1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
createCXXABI(CodeGenModule & CGM)77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
CodeGenModule(ASTContext & C,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
~CodeGenModule()213 CodeGenModule::~CodeGenModule() {}
214 
createObjCRuntime()215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
createOpenCLRuntime()235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
createOpenMPRuntime()239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
createCUDARuntime()263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
addReplacement(StringRef Name,llvm::Constant * C)267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
applyReplacements()271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
applyGlobalValReplacements()306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
getAliasedGlobal(const llvm::GlobalIndirectSymbol & GIS)318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
checkAliases()336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
clear()411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
setVisibilityFromDLLStorageClass(const clang::LangOptions & LO,llvm::Module & M)434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
Release()476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   CodeGenPGO(*this).setValueProfilingFlag(getModule());
515   if (CoverageMapping)
516     CoverageMapping->emit();
517   if (CodeGenOpts.SanitizeCfiCrossDso) {
518     CodeGenFunction(*this).EmitCfiCheckFail();
519     CodeGenFunction(*this).EmitCfiCheckStub();
520   }
521   emitAtAvailableLinkGuard();
522   if (Context.getTargetInfo().getTriple().isWasm() &&
523       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
524     EmitMainVoidAlias();
525   }
526   emitLLVMUsed();
527   if (SanStats)
528     SanStats->finish();
529 
530   if (CodeGenOpts.Autolink &&
531       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
532     EmitModuleLinkOptions();
533   }
534 
535   // On ELF we pass the dependent library specifiers directly to the linker
536   // without manipulating them. This is in contrast to other platforms where
537   // they are mapped to a specific linker option by the compiler. This
538   // difference is a result of the greater variety of ELF linkers and the fact
539   // that ELF linkers tend to handle libraries in a more complicated fashion
540   // than on other platforms. This forces us to defer handling the dependent
541   // libs to the linker.
542   //
543   // CUDA/HIP device and host libraries are different. Currently there is no
544   // way to differentiate dependent libraries for host or device. Existing
545   // usage of #pragma comment(lib, *) is intended for host libraries on
546   // Windows. Therefore emit llvm.dependent-libraries only for host.
547   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
548     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
549     for (auto *MD : ELFDependentLibraries)
550       NMD->addOperand(MD);
551   }
552 
553   // Record mregparm value now so it is visible through rest of codegen.
554   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
555     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
556                               CodeGenOpts.NumRegisterParameters);
557 
558   if (CodeGenOpts.DwarfVersion) {
559     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
560                               CodeGenOpts.DwarfVersion);
561   }
562 
563   if (CodeGenOpts.Dwarf64)
564     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
565 
566   if (Context.getLangOpts().SemanticInterposition)
567     // Require various optimization to respect semantic interposition.
568     getModule().setSemanticInterposition(1);
569 
570   if (CodeGenOpts.EmitCodeView) {
571     // Indicate that we want CodeView in the metadata.
572     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
573   }
574   if (CodeGenOpts.CodeViewGHash) {
575     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
576   }
577   if (CodeGenOpts.ControlFlowGuard) {
578     // Function ID tables and checks for Control Flow Guard (cfguard=2).
579     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
580   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
581     // Function ID tables for Control Flow Guard (cfguard=1).
582     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
583   }
584   if (CodeGenOpts.EHContGuard) {
585     // Function ID tables for EH Continuation Guard.
586     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
587   }
588   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
589     // We don't support LTO with 2 with different StrictVTablePointers
590     // FIXME: we could support it by stripping all the information introduced
591     // by StrictVTablePointers.
592 
593     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
594 
595     llvm::Metadata *Ops[2] = {
596               llvm::MDString::get(VMContext, "StrictVTablePointers"),
597               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598                   llvm::Type::getInt32Ty(VMContext), 1))};
599 
600     getModule().addModuleFlag(llvm::Module::Require,
601                               "StrictVTablePointersRequirement",
602                               llvm::MDNode::get(VMContext, Ops));
603   }
604   if (getModuleDebugInfo())
605     // We support a single version in the linked module. The LLVM
606     // parser will drop debug info with a different version number
607     // (and warn about it, too).
608     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
609                               llvm::DEBUG_METADATA_VERSION);
610 
611   // We need to record the widths of enums and wchar_t, so that we can generate
612   // the correct build attributes in the ARM backend. wchar_size is also used by
613   // TargetLibraryInfo.
614   uint64_t WCharWidth =
615       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
616   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
617 
618   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
619   if (   Arch == llvm::Triple::arm
620       || Arch == llvm::Triple::armeb
621       || Arch == llvm::Triple::thumb
622       || Arch == llvm::Triple::thumbeb) {
623     // The minimum width of an enum in bytes
624     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
625     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
626   }
627 
628   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
629     StringRef ABIStr = Target.getABI();
630     llvm::LLVMContext &Ctx = TheModule.getContext();
631     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
632                               llvm::MDString::get(Ctx, ABIStr));
633   }
634 
635   if (CodeGenOpts.SanitizeCfiCrossDso) {
636     // Indicate that we want cross-DSO control flow integrity checks.
637     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
638   }
639 
640   if (CodeGenOpts.WholeProgramVTables) {
641     // Indicate whether VFE was enabled for this module, so that the
642     // vcall_visibility metadata added under whole program vtables is handled
643     // appropriately in the optimizer.
644     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
645                               CodeGenOpts.VirtualFunctionElimination);
646   }
647 
648   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
649     getModule().addModuleFlag(llvm::Module::Override,
650                               "CFI Canonical Jump Tables",
651                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
652   }
653 
654   if (CodeGenOpts.CFProtectionReturn &&
655       Target.checkCFProtectionReturnSupported(getDiags())) {
656     // Indicate that we want to instrument return control flow protection.
657     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
658                               1);
659   }
660 
661   if (CodeGenOpts.CFProtectionBranch &&
662       Target.checkCFProtectionBranchSupported(getDiags())) {
663     // Indicate that we want to instrument branch control flow protection.
664     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
665                               1);
666   }
667 
668   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
669       Arch == llvm::Triple::aarch64_be) {
670     getModule().addModuleFlag(llvm::Module::Error,
671                               "branch-target-enforcement",
672                               LangOpts.BranchTargetEnforcement);
673 
674     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
675                               LangOpts.hasSignReturnAddress());
676 
677     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
678                               LangOpts.isSignReturnAddressScopeAll());
679 
680     getModule().addModuleFlag(llvm::Module::Error,
681                               "sign-return-address-with-bkey",
682                               !LangOpts.isSignReturnAddressWithAKey());
683   }
684 
685   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(
688         llvm::Module::Error, "MemProfProfileFilename",
689         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
690   }
691 
692   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
693     // Indicate whether __nvvm_reflect should be configured to flush denormal
694     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
695     // property.)
696     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
697                               CodeGenOpts.FP32DenormalMode.Output !=
698                                   llvm::DenormalMode::IEEE);
699   }
700 
701   if (LangOpts.EHAsynch)
702     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
703 
704   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
705   if (LangOpts.OpenCL) {
706     EmitOpenCLMetadata();
707     // Emit SPIR version.
708     if (getTriple().isSPIR()) {
709       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
710       // opencl.spir.version named metadata.
711       // C++ is backwards compatible with OpenCL v2.0.
712       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
713       llvm::Metadata *SPIRVerElts[] = {
714           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715               Int32Ty, Version / 100)),
716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
718       llvm::NamedMDNode *SPIRVerMD =
719           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
720       llvm::LLVMContext &Ctx = TheModule.getContext();
721       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
722     }
723   }
724 
725   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
726     assert(PLevel < 3 && "Invalid PIC Level");
727     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
728     if (Context.getLangOpts().PIE)
729       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
730   }
731 
732   if (getCodeGenOpts().CodeModel.size() > 0) {
733     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
734                   .Case("tiny", llvm::CodeModel::Tiny)
735                   .Case("small", llvm::CodeModel::Small)
736                   .Case("kernel", llvm::CodeModel::Kernel)
737                   .Case("medium", llvm::CodeModel::Medium)
738                   .Case("large", llvm::CodeModel::Large)
739                   .Default(~0u);
740     if (CM != ~0u) {
741       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
742       getModule().setCodeModel(codeModel);
743     }
744   }
745 
746   if (CodeGenOpts.NoPLT)
747     getModule().setRtLibUseGOT();
748   if (CodeGenOpts.UnwindTables)
749     getModule().setUwtable();
750 
751   switch (CodeGenOpts.getFramePointer()) {
752   case CodeGenOptions::FramePointerKind::None:
753     // 0 ("none") is the default.
754     break;
755   case CodeGenOptions::FramePointerKind::NonLeaf:
756     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
757     break;
758   case CodeGenOptions::FramePointerKind::All:
759     getModule().setFramePointer(llvm::FramePointerKind::All);
760     break;
761   }
762 
763   SimplifyPersonality();
764 
765   if (getCodeGenOpts().EmitDeclMetadata)
766     EmitDeclMetadata();
767 
768   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
769     EmitCoverageFile();
770 
771   if (CGDebugInfo *DI = getModuleDebugInfo())
772     DI->finalize();
773 
774   if (getCodeGenOpts().EmitVersionIdentMetadata)
775     EmitVersionIdentMetadata();
776 
777   if (!getCodeGenOpts().RecordCommandLine.empty())
778     EmitCommandLineMetadata();
779 
780   if (!getCodeGenOpts().StackProtectorGuard.empty())
781     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
782   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
783     getModule().setStackProtectorGuardReg(
784         getCodeGenOpts().StackProtectorGuardReg);
785   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
786     getModule().setStackProtectorGuardOffset(
787         getCodeGenOpts().StackProtectorGuardOffset);
788 
789   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
790 
791   EmitBackendOptionsMetadata(getCodeGenOpts());
792 
793   // Set visibility from DLL storage class
794   // We do this at the end of LLVM IR generation; after any operation
795   // that might affect the DLL storage class or the visibility, and
796   // before anything that might act on these.
797   setVisibilityFromDLLStorageClass(LangOpts, getModule());
798 }
799 
EmitOpenCLMetadata()800 void CodeGenModule::EmitOpenCLMetadata() {
801   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
802   // opencl.ocl.version named metadata node.
803   // C++ is backwards compatible with OpenCL v2.0.
804   // FIXME: We might need to add CXX version at some point too?
805   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
806   llvm::Metadata *OCLVerElts[] = {
807       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
808           Int32Ty, Version / 100)),
809       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
810           Int32Ty, (Version % 100) / 10))};
811   llvm::NamedMDNode *OCLVerMD =
812       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
813   llvm::LLVMContext &Ctx = TheModule.getContext();
814   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
815 }
816 
EmitBackendOptionsMetadata(const CodeGenOptions CodeGenOpts)817 void CodeGenModule::EmitBackendOptionsMetadata(
818     const CodeGenOptions CodeGenOpts) {
819   switch (getTriple().getArch()) {
820   default:
821     break;
822   case llvm::Triple::riscv32:
823   case llvm::Triple::riscv64:
824     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
825                               CodeGenOpts.SmallDataLimit);
826     break;
827   }
828 }
829 
UpdateCompletedType(const TagDecl * TD)830 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
831   // Make sure that this type is translated.
832   Types.UpdateCompletedType(TD);
833 }
834 
RefreshTypeCacheForClass(const CXXRecordDecl * RD)835 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
836   // Make sure that this type is translated.
837   Types.RefreshTypeCacheForClass(RD);
838 }
839 
getTBAATypeInfo(QualType QTy)840 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
841   if (!TBAA)
842     return nullptr;
843   return TBAA->getTypeInfo(QTy);
844 }
845 
getTBAAAccessInfo(QualType AccessType)846 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
847   if (!TBAA)
848     return TBAAAccessInfo();
849   if (getLangOpts().CUDAIsDevice) {
850     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
851     // access info.
852     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
853       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
854           nullptr)
855         return TBAAAccessInfo();
856     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
857       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
858           nullptr)
859         return TBAAAccessInfo();
860     }
861   }
862   return TBAA->getAccessInfo(AccessType);
863 }
864 
865 TBAAAccessInfo
getTBAAVTablePtrAccessInfo(llvm::Type * VTablePtrType)866 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
867   if (!TBAA)
868     return TBAAAccessInfo();
869   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
870 }
871 
getTBAAStructInfo(QualType QTy)872 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
873   if (!TBAA)
874     return nullptr;
875   return TBAA->getTBAAStructInfo(QTy);
876 }
877 
getTBAABaseTypeInfo(QualType QTy)878 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
879   if (!TBAA)
880     return nullptr;
881   return TBAA->getBaseTypeInfo(QTy);
882 }
883 
getTBAAAccessTagInfo(TBAAAccessInfo Info)884 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
885   if (!TBAA)
886     return nullptr;
887   return TBAA->getAccessTagInfo(Info);
888 }
889 
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)890 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
891                                                    TBAAAccessInfo TargetInfo) {
892   if (!TBAA)
893     return TBAAAccessInfo();
894   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
895 }
896 
897 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)898 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
899                                                    TBAAAccessInfo InfoB) {
900   if (!TBAA)
901     return TBAAAccessInfo();
902   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
903 }
904 
905 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)906 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
907                                               TBAAAccessInfo SrcInfo) {
908   if (!TBAA)
909     return TBAAAccessInfo();
910   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
911 }
912 
DecorateInstructionWithTBAA(llvm::Instruction * Inst,TBAAAccessInfo TBAAInfo)913 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
914                                                 TBAAAccessInfo TBAAInfo) {
915   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
916     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
917 }
918 
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)919 void CodeGenModule::DecorateInstructionWithInvariantGroup(
920     llvm::Instruction *I, const CXXRecordDecl *RD) {
921   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
922                  llvm::MDNode::get(getLLVMContext(), {}));
923 }
924 
Error(SourceLocation loc,StringRef message)925 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
926   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
927   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
928 }
929 
930 /// ErrorUnsupported - Print out an error that codegen doesn't support the
931 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)932 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
933   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
934                                                "cannot compile this %0 yet");
935   std::string Msg = Type;
936   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
937       << Msg << S->getSourceRange();
938 }
939 
940 /// ErrorUnsupported - Print out an error that codegen doesn't support the
941 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)942 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
943   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
944                                                "cannot compile this %0 yet");
945   std::string Msg = Type;
946   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
947 }
948 
getSize(CharUnits size)949 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
950   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
951 }
952 
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const953 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
954                                         const NamedDecl *D) const {
955   if (GV->hasDLLImportStorageClass())
956     return;
957   // Internal definitions always have default visibility.
958   if (GV->hasLocalLinkage()) {
959     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
960     return;
961   }
962   if (!D)
963     return;
964   // Set visibility for definitions, and for declarations if requested globally
965   // or set explicitly.
966   LinkageInfo LV = D->getLinkageAndVisibility();
967   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
968       !GV->isDeclarationForLinker())
969     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
970 }
971 
shouldAssumeDSOLocal(const CodeGenModule & CGM,llvm::GlobalValue * GV)972 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
973                                  llvm::GlobalValue *GV) {
974   if (GV->hasLocalLinkage())
975     return true;
976 
977   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
978     return true;
979 
980   // DLLImport explicitly marks the GV as external.
981   if (GV->hasDLLImportStorageClass())
982     return false;
983 
984   const llvm::Triple &TT = CGM.getTriple();
985   if (TT.isWindowsGNUEnvironment()) {
986     // In MinGW, variables without DLLImport can still be automatically
987     // imported from a DLL by the linker; don't mark variables that
988     // potentially could come from another DLL as DSO local.
989     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
990         !GV->isThreadLocal())
991       return false;
992   }
993 
994   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
995   // remain unresolved in the link, they can be resolved to zero, which is
996   // outside the current DSO.
997   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
998     return false;
999 
1000   // Every other GV is local on COFF.
1001   // Make an exception for windows OS in the triple: Some firmware builds use
1002   // *-win32-macho triples. This (accidentally?) produced windows relocations
1003   // without GOT tables in older clang versions; Keep this behaviour.
1004   // FIXME: even thread local variables?
1005   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1006     return true;
1007 
1008   // Only handle COFF and ELF for now.
1009   if (!TT.isOSBinFormatELF())
1010     return false;
1011 
1012   // If this is not an executable, don't assume anything is local.
1013   const auto &CGOpts = CGM.getCodeGenOpts();
1014   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1015   const auto &LOpts = CGM.getLangOpts();
1016   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1017     // On ELF, if -fno-semantic-interposition is specified and the target
1018     // supports local aliases, there will be neither CC1
1019     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1020     // dso_local on the function if using a local alias is preferable (can avoid
1021     // PLT indirection).
1022     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1023       return false;
1024     return !(CGM.getLangOpts().SemanticInterposition ||
1025              CGM.getLangOpts().HalfNoSemanticInterposition);
1026   }
1027 
1028   // A definition cannot be preempted from an executable.
1029   if (!GV->isDeclarationForLinker())
1030     return true;
1031 
1032   // Most PIC code sequences that assume that a symbol is local cannot produce a
1033   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1034   // depended, it seems worth it to handle it here.
1035   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1036     return false;
1037 
1038   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1039   if (TT.isPPC64())
1040     return false;
1041 
1042   if (CGOpts.DirectAccessExternalData) {
1043     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1044     // for non-thread-local variables. If the symbol is not defined in the
1045     // executable, a copy relocation will be needed at link time. dso_local is
1046     // excluded for thread-local variables because they generally don't support
1047     // copy relocations.
1048     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1049       if (!Var->isThreadLocal())
1050         return true;
1051 
1052     // -fno-pic sets dso_local on a function declaration to allow direct
1053     // accesses when taking its address (similar to a data symbol). If the
1054     // function is not defined in the executable, a canonical PLT entry will be
1055     // needed at link time. -fno-direct-access-external-data can avoid the
1056     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1057     // it could just cause trouble without providing perceptible benefits.
1058     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1059       return true;
1060   }
1061 
1062   // If we can use copy relocations we can assume it is local.
1063 
1064   // Otherwise don't assume it is local.
1065   return false;
1066 }
1067 
setDSOLocal(llvm::GlobalValue * GV) const1068 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1069   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1070 }
1071 
setDLLImportDLLExport(llvm::GlobalValue * GV,GlobalDecl GD) const1072 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1073                                           GlobalDecl GD) const {
1074   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1075   // C++ destructors have a few C++ ABI specific special cases.
1076   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1077     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1078     return;
1079   }
1080   setDLLImportDLLExport(GV, D);
1081 }
1082 
setDLLImportDLLExport(llvm::GlobalValue * GV,const NamedDecl * D) const1083 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1084                                           const NamedDecl *D) const {
1085   if (D && D->isExternallyVisible()) {
1086     if (D->hasAttr<DLLImportAttr>())
1087       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1088     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1089       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1090   }
1091 }
1092 
setGVProperties(llvm::GlobalValue * GV,GlobalDecl GD) const1093 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1094                                     GlobalDecl GD) const {
1095   setDLLImportDLLExport(GV, GD);
1096   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1097 }
1098 
setGVProperties(llvm::GlobalValue * GV,const NamedDecl * D) const1099 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1100                                     const NamedDecl *D) const {
1101   setDLLImportDLLExport(GV, D);
1102   setGVPropertiesAux(GV, D);
1103 }
1104 
setGVPropertiesAux(llvm::GlobalValue * GV,const NamedDecl * D) const1105 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1106                                        const NamedDecl *D) const {
1107   setGlobalVisibility(GV, D);
1108   setDSOLocal(GV);
1109   GV->setPartition(CodeGenOpts.SymbolPartition);
1110 }
1111 
GetLLVMTLSModel(StringRef S)1112 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1113   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1114       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1115       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1116       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1117       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1118 }
1119 
1120 llvm::GlobalVariable::ThreadLocalMode
GetDefaultLLVMTLSModel() const1121 CodeGenModule::GetDefaultLLVMTLSModel() const {
1122   switch (CodeGenOpts.getDefaultTLSModel()) {
1123   case CodeGenOptions::GeneralDynamicTLSModel:
1124     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1125   case CodeGenOptions::LocalDynamicTLSModel:
1126     return llvm::GlobalVariable::LocalDynamicTLSModel;
1127   case CodeGenOptions::InitialExecTLSModel:
1128     return llvm::GlobalVariable::InitialExecTLSModel;
1129   case CodeGenOptions::LocalExecTLSModel:
1130     return llvm::GlobalVariable::LocalExecTLSModel;
1131   }
1132   llvm_unreachable("Invalid TLS model!");
1133 }
1134 
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const1135 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1136   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1137 
1138   llvm::GlobalValue::ThreadLocalMode TLM;
1139   TLM = GetDefaultLLVMTLSModel();
1140 
1141   // Override the TLS model if it is explicitly specified.
1142   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1143     TLM = GetLLVMTLSModel(Attr->getModel());
1144   }
1145 
1146   GV->setThreadLocalMode(TLM);
1147 }
1148 
getCPUSpecificMangling(const CodeGenModule & CGM,StringRef Name)1149 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1150                                           StringRef Name) {
1151   const TargetInfo &Target = CGM.getTarget();
1152   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1153 }
1154 
AppendCPUSpecificCPUDispatchMangling(const CodeGenModule & CGM,const CPUSpecificAttr * Attr,unsigned CPUIndex,raw_ostream & Out)1155 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1156                                                  const CPUSpecificAttr *Attr,
1157                                                  unsigned CPUIndex,
1158                                                  raw_ostream &Out) {
1159   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1160   // supported.
1161   if (Attr)
1162     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1163   else if (CGM.getTarget().supportsIFunc())
1164     Out << ".resolver";
1165 }
1166 
AppendTargetMangling(const CodeGenModule & CGM,const TargetAttr * Attr,raw_ostream & Out)1167 static void AppendTargetMangling(const CodeGenModule &CGM,
1168                                  const TargetAttr *Attr, raw_ostream &Out) {
1169   if (Attr->isDefaultVersion())
1170     return;
1171 
1172   Out << '.';
1173   const TargetInfo &Target = CGM.getTarget();
1174   ParsedTargetAttr Info =
1175       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1176         // Multiversioning doesn't allow "no-${feature}", so we can
1177         // only have "+" prefixes here.
1178         assert(LHS.startswith("+") && RHS.startswith("+") &&
1179                "Features should always have a prefix.");
1180         return Target.multiVersionSortPriority(LHS.substr(1)) >
1181                Target.multiVersionSortPriority(RHS.substr(1));
1182       });
1183 
1184   bool IsFirst = true;
1185 
1186   if (!Info.Architecture.empty()) {
1187     IsFirst = false;
1188     Out << "arch_" << Info.Architecture;
1189   }
1190 
1191   for (StringRef Feat : Info.Features) {
1192     if (!IsFirst)
1193       Out << '_';
1194     IsFirst = false;
1195     Out << Feat.substr(1);
1196   }
1197 }
1198 
1199 // Returns true if GD is a function decl with internal linkage and
1200 // needs a unique suffix after the mangled name.
isUniqueInternalLinkageDecl(GlobalDecl GD,CodeGenModule & CGM)1201 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1202                                         CodeGenModule &CGM) {
1203   const Decl *D = GD.getDecl();
1204   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1205          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1206 }
1207 
getMangledNameImpl(CodeGenModule & CGM,GlobalDecl GD,const NamedDecl * ND,bool OmitMultiVersionMangling=false)1208 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1209                                       const NamedDecl *ND,
1210                                       bool OmitMultiVersionMangling = false) {
1211   SmallString<256> Buffer;
1212   llvm::raw_svector_ostream Out(Buffer);
1213   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1214   if (!CGM.getModuleNameHash().empty())
1215     MC.needsUniqueInternalLinkageNames();
1216   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1217   if (ShouldMangle)
1218     MC.mangleName(GD.getWithDecl(ND), Out);
1219   else {
1220     IdentifierInfo *II = ND->getIdentifier();
1221     assert(II && "Attempt to mangle unnamed decl.");
1222     const auto *FD = dyn_cast<FunctionDecl>(ND);
1223 
1224     if (FD &&
1225         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1226       Out << "__regcall3__" << II->getName();
1227     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1228                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1229       Out << "__device_stub__" << II->getName();
1230     } else {
1231       Out << II->getName();
1232     }
1233   }
1234 
1235   // Check if the module name hash should be appended for internal linkage
1236   // symbols.   This should come before multi-version target suffixes are
1237   // appended. This is to keep the name and module hash suffix of the
1238   // internal linkage function together.  The unique suffix should only be
1239   // added when name mangling is done to make sure that the final name can
1240   // be properly demangled.  For example, for C functions without prototypes,
1241   // name mangling is not done and the unique suffix should not be appeneded
1242   // then.
1243   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1244     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1245            "Hash computed when not explicitly requested");
1246     Out << CGM.getModuleNameHash();
1247   }
1248 
1249   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1250     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1251       switch (FD->getMultiVersionKind()) {
1252       case MultiVersionKind::CPUDispatch:
1253       case MultiVersionKind::CPUSpecific:
1254         AppendCPUSpecificCPUDispatchMangling(CGM,
1255                                              FD->getAttr<CPUSpecificAttr>(),
1256                                              GD.getMultiVersionIndex(), Out);
1257         break;
1258       case MultiVersionKind::Target:
1259         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1260         break;
1261       case MultiVersionKind::None:
1262         llvm_unreachable("None multiversion type isn't valid here");
1263       }
1264     }
1265 
1266   // Make unique name for device side static file-scope variable for HIP.
1267   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1268       CGM.getLangOpts().GPURelocatableDeviceCode &&
1269       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1270     CGM.printPostfixForExternalizedStaticVar(Out);
1271   return std::string(Out.str());
1272 }
1273 
UpdateMultiVersionNames(GlobalDecl GD,const FunctionDecl * FD)1274 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1275                                             const FunctionDecl *FD) {
1276   if (!FD->isMultiVersion())
1277     return;
1278 
1279   // Get the name of what this would be without the 'target' attribute.  This
1280   // allows us to lookup the version that was emitted when this wasn't a
1281   // multiversion function.
1282   std::string NonTargetName =
1283       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1284   GlobalDecl OtherGD;
1285   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1286     assert(OtherGD.getCanonicalDecl()
1287                .getDecl()
1288                ->getAsFunction()
1289                ->isMultiVersion() &&
1290            "Other GD should now be a multiversioned function");
1291     // OtherFD is the version of this function that was mangled BEFORE
1292     // becoming a MultiVersion function.  It potentially needs to be updated.
1293     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1294                                       .getDecl()
1295                                       ->getAsFunction()
1296                                       ->getMostRecentDecl();
1297     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1298     // This is so that if the initial version was already the 'default'
1299     // version, we don't try to update it.
1300     if (OtherName != NonTargetName) {
1301       // Remove instead of erase, since others may have stored the StringRef
1302       // to this.
1303       const auto ExistingRecord = Manglings.find(NonTargetName);
1304       if (ExistingRecord != std::end(Manglings))
1305         Manglings.remove(&(*ExistingRecord));
1306       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1307       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1308       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1309         Entry->setName(OtherName);
1310     }
1311   }
1312 }
1313 
getMangledName(GlobalDecl GD)1314 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1315   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1316 
1317   // Some ABIs don't have constructor variants.  Make sure that base and
1318   // complete constructors get mangled the same.
1319   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1320     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1321       CXXCtorType OrigCtorType = GD.getCtorType();
1322       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1323       if (OrigCtorType == Ctor_Base)
1324         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1325     }
1326   }
1327 
1328   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1329   // static device variable depends on whether the variable is referenced by
1330   // a host or device host function. Therefore the mangled name cannot be
1331   // cached.
1332   if (!LangOpts.CUDAIsDevice ||
1333       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1334     auto FoundName = MangledDeclNames.find(CanonicalGD);
1335     if (FoundName != MangledDeclNames.end())
1336       return FoundName->second;
1337   }
1338 
1339   // Keep the first result in the case of a mangling collision.
1340   const auto *ND = cast<NamedDecl>(GD.getDecl());
1341   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1342 
1343   // Ensure either we have different ABIs between host and device compilations,
1344   // says host compilation following MSVC ABI but device compilation follows
1345   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1346   // mangling should be the same after name stubbing. The later checking is
1347   // very important as the device kernel name being mangled in host-compilation
1348   // is used to resolve the device binaries to be executed. Inconsistent naming
1349   // result in undefined behavior. Even though we cannot check that naming
1350   // directly between host- and device-compilations, the host- and
1351   // device-mangling in host compilation could help catching certain ones.
1352   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1353          getLangOpts().CUDAIsDevice ||
1354          (getContext().getAuxTargetInfo() &&
1355           (getContext().getAuxTargetInfo()->getCXXABI() !=
1356            getContext().getTargetInfo().getCXXABI())) ||
1357          getCUDARuntime().getDeviceSideName(ND) ==
1358              getMangledNameImpl(
1359                  *this,
1360                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1361                  ND));
1362 
1363   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1364   return MangledDeclNames[CanonicalGD] = Result.first->first();
1365 }
1366 
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)1367 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1368                                              const BlockDecl *BD) {
1369   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1370   const Decl *D = GD.getDecl();
1371 
1372   SmallString<256> Buffer;
1373   llvm::raw_svector_ostream Out(Buffer);
1374   if (!D)
1375     MangleCtx.mangleGlobalBlock(BD,
1376       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1377   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1378     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1379   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1380     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1381   else
1382     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1383 
1384   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1385   return Result.first->first();
1386 }
1387 
GetGlobalValue(StringRef Name)1388 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1389   return getModule().getNamedValue(Name);
1390 }
1391 
1392 /// AddGlobalCtor - Add a function to the list that will be called before
1393 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)1394 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1395                                   llvm::Constant *AssociatedData) {
1396   // FIXME: Type coercion of void()* types.
1397   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1398 }
1399 
1400 /// AddGlobalDtor - Add a function to the list that will be called
1401 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority,bool IsDtorAttrFunc)1402 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1403                                   bool IsDtorAttrFunc) {
1404   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1405       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1406     DtorsUsingAtExit[Priority].push_back(Dtor);
1407     return;
1408   }
1409 
1410   // FIXME: Type coercion of void()* types.
1411   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1412 }
1413 
EmitCtorList(CtorList & Fns,const char * GlobalName)1414 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1415   if (Fns.empty()) return;
1416 
1417   // Ctor function type is void()*.
1418   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1419   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1420       TheModule.getDataLayout().getProgramAddressSpace());
1421 
1422   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1423   llvm::StructType *CtorStructTy = llvm::StructType::get(
1424       Int32Ty, CtorPFTy, VoidPtrTy);
1425 
1426   // Construct the constructor and destructor arrays.
1427   ConstantInitBuilder builder(*this);
1428   auto ctors = builder.beginArray(CtorStructTy);
1429   for (const auto &I : Fns) {
1430     auto ctor = ctors.beginStruct(CtorStructTy);
1431     ctor.addInt(Int32Ty, I.Priority);
1432     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1433     if (I.AssociatedData)
1434       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1435     else
1436       ctor.addNullPointer(VoidPtrTy);
1437     ctor.finishAndAddTo(ctors);
1438   }
1439 
1440   auto list =
1441     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1442                                 /*constant*/ false,
1443                                 llvm::GlobalValue::AppendingLinkage);
1444 
1445   // The LTO linker doesn't seem to like it when we set an alignment
1446   // on appending variables.  Take it off as a workaround.
1447   list->setAlignment(llvm::None);
1448 
1449   Fns.clear();
1450 }
1451 
1452 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)1453 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1454   const auto *D = cast<FunctionDecl>(GD.getDecl());
1455 
1456   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1457 
1458   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1459     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1460 
1461   if (isa<CXXConstructorDecl>(D) &&
1462       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1463       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1464     // Our approach to inheriting constructors is fundamentally different from
1465     // that used by the MS ABI, so keep our inheriting constructor thunks
1466     // internal rather than trying to pick an unambiguous mangling for them.
1467     return llvm::GlobalValue::InternalLinkage;
1468   }
1469 
1470   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1471 }
1472 
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)1473 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1474   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1475   if (!MDS) return nullptr;
1476 
1477   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1478 }
1479 
SetLLVMFunctionAttributes(GlobalDecl GD,const CGFunctionInfo & Info,llvm::Function * F,bool IsThunk)1480 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1481                                               const CGFunctionInfo &Info,
1482                                               llvm::Function *F, bool IsThunk) {
1483   unsigned CallingConv;
1484   llvm::AttributeList PAL;
1485   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1486                          /*AttrOnCallSite=*/false, IsThunk);
1487   F->setAttributes(PAL);
1488   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1489 }
1490 
removeImageAccessQualifier(std::string & TyName)1491 static void removeImageAccessQualifier(std::string& TyName) {
1492   std::string ReadOnlyQual("__read_only");
1493   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1494   if (ReadOnlyPos != std::string::npos)
1495     // "+ 1" for the space after access qualifier.
1496     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1497   else {
1498     std::string WriteOnlyQual("__write_only");
1499     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1500     if (WriteOnlyPos != std::string::npos)
1501       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1502     else {
1503       std::string ReadWriteQual("__read_write");
1504       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1505       if (ReadWritePos != std::string::npos)
1506         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1507     }
1508   }
1509 }
1510 
1511 // Returns the address space id that should be produced to the
1512 // kernel_arg_addr_space metadata. This is always fixed to the ids
1513 // as specified in the SPIR 2.0 specification in order to differentiate
1514 // for example in clGetKernelArgInfo() implementation between the address
1515 // spaces with targets without unique mapping to the OpenCL address spaces
1516 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)1517 static unsigned ArgInfoAddressSpace(LangAS AS) {
1518   switch (AS) {
1519   case LangAS::opencl_global:
1520     return 1;
1521   case LangAS::opencl_constant:
1522     return 2;
1523   case LangAS::opencl_local:
1524     return 3;
1525   case LangAS::opencl_generic:
1526     return 4; // Not in SPIR 2.0 specs.
1527   case LangAS::opencl_global_device:
1528     return 5;
1529   case LangAS::opencl_global_host:
1530     return 6;
1531   default:
1532     return 0; // Assume private.
1533   }
1534 }
1535 
GenOpenCLArgMetadata(llvm::Function * Fn,const FunctionDecl * FD,CodeGenFunction * CGF)1536 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1537                                          const FunctionDecl *FD,
1538                                          CodeGenFunction *CGF) {
1539   assert(((FD && CGF) || (!FD && !CGF)) &&
1540          "Incorrect use - FD and CGF should either be both null or not!");
1541   // Create MDNodes that represent the kernel arg metadata.
1542   // Each MDNode is a list in the form of "key", N number of values which is
1543   // the same number of values as their are kernel arguments.
1544 
1545   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1546 
1547   // MDNode for the kernel argument address space qualifiers.
1548   SmallVector<llvm::Metadata *, 8> addressQuals;
1549 
1550   // MDNode for the kernel argument access qualifiers (images only).
1551   SmallVector<llvm::Metadata *, 8> accessQuals;
1552 
1553   // MDNode for the kernel argument type names.
1554   SmallVector<llvm::Metadata *, 8> argTypeNames;
1555 
1556   // MDNode for the kernel argument base type names.
1557   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1558 
1559   // MDNode for the kernel argument type qualifiers.
1560   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1561 
1562   // MDNode for the kernel argument names.
1563   SmallVector<llvm::Metadata *, 8> argNames;
1564 
1565   if (FD && CGF)
1566     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1567       const ParmVarDecl *parm = FD->getParamDecl(i);
1568       QualType ty = parm->getType();
1569       std::string typeQuals;
1570 
1571       // Get image and pipe access qualifier:
1572       if (ty->isImageType() || ty->isPipeType()) {
1573         const Decl *PDecl = parm;
1574         if (auto *TD = dyn_cast<TypedefType>(ty))
1575           PDecl = TD->getDecl();
1576         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1577         if (A && A->isWriteOnly())
1578           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1579         else if (A && A->isReadWrite())
1580           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1581         else
1582           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1583       } else
1584         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1585 
1586       // Get argument name.
1587       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1588 
1589       auto getTypeSpelling = [&](QualType Ty) {
1590         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1591 
1592         if (Ty.isCanonical()) {
1593           StringRef typeNameRef = typeName;
1594           // Turn "unsigned type" to "utype"
1595           if (typeNameRef.consume_front("unsigned "))
1596             return std::string("u") + typeNameRef.str();
1597           if (typeNameRef.consume_front("signed "))
1598             return typeNameRef.str();
1599         }
1600 
1601         return typeName;
1602       };
1603 
1604       if (ty->isPointerType()) {
1605         QualType pointeeTy = ty->getPointeeType();
1606 
1607         // Get address qualifier.
1608         addressQuals.push_back(
1609             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1610                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1611 
1612         // Get argument type name.
1613         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1614         std::string baseTypeName =
1615             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1616         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1617         argBaseTypeNames.push_back(
1618             llvm::MDString::get(VMContext, baseTypeName));
1619 
1620         // Get argument type qualifiers:
1621         if (ty.isRestrictQualified())
1622           typeQuals = "restrict";
1623         if (pointeeTy.isConstQualified() ||
1624             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1625           typeQuals += typeQuals.empty() ? "const" : " const";
1626         if (pointeeTy.isVolatileQualified())
1627           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1628       } else {
1629         uint32_t AddrSpc = 0;
1630         bool isPipe = ty->isPipeType();
1631         if (ty->isImageType() || isPipe)
1632           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1633 
1634         addressQuals.push_back(
1635             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1636 
1637         // Get argument type name.
1638         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1639         std::string typeName = getTypeSpelling(ty);
1640         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1641 
1642         // Remove access qualifiers on images
1643         // (as they are inseparable from type in clang implementation,
1644         // but OpenCL spec provides a special query to get access qualifier
1645         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1646         if (ty->isImageType()) {
1647           removeImageAccessQualifier(typeName);
1648           removeImageAccessQualifier(baseTypeName);
1649         }
1650 
1651         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1652         argBaseTypeNames.push_back(
1653             llvm::MDString::get(VMContext, baseTypeName));
1654 
1655         if (isPipe)
1656           typeQuals = "pipe";
1657       }
1658       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1659     }
1660 
1661   Fn->setMetadata("kernel_arg_addr_space",
1662                   llvm::MDNode::get(VMContext, addressQuals));
1663   Fn->setMetadata("kernel_arg_access_qual",
1664                   llvm::MDNode::get(VMContext, accessQuals));
1665   Fn->setMetadata("kernel_arg_type",
1666                   llvm::MDNode::get(VMContext, argTypeNames));
1667   Fn->setMetadata("kernel_arg_base_type",
1668                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1669   Fn->setMetadata("kernel_arg_type_qual",
1670                   llvm::MDNode::get(VMContext, argTypeQuals));
1671   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1672     Fn->setMetadata("kernel_arg_name",
1673                     llvm::MDNode::get(VMContext, argNames));
1674 }
1675 
1676 /// Determines whether the language options require us to model
1677 /// unwind exceptions.  We treat -fexceptions as mandating this
1678 /// except under the fragile ObjC ABI with only ObjC exceptions
1679 /// enabled.  This means, for example, that C with -fexceptions
1680 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)1681 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1682   // If exceptions are completely disabled, obviously this is false.
1683   if (!LangOpts.Exceptions) return false;
1684 
1685   // If C++ exceptions are enabled, this is true.
1686   if (LangOpts.CXXExceptions) return true;
1687 
1688   // If ObjC exceptions are enabled, this depends on the ABI.
1689   if (LangOpts.ObjCExceptions) {
1690     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1691   }
1692 
1693   return true;
1694 }
1695 
requiresMemberFunctionPointerTypeMetadata(CodeGenModule & CGM,const CXXMethodDecl * MD)1696 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1697                                                       const CXXMethodDecl *MD) {
1698   // Check that the type metadata can ever actually be used by a call.
1699   if (!CGM.getCodeGenOpts().LTOUnit ||
1700       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1701     return false;
1702 
1703   // Only functions whose address can be taken with a member function pointer
1704   // need this sort of type metadata.
1705   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1706          !isa<CXXDestructorDecl>(MD);
1707 }
1708 
1709 std::vector<const CXXRecordDecl *>
getMostBaseClasses(const CXXRecordDecl * RD)1710 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1711   llvm::SetVector<const CXXRecordDecl *> MostBases;
1712 
1713   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1714   CollectMostBases = [&](const CXXRecordDecl *RD) {
1715     if (RD->getNumBases() == 0)
1716       MostBases.insert(RD);
1717     for (const CXXBaseSpecifier &B : RD->bases())
1718       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1719   };
1720   CollectMostBases(RD);
1721   return MostBases.takeVector();
1722 }
1723 
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)1724 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1725                                                            llvm::Function *F) {
1726   llvm::AttrBuilder B;
1727 
1728   if (CodeGenOpts.UnwindTables)
1729     B.addAttribute(llvm::Attribute::UWTable);
1730 
1731   if (CodeGenOpts.StackClashProtector)
1732     B.addAttribute("probe-stack", "inline-asm");
1733 
1734   if (!hasUnwindExceptions(LangOpts))
1735     B.addAttribute(llvm::Attribute::NoUnwind);
1736 
1737   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1738     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1739       B.addAttribute(llvm::Attribute::StackProtect);
1740     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1741       B.addAttribute(llvm::Attribute::StackProtectStrong);
1742     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1743       B.addAttribute(llvm::Attribute::StackProtectReq);
1744   }
1745 
1746   if (!D) {
1747     // If we don't have a declaration to control inlining, the function isn't
1748     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1749     // disabled, mark the function as noinline.
1750     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1751         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1752       B.addAttribute(llvm::Attribute::NoInline);
1753 
1754     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1755     return;
1756   }
1757 
1758   // Track whether we need to add the optnone LLVM attribute,
1759   // starting with the default for this optimization level.
1760   bool ShouldAddOptNone =
1761       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1762   // We can't add optnone in the following cases, it won't pass the verifier.
1763   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1764   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1765 
1766   // Add optnone, but do so only if the function isn't always_inline.
1767   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1768       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1769     B.addAttribute(llvm::Attribute::OptimizeNone);
1770 
1771     // OptimizeNone implies noinline; we should not be inlining such functions.
1772     B.addAttribute(llvm::Attribute::NoInline);
1773 
1774     // We still need to handle naked functions even though optnone subsumes
1775     // much of their semantics.
1776     if (D->hasAttr<NakedAttr>())
1777       B.addAttribute(llvm::Attribute::Naked);
1778 
1779     // OptimizeNone wins over OptimizeForSize and MinSize.
1780     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1781     F->removeFnAttr(llvm::Attribute::MinSize);
1782   } else if (D->hasAttr<NakedAttr>()) {
1783     // Naked implies noinline: we should not be inlining such functions.
1784     B.addAttribute(llvm::Attribute::Naked);
1785     B.addAttribute(llvm::Attribute::NoInline);
1786   } else if (D->hasAttr<NoDuplicateAttr>()) {
1787     B.addAttribute(llvm::Attribute::NoDuplicate);
1788   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1789     // Add noinline if the function isn't always_inline.
1790     B.addAttribute(llvm::Attribute::NoInline);
1791   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1792              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1793     // (noinline wins over always_inline, and we can't specify both in IR)
1794     B.addAttribute(llvm::Attribute::AlwaysInline);
1795   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1796     // If we're not inlining, then force everything that isn't always_inline to
1797     // carry an explicit noinline attribute.
1798     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1799       B.addAttribute(llvm::Attribute::NoInline);
1800   } else {
1801     // Otherwise, propagate the inline hint attribute and potentially use its
1802     // absence to mark things as noinline.
1803     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1804       // Search function and template pattern redeclarations for inline.
1805       auto CheckForInline = [](const FunctionDecl *FD) {
1806         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1807           return Redecl->isInlineSpecified();
1808         };
1809         if (any_of(FD->redecls(), CheckRedeclForInline))
1810           return true;
1811         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1812         if (!Pattern)
1813           return false;
1814         return any_of(Pattern->redecls(), CheckRedeclForInline);
1815       };
1816       if (CheckForInline(FD)) {
1817         B.addAttribute(llvm::Attribute::InlineHint);
1818       } else if (CodeGenOpts.getInlining() ==
1819                      CodeGenOptions::OnlyHintInlining &&
1820                  !FD->isInlined() &&
1821                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1822         B.addAttribute(llvm::Attribute::NoInline);
1823       }
1824     }
1825   }
1826 
1827   // Add other optimization related attributes if we are optimizing this
1828   // function.
1829   if (!D->hasAttr<OptimizeNoneAttr>()) {
1830     if (D->hasAttr<ColdAttr>()) {
1831       if (!ShouldAddOptNone)
1832         B.addAttribute(llvm::Attribute::OptimizeForSize);
1833       B.addAttribute(llvm::Attribute::Cold);
1834     }
1835     if (D->hasAttr<HotAttr>())
1836       B.addAttribute(llvm::Attribute::Hot);
1837     if (D->hasAttr<MinSizeAttr>())
1838       B.addAttribute(llvm::Attribute::MinSize);
1839   }
1840 
1841   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1842 
1843   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1844   if (alignment)
1845     F->setAlignment(llvm::Align(alignment));
1846 
1847   if (!D->hasAttr<AlignedAttr>())
1848     if (LangOpts.FunctionAlignment)
1849       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1850 
1851   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1852   // reserve a bit for differentiating between virtual and non-virtual member
1853   // functions. If the current target's C++ ABI requires this and this is a
1854   // member function, set its alignment accordingly.
1855   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1856     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1857       F->setAlignment(llvm::Align(2));
1858   }
1859 
1860   // In the cross-dso CFI mode with canonical jump tables, we want !type
1861   // attributes on definitions only.
1862   if (CodeGenOpts.SanitizeCfiCrossDso &&
1863       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1864     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1865       // Skip available_externally functions. They won't be codegen'ed in the
1866       // current module anyway.
1867       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1868         CreateFunctionTypeMetadataForIcall(FD, F);
1869     }
1870   }
1871 
1872   // Emit type metadata on member functions for member function pointer checks.
1873   // These are only ever necessary on definitions; we're guaranteed that the
1874   // definition will be present in the LTO unit as a result of LTO visibility.
1875   auto *MD = dyn_cast<CXXMethodDecl>(D);
1876   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1877     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1878       llvm::Metadata *Id =
1879           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1880               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1881       F->addTypeMetadata(0, Id);
1882     }
1883   }
1884 }
1885 
setLLVMFunctionFEnvAttributes(const FunctionDecl * D,llvm::Function * F)1886 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1887                                                   llvm::Function *F) {
1888   if (D->hasAttr<StrictFPAttr>()) {
1889     llvm::AttrBuilder FuncAttrs;
1890     FuncAttrs.addAttribute("strictfp");
1891     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1892   }
1893 }
1894 
SetCommonAttributes(GlobalDecl GD,llvm::GlobalValue * GV)1895 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1896   const Decl *D = GD.getDecl();
1897   if (dyn_cast_or_null<NamedDecl>(D))
1898     setGVProperties(GV, GD);
1899   else
1900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1901 
1902   if (D && D->hasAttr<UsedAttr>())
1903     addUsedOrCompilerUsedGlobal(GV);
1904 
1905   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1906     const auto *VD = cast<VarDecl>(D);
1907     if (VD->getType().isConstQualified() &&
1908         VD->getStorageDuration() == SD_Static)
1909       addUsedOrCompilerUsedGlobal(GV);
1910   }
1911 }
1912 
GetCPUAndFeaturesAttributes(GlobalDecl GD,llvm::AttrBuilder & Attrs)1913 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1914                                                 llvm::AttrBuilder &Attrs) {
1915   // Add target-cpu and target-features attributes to functions. If
1916   // we have a decl for the function and it has a target attribute then
1917   // parse that and add it to the feature set.
1918   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1919   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1920   std::vector<std::string> Features;
1921   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1922   FD = FD ? FD->getMostRecentDecl() : FD;
1923   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1924   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1925   bool AddedAttr = false;
1926   if (TD || SD) {
1927     llvm::StringMap<bool> FeatureMap;
1928     getContext().getFunctionFeatureMap(FeatureMap, GD);
1929 
1930     // Produce the canonical string for this set of features.
1931     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1932       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1933 
1934     // Now add the target-cpu and target-features to the function.
1935     // While we populated the feature map above, we still need to
1936     // get and parse the target attribute so we can get the cpu for
1937     // the function.
1938     if (TD) {
1939       ParsedTargetAttr ParsedAttr = TD->parse();
1940       if (!ParsedAttr.Architecture.empty() &&
1941           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1942         TargetCPU = ParsedAttr.Architecture;
1943         TuneCPU = ""; // Clear the tune CPU.
1944       }
1945       if (!ParsedAttr.Tune.empty() &&
1946           getTarget().isValidCPUName(ParsedAttr.Tune))
1947         TuneCPU = ParsedAttr.Tune;
1948     }
1949   } else {
1950     // Otherwise just add the existing target cpu and target features to the
1951     // function.
1952     Features = getTarget().getTargetOpts().Features;
1953   }
1954 
1955   if (!TargetCPU.empty()) {
1956     Attrs.addAttribute("target-cpu", TargetCPU);
1957     AddedAttr = true;
1958   }
1959   if (!TuneCPU.empty()) {
1960     Attrs.addAttribute("tune-cpu", TuneCPU);
1961     AddedAttr = true;
1962   }
1963   if (!Features.empty()) {
1964     llvm::sort(Features);
1965     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1966     AddedAttr = true;
1967   }
1968 
1969   return AddedAttr;
1970 }
1971 
setNonAliasAttributes(GlobalDecl GD,llvm::GlobalObject * GO)1972 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1973                                           llvm::GlobalObject *GO) {
1974   const Decl *D = GD.getDecl();
1975   SetCommonAttributes(GD, GO);
1976 
1977   if (D) {
1978     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1979       if (D->hasAttr<RetainAttr>())
1980         addUsedGlobal(GV);
1981       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1982         GV->addAttribute("bss-section", SA->getName());
1983       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1984         GV->addAttribute("data-section", SA->getName());
1985       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1986         GV->addAttribute("rodata-section", SA->getName());
1987       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1988         GV->addAttribute("relro-section", SA->getName());
1989     }
1990 
1991     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1992       if (D->hasAttr<RetainAttr>())
1993         addUsedGlobal(F);
1994       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1995         if (!D->getAttr<SectionAttr>())
1996           F->addFnAttr("implicit-section-name", SA->getName());
1997 
1998       llvm::AttrBuilder Attrs;
1999       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2000         // We know that GetCPUAndFeaturesAttributes will always have the
2001         // newest set, since it has the newest possible FunctionDecl, so the
2002         // new ones should replace the old.
2003         llvm::AttrBuilder RemoveAttrs;
2004         RemoveAttrs.addAttribute("target-cpu");
2005         RemoveAttrs.addAttribute("target-features");
2006         RemoveAttrs.addAttribute("tune-cpu");
2007         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
2008         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
2009       }
2010     }
2011 
2012     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2013       GO->setSection(CSA->getName());
2014     else if (const auto *SA = D->getAttr<SectionAttr>())
2015       GO->setSection(SA->getName());
2016   }
2017 
2018   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2019 }
2020 
SetInternalFunctionAttributes(GlobalDecl GD,llvm::Function * F,const CGFunctionInfo & FI)2021 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2022                                                   llvm::Function *F,
2023                                                   const CGFunctionInfo &FI) {
2024   const Decl *D = GD.getDecl();
2025   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2026   SetLLVMFunctionAttributesForDefinition(D, F);
2027 
2028   F->setLinkage(llvm::Function::InternalLinkage);
2029 
2030   setNonAliasAttributes(GD, F);
2031 }
2032 
setLinkageForGV(llvm::GlobalValue * GV,const NamedDecl * ND)2033 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2034   // Set linkage and visibility in case we never see a definition.
2035   LinkageInfo LV = ND->getLinkageAndVisibility();
2036   // Don't set internal linkage on declarations.
2037   // "extern_weak" is overloaded in LLVM; we probably should have
2038   // separate linkage types for this.
2039   if (isExternallyVisible(LV.getLinkage()) &&
2040       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2041     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2042 }
2043 
CreateFunctionTypeMetadataForIcall(const FunctionDecl * FD,llvm::Function * F)2044 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2045                                                        llvm::Function *F) {
2046   // Only if we are checking indirect calls.
2047   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2048     return;
2049 
2050   // Non-static class methods are handled via vtable or member function pointer
2051   // checks elsewhere.
2052   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2053     return;
2054 
2055   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2056   F->addTypeMetadata(0, MD);
2057   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2058 
2059   // Emit a hash-based bit set entry for cross-DSO calls.
2060   if (CodeGenOpts.SanitizeCfiCrossDso)
2061     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2062       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2063 }
2064 
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)2065 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2066                                           bool IsIncompleteFunction,
2067                                           bool IsThunk) {
2068 
2069   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2070     // If this is an intrinsic function, set the function's attributes
2071     // to the intrinsic's attributes.
2072     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2073     return;
2074   }
2075 
2076   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2077 
2078   if (!IsIncompleteFunction)
2079     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2080                               IsThunk);
2081 
2082   // Add the Returned attribute for "this", except for iOS 5 and earlier
2083   // where substantial code, including the libstdc++ dylib, was compiled with
2084   // GCC and does not actually return "this".
2085   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2086       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2087     assert(!F->arg_empty() &&
2088            F->arg_begin()->getType()
2089              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2090            "unexpected this return");
2091     F->addAttribute(1, llvm::Attribute::Returned);
2092   }
2093 
2094   // Only a few attributes are set on declarations; these may later be
2095   // overridden by a definition.
2096 
2097   setLinkageForGV(F, FD);
2098   setGVProperties(F, FD);
2099 
2100   // Setup target-specific attributes.
2101   if (!IsIncompleteFunction && F->isDeclaration())
2102     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2103 
2104   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2105     F->setSection(CSA->getName());
2106   else if (const auto *SA = FD->getAttr<SectionAttr>())
2107      F->setSection(SA->getName());
2108 
2109   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2110   if (FD->isInlineBuiltinDeclaration()) {
2111     const FunctionDecl *FDBody;
2112     bool HasBody = FD->hasBody(FDBody);
2113     (void)HasBody;
2114     assert(HasBody && "Inline builtin declarations should always have an "
2115                       "available body!");
2116     if (shouldEmitFunction(FDBody))
2117       F->addAttribute(llvm::AttributeList::FunctionIndex,
2118                       llvm::Attribute::NoBuiltin);
2119   }
2120 
2121   if (FD->isReplaceableGlobalAllocationFunction()) {
2122     // A replaceable global allocation function does not act like a builtin by
2123     // default, only if it is invoked by a new-expression or delete-expression.
2124     F->addAttribute(llvm::AttributeList::FunctionIndex,
2125                     llvm::Attribute::NoBuiltin);
2126   }
2127 
2128   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2129     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2130   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2131     if (MD->isVirtual())
2132       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2133 
2134   // Don't emit entries for function declarations in the cross-DSO mode. This
2135   // is handled with better precision by the receiving DSO. But if jump tables
2136   // are non-canonical then we need type metadata in order to produce the local
2137   // jump table.
2138   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2139       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2140     CreateFunctionTypeMetadataForIcall(FD, F);
2141 
2142   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2143     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2144 
2145   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2146     // Annotate the callback behavior as metadata:
2147     //  - The callback callee (as argument number).
2148     //  - The callback payloads (as argument numbers).
2149     llvm::LLVMContext &Ctx = F->getContext();
2150     llvm::MDBuilder MDB(Ctx);
2151 
2152     // The payload indices are all but the first one in the encoding. The first
2153     // identifies the callback callee.
2154     int CalleeIdx = *CB->encoding_begin();
2155     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2156     F->addMetadata(llvm::LLVMContext::MD_callback,
2157                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2158                                                CalleeIdx, PayloadIndices,
2159                                                /* VarArgsArePassed */ false)}));
2160   }
2161 }
2162 
addUsedGlobal(llvm::GlobalValue * GV)2163 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2164   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2165          "Only globals with definition can force usage.");
2166   LLVMUsed.emplace_back(GV);
2167 }
2168 
addCompilerUsedGlobal(llvm::GlobalValue * GV)2169 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2170   assert(!GV->isDeclaration() &&
2171          "Only globals with definition can force usage.");
2172   LLVMCompilerUsed.emplace_back(GV);
2173 }
2174 
addUsedOrCompilerUsedGlobal(llvm::GlobalValue * GV)2175 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2176   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2177          "Only globals with definition can force usage.");
2178   if (getTriple().isOSBinFormatELF())
2179     LLVMCompilerUsed.emplace_back(GV);
2180   else
2181     LLVMUsed.emplace_back(GV);
2182 }
2183 
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakTrackingVH> & List)2184 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2185                      std::vector<llvm::WeakTrackingVH> &List) {
2186   // Don't create llvm.used if there is no need.
2187   if (List.empty())
2188     return;
2189 
2190   // Convert List to what ConstantArray needs.
2191   SmallVector<llvm::Constant*, 8> UsedArray;
2192   UsedArray.resize(List.size());
2193   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2194     UsedArray[i] =
2195         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2196             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2197   }
2198 
2199   if (UsedArray.empty())
2200     return;
2201   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2202 
2203   auto *GV = new llvm::GlobalVariable(
2204       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2205       llvm::ConstantArray::get(ATy, UsedArray), Name);
2206 
2207   GV->setSection("llvm.metadata");
2208 }
2209 
emitLLVMUsed()2210 void CodeGenModule::emitLLVMUsed() {
2211   emitUsed(*this, "llvm.used", LLVMUsed);
2212   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2213 }
2214 
AppendLinkerOptions(StringRef Opts)2215 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2216   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2217   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2218 }
2219 
AddDetectMismatch(StringRef Name,StringRef Value)2220 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2221   llvm::SmallString<32> Opt;
2222   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2223   if (Opt.empty())
2224     return;
2225   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2226   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2227 }
2228 
AddDependentLib(StringRef Lib)2229 void CodeGenModule::AddDependentLib(StringRef Lib) {
2230   auto &C = getLLVMContext();
2231   if (getTarget().getTriple().isOSBinFormatELF()) {
2232       ELFDependentLibraries.push_back(
2233         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2234     return;
2235   }
2236 
2237   llvm::SmallString<24> Opt;
2238   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2239   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2240   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2241 }
2242 
2243 /// Add link options implied by the given module, including modules
2244 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::MDNode * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)2245 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2246                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2247                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2248   // Import this module's parent.
2249   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2250     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2251   }
2252 
2253   // Import this module's dependencies.
2254   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2255     if (Visited.insert(Mod->Imports[I - 1]).second)
2256       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2257   }
2258 
2259   // Add linker options to link against the libraries/frameworks
2260   // described by this module.
2261   llvm::LLVMContext &Context = CGM.getLLVMContext();
2262   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2263 
2264   // For modules that use export_as for linking, use that module
2265   // name instead.
2266   if (Mod->UseExportAsModuleLinkName)
2267     return;
2268 
2269   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2270     // Link against a framework.  Frameworks are currently Darwin only, so we
2271     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2272     if (Mod->LinkLibraries[I-1].IsFramework) {
2273       llvm::Metadata *Args[2] = {
2274           llvm::MDString::get(Context, "-framework"),
2275           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2276 
2277       Metadata.push_back(llvm::MDNode::get(Context, Args));
2278       continue;
2279     }
2280 
2281     // Link against a library.
2282     if (IsELF) {
2283       llvm::Metadata *Args[2] = {
2284           llvm::MDString::get(Context, "lib"),
2285           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2286       };
2287       Metadata.push_back(llvm::MDNode::get(Context, Args));
2288     } else {
2289       llvm::SmallString<24> Opt;
2290       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2291           Mod->LinkLibraries[I - 1].Library, Opt);
2292       auto *OptString = llvm::MDString::get(Context, Opt);
2293       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2294     }
2295   }
2296 }
2297 
EmitModuleLinkOptions()2298 void CodeGenModule::EmitModuleLinkOptions() {
2299   // Collect the set of all of the modules we want to visit to emit link
2300   // options, which is essentially the imported modules and all of their
2301   // non-explicit child modules.
2302   llvm::SetVector<clang::Module *> LinkModules;
2303   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2304   SmallVector<clang::Module *, 16> Stack;
2305 
2306   // Seed the stack with imported modules.
2307   for (Module *M : ImportedModules) {
2308     // Do not add any link flags when an implementation TU of a module imports
2309     // a header of that same module.
2310     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2311         !getLangOpts().isCompilingModule())
2312       continue;
2313     if (Visited.insert(M).second)
2314       Stack.push_back(M);
2315   }
2316 
2317   // Find all of the modules to import, making a little effort to prune
2318   // non-leaf modules.
2319   while (!Stack.empty()) {
2320     clang::Module *Mod = Stack.pop_back_val();
2321 
2322     bool AnyChildren = false;
2323 
2324     // Visit the submodules of this module.
2325     for (const auto &SM : Mod->submodules()) {
2326       // Skip explicit children; they need to be explicitly imported to be
2327       // linked against.
2328       if (SM->IsExplicit)
2329         continue;
2330 
2331       if (Visited.insert(SM).second) {
2332         Stack.push_back(SM);
2333         AnyChildren = true;
2334       }
2335     }
2336 
2337     // We didn't find any children, so add this module to the list of
2338     // modules to link against.
2339     if (!AnyChildren) {
2340       LinkModules.insert(Mod);
2341     }
2342   }
2343 
2344   // Add link options for all of the imported modules in reverse topological
2345   // order.  We don't do anything to try to order import link flags with respect
2346   // to linker options inserted by things like #pragma comment().
2347   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2348   Visited.clear();
2349   for (Module *M : LinkModules)
2350     if (Visited.insert(M).second)
2351       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2352   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2353   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2354 
2355   // Add the linker options metadata flag.
2356   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2357   for (auto *MD : LinkerOptionsMetadata)
2358     NMD->addOperand(MD);
2359 }
2360 
EmitDeferred()2361 void CodeGenModule::EmitDeferred() {
2362   // Emit deferred declare target declarations.
2363   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2364     getOpenMPRuntime().emitDeferredTargetDecls();
2365 
2366   // Emit code for any potentially referenced deferred decls.  Since a
2367   // previously unused static decl may become used during the generation of code
2368   // for a static function, iterate until no changes are made.
2369 
2370   if (!DeferredVTables.empty()) {
2371     EmitDeferredVTables();
2372 
2373     // Emitting a vtable doesn't directly cause more vtables to
2374     // become deferred, although it can cause functions to be
2375     // emitted that then need those vtables.
2376     assert(DeferredVTables.empty());
2377   }
2378 
2379   // Emit CUDA/HIP static device variables referenced by host code only.
2380   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2381   // needed for further handling.
2382   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2383     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2384       DeferredDeclsToEmit.push_back(V);
2385 
2386   // Stop if we're out of both deferred vtables and deferred declarations.
2387   if (DeferredDeclsToEmit.empty())
2388     return;
2389 
2390   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2391   // work, it will not interfere with this.
2392   std::vector<GlobalDecl> CurDeclsToEmit;
2393   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2394 
2395   for (GlobalDecl &D : CurDeclsToEmit) {
2396     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2397     // to get GlobalValue with exactly the type we need, not something that
2398     // might had been created for another decl with the same mangled name but
2399     // different type.
2400     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2401         GetAddrOfGlobal(D, ForDefinition));
2402 
2403     // In case of different address spaces, we may still get a cast, even with
2404     // IsForDefinition equal to true. Query mangled names table to get
2405     // GlobalValue.
2406     if (!GV)
2407       GV = GetGlobalValue(getMangledName(D));
2408 
2409     // Make sure GetGlobalValue returned non-null.
2410     assert(GV);
2411 
2412     // Check to see if we've already emitted this.  This is necessary
2413     // for a couple of reasons: first, decls can end up in the
2414     // deferred-decls queue multiple times, and second, decls can end
2415     // up with definitions in unusual ways (e.g. by an extern inline
2416     // function acquiring a strong function redefinition).  Just
2417     // ignore these cases.
2418     if (!GV->isDeclaration())
2419       continue;
2420 
2421     // If this is OpenMP, check if it is legal to emit this global normally.
2422     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2423       continue;
2424 
2425     // Otherwise, emit the definition and move on to the next one.
2426     EmitGlobalDefinition(D, GV);
2427 
2428     // If we found out that we need to emit more decls, do that recursively.
2429     // This has the advantage that the decls are emitted in a DFS and related
2430     // ones are close together, which is convenient for testing.
2431     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2432       EmitDeferred();
2433       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2434     }
2435   }
2436 }
2437 
EmitVTablesOpportunistically()2438 void CodeGenModule::EmitVTablesOpportunistically() {
2439   // Try to emit external vtables as available_externally if they have emitted
2440   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2441   // is not allowed to create new references to things that need to be emitted
2442   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2443 
2444   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2445          && "Only emit opportunistic vtables with optimizations");
2446 
2447   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2448     assert(getVTables().isVTableExternal(RD) &&
2449            "This queue should only contain external vtables");
2450     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2451       VTables.GenerateClassData(RD);
2452   }
2453   OpportunisticVTables.clear();
2454 }
2455 
EmitGlobalAnnotations()2456 void CodeGenModule::EmitGlobalAnnotations() {
2457   if (Annotations.empty())
2458     return;
2459 
2460   // Create a new global variable for the ConstantStruct in the Module.
2461   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2462     Annotations[0]->getType(), Annotations.size()), Annotations);
2463   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2464                                       llvm::GlobalValue::AppendingLinkage,
2465                                       Array, "llvm.global.annotations");
2466   gv->setSection(AnnotationSection);
2467 }
2468 
EmitAnnotationString(StringRef Str)2469 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2470   llvm::Constant *&AStr = AnnotationStrings[Str];
2471   if (AStr)
2472     return AStr;
2473 
2474   // Not found yet, create a new global.
2475   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2476   auto *gv =
2477       new llvm::GlobalVariable(getModule(), s->getType(), true,
2478                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2479   gv->setSection(AnnotationSection);
2480   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2481   AStr = gv;
2482   return gv;
2483 }
2484 
EmitAnnotationUnit(SourceLocation Loc)2485 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2486   SourceManager &SM = getContext().getSourceManager();
2487   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2488   if (PLoc.isValid())
2489     return EmitAnnotationString(PLoc.getFilename());
2490   return EmitAnnotationString(SM.getBufferName(Loc));
2491 }
2492 
EmitAnnotationLineNo(SourceLocation L)2493 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2494   SourceManager &SM = getContext().getSourceManager();
2495   PresumedLoc PLoc = SM.getPresumedLoc(L);
2496   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2497     SM.getExpansionLineNumber(L);
2498   return llvm::ConstantInt::get(Int32Ty, LineNo);
2499 }
2500 
EmitAnnotationArgs(const AnnotateAttr * Attr)2501 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2502   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2503   if (Exprs.empty())
2504     return llvm::ConstantPointerNull::get(Int8PtrTy);
2505 
2506   llvm::FoldingSetNodeID ID;
2507   for (Expr *E : Exprs) {
2508     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2509   }
2510   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2511   if (Lookup)
2512     return Lookup;
2513 
2514   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2515   LLVMArgs.reserve(Exprs.size());
2516   ConstantEmitter ConstEmiter(*this);
2517   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2518     const auto *CE = cast<clang::ConstantExpr>(E);
2519     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2520                                     CE->getType());
2521   });
2522   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2523   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2524                                       llvm::GlobalValue::PrivateLinkage, Struct,
2525                                       ".args");
2526   GV->setSection(AnnotationSection);
2527   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2528   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2529 
2530   Lookup = Bitcasted;
2531   return Bitcasted;
2532 }
2533 
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)2534 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2535                                                 const AnnotateAttr *AA,
2536                                                 SourceLocation L) {
2537   // Get the globals for file name, annotation, and the line number.
2538   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2539                  *UnitGV = EmitAnnotationUnit(L),
2540                  *LineNoCst = EmitAnnotationLineNo(L),
2541                  *Args = EmitAnnotationArgs(AA);
2542 
2543   llvm::Constant *ASZeroGV = GV;
2544   if (GV->getAddressSpace() != 0) {
2545     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2546                    GV, GV->getValueType()->getPointerTo(0));
2547   }
2548 
2549   // Create the ConstantStruct for the global annotation.
2550   llvm::Constant *Fields[] = {
2551       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2552       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2553       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2554       LineNoCst,
2555       Args,
2556   };
2557   return llvm::ConstantStruct::getAnon(Fields);
2558 }
2559 
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)2560 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2561                                          llvm::GlobalValue *GV) {
2562   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2563   // Get the struct elements for these annotations.
2564   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2565     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2566 }
2567 
isInNoSanitizeList(SanitizerMask Kind,llvm::Function * Fn,SourceLocation Loc) const2568 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2569                                        SourceLocation Loc) const {
2570   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2571   // NoSanitize by function name.
2572   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2573     return true;
2574   // NoSanitize by location.
2575   if (Loc.isValid())
2576     return NoSanitizeL.containsLocation(Kind, Loc);
2577   // If location is unknown, this may be a compiler-generated function. Assume
2578   // it's located in the main file.
2579   auto &SM = Context.getSourceManager();
2580   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2581     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2582   }
2583   return false;
2584 }
2585 
isInNoSanitizeList(llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const2586 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2587                                        SourceLocation Loc, QualType Ty,
2588                                        StringRef Category) const {
2589   // For now globals can be ignored only in ASan and KASan.
2590   const SanitizerMask EnabledAsanMask =
2591       LangOpts.Sanitize.Mask &
2592       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2593        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2594        SanitizerKind::MemTag);
2595   if (!EnabledAsanMask)
2596     return false;
2597   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2598   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2599     return true;
2600   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2601     return true;
2602   // Check global type.
2603   if (!Ty.isNull()) {
2604     // Drill down the array types: if global variable of a fixed type is
2605     // not sanitized, we also don't instrument arrays of them.
2606     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2607       Ty = AT->getElementType();
2608     Ty = Ty.getCanonicalType().getUnqualifiedType();
2609     // Only record types (classes, structs etc.) are ignored.
2610     if (Ty->isRecordType()) {
2611       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2612       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2613         return true;
2614     }
2615   }
2616   return false;
2617 }
2618 
imbueXRayAttrs(llvm::Function * Fn,SourceLocation Loc,StringRef Category) const2619 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2620                                    StringRef Category) const {
2621   const auto &XRayFilter = getContext().getXRayFilter();
2622   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2623   auto Attr = ImbueAttr::NONE;
2624   if (Loc.isValid())
2625     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2626   if (Attr == ImbueAttr::NONE)
2627     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2628   switch (Attr) {
2629   case ImbueAttr::NONE:
2630     return false;
2631   case ImbueAttr::ALWAYS:
2632     Fn->addFnAttr("function-instrument", "xray-always");
2633     break;
2634   case ImbueAttr::ALWAYS_ARG1:
2635     Fn->addFnAttr("function-instrument", "xray-always");
2636     Fn->addFnAttr("xray-log-args", "1");
2637     break;
2638   case ImbueAttr::NEVER:
2639     Fn->addFnAttr("function-instrument", "xray-never");
2640     break;
2641   }
2642   return true;
2643 }
2644 
isProfileInstrExcluded(llvm::Function * Fn,SourceLocation Loc) const2645 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2646                                            SourceLocation Loc) const {
2647   const auto &ProfileList = getContext().getProfileList();
2648   // If the profile list is empty, then instrument everything.
2649   if (ProfileList.isEmpty())
2650     return false;
2651   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2652   // First, check the function name.
2653   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2654   if (V.hasValue())
2655     return *V;
2656   // Next, check the source location.
2657   if (Loc.isValid()) {
2658     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2659     if (V.hasValue())
2660       return *V;
2661   }
2662   // If location is unknown, this may be a compiler-generated function. Assume
2663   // it's located in the main file.
2664   auto &SM = Context.getSourceManager();
2665   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2666     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2667     if (V.hasValue())
2668       return *V;
2669   }
2670   return ProfileList.getDefault();
2671 }
2672 
MustBeEmitted(const ValueDecl * Global)2673 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2674   // Never defer when EmitAllDecls is specified.
2675   if (LangOpts.EmitAllDecls)
2676     return true;
2677 
2678   if (CodeGenOpts.KeepStaticConsts) {
2679     const auto *VD = dyn_cast<VarDecl>(Global);
2680     if (VD && VD->getType().isConstQualified() &&
2681         VD->getStorageDuration() == SD_Static)
2682       return true;
2683   }
2684 
2685   return getContext().DeclMustBeEmitted(Global);
2686 }
2687 
MayBeEmittedEagerly(const ValueDecl * Global)2688 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2689   // In OpenMP 5.0 variables and function may be marked as
2690   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2691   // that they must be emitted on the host/device. To be sure we need to have
2692   // seen a declare target with an explicit mentioning of the function, we know
2693   // we have if the level of the declare target attribute is -1. Note that we
2694   // check somewhere else if we should emit this at all.
2695   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2696     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2697         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2698     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2699       return false;
2700   }
2701 
2702   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2703     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2704       // Implicit template instantiations may change linkage if they are later
2705       // explicitly instantiated, so they should not be emitted eagerly.
2706       return false;
2707   }
2708   if (const auto *VD = dyn_cast<VarDecl>(Global))
2709     if (Context.getInlineVariableDefinitionKind(VD) ==
2710         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2711       // A definition of an inline constexpr static data member may change
2712       // linkage later if it's redeclared outside the class.
2713       return false;
2714   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2715   // codegen for global variables, because they may be marked as threadprivate.
2716   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2717       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2718       !isTypeConstant(Global->getType(), false) &&
2719       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2720     return false;
2721 
2722   return true;
2723 }
2724 
GetAddrOfMSGuidDecl(const MSGuidDecl * GD)2725 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2726   StringRef Name = getMangledName(GD);
2727 
2728   // The UUID descriptor should be pointer aligned.
2729   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2730 
2731   // Look for an existing global.
2732   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2733     return ConstantAddress(GV, Alignment);
2734 
2735   ConstantEmitter Emitter(*this);
2736   llvm::Constant *Init;
2737 
2738   APValue &V = GD->getAsAPValue();
2739   if (!V.isAbsent()) {
2740     // If possible, emit the APValue version of the initializer. In particular,
2741     // this gets the type of the constant right.
2742     Init = Emitter.emitForInitializer(
2743         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2744   } else {
2745     // As a fallback, directly construct the constant.
2746     // FIXME: This may get padding wrong under esoteric struct layout rules.
2747     // MSVC appears to create a complete type 'struct __s_GUID' that it
2748     // presumably uses to represent these constants.
2749     MSGuidDecl::Parts Parts = GD->getParts();
2750     llvm::Constant *Fields[4] = {
2751         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2752         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2753         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2754         llvm::ConstantDataArray::getRaw(
2755             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2756             Int8Ty)};
2757     Init = llvm::ConstantStruct::getAnon(Fields);
2758   }
2759 
2760   auto *GV = new llvm::GlobalVariable(
2761       getModule(), Init->getType(),
2762       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2763   if (supportsCOMDAT())
2764     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2765   setDSOLocal(GV);
2766 
2767   llvm::Constant *Addr = GV;
2768   if (!V.isAbsent()) {
2769     Emitter.finalize(GV);
2770   } else {
2771     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2772     Addr = llvm::ConstantExpr::getBitCast(
2773         GV, Ty->getPointerTo(GV->getAddressSpace()));
2774   }
2775   return ConstantAddress(Addr, Alignment);
2776 }
2777 
GetAddrOfTemplateParamObject(const TemplateParamObjectDecl * TPO)2778 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2779     const TemplateParamObjectDecl *TPO) {
2780   StringRef Name = getMangledName(TPO);
2781   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2782 
2783   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2784     return ConstantAddress(GV, Alignment);
2785 
2786   ConstantEmitter Emitter(*this);
2787   llvm::Constant *Init = Emitter.emitForInitializer(
2788         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2789 
2790   if (!Init) {
2791     ErrorUnsupported(TPO, "template parameter object");
2792     return ConstantAddress::invalid();
2793   }
2794 
2795   auto *GV = new llvm::GlobalVariable(
2796       getModule(), Init->getType(),
2797       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2798   if (supportsCOMDAT())
2799     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2800   Emitter.finalize(GV);
2801 
2802   return ConstantAddress(GV, Alignment);
2803 }
2804 
GetWeakRefReference(const ValueDecl * VD)2805 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2806   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2807   assert(AA && "No alias?");
2808 
2809   CharUnits Alignment = getContext().getDeclAlign(VD);
2810   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2811 
2812   // See if there is already something with the target's name in the module.
2813   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2814   if (Entry) {
2815     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2816     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2817     return ConstantAddress(Ptr, Alignment);
2818   }
2819 
2820   llvm::Constant *Aliasee;
2821   if (isa<llvm::FunctionType>(DeclTy))
2822     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2823                                       GlobalDecl(cast<FunctionDecl>(VD)),
2824                                       /*ForVTable=*/false);
2825   else
2826     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2827 
2828   auto *F = cast<llvm::GlobalValue>(Aliasee);
2829   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2830   WeakRefReferences.insert(F);
2831 
2832   return ConstantAddress(Aliasee, Alignment);
2833 }
2834 
EmitGlobal(GlobalDecl GD)2835 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2836   const auto *Global = cast<ValueDecl>(GD.getDecl());
2837 
2838   // Weak references don't produce any output by themselves.
2839   if (Global->hasAttr<WeakRefAttr>())
2840     return;
2841 
2842   // If this is an alias definition (which otherwise looks like a declaration)
2843   // emit it now.
2844   if (Global->hasAttr<AliasAttr>())
2845     return EmitAliasDefinition(GD);
2846 
2847   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2848   if (Global->hasAttr<IFuncAttr>())
2849     return emitIFuncDefinition(GD);
2850 
2851   // If this is a cpu_dispatch multiversion function, emit the resolver.
2852   if (Global->hasAttr<CPUDispatchAttr>())
2853     return emitCPUDispatchDefinition(GD);
2854 
2855   // If this is CUDA, be selective about which declarations we emit.
2856   if (LangOpts.CUDA) {
2857     if (LangOpts.CUDAIsDevice) {
2858       if (!Global->hasAttr<CUDADeviceAttr>() &&
2859           !Global->hasAttr<CUDAGlobalAttr>() &&
2860           !Global->hasAttr<CUDAConstantAttr>() &&
2861           !Global->hasAttr<CUDASharedAttr>() &&
2862           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2863           !Global->getType()->isCUDADeviceBuiltinTextureType())
2864         return;
2865     } else {
2866       // We need to emit host-side 'shadows' for all global
2867       // device-side variables because the CUDA runtime needs their
2868       // size and host-side address in order to provide access to
2869       // their device-side incarnations.
2870 
2871       // So device-only functions are the only things we skip.
2872       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2873           Global->hasAttr<CUDADeviceAttr>())
2874         return;
2875 
2876       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2877              "Expected Variable or Function");
2878     }
2879   }
2880 
2881   if (LangOpts.OpenMP) {
2882     // If this is OpenMP, check if it is legal to emit this global normally.
2883     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2884       return;
2885     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2886       if (MustBeEmitted(Global))
2887         EmitOMPDeclareReduction(DRD);
2888       return;
2889     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2890       if (MustBeEmitted(Global))
2891         EmitOMPDeclareMapper(DMD);
2892       return;
2893     }
2894   }
2895 
2896   // Ignore declarations, they will be emitted on their first use.
2897   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2898     // Forward declarations are emitted lazily on first use.
2899     if (!FD->doesThisDeclarationHaveABody()) {
2900       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2901         return;
2902 
2903       StringRef MangledName = getMangledName(GD);
2904 
2905       // Compute the function info and LLVM type.
2906       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2907       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2908 
2909       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2910                               /*DontDefer=*/false);
2911       return;
2912     }
2913   } else {
2914     const auto *VD = cast<VarDecl>(Global);
2915     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2916     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2917         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2918       if (LangOpts.OpenMP) {
2919         // Emit declaration of the must-be-emitted declare target variable.
2920         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2921                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2922           bool UnifiedMemoryEnabled =
2923               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2924           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2925               !UnifiedMemoryEnabled) {
2926             (void)GetAddrOfGlobalVar(VD);
2927           } else {
2928             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2929                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2930                      UnifiedMemoryEnabled)) &&
2931                    "Link clause or to clause with unified memory expected.");
2932             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2933           }
2934 
2935           return;
2936         }
2937       }
2938       // If this declaration may have caused an inline variable definition to
2939       // change linkage, make sure that it's emitted.
2940       if (Context.getInlineVariableDefinitionKind(VD) ==
2941           ASTContext::InlineVariableDefinitionKind::Strong)
2942         GetAddrOfGlobalVar(VD);
2943       return;
2944     }
2945   }
2946 
2947   // Defer code generation to first use when possible, e.g. if this is an inline
2948   // function. If the global must always be emitted, do it eagerly if possible
2949   // to benefit from cache locality.
2950   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2951     // Emit the definition if it can't be deferred.
2952     EmitGlobalDefinition(GD);
2953     return;
2954   }
2955 
2956   // If we're deferring emission of a C++ variable with an
2957   // initializer, remember the order in which it appeared in the file.
2958   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2959       cast<VarDecl>(Global)->hasInit()) {
2960     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2961     CXXGlobalInits.push_back(nullptr);
2962   }
2963 
2964   StringRef MangledName = getMangledName(GD);
2965   if (GetGlobalValue(MangledName) != nullptr) {
2966     // The value has already been used and should therefore be emitted.
2967     addDeferredDeclToEmit(GD);
2968   } else if (MustBeEmitted(Global)) {
2969     // The value must be emitted, but cannot be emitted eagerly.
2970     assert(!MayBeEmittedEagerly(Global));
2971     addDeferredDeclToEmit(GD);
2972   } else {
2973     // Otherwise, remember that we saw a deferred decl with this name.  The
2974     // first use of the mangled name will cause it to move into
2975     // DeferredDeclsToEmit.
2976     DeferredDecls[MangledName] = GD;
2977   }
2978 }
2979 
2980 // Check if T is a class type with a destructor that's not dllimport.
HasNonDllImportDtor(QualType T)2981 static bool HasNonDllImportDtor(QualType T) {
2982   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2983     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2984       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2985         return true;
2986 
2987   return false;
2988 }
2989 
2990 namespace {
2991   struct FunctionIsDirectlyRecursive
2992       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2993     const StringRef Name;
2994     const Builtin::Context &BI;
FunctionIsDirectlyRecursive__anon53592b1a0811::FunctionIsDirectlyRecursive2995     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2996         : Name(N), BI(C) {}
2997 
VisitCallExpr__anon53592b1a0811::FunctionIsDirectlyRecursive2998     bool VisitCallExpr(const CallExpr *E) {
2999       const FunctionDecl *FD = E->getDirectCallee();
3000       if (!FD)
3001         return false;
3002       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3003       if (Attr && Name == Attr->getLabel())
3004         return true;
3005       unsigned BuiltinID = FD->getBuiltinID();
3006       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3007         return false;
3008       StringRef BuiltinName = BI.getName(BuiltinID);
3009       if (BuiltinName.startswith("__builtin_") &&
3010           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3011         return true;
3012       }
3013       return false;
3014     }
3015 
VisitStmt__anon53592b1a0811::FunctionIsDirectlyRecursive3016     bool VisitStmt(const Stmt *S) {
3017       for (const Stmt *Child : S->children())
3018         if (Child && this->Visit(Child))
3019           return true;
3020       return false;
3021     }
3022   };
3023 
3024   // Make sure we're not referencing non-imported vars or functions.
3025   struct DLLImportFunctionVisitor
3026       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3027     bool SafeToInline = true;
3028 
shouldVisitImplicitCode__anon53592b1a0811::DLLImportFunctionVisitor3029     bool shouldVisitImplicitCode() const { return true; }
3030 
VisitVarDecl__anon53592b1a0811::DLLImportFunctionVisitor3031     bool VisitVarDecl(VarDecl *VD) {
3032       if (VD->getTLSKind()) {
3033         // A thread-local variable cannot be imported.
3034         SafeToInline = false;
3035         return SafeToInline;
3036       }
3037 
3038       // A variable definition might imply a destructor call.
3039       if (VD->isThisDeclarationADefinition())
3040         SafeToInline = !HasNonDllImportDtor(VD->getType());
3041 
3042       return SafeToInline;
3043     }
3044 
VisitCXXBindTemporaryExpr__anon53592b1a0811::DLLImportFunctionVisitor3045     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3046       if (const auto *D = E->getTemporary()->getDestructor())
3047         SafeToInline = D->hasAttr<DLLImportAttr>();
3048       return SafeToInline;
3049     }
3050 
VisitDeclRefExpr__anon53592b1a0811::DLLImportFunctionVisitor3051     bool VisitDeclRefExpr(DeclRefExpr *E) {
3052       ValueDecl *VD = E->getDecl();
3053       if (isa<FunctionDecl>(VD))
3054         SafeToInline = VD->hasAttr<DLLImportAttr>();
3055       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3056         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3057       return SafeToInline;
3058     }
3059 
VisitCXXConstructExpr__anon53592b1a0811::DLLImportFunctionVisitor3060     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3061       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3062       return SafeToInline;
3063     }
3064 
VisitCXXMemberCallExpr__anon53592b1a0811::DLLImportFunctionVisitor3065     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3066       CXXMethodDecl *M = E->getMethodDecl();
3067       if (!M) {
3068         // Call through a pointer to member function. This is safe to inline.
3069         SafeToInline = true;
3070       } else {
3071         SafeToInline = M->hasAttr<DLLImportAttr>();
3072       }
3073       return SafeToInline;
3074     }
3075 
VisitCXXDeleteExpr__anon53592b1a0811::DLLImportFunctionVisitor3076     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3077       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3078       return SafeToInline;
3079     }
3080 
VisitCXXNewExpr__anon53592b1a0811::DLLImportFunctionVisitor3081     bool VisitCXXNewExpr(CXXNewExpr *E) {
3082       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3083       return SafeToInline;
3084     }
3085   };
3086 }
3087 
3088 // isTriviallyRecursive - Check if this function calls another
3089 // decl that, because of the asm attribute or the other decl being a builtin,
3090 // ends up pointing to itself.
3091 bool
isTriviallyRecursive(const FunctionDecl * FD)3092 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3093   StringRef Name;
3094   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3095     // asm labels are a special kind of mangling we have to support.
3096     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3097     if (!Attr)
3098       return false;
3099     Name = Attr->getLabel();
3100   } else {
3101     Name = FD->getName();
3102   }
3103 
3104   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3105   const Stmt *Body = FD->getBody();
3106   return Body ? Walker.Visit(Body) : false;
3107 }
3108 
shouldEmitFunction(GlobalDecl GD)3109 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3110   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3111     return true;
3112   const auto *F = cast<FunctionDecl>(GD.getDecl());
3113   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3114     return false;
3115 
3116   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3117     // Check whether it would be safe to inline this dllimport function.
3118     DLLImportFunctionVisitor Visitor;
3119     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3120     if (!Visitor.SafeToInline)
3121       return false;
3122 
3123     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3124       // Implicit destructor invocations aren't captured in the AST, so the
3125       // check above can't see them. Check for them manually here.
3126       for (const Decl *Member : Dtor->getParent()->decls())
3127         if (isa<FieldDecl>(Member))
3128           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3129             return false;
3130       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3131         if (HasNonDllImportDtor(B.getType()))
3132           return false;
3133     }
3134   }
3135 
3136   // PR9614. Avoid cases where the source code is lying to us. An available
3137   // externally function should have an equivalent function somewhere else,
3138   // but a function that calls itself through asm label/`__builtin_` trickery is
3139   // clearly not equivalent to the real implementation.
3140   // This happens in glibc's btowc and in some configure checks.
3141   return !isTriviallyRecursive(F);
3142 }
3143 
shouldOpportunisticallyEmitVTables()3144 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3145   return CodeGenOpts.OptimizationLevel > 0;
3146 }
3147 
EmitMultiVersionFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3148 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3149                                                        llvm::GlobalValue *GV) {
3150   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3151 
3152   if (FD->isCPUSpecificMultiVersion()) {
3153     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3154     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3155       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3156     // Requires multiple emits.
3157   } else
3158     EmitGlobalFunctionDefinition(GD, GV);
3159 }
3160 
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3161 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3162   const auto *D = cast<ValueDecl>(GD.getDecl());
3163 
3164   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3165                                  Context.getSourceManager(),
3166                                  "Generating code for declaration");
3167 
3168   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3169     // At -O0, don't generate IR for functions with available_externally
3170     // linkage.
3171     if (!shouldEmitFunction(GD))
3172       return;
3173 
3174     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3175       std::string Name;
3176       llvm::raw_string_ostream OS(Name);
3177       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3178                                /*Qualified=*/true);
3179       return Name;
3180     });
3181 
3182     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3183       // Make sure to emit the definition(s) before we emit the thunks.
3184       // This is necessary for the generation of certain thunks.
3185       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3186         ABI->emitCXXStructor(GD);
3187       else if (FD->isMultiVersion())
3188         EmitMultiVersionFunctionDefinition(GD, GV);
3189       else
3190         EmitGlobalFunctionDefinition(GD, GV);
3191 
3192       if (Method->isVirtual())
3193         getVTables().EmitThunks(GD);
3194 
3195       return;
3196     }
3197 
3198     if (FD->isMultiVersion())
3199       return EmitMultiVersionFunctionDefinition(GD, GV);
3200     return EmitGlobalFunctionDefinition(GD, GV);
3201   }
3202 
3203   if (const auto *VD = dyn_cast<VarDecl>(D))
3204     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3205 
3206   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3207 }
3208 
3209 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3210                                                       llvm::Function *NewFn);
3211 
3212 static unsigned
TargetMVPriority(const TargetInfo & TI,const CodeGenFunction::MultiVersionResolverOption & RO)3213 TargetMVPriority(const TargetInfo &TI,
3214                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3215   unsigned Priority = 0;
3216   for (StringRef Feat : RO.Conditions.Features)
3217     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3218 
3219   if (!RO.Conditions.Architecture.empty())
3220     Priority = std::max(
3221         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3222   return Priority;
3223 }
3224 
emitMultiVersionFunctions()3225 void CodeGenModule::emitMultiVersionFunctions() {
3226   std::vector<GlobalDecl> MVFuncsToEmit;
3227   MultiVersionFuncs.swap(MVFuncsToEmit);
3228   for (GlobalDecl GD : MVFuncsToEmit) {
3229     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3230     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3231     getContext().forEachMultiversionedFunctionVersion(
3232         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3233           GlobalDecl CurGD{
3234               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3235           StringRef MangledName = getMangledName(CurGD);
3236           llvm::Constant *Func = GetGlobalValue(MangledName);
3237           if (!Func) {
3238             if (CurFD->isDefined()) {
3239               EmitGlobalFunctionDefinition(CurGD, nullptr);
3240               Func = GetGlobalValue(MangledName);
3241             } else {
3242               const CGFunctionInfo &FI =
3243                   getTypes().arrangeGlobalDeclaration(GD);
3244               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3245               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3246                                        /*DontDefer=*/false, ForDefinition);
3247             }
3248             assert(Func && "This should have just been created");
3249           }
3250 
3251           const auto *TA = CurFD->getAttr<TargetAttr>();
3252           llvm::SmallVector<StringRef, 8> Feats;
3253           TA->getAddedFeatures(Feats);
3254 
3255           Options.emplace_back(cast<llvm::Function>(Func),
3256                                TA->getArchitecture(), Feats);
3257         });
3258 
3259     llvm::Function *ResolverFunc;
3260     const TargetInfo &TI = getTarget();
3261 
3262     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3263       ResolverFunc = cast<llvm::Function>(
3264           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3265       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3266     } else {
3267       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3268     }
3269 
3270     if (supportsCOMDAT())
3271       ResolverFunc->setComdat(
3272           getModule().getOrInsertComdat(ResolverFunc->getName()));
3273 
3274     llvm::stable_sort(
3275         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3276                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3277           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3278         });
3279     CodeGenFunction CGF(*this);
3280     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3281   }
3282 
3283   // Ensure that any additions to the deferred decls list caused by emitting a
3284   // variant are emitted.  This can happen when the variant itself is inline and
3285   // calls a function without linkage.
3286   if (!MVFuncsToEmit.empty())
3287     EmitDeferred();
3288 
3289   // Ensure that any additions to the multiversion funcs list from either the
3290   // deferred decls or the multiversion functions themselves are emitted.
3291   if (!MultiVersionFuncs.empty())
3292     emitMultiVersionFunctions();
3293 }
3294 
emitCPUDispatchDefinition(GlobalDecl GD)3295 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3296   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3297   assert(FD && "Not a FunctionDecl?");
3298   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3299   assert(DD && "Not a cpu_dispatch Function?");
3300   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3301 
3302   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3303     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3304     DeclTy = getTypes().GetFunctionType(FInfo);
3305   }
3306 
3307   StringRef ResolverName = getMangledName(GD);
3308 
3309   llvm::Type *ResolverType;
3310   GlobalDecl ResolverGD;
3311   if (getTarget().supportsIFunc())
3312     ResolverType = llvm::FunctionType::get(
3313         llvm::PointerType::get(DeclTy,
3314                                Context.getTargetAddressSpace(FD->getType())),
3315         false);
3316   else {
3317     ResolverType = DeclTy;
3318     ResolverGD = GD;
3319   }
3320 
3321   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3322       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3323   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3324   if (supportsCOMDAT())
3325     ResolverFunc->setComdat(
3326         getModule().getOrInsertComdat(ResolverFunc->getName()));
3327 
3328   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3329   const TargetInfo &Target = getTarget();
3330   unsigned Index = 0;
3331   for (const IdentifierInfo *II : DD->cpus()) {
3332     // Get the name of the target function so we can look it up/create it.
3333     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3334                               getCPUSpecificMangling(*this, II->getName());
3335 
3336     llvm::Constant *Func = GetGlobalValue(MangledName);
3337 
3338     if (!Func) {
3339       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3340       if (ExistingDecl.getDecl() &&
3341           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3342         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3343         Func = GetGlobalValue(MangledName);
3344       } else {
3345         if (!ExistingDecl.getDecl())
3346           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3347 
3348       Func = GetOrCreateLLVMFunction(
3349           MangledName, DeclTy, ExistingDecl,
3350           /*ForVTable=*/false, /*DontDefer=*/true,
3351           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3352       }
3353     }
3354 
3355     llvm::SmallVector<StringRef, 32> Features;
3356     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3357     llvm::transform(Features, Features.begin(),
3358                     [](StringRef Str) { return Str.substr(1); });
3359     Features.erase(std::remove_if(
3360         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3361           return !Target.validateCpuSupports(Feat);
3362         }), Features.end());
3363     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3364     ++Index;
3365   }
3366 
3367   llvm::stable_sort(
3368       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3369                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3370         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3371                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3372       });
3373 
3374   // If the list contains multiple 'default' versions, such as when it contains
3375   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3376   // always run on at least a 'pentium'). We do this by deleting the 'least
3377   // advanced' (read, lowest mangling letter).
3378   while (Options.size() > 1 &&
3379          CodeGenFunction::GetX86CpuSupportsMask(
3380              (Options.end() - 2)->Conditions.Features) == 0) {
3381     StringRef LHSName = (Options.end() - 2)->Function->getName();
3382     StringRef RHSName = (Options.end() - 1)->Function->getName();
3383     if (LHSName.compare(RHSName) < 0)
3384       Options.erase(Options.end() - 2);
3385     else
3386       Options.erase(Options.end() - 1);
3387   }
3388 
3389   CodeGenFunction CGF(*this);
3390   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3391 
3392   if (getTarget().supportsIFunc()) {
3393     std::string AliasName = getMangledNameImpl(
3394         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3395     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3396     if (!AliasFunc) {
3397       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3398           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3399           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3400       auto *GA = llvm::GlobalAlias::create(
3401          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3402       GA->setLinkage(llvm::Function::WeakODRLinkage);
3403       SetCommonAttributes(GD, GA);
3404     }
3405   }
3406 }
3407 
3408 /// If a dispatcher for the specified mangled name is not in the module, create
3409 /// and return an llvm Function with the specified type.
GetOrCreateMultiVersionResolver(GlobalDecl GD,llvm::Type * DeclTy,const FunctionDecl * FD)3410 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3411     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3412   std::string MangledName =
3413       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3414 
3415   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3416   // a separate resolver).
3417   std::string ResolverName = MangledName;
3418   if (getTarget().supportsIFunc())
3419     ResolverName += ".ifunc";
3420   else if (FD->isTargetMultiVersion())
3421     ResolverName += ".resolver";
3422 
3423   // If this already exists, just return that one.
3424   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3425     return ResolverGV;
3426 
3427   // Since this is the first time we've created this IFunc, make sure
3428   // that we put this multiversioned function into the list to be
3429   // replaced later if necessary (target multiversioning only).
3430   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3431     MultiVersionFuncs.push_back(GD);
3432 
3433   if (getTarget().supportsIFunc()) {
3434     llvm::Type *ResolverType = llvm::FunctionType::get(
3435         llvm::PointerType::get(
3436             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3437         false);
3438     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3439         MangledName + ".resolver", ResolverType, GlobalDecl{},
3440         /*ForVTable=*/false);
3441     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3442         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3443     GIF->setName(ResolverName);
3444     SetCommonAttributes(FD, GIF);
3445 
3446     return GIF;
3447   }
3448 
3449   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3450       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3451   assert(isa<llvm::GlobalValue>(Resolver) &&
3452          "Resolver should be created for the first time");
3453   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3454   return Resolver;
3455 }
3456 
3457 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3458 /// module, create and return an llvm Function with the specified type. If there
3459 /// is something in the module with the specified name, return it potentially
3460 /// bitcasted to the right type.
3461 ///
3462 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3463 /// to set the attributes on the function when it is first created.
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeList ExtraAttrs,ForDefinition_t IsForDefinition)3464 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3465     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3466     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3467     ForDefinition_t IsForDefinition) {
3468   const Decl *D = GD.getDecl();
3469 
3470   // Any attempts to use a MultiVersion function should result in retrieving
3471   // the iFunc instead. Name Mangling will handle the rest of the changes.
3472   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3473     // For the device mark the function as one that should be emitted.
3474     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3475         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3476         !DontDefer && !IsForDefinition) {
3477       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3478         GlobalDecl GDDef;
3479         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3480           GDDef = GlobalDecl(CD, GD.getCtorType());
3481         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3482           GDDef = GlobalDecl(DD, GD.getDtorType());
3483         else
3484           GDDef = GlobalDecl(FDDef);
3485         EmitGlobal(GDDef);
3486       }
3487     }
3488 
3489     if (FD->isMultiVersion()) {
3490       if (FD->hasAttr<TargetAttr>())
3491         UpdateMultiVersionNames(GD, FD);
3492       if (!IsForDefinition)
3493         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3494     }
3495   }
3496 
3497   // Lookup the entry, lazily creating it if necessary.
3498   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3499   if (Entry) {
3500     if (WeakRefReferences.erase(Entry)) {
3501       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3502       if (FD && !FD->hasAttr<WeakAttr>())
3503         Entry->setLinkage(llvm::Function::ExternalLinkage);
3504     }
3505 
3506     // Handle dropped DLL attributes.
3507     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3508       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3509       setDSOLocal(Entry);
3510     }
3511 
3512     // If there are two attempts to define the same mangled name, issue an
3513     // error.
3514     if (IsForDefinition && !Entry->isDeclaration()) {
3515       GlobalDecl OtherGD;
3516       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3517       // to make sure that we issue an error only once.
3518       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3519           (GD.getCanonicalDecl().getDecl() !=
3520            OtherGD.getCanonicalDecl().getDecl()) &&
3521           DiagnosedConflictingDefinitions.insert(GD).second) {
3522         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3523             << MangledName;
3524         getDiags().Report(OtherGD.getDecl()->getLocation(),
3525                           diag::note_previous_definition);
3526       }
3527     }
3528 
3529     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3530         (Entry->getValueType() == Ty)) {
3531       return Entry;
3532     }
3533 
3534     // Make sure the result is of the correct type.
3535     // (If function is requested for a definition, we always need to create a new
3536     // function, not just return a bitcast.)
3537     if (!IsForDefinition)
3538       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3539   }
3540 
3541   // This function doesn't have a complete type (for example, the return
3542   // type is an incomplete struct). Use a fake type instead, and make
3543   // sure not to try to set attributes.
3544   bool IsIncompleteFunction = false;
3545 
3546   llvm::FunctionType *FTy;
3547   if (isa<llvm::FunctionType>(Ty)) {
3548     FTy = cast<llvm::FunctionType>(Ty);
3549   } else {
3550     FTy = llvm::FunctionType::get(VoidTy, false);
3551     IsIncompleteFunction = true;
3552   }
3553 
3554   llvm::Function *F =
3555       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3556                              Entry ? StringRef() : MangledName, &getModule());
3557 
3558   // If we already created a function with the same mangled name (but different
3559   // type) before, take its name and add it to the list of functions to be
3560   // replaced with F at the end of CodeGen.
3561   //
3562   // This happens if there is a prototype for a function (e.g. "int f()") and
3563   // then a definition of a different type (e.g. "int f(int x)").
3564   if (Entry) {
3565     F->takeName(Entry);
3566 
3567     // This might be an implementation of a function without a prototype, in
3568     // which case, try to do special replacement of calls which match the new
3569     // prototype.  The really key thing here is that we also potentially drop
3570     // arguments from the call site so as to make a direct call, which makes the
3571     // inliner happier and suppresses a number of optimizer warnings (!) about
3572     // dropping arguments.
3573     if (!Entry->use_empty()) {
3574       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3575       Entry->removeDeadConstantUsers();
3576     }
3577 
3578     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3579         F, Entry->getValueType()->getPointerTo());
3580     addGlobalValReplacement(Entry, BC);
3581   }
3582 
3583   assert(F->getName() == MangledName && "name was uniqued!");
3584   if (D)
3585     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3586   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3587     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3588     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3589   }
3590 
3591   if (!DontDefer) {
3592     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3593     // each other bottoming out with the base dtor.  Therefore we emit non-base
3594     // dtors on usage, even if there is no dtor definition in the TU.
3595     if (D && isa<CXXDestructorDecl>(D) &&
3596         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3597                                            GD.getDtorType()))
3598       addDeferredDeclToEmit(GD);
3599 
3600     // This is the first use or definition of a mangled name.  If there is a
3601     // deferred decl with this name, remember that we need to emit it at the end
3602     // of the file.
3603     auto DDI = DeferredDecls.find(MangledName);
3604     if (DDI != DeferredDecls.end()) {
3605       // Move the potentially referenced deferred decl to the
3606       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3607       // don't need it anymore).
3608       addDeferredDeclToEmit(DDI->second);
3609       DeferredDecls.erase(DDI);
3610 
3611       // Otherwise, there are cases we have to worry about where we're
3612       // using a declaration for which we must emit a definition but where
3613       // we might not find a top-level definition:
3614       //   - member functions defined inline in their classes
3615       //   - friend functions defined inline in some class
3616       //   - special member functions with implicit definitions
3617       // If we ever change our AST traversal to walk into class methods,
3618       // this will be unnecessary.
3619       //
3620       // We also don't emit a definition for a function if it's going to be an
3621       // entry in a vtable, unless it's already marked as used.
3622     } else if (getLangOpts().CPlusPlus && D) {
3623       // Look for a declaration that's lexically in a record.
3624       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3625            FD = FD->getPreviousDecl()) {
3626         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3627           if (FD->doesThisDeclarationHaveABody()) {
3628             addDeferredDeclToEmit(GD.getWithDecl(FD));
3629             break;
3630           }
3631         }
3632       }
3633     }
3634   }
3635 
3636   // Make sure the result is of the requested type.
3637   if (!IsIncompleteFunction) {
3638     assert(F->getFunctionType() == Ty);
3639     return F;
3640   }
3641 
3642   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3643   return llvm::ConstantExpr::getBitCast(F, PTy);
3644 }
3645 
3646 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3647 /// non-null, then this function will use the specified type if it has to
3648 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,ForDefinition_t IsForDefinition)3649 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3650                                                  llvm::Type *Ty,
3651                                                  bool ForVTable,
3652                                                  bool DontDefer,
3653                                               ForDefinition_t IsForDefinition) {
3654   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3655          "consteval function should never be emitted");
3656   // If there was no specific requested type, just convert it now.
3657   if (!Ty) {
3658     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3659     Ty = getTypes().ConvertType(FD->getType());
3660   }
3661 
3662   // Devirtualized destructor calls may come through here instead of via
3663   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3664   // of the complete destructor when necessary.
3665   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3666     if (getTarget().getCXXABI().isMicrosoft() &&
3667         GD.getDtorType() == Dtor_Complete &&
3668         DD->getParent()->getNumVBases() == 0)
3669       GD = GlobalDecl(DD, Dtor_Base);
3670   }
3671 
3672   StringRef MangledName = getMangledName(GD);
3673   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3674                                     /*IsThunk=*/false, llvm::AttributeList(),
3675                                     IsForDefinition);
3676   // Returns kernel handle for HIP kernel stub function.
3677   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3678       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3679     auto *Handle = getCUDARuntime().getKernelHandle(
3680         cast<llvm::Function>(F->stripPointerCasts()), GD);
3681     if (IsForDefinition)
3682       return F;
3683     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3684   }
3685   return F;
3686 }
3687 
3688 static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext & C,StringRef Name)3689 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3690   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3691   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3692 
3693   IdentifierInfo &CII = C.Idents.get(Name);
3694   for (const auto *Result : DC->lookup(&CII))
3695     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3696       return FD;
3697 
3698   if (!C.getLangOpts().CPlusPlus)
3699     return nullptr;
3700 
3701   // Demangle the premangled name from getTerminateFn()
3702   IdentifierInfo &CXXII =
3703       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3704           ? C.Idents.get("terminate")
3705           : C.Idents.get(Name);
3706 
3707   for (const auto &N : {"__cxxabiv1", "std"}) {
3708     IdentifierInfo &NS = C.Idents.get(N);
3709     for (const auto *Result : DC->lookup(&NS)) {
3710       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3711       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3712         for (const auto *Result : LSD->lookup(&NS))
3713           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3714             break;
3715 
3716       if (ND)
3717         for (const auto *Result : ND->lookup(&CXXII))
3718           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3719             return FD;
3720     }
3721   }
3722 
3723   return nullptr;
3724 }
3725 
3726 /// CreateRuntimeFunction - Create a new runtime function with the specified
3727 /// type and name.
3728 llvm::FunctionCallee
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeList ExtraAttrs,bool Local,bool AssumeConvergent)3729 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3730                                      llvm::AttributeList ExtraAttrs, bool Local,
3731                                      bool AssumeConvergent) {
3732   if (AssumeConvergent) {
3733     ExtraAttrs =
3734         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3735                                 llvm::Attribute::Convergent);
3736   }
3737 
3738   llvm::Constant *C =
3739       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3740                               /*DontDefer=*/false, /*IsThunk=*/false,
3741                               ExtraAttrs);
3742 
3743   if (auto *F = dyn_cast<llvm::Function>(C)) {
3744     if (F->empty()) {
3745       F->setCallingConv(getRuntimeCC());
3746 
3747       // In Windows Itanium environments, try to mark runtime functions
3748       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3749       // will link their standard library statically or dynamically. Marking
3750       // functions imported when they are not imported can cause linker errors
3751       // and warnings.
3752       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3753           !getCodeGenOpts().LTOVisibilityPublicStd) {
3754         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3755         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3756           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3757           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3758         }
3759       }
3760       setDSOLocal(F);
3761     }
3762   }
3763 
3764   return {FTy, C};
3765 }
3766 
3767 /// isTypeConstant - Determine whether an object of this type can be emitted
3768 /// as a constant.
3769 ///
3770 /// If ExcludeCtor is true, the duration when the object's constructor runs
3771 /// will not be considered. The caller will need to verify that the object is
3772 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)3773 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3774   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3775     return false;
3776 
3777   if (Context.getLangOpts().CPlusPlus) {
3778     if (const CXXRecordDecl *Record
3779           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3780       return ExcludeCtor && !Record->hasMutableFields() &&
3781              Record->hasTrivialDestructor();
3782   }
3783 
3784   return true;
3785 }
3786 
3787 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3788 /// create and return an llvm GlobalVariable with the specified type and address
3789 /// space. If there is something in the module with the specified name, return
3790 /// it potentially bitcasted to the right type.
3791 ///
3792 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3793 /// to set the attributes on the global when it is first created.
3794 ///
3795 /// If IsForDefinition is true, it is guaranteed that an actual global with
3796 /// type Ty will be returned, not conversion of a variable with the same
3797 /// mangled name but some other type.
3798 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::Type * Ty,unsigned AddrSpace,const VarDecl * D,ForDefinition_t IsForDefinition)3799 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3800                                      unsigned AddrSpace, const VarDecl *D,
3801                                      ForDefinition_t IsForDefinition) {
3802   // Lookup the entry, lazily creating it if necessary.
3803   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3804   if (Entry) {
3805     if (WeakRefReferences.erase(Entry)) {
3806       if (D && !D->hasAttr<WeakAttr>())
3807         Entry->setLinkage(llvm::Function::ExternalLinkage);
3808     }
3809 
3810     // Handle dropped DLL attributes.
3811     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3812       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3813 
3814     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3815       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3816 
3817     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3818       return Entry;
3819 
3820     // If there are two attempts to define the same mangled name, issue an
3821     // error.
3822     if (IsForDefinition && !Entry->isDeclaration()) {
3823       GlobalDecl OtherGD;
3824       const VarDecl *OtherD;
3825 
3826       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3827       // to make sure that we issue an error only once.
3828       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3829           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3830           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3831           OtherD->hasInit() &&
3832           DiagnosedConflictingDefinitions.insert(D).second) {
3833         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3834             << MangledName;
3835         getDiags().Report(OtherGD.getDecl()->getLocation(),
3836                           diag::note_previous_definition);
3837       }
3838     }
3839 
3840     // Make sure the result is of the correct type.
3841     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3842       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3843                                                   Ty->getPointerTo(AddrSpace));
3844     }
3845 
3846     // (If global is requested for a definition, we always need to create a new
3847     // global, not just return a bitcast.)
3848     if (!IsForDefinition)
3849       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3850   }
3851 
3852   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3853   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3854 
3855   auto *GV = new llvm::GlobalVariable(
3856       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3857       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3858       TargetAddrSpace);
3859 
3860   // If we already created a global with the same mangled name (but different
3861   // type) before, take its name and remove it from its parent.
3862   if (Entry) {
3863     GV->takeName(Entry);
3864 
3865     if (!Entry->use_empty()) {
3866       llvm::Constant *NewPtrForOldDecl =
3867           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3868       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3869     }
3870 
3871     Entry->eraseFromParent();
3872   }
3873 
3874   // This is the first use or definition of a mangled name.  If there is a
3875   // deferred decl with this name, remember that we need to emit it at the end
3876   // of the file.
3877   auto DDI = DeferredDecls.find(MangledName);
3878   if (DDI != DeferredDecls.end()) {
3879     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3880     // list, and remove it from DeferredDecls (since we don't need it anymore).
3881     addDeferredDeclToEmit(DDI->second);
3882     DeferredDecls.erase(DDI);
3883   }
3884 
3885   // Handle things which are present even on external declarations.
3886   if (D) {
3887     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3888       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3889 
3890     // FIXME: This code is overly simple and should be merged with other global
3891     // handling.
3892     GV->setConstant(isTypeConstant(D->getType(), false));
3893 
3894     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3895 
3896     setLinkageForGV(GV, D);
3897 
3898     if (D->getTLSKind()) {
3899       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3900         CXXThreadLocals.push_back(D);
3901       setTLSMode(GV, *D);
3902     }
3903 
3904     setGVProperties(GV, D);
3905 
3906     // If required by the ABI, treat declarations of static data members with
3907     // inline initializers as definitions.
3908     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3909       EmitGlobalVarDefinition(D);
3910     }
3911 
3912     // Emit section information for extern variables.
3913     if (D->hasExternalStorage()) {
3914       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3915         GV->setSection(SA->getName());
3916     }
3917 
3918     // Handle XCore specific ABI requirements.
3919     if (getTriple().getArch() == llvm::Triple::xcore &&
3920         D->getLanguageLinkage() == CLanguageLinkage &&
3921         D->getType().isConstant(Context) &&
3922         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3923       GV->setSection(".cp.rodata");
3924 
3925     // Check if we a have a const declaration with an initializer, we may be
3926     // able to emit it as available_externally to expose it's value to the
3927     // optimizer.
3928     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3929         D->getType().isConstQualified() && !GV->hasInitializer() &&
3930         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3931       const auto *Record =
3932           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3933       bool HasMutableFields = Record && Record->hasMutableFields();
3934       if (!HasMutableFields) {
3935         const VarDecl *InitDecl;
3936         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3937         if (InitExpr) {
3938           ConstantEmitter emitter(*this);
3939           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3940           if (Init) {
3941             auto *InitType = Init->getType();
3942             if (GV->getValueType() != InitType) {
3943               // The type of the initializer does not match the definition.
3944               // This happens when an initializer has a different type from
3945               // the type of the global (because of padding at the end of a
3946               // structure for instance).
3947               GV->setName(StringRef());
3948               // Make a new global with the correct type, this is now guaranteed
3949               // to work.
3950               auto *NewGV = cast<llvm::GlobalVariable>(
3951                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3952                       ->stripPointerCasts());
3953 
3954               // Erase the old global, since it is no longer used.
3955               GV->eraseFromParent();
3956               GV = NewGV;
3957             } else {
3958               GV->setInitializer(Init);
3959               GV->setConstant(true);
3960               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3961             }
3962             emitter.finalize(GV);
3963           }
3964         }
3965       }
3966     }
3967   }
3968 
3969   if (GV->isDeclaration()) {
3970     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3971     // External HIP managed variables needed to be recorded for transformation
3972     // in both device and host compilations.
3973     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3974         D->hasExternalStorage())
3975       getCUDARuntime().handleVarRegistration(D, *GV);
3976   }
3977 
3978   LangAS ExpectedAS =
3979       D ? D->getType().getAddressSpace()
3980         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3981   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3982   if (DAddrSpace != ExpectedAS) {
3983     return getTargetCodeGenInfo().performAddrSpaceCast(
3984         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3985   }
3986 
3987   return GV;
3988 }
3989 
3990 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,ForDefinition_t IsForDefinition)3991 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3992   const Decl *D = GD.getDecl();
3993 
3994   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3995     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3996                                 /*DontDefer=*/false, IsForDefinition);
3997 
3998   if (isa<CXXMethodDecl>(D)) {
3999     auto FInfo =
4000         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4001     auto Ty = getTypes().GetFunctionType(*FInfo);
4002     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4003                              IsForDefinition);
4004   }
4005 
4006   if (isa<FunctionDecl>(D)) {
4007     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4008     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4009     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4010                              IsForDefinition);
4011   }
4012 
4013   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4014 }
4015 
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage,unsigned Alignment)4016 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4017     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4018     unsigned Alignment) {
4019   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4020   llvm::GlobalVariable *OldGV = nullptr;
4021 
4022   if (GV) {
4023     // Check if the variable has the right type.
4024     if (GV->getValueType() == Ty)
4025       return GV;
4026 
4027     // Because C++ name mangling, the only way we can end up with an already
4028     // existing global with the same name is if it has been declared extern "C".
4029     assert(GV->isDeclaration() && "Declaration has wrong type!");
4030     OldGV = GV;
4031   }
4032 
4033   // Create a new variable.
4034   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4035                                 Linkage, nullptr, Name);
4036 
4037   if (OldGV) {
4038     // Replace occurrences of the old variable if needed.
4039     GV->takeName(OldGV);
4040 
4041     if (!OldGV->use_empty()) {
4042       llvm::Constant *NewPtrForOldDecl =
4043       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4044       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4045     }
4046 
4047     OldGV->eraseFromParent();
4048   }
4049 
4050   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4051       !GV->hasAvailableExternallyLinkage())
4052     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4053 
4054   GV->setAlignment(llvm::MaybeAlign(Alignment));
4055 
4056   return GV;
4057 }
4058 
4059 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4060 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4061 /// then it will be created with the specified type instead of whatever the
4062 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4063 /// that an actual global with type Ty will be returned, not conversion of a
4064 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,ForDefinition_t IsForDefinition)4065 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4066                                                   llvm::Type *Ty,
4067                                            ForDefinition_t IsForDefinition) {
4068   assert(D->hasGlobalStorage() && "Not a global variable");
4069   QualType ASTTy = D->getType();
4070   if (!Ty)
4071     Ty = getTypes().ConvertTypeForMem(ASTTy);
4072 
4073   StringRef MangledName = getMangledName(D);
4074   return GetOrCreateLLVMGlobal(MangledName, Ty,
4075                                getContext().getTargetAddressSpace(ASTTy), D,
4076                                IsForDefinition);
4077 }
4078 
4079 /// CreateRuntimeVariable - Create a new runtime global variable with the
4080 /// specified type and name.
4081 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)4082 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4083                                      StringRef Name) {
4084   auto AddrSpace =
4085       getContext().getLangOpts().OpenCL
4086           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4087           : 0;
4088   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4089   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4090   return Ret;
4091 }
4092 
EmitTentativeDefinition(const VarDecl * D)4093 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4094   assert(!D->getInit() && "Cannot emit definite definitions here!");
4095 
4096   StringRef MangledName = getMangledName(D);
4097   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4098 
4099   // We already have a definition, not declaration, with the same mangled name.
4100   // Emitting of declaration is not required (and actually overwrites emitted
4101   // definition).
4102   if (GV && !GV->isDeclaration())
4103     return;
4104 
4105   // If we have not seen a reference to this variable yet, place it into the
4106   // deferred declarations table to be emitted if needed later.
4107   if (!MustBeEmitted(D) && !GV) {
4108       DeferredDecls[MangledName] = D;
4109       return;
4110   }
4111 
4112   // The tentative definition is the only definition.
4113   EmitGlobalVarDefinition(D);
4114 }
4115 
EmitExternalDeclaration(const VarDecl * D)4116 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4117   EmitExternalVarDeclaration(D);
4118 }
4119 
GetTargetTypeStoreSize(llvm::Type * Ty) const4120 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4121   return Context.toCharUnitsFromBits(
4122       getDataLayout().getTypeStoreSizeInBits(Ty));
4123 }
4124 
GetGlobalVarAddressSpace(const VarDecl * D)4125 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4126   LangAS AddrSpace = LangAS::Default;
4127   if (LangOpts.OpenCL) {
4128     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4129     assert(AddrSpace == LangAS::opencl_global ||
4130            AddrSpace == LangAS::opencl_global_device ||
4131            AddrSpace == LangAS::opencl_global_host ||
4132            AddrSpace == LangAS::opencl_constant ||
4133            AddrSpace == LangAS::opencl_local ||
4134            AddrSpace >= LangAS::FirstTargetAddressSpace);
4135     return AddrSpace;
4136   }
4137 
4138   if (LangOpts.SYCLIsDevice &&
4139       (!D || D->getType().getAddressSpace() == LangAS::Default))
4140     return LangAS::sycl_global;
4141 
4142   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4143     if (D && D->hasAttr<CUDAConstantAttr>())
4144       return LangAS::cuda_constant;
4145     else if (D && D->hasAttr<CUDASharedAttr>())
4146       return LangAS::cuda_shared;
4147     else if (D && D->hasAttr<CUDADeviceAttr>())
4148       return LangAS::cuda_device;
4149     else if (D && D->getType().isConstQualified())
4150       return LangAS::cuda_constant;
4151     else
4152       return LangAS::cuda_device;
4153   }
4154 
4155   if (LangOpts.OpenMP) {
4156     LangAS AS;
4157     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4158       return AS;
4159   }
4160   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4161 }
4162 
GetGlobalConstantAddressSpace() const4163 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4164   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4165   if (LangOpts.OpenCL)
4166     return LangAS::opencl_constant;
4167   if (LangOpts.SYCLIsDevice)
4168     return LangAS::sycl_global;
4169   if (auto AS = getTarget().getConstantAddressSpace())
4170     return AS.getValue();
4171   return LangAS::Default;
4172 }
4173 
4174 // In address space agnostic languages, string literals are in default address
4175 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4176 // emitted in constant address space in LLVM IR. To be consistent with other
4177 // parts of AST, string literal global variables in constant address space
4178 // need to be casted to default address space before being put into address
4179 // map and referenced by other part of CodeGen.
4180 // In OpenCL, string literals are in constant address space in AST, therefore
4181 // they should not be casted to default address space.
4182 static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule & CGM,llvm::GlobalVariable * GV)4183 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4184                                        llvm::GlobalVariable *GV) {
4185   llvm::Constant *Cast = GV;
4186   if (!CGM.getLangOpts().OpenCL) {
4187     auto AS = CGM.GetGlobalConstantAddressSpace();
4188     if (AS != LangAS::Default)
4189       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4190           CGM, GV, AS, LangAS::Default,
4191           GV->getValueType()->getPointerTo(
4192               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4193   }
4194   return Cast;
4195 }
4196 
4197 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)4198 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4199                                                llvm::GlobalValue *GV) {
4200   if (!getLangOpts().CPlusPlus)
4201     return;
4202 
4203   // Must have 'used' attribute, or else inline assembly can't rely on
4204   // the name existing.
4205   if (!D->template hasAttr<UsedAttr>())
4206     return;
4207 
4208   // Must have internal linkage and an ordinary name.
4209   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4210     return;
4211 
4212   // Must be in an extern "C" context. Entities declared directly within
4213   // a record are not extern "C" even if the record is in such a context.
4214   const SomeDecl *First = D->getFirstDecl();
4215   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4216     return;
4217 
4218   // OK, this is an internal linkage entity inside an extern "C" linkage
4219   // specification. Make a note of that so we can give it the "expected"
4220   // mangled name if nothing else is using that name.
4221   std::pair<StaticExternCMap::iterator, bool> R =
4222       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4223 
4224   // If we have multiple internal linkage entities with the same name
4225   // in extern "C" regions, none of them gets that name.
4226   if (!R.second)
4227     R.first->second = nullptr;
4228 }
4229 
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)4230 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4231   if (!CGM.supportsCOMDAT())
4232     return false;
4233 
4234   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4235   // them being "merged" by the COMDAT Folding linker optimization.
4236   if (D.hasAttr<CUDAGlobalAttr>())
4237     return false;
4238 
4239   if (D.hasAttr<SelectAnyAttr>())
4240     return true;
4241 
4242   GVALinkage Linkage;
4243   if (auto *VD = dyn_cast<VarDecl>(&D))
4244     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4245   else
4246     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4247 
4248   switch (Linkage) {
4249   case GVA_Internal:
4250   case GVA_AvailableExternally:
4251   case GVA_StrongExternal:
4252     return false;
4253   case GVA_DiscardableODR:
4254   case GVA_StrongODR:
4255     return true;
4256   }
4257   llvm_unreachable("No such linkage");
4258 }
4259 
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)4260 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4261                                           llvm::GlobalObject &GO) {
4262   if (!shouldBeInCOMDAT(*this, D))
4263     return;
4264   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4265 }
4266 
4267 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)4268 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4269                                             bool IsTentative) {
4270   // OpenCL global variables of sampler type are translated to function calls,
4271   // therefore no need to be translated.
4272   QualType ASTTy = D->getType();
4273   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4274     return;
4275 
4276   // If this is OpenMP device, check if it is legal to emit this global
4277   // normally.
4278   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4279       OpenMPRuntime->emitTargetGlobalVariable(D))
4280     return;
4281 
4282   llvm::Constant *Init = nullptr;
4283   bool NeedsGlobalCtor = false;
4284   bool NeedsGlobalDtor =
4285       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4286 
4287   const VarDecl *InitDecl;
4288   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4289 
4290   Optional<ConstantEmitter> emitter;
4291 
4292   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4293   // as part of their declaration."  Sema has already checked for
4294   // error cases, so we just need to set Init to UndefValue.
4295   bool IsCUDASharedVar =
4296       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4297   // Shadows of initialized device-side global variables are also left
4298   // undefined.
4299   // Managed Variables should be initialized on both host side and device side.
4300   bool IsCUDAShadowVar =
4301       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4302       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4303        D->hasAttr<CUDASharedAttr>());
4304   bool IsCUDADeviceShadowVar =
4305       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4306       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4307        D->getType()->isCUDADeviceBuiltinTextureType());
4308   if (getLangOpts().CUDA &&
4309       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4310     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4311   else if (D->hasAttr<LoaderUninitializedAttr>())
4312     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4313   else if (!InitExpr) {
4314     // This is a tentative definition; tentative definitions are
4315     // implicitly initialized with { 0 }.
4316     //
4317     // Note that tentative definitions are only emitted at the end of
4318     // a translation unit, so they should never have incomplete
4319     // type. In addition, EmitTentativeDefinition makes sure that we
4320     // never attempt to emit a tentative definition if a real one
4321     // exists. A use may still exists, however, so we still may need
4322     // to do a RAUW.
4323     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4324     Init = EmitNullConstant(D->getType());
4325   } else {
4326     initializedGlobalDecl = GlobalDecl(D);
4327     emitter.emplace(*this);
4328     Init = emitter->tryEmitForInitializer(*InitDecl);
4329 
4330     if (!Init) {
4331       QualType T = InitExpr->getType();
4332       if (D->getType()->isReferenceType())
4333         T = D->getType();
4334 
4335       if (getLangOpts().CPlusPlus) {
4336         Init = EmitNullConstant(T);
4337         NeedsGlobalCtor = true;
4338       } else {
4339         ErrorUnsupported(D, "static initializer");
4340         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4341       }
4342     } else {
4343       // We don't need an initializer, so remove the entry for the delayed
4344       // initializer position (just in case this entry was delayed) if we
4345       // also don't need to register a destructor.
4346       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4347         DelayedCXXInitPosition.erase(D);
4348     }
4349   }
4350 
4351   llvm::Type* InitType = Init->getType();
4352   llvm::Constant *Entry =
4353       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4354 
4355   // Strip off pointer casts if we got them.
4356   Entry = Entry->stripPointerCasts();
4357 
4358   // Entry is now either a Function or GlobalVariable.
4359   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4360 
4361   // We have a definition after a declaration with the wrong type.
4362   // We must make a new GlobalVariable* and update everything that used OldGV
4363   // (a declaration or tentative definition) with the new GlobalVariable*
4364   // (which will be a definition).
4365   //
4366   // This happens if there is a prototype for a global (e.g.
4367   // "extern int x[];") and then a definition of a different type (e.g.
4368   // "int x[10];"). This also happens when an initializer has a different type
4369   // from the type of the global (this happens with unions).
4370   if (!GV || GV->getValueType() != InitType ||
4371       GV->getType()->getAddressSpace() !=
4372           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4373 
4374     // Move the old entry aside so that we'll create a new one.
4375     Entry->setName(StringRef());
4376 
4377     // Make a new global with the correct type, this is now guaranteed to work.
4378     GV = cast<llvm::GlobalVariable>(
4379         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4380             ->stripPointerCasts());
4381 
4382     // Replace all uses of the old global with the new global
4383     llvm::Constant *NewPtrForOldDecl =
4384         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4385                                                              Entry->getType());
4386     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4387 
4388     // Erase the old global, since it is no longer used.
4389     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4390   }
4391 
4392   MaybeHandleStaticInExternC(D, GV);
4393 
4394   if (D->hasAttr<AnnotateAttr>())
4395     AddGlobalAnnotations(D, GV);
4396 
4397   // Set the llvm linkage type as appropriate.
4398   llvm::GlobalValue::LinkageTypes Linkage =
4399       getLLVMLinkageVarDefinition(D, GV->isConstant());
4400 
4401   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4402   // the device. [...]"
4403   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4404   // __device__, declares a variable that: [...]
4405   // Is accessible from all the threads within the grid and from the host
4406   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4407   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4408   if (GV && LangOpts.CUDA) {
4409     if (LangOpts.CUDAIsDevice) {
4410       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4411           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4412         GV->setExternallyInitialized(true);
4413     } else {
4414       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4415     }
4416     getCUDARuntime().handleVarRegistration(D, *GV);
4417   }
4418 
4419   GV->setInitializer(Init);
4420   if (emitter)
4421     emitter->finalize(GV);
4422 
4423   // If it is safe to mark the global 'constant', do so now.
4424   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4425                   isTypeConstant(D->getType(), true));
4426 
4427   // If it is in a read-only section, mark it 'constant'.
4428   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4429     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4430     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4431       GV->setConstant(true);
4432   }
4433 
4434   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4435 
4436   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4437   // function is only defined alongside the variable, not also alongside
4438   // callers. Normally, all accesses to a thread_local go through the
4439   // thread-wrapper in order to ensure initialization has occurred, underlying
4440   // variable will never be used other than the thread-wrapper, so it can be
4441   // converted to internal linkage.
4442   //
4443   // However, if the variable has the 'constinit' attribute, it _can_ be
4444   // referenced directly, without calling the thread-wrapper, so the linkage
4445   // must not be changed.
4446   //
4447   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4448   // weak or linkonce, the de-duplication semantics are important to preserve,
4449   // so we don't change the linkage.
4450   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4451       Linkage == llvm::GlobalValue::ExternalLinkage &&
4452       Context.getTargetInfo().getTriple().isOSDarwin() &&
4453       !D->hasAttr<ConstInitAttr>())
4454     Linkage = llvm::GlobalValue::InternalLinkage;
4455 
4456   GV->setLinkage(Linkage);
4457   if (D->hasAttr<DLLImportAttr>())
4458     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4459   else if (D->hasAttr<DLLExportAttr>())
4460     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4461   else
4462     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4463 
4464   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4465     // common vars aren't constant even if declared const.
4466     GV->setConstant(false);
4467     // Tentative definition of global variables may be initialized with
4468     // non-zero null pointers. In this case they should have weak linkage
4469     // since common linkage must have zero initializer and must not have
4470     // explicit section therefore cannot have non-zero initial value.
4471     if (!GV->getInitializer()->isNullValue())
4472       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4473   }
4474 
4475   setNonAliasAttributes(D, GV);
4476 
4477   if (D->getTLSKind() && !GV->isThreadLocal()) {
4478     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4479       CXXThreadLocals.push_back(D);
4480     setTLSMode(GV, *D);
4481   }
4482 
4483   maybeSetTrivialComdat(*D, *GV);
4484 
4485   // Emit the initializer function if necessary.
4486   if (NeedsGlobalCtor || NeedsGlobalDtor)
4487     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4488 
4489   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4490 
4491   // Emit global variable debug information.
4492   if (CGDebugInfo *DI = getModuleDebugInfo())
4493     if (getCodeGenOpts().hasReducedDebugInfo())
4494       DI->EmitGlobalVariable(GV, D);
4495 }
4496 
EmitExternalVarDeclaration(const VarDecl * D)4497 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4498   if (CGDebugInfo *DI = getModuleDebugInfo())
4499     if (getCodeGenOpts().hasReducedDebugInfo()) {
4500       QualType ASTTy = D->getType();
4501       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4502       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4503           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4504       DI->EmitExternalVariable(
4505           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4506     }
4507 }
4508 
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)4509 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4510                                       CodeGenModule &CGM, const VarDecl *D,
4511                                       bool NoCommon) {
4512   // Don't give variables common linkage if -fno-common was specified unless it
4513   // was overridden by a NoCommon attribute.
4514   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4515     return true;
4516 
4517   // C11 6.9.2/2:
4518   //   A declaration of an identifier for an object that has file scope without
4519   //   an initializer, and without a storage-class specifier or with the
4520   //   storage-class specifier static, constitutes a tentative definition.
4521   if (D->getInit() || D->hasExternalStorage())
4522     return true;
4523 
4524   // A variable cannot be both common and exist in a section.
4525   if (D->hasAttr<SectionAttr>())
4526     return true;
4527 
4528   // A variable cannot be both common and exist in a section.
4529   // We don't try to determine which is the right section in the front-end.
4530   // If no specialized section name is applicable, it will resort to default.
4531   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4532       D->hasAttr<PragmaClangDataSectionAttr>() ||
4533       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4534       D->hasAttr<PragmaClangRodataSectionAttr>())
4535     return true;
4536 
4537   // Thread local vars aren't considered common linkage.
4538   if (D->getTLSKind())
4539     return true;
4540 
4541   // Tentative definitions marked with WeakImportAttr are true definitions.
4542   if (D->hasAttr<WeakImportAttr>())
4543     return true;
4544 
4545   // A variable cannot be both common and exist in a comdat.
4546   if (shouldBeInCOMDAT(CGM, *D))
4547     return true;
4548 
4549   // Declarations with a required alignment do not have common linkage in MSVC
4550   // mode.
4551   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4552     if (D->hasAttr<AlignedAttr>())
4553       return true;
4554     QualType VarType = D->getType();
4555     if (Context.isAlignmentRequired(VarType))
4556       return true;
4557 
4558     if (const auto *RT = VarType->getAs<RecordType>()) {
4559       const RecordDecl *RD = RT->getDecl();
4560       for (const FieldDecl *FD : RD->fields()) {
4561         if (FD->isBitField())
4562           continue;
4563         if (FD->hasAttr<AlignedAttr>())
4564           return true;
4565         if (Context.isAlignmentRequired(FD->getType()))
4566           return true;
4567       }
4568     }
4569   }
4570 
4571   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4572   // common symbols, so symbols with greater alignment requirements cannot be
4573   // common.
4574   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4575   // alignments for common symbols via the aligncomm directive, so this
4576   // restriction only applies to MSVC environments.
4577   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4578       Context.getTypeAlignIfKnown(D->getType()) >
4579           Context.toBits(CharUnits::fromQuantity(32)))
4580     return true;
4581 
4582   return false;
4583 }
4584 
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)4585 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4586     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4587   if (Linkage == GVA_Internal)
4588     return llvm::Function::InternalLinkage;
4589 
4590   if (D->hasAttr<WeakAttr>()) {
4591     if (IsConstantVariable)
4592       return llvm::GlobalVariable::WeakODRLinkage;
4593     else
4594       return llvm::GlobalVariable::WeakAnyLinkage;
4595   }
4596 
4597   if (const auto *FD = D->getAsFunction())
4598     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4599       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4600 
4601   // We are guaranteed to have a strong definition somewhere else,
4602   // so we can use available_externally linkage.
4603   if (Linkage == GVA_AvailableExternally)
4604     return llvm::GlobalValue::AvailableExternallyLinkage;
4605 
4606   // Note that Apple's kernel linker doesn't support symbol
4607   // coalescing, so we need to avoid linkonce and weak linkages there.
4608   // Normally, this means we just map to internal, but for explicit
4609   // instantiations we'll map to external.
4610 
4611   // In C++, the compiler has to emit a definition in every translation unit
4612   // that references the function.  We should use linkonce_odr because
4613   // a) if all references in this translation unit are optimized away, we
4614   // don't need to codegen it.  b) if the function persists, it needs to be
4615   // merged with other definitions. c) C++ has the ODR, so we know the
4616   // definition is dependable.
4617   if (Linkage == GVA_DiscardableODR)
4618     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4619                                             : llvm::Function::InternalLinkage;
4620 
4621   // An explicit instantiation of a template has weak linkage, since
4622   // explicit instantiations can occur in multiple translation units
4623   // and must all be equivalent. However, we are not allowed to
4624   // throw away these explicit instantiations.
4625   //
4626   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4627   // so say that CUDA templates are either external (for kernels) or internal.
4628   // This lets llvm perform aggressive inter-procedural optimizations. For
4629   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4630   // therefore we need to follow the normal linkage paradigm.
4631   if (Linkage == GVA_StrongODR) {
4632     if (getLangOpts().AppleKext)
4633       return llvm::Function::ExternalLinkage;
4634     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4635         !getLangOpts().GPURelocatableDeviceCode)
4636       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4637                                           : llvm::Function::InternalLinkage;
4638     return llvm::Function::WeakODRLinkage;
4639   }
4640 
4641   // C++ doesn't have tentative definitions and thus cannot have common
4642   // linkage.
4643   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4644       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4645                                  CodeGenOpts.NoCommon))
4646     return llvm::GlobalVariable::CommonLinkage;
4647 
4648   // selectany symbols are externally visible, so use weak instead of
4649   // linkonce.  MSVC optimizes away references to const selectany globals, so
4650   // all definitions should be the same and ODR linkage should be used.
4651   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4652   if (D->hasAttr<SelectAnyAttr>())
4653     return llvm::GlobalVariable::WeakODRLinkage;
4654 
4655   // Otherwise, we have strong external linkage.
4656   assert(Linkage == GVA_StrongExternal);
4657   return llvm::GlobalVariable::ExternalLinkage;
4658 }
4659 
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)4660 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4661     const VarDecl *VD, bool IsConstant) {
4662   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4663   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4664 }
4665 
4666 /// Replace the uses of a function that was declared with a non-proto type.
4667 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)4668 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4669                                           llvm::Function *newFn) {
4670   // Fast path.
4671   if (old->use_empty()) return;
4672 
4673   llvm::Type *newRetTy = newFn->getReturnType();
4674   SmallVector<llvm::Value*, 4> newArgs;
4675 
4676   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4677          ui != ue; ) {
4678     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4679     llvm::User *user = use->getUser();
4680 
4681     // Recognize and replace uses of bitcasts.  Most calls to
4682     // unprototyped functions will use bitcasts.
4683     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4684       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4685         replaceUsesOfNonProtoConstant(bitcast, newFn);
4686       continue;
4687     }
4688 
4689     // Recognize calls to the function.
4690     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4691     if (!callSite) continue;
4692     if (!callSite->isCallee(&*use))
4693       continue;
4694 
4695     // If the return types don't match exactly, then we can't
4696     // transform this call unless it's dead.
4697     if (callSite->getType() != newRetTy && !callSite->use_empty())
4698       continue;
4699 
4700     // Get the call site's attribute list.
4701     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4702     llvm::AttributeList oldAttrs = callSite->getAttributes();
4703 
4704     // If the function was passed too few arguments, don't transform.
4705     unsigned newNumArgs = newFn->arg_size();
4706     if (callSite->arg_size() < newNumArgs)
4707       continue;
4708 
4709     // If extra arguments were passed, we silently drop them.
4710     // If any of the types mismatch, we don't transform.
4711     unsigned argNo = 0;
4712     bool dontTransform = false;
4713     for (llvm::Argument &A : newFn->args()) {
4714       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4715         dontTransform = true;
4716         break;
4717       }
4718 
4719       // Add any parameter attributes.
4720       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4721       argNo++;
4722     }
4723     if (dontTransform)
4724       continue;
4725 
4726     // Okay, we can transform this.  Create the new call instruction and copy
4727     // over the required information.
4728     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4729 
4730     // Copy over any operand bundles.
4731     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4732     callSite->getOperandBundlesAsDefs(newBundles);
4733 
4734     llvm::CallBase *newCall;
4735     if (dyn_cast<llvm::CallInst>(callSite)) {
4736       newCall =
4737           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4738     } else {
4739       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4740       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4741                                          oldInvoke->getUnwindDest(), newArgs,
4742                                          newBundles, "", callSite);
4743     }
4744     newArgs.clear(); // for the next iteration
4745 
4746     if (!newCall->getType()->isVoidTy())
4747       newCall->takeName(callSite);
4748     newCall->setAttributes(llvm::AttributeList::get(
4749         newFn->getContext(), oldAttrs.getFnAttributes(),
4750         oldAttrs.getRetAttributes(), newArgAttrs));
4751     newCall->setCallingConv(callSite->getCallingConv());
4752 
4753     // Finally, remove the old call, replacing any uses with the new one.
4754     if (!callSite->use_empty())
4755       callSite->replaceAllUsesWith(newCall);
4756 
4757     // Copy debug location attached to CI.
4758     if (callSite->getDebugLoc())
4759       newCall->setDebugLoc(callSite->getDebugLoc());
4760 
4761     callSite->eraseFromParent();
4762   }
4763 }
4764 
4765 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4766 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4767 /// existing call uses of the old function in the module, this adjusts them to
4768 /// call the new function directly.
4769 ///
4770 /// This is not just a cleanup: the always_inline pass requires direct calls to
4771 /// functions to be able to inline them.  If there is a bitcast in the way, it
4772 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4773 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)4774 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4775                                                       llvm::Function *NewFn) {
4776   // If we're redefining a global as a function, don't transform it.
4777   if (!isa<llvm::Function>(Old)) return;
4778 
4779   replaceUsesOfNonProtoConstant(Old, NewFn);
4780 }
4781 
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)4782 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4783   auto DK = VD->isThisDeclarationADefinition();
4784   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4785     return;
4786 
4787   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4788   // If we have a definition, this might be a deferred decl. If the
4789   // instantiation is explicit, make sure we emit it at the end.
4790   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4791     GetAddrOfGlobalVar(VD);
4792 
4793   EmitTopLevelDecl(VD);
4794 }
4795 
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)4796 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4797                                                  llvm::GlobalValue *GV) {
4798   const auto *D = cast<FunctionDecl>(GD.getDecl());
4799 
4800   // Compute the function info and LLVM type.
4801   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4802   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4803 
4804   // Get or create the prototype for the function.
4805   if (!GV || (GV->getValueType() != Ty))
4806     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4807                                                    /*DontDefer=*/true,
4808                                                    ForDefinition));
4809 
4810   // Already emitted.
4811   if (!GV->isDeclaration())
4812     return;
4813 
4814   // We need to set linkage and visibility on the function before
4815   // generating code for it because various parts of IR generation
4816   // want to propagate this information down (e.g. to local static
4817   // declarations).
4818   auto *Fn = cast<llvm::Function>(GV);
4819   setFunctionLinkage(GD, Fn);
4820 
4821   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4822   setGVProperties(Fn, GD);
4823 
4824   MaybeHandleStaticInExternC(D, Fn);
4825 
4826   maybeSetTrivialComdat(*D, *Fn);
4827 
4828   // Set CodeGen attributes that represent floating point environment.
4829   setLLVMFunctionFEnvAttributes(D, Fn);
4830 
4831   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4832 
4833   setNonAliasAttributes(GD, Fn);
4834   SetLLVMFunctionAttributesForDefinition(D, Fn);
4835 
4836   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4837     AddGlobalCtor(Fn, CA->getPriority());
4838   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4839     AddGlobalDtor(Fn, DA->getPriority(), true);
4840   if (D->hasAttr<AnnotateAttr>())
4841     AddGlobalAnnotations(D, Fn);
4842 }
4843 
EmitAliasDefinition(GlobalDecl GD)4844 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4845   const auto *D = cast<ValueDecl>(GD.getDecl());
4846   const AliasAttr *AA = D->getAttr<AliasAttr>();
4847   assert(AA && "Not an alias?");
4848 
4849   StringRef MangledName = getMangledName(GD);
4850 
4851   if (AA->getAliasee() == MangledName) {
4852     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4853     return;
4854   }
4855 
4856   // If there is a definition in the module, then it wins over the alias.
4857   // This is dubious, but allow it to be safe.  Just ignore the alias.
4858   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4859   if (Entry && !Entry->isDeclaration())
4860     return;
4861 
4862   Aliases.push_back(GD);
4863 
4864   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4865 
4866   // Create a reference to the named value.  This ensures that it is emitted
4867   // if a deferred decl.
4868   llvm::Constant *Aliasee;
4869   llvm::GlobalValue::LinkageTypes LT;
4870   if (isa<llvm::FunctionType>(DeclTy)) {
4871     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4872                                       /*ForVTable=*/false);
4873     LT = getFunctionLinkage(GD);
4874   } else {
4875     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4876                                     /*D=*/nullptr);
4877     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4878       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4879     else
4880       LT = getFunctionLinkage(GD);
4881   }
4882 
4883   // Create the new alias itself, but don't set a name yet.
4884   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4885   auto *GA =
4886       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4887 
4888   if (Entry) {
4889     if (GA->getAliasee() == Entry) {
4890       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4891       return;
4892     }
4893 
4894     assert(Entry->isDeclaration());
4895 
4896     // If there is a declaration in the module, then we had an extern followed
4897     // by the alias, as in:
4898     //   extern int test6();
4899     //   ...
4900     //   int test6() __attribute__((alias("test7")));
4901     //
4902     // Remove it and replace uses of it with the alias.
4903     GA->takeName(Entry);
4904 
4905     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4906                                                           Entry->getType()));
4907     Entry->eraseFromParent();
4908   } else {
4909     GA->setName(MangledName);
4910   }
4911 
4912   // Set attributes which are particular to an alias; this is a
4913   // specialization of the attributes which may be set on a global
4914   // variable/function.
4915   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4916       D->isWeakImported()) {
4917     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4918   }
4919 
4920   if (const auto *VD = dyn_cast<VarDecl>(D))
4921     if (VD->getTLSKind())
4922       setTLSMode(GA, *VD);
4923 
4924   SetCommonAttributes(GD, GA);
4925 }
4926 
emitIFuncDefinition(GlobalDecl GD)4927 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4928   const auto *D = cast<ValueDecl>(GD.getDecl());
4929   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4930   assert(IFA && "Not an ifunc?");
4931 
4932   StringRef MangledName = getMangledName(GD);
4933 
4934   if (IFA->getResolver() == MangledName) {
4935     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4936     return;
4937   }
4938 
4939   // Report an error if some definition overrides ifunc.
4940   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4941   if (Entry && !Entry->isDeclaration()) {
4942     GlobalDecl OtherGD;
4943     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4944         DiagnosedConflictingDefinitions.insert(GD).second) {
4945       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4946           << MangledName;
4947       Diags.Report(OtherGD.getDecl()->getLocation(),
4948                    diag::note_previous_definition);
4949     }
4950     return;
4951   }
4952 
4953   Aliases.push_back(GD);
4954 
4955   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4956   llvm::Constant *Resolver =
4957       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4958                               /*ForVTable=*/false);
4959   llvm::GlobalIFunc *GIF =
4960       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4961                                 "", Resolver, &getModule());
4962   if (Entry) {
4963     if (GIF->getResolver() == Entry) {
4964       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4965       return;
4966     }
4967     assert(Entry->isDeclaration());
4968 
4969     // If there is a declaration in the module, then we had an extern followed
4970     // by the ifunc, as in:
4971     //   extern int test();
4972     //   ...
4973     //   int test() __attribute__((ifunc("resolver")));
4974     //
4975     // Remove it and replace uses of it with the ifunc.
4976     GIF->takeName(Entry);
4977 
4978     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4979                                                           Entry->getType()));
4980     Entry->eraseFromParent();
4981   } else
4982     GIF->setName(MangledName);
4983 
4984   SetCommonAttributes(GD, GIF);
4985 }
4986 
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)4987 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4988                                             ArrayRef<llvm::Type*> Tys) {
4989   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4990                                          Tys);
4991 }
4992 
4993 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)4994 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4995                          const StringLiteral *Literal, bool TargetIsLSB,
4996                          bool &IsUTF16, unsigned &StringLength) {
4997   StringRef String = Literal->getString();
4998   unsigned NumBytes = String.size();
4999 
5000   // Check for simple case.
5001   if (!Literal->containsNonAsciiOrNull()) {
5002     StringLength = NumBytes;
5003     return *Map.insert(std::make_pair(String, nullptr)).first;
5004   }
5005 
5006   // Otherwise, convert the UTF8 literals into a string of shorts.
5007   IsUTF16 = true;
5008 
5009   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5010   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5011   llvm::UTF16 *ToPtr = &ToBuf[0];
5012 
5013   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5014                                  ToPtr + NumBytes, llvm::strictConversion);
5015 
5016   // ConvertUTF8toUTF16 returns the length in ToPtr.
5017   StringLength = ToPtr - &ToBuf[0];
5018 
5019   // Add an explicit null.
5020   *ToPtr = 0;
5021   return *Map.insert(std::make_pair(
5022                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5023                                    (StringLength + 1) * 2),
5024                          nullptr)).first;
5025 }
5026 
5027 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)5028 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5029   unsigned StringLength = 0;
5030   bool isUTF16 = false;
5031   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5032       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5033                                getDataLayout().isLittleEndian(), isUTF16,
5034                                StringLength);
5035 
5036   if (auto *C = Entry.second)
5037     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5038 
5039   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5040   llvm::Constant *Zeros[] = { Zero, Zero };
5041 
5042   const ASTContext &Context = getContext();
5043   const llvm::Triple &Triple = getTriple();
5044 
5045   const auto CFRuntime = getLangOpts().CFRuntime;
5046   const bool IsSwiftABI =
5047       static_cast<unsigned>(CFRuntime) >=
5048       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5049   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5050 
5051   // If we don't already have it, get __CFConstantStringClassReference.
5052   if (!CFConstantStringClassRef) {
5053     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5054     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5055     Ty = llvm::ArrayType::get(Ty, 0);
5056 
5057     switch (CFRuntime) {
5058     default: break;
5059     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5060     case LangOptions::CoreFoundationABI::Swift5_0:
5061       CFConstantStringClassName =
5062           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5063                               : "$s10Foundation19_NSCFConstantStringCN";
5064       Ty = IntPtrTy;
5065       break;
5066     case LangOptions::CoreFoundationABI::Swift4_2:
5067       CFConstantStringClassName =
5068           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5069                               : "$S10Foundation19_NSCFConstantStringCN";
5070       Ty = IntPtrTy;
5071       break;
5072     case LangOptions::CoreFoundationABI::Swift4_1:
5073       CFConstantStringClassName =
5074           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5075                               : "__T010Foundation19_NSCFConstantStringCN";
5076       Ty = IntPtrTy;
5077       break;
5078     }
5079 
5080     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5081 
5082     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5083       llvm::GlobalValue *GV = nullptr;
5084 
5085       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5086         IdentifierInfo &II = Context.Idents.get(GV->getName());
5087         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5088         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5089 
5090         const VarDecl *VD = nullptr;
5091         for (const auto *Result : DC->lookup(&II))
5092           if ((VD = dyn_cast<VarDecl>(Result)))
5093             break;
5094 
5095         if (Triple.isOSBinFormatELF()) {
5096           if (!VD)
5097             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5098         } else {
5099           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5100           if (!VD || !VD->hasAttr<DLLExportAttr>())
5101             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5102           else
5103             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5104         }
5105 
5106         setDSOLocal(GV);
5107       }
5108     }
5109 
5110     // Decay array -> ptr
5111     CFConstantStringClassRef =
5112         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5113                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5114   }
5115 
5116   QualType CFTy = Context.getCFConstantStringType();
5117 
5118   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5119 
5120   ConstantInitBuilder Builder(*this);
5121   auto Fields = Builder.beginStruct(STy);
5122 
5123   // Class pointer.
5124   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5125 
5126   // Flags.
5127   if (IsSwiftABI) {
5128     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5129     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5130   } else {
5131     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5132   }
5133 
5134   // String pointer.
5135   llvm::Constant *C = nullptr;
5136   if (isUTF16) {
5137     auto Arr = llvm::makeArrayRef(
5138         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5139         Entry.first().size() / 2);
5140     C = llvm::ConstantDataArray::get(VMContext, Arr);
5141   } else {
5142     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5143   }
5144 
5145   // Note: -fwritable-strings doesn't make the backing store strings of
5146   // CFStrings writable. (See <rdar://problem/10657500>)
5147   auto *GV =
5148       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5149                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5150   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5151   // Don't enforce the target's minimum global alignment, since the only use
5152   // of the string is via this class initializer.
5153   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5154                             : Context.getTypeAlignInChars(Context.CharTy);
5155   GV->setAlignment(Align.getAsAlign());
5156 
5157   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5158   // Without it LLVM can merge the string with a non unnamed_addr one during
5159   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5160   if (Triple.isOSBinFormatMachO())
5161     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5162                            : "__TEXT,__cstring,cstring_literals");
5163   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5164   // the static linker to adjust permissions to read-only later on.
5165   else if (Triple.isOSBinFormatELF())
5166     GV->setSection(".rodata");
5167 
5168   // String.
5169   llvm::Constant *Str =
5170       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5171 
5172   if (isUTF16)
5173     // Cast the UTF16 string to the correct type.
5174     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5175   Fields.add(Str);
5176 
5177   // String length.
5178   llvm::IntegerType *LengthTy =
5179       llvm::IntegerType::get(getModule().getContext(),
5180                              Context.getTargetInfo().getLongWidth());
5181   if (IsSwiftABI) {
5182     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5183         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5184       LengthTy = Int32Ty;
5185     else
5186       LengthTy = IntPtrTy;
5187   }
5188   Fields.addInt(LengthTy, StringLength);
5189 
5190   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5191   // properly aligned on 32-bit platforms.
5192   CharUnits Alignment =
5193       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5194 
5195   // The struct.
5196   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5197                                     /*isConstant=*/false,
5198                                     llvm::GlobalVariable::PrivateLinkage);
5199   GV->addAttribute("objc_arc_inert");
5200   switch (Triple.getObjectFormat()) {
5201   case llvm::Triple::UnknownObjectFormat:
5202     llvm_unreachable("unknown file format");
5203   case llvm::Triple::GOFF:
5204     llvm_unreachable("GOFF is not yet implemented");
5205   case llvm::Triple::XCOFF:
5206     llvm_unreachable("XCOFF is not yet implemented");
5207   case llvm::Triple::COFF:
5208   case llvm::Triple::ELF:
5209   case llvm::Triple::Wasm:
5210     GV->setSection("cfstring");
5211     break;
5212   case llvm::Triple::MachO:
5213     GV->setSection("__DATA,__cfstring");
5214     break;
5215   }
5216   Entry.second = GV;
5217 
5218   return ConstantAddress(GV, Alignment);
5219 }
5220 
getExpressionLocationsEnabled() const5221 bool CodeGenModule::getExpressionLocationsEnabled() const {
5222   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5223 }
5224 
getObjCFastEnumerationStateType()5225 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5226   if (ObjCFastEnumerationStateType.isNull()) {
5227     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5228     D->startDefinition();
5229 
5230     QualType FieldTypes[] = {
5231       Context.UnsignedLongTy,
5232       Context.getPointerType(Context.getObjCIdType()),
5233       Context.getPointerType(Context.UnsignedLongTy),
5234       Context.getConstantArrayType(Context.UnsignedLongTy,
5235                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5236     };
5237 
5238     for (size_t i = 0; i < 4; ++i) {
5239       FieldDecl *Field = FieldDecl::Create(Context,
5240                                            D,
5241                                            SourceLocation(),
5242                                            SourceLocation(), nullptr,
5243                                            FieldTypes[i], /*TInfo=*/nullptr,
5244                                            /*BitWidth=*/nullptr,
5245                                            /*Mutable=*/false,
5246                                            ICIS_NoInit);
5247       Field->setAccess(AS_public);
5248       D->addDecl(Field);
5249     }
5250 
5251     D->completeDefinition();
5252     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5253   }
5254 
5255   return ObjCFastEnumerationStateType;
5256 }
5257 
5258 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)5259 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5260   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5261 
5262   // Don't emit it as the address of the string, emit the string data itself
5263   // as an inline array.
5264   if (E->getCharByteWidth() == 1) {
5265     SmallString<64> Str(E->getString());
5266 
5267     // Resize the string to the right size, which is indicated by its type.
5268     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5269     Str.resize(CAT->getSize().getZExtValue());
5270     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5271   }
5272 
5273   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5274   llvm::Type *ElemTy = AType->getElementType();
5275   unsigned NumElements = AType->getNumElements();
5276 
5277   // Wide strings have either 2-byte or 4-byte elements.
5278   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5279     SmallVector<uint16_t, 32> Elements;
5280     Elements.reserve(NumElements);
5281 
5282     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5283       Elements.push_back(E->getCodeUnit(i));
5284     Elements.resize(NumElements);
5285     return llvm::ConstantDataArray::get(VMContext, Elements);
5286   }
5287 
5288   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5289   SmallVector<uint32_t, 32> Elements;
5290   Elements.reserve(NumElements);
5291 
5292   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5293     Elements.push_back(E->getCodeUnit(i));
5294   Elements.resize(NumElements);
5295   return llvm::ConstantDataArray::get(VMContext, Elements);
5296 }
5297 
5298 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)5299 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5300                       CodeGenModule &CGM, StringRef GlobalName,
5301                       CharUnits Alignment) {
5302   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5303       CGM.GetGlobalConstantAddressSpace());
5304 
5305   llvm::Module &M = CGM.getModule();
5306   // Create a global variable for this string
5307   auto *GV = new llvm::GlobalVariable(
5308       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5309       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5310   GV->setAlignment(Alignment.getAsAlign());
5311   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5312   if (GV->isWeakForLinker()) {
5313     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5314     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5315   }
5316   CGM.setDSOLocal(GV);
5317 
5318   return GV;
5319 }
5320 
5321 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5322 /// constant array for the given string literal.
5323 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)5324 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5325                                                   StringRef Name) {
5326   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5327 
5328   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5329   llvm::GlobalVariable **Entry = nullptr;
5330   if (!LangOpts.WritableStrings) {
5331     Entry = &ConstantStringMap[C];
5332     if (auto GV = *Entry) {
5333       if (Alignment.getQuantity() > GV->getAlignment())
5334         GV->setAlignment(Alignment.getAsAlign());
5335       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5336                              Alignment);
5337     }
5338   }
5339 
5340   SmallString<256> MangledNameBuffer;
5341   StringRef GlobalVariableName;
5342   llvm::GlobalValue::LinkageTypes LT;
5343 
5344   // Mangle the string literal if that's how the ABI merges duplicate strings.
5345   // Don't do it if they are writable, since we don't want writes in one TU to
5346   // affect strings in another.
5347   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5348       !LangOpts.WritableStrings) {
5349     llvm::raw_svector_ostream Out(MangledNameBuffer);
5350     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5351     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5352     GlobalVariableName = MangledNameBuffer;
5353   } else {
5354     LT = llvm::GlobalValue::PrivateLinkage;
5355     GlobalVariableName = Name;
5356   }
5357 
5358   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5359   if (Entry)
5360     *Entry = GV;
5361 
5362   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5363                                   QualType());
5364 
5365   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5366                          Alignment);
5367 }
5368 
5369 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5370 /// array for the given ObjCEncodeExpr node.
5371 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)5372 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5373   std::string Str;
5374   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5375 
5376   return GetAddrOfConstantCString(Str);
5377 }
5378 
5379 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5380 /// the literal and a terminating '\0' character.
5381 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)5382 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5383     const std::string &Str, const char *GlobalName) {
5384   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5385   CharUnits Alignment =
5386     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5387 
5388   llvm::Constant *C =
5389       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5390 
5391   // Don't share any string literals if strings aren't constant.
5392   llvm::GlobalVariable **Entry = nullptr;
5393   if (!LangOpts.WritableStrings) {
5394     Entry = &ConstantStringMap[C];
5395     if (auto GV = *Entry) {
5396       if (Alignment.getQuantity() > GV->getAlignment())
5397         GV->setAlignment(Alignment.getAsAlign());
5398       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5399                              Alignment);
5400     }
5401   }
5402 
5403   // Get the default prefix if a name wasn't specified.
5404   if (!GlobalName)
5405     GlobalName = ".str";
5406   // Create a global variable for this.
5407   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5408                                   GlobalName, Alignment);
5409   if (Entry)
5410     *Entry = GV;
5411 
5412   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5413                          Alignment);
5414 }
5415 
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)5416 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5417     const MaterializeTemporaryExpr *E, const Expr *Init) {
5418   assert((E->getStorageDuration() == SD_Static ||
5419           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5420   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5421 
5422   // If we're not materializing a subobject of the temporary, keep the
5423   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5424   QualType MaterializedType = Init->getType();
5425   if (Init == E->getSubExpr())
5426     MaterializedType = E->getType();
5427 
5428   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5429 
5430   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5431   if (!InsertResult.second) {
5432     // We've seen this before: either we already created it or we're in the
5433     // process of doing so.
5434     if (!InsertResult.first->second) {
5435       // We recursively re-entered this function, probably during emission of
5436       // the initializer. Create a placeholder. We'll clean this up in the
5437       // outer call, at the end of this function.
5438       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5439       InsertResult.first->second = new llvm::GlobalVariable(
5440           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5441           nullptr);
5442     }
5443     return ConstantAddress(InsertResult.first->second, Align);
5444   }
5445 
5446   // FIXME: If an externally-visible declaration extends multiple temporaries,
5447   // we need to give each temporary the same name in every translation unit (and
5448   // we also need to make the temporaries externally-visible).
5449   SmallString<256> Name;
5450   llvm::raw_svector_ostream Out(Name);
5451   getCXXABI().getMangleContext().mangleReferenceTemporary(
5452       VD, E->getManglingNumber(), Out);
5453 
5454   APValue *Value = nullptr;
5455   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5456     // If the initializer of the extending declaration is a constant
5457     // initializer, we should have a cached constant initializer for this
5458     // temporary. Note that this might have a different value from the value
5459     // computed by evaluating the initializer if the surrounding constant
5460     // expression modifies the temporary.
5461     Value = E->getOrCreateValue(false);
5462   }
5463 
5464   // Try evaluating it now, it might have a constant initializer.
5465   Expr::EvalResult EvalResult;
5466   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5467       !EvalResult.hasSideEffects())
5468     Value = &EvalResult.Val;
5469 
5470   LangAS AddrSpace =
5471       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5472 
5473   Optional<ConstantEmitter> emitter;
5474   llvm::Constant *InitialValue = nullptr;
5475   bool Constant = false;
5476   llvm::Type *Type;
5477   if (Value) {
5478     // The temporary has a constant initializer, use it.
5479     emitter.emplace(*this);
5480     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5481                                                MaterializedType);
5482     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5483     Type = InitialValue->getType();
5484   } else {
5485     // No initializer, the initialization will be provided when we
5486     // initialize the declaration which performed lifetime extension.
5487     Type = getTypes().ConvertTypeForMem(MaterializedType);
5488   }
5489 
5490   // Create a global variable for this lifetime-extended temporary.
5491   llvm::GlobalValue::LinkageTypes Linkage =
5492       getLLVMLinkageVarDefinition(VD, Constant);
5493   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5494     const VarDecl *InitVD;
5495     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5496         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5497       // Temporaries defined inside a class get linkonce_odr linkage because the
5498       // class can be defined in multiple translation units.
5499       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5500     } else {
5501       // There is no need for this temporary to have external linkage if the
5502       // VarDecl has external linkage.
5503       Linkage = llvm::GlobalVariable::InternalLinkage;
5504     }
5505   }
5506   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5507   auto *GV = new llvm::GlobalVariable(
5508       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5509       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5510   if (emitter) emitter->finalize(GV);
5511   setGVProperties(GV, VD);
5512   GV->setAlignment(Align.getAsAlign());
5513   if (supportsCOMDAT() && GV->isWeakForLinker())
5514     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5515   if (VD->getTLSKind())
5516     setTLSMode(GV, *VD);
5517   llvm::Constant *CV = GV;
5518   if (AddrSpace != LangAS::Default)
5519     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5520         *this, GV, AddrSpace, LangAS::Default,
5521         Type->getPointerTo(
5522             getContext().getTargetAddressSpace(LangAS::Default)));
5523 
5524   // Update the map with the new temporary. If we created a placeholder above,
5525   // replace it with the new global now.
5526   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5527   if (Entry) {
5528     Entry->replaceAllUsesWith(
5529         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5530     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5531   }
5532   Entry = CV;
5533 
5534   return ConstantAddress(CV, Align);
5535 }
5536 
5537 /// EmitObjCPropertyImplementations - Emit information for synthesized
5538 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)5539 void CodeGenModule::EmitObjCPropertyImplementations(const
5540                                                     ObjCImplementationDecl *D) {
5541   for (const auto *PID : D->property_impls()) {
5542     // Dynamic is just for type-checking.
5543     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5544       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5545 
5546       // Determine which methods need to be implemented, some may have
5547       // been overridden. Note that ::isPropertyAccessor is not the method
5548       // we want, that just indicates if the decl came from a
5549       // property. What we want to know is if the method is defined in
5550       // this implementation.
5551       auto *Getter = PID->getGetterMethodDecl();
5552       if (!Getter || Getter->isSynthesizedAccessorStub())
5553         CodeGenFunction(*this).GenerateObjCGetter(
5554             const_cast<ObjCImplementationDecl *>(D), PID);
5555       auto *Setter = PID->getSetterMethodDecl();
5556       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5557         CodeGenFunction(*this).GenerateObjCSetter(
5558                                  const_cast<ObjCImplementationDecl *>(D), PID);
5559     }
5560   }
5561 }
5562 
needsDestructMethod(ObjCImplementationDecl * impl)5563 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5564   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5565   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5566        ivar; ivar = ivar->getNextIvar())
5567     if (ivar->getType().isDestructedType())
5568       return true;
5569 
5570   return false;
5571 }
5572 
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)5573 static bool AllTrivialInitializers(CodeGenModule &CGM,
5574                                    ObjCImplementationDecl *D) {
5575   CodeGenFunction CGF(CGM);
5576   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5577        E = D->init_end(); B != E; ++B) {
5578     CXXCtorInitializer *CtorInitExp = *B;
5579     Expr *Init = CtorInitExp->getInit();
5580     if (!CGF.isTrivialInitializer(Init))
5581       return false;
5582   }
5583   return true;
5584 }
5585 
5586 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5587 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)5588 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5589   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5590   if (needsDestructMethod(D)) {
5591     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5592     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5593     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5594         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5595         getContext().VoidTy, nullptr, D,
5596         /*isInstance=*/true, /*isVariadic=*/false,
5597         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5598         /*isImplicitlyDeclared=*/true,
5599         /*isDefined=*/false, ObjCMethodDecl::Required);
5600     D->addInstanceMethod(DTORMethod);
5601     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5602     D->setHasDestructors(true);
5603   }
5604 
5605   // If the implementation doesn't have any ivar initializers, we don't need
5606   // a .cxx_construct.
5607   if (D->getNumIvarInitializers() == 0 ||
5608       AllTrivialInitializers(*this, D))
5609     return;
5610 
5611   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5612   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5613   // The constructor returns 'self'.
5614   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5615       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5616       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5617       /*isVariadic=*/false,
5618       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5619       /*isImplicitlyDeclared=*/true,
5620       /*isDefined=*/false, ObjCMethodDecl::Required);
5621   D->addInstanceMethod(CTORMethod);
5622   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5623   D->setHasNonZeroConstructors(true);
5624 }
5625 
5626 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)5627 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5628   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5629       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5630     ErrorUnsupported(LSD, "linkage spec");
5631     return;
5632   }
5633 
5634   EmitDeclContext(LSD);
5635 }
5636 
EmitDeclContext(const DeclContext * DC)5637 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5638   for (auto *I : DC->decls()) {
5639     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5640     // are themselves considered "top-level", so EmitTopLevelDecl on an
5641     // ObjCImplDecl does not recursively visit them. We need to do that in
5642     // case they're nested inside another construct (LinkageSpecDecl /
5643     // ExportDecl) that does stop them from being considered "top-level".
5644     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5645       for (auto *M : OID->methods())
5646         EmitTopLevelDecl(M);
5647     }
5648 
5649     EmitTopLevelDecl(I);
5650   }
5651 }
5652 
5653 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)5654 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5655   // Ignore dependent declarations.
5656   if (D->isTemplated())
5657     return;
5658 
5659   // Consteval function shouldn't be emitted.
5660   if (auto *FD = dyn_cast<FunctionDecl>(D))
5661     if (FD->isConsteval())
5662       return;
5663 
5664   switch (D->getKind()) {
5665   case Decl::CXXConversion:
5666   case Decl::CXXMethod:
5667   case Decl::Function:
5668     EmitGlobal(cast<FunctionDecl>(D));
5669     // Always provide some coverage mapping
5670     // even for the functions that aren't emitted.
5671     AddDeferredUnusedCoverageMapping(D);
5672     break;
5673 
5674   case Decl::CXXDeductionGuide:
5675     // Function-like, but does not result in code emission.
5676     break;
5677 
5678   case Decl::Var:
5679   case Decl::Decomposition:
5680   case Decl::VarTemplateSpecialization:
5681     EmitGlobal(cast<VarDecl>(D));
5682     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5683       for (auto *B : DD->bindings())
5684         if (auto *HD = B->getHoldingVar())
5685           EmitGlobal(HD);
5686     break;
5687 
5688   // Indirect fields from global anonymous structs and unions can be
5689   // ignored; only the actual variable requires IR gen support.
5690   case Decl::IndirectField:
5691     break;
5692 
5693   // C++ Decls
5694   case Decl::Namespace:
5695     EmitDeclContext(cast<NamespaceDecl>(D));
5696     break;
5697   case Decl::ClassTemplateSpecialization: {
5698     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5699     if (CGDebugInfo *DI = getModuleDebugInfo())
5700       if (Spec->getSpecializationKind() ==
5701               TSK_ExplicitInstantiationDefinition &&
5702           Spec->hasDefinition())
5703         DI->completeTemplateDefinition(*Spec);
5704   } LLVM_FALLTHROUGH;
5705   case Decl::CXXRecord: {
5706     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5707     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5708       if (CRD->hasDefinition())
5709         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5710       if (auto *ES = D->getASTContext().getExternalSource())
5711         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5712           DI->completeUnusedClass(*CRD);
5713     }
5714     // Emit any static data members, they may be definitions.
5715     for (auto *I : CRD->decls())
5716       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5717         EmitTopLevelDecl(I);
5718     break;
5719   }
5720     // No code generation needed.
5721   case Decl::UsingShadow:
5722   case Decl::ClassTemplate:
5723   case Decl::VarTemplate:
5724   case Decl::Concept:
5725   case Decl::VarTemplatePartialSpecialization:
5726   case Decl::FunctionTemplate:
5727   case Decl::TypeAliasTemplate:
5728   case Decl::Block:
5729   case Decl::Empty:
5730   case Decl::Binding:
5731     break;
5732   case Decl::Using:          // using X; [C++]
5733     if (CGDebugInfo *DI = getModuleDebugInfo())
5734         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5735     break;
5736   case Decl::NamespaceAlias:
5737     if (CGDebugInfo *DI = getModuleDebugInfo())
5738         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5739     break;
5740   case Decl::UsingDirective: // using namespace X; [C++]
5741     if (CGDebugInfo *DI = getModuleDebugInfo())
5742       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5743     break;
5744   case Decl::CXXConstructor:
5745     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5746     break;
5747   case Decl::CXXDestructor:
5748     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5749     break;
5750 
5751   case Decl::StaticAssert:
5752     // Nothing to do.
5753     break;
5754 
5755   // Objective-C Decls
5756 
5757   // Forward declarations, no (immediate) code generation.
5758   case Decl::ObjCInterface:
5759   case Decl::ObjCCategory:
5760     break;
5761 
5762   case Decl::ObjCProtocol: {
5763     auto *Proto = cast<ObjCProtocolDecl>(D);
5764     if (Proto->isThisDeclarationADefinition())
5765       ObjCRuntime->GenerateProtocol(Proto);
5766     break;
5767   }
5768 
5769   case Decl::ObjCCategoryImpl:
5770     // Categories have properties but don't support synthesize so we
5771     // can ignore them here.
5772     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5773     break;
5774 
5775   case Decl::ObjCImplementation: {
5776     auto *OMD = cast<ObjCImplementationDecl>(D);
5777     EmitObjCPropertyImplementations(OMD);
5778     EmitObjCIvarInitializations(OMD);
5779     ObjCRuntime->GenerateClass(OMD);
5780     // Emit global variable debug information.
5781     if (CGDebugInfo *DI = getModuleDebugInfo())
5782       if (getCodeGenOpts().hasReducedDebugInfo())
5783         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5784             OMD->getClassInterface()), OMD->getLocation());
5785     break;
5786   }
5787   case Decl::ObjCMethod: {
5788     auto *OMD = cast<ObjCMethodDecl>(D);
5789     // If this is not a prototype, emit the body.
5790     if (OMD->getBody())
5791       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5792     break;
5793   }
5794   case Decl::ObjCCompatibleAlias:
5795     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5796     break;
5797 
5798   case Decl::PragmaComment: {
5799     const auto *PCD = cast<PragmaCommentDecl>(D);
5800     switch (PCD->getCommentKind()) {
5801     case PCK_Unknown:
5802       llvm_unreachable("unexpected pragma comment kind");
5803     case PCK_Linker:
5804       AppendLinkerOptions(PCD->getArg());
5805       break;
5806     case PCK_Lib:
5807         AddDependentLib(PCD->getArg());
5808       break;
5809     case PCK_Compiler:
5810     case PCK_ExeStr:
5811     case PCK_User:
5812       break; // We ignore all of these.
5813     }
5814     break;
5815   }
5816 
5817   case Decl::PragmaDetectMismatch: {
5818     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5819     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5820     break;
5821   }
5822 
5823   case Decl::LinkageSpec:
5824     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5825     break;
5826 
5827   case Decl::FileScopeAsm: {
5828     // File-scope asm is ignored during device-side CUDA compilation.
5829     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5830       break;
5831     // File-scope asm is ignored during device-side OpenMP compilation.
5832     if (LangOpts.OpenMPIsDevice)
5833       break;
5834     // File-scope asm is ignored during device-side SYCL compilation.
5835     if (LangOpts.SYCLIsDevice)
5836       break;
5837     auto *AD = cast<FileScopeAsmDecl>(D);
5838     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5839     break;
5840   }
5841 
5842   case Decl::Import: {
5843     auto *Import = cast<ImportDecl>(D);
5844 
5845     // If we've already imported this module, we're done.
5846     if (!ImportedModules.insert(Import->getImportedModule()))
5847       break;
5848 
5849     // Emit debug information for direct imports.
5850     if (!Import->getImportedOwningModule()) {
5851       if (CGDebugInfo *DI = getModuleDebugInfo())
5852         DI->EmitImportDecl(*Import);
5853     }
5854 
5855     // Find all of the submodules and emit the module initializers.
5856     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5857     SmallVector<clang::Module *, 16> Stack;
5858     Visited.insert(Import->getImportedModule());
5859     Stack.push_back(Import->getImportedModule());
5860 
5861     while (!Stack.empty()) {
5862       clang::Module *Mod = Stack.pop_back_val();
5863       if (!EmittedModuleInitializers.insert(Mod).second)
5864         continue;
5865 
5866       for (auto *D : Context.getModuleInitializers(Mod))
5867         EmitTopLevelDecl(D);
5868 
5869       // Visit the submodules of this module.
5870       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5871                                              SubEnd = Mod->submodule_end();
5872            Sub != SubEnd; ++Sub) {
5873         // Skip explicit children; they need to be explicitly imported to emit
5874         // the initializers.
5875         if ((*Sub)->IsExplicit)
5876           continue;
5877 
5878         if (Visited.insert(*Sub).second)
5879           Stack.push_back(*Sub);
5880       }
5881     }
5882     break;
5883   }
5884 
5885   case Decl::Export:
5886     EmitDeclContext(cast<ExportDecl>(D));
5887     break;
5888 
5889   case Decl::OMPThreadPrivate:
5890     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5891     break;
5892 
5893   case Decl::OMPAllocate:
5894     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5895     break;
5896 
5897   case Decl::OMPDeclareReduction:
5898     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5899     break;
5900 
5901   case Decl::OMPDeclareMapper:
5902     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5903     break;
5904 
5905   case Decl::OMPRequires:
5906     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5907     break;
5908 
5909   case Decl::Typedef:
5910   case Decl::TypeAlias: // using foo = bar; [C++11]
5911     if (CGDebugInfo *DI = getModuleDebugInfo())
5912       DI->EmitAndRetainType(
5913           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5914     break;
5915 
5916   case Decl::Record:
5917     if (CGDebugInfo *DI = getModuleDebugInfo())
5918       if (cast<RecordDecl>(D)->getDefinition())
5919         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5920     break;
5921 
5922   case Decl::Enum:
5923     if (CGDebugInfo *DI = getModuleDebugInfo())
5924       if (cast<EnumDecl>(D)->getDefinition())
5925         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5926     break;
5927 
5928   default:
5929     // Make sure we handled everything we should, every other kind is a
5930     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5931     // function. Need to recode Decl::Kind to do that easily.
5932     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5933     break;
5934   }
5935 }
5936 
AddDeferredUnusedCoverageMapping(Decl * D)5937 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5938   // Do we need to generate coverage mapping?
5939   if (!CodeGenOpts.CoverageMapping)
5940     return;
5941   switch (D->getKind()) {
5942   case Decl::CXXConversion:
5943   case Decl::CXXMethod:
5944   case Decl::Function:
5945   case Decl::ObjCMethod:
5946   case Decl::CXXConstructor:
5947   case Decl::CXXDestructor: {
5948     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5949       break;
5950     SourceManager &SM = getContext().getSourceManager();
5951     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5952       break;
5953     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5954     if (I == DeferredEmptyCoverageMappingDecls.end())
5955       DeferredEmptyCoverageMappingDecls[D] = true;
5956     break;
5957   }
5958   default:
5959     break;
5960   };
5961 }
5962 
ClearUnusedCoverageMapping(const Decl * D)5963 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5964   // Do we need to generate coverage mapping?
5965   if (!CodeGenOpts.CoverageMapping)
5966     return;
5967   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5968     if (Fn->isTemplateInstantiation())
5969       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5970   }
5971   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5972   if (I == DeferredEmptyCoverageMappingDecls.end())
5973     DeferredEmptyCoverageMappingDecls[D] = false;
5974   else
5975     I->second = false;
5976 }
5977 
EmitDeferredUnusedCoverageMappings()5978 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5979   // We call takeVector() here to avoid use-after-free.
5980   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5981   // we deserialize function bodies to emit coverage info for them, and that
5982   // deserializes more declarations. How should we handle that case?
5983   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5984     if (!Entry.second)
5985       continue;
5986     const Decl *D = Entry.first;
5987     switch (D->getKind()) {
5988     case Decl::CXXConversion:
5989     case Decl::CXXMethod:
5990     case Decl::Function:
5991     case Decl::ObjCMethod: {
5992       CodeGenPGO PGO(*this);
5993       GlobalDecl GD(cast<FunctionDecl>(D));
5994       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5995                                   getFunctionLinkage(GD));
5996       break;
5997     }
5998     case Decl::CXXConstructor: {
5999       CodeGenPGO PGO(*this);
6000       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6001       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6002                                   getFunctionLinkage(GD));
6003       break;
6004     }
6005     case Decl::CXXDestructor: {
6006       CodeGenPGO PGO(*this);
6007       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6008       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6009                                   getFunctionLinkage(GD));
6010       break;
6011     }
6012     default:
6013       break;
6014     };
6015   }
6016 }
6017 
EmitMainVoidAlias()6018 void CodeGenModule::EmitMainVoidAlias() {
6019   // In order to transition away from "__original_main" gracefully, emit an
6020   // alias for "main" in the no-argument case so that libc can detect when
6021   // new-style no-argument main is in used.
6022   if (llvm::Function *F = getModule().getFunction("main")) {
6023     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6024         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6025       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6026   }
6027 }
6028 
6029 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)6030 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6031                                           const void *Ptr) {
6032   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6033   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6034   return llvm::ConstantInt::get(i64, PtrInt);
6035 }
6036 
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)6037 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6038                                    llvm::NamedMDNode *&GlobalMetadata,
6039                                    GlobalDecl D,
6040                                    llvm::GlobalValue *Addr) {
6041   if (!GlobalMetadata)
6042     GlobalMetadata =
6043       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6044 
6045   // TODO: should we report variant information for ctors/dtors?
6046   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6047                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6048                                CGM.getLLVMContext(), D.getDecl()))};
6049   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6050 }
6051 
6052 /// For each function which is declared within an extern "C" region and marked
6053 /// as 'used', but has internal linkage, create an alias from the unmangled
6054 /// name to the mangled name if possible. People expect to be able to refer
6055 /// to such functions with an unmangled name from inline assembly within the
6056 /// same translation unit.
EmitStaticExternCAliases()6057 void CodeGenModule::EmitStaticExternCAliases() {
6058   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6059     return;
6060   for (auto &I : StaticExternCValues) {
6061     IdentifierInfo *Name = I.first;
6062     llvm::GlobalValue *Val = I.second;
6063     if (Val && !getModule().getNamedValue(Name->getName()))
6064       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6065   }
6066 }
6067 
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const6068 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6069                                              GlobalDecl &Result) const {
6070   auto Res = Manglings.find(MangledName);
6071   if (Res == Manglings.end())
6072     return false;
6073   Result = Res->getValue();
6074   return true;
6075 }
6076 
6077 /// Emits metadata nodes associating all the global values in the
6078 /// current module with the Decls they came from.  This is useful for
6079 /// projects using IR gen as a subroutine.
6080 ///
6081 /// Since there's currently no way to associate an MDNode directly
6082 /// with an llvm::GlobalValue, we create a global named metadata
6083 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()6084 void CodeGenModule::EmitDeclMetadata() {
6085   llvm::NamedMDNode *GlobalMetadata = nullptr;
6086 
6087   for (auto &I : MangledDeclNames) {
6088     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6089     // Some mangled names don't necessarily have an associated GlobalValue
6090     // in this module, e.g. if we mangled it for DebugInfo.
6091     if (Addr)
6092       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6093   }
6094 }
6095 
6096 /// Emits metadata nodes for all the local variables in the current
6097 /// function.
EmitDeclMetadata()6098 void CodeGenFunction::EmitDeclMetadata() {
6099   if (LocalDeclMap.empty()) return;
6100 
6101   llvm::LLVMContext &Context = getLLVMContext();
6102 
6103   // Find the unique metadata ID for this name.
6104   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6105 
6106   llvm::NamedMDNode *GlobalMetadata = nullptr;
6107 
6108   for (auto &I : LocalDeclMap) {
6109     const Decl *D = I.first;
6110     llvm::Value *Addr = I.second.getPointer();
6111     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6112       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6113       Alloca->setMetadata(
6114           DeclPtrKind, llvm::MDNode::get(
6115                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6116     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6117       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6118       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6119     }
6120   }
6121 }
6122 
EmitVersionIdentMetadata()6123 void CodeGenModule::EmitVersionIdentMetadata() {
6124   llvm::NamedMDNode *IdentMetadata =
6125     TheModule.getOrInsertNamedMetadata("llvm.ident");
6126   std::string Version = getClangFullVersion();
6127   llvm::LLVMContext &Ctx = TheModule.getContext();
6128 
6129   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6130   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6131 }
6132 
EmitCommandLineMetadata()6133 void CodeGenModule::EmitCommandLineMetadata() {
6134   llvm::NamedMDNode *CommandLineMetadata =
6135     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6136   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6137   llvm::LLVMContext &Ctx = TheModule.getContext();
6138 
6139   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6140   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6141 }
6142 
EmitCoverageFile()6143 void CodeGenModule::EmitCoverageFile() {
6144   if (getCodeGenOpts().CoverageDataFile.empty() &&
6145       getCodeGenOpts().CoverageNotesFile.empty())
6146     return;
6147 
6148   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6149   if (!CUNode)
6150     return;
6151 
6152   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6153   llvm::LLVMContext &Ctx = TheModule.getContext();
6154   auto *CoverageDataFile =
6155       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6156   auto *CoverageNotesFile =
6157       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6158   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6159     llvm::MDNode *CU = CUNode->getOperand(i);
6160     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6161     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6162   }
6163 }
6164 
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)6165 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6166                                                        bool ForEH) {
6167   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6168   // FIXME: should we even be calling this method if RTTI is disabled
6169   // and it's not for EH?
6170   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6171       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6172        getTriple().isNVPTX()))
6173     return llvm::Constant::getNullValue(Int8PtrTy);
6174 
6175   if (ForEH && Ty->isObjCObjectPointerType() &&
6176       LangOpts.ObjCRuntime.isGNUFamily())
6177     return ObjCRuntime->GetEHType(Ty);
6178 
6179   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6180 }
6181 
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)6182 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6183   // Do not emit threadprivates in simd-only mode.
6184   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6185     return;
6186   for (auto RefExpr : D->varlists()) {
6187     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6188     bool PerformInit =
6189         VD->getAnyInitializer() &&
6190         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6191                                                         /*ForRef=*/false);
6192 
6193     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6194     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6195             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6196       CXXGlobalInits.push_back(InitFunction);
6197   }
6198 }
6199 
6200 llvm::Metadata *
CreateMetadataIdentifierImpl(QualType T,MetadataTypeMap & Map,StringRef Suffix)6201 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6202                                             StringRef Suffix) {
6203   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6204   if (InternalId)
6205     return InternalId;
6206 
6207   if (isExternallyVisible(T->getLinkage())) {
6208     std::string OutName;
6209     llvm::raw_string_ostream Out(OutName);
6210     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6211     Out << Suffix;
6212 
6213     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6214   } else {
6215     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6216                                            llvm::ArrayRef<llvm::Metadata *>());
6217   }
6218 
6219   return InternalId;
6220 }
6221 
CreateMetadataIdentifierForType(QualType T)6222 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6223   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6224 }
6225 
6226 llvm::Metadata *
CreateMetadataIdentifierForVirtualMemPtrType(QualType T)6227 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6228   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6229 }
6230 
6231 // Generalize pointer types to a void pointer with the qualifiers of the
6232 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6233 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6234 // 'void *'.
GeneralizeType(ASTContext & Ctx,QualType Ty)6235 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6236   if (!Ty->isPointerType())
6237     return Ty;
6238 
6239   return Ctx.getPointerType(
6240       QualType(Ctx.VoidTy).withCVRQualifiers(
6241           Ty->getPointeeType().getCVRQualifiers()));
6242 }
6243 
6244 // Apply type generalization to a FunctionType's return and argument types
GeneralizeFunctionType(ASTContext & Ctx,QualType Ty)6245 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6246   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6247     SmallVector<QualType, 8> GeneralizedParams;
6248     for (auto &Param : FnType->param_types())
6249       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6250 
6251     return Ctx.getFunctionType(
6252         GeneralizeType(Ctx, FnType->getReturnType()),
6253         GeneralizedParams, FnType->getExtProtoInfo());
6254   }
6255 
6256   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6257     return Ctx.getFunctionNoProtoType(
6258         GeneralizeType(Ctx, FnType->getReturnType()));
6259 
6260   llvm_unreachable("Encountered unknown FunctionType");
6261 }
6262 
CreateMetadataIdentifierGeneralized(QualType T)6263 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6264   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6265                                       GeneralizedMetadataIdMap, ".generalized");
6266 }
6267 
6268 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const6269 bool CodeGenModule::NeedAllVtablesTypeId() const {
6270   // Returns true if at least one of vtable-based CFI checkers is enabled and
6271   // is not in the trapping mode.
6272   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6273            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6274           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6275            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6276           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6277            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6278           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6279            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6280 }
6281 
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)6282 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6283                                           CharUnits Offset,
6284                                           const CXXRecordDecl *RD) {
6285   llvm::Metadata *MD =
6286       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6287   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6288 
6289   if (CodeGenOpts.SanitizeCfiCrossDso)
6290     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6291       VTable->addTypeMetadata(Offset.getQuantity(),
6292                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6293 
6294   if (NeedAllVtablesTypeId()) {
6295     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6296     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6297   }
6298 }
6299 
getSanStats()6300 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6301   if (!SanStats)
6302     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6303 
6304   return *SanStats;
6305 }
6306 
6307 llvm::Value *
createOpenCLIntToSamplerConversion(const Expr * E,CodeGenFunction & CGF)6308 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6309                                                   CodeGenFunction &CGF) {
6310   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6311   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6312   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6313   auto *Call = CGF.EmitRuntimeCall(
6314       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6315   return Call;
6316 }
6317 
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)6318 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6319     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6320   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6321                                  /* forPointeeType= */ true);
6322 }
6323 
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)6324 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6325                                                  LValueBaseInfo *BaseInfo,
6326                                                  TBAAAccessInfo *TBAAInfo,
6327                                                  bool forPointeeType) {
6328   if (TBAAInfo)
6329     *TBAAInfo = getTBAAAccessInfo(T);
6330 
6331   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6332   // that doesn't return the information we need to compute BaseInfo.
6333 
6334   // Honor alignment typedef attributes even on incomplete types.
6335   // We also honor them straight for C++ class types, even as pointees;
6336   // there's an expressivity gap here.
6337   if (auto TT = T->getAs<TypedefType>()) {
6338     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6339       if (BaseInfo)
6340         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6341       return getContext().toCharUnitsFromBits(Align);
6342     }
6343   }
6344 
6345   bool AlignForArray = T->isArrayType();
6346 
6347   // Analyze the base element type, so we don't get confused by incomplete
6348   // array types.
6349   T = getContext().getBaseElementType(T);
6350 
6351   if (T->isIncompleteType()) {
6352     // We could try to replicate the logic from
6353     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6354     // type is incomplete, so it's impossible to test. We could try to reuse
6355     // getTypeAlignIfKnown, but that doesn't return the information we need
6356     // to set BaseInfo.  So just ignore the possibility that the alignment is
6357     // greater than one.
6358     if (BaseInfo)
6359       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6360     return CharUnits::One();
6361   }
6362 
6363   if (BaseInfo)
6364     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6365 
6366   CharUnits Alignment;
6367   const CXXRecordDecl *RD;
6368   if (T.getQualifiers().hasUnaligned()) {
6369     Alignment = CharUnits::One();
6370   } else if (forPointeeType && !AlignForArray &&
6371              (RD = T->getAsCXXRecordDecl())) {
6372     // For C++ class pointees, we don't know whether we're pointing at a
6373     // base or a complete object, so we generally need to use the
6374     // non-virtual alignment.
6375     Alignment = getClassPointerAlignment(RD);
6376   } else {
6377     Alignment = getContext().getTypeAlignInChars(T);
6378   }
6379 
6380   // Cap to the global maximum type alignment unless the alignment
6381   // was somehow explicit on the type.
6382   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6383     if (Alignment.getQuantity() > MaxAlign &&
6384         !getContext().isAlignmentRequired(T))
6385       Alignment = CharUnits::fromQuantity(MaxAlign);
6386   }
6387   return Alignment;
6388 }
6389 
stopAutoInit()6390 bool CodeGenModule::stopAutoInit() {
6391   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6392   if (StopAfter) {
6393     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6394     // used
6395     if (NumAutoVarInit >= StopAfter) {
6396       return true;
6397     }
6398     if (!NumAutoVarInit) {
6399       unsigned DiagID = getDiags().getCustomDiagID(
6400           DiagnosticsEngine::Warning,
6401           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6402           "number of times ftrivial-auto-var-init=%1 gets applied.");
6403       getDiags().Report(DiagID)
6404           << StopAfter
6405           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6406                       LangOptions::TrivialAutoVarInitKind::Zero
6407                   ? "zero"
6408                   : "pattern");
6409     }
6410     ++NumAutoVarInit;
6411   }
6412   return false;
6413 }
6414 
printPostfixForExternalizedStaticVar(llvm::raw_ostream & OS) const6415 void CodeGenModule::printPostfixForExternalizedStaticVar(
6416     llvm::raw_ostream &OS) const {
6417   OS << ".static." << getContext().getCUIDHash();
6418 }
6419