3951 strm.Printf(" - variable identified, but not found in binary");
3952 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
3953 m_name, eSymbolTypeData);
3954 if (s) {
3955 strm.Printf(" (symbol exists) ");
3956 }
3957 }
3958
3959 strm.EOL();
3960 }
3961
Dump(Stream & strm) const3962 void RSKernelDescriptor::Dump(Stream &strm) const {
3963 strm.Indent(m_name.GetStringRef());
3964 strm.EOL();
3965 }
3966
Dump(lldb_private::Stream & stream) const3967 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const {
3968 stream.Indent(m_reduce_name.GetStringRef());
3969 stream.IndentMore();
3970 stream.EOL();
3971 stream.Indent();
3972 stream.Printf("accumulator: %s", m_accum_name.AsCString());
3973 stream.EOL();
3974 stream.Indent();
3975 stream.Printf("initializer: %s", m_init_name.AsCString());
3976 stream.EOL();
3977 stream.Indent();
3978 stream.Printf("combiner: %s", m_comb_name.AsCString());
3979 stream.EOL();
3980 stream.Indent();
3981 stream.Printf("outconverter: %s", m_outc_name.AsCString());
3982 stream.EOL();
3983 // XXX This is currently unspecified by RenderScript, and unused
3984 // stream.Indent();
3985 // stream.Printf("halter: '%s'", m_init_name.AsCString());
3986 // stream.EOL();
3987 stream.IndentLess();
3988 }
3989
3990 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
3991 public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter & interpreter)3992 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
3993 : CommandObjectParsed(
3994 interpreter, "renderscript module dump",
3995 "Dumps renderscript specific information for all modules.",
3996 "renderscript module dump",
3997 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
3998
3999 ~CommandObjectRenderScriptRuntimeModuleDump() override = default;
4000
DoExecute(Args & command,CommandReturnObject & result)4001 bool DoExecute(Args &command, CommandReturnObject &result) override {
4002 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4003 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4004 eLanguageTypeExtRenderScript));
4005 runtime->DumpModules(result.GetOutputStream());
4006 result.SetStatus(eReturnStatusSuccessFinishResult);
4007 return true;
4008 }
4009 };
4010
4011 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
4012 public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter & interpreter)4013 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
4014 : CommandObjectMultiword(interpreter, "renderscript module",
4015 "Commands that deal with RenderScript modules.",
4016 nullptr) {
4017 LoadSubCommand(
4018 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
4019 interpreter)));
4020 }
4021
4022 ~CommandObjectRenderScriptRuntimeModule() override = default;
4023 };
4024
4025 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
4026 public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter & interpreter)4027 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
4028 : CommandObjectParsed(
4029 interpreter, "renderscript kernel list",
4030 "Lists renderscript kernel names and associated script resources.",
4031 "renderscript kernel list",
4032 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
4033
4034 ~CommandObjectRenderScriptRuntimeKernelList() override = default;
4035
DoExecute(Args & command,CommandReturnObject & result)4036 bool DoExecute(Args &command, CommandReturnObject &result) override {
4037 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4038 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4039 eLanguageTypeExtRenderScript));
4040 runtime->DumpKernels(result.GetOutputStream());
4041 result.SetStatus(eReturnStatusSuccessFinishResult);
4042 return true;
4043 }
4044 };
4045
4046 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = {
4047 {LLDB_OPT_SET_1, false, "function-role", 't',
4048 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner,
4049 "Break on a comma separated set of reduction kernel types "
4050 "(accumulator,outcoverter,combiner,initializer"},
4051 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4052 nullptr, {}, 0, eArgTypeValue,
4053 "Set a breakpoint on a single invocation of the kernel with specified "
4054 "coordinate.\n"
4055 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4056 "integers representing kernel dimensions. "
4057 "Any unset dimensions will be defaulted to zero."}};
4058
4059 class CommandObjectRenderScriptRuntimeReductionBreakpointSet
4060 : public CommandObjectParsed {
4061 public:
CommandObjectRenderScriptRuntimeReductionBreakpointSet(CommandInterpreter & interpreter)4062 CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4063 CommandInterpreter &interpreter)
4064 : CommandObjectParsed(
4065 interpreter, "renderscript reduction breakpoint set",
4066 "Set a breakpoint on named RenderScript general reductions",
4067 "renderscript reduction breakpoint set <kernel_name> [-t "
4068 "<reduction_kernel_type,...>]",
4069 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4070 eCommandProcessMustBePaused),
4071 m_options() {
4072 CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain};
4073 m_arguments.push_back({name_arg});
4074 };
4075
4076 class CommandOptions : public Options {
4077 public:
CommandOptions()4078 CommandOptions() : Options() {}
4079
4080 ~CommandOptions() override = default;
4081
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4082 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4083 ExecutionContext *exe_ctx) override {
4084 Status err;
4085 StreamString err_str;
4086 const int short_option = m_getopt_table[option_idx].val;
4087 switch (short_option) {
4088 case 't':
4089 if (!ParseReductionTypes(option_arg, err_str))
4090 err.SetErrorStringWithFormat(
4091 "Unable to deduce reduction types for %s: %s",
4092 option_arg.str().c_str(), err_str.GetData());
4093 break;
4094 case 'c': {
4095 auto coord = RSCoordinate{};
4096 if (!ParseCoordinate(option_arg, coord))
4097 err.SetErrorStringWithFormat("unable to parse coordinate for %s",
4098 option_arg.str().c_str());
4099 else {
4100 m_have_coord = true;
4101 m_coord = coord;
4102 }
4103 break;
4104 }
4105 default:
4106 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option);
4107 }
4108 return err;
4109 }
4110
OptionParsingStarting(ExecutionContext * exe_ctx)4111 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4112 m_have_coord = false;
4113 }
4114
GetDefinitions()4115 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4116 return llvm::ArrayRef(g_renderscript_reduction_bp_set_options);
4117 }
4118
ParseReductionTypes(llvm::StringRef option_val,StreamString & err_str)4119 bool ParseReductionTypes(llvm::StringRef option_val,
4120 StreamString &err_str) {
4121 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone;
4122 const auto reduce_name_to_type = [](llvm::StringRef name) -> int {
4123 return llvm::StringSwitch<int>(name)
4124 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum)
4125 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit)
4126 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC)
4127 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb)
4128 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll)
4129 // Currently not exposed by the runtime
4130 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter)
4131 .Default(0);
4132 };
4133
4134 // Matching a comma separated list of known words is fairly
4135 // straightforward with PCRE, but we're using ERE, so we end up with a
4136 // little ugliness...
4137 RegularExpression match_type_list(
4138 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$"));
4139
4140 assert(match_type_list.IsValid());
4141
4142 if (!match_type_list.Execute(option_val)) {
4143 err_str.PutCString(
4144 "a comma-separated list of kernel types is required");
4145 return false;
4146 }
4147
4148 // splitting on commas is much easier with llvm::StringRef than regex
4149 llvm::SmallVector<llvm::StringRef, 5> type_names;
4150 llvm::StringRef(option_val).split(type_names, ',');
4151
4152 for (const auto &name : type_names) {
4153 const int type = reduce_name_to_type(name);
4154 if (!type) {
4155 err_str.Printf("unknown kernel type name %s", name.str().c_str());
4156 return false;
4157 }
4158 m_kernel_types |= type;
4159 }
4160
4161 return true;
4162 }
4163
4164 int m_kernel_types = RSReduceBreakpointResolver::eKernelTypeAll;
4165 llvm::StringRef m_reduce_name;
4166 RSCoordinate m_coord;
4167 bool m_have_coord = false;
4168 };
4169
GetOptions()4170 Options *GetOptions() override { return &m_options; }
4171
DoExecute(Args & command,CommandReturnObject & result)4172 bool DoExecute(Args &command, CommandReturnObject &result) override {
4173 const size_t argc = command.GetArgumentCount();
4174 if (argc < 1) {
4175 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, "
4176 "and an optional kernel type list",
4177 m_cmd_name.c_str());
4178 return false;
4179 }
4180
4181 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4182 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4183 eLanguageTypeExtRenderScript));
4184
4185 auto &outstream = result.GetOutputStream();
4186 auto name = command.GetArgumentAtIndex(0);
4187 auto &target = m_exe_ctx.GetTargetSP();
4188 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4189 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord,
4190 m_options.m_kernel_types)) {
4191 result.AppendError("Error: unable to place breakpoint on reduction");
4192 return false;
4193 }
4194 result.AppendMessage("Breakpoint(s) created");
4195 result.SetStatus(eReturnStatusSuccessFinishResult);
4196 return true;
4197 }
4198
4199 private:
4200 CommandOptions m_options;
4201 };
4202
4203 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = {
4204 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument,
4205 nullptr, {}, 0, eArgTypeValue,
4206 "Set a breakpoint on a single invocation of the kernel with specified "
4207 "coordinate.\n"
4208 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
4209 "integers representing kernel dimensions. "
4210 "Any unset dimensions will be defaulted to zero."}};
4211
4212 class CommandObjectRenderScriptRuntimeKernelBreakpointSet
4213 : public CommandObjectParsed {
4214 public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter & interpreter)4215 CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4216 CommandInterpreter &interpreter)
4217 : CommandObjectParsed(
4218 interpreter, "renderscript kernel breakpoint set",
4219 "Sets a breakpoint on a renderscript kernel.",
4220 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
4221 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4222 eCommandProcessMustBePaused),
4223 m_options() {
4224 CommandArgumentData name_arg{eArgTypeName, eArgRepeatPlain};
4225 m_arguments.push_back({name_arg});
4226 }
4227
4228 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
4229
GetOptions()4230 Options *GetOptions() override { return &m_options; }
4231
4232 class CommandOptions : public Options {
4233 public:
CommandOptions()4234 CommandOptions() : Options() {}
4235
4236 ~CommandOptions() override = default;
4237
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4238 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4239 ExecutionContext *exe_ctx) override {
4240 Status err;
4241 const int short_option = m_getopt_table[option_idx].val;
4242
4243 switch (short_option) {
4244 case 'c': {
4245 auto coord = RSCoordinate{};
4246 if (!ParseCoordinate(option_arg, coord))
4247 err.SetErrorStringWithFormat(
4248 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
4249 option_arg.str().c_str());
4250 else {
4251 m_have_coord = true;
4252 m_coord = coord;
4253 }
4254 break;
4255 }
4256 default:
4257 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4258 break;
4259 }
4260 return err;
4261 }
4262
OptionParsingStarting(ExecutionContext * exe_ctx)4263 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4264 m_have_coord = false;
4265 }
4266
GetDefinitions()4267 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4268 return llvm::ArrayRef(g_renderscript_kernel_bp_set_options);
4269 }
4270
4271 RSCoordinate m_coord;
4272 bool m_have_coord = false;
4273 };
4274
DoExecute(Args & command,CommandReturnObject & result)4275 bool DoExecute(Args &command, CommandReturnObject &result) override {
4276 const size_t argc = command.GetArgumentCount();
4277 if (argc < 1) {
4278 result.AppendErrorWithFormat(
4279 "'%s' takes 1 argument of kernel name, and an optional coordinate.",
4280 m_cmd_name.c_str());
4281 return false;
4282 }
4283
4284 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4285 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4286 eLanguageTypeExtRenderScript));
4287
4288 auto &outstream = result.GetOutputStream();
4289 auto &target = m_exe_ctx.GetTargetSP();
4290 auto name = command.GetArgumentAtIndex(0);
4291 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr;
4292 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) {
4293 result.AppendErrorWithFormat(
4294 "Error: unable to set breakpoint on kernel '%s'", name);
4295 return false;
4296 }
4297
4298 result.AppendMessage("Breakpoint(s) created");
4299 result.SetStatus(eReturnStatusSuccessFinishResult);
4300 return true;
4301 }
4302
4303 private:
4304 CommandOptions m_options;
4305 };
4306
4307 class CommandObjectRenderScriptRuntimeKernelBreakpointAll
4308 : public CommandObjectParsed {
4309 public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter & interpreter)4310 CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4311 CommandInterpreter &interpreter)
4312 : CommandObjectParsed(
4313 interpreter, "renderscript kernel breakpoint all",
4314 "Automatically sets a breakpoint on all renderscript kernels that "
4315 "are or will be loaded.\n"
4316 "Disabling option means breakpoints will no longer be set on any "
4317 "kernels loaded in the future, "
4318 "but does not remove currently set breakpoints.",
4319 "renderscript kernel breakpoint all <enable/disable>",
4320 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4321 eCommandProcessMustBePaused) {
4322 CommandArgumentData enable_arg{eArgTypeNone, eArgRepeatPlain};
4323 m_arguments.push_back({enable_arg});
4324 }
4325
4326 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
4327
DoExecute(Args & command,CommandReturnObject & result)4328 bool DoExecute(Args &command, CommandReturnObject &result) override {
4329 const size_t argc = command.GetArgumentCount();
4330 if (argc != 1) {
4331 result.AppendErrorWithFormat(
4332 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
4333 return false;
4334 }
4335
4336 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4337 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4338 eLanguageTypeExtRenderScript));
4339
4340 bool do_break = false;
4341 const char *argument = command.GetArgumentAtIndex(0);
4342 if (strcmp(argument, "enable") == 0) {
4343 do_break = true;
4344 result.AppendMessage("Breakpoints will be set on all kernels.");
4345 } else if (strcmp(argument, "disable") == 0) {
4346 do_break = false;
4347 result.AppendMessage("Breakpoints will not be set on any new kernels.");
4348 } else {
4349 result.AppendErrorWithFormat(
4350 "Argument must be either 'enable' or 'disable'");
4351 return false;
4352 }
4353
4354 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
4355
4356 result.SetStatus(eReturnStatusSuccessFinishResult);
4357 return true;
4358 }
4359 };
4360
4361 class CommandObjectRenderScriptRuntimeReductionBreakpoint
4362 : public CommandObjectMultiword {
4363 public:
CommandObjectRenderScriptRuntimeReductionBreakpoint(CommandInterpreter & interpreter)4364 CommandObjectRenderScriptRuntimeReductionBreakpoint(
4365 CommandInterpreter &interpreter)
4366 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint",
4367 "Commands that manipulate breakpoints on "
4368 "renderscript general reductions.",
4369 nullptr) {
4370 LoadSubCommand(
4371 "set", CommandObjectSP(
4372 new CommandObjectRenderScriptRuntimeReductionBreakpointSet(
4373 interpreter)));
4374 }
4375
4376 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default;
4377 };
4378
4379 class CommandObjectRenderScriptRuntimeKernelCoordinate
4380 : public CommandObjectParsed {
4381 public:
CommandObjectRenderScriptRuntimeKernelCoordinate(CommandInterpreter & interpreter)4382 CommandObjectRenderScriptRuntimeKernelCoordinate(
4383 CommandInterpreter &interpreter)
4384 : CommandObjectParsed(
4385 interpreter, "renderscript kernel coordinate",
4386 "Shows the (x,y,z) coordinate of the current kernel invocation.",
4387 "renderscript kernel coordinate",
4388 eCommandRequiresProcess | eCommandProcessMustBeLaunched |
4389 eCommandProcessMustBePaused) {}
4390
4391 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
4392
DoExecute(Args & command,CommandReturnObject & result)4393 bool DoExecute(Args &command, CommandReturnObject &result) override {
4394 RSCoordinate coord{};
4395 bool success = RenderScriptRuntime::GetKernelCoordinate(
4396 coord, m_exe_ctx.GetThreadPtr());
4397 Stream &stream = result.GetOutputStream();
4398
4399 if (success) {
4400 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z);
4401 stream.EOL();
4402 result.SetStatus(eReturnStatusSuccessFinishResult);
4403 } else {
4404 stream.Printf("Error: Coordinate could not be found.");
4405 stream.EOL();
4406 result.SetStatus(eReturnStatusFailed);
4407 }
4408 return true;
4409 }
4410 };
4411
4412 class CommandObjectRenderScriptRuntimeKernelBreakpoint
4413 : public CommandObjectMultiword {
4414 public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter & interpreter)4415 CommandObjectRenderScriptRuntimeKernelBreakpoint(
4416 CommandInterpreter &interpreter)
4417 : CommandObjectMultiword(
4418 interpreter, "renderscript kernel",
4419 "Commands that generate breakpoints on renderscript kernels.",
4420 nullptr) {
4421 LoadSubCommand(
4422 "set",
4423 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
4424 interpreter)));
4425 LoadSubCommand(
4426 "all",
4427 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
4428 interpreter)));
4429 }
4430
4431 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
4432 };
4433
4434 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
4435 public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter & interpreter)4436 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
4437 : CommandObjectMultiword(interpreter, "renderscript kernel",
4438 "Commands that deal with RenderScript kernels.",
4439 nullptr) {
4440 LoadSubCommand(
4441 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
4442 interpreter)));
4443 LoadSubCommand(
4444 "coordinate",
4445 CommandObjectSP(
4446 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
4447 LoadSubCommand(
4448 "breakpoint",
4449 CommandObjectSP(
4450 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
4451 }
4452
4453 ~CommandObjectRenderScriptRuntimeKernel() override = default;
4454 };
4455
4456 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
4457 public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter & interpreter)4458 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
4459 : CommandObjectParsed(interpreter, "renderscript context dump",
4460 "Dumps renderscript context information.",
4461 "renderscript context dump",
4462 eCommandRequiresProcess |
4463 eCommandProcessMustBeLaunched) {}
4464
4465 ~CommandObjectRenderScriptRuntimeContextDump() override = default;
4466
DoExecute(Args & command,CommandReturnObject & result)4467 bool DoExecute(Args &command, CommandReturnObject &result) override {
4468 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4469 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4470 eLanguageTypeExtRenderScript));
4471 runtime->DumpContexts(result.GetOutputStream());
4472 result.SetStatus(eReturnStatusSuccessFinishResult);
4473 return true;
4474 }
4475 };
4476
4477 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = {
4478 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
4479 nullptr, {}, 0, eArgTypeFilename,
4480 "Print results to specified file instead of command line."}};
4481
4482 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
4483 public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter & interpreter)4484 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
4485 : CommandObjectMultiword(interpreter, "renderscript context",
4486 "Commands that deal with RenderScript contexts.",
4487 nullptr) {
4488 LoadSubCommand(
4489 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
4490 interpreter)));
4491 }
4492
4493 ~CommandObjectRenderScriptRuntimeContext() override = default;
4494 };
4495
4496 class CommandObjectRenderScriptRuntimeAllocationDump
4497 : public CommandObjectParsed {
4498 public:
CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter & interpreter)4499 CommandObjectRenderScriptRuntimeAllocationDump(
4500 CommandInterpreter &interpreter)
4501 : CommandObjectParsed(interpreter, "renderscript allocation dump",
4502 "Displays the contents of a particular allocation",
4503 "renderscript allocation dump <ID>",
4504 eCommandRequiresProcess |
4505 eCommandProcessMustBeLaunched),
4506 m_options() {
4507 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4508 m_arguments.push_back({id_arg});
4509 }
4510
4511 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
4512
GetOptions()4513 Options *GetOptions() override { return &m_options; }
4514
4515 class CommandOptions : public Options {
4516 public:
CommandOptions()4517 CommandOptions() : Options() {}
4518
4519 ~CommandOptions() override = default;
4520
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4521 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4522 ExecutionContext *exe_ctx) override {
4523 Status err;
4524 const int short_option = m_getopt_table[option_idx].val;
4525
4526 switch (short_option) {
4527 case 'f':
4528 m_outfile.SetFile(option_arg, FileSpec::Style::native);
4529 FileSystem::Instance().Resolve(m_outfile);
4530 if (FileSystem::Instance().Exists(m_outfile)) {
4531 m_outfile.Clear();
4532 err.SetErrorStringWithFormat("file already exists: '%s'",
4533 option_arg.str().c_str());
4534 }
4535 break;
4536 default:
4537 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4538 break;
4539 }
4540 return err;
4541 }
4542
OptionParsingStarting(ExecutionContext * exe_ctx)4543 void OptionParsingStarting(ExecutionContext *exe_ctx) override {
4544 m_outfile.Clear();
4545 }
4546
GetDefinitions()4547 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4548 return llvm::ArrayRef(g_renderscript_runtime_alloc_dump_options);
4549 }
4550
4551 FileSpec m_outfile;
4552 };
4553
DoExecute(Args & command,CommandReturnObject & result)4554 bool DoExecute(Args &command, CommandReturnObject &result) override {
4555 const size_t argc = command.GetArgumentCount();
4556 if (argc < 1) {
4557 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
4558 "As well as an optional -f argument",
4559 m_cmd_name.c_str());
4560 return false;
4561 }
4562
4563 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4564 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4565 eLanguageTypeExtRenderScript));
4566
4567 const char *id_cstr = command.GetArgumentAtIndex(0);
4568 uint32_t id;
4569 if (!llvm::to_integer(id_cstr, id)) {
4570 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4571 id_cstr);
4572 return false;
4573 }
4574
4575 Stream *output_stream_p = nullptr;
4576 std::unique_ptr<Stream> output_stream_storage;
4577
4578 const FileSpec &outfile_spec =
4579 m_options.m_outfile; // Dump allocation to file instead
4580 if (outfile_spec) {
4581 // Open output file
4582 std::string path = outfile_spec.GetPath();
4583 auto file = FileSystem::Instance().Open(outfile_spec,
4584 File::eOpenOptionWriteOnly |
4585 File::eOpenOptionCanCreate);
4586 if (file) {
4587 output_stream_storage =
4588 std::make_unique<StreamFile>(std::move(file.get()));
4589 output_stream_p = output_stream_storage.get();
4590 result.GetOutputStream().Printf("Results written to '%s'",
4591 path.c_str());
4592 result.GetOutputStream().EOL();
4593 } else {
4594 std::string error = llvm::toString(file.takeError());
4595 result.AppendErrorWithFormat("Couldn't open file '%s': %s",
4596 path.c_str(), error.c_str());
4597 return false;
4598 }
4599 } else
4600 output_stream_p = &result.GetOutputStream();
4601
4602 assert(output_stream_p != nullptr);
4603 bool dumped =
4604 runtime->DumpAllocation(*output_stream_p, m_exe_ctx.GetFramePtr(), id);
4605
4606 if (dumped)
4607 result.SetStatus(eReturnStatusSuccessFinishResult);
4608 else
4609 result.SetStatus(eReturnStatusFailed);
4610
4611 return true;
4612 }
4613
4614 private:
4615 CommandOptions m_options;
4616 };
4617
4618 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = {
4619 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr,
4620 {}, 0, eArgTypeIndex,
4621 "Only show details of a single allocation with specified id."}};
4622
4623 class CommandObjectRenderScriptRuntimeAllocationList
4624 : public CommandObjectParsed {
4625 public:
CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter & interpreter)4626 CommandObjectRenderScriptRuntimeAllocationList(
4627 CommandInterpreter &interpreter)
4628 : CommandObjectParsed(
4629 interpreter, "renderscript allocation list",
4630 "List renderscript allocations and their information.",
4631 "renderscript allocation list",
4632 eCommandRequiresProcess | eCommandProcessMustBeLaunched),
4633 m_options() {}
4634
4635 ~CommandObjectRenderScriptRuntimeAllocationList() override = default;
4636
GetOptions()4637 Options *GetOptions() override { return &m_options; }
4638
4639 class CommandOptions : public Options {
4640 public:
CommandOptions()4641 CommandOptions() : Options() {}
4642
4643 ~CommandOptions() override = default;
4644
SetOptionValue(uint32_t option_idx,llvm::StringRef option_arg,ExecutionContext * exe_ctx)4645 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg,
4646 ExecutionContext *exe_ctx) override {
4647 Status err;
4648 const int short_option = m_getopt_table[option_idx].val;
4649
4650 switch (short_option) {
4651 case 'i':
4652 if (option_arg.getAsInteger(0, m_id))
4653 err.SetErrorStringWithFormat("invalid integer value for option '%c'",
4654 short_option);
4655 break;
4656 default:
4657 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
4658 break;
4659 }
4660 return err;
4661 }
4662
OptionParsingStarting(ExecutionContext * exe_ctx)4663 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; }
4664
GetDefinitions()4665 llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
4666 return llvm::ArrayRef(g_renderscript_runtime_alloc_list_options);
4667 }
4668
4669 uint32_t m_id = 0;
4670 };
4671
DoExecute(Args & command,CommandReturnObject & result)4672 bool DoExecute(Args &command, CommandReturnObject &result) override {
4673 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4674 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4675 eLanguageTypeExtRenderScript));
4676 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
4677 m_options.m_id);
4678 result.SetStatus(eReturnStatusSuccessFinishResult);
4679 return true;
4680 }
4681
4682 private:
4683 CommandOptions m_options;
4684 };
4685
4686 class CommandObjectRenderScriptRuntimeAllocationLoad
4687 : public CommandObjectParsed {
4688 public:
CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter & interpreter)4689 CommandObjectRenderScriptRuntimeAllocationLoad(
4690 CommandInterpreter &interpreter)
4691 : CommandObjectParsed(
4692 interpreter, "renderscript allocation load",
4693 "Loads renderscript allocation contents from a file.",
4694 "renderscript allocation load <ID> <filename>",
4695 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
4696 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4697 CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain};
4698 m_arguments.push_back({id_arg});
4699 m_arguments.push_back({name_arg});
4700 }
4701
4702 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
4703
DoExecute(Args & command,CommandReturnObject & result)4704 bool DoExecute(Args &command, CommandReturnObject &result) override {
4705 const size_t argc = command.GetArgumentCount();
4706 if (argc != 2) {
4707 result.AppendErrorWithFormat(
4708 "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4709 m_cmd_name.c_str());
4710 return false;
4711 }
4712
4713 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4714 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4715 eLanguageTypeExtRenderScript));
4716
4717 const char *id_cstr = command.GetArgumentAtIndex(0);
4718 uint32_t id;
4719 if (!llvm::to_integer(id_cstr, id)) {
4720 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4721 id_cstr);
4722 return false;
4723 }
4724
4725 const char *path = command.GetArgumentAtIndex(1);
4726 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path,
4727 m_exe_ctx.GetFramePtr());
4728
4729 if (loaded)
4730 result.SetStatus(eReturnStatusSuccessFinishResult);
4731 else
4732 result.SetStatus(eReturnStatusFailed);
4733
4734 return true;
4735 }
4736 };
4737
4738 class CommandObjectRenderScriptRuntimeAllocationSave
4739 : public CommandObjectParsed {
4740 public:
CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter & interpreter)4741 CommandObjectRenderScriptRuntimeAllocationSave(
4742 CommandInterpreter &interpreter)
4743 : CommandObjectParsed(interpreter, "renderscript allocation save",
4744 "Write renderscript allocation contents to a file.",
4745 "renderscript allocation save <ID> <filename>",
4746 eCommandRequiresProcess |
4747 eCommandProcessMustBeLaunched) {
4748 CommandArgumentData id_arg{eArgTypeUnsignedInteger, eArgRepeatPlain};
4749 CommandArgumentData name_arg{eArgTypeFilename, eArgRepeatPlain};
4750 m_arguments.push_back({id_arg});
4751 m_arguments.push_back({name_arg});
4752 }
4753
4754 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
4755
DoExecute(Args & command,CommandReturnObject & result)4756 bool DoExecute(Args &command, CommandReturnObject &result) override {
4757 const size_t argc = command.GetArgumentCount();
4758 if (argc != 2) {
4759 result.AppendErrorWithFormat(
4760 "'%s' takes 2 arguments, an allocation ID and filename to read from.",
4761 m_cmd_name.c_str());
4762 return false;
4763 }
4764
4765 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4766 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4767 eLanguageTypeExtRenderScript));
4768
4769 const char *id_cstr = command.GetArgumentAtIndex(0);
4770 uint32_t id;
4771 if (!llvm::to_integer(id_cstr, id)) {
4772 result.AppendErrorWithFormat("invalid allocation id argument '%s'",
4773 id_cstr);
4774 return false;
4775 }
4776
4777 const char *path = command.GetArgumentAtIndex(1);
4778 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path,
4779 m_exe_ctx.GetFramePtr());
4780
4781 if (saved)
4782 result.SetStatus(eReturnStatusSuccessFinishResult);
4783 else
4784 result.SetStatus(eReturnStatusFailed);
4785
4786 return true;
4787 }
4788 };
4789
4790 class CommandObjectRenderScriptRuntimeAllocationRefresh
4791 : public CommandObjectParsed {
4792 public:
CommandObjectRenderScriptRuntimeAllocationRefresh(CommandInterpreter & interpreter)4793 CommandObjectRenderScriptRuntimeAllocationRefresh(
4794 CommandInterpreter &interpreter)
4795 : CommandObjectParsed(interpreter, "renderscript allocation refresh",
4796 "Recomputes the details of all allocations.",
4797 "renderscript allocation refresh",
4798 eCommandRequiresProcess |
4799 eCommandProcessMustBeLaunched) {}
4800
4801 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
4802
DoExecute(Args & command,CommandReturnObject & result)4803 bool DoExecute(Args &command, CommandReturnObject &result) override {
4804 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
4805 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4806 eLanguageTypeExtRenderScript));
4807
4808 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
4809 m_exe_ctx.GetFramePtr());
4810
4811 if (success) {
4812 result.SetStatus(eReturnStatusSuccessFinishResult);
4813 return true;
4814 } else {
4815 result.SetStatus(eReturnStatusFailed);
4816 return false;
4817 }
4818 }
4819 };
4820
4821 class CommandObjectRenderScriptRuntimeAllocation
4822 : public CommandObjectMultiword {
4823 public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter & interpreter)4824 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
4825 : CommandObjectMultiword(
4826 interpreter, "renderscript allocation",
4827 "Commands that deal with RenderScript allocations.", nullptr) {
4828 LoadSubCommand(
4829 "list",
4830 CommandObjectSP(
4831 new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
4832 LoadSubCommand(
4833 "dump",
4834 CommandObjectSP(
4835 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
4836 LoadSubCommand(
4837 "save",
4838 CommandObjectSP(
4839 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
4840 LoadSubCommand(
4841 "load",
4842 CommandObjectSP(
4843 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
4844 LoadSubCommand(
4845 "refresh",
4846 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
4847 interpreter)));
4848 }
4849
4850 ~CommandObjectRenderScriptRuntimeAllocation() override = default;
4851 };
4852
4853 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
4854 public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter & interpreter)4855 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
4856 : CommandObjectParsed(interpreter, "renderscript status",
4857 "Displays current RenderScript runtime status.",
4858 "renderscript status",
4859 eCommandRequiresProcess |
4860 eCommandProcessMustBeLaunched) {}
4861
4862 ~CommandObjectRenderScriptRuntimeStatus() override = default;
4863
DoExecute(Args & command,CommandReturnObject & result)4864 bool DoExecute(Args &command, CommandReturnObject &result) override {
4865 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>(
4866 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
4867 eLanguageTypeExtRenderScript));
4868 runtime->DumpStatus(result.GetOutputStream());
4869 result.SetStatus(eReturnStatusSuccessFinishResult);
4870 return true;
4871 }
4872 };
4873
4874 class CommandObjectRenderScriptRuntimeReduction
4875 : public CommandObjectMultiword {
4876 public:
CommandObjectRenderScriptRuntimeReduction(CommandInterpreter & interpreter)4877 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter)
4878 : CommandObjectMultiword(interpreter, "renderscript reduction",
4879 "Commands that handle general reduction kernels",
4880 nullptr) {
4881 LoadSubCommand(
4882 "breakpoint",
4883 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint(
4884 interpreter)));
4885 }
4886 ~CommandObjectRenderScriptRuntimeReduction() override = default;
4887 };
4888
4889 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
4890 public:
CommandObjectRenderScriptRuntime(CommandInterpreter & interpreter)4891 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
4892 : CommandObjectMultiword(
4893 interpreter, "renderscript",
4894 "Commands for operating on the RenderScript runtime.",
4895 "renderscript <subcommand> [<subcommand-options>]") {
4896 LoadSubCommand(
4897 "module", CommandObjectSP(
4898 new CommandObjectRenderScriptRuntimeModule(interpreter)));
4899 LoadSubCommand(
4900 "status", CommandObjectSP(
4901 new CommandObjectRenderScriptRuntimeStatus(interpreter)));
4902 LoadSubCommand(
4903 "kernel", CommandObjectSP(
4904 new CommandObjectRenderScriptRuntimeKernel(interpreter)));
4905 LoadSubCommand("context",
4906 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
4907 interpreter)));
4908 LoadSubCommand(
4909 "allocation",
4910 CommandObjectSP(
4911 new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
4912 LoadSubCommand("scriptgroup",
4913 NewCommandObjectRenderScriptScriptGroup(interpreter));
4914 LoadSubCommand(
4915 "reduction",
4916 CommandObjectSP(
4917 new CommandObjectRenderScriptRuntimeReduction(interpreter)));
4918 }
4919
4920 ~CommandObjectRenderScriptRuntime() override = default;
4921 };
4922
Initiate()4923 void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
4924
RenderScriptRuntime(Process * process)4925 RenderScriptRuntime::RenderScriptRuntime(Process *process)
4926 : lldb_private::CPPLanguageRuntime(process), m_initiated(false),
4927 m_debuggerPresentFlagged(false), m_breakAllKernels(false),
4928 m_ir_passes(nullptr) {
4929 ModulesDidLoad(process->GetTarget().GetImages());
4930 }
4931
GetCommandObject(lldb_private::CommandInterpreter & interpreter)4932 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
4933 lldb_private::CommandInterpreter &interpreter) {
4934 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
4935 }
4936
4937 RenderScriptRuntime::~RenderScriptRuntime() = default;
4938