1 //===-- ValueObject.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Core/ValueObject.h"
10 
11 #include "lldb/Core/Address.h"
12 #include "lldb/Core/Declaration.h"
13 #include "lldb/Core/Module.h"
14 #include "lldb/Core/ValueObjectCast.h"
15 #include "lldb/Core/ValueObjectChild.h"
16 #include "lldb/Core/ValueObjectConstResult.h"
17 #include "lldb/Core/ValueObjectDynamicValue.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectSyntheticFilter.h"
20 #include "lldb/Core/ValueObjectVTable.h"
21 #include "lldb/DataFormatters/DataVisualization.h"
22 #include "lldb/DataFormatters/DumpValueObjectOptions.h"
23 #include "lldb/DataFormatters/FormatManager.h"
24 #include "lldb/DataFormatters/StringPrinter.h"
25 #include "lldb/DataFormatters/TypeFormat.h"
26 #include "lldb/DataFormatters/TypeSummary.h"
27 #include "lldb/DataFormatters/ValueObjectPrinter.h"
28 #include "lldb/Expression/ExpressionVariable.h"
29 #include "lldb/Host/Config.h"
30 #include "lldb/Symbol/CompileUnit.h"
31 #include "lldb/Symbol/CompilerType.h"
32 #include "lldb/Symbol/SymbolContext.h"
33 #include "lldb/Symbol/Type.h"
34 #include "lldb/Symbol/Variable.h"
35 #include "lldb/Target/ExecutionContext.h"
36 #include "lldb/Target/Language.h"
37 #include "lldb/Target/LanguageRuntime.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/StackFrame.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Target/Thread.h"
42 #include "lldb/Target/ThreadList.h"
43 #include "lldb/Utility/DataBuffer.h"
44 #include "lldb/Utility/DataBufferHeap.h"
45 #include "lldb/Utility/Flags.h"
46 #include "lldb/Utility/LLDBLog.h"
47 #include "lldb/Utility/Log.h"
48 #include "lldb/Utility/Scalar.h"
49 #include "lldb/Utility/Stream.h"
50 #include "lldb/Utility/StreamString.h"
51 #include "lldb/lldb-private-types.h"
52 
53 #include "llvm/Support/Compiler.h"
54 
55 #include <algorithm>
56 #include <cstdint>
57 #include <cstdlib>
58 #include <memory>
59 #include <optional>
60 #include <tuple>
61 
62 #include <cassert>
63 #include <cinttypes>
64 #include <cstdio>
65 #include <cstring>
66 
67 #include <lldb/Core/ValueObject.h>
68 
69 namespace lldb_private {
70 class ExecutionContextScope;
71 }
72 namespace lldb_private {
73 class SymbolContextScope;
74 }
75 
76 using namespace lldb;
77 using namespace lldb_private;
78 
79 static user_id_t g_value_obj_uid = 0;
80 
81 // ValueObject constructor
ValueObject(ValueObject & parent)82 ValueObject::ValueObject(ValueObject &parent)
83     : m_parent(&parent), m_update_point(parent.GetUpdatePoint()),
84       m_manager(parent.GetManager()), m_id(++g_value_obj_uid) {
85   m_flags.m_is_synthetic_children_generated =
86       parent.m_flags.m_is_synthetic_children_generated;
87   m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder());
88   m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize());
89   m_manager->ManageObject(this);
90 }
91 
92 // ValueObject constructor
ValueObject(ExecutionContextScope * exe_scope,ValueObjectManager & manager,AddressType child_ptr_or_ref_addr_type)93 ValueObject::ValueObject(ExecutionContextScope *exe_scope,
94                          ValueObjectManager &manager,
95                          AddressType child_ptr_or_ref_addr_type)
96     : m_update_point(exe_scope), m_manager(&manager),
97       m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
98       m_id(++g_value_obj_uid) {
99   if (exe_scope) {
100     TargetSP target_sp(exe_scope->CalculateTarget());
101     if (target_sp) {
102       const ArchSpec &arch = target_sp->GetArchitecture();
103       m_data.SetByteOrder(arch.GetByteOrder());
104       m_data.SetAddressByteSize(arch.GetAddressByteSize());
105     }
106   }
107   m_manager->ManageObject(this);
108 }
109 
110 // Destructor
111 ValueObject::~ValueObject() = default;
112 
UpdateValueIfNeeded(bool update_format)113 bool ValueObject::UpdateValueIfNeeded(bool update_format) {
114 
115   bool did_change_formats = false;
116 
117   if (update_format)
118     did_change_formats = UpdateFormatsIfNeeded();
119 
120   // If this is a constant value, then our success is predicated on whether we
121   // have an error or not
122   if (GetIsConstant()) {
123     // if you are constant, things might still have changed behind your back
124     // (e.g. you are a frozen object and things have changed deeper than you
125     // cared to freeze-dry yourself) in this case, your value has not changed,
126     // but "computed" entries might have, so you might now have a different
127     // summary, or a different object description. clear these so we will
128     // recompute them
129     if (update_format && !did_change_formats)
130       ClearUserVisibleData(eClearUserVisibleDataItemsSummary |
131                            eClearUserVisibleDataItemsDescription);
132     return m_error.Success();
133   }
134 
135   bool first_update = IsChecksumEmpty();
136 
137   if (NeedsUpdating()) {
138     m_update_point.SetUpdated();
139 
140     // Save the old value using swap to avoid a string copy which also will
141     // clear our m_value_str
142     if (m_value_str.empty()) {
143       m_flags.m_old_value_valid = false;
144     } else {
145       m_flags.m_old_value_valid = true;
146       m_old_value_str.swap(m_value_str);
147       ClearUserVisibleData(eClearUserVisibleDataItemsValue);
148     }
149 
150     ClearUserVisibleData();
151 
152     if (IsInScope()) {
153       const bool value_was_valid = GetValueIsValid();
154       SetValueDidChange(false);
155 
156       m_error.Clear();
157 
158       // Call the pure virtual function to update the value
159 
160       bool need_compare_checksums = false;
161       llvm::SmallVector<uint8_t, 16> old_checksum;
162 
163       if (!first_update && CanProvideValue()) {
164         need_compare_checksums = true;
165         old_checksum.resize(m_value_checksum.size());
166         std::copy(m_value_checksum.begin(), m_value_checksum.end(),
167                   old_checksum.begin());
168       }
169 
170       bool success = UpdateValue();
171 
172       SetValueIsValid(success);
173 
174       if (success) {
175         UpdateChildrenAddressType();
176         const uint64_t max_checksum_size = 128;
177         m_data.Checksum(m_value_checksum, max_checksum_size);
178       } else {
179         need_compare_checksums = false;
180         m_value_checksum.clear();
181       }
182 
183       assert(!need_compare_checksums ||
184              (!old_checksum.empty() && !m_value_checksum.empty()));
185 
186       if (first_update)
187         SetValueDidChange(false);
188       else if (!m_flags.m_value_did_change && !success) {
189         // The value wasn't gotten successfully, so we mark this as changed if
190         // the value used to be valid and now isn't
191         SetValueDidChange(value_was_valid);
192       } else if (need_compare_checksums) {
193         SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
194                                  m_value_checksum.size()));
195       }
196 
197     } else {
198       m_error.SetErrorString("out of scope");
199     }
200   }
201   return m_error.Success();
202 }
203 
UpdateFormatsIfNeeded()204 bool ValueObject::UpdateFormatsIfNeeded() {
205   Log *log = GetLog(LLDBLog::DataFormatters);
206   LLDB_LOGF(log,
207             "[%s %p] checking for FormatManager revisions. ValueObject "
208             "rev: %d - Global rev: %d",
209             GetName().GetCString(), static_cast<void *>(this),
210             m_last_format_mgr_revision,
211             DataVisualization::GetCurrentRevision());
212 
213   bool any_change = false;
214 
215   if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) {
216     m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
217     any_change = true;
218 
219     SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues));
220     SetSummaryFormat(
221         DataVisualization::GetSummaryFormat(*this, GetDynamicValueType()));
222     SetSyntheticChildren(
223         DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType()));
224   }
225 
226   return any_change;
227 }
228 
SetNeedsUpdate()229 void ValueObject::SetNeedsUpdate() {
230   m_update_point.SetNeedsUpdate();
231   // We have to clear the value string here so ConstResult children will notice
232   // if their values are changed by hand (i.e. with SetValueAsCString).
233   ClearUserVisibleData(eClearUserVisibleDataItemsValue);
234 }
235 
ClearDynamicTypeInformation()236 void ValueObject::ClearDynamicTypeInformation() {
237   m_flags.m_children_count_valid = false;
238   m_flags.m_did_calculate_complete_objc_class_type = false;
239   m_last_format_mgr_revision = 0;
240   m_override_type = CompilerType();
241   SetValueFormat(lldb::TypeFormatImplSP());
242   SetSummaryFormat(lldb::TypeSummaryImplSP());
243   SetSyntheticChildren(lldb::SyntheticChildrenSP());
244 }
245 
MaybeCalculateCompleteType()246 CompilerType ValueObject::MaybeCalculateCompleteType() {
247   CompilerType compiler_type(GetCompilerTypeImpl());
248 
249   if (m_flags.m_did_calculate_complete_objc_class_type) {
250     if (m_override_type.IsValid())
251       return m_override_type;
252     else
253       return compiler_type;
254   }
255 
256   m_flags.m_did_calculate_complete_objc_class_type = true;
257 
258   ProcessSP process_sp(
259       GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
260 
261   if (!process_sp)
262     return compiler_type;
263 
264   if (auto *runtime =
265           process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) {
266     if (std::optional<CompilerType> complete_type =
267             runtime->GetRuntimeType(compiler_type)) {
268       m_override_type = *complete_type;
269       if (m_override_type.IsValid())
270         return m_override_type;
271     }
272   }
273   return compiler_type;
274 }
275 
276 
277 
GetDataExtractor()278 DataExtractor &ValueObject::GetDataExtractor() {
279   UpdateValueIfNeeded(false);
280   return m_data;
281 }
282 
GetError()283 const Status &ValueObject::GetError() {
284   UpdateValueIfNeeded(false);
285   return m_error;
286 }
287 
GetLocationAsCStringImpl(const Value & value,const DataExtractor & data)288 const char *ValueObject::GetLocationAsCStringImpl(const Value &value,
289                                                   const DataExtractor &data) {
290   if (UpdateValueIfNeeded(false)) {
291     if (m_location_str.empty()) {
292       StreamString sstr;
293 
294       Value::ValueType value_type = value.GetValueType();
295 
296       switch (value_type) {
297       case Value::ValueType::Invalid:
298         m_location_str = "invalid";
299         break;
300       case Value::ValueType::Scalar:
301         if (value.GetContextType() == Value::ContextType::RegisterInfo) {
302           RegisterInfo *reg_info = value.GetRegisterInfo();
303           if (reg_info) {
304             if (reg_info->name)
305               m_location_str = reg_info->name;
306             else if (reg_info->alt_name)
307               m_location_str = reg_info->alt_name;
308             if (m_location_str.empty())
309               m_location_str = (reg_info->encoding == lldb::eEncodingVector)
310                                    ? "vector"
311                                    : "scalar";
312           }
313         }
314         if (m_location_str.empty())
315           m_location_str = "scalar";
316         break;
317 
318       case Value::ValueType::LoadAddress:
319       case Value::ValueType::FileAddress:
320       case Value::ValueType::HostAddress: {
321         uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
322         sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
323                     value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
324         m_location_str = std::string(sstr.GetString());
325       } break;
326       }
327     }
328   }
329   return m_location_str.c_str();
330 }
331 
ResolveValue(Scalar & scalar)332 bool ValueObject::ResolveValue(Scalar &scalar) {
333   if (UpdateValueIfNeeded(
334           false)) // make sure that you are up to date before returning anything
335   {
336     ExecutionContext exe_ctx(GetExecutionContextRef());
337     Value tmp_value(m_value);
338     scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get());
339     if (scalar.IsValid()) {
340       const uint32_t bitfield_bit_size = GetBitfieldBitSize();
341       if (bitfield_bit_size)
342         return scalar.ExtractBitfield(bitfield_bit_size,
343                                       GetBitfieldBitOffset());
344       return true;
345     }
346   }
347   return false;
348 }
349 
IsLogicalTrue(Status & error)350 bool ValueObject::IsLogicalTrue(Status &error) {
351   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
352     LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
353     switch (is_logical_true) {
354     case eLazyBoolYes:
355     case eLazyBoolNo:
356       return (is_logical_true == true);
357     case eLazyBoolCalculate:
358       break;
359     }
360   }
361 
362   Scalar scalar_value;
363 
364   if (!ResolveValue(scalar_value)) {
365     error.SetErrorString("failed to get a scalar result");
366     return false;
367   }
368 
369   bool ret;
370   ret = scalar_value.ULongLong(1) != 0;
371   error.Clear();
372   return ret;
373 }
374 
GetChildAtIndex(size_t idx,bool can_create)375 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) {
376   ValueObjectSP child_sp;
377   // We may need to update our value if we are dynamic
378   if (IsPossibleDynamicType())
379     UpdateValueIfNeeded(false);
380   if (idx < GetNumChildren()) {
381     // Check if we have already made the child value object?
382     if (can_create && !m_children.HasChildAtIndex(idx)) {
383       // No we haven't created the child at this index, so lets have our
384       // subclass do it and cache the result for quick future access.
385       m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0));
386     }
387 
388     ValueObject *child = m_children.GetChildAtIndex(idx);
389     if (child != nullptr)
390       return child->GetSP();
391   }
392   return child_sp;
393 }
394 
395 lldb::ValueObjectSP
GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names)396 ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) {
397   if (names.size() == 0)
398     return GetSP();
399   ValueObjectSP root(GetSP());
400   for (llvm::StringRef name : names) {
401     root = root->GetChildMemberWithName(name);
402     if (!root) {
403       return root;
404     }
405   }
406   return root;
407 }
408 
GetIndexOfChildWithName(llvm::StringRef name)409 size_t ValueObject::GetIndexOfChildWithName(llvm::StringRef name) {
410   bool omit_empty_base_classes = true;
411   return GetCompilerType().GetIndexOfChildWithName(name,
412                                                    omit_empty_base_classes);
413 }
414 
GetChildMemberWithName(llvm::StringRef name,bool can_create)415 ValueObjectSP ValueObject::GetChildMemberWithName(llvm::StringRef name,
416                                                   bool can_create) {
417   // We may need to update our value if we are dynamic.
418   if (IsPossibleDynamicType())
419     UpdateValueIfNeeded(false);
420 
421   // When getting a child by name, it could be buried inside some base classes
422   // (which really aren't part of the expression path), so we need a vector of
423   // indexes that can get us down to the correct child.
424   std::vector<uint32_t> child_indexes;
425   bool omit_empty_base_classes = true;
426 
427   if (!GetCompilerType().IsValid())
428     return ValueObjectSP();
429 
430   const size_t num_child_indexes =
431       GetCompilerType().GetIndexOfChildMemberWithName(
432           name, omit_empty_base_classes, child_indexes);
433   if (num_child_indexes == 0)
434     return nullptr;
435 
436   ValueObjectSP child_sp = GetSP();
437   for (uint32_t idx : child_indexes)
438     if (child_sp)
439       child_sp = child_sp->GetChildAtIndex(idx, can_create);
440   return child_sp;
441 }
442 
GetNumChildren(uint32_t max)443 size_t ValueObject::GetNumChildren(uint32_t max) {
444   UpdateValueIfNeeded();
445 
446   if (max < UINT32_MAX) {
447     if (m_flags.m_children_count_valid) {
448       size_t children_count = m_children.GetChildrenCount();
449       return children_count <= max ? children_count : max;
450     } else
451       return CalculateNumChildren(max);
452   }
453 
454   if (!m_flags.m_children_count_valid) {
455     SetNumChildren(CalculateNumChildren());
456   }
457   return m_children.GetChildrenCount();
458 }
459 
MightHaveChildren()460 bool ValueObject::MightHaveChildren() {
461   bool has_children = false;
462   const uint32_t type_info = GetTypeInfo();
463   if (type_info) {
464     if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
465       has_children = true;
466   } else {
467     has_children = GetNumChildren() > 0;
468   }
469   return has_children;
470 }
471 
472 // Should only be called by ValueObject::GetNumChildren()
SetNumChildren(size_t num_children)473 void ValueObject::SetNumChildren(size_t num_children) {
474   m_flags.m_children_count_valid = true;
475   m_children.SetChildrenCount(num_children);
476 }
477 
CreateChildAtIndex(size_t idx,bool synthetic_array_member,int32_t synthetic_index)478 ValueObject *ValueObject::CreateChildAtIndex(size_t idx,
479                                              bool synthetic_array_member,
480                                              int32_t synthetic_index) {
481   ValueObject *valobj = nullptr;
482 
483   bool omit_empty_base_classes = true;
484   bool ignore_array_bounds = synthetic_array_member;
485   std::string child_name_str;
486   uint32_t child_byte_size = 0;
487   int32_t child_byte_offset = 0;
488   uint32_t child_bitfield_bit_size = 0;
489   uint32_t child_bitfield_bit_offset = 0;
490   bool child_is_base_class = false;
491   bool child_is_deref_of_parent = false;
492   uint64_t language_flags = 0;
493 
494   const bool transparent_pointers = !synthetic_array_member;
495   CompilerType child_compiler_type;
496 
497   ExecutionContext exe_ctx(GetExecutionContextRef());
498 
499   child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex(
500       &exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
501       ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
502       child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
503       child_is_deref_of_parent, this, language_flags);
504   if (child_compiler_type) {
505     if (synthetic_index)
506       child_byte_offset += child_byte_size * synthetic_index;
507 
508     ConstString child_name;
509     if (!child_name_str.empty())
510       child_name.SetCString(child_name_str.c_str());
511 
512     valobj = new ValueObjectChild(
513         *this, child_compiler_type, child_name, child_byte_size,
514         child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
515         child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
516         language_flags);
517   }
518 
519   // In case of an incomplete type, try to use the ValueObject's
520   // synthetic value to create the child ValueObject.
521   if (!valobj && synthetic_array_member) {
522     if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) {
523       valobj = synth_valobj_sp
524                    ->GetChildAtIndex(synthetic_index, synthetic_array_member)
525                    .get();
526     }
527   }
528 
529   return valobj;
530 }
531 
GetSummaryAsCString(TypeSummaryImpl * summary_ptr,std::string & destination,lldb::LanguageType lang)532 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
533                                       std::string &destination,
534                                       lldb::LanguageType lang) {
535   return GetSummaryAsCString(summary_ptr, destination,
536                              TypeSummaryOptions().SetLanguage(lang));
537 }
538 
GetSummaryAsCString(TypeSummaryImpl * summary_ptr,std::string & destination,const TypeSummaryOptions & options)539 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
540                                       std::string &destination,
541                                       const TypeSummaryOptions &options) {
542   destination.clear();
543 
544   // If we have a forcefully completed type, don't try and show a summary from
545   // a valid summary string or function because the type is not complete and
546   // no member variables or member functions will be available.
547   if (GetCompilerType().IsForcefullyCompleted()) {
548       destination = "<incomplete type>";
549       return true;
550   }
551 
552   // ideally we would like to bail out if passing NULL, but if we do so we end
553   // up not providing the summary for function pointers anymore
554   if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary)
555     return false;
556 
557   m_flags.m_is_getting_summary = true;
558 
559   TypeSummaryOptions actual_options(options);
560 
561   if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
562     actual_options.SetLanguage(GetPreferredDisplayLanguage());
563 
564   // this is a hot path in code and we prefer to avoid setting this string all
565   // too often also clearing out other information that we might care to see in
566   // a crash log. might be useful in very specific situations though.
567   /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
568    Summary provider's description is %s",
569    GetTypeName().GetCString(),
570    GetName().GetCString(),
571    summary_ptr->GetDescription().c_str());*/
572 
573   if (UpdateValueIfNeeded(false) && summary_ptr) {
574     if (HasSyntheticValue())
575       m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
576                                                 // the synthetic children being
577                                                 // up-to-date (e.g. ${svar%#})
578     summary_ptr->FormatObject(this, destination, actual_options);
579   }
580   m_flags.m_is_getting_summary = false;
581   return !destination.empty();
582 }
583 
GetSummaryAsCString(lldb::LanguageType lang)584 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) {
585   if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
586     TypeSummaryOptions summary_options;
587     summary_options.SetLanguage(lang);
588     GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str,
589                         summary_options);
590   }
591   if (m_summary_str.empty())
592     return nullptr;
593   return m_summary_str.c_str();
594 }
595 
GetSummaryAsCString(std::string & destination,const TypeSummaryOptions & options)596 bool ValueObject::GetSummaryAsCString(std::string &destination,
597                                       const TypeSummaryOptions &options) {
598   return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
599 }
600 
IsCStringContainer(bool check_pointer)601 bool ValueObject::IsCStringContainer(bool check_pointer) {
602   CompilerType pointee_or_element_compiler_type;
603   const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
604   bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
605                        pointee_or_element_compiler_type.IsCharType());
606   if (!is_char_arr_ptr)
607     return false;
608   if (!check_pointer)
609     return true;
610   if (type_flags.Test(eTypeIsArray))
611     return true;
612   addr_t cstr_address = LLDB_INVALID_ADDRESS;
613   AddressType cstr_address_type = eAddressTypeInvalid;
614   cstr_address = GetPointerValue(&cstr_address_type);
615   return (cstr_address != LLDB_INVALID_ADDRESS);
616 }
617 
GetPointeeData(DataExtractor & data,uint32_t item_idx,uint32_t item_count)618 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
619                                    uint32_t item_count) {
620   CompilerType pointee_or_element_compiler_type;
621   const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
622   const bool is_pointer_type = type_info & eTypeIsPointer;
623   const bool is_array_type = type_info & eTypeIsArray;
624   if (!(is_pointer_type || is_array_type))
625     return 0;
626 
627   if (item_count == 0)
628     return 0;
629 
630   ExecutionContext exe_ctx(GetExecutionContextRef());
631 
632   std::optional<uint64_t> item_type_size =
633       pointee_or_element_compiler_type.GetByteSize(
634           exe_ctx.GetBestExecutionContextScope());
635   if (!item_type_size)
636     return 0;
637   const uint64_t bytes = item_count * *item_type_size;
638   const uint64_t offset = item_idx * *item_type_size;
639 
640   if (item_idx == 0 && item_count == 1) // simply a deref
641   {
642     if (is_pointer_type) {
643       Status error;
644       ValueObjectSP pointee_sp = Dereference(error);
645       if (error.Fail() || pointee_sp.get() == nullptr)
646         return 0;
647       return pointee_sp->GetData(data, error);
648     } else {
649       ValueObjectSP child_sp = GetChildAtIndex(0);
650       if (child_sp.get() == nullptr)
651         return 0;
652       Status error;
653       return child_sp->GetData(data, error);
654     }
655     return true;
656   } else /* (items > 1) */
657   {
658     Status error;
659     lldb_private::DataBufferHeap *heap_buf_ptr = nullptr;
660     lldb::DataBufferSP data_sp(heap_buf_ptr =
661                                    new lldb_private::DataBufferHeap());
662 
663     AddressType addr_type;
664     lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type)
665                                         : GetAddressOf(true, &addr_type);
666 
667     switch (addr_type) {
668     case eAddressTypeFile: {
669       ModuleSP module_sp(GetModule());
670       if (module_sp) {
671         addr = addr + offset;
672         Address so_addr;
673         module_sp->ResolveFileAddress(addr, so_addr);
674         ExecutionContext exe_ctx(GetExecutionContextRef());
675         Target *target = exe_ctx.GetTargetPtr();
676         if (target) {
677           heap_buf_ptr->SetByteSize(bytes);
678           size_t bytes_read = target->ReadMemory(
679               so_addr, heap_buf_ptr->GetBytes(), bytes, error, true);
680           if (error.Success()) {
681             data.SetData(data_sp);
682             return bytes_read;
683           }
684         }
685       }
686     } break;
687     case eAddressTypeLoad: {
688       ExecutionContext exe_ctx(GetExecutionContextRef());
689       Process *process = exe_ctx.GetProcessPtr();
690       if (process) {
691         heap_buf_ptr->SetByteSize(bytes);
692         size_t bytes_read = process->ReadMemory(
693             addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
694         if (error.Success() || bytes_read > 0) {
695           data.SetData(data_sp);
696           return bytes_read;
697         }
698       }
699     } break;
700     case eAddressTypeHost: {
701       auto max_bytes =
702           GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
703       if (max_bytes && *max_bytes > offset) {
704         size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes);
705         addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
706         if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
707           break;
708         heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
709         data.SetData(data_sp);
710         return bytes_read;
711       }
712     } break;
713     case eAddressTypeInvalid:
714       break;
715     }
716   }
717   return 0;
718 }
719 
GetData(DataExtractor & data,Status & error)720 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) {
721   UpdateValueIfNeeded(false);
722   ExecutionContext exe_ctx(GetExecutionContextRef());
723   error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
724   if (error.Fail()) {
725     if (m_data.GetByteSize()) {
726       data = m_data;
727       error.Clear();
728       return data.GetByteSize();
729     } else {
730       return 0;
731     }
732   }
733   data.SetAddressByteSize(m_data.GetAddressByteSize());
734   data.SetByteOrder(m_data.GetByteOrder());
735   return data.GetByteSize();
736 }
737 
SetData(DataExtractor & data,Status & error)738 bool ValueObject::SetData(DataExtractor &data, Status &error) {
739   error.Clear();
740   // Make sure our value is up to date first so that our location and location
741   // type is valid.
742   if (!UpdateValueIfNeeded(false)) {
743     error.SetErrorString("unable to read value");
744     return false;
745   }
746 
747   uint64_t count = 0;
748   const Encoding encoding = GetCompilerType().GetEncoding(count);
749 
750   const size_t byte_size = GetByteSize().value_or(0);
751 
752   Value::ValueType value_type = m_value.GetValueType();
753 
754   switch (value_type) {
755   case Value::ValueType::Invalid:
756     error.SetErrorString("invalid location");
757     return false;
758   case Value::ValueType::Scalar: {
759     Status set_error =
760         m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
761 
762     if (!set_error.Success()) {
763       error.SetErrorStringWithFormat("unable to set scalar value: %s",
764                                      set_error.AsCString());
765       return false;
766     }
767   } break;
768   case Value::ValueType::LoadAddress: {
769     // If it is a load address, then the scalar value is the storage location
770     // of the data, and we have to shove this value down to that load location.
771     ExecutionContext exe_ctx(GetExecutionContextRef());
772     Process *process = exe_ctx.GetProcessPtr();
773     if (process) {
774       addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
775       size_t bytes_written = process->WriteMemory(
776           target_addr, data.GetDataStart(), byte_size, error);
777       if (!error.Success())
778         return false;
779       if (bytes_written != byte_size) {
780         error.SetErrorString("unable to write value to memory");
781         return false;
782       }
783     }
784   } break;
785   case Value::ValueType::HostAddress: {
786     // If it is a host address, then we stuff the scalar as a DataBuffer into
787     // the Value's data.
788     DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
789     m_data.SetData(buffer_sp, 0);
790     data.CopyByteOrderedData(0, byte_size,
791                              const_cast<uint8_t *>(m_data.GetDataStart()),
792                              byte_size, m_data.GetByteOrder());
793     m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
794   } break;
795   case Value::ValueType::FileAddress:
796     break;
797   }
798 
799   // If we have reached this point, then we have successfully changed the
800   // value.
801   SetNeedsUpdate();
802   return true;
803 }
804 
CopyStringDataToBufferSP(const StreamString & source,lldb::WritableDataBufferSP & destination)805 static bool CopyStringDataToBufferSP(const StreamString &source,
806                                      lldb::WritableDataBufferSP &destination) {
807   llvm::StringRef src = source.GetString();
808   src = src.rtrim('\0');
809   destination = std::make_shared<DataBufferHeap>(src.size(), 0);
810   memcpy(destination->GetBytes(), src.data(), src.size());
811   return true;
812 }
813 
814 std::pair<size_t, bool>
ReadPointedString(lldb::WritableDataBufferSP & buffer_sp,Status & error,bool honor_array)815 ValueObject::ReadPointedString(lldb::WritableDataBufferSP &buffer_sp,
816                                Status &error, bool honor_array) {
817   bool was_capped = false;
818   StreamString s;
819   ExecutionContext exe_ctx(GetExecutionContextRef());
820   Target *target = exe_ctx.GetTargetPtr();
821 
822   if (!target) {
823     s << "<no target to read from>";
824     error.SetErrorString("no target to read from");
825     CopyStringDataToBufferSP(s, buffer_sp);
826     return {0, was_capped};
827   }
828 
829   const auto max_length = target->GetMaximumSizeOfStringSummary();
830 
831   size_t bytes_read = 0;
832   size_t total_bytes_read = 0;
833 
834   CompilerType compiler_type = GetCompilerType();
835   CompilerType elem_or_pointee_compiler_type;
836   const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
837   if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
838       elem_or_pointee_compiler_type.IsCharType()) {
839     addr_t cstr_address = LLDB_INVALID_ADDRESS;
840     AddressType cstr_address_type = eAddressTypeInvalid;
841 
842     size_t cstr_len = 0;
843     bool capped_data = false;
844     const bool is_array = type_flags.Test(eTypeIsArray);
845     if (is_array) {
846       // We have an array
847       uint64_t array_size = 0;
848       if (compiler_type.IsArrayType(nullptr, &array_size)) {
849         cstr_len = array_size;
850         if (cstr_len > max_length) {
851           capped_data = true;
852           cstr_len = max_length;
853         }
854       }
855       cstr_address = GetAddressOf(true, &cstr_address_type);
856     } else {
857       // We have a pointer
858       cstr_address = GetPointerValue(&cstr_address_type);
859     }
860 
861     if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) {
862       if (cstr_address_type == eAddressTypeHost && is_array) {
863         const char *cstr = GetDataExtractor().PeekCStr(0);
864         if (cstr == nullptr) {
865           s << "<invalid address>";
866           error.SetErrorString("invalid address");
867           CopyStringDataToBufferSP(s, buffer_sp);
868           return {0, was_capped};
869         }
870         s << llvm::StringRef(cstr, cstr_len);
871         CopyStringDataToBufferSP(s, buffer_sp);
872         return {cstr_len, was_capped};
873       } else {
874         s << "<invalid address>";
875         error.SetErrorString("invalid address");
876         CopyStringDataToBufferSP(s, buffer_sp);
877         return {0, was_capped};
878       }
879     }
880 
881     Address cstr_so_addr(cstr_address);
882     DataExtractor data;
883     if (cstr_len > 0 && honor_array) {
884       // I am using GetPointeeData() here to abstract the fact that some
885       // ValueObjects are actually frozen pointers in the host but the pointed-
886       // to data lives in the debuggee, and GetPointeeData() automatically
887       // takes care of this
888       GetPointeeData(data, 0, cstr_len);
889 
890       if ((bytes_read = data.GetByteSize()) > 0) {
891         total_bytes_read = bytes_read;
892         for (size_t offset = 0; offset < bytes_read; offset++)
893           s.Printf("%c", *data.PeekData(offset, 1));
894         if (capped_data)
895           was_capped = true;
896       }
897     } else {
898       cstr_len = max_length;
899       const size_t k_max_buf_size = 64;
900 
901       size_t offset = 0;
902 
903       int cstr_len_displayed = -1;
904       bool capped_cstr = false;
905       // I am using GetPointeeData() here to abstract the fact that some
906       // ValueObjects are actually frozen pointers in the host but the pointed-
907       // to data lives in the debuggee, and GetPointeeData() automatically
908       // takes care of this
909       while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
910         total_bytes_read += bytes_read;
911         const char *cstr = data.PeekCStr(0);
912         size_t len = strnlen(cstr, k_max_buf_size);
913         if (cstr_len_displayed < 0)
914           cstr_len_displayed = len;
915 
916         if (len == 0)
917           break;
918         cstr_len_displayed += len;
919         if (len > bytes_read)
920           len = bytes_read;
921         if (len > cstr_len)
922           len = cstr_len;
923 
924         for (size_t offset = 0; offset < bytes_read; offset++)
925           s.Printf("%c", *data.PeekData(offset, 1));
926 
927         if (len < k_max_buf_size)
928           break;
929 
930         if (len >= cstr_len) {
931           capped_cstr = true;
932           break;
933         }
934 
935         cstr_len -= len;
936         offset += len;
937       }
938 
939       if (cstr_len_displayed >= 0) {
940         if (capped_cstr)
941           was_capped = true;
942       }
943     }
944   } else {
945     error.SetErrorString("not a string object");
946     s << "<not a string object>";
947   }
948   CopyStringDataToBufferSP(s, buffer_sp);
949   return {total_bytes_read, was_capped};
950 }
951 
GetObjectDescription()952 const char *ValueObject::GetObjectDescription() {
953   if (!UpdateValueIfNeeded(true))
954     return nullptr;
955 
956   // Return cached value.
957   if (!m_object_desc_str.empty())
958     return m_object_desc_str.c_str();
959 
960   ExecutionContext exe_ctx(GetExecutionContextRef());
961   Process *process = exe_ctx.GetProcessPtr();
962   if (!process)
963     return nullptr;
964 
965   // Returns the object description produced by one language runtime.
966   auto get_object_description = [&](LanguageType language) -> const char * {
967     if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) {
968       StreamString s;
969       if (runtime->GetObjectDescription(s, *this)) {
970         m_object_desc_str.append(std::string(s.GetString()));
971         return m_object_desc_str.c_str();
972       }
973     }
974     return nullptr;
975   };
976 
977   // Try the native language runtime first.
978   LanguageType native_language = GetObjectRuntimeLanguage();
979   if (const char *desc = get_object_description(native_language))
980     return desc;
981 
982   // Try the Objective-C language runtime. This fallback is necessary
983   // for Objective-C++ and mixed Objective-C / C++ programs.
984   if (Language::LanguageIsCFamily(native_language))
985     return get_object_description(eLanguageTypeObjC);
986   return nullptr;
987 }
988 
GetValueAsCString(const lldb_private::TypeFormatImpl & format,std::string & destination)989 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format,
990                                     std::string &destination) {
991   if (UpdateValueIfNeeded(false))
992     return format.FormatObject(this, destination);
993   else
994     return false;
995 }
996 
GetValueAsCString(lldb::Format format,std::string & destination)997 bool ValueObject::GetValueAsCString(lldb::Format format,
998                                     std::string &destination) {
999   return GetValueAsCString(TypeFormatImpl_Format(format), destination);
1000 }
1001 
GetValueAsCString()1002 const char *ValueObject::GetValueAsCString() {
1003   if (UpdateValueIfNeeded(true)) {
1004     lldb::TypeFormatImplSP format_sp;
1005     lldb::Format my_format = GetFormat();
1006     if (my_format == lldb::eFormatDefault) {
1007       if (m_type_format_sp)
1008         format_sp = m_type_format_sp;
1009       else {
1010         if (m_flags.m_is_bitfield_for_scalar)
1011           my_format = eFormatUnsigned;
1012         else {
1013           if (m_value.GetContextType() == Value::ContextType::RegisterInfo) {
1014             const RegisterInfo *reg_info = m_value.GetRegisterInfo();
1015             if (reg_info)
1016               my_format = reg_info->format;
1017           } else {
1018             my_format = GetValue().GetCompilerType().GetFormat();
1019           }
1020         }
1021       }
1022     }
1023     if (my_format != m_last_format || m_value_str.empty()) {
1024       m_last_format = my_format;
1025       if (!format_sp)
1026         format_sp = std::make_shared<TypeFormatImpl_Format>(my_format);
1027       if (GetValueAsCString(*format_sp.get(), m_value_str)) {
1028         if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) {
1029           // The value was gotten successfully, so we consider the value as
1030           // changed if the value string differs
1031           SetValueDidChange(m_old_value_str != m_value_str);
1032         }
1033       }
1034     }
1035   }
1036   if (m_value_str.empty())
1037     return nullptr;
1038   return m_value_str.c_str();
1039 }
1040 
1041 // if > 8bytes, 0 is returned. this method should mostly be used to read
1042 // address values out of pointers
GetValueAsUnsigned(uint64_t fail_value,bool * success)1043 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
1044   // If our byte size is zero this is an aggregate type that has children
1045   if (CanProvideValue()) {
1046     Scalar scalar;
1047     if (ResolveValue(scalar)) {
1048       if (success)
1049         *success = true;
1050       scalar.MakeUnsigned();
1051       return scalar.ULongLong(fail_value);
1052     }
1053     // fallthrough, otherwise...
1054   }
1055 
1056   if (success)
1057     *success = false;
1058   return fail_value;
1059 }
1060 
GetValueAsSigned(int64_t fail_value,bool * success)1061 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
1062   // If our byte size is zero this is an aggregate type that has children
1063   if (CanProvideValue()) {
1064     Scalar scalar;
1065     if (ResolveValue(scalar)) {
1066       if (success)
1067         *success = true;
1068       scalar.MakeSigned();
1069       return scalar.SLongLong(fail_value);
1070     }
1071     // fallthrough, otherwise...
1072   }
1073 
1074   if (success)
1075     *success = false;
1076   return fail_value;
1077 }
1078 
1079 // if any more "special cases" are added to
1080 // ValueObject::DumpPrintableRepresentation() please keep this call up to date
1081 // by returning true for your new special cases. We will eventually move to
1082 // checking this call result before trying to display special cases
HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display,Format custom_format)1083 bool ValueObject::HasSpecialPrintableRepresentation(
1084     ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
1085   Flags flags(GetTypeInfo());
1086   if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1087       val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
1088     if (IsCStringContainer(true) &&
1089         (custom_format == eFormatCString || custom_format == eFormatCharArray ||
1090          custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
1091       return true;
1092 
1093     if (flags.Test(eTypeIsArray)) {
1094       if ((custom_format == eFormatBytes) ||
1095           (custom_format == eFormatBytesWithASCII))
1096         return true;
1097 
1098       if ((custom_format == eFormatVectorOfChar) ||
1099           (custom_format == eFormatVectorOfFloat32) ||
1100           (custom_format == eFormatVectorOfFloat64) ||
1101           (custom_format == eFormatVectorOfSInt16) ||
1102           (custom_format == eFormatVectorOfSInt32) ||
1103           (custom_format == eFormatVectorOfSInt64) ||
1104           (custom_format == eFormatVectorOfSInt8) ||
1105           (custom_format == eFormatVectorOfUInt128) ||
1106           (custom_format == eFormatVectorOfUInt16) ||
1107           (custom_format == eFormatVectorOfUInt32) ||
1108           (custom_format == eFormatVectorOfUInt64) ||
1109           (custom_format == eFormatVectorOfUInt8))
1110         return true;
1111     }
1112   }
1113   return false;
1114 }
1115 
DumpPrintableRepresentation(Stream & s,ValueObjectRepresentationStyle val_obj_display,Format custom_format,PrintableRepresentationSpecialCases special,bool do_dump_error)1116 bool ValueObject::DumpPrintableRepresentation(
1117     Stream &s, ValueObjectRepresentationStyle val_obj_display,
1118     Format custom_format, PrintableRepresentationSpecialCases special,
1119     bool do_dump_error) {
1120 
1121   // If the ValueObject has an error, we might end up dumping the type, which
1122   // is useful, but if we don't even have a type, then don't examine the object
1123   // further as that's not meaningful, only the error is.
1124   if (m_error.Fail() && !GetCompilerType().IsValid()) {
1125     if (do_dump_error)
1126       s.Printf("<%s>", m_error.AsCString());
1127     return false;
1128   }
1129 
1130   Flags flags(GetTypeInfo());
1131 
1132   bool allow_special =
1133       (special == ValueObject::PrintableRepresentationSpecialCases::eAllow);
1134   const bool only_special = false;
1135 
1136   if (allow_special) {
1137     if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1138         val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
1139       // when being asked to get a printable display an array or pointer type
1140       // directly, try to "do the right thing"
1141 
1142       if (IsCStringContainer(true) &&
1143           (custom_format == eFormatCString ||
1144            custom_format == eFormatCharArray || custom_format == eFormatChar ||
1145            custom_format ==
1146                eFormatVectorOfChar)) // print char[] & char* directly
1147       {
1148         Status error;
1149         lldb::WritableDataBufferSP buffer_sp;
1150         std::pair<size_t, bool> read_string =
1151             ReadPointedString(buffer_sp, error,
1152                               (custom_format == eFormatVectorOfChar) ||
1153                                   (custom_format == eFormatCharArray));
1154         lldb_private::formatters::StringPrinter::
1155             ReadBufferAndDumpToStreamOptions options(*this);
1156         options.SetData(DataExtractor(
1157             buffer_sp, lldb::eByteOrderInvalid,
1158             8)); // none of this matters for a string - pass some defaults
1159         options.SetStream(&s);
1160         options.SetPrefixToken(nullptr);
1161         options.SetQuote('"');
1162         options.SetSourceSize(buffer_sp->GetByteSize());
1163         options.SetIsTruncated(read_string.second);
1164         options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar);
1165         formatters::StringPrinter::ReadBufferAndDumpToStream<
1166             lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
1167             options);
1168         return !error.Fail();
1169       }
1170 
1171       if (custom_format == eFormatEnum)
1172         return false;
1173 
1174       // this only works for arrays, because I have no way to know when the
1175       // pointed memory ends, and no special \0 end of data marker
1176       if (flags.Test(eTypeIsArray)) {
1177         if ((custom_format == eFormatBytes) ||
1178             (custom_format == eFormatBytesWithASCII)) {
1179           const size_t count = GetNumChildren();
1180 
1181           s << '[';
1182           for (size_t low = 0; low < count; low++) {
1183 
1184             if (low)
1185               s << ',';
1186 
1187             ValueObjectSP child = GetChildAtIndex(low);
1188             if (!child.get()) {
1189               s << "<invalid child>";
1190               continue;
1191             }
1192             child->DumpPrintableRepresentation(
1193                 s, ValueObject::eValueObjectRepresentationStyleValue,
1194                 custom_format);
1195           }
1196 
1197           s << ']';
1198 
1199           return true;
1200         }
1201 
1202         if ((custom_format == eFormatVectorOfChar) ||
1203             (custom_format == eFormatVectorOfFloat32) ||
1204             (custom_format == eFormatVectorOfFloat64) ||
1205             (custom_format == eFormatVectorOfSInt16) ||
1206             (custom_format == eFormatVectorOfSInt32) ||
1207             (custom_format == eFormatVectorOfSInt64) ||
1208             (custom_format == eFormatVectorOfSInt8) ||
1209             (custom_format == eFormatVectorOfUInt128) ||
1210             (custom_format == eFormatVectorOfUInt16) ||
1211             (custom_format == eFormatVectorOfUInt32) ||
1212             (custom_format == eFormatVectorOfUInt64) ||
1213             (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
1214                                                      // with ASCII or any vector
1215                                                      // format should be printed
1216                                                      // directly
1217         {
1218           const size_t count = GetNumChildren();
1219 
1220           Format format = FormatManager::GetSingleItemFormat(custom_format);
1221 
1222           s << '[';
1223           for (size_t low = 0; low < count; low++) {
1224 
1225             if (low)
1226               s << ',';
1227 
1228             ValueObjectSP child = GetChildAtIndex(low);
1229             if (!child.get()) {
1230               s << "<invalid child>";
1231               continue;
1232             }
1233             child->DumpPrintableRepresentation(
1234                 s, ValueObject::eValueObjectRepresentationStyleValue, format);
1235           }
1236 
1237           s << ']';
1238 
1239           return true;
1240         }
1241       }
1242 
1243       if ((custom_format == eFormatBoolean) ||
1244           (custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
1245           (custom_format == eFormatCharPrintable) ||
1246           (custom_format == eFormatComplexFloat) ||
1247           (custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
1248           (custom_format == eFormatHexUppercase) ||
1249           (custom_format == eFormatFloat) || (custom_format == eFormatOctal) ||
1250           (custom_format == eFormatOSType) ||
1251           (custom_format == eFormatUnicode16) ||
1252           (custom_format == eFormatUnicode32) ||
1253           (custom_format == eFormatUnsigned) ||
1254           (custom_format == eFormatPointer) ||
1255           (custom_format == eFormatComplexInteger) ||
1256           (custom_format == eFormatComplex) ||
1257           (custom_format == eFormatDefault)) // use the [] operator
1258         return false;
1259     }
1260   }
1261 
1262   if (only_special)
1263     return false;
1264 
1265   bool var_success = false;
1266 
1267   {
1268     llvm::StringRef str;
1269 
1270     // this is a local stream that we are using to ensure that the data pointed
1271     // to by cstr survives long enough for us to copy it to its destination -
1272     // it is necessary to have this temporary storage area for cases where our
1273     // desired output is not backed by some other longer-term storage
1274     StreamString strm;
1275 
1276     if (custom_format != eFormatInvalid)
1277       SetFormat(custom_format);
1278 
1279     switch (val_obj_display) {
1280     case eValueObjectRepresentationStyleValue:
1281       str = GetValueAsCString();
1282       break;
1283 
1284     case eValueObjectRepresentationStyleSummary:
1285       str = GetSummaryAsCString();
1286       break;
1287 
1288     case eValueObjectRepresentationStyleLanguageSpecific:
1289       str = GetObjectDescription();
1290       break;
1291 
1292     case eValueObjectRepresentationStyleLocation:
1293       str = GetLocationAsCString();
1294       break;
1295 
1296     case eValueObjectRepresentationStyleChildrenCount:
1297       strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren());
1298       str = strm.GetString();
1299       break;
1300 
1301     case eValueObjectRepresentationStyleType:
1302       str = GetTypeName().GetStringRef();
1303       break;
1304 
1305     case eValueObjectRepresentationStyleName:
1306       str = GetName().GetStringRef();
1307       break;
1308 
1309     case eValueObjectRepresentationStyleExpressionPath:
1310       GetExpressionPath(strm);
1311       str = strm.GetString();
1312       break;
1313     }
1314 
1315     if (str.empty()) {
1316       if (val_obj_display == eValueObjectRepresentationStyleValue)
1317         str = GetSummaryAsCString();
1318       else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
1319         if (!CanProvideValue()) {
1320           strm.Printf("%s @ %s", GetTypeName().AsCString(),
1321                       GetLocationAsCString());
1322           str = strm.GetString();
1323         } else
1324           str = GetValueAsCString();
1325       }
1326     }
1327 
1328     if (!str.empty())
1329       s << str;
1330     else {
1331       // We checked for errors at the start, but do it again here in case
1332       // realizing the value for dumping produced an error.
1333       if (m_error.Fail()) {
1334         if (do_dump_error)
1335           s.Printf("<%s>", m_error.AsCString());
1336         else
1337           return false;
1338       } else if (val_obj_display == eValueObjectRepresentationStyleSummary)
1339         s.PutCString("<no summary available>");
1340       else if (val_obj_display == eValueObjectRepresentationStyleValue)
1341         s.PutCString("<no value available>");
1342       else if (val_obj_display ==
1343                eValueObjectRepresentationStyleLanguageSpecific)
1344         s.PutCString("<not a valid Objective-C object>"); // edit this if we
1345                                                           // have other runtimes
1346                                                           // that support a
1347                                                           // description
1348       else
1349         s.PutCString("<no printable representation>");
1350     }
1351 
1352     // we should only return false here if we could not do *anything* even if
1353     // we have an error message as output, that's a success from our callers'
1354     // perspective, so return true
1355     var_success = true;
1356 
1357     if (custom_format != eFormatInvalid)
1358       SetFormat(eFormatDefault);
1359   }
1360 
1361   return var_success;
1362 }
1363 
GetAddressOf(bool scalar_is_load_address,AddressType * address_type)1364 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address,
1365                                  AddressType *address_type) {
1366   // Can't take address of a bitfield
1367   if (IsBitfield())
1368     return LLDB_INVALID_ADDRESS;
1369 
1370   if (!UpdateValueIfNeeded(false))
1371     return LLDB_INVALID_ADDRESS;
1372 
1373   switch (m_value.GetValueType()) {
1374   case Value::ValueType::Invalid:
1375     return LLDB_INVALID_ADDRESS;
1376   case Value::ValueType::Scalar:
1377     if (scalar_is_load_address) {
1378       if (address_type)
1379         *address_type = eAddressTypeLoad;
1380       return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1381     }
1382     break;
1383 
1384   case Value::ValueType::LoadAddress:
1385   case Value::ValueType::FileAddress: {
1386     if (address_type)
1387       *address_type = m_value.GetValueAddressType();
1388     return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1389   } break;
1390   case Value::ValueType::HostAddress: {
1391     if (address_type)
1392       *address_type = m_value.GetValueAddressType();
1393     return LLDB_INVALID_ADDRESS;
1394   } break;
1395   }
1396   if (address_type)
1397     *address_type = eAddressTypeInvalid;
1398   return LLDB_INVALID_ADDRESS;
1399 }
1400 
GetPointerValue(AddressType * address_type)1401 addr_t ValueObject::GetPointerValue(AddressType *address_type) {
1402   addr_t address = LLDB_INVALID_ADDRESS;
1403   if (address_type)
1404     *address_type = eAddressTypeInvalid;
1405 
1406   if (!UpdateValueIfNeeded(false))
1407     return address;
1408 
1409   switch (m_value.GetValueType()) {
1410   case Value::ValueType::Invalid:
1411     return LLDB_INVALID_ADDRESS;
1412   case Value::ValueType::Scalar:
1413     address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1414     break;
1415 
1416   case Value::ValueType::HostAddress:
1417   case Value::ValueType::LoadAddress:
1418   case Value::ValueType::FileAddress: {
1419     lldb::offset_t data_offset = 0;
1420     address = m_data.GetAddress(&data_offset);
1421   } break;
1422   }
1423 
1424   if (address_type)
1425     *address_type = GetAddressTypeOfChildren();
1426 
1427   return address;
1428 }
1429 
SetValueFromCString(const char * value_str,Status & error)1430 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
1431   error.Clear();
1432   // Make sure our value is up to date first so that our location and location
1433   // type is valid.
1434   if (!UpdateValueIfNeeded(false)) {
1435     error.SetErrorString("unable to read value");
1436     return false;
1437   }
1438 
1439   uint64_t count = 0;
1440   const Encoding encoding = GetCompilerType().GetEncoding(count);
1441 
1442   const size_t byte_size = GetByteSize().value_or(0);
1443 
1444   Value::ValueType value_type = m_value.GetValueType();
1445 
1446   if (value_type == Value::ValueType::Scalar) {
1447     // If the value is already a scalar, then let the scalar change itself:
1448     m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
1449   } else if (byte_size <= 16) {
1450     // If the value fits in a scalar, then make a new scalar and again let the
1451     // scalar code do the conversion, then figure out where to put the new
1452     // value.
1453     Scalar new_scalar;
1454     error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
1455     if (error.Success()) {
1456       switch (value_type) {
1457       case Value::ValueType::LoadAddress: {
1458         // If it is a load address, then the scalar value is the storage
1459         // location of the data, and we have to shove this value down to that
1460         // load location.
1461         ExecutionContext exe_ctx(GetExecutionContextRef());
1462         Process *process = exe_ctx.GetProcessPtr();
1463         if (process) {
1464           addr_t target_addr =
1465               m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1466           size_t bytes_written = process->WriteScalarToMemory(
1467               target_addr, new_scalar, byte_size, error);
1468           if (!error.Success())
1469             return false;
1470           if (bytes_written != byte_size) {
1471             error.SetErrorString("unable to write value to memory");
1472             return false;
1473           }
1474         }
1475       } break;
1476       case Value::ValueType::HostAddress: {
1477         // If it is a host address, then we stuff the scalar as a DataBuffer
1478         // into the Value's data.
1479         DataExtractor new_data;
1480         new_data.SetByteOrder(m_data.GetByteOrder());
1481 
1482         DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
1483         m_data.SetData(buffer_sp, 0);
1484         bool success = new_scalar.GetData(new_data);
1485         if (success) {
1486           new_data.CopyByteOrderedData(
1487               0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
1488               byte_size, m_data.GetByteOrder());
1489         }
1490         m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
1491 
1492       } break;
1493       case Value::ValueType::Invalid:
1494         error.SetErrorString("invalid location");
1495         return false;
1496       case Value::ValueType::FileAddress:
1497       case Value::ValueType::Scalar:
1498         break;
1499       }
1500     } else {
1501       return false;
1502     }
1503   } else {
1504     // We don't support setting things bigger than a scalar at present.
1505     error.SetErrorString("unable to write aggregate data type");
1506     return false;
1507   }
1508 
1509   // If we have reached this point, then we have successfully changed the
1510   // value.
1511   SetNeedsUpdate();
1512   return true;
1513 }
1514 
GetDeclaration(Declaration & decl)1515 bool ValueObject::GetDeclaration(Declaration &decl) {
1516   decl.Clear();
1517   return false;
1518 }
1519 
AddSyntheticChild(ConstString key,ValueObject * valobj)1520 void ValueObject::AddSyntheticChild(ConstString key,
1521                                     ValueObject *valobj) {
1522   m_synthetic_children[key] = valobj;
1523 }
1524 
GetSyntheticChild(ConstString key) const1525 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const {
1526   ValueObjectSP synthetic_child_sp;
1527   std::map<ConstString, ValueObject *>::const_iterator pos =
1528       m_synthetic_children.find(key);
1529   if (pos != m_synthetic_children.end())
1530     synthetic_child_sp = pos->second->GetSP();
1531   return synthetic_child_sp;
1532 }
1533 
IsPossibleDynamicType()1534 bool ValueObject::IsPossibleDynamicType() {
1535   ExecutionContext exe_ctx(GetExecutionContextRef());
1536   Process *process = exe_ctx.GetProcessPtr();
1537   if (process)
1538     return process->IsPossibleDynamicValue(*this);
1539   else
1540     return GetCompilerType().IsPossibleDynamicType(nullptr, true, true);
1541 }
1542 
IsRuntimeSupportValue()1543 bool ValueObject::IsRuntimeSupportValue() {
1544   Process *process(GetProcessSP().get());
1545   if (!process)
1546     return false;
1547 
1548   // We trust that the compiler did the right thing and marked runtime support
1549   // values as artificial.
1550   if (!GetVariable() || !GetVariable()->IsArtificial())
1551     return false;
1552 
1553   if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage()))
1554     if (runtime->IsAllowedRuntimeValue(GetName()))
1555       return false;
1556 
1557   return true;
1558 }
1559 
IsNilReference()1560 bool ValueObject::IsNilReference() {
1561   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
1562     return language->IsNilReference(*this);
1563   }
1564   return false;
1565 }
1566 
IsUninitializedReference()1567 bool ValueObject::IsUninitializedReference() {
1568   if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
1569     return language->IsUninitializedReference(*this);
1570   }
1571   return false;
1572 }
1573 
1574 // This allows you to create an array member using and index that doesn't not
1575 // fall in the normal bounds of the array. Many times structure can be defined
1576 // as: struct Collection {
1577 //     uint32_t item_count;
1578 //     Item item_array[0];
1579 // };
1580 // The size of the "item_array" is 1, but many times in practice there are more
1581 // items in "item_array".
1582 
GetSyntheticArrayMember(size_t index,bool can_create)1583 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index,
1584                                                    bool can_create) {
1585   if (!IsPointerType() && !IsArrayType())
1586     return ValueObjectSP();
1587 
1588   std::string index_str = llvm::formatv("[{0}]", index);
1589   ConstString index_const_str(index_str);
1590   // Check if we have already created a synthetic array member in this valid
1591   // object. If we have we will re-use it.
1592   if (auto existing_synthetic_child = GetSyntheticChild(index_const_str))
1593     return existing_synthetic_child;
1594 
1595   // We haven't made a synthetic array member for INDEX yet, so lets make
1596   // one and cache it for any future reference.
1597   ValueObject *synthetic_child = CreateChildAtIndex(0, true, index);
1598 
1599   if (!synthetic_child)
1600     return ValueObjectSP();
1601 
1602   // Cache the synthetic child's value because it's valid.
1603   AddSyntheticChild(index_const_str, synthetic_child);
1604   auto synthetic_child_sp = synthetic_child->GetSP();
1605   synthetic_child_sp->SetName(ConstString(index_str));
1606   synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true;
1607   return synthetic_child_sp;
1608 }
1609 
GetSyntheticBitFieldChild(uint32_t from,uint32_t to,bool can_create)1610 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to,
1611                                                      bool can_create) {
1612   if (!IsScalarType())
1613     return ValueObjectSP();
1614 
1615   std::string index_str = llvm::formatv("[{0}-{1}]", from, to);
1616   ConstString index_const_str(index_str);
1617 
1618   // Check if we have already created a synthetic array member in this valid
1619   // object. If we have we will re-use it.
1620   if (auto existing_synthetic_child = GetSyntheticChild(index_const_str))
1621     return existing_synthetic_child;
1622 
1623   uint32_t bit_field_size = to - from + 1;
1624   uint32_t bit_field_offset = from;
1625   if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
1626     bit_field_offset =
1627         GetByteSize().value_or(0) * 8 - bit_field_size - bit_field_offset;
1628 
1629   // We haven't made a synthetic array member for INDEX yet, so lets make
1630   // one and cache it for any future reference.
1631   ValueObjectChild *synthetic_child = new ValueObjectChild(
1632       *this, GetCompilerType(), index_const_str, GetByteSize().value_or(0), 0,
1633       bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 0);
1634 
1635   if (!synthetic_child)
1636     return ValueObjectSP();
1637 
1638   // Cache the synthetic child's value because it's valid.
1639   AddSyntheticChild(index_const_str, synthetic_child);
1640   auto synthetic_child_sp = synthetic_child->GetSP();
1641   synthetic_child_sp->SetName(ConstString(index_str));
1642   synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true;
1643   return synthetic_child_sp;
1644 }
1645 
GetSyntheticChildAtOffset(uint32_t offset,const CompilerType & type,bool can_create,ConstString name_const_str)1646 ValueObjectSP ValueObject::GetSyntheticChildAtOffset(
1647     uint32_t offset, const CompilerType &type, bool can_create,
1648     ConstString name_const_str) {
1649 
1650   ValueObjectSP synthetic_child_sp;
1651 
1652   if (name_const_str.IsEmpty())
1653     name_const_str.SetString("@" + std::to_string(offset));
1654 
1655   // Check if we have already created a synthetic array member in this valid
1656   // object. If we have we will re-use it.
1657   synthetic_child_sp = GetSyntheticChild(name_const_str);
1658 
1659   if (synthetic_child_sp.get())
1660     return synthetic_child_sp;
1661 
1662   if (!can_create)
1663     return ValueObjectSP();
1664 
1665   ExecutionContext exe_ctx(GetExecutionContextRef());
1666   std::optional<uint64_t> size =
1667       type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
1668   if (!size)
1669     return ValueObjectSP();
1670   ValueObjectChild *synthetic_child =
1671       new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1672                            false, false, eAddressTypeInvalid, 0);
1673   if (synthetic_child) {
1674     AddSyntheticChild(name_const_str, synthetic_child);
1675     synthetic_child_sp = synthetic_child->GetSP();
1676     synthetic_child_sp->SetName(name_const_str);
1677     synthetic_child_sp->m_flags.m_is_child_at_offset = true;
1678   }
1679   return synthetic_child_sp;
1680 }
1681 
GetSyntheticBase(uint32_t offset,const CompilerType & type,bool can_create,ConstString name_const_str)1682 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset,
1683                                             const CompilerType &type,
1684                                             bool can_create,
1685                                             ConstString name_const_str) {
1686   ValueObjectSP synthetic_child_sp;
1687 
1688   if (name_const_str.IsEmpty()) {
1689     char name_str[128];
1690     snprintf(name_str, sizeof(name_str), "base%s@%i",
1691              type.GetTypeName().AsCString("<unknown>"), offset);
1692     name_const_str.SetCString(name_str);
1693   }
1694 
1695   // Check if we have already created a synthetic array member in this valid
1696   // object. If we have we will re-use it.
1697   synthetic_child_sp = GetSyntheticChild(name_const_str);
1698 
1699   if (synthetic_child_sp.get())
1700     return synthetic_child_sp;
1701 
1702   if (!can_create)
1703     return ValueObjectSP();
1704 
1705   const bool is_base_class = true;
1706 
1707   ExecutionContext exe_ctx(GetExecutionContextRef());
1708   std::optional<uint64_t> size =
1709       type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
1710   if (!size)
1711     return ValueObjectSP();
1712   ValueObjectChild *synthetic_child =
1713       new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1714                            is_base_class, false, eAddressTypeInvalid, 0);
1715   if (synthetic_child) {
1716     AddSyntheticChild(name_const_str, synthetic_child);
1717     synthetic_child_sp = synthetic_child->GetSP();
1718     synthetic_child_sp->SetName(name_const_str);
1719   }
1720   return synthetic_child_sp;
1721 }
1722 
1723 // your expression path needs to have a leading . or -> (unless it somehow
1724 // "looks like" an array, in which case it has a leading [ symbol). while the [
1725 // is meaningful and should be shown to the user, . and -> are just parser
1726 // design, but by no means added information for the user.. strip them off
SkipLeadingExpressionPathSeparators(const char * expression)1727 static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
1728   if (!expression || !expression[0])
1729     return expression;
1730   if (expression[0] == '.')
1731     return expression + 1;
1732   if (expression[0] == '-' && expression[1] == '>')
1733     return expression + 2;
1734   return expression;
1735 }
1736 
1737 ValueObjectSP
GetSyntheticExpressionPathChild(const char * expression,bool can_create)1738 ValueObject::GetSyntheticExpressionPathChild(const char *expression,
1739                                              bool can_create) {
1740   ConstString name_const_string(expression);
1741   // Check if we have already created a synthetic array member in this valid
1742   // object. If we have we will re-use it.
1743   if (auto existing_synthetic_child = GetSyntheticChild(name_const_string))
1744     return existing_synthetic_child;
1745 
1746   // We haven't made a synthetic array member for expression yet, so lets
1747   // make one and cache it for any future reference.
1748   auto path_options = GetValueForExpressionPathOptions();
1749   path_options.SetSyntheticChildrenTraversal(
1750       GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None);
1751   auto synthetic_child =
1752       GetValueForExpressionPath(expression, nullptr, nullptr, path_options);
1753 
1754   if (!synthetic_child)
1755     return ValueObjectSP();
1756 
1757   // Cache the synthetic child's value because it's valid.
1758   // FIXME: this causes a "real" child to end up with its name changed to
1759   // the contents of expression
1760   AddSyntheticChild(name_const_string, synthetic_child.get());
1761   synthetic_child->SetName(
1762       ConstString(SkipLeadingExpressionPathSeparators(expression)));
1763   return synthetic_child;
1764 }
1765 
CalculateSyntheticValue()1766 void ValueObject::CalculateSyntheticValue() {
1767   TargetSP target_sp(GetTargetSP());
1768   if (target_sp && !target_sp->GetEnableSyntheticValue()) {
1769     m_synthetic_value = nullptr;
1770     return;
1771   }
1772 
1773   lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
1774 
1775   if (!UpdateFormatsIfNeeded() && m_synthetic_value)
1776     return;
1777 
1778   if (m_synthetic_children_sp.get() == nullptr)
1779     return;
1780 
1781   if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
1782     return;
1783 
1784   m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
1785 }
1786 
CalculateDynamicValue(DynamicValueType use_dynamic)1787 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) {
1788   if (use_dynamic == eNoDynamicValues)
1789     return;
1790 
1791   if (!m_dynamic_value && !IsDynamic()) {
1792     ExecutionContext exe_ctx(GetExecutionContextRef());
1793     Process *process = exe_ctx.GetProcessPtr();
1794     if (process && process->IsPossibleDynamicValue(*this)) {
1795       ClearDynamicTypeInformation();
1796       m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
1797     }
1798   }
1799 }
1800 
GetDynamicValue(DynamicValueType use_dynamic)1801 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) {
1802   if (use_dynamic == eNoDynamicValues)
1803     return ValueObjectSP();
1804 
1805   if (!IsDynamic() && m_dynamic_value == nullptr) {
1806     CalculateDynamicValue(use_dynamic);
1807   }
1808   if (m_dynamic_value && m_dynamic_value->GetError().Success())
1809     return m_dynamic_value->GetSP();
1810   else
1811     return ValueObjectSP();
1812 }
1813 
GetSyntheticValue()1814 ValueObjectSP ValueObject::GetSyntheticValue() {
1815   CalculateSyntheticValue();
1816 
1817   if (m_synthetic_value)
1818     return m_synthetic_value->GetSP();
1819   else
1820     return ValueObjectSP();
1821 }
1822 
HasSyntheticValue()1823 bool ValueObject::HasSyntheticValue() {
1824   UpdateFormatsIfNeeded();
1825 
1826   if (m_synthetic_children_sp.get() == nullptr)
1827     return false;
1828 
1829   CalculateSyntheticValue();
1830 
1831   return m_synthetic_value != nullptr;
1832 }
1833 
GetNonBaseClassParent()1834 ValueObject *ValueObject::GetNonBaseClassParent() {
1835   if (GetParent()) {
1836     if (GetParent()->IsBaseClass())
1837       return GetParent()->GetNonBaseClassParent();
1838     else
1839       return GetParent();
1840   }
1841   return nullptr;
1842 }
1843 
IsBaseClass(uint32_t & depth)1844 bool ValueObject::IsBaseClass(uint32_t &depth) {
1845   if (!IsBaseClass()) {
1846     depth = 0;
1847     return false;
1848   }
1849   if (GetParent()) {
1850     GetParent()->IsBaseClass(depth);
1851     depth = depth + 1;
1852     return true;
1853   }
1854   // TODO: a base of no parent? weird..
1855   depth = 1;
1856   return true;
1857 }
1858 
GetExpressionPath(Stream & s,GetExpressionPathFormat epformat)1859 void ValueObject::GetExpressionPath(Stream &s,
1860                                     GetExpressionPathFormat epformat) {
1861   // synthetic children do not actually "exist" as part of the hierarchy, and
1862   // sometimes they are consed up in ways that don't make sense from an
1863   // underlying language/API standpoint. So, use a special code path here to
1864   // return something that can hopefully be used in expression
1865   if (m_flags.m_is_synthetic_children_generated) {
1866     UpdateValueIfNeeded();
1867 
1868     if (m_value.GetValueType() == Value::ValueType::LoadAddress) {
1869       if (IsPointerOrReferenceType()) {
1870         s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
1871                  GetValueAsUnsigned(0));
1872         return;
1873       } else {
1874         uint64_t load_addr =
1875             m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1876         if (load_addr != LLDB_INVALID_ADDRESS) {
1877           s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
1878                    load_addr);
1879           return;
1880         }
1881       }
1882     }
1883 
1884     if (CanProvideValue()) {
1885       s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
1886                GetValueAsCString());
1887       return;
1888     }
1889 
1890     return;
1891   }
1892 
1893   const bool is_deref_of_parent = IsDereferenceOfParent();
1894 
1895   if (is_deref_of_parent &&
1896       epformat == eGetExpressionPathFormatDereferencePointers) {
1897     // this is the original format of GetExpressionPath() producing code like
1898     // *(a_ptr).memberName, which is entirely fine, until you put this into
1899     // StackFrame::GetValueForVariableExpressionPath() which prefers to see
1900     // a_ptr->memberName. the eHonorPointers mode is meant to produce strings
1901     // in this latter format
1902     s.PutCString("*(");
1903   }
1904 
1905   ValueObject *parent = GetParent();
1906 
1907   if (parent)
1908     parent->GetExpressionPath(s, epformat);
1909 
1910   // if we are a deref_of_parent just because we are synthetic array members
1911   // made up to allow ptr[%d] syntax to work in variable printing, then add our
1912   // name ([%d]) to the expression path
1913   if (m_flags.m_is_array_item_for_pointer &&
1914       epformat == eGetExpressionPathFormatHonorPointers)
1915     s.PutCString(m_name.GetStringRef());
1916 
1917   if (!IsBaseClass()) {
1918     if (!is_deref_of_parent) {
1919       ValueObject *non_base_class_parent = GetNonBaseClassParent();
1920       if (non_base_class_parent &&
1921           !non_base_class_parent->GetName().IsEmpty()) {
1922         CompilerType non_base_class_parent_compiler_type =
1923             non_base_class_parent->GetCompilerType();
1924         if (non_base_class_parent_compiler_type) {
1925           if (parent && parent->IsDereferenceOfParent() &&
1926               epformat == eGetExpressionPathFormatHonorPointers) {
1927             s.PutCString("->");
1928           } else {
1929             const uint32_t non_base_class_parent_type_info =
1930                 non_base_class_parent_compiler_type.GetTypeInfo();
1931 
1932             if (non_base_class_parent_type_info & eTypeIsPointer) {
1933               s.PutCString("->");
1934             } else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
1935                        !(non_base_class_parent_type_info & eTypeIsArray)) {
1936               s.PutChar('.');
1937             }
1938           }
1939         }
1940       }
1941 
1942       const char *name = GetName().GetCString();
1943       if (name)
1944         s.PutCString(name);
1945     }
1946   }
1947 
1948   if (is_deref_of_parent &&
1949       epformat == eGetExpressionPathFormatDereferencePointers) {
1950     s.PutChar(')');
1951   }
1952 }
1953 
GetValueForExpressionPath(llvm::StringRef expression,ExpressionPathScanEndReason * reason_to_stop,ExpressionPathEndResultType * final_value_type,const GetValueForExpressionPathOptions & options,ExpressionPathAftermath * final_task_on_target)1954 ValueObjectSP ValueObject::GetValueForExpressionPath(
1955     llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
1956     ExpressionPathEndResultType *final_value_type,
1957     const GetValueForExpressionPathOptions &options,
1958     ExpressionPathAftermath *final_task_on_target) {
1959 
1960   auto dummy_stop_reason = eExpressionPathScanEndReasonUnknown;
1961   auto dummy_value_type = eExpressionPathEndResultTypeInvalid;
1962   auto dummy_final_task = eExpressionPathAftermathNothing;
1963 
1964   auto proxy_stop_reason = reason_to_stop ? reason_to_stop : &dummy_stop_reason;
1965   auto proxy_value_type =
1966       final_value_type ? final_value_type : &dummy_value_type;
1967   auto proxy_final_task =
1968       final_task_on_target ? final_task_on_target : &dummy_final_task;
1969 
1970   auto ret_value = GetValueForExpressionPath_Impl(expression, proxy_stop_reason,
1971                                                   proxy_value_type, options,
1972                                                   proxy_final_task);
1973 
1974   // The caller knows nothing happened if `final_task_on_target` doesn't change.
1975   if (!ret_value || (*proxy_value_type) != eExpressionPathEndResultTypePlain ||
1976       !final_task_on_target)
1977     return ValueObjectSP();
1978 
1979   ExpressionPathAftermath &final_task_on_target_ref = (*final_task_on_target);
1980   ExpressionPathScanEndReason stop_reason_for_error;
1981   Status error;
1982   // The method can only dereference and take the address of plain objects.
1983   switch (final_task_on_target_ref) {
1984   case eExpressionPathAftermathNothing:
1985     return ret_value;
1986 
1987   case eExpressionPathAftermathDereference:
1988     ret_value = ret_value->Dereference(error);
1989     stop_reason_for_error = eExpressionPathScanEndReasonDereferencingFailed;
1990     break;
1991 
1992   case eExpressionPathAftermathTakeAddress:
1993     ret_value = ret_value->AddressOf(error);
1994     stop_reason_for_error = eExpressionPathScanEndReasonTakingAddressFailed;
1995     break;
1996   }
1997 
1998   if (ret_value && error.Success()) {
1999     final_task_on_target_ref = eExpressionPathAftermathNothing;
2000     return ret_value;
2001   }
2002 
2003   if (reason_to_stop)
2004     *reason_to_stop = stop_reason_for_error;
2005 
2006   if (final_value_type)
2007     *final_value_type = eExpressionPathEndResultTypeInvalid;
2008   return ValueObjectSP();
2009 }
2010 
GetValueForExpressionPath_Impl(llvm::StringRef expression,ExpressionPathScanEndReason * reason_to_stop,ExpressionPathEndResultType * final_result,const GetValueForExpressionPathOptions & options,ExpressionPathAftermath * what_next)2011 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl(
2012     llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
2013     ExpressionPathEndResultType *final_result,
2014     const GetValueForExpressionPathOptions &options,
2015     ExpressionPathAftermath *what_next) {
2016   ValueObjectSP root = GetSP();
2017 
2018   if (!root)
2019     return nullptr;
2020 
2021   llvm::StringRef remainder = expression;
2022 
2023   while (true) {
2024     llvm::StringRef temp_expression = remainder;
2025 
2026     CompilerType root_compiler_type = root->GetCompilerType();
2027     CompilerType pointee_compiler_type;
2028     Flags pointee_compiler_type_info;
2029 
2030     Flags root_compiler_type_info(
2031         root_compiler_type.GetTypeInfo(&pointee_compiler_type));
2032     if (pointee_compiler_type)
2033       pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
2034 
2035     if (temp_expression.empty()) {
2036       *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
2037       return root;
2038     }
2039 
2040     switch (temp_expression.front()) {
2041     case '-': {
2042       temp_expression = temp_expression.drop_front();
2043       if (options.m_check_dot_vs_arrow_syntax &&
2044           root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2045                                                         // use -> on a
2046                                                         // non-pointer and I
2047                                                         // must catch the error
2048       {
2049         *reason_to_stop =
2050             ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
2051         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2052         return ValueObjectSP();
2053       }
2054       if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
2055                                                        // extract an ObjC IVar
2056                                                        // when this is forbidden
2057           root_compiler_type_info.Test(eTypeIsPointer) &&
2058           options.m_no_fragile_ivar) {
2059         *reason_to_stop =
2060             ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
2061         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2062         return ValueObjectSP();
2063       }
2064       if (!temp_expression.starts_with(">")) {
2065         *reason_to_stop =
2066             ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2067         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2068         return ValueObjectSP();
2069       }
2070     }
2071       [[fallthrough]];
2072     case '.': // or fallthrough from ->
2073     {
2074       if (options.m_check_dot_vs_arrow_syntax &&
2075           temp_expression.front() == '.' &&
2076           root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2077                                                         // use . on a pointer
2078                                                         // and I must catch the
2079                                                         // error
2080       {
2081         *reason_to_stop =
2082             ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
2083         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2084         return nullptr;
2085       }
2086       temp_expression = temp_expression.drop_front(); // skip . or >
2087 
2088       size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
2089       if (next_sep_pos == llvm::StringRef::npos) // if no other separator just
2090                                                  // expand this last layer
2091       {
2092         llvm::StringRef child_name = temp_expression;
2093         ValueObjectSP child_valobj_sp =
2094             root->GetChildMemberWithName(child_name);
2095 
2096         if (child_valobj_sp.get()) // we know we are done, so just return
2097         {
2098           *reason_to_stop =
2099               ValueObject::eExpressionPathScanEndReasonEndOfString;
2100           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2101           return child_valobj_sp;
2102         } else {
2103           switch (options.m_synthetic_children_traversal) {
2104           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2105               None:
2106             break;
2107           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2108               FromSynthetic:
2109             if (root->IsSynthetic()) {
2110               child_valobj_sp = root->GetNonSyntheticValue();
2111               if (child_valobj_sp.get())
2112                 child_valobj_sp =
2113                     child_valobj_sp->GetChildMemberWithName(child_name);
2114             }
2115             break;
2116           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2117               ToSynthetic:
2118             if (!root->IsSynthetic()) {
2119               child_valobj_sp = root->GetSyntheticValue();
2120               if (child_valobj_sp.get())
2121                 child_valobj_sp =
2122                     child_valobj_sp->GetChildMemberWithName(child_name);
2123             }
2124             break;
2125           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2126               Both:
2127             if (root->IsSynthetic()) {
2128               child_valobj_sp = root->GetNonSyntheticValue();
2129               if (child_valobj_sp.get())
2130                 child_valobj_sp =
2131                     child_valobj_sp->GetChildMemberWithName(child_name);
2132             } else {
2133               child_valobj_sp = root->GetSyntheticValue();
2134               if (child_valobj_sp.get())
2135                 child_valobj_sp =
2136                     child_valobj_sp->GetChildMemberWithName(child_name);
2137             }
2138             break;
2139           }
2140         }
2141 
2142         // if we are here and options.m_no_synthetic_children is true,
2143         // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2144         // branch, and return an error
2145         if (child_valobj_sp.get()) // if it worked, just return
2146         {
2147           *reason_to_stop =
2148               ValueObject::eExpressionPathScanEndReasonEndOfString;
2149           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2150           return child_valobj_sp;
2151         } else {
2152           *reason_to_stop =
2153               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2154           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2155           return nullptr;
2156         }
2157       } else // other layers do expand
2158       {
2159         llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
2160         llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos);
2161 
2162         ValueObjectSP child_valobj_sp =
2163             root->GetChildMemberWithName(child_name);
2164         if (child_valobj_sp.get()) // store the new root and move on
2165         {
2166           root = child_valobj_sp;
2167           remainder = next_separator;
2168           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2169           continue;
2170         } else {
2171           switch (options.m_synthetic_children_traversal) {
2172           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2173               None:
2174             break;
2175           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2176               FromSynthetic:
2177             if (root->IsSynthetic()) {
2178               child_valobj_sp = root->GetNonSyntheticValue();
2179               if (child_valobj_sp.get())
2180                 child_valobj_sp =
2181                     child_valobj_sp->GetChildMemberWithName(child_name);
2182             }
2183             break;
2184           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2185               ToSynthetic:
2186             if (!root->IsSynthetic()) {
2187               child_valobj_sp = root->GetSyntheticValue();
2188               if (child_valobj_sp.get())
2189                 child_valobj_sp =
2190                     child_valobj_sp->GetChildMemberWithName(child_name);
2191             }
2192             break;
2193           case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2194               Both:
2195             if (root->IsSynthetic()) {
2196               child_valobj_sp = root->GetNonSyntheticValue();
2197               if (child_valobj_sp.get())
2198                 child_valobj_sp =
2199                     child_valobj_sp->GetChildMemberWithName(child_name);
2200             } else {
2201               child_valobj_sp = root->GetSyntheticValue();
2202               if (child_valobj_sp.get())
2203                 child_valobj_sp =
2204                     child_valobj_sp->GetChildMemberWithName(child_name);
2205             }
2206             break;
2207           }
2208         }
2209 
2210         // if we are here and options.m_no_synthetic_children is true,
2211         // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2212         // branch, and return an error
2213         if (child_valobj_sp.get()) // if it worked, move on
2214         {
2215           root = child_valobj_sp;
2216           remainder = next_separator;
2217           *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2218           continue;
2219         } else {
2220           *reason_to_stop =
2221               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2222           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2223           return nullptr;
2224         }
2225       }
2226       break;
2227     }
2228     case '[': {
2229       if (!root_compiler_type_info.Test(eTypeIsArray) &&
2230           !root_compiler_type_info.Test(eTypeIsPointer) &&
2231           !root_compiler_type_info.Test(
2232               eTypeIsVector)) // if this is not a T[] nor a T*
2233       {
2234         if (!root_compiler_type_info.Test(
2235                 eTypeIsScalar)) // if this is not even a scalar...
2236         {
2237           if (options.m_synthetic_children_traversal ==
2238               GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
2239                   None) // ...only chance left is synthetic
2240           {
2241             *reason_to_stop =
2242                 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
2243             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2244             return ValueObjectSP();
2245           }
2246         } else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
2247                                                       // check that we can
2248                                                       // expand bitfields
2249         {
2250           *reason_to_stop =
2251               ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
2252           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2253           return ValueObjectSP();
2254         }
2255       }
2256       if (temp_expression[1] ==
2257           ']') // if this is an unbounded range it only works for arrays
2258       {
2259         if (!root_compiler_type_info.Test(eTypeIsArray)) {
2260           *reason_to_stop =
2261               ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
2262           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2263           return nullptr;
2264         } else // even if something follows, we cannot expand unbounded ranges,
2265                // just let the caller do it
2266         {
2267           *reason_to_stop =
2268               ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2269           *final_result =
2270               ValueObject::eExpressionPathEndResultTypeUnboundedRange;
2271           return root;
2272         }
2273       }
2274 
2275       size_t close_bracket_position = temp_expression.find(']', 1);
2276       if (close_bracket_position ==
2277           llvm::StringRef::npos) // if there is no ], this is a syntax error
2278       {
2279         *reason_to_stop =
2280             ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2281         *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2282         return nullptr;
2283       }
2284 
2285       llvm::StringRef bracket_expr =
2286           temp_expression.slice(1, close_bracket_position);
2287 
2288       // If this was an empty expression it would have been caught by the if
2289       // above.
2290       assert(!bracket_expr.empty());
2291 
2292       if (!bracket_expr.contains('-')) {
2293         // if no separator, this is of the form [N].  Note that this cannot be
2294         // an unbounded range of the form [], because that case was handled
2295         // above with an unconditional return.
2296         unsigned long index = 0;
2297         if (bracket_expr.getAsInteger(0, index)) {
2298           *reason_to_stop =
2299               ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2300           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2301           return nullptr;
2302         }
2303 
2304         // from here on we do have a valid index
2305         if (root_compiler_type_info.Test(eTypeIsArray)) {
2306           ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index);
2307           if (!child_valobj_sp)
2308             child_valobj_sp = root->GetSyntheticArrayMember(index, true);
2309           if (!child_valobj_sp)
2310             if (root->HasSyntheticValue() &&
2311                 root->GetSyntheticValue()->GetNumChildren() > index)
2312               child_valobj_sp =
2313                   root->GetSyntheticValue()->GetChildAtIndex(index);
2314           if (child_valobj_sp) {
2315             root = child_valobj_sp;
2316             remainder =
2317                 temp_expression.substr(close_bracket_position + 1); // skip ]
2318             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2319             continue;
2320           } else {
2321             *reason_to_stop =
2322                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2323             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2324             return nullptr;
2325           }
2326         } else if (root_compiler_type_info.Test(eTypeIsPointer)) {
2327           if (*what_next ==
2328                   ValueObject::
2329                       eExpressionPathAftermathDereference && // if this is a
2330                                                              // ptr-to-scalar, I
2331                                                              // am accessing it
2332                                                              // by index and I
2333                                                              // would have
2334                                                              // deref'ed anyway,
2335                                                              // then do it now
2336                                                              // and use this as
2337                                                              // a bitfield
2338               pointee_compiler_type_info.Test(eTypeIsScalar)) {
2339             Status error;
2340             root = root->Dereference(error);
2341             if (error.Fail() || !root) {
2342               *reason_to_stop =
2343                   ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2344               *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2345               return nullptr;
2346             } else {
2347               *what_next = eExpressionPathAftermathNothing;
2348               continue;
2349             }
2350           } else {
2351             if (root->GetCompilerType().GetMinimumLanguage() ==
2352                     eLanguageTypeObjC &&
2353                 pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
2354                 root->HasSyntheticValue() &&
2355                 (options.m_synthetic_children_traversal ==
2356                      GetValueForExpressionPathOptions::
2357                          SyntheticChildrenTraversal::ToSynthetic ||
2358                  options.m_synthetic_children_traversal ==
2359                      GetValueForExpressionPathOptions::
2360                          SyntheticChildrenTraversal::Both)) {
2361               root = root->GetSyntheticValue()->GetChildAtIndex(index);
2362             } else
2363               root = root->GetSyntheticArrayMember(index, true);
2364             if (!root) {
2365               *reason_to_stop =
2366                   ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2367               *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2368               return nullptr;
2369             } else {
2370               remainder =
2371                   temp_expression.substr(close_bracket_position + 1); // skip ]
2372               *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2373               continue;
2374             }
2375           }
2376         } else if (root_compiler_type_info.Test(eTypeIsScalar)) {
2377           root = root->GetSyntheticBitFieldChild(index, index, true);
2378           if (!root) {
2379             *reason_to_stop =
2380                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2381             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2382             return nullptr;
2383           } else // we do not know how to expand members of bitfields, so we
2384                  // just return and let the caller do any further processing
2385           {
2386             *reason_to_stop = ValueObject::
2387                 eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2388             *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2389             return root;
2390           }
2391         } else if (root_compiler_type_info.Test(eTypeIsVector)) {
2392           root = root->GetChildAtIndex(index);
2393           if (!root) {
2394             *reason_to_stop =
2395                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2396             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2397             return ValueObjectSP();
2398           } else {
2399             remainder =
2400                 temp_expression.substr(close_bracket_position + 1); // skip ]
2401             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2402             continue;
2403           }
2404         } else if (options.m_synthetic_children_traversal ==
2405                        GetValueForExpressionPathOptions::
2406                            SyntheticChildrenTraversal::ToSynthetic ||
2407                    options.m_synthetic_children_traversal ==
2408                        GetValueForExpressionPathOptions::
2409                            SyntheticChildrenTraversal::Both) {
2410           if (root->HasSyntheticValue())
2411             root = root->GetSyntheticValue();
2412           else if (!root->IsSynthetic()) {
2413             *reason_to_stop =
2414                 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2415             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2416             return nullptr;
2417           }
2418           // if we are here, then root itself is a synthetic VO.. should be
2419           // good to go
2420 
2421           if (!root) {
2422             *reason_to_stop =
2423                 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
2424             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2425             return nullptr;
2426           }
2427           root = root->GetChildAtIndex(index);
2428           if (!root) {
2429             *reason_to_stop =
2430                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2431             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2432             return nullptr;
2433           } else {
2434             remainder =
2435                 temp_expression.substr(close_bracket_position + 1); // skip ]
2436             *final_result = ValueObject::eExpressionPathEndResultTypePlain;
2437             continue;
2438           }
2439         } else {
2440           *reason_to_stop =
2441               ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2442           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2443           return nullptr;
2444         }
2445       } else {
2446         // we have a low and a high index
2447         llvm::StringRef sleft, sright;
2448         unsigned long low_index, high_index;
2449         std::tie(sleft, sright) = bracket_expr.split('-');
2450         if (sleft.getAsInteger(0, low_index) ||
2451             sright.getAsInteger(0, high_index)) {
2452           *reason_to_stop =
2453               ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2454           *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2455           return nullptr;
2456         }
2457 
2458         if (low_index > high_index) // swap indices if required
2459           std::swap(low_index, high_index);
2460 
2461         if (root_compiler_type_info.Test(
2462                 eTypeIsScalar)) // expansion only works for scalars
2463         {
2464           root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
2465           if (!root) {
2466             *reason_to_stop =
2467                 ValueObject::eExpressionPathScanEndReasonNoSuchChild;
2468             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2469             return nullptr;
2470           } else {
2471             *reason_to_stop = ValueObject::
2472                 eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
2473             *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
2474             return root;
2475           }
2476         } else if (root_compiler_type_info.Test(
2477                        eTypeIsPointer) && // if this is a ptr-to-scalar, I am
2478                                           // accessing it by index and I would
2479                                           // have deref'ed anyway, then do it
2480                                           // now and use this as a bitfield
2481                    *what_next ==
2482                        ValueObject::eExpressionPathAftermathDereference &&
2483                    pointee_compiler_type_info.Test(eTypeIsScalar)) {
2484           Status error;
2485           root = root->Dereference(error);
2486           if (error.Fail() || !root) {
2487             *reason_to_stop =
2488                 ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
2489             *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2490             return nullptr;
2491           } else {
2492             *what_next = ValueObject::eExpressionPathAftermathNothing;
2493             continue;
2494           }
2495         } else {
2496           *reason_to_stop =
2497               ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
2498           *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
2499           return root;
2500         }
2501       }
2502       break;
2503     }
2504     default: // some non-separator is in the way
2505     {
2506       *reason_to_stop =
2507           ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
2508       *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
2509       return nullptr;
2510     }
2511     }
2512   }
2513 }
2514 
Dump(Stream & s)2515 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); }
2516 
Dump(Stream & s,const DumpValueObjectOptions & options)2517 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) {
2518   ValueObjectPrinter printer(this, &s, options);
2519   printer.PrintValueObject();
2520 }
2521 
CreateConstantValue(ConstString name)2522 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) {
2523   ValueObjectSP valobj_sp;
2524 
2525   if (UpdateValueIfNeeded(false) && m_error.Success()) {
2526     ExecutionContext exe_ctx(GetExecutionContextRef());
2527 
2528     DataExtractor data;
2529     data.SetByteOrder(m_data.GetByteOrder());
2530     data.SetAddressByteSize(m_data.GetAddressByteSize());
2531 
2532     if (IsBitfield()) {
2533       Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
2534       m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get());
2535     } else
2536       m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
2537 
2538     valobj_sp = ValueObjectConstResult::Create(
2539         exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
2540         GetAddressOf());
2541   }
2542 
2543   if (!valobj_sp) {
2544     ExecutionContext exe_ctx(GetExecutionContextRef());
2545     valobj_sp = ValueObjectConstResult::Create(
2546         exe_ctx.GetBestExecutionContextScope(), m_error);
2547   }
2548   return valobj_sp;
2549 }
2550 
GetQualifiedRepresentationIfAvailable(lldb::DynamicValueType dynValue,bool synthValue)2551 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable(
2552     lldb::DynamicValueType dynValue, bool synthValue) {
2553   ValueObjectSP result_sp;
2554   switch (dynValue) {
2555   case lldb::eDynamicCanRunTarget:
2556   case lldb::eDynamicDontRunTarget: {
2557     if (!IsDynamic())
2558       result_sp = GetDynamicValue(dynValue);
2559   } break;
2560   case lldb::eNoDynamicValues: {
2561     if (IsDynamic())
2562       result_sp = GetStaticValue();
2563   } break;
2564   }
2565   if (!result_sp)
2566     result_sp = GetSP();
2567   assert(result_sp);
2568 
2569   bool is_synthetic = result_sp->IsSynthetic();
2570   if (synthValue && !is_synthetic) {
2571     if (auto synth_sp = result_sp->GetSyntheticValue())
2572       return synth_sp;
2573   }
2574   if (!synthValue && is_synthetic) {
2575     if (auto non_synth_sp = result_sp->GetNonSyntheticValue())
2576       return non_synth_sp;
2577   }
2578 
2579   return result_sp;
2580 }
2581 
Dereference(Status & error)2582 ValueObjectSP ValueObject::Dereference(Status &error) {
2583   if (m_deref_valobj)
2584     return m_deref_valobj->GetSP();
2585 
2586   const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
2587   if (is_pointer_or_reference_type) {
2588     bool omit_empty_base_classes = true;
2589     bool ignore_array_bounds = false;
2590 
2591     std::string child_name_str;
2592     uint32_t child_byte_size = 0;
2593     int32_t child_byte_offset = 0;
2594     uint32_t child_bitfield_bit_size = 0;
2595     uint32_t child_bitfield_bit_offset = 0;
2596     bool child_is_base_class = false;
2597     bool child_is_deref_of_parent = false;
2598     const bool transparent_pointers = false;
2599     CompilerType compiler_type = GetCompilerType();
2600     CompilerType child_compiler_type;
2601     uint64_t language_flags = 0;
2602 
2603     ExecutionContext exe_ctx(GetExecutionContextRef());
2604 
2605     child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex(
2606         &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
2607         ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
2608         child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
2609         child_is_deref_of_parent, this, language_flags);
2610     if (child_compiler_type && child_byte_size) {
2611       ConstString child_name;
2612       if (!child_name_str.empty())
2613         child_name.SetCString(child_name_str.c_str());
2614 
2615       m_deref_valobj = new ValueObjectChild(
2616           *this, child_compiler_type, child_name, child_byte_size,
2617           child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
2618           child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
2619           language_flags);
2620     }
2621 
2622     // In case of incomplete child compiler type, use the pointee type and try
2623     // to recreate a new ValueObjectChild using it.
2624     if (!m_deref_valobj) {
2625       // FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g.
2626       // `std::vector<int> &`). Remove ObjC restriction once that's resolved.
2627       if (Language::LanguageIsObjC(GetPreferredDisplayLanguage()) &&
2628           HasSyntheticValue()) {
2629         child_compiler_type = compiler_type.GetPointeeType();
2630 
2631         if (child_compiler_type) {
2632           ConstString child_name;
2633           if (!child_name_str.empty())
2634             child_name.SetCString(child_name_str.c_str());
2635 
2636           m_deref_valobj = new ValueObjectChild(
2637               *this, child_compiler_type, child_name, child_byte_size,
2638               child_byte_offset, child_bitfield_bit_size,
2639               child_bitfield_bit_offset, child_is_base_class,
2640               child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
2641         }
2642       }
2643     }
2644 
2645   } else if (HasSyntheticValue()) {
2646     m_deref_valobj =
2647         GetSyntheticValue()->GetChildMemberWithName("$$dereference$$").get();
2648   } else if (IsSynthetic()) {
2649     m_deref_valobj = GetChildMemberWithName("$$dereference$$").get();
2650   }
2651 
2652   if (m_deref_valobj) {
2653     error.Clear();
2654     return m_deref_valobj->GetSP();
2655   } else {
2656     StreamString strm;
2657     GetExpressionPath(strm);
2658 
2659     if (is_pointer_or_reference_type)
2660       error.SetErrorStringWithFormat("dereference failed: (%s) %s",
2661                                      GetTypeName().AsCString("<invalid type>"),
2662                                      strm.GetData());
2663     else
2664       error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s",
2665                                      GetTypeName().AsCString("<invalid type>"),
2666                                      strm.GetData());
2667     return ValueObjectSP();
2668   }
2669 }
2670 
AddressOf(Status & error)2671 ValueObjectSP ValueObject::AddressOf(Status &error) {
2672   if (m_addr_of_valobj_sp)
2673     return m_addr_of_valobj_sp;
2674 
2675   AddressType address_type = eAddressTypeInvalid;
2676   const bool scalar_is_load_address = false;
2677   addr_t addr = GetAddressOf(scalar_is_load_address, &address_type);
2678   error.Clear();
2679 
2680   StreamString expr_path_strm;
2681   GetExpressionPath(expr_path_strm);
2682   const char *expr_path_str = expr_path_strm.GetData();
2683 
2684   ExecutionContext exe_ctx(GetExecutionContextRef());
2685   auto scope = exe_ctx.GetBestExecutionContextScope();
2686 
2687   if (addr == LLDB_INVALID_ADDRESS) {
2688     error.SetErrorStringWithFormat("'%s' doesn't have a valid address",
2689                                    expr_path_str);
2690     return ValueObjectSP();
2691   }
2692 
2693   switch (address_type) {
2694   case eAddressTypeInvalid:
2695     error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_str);
2696     return ValueObjectSP();
2697 
2698   case eAddressTypeHost:
2699     error.SetErrorStringWithFormat("'%s' is in host process (LLDB) memory",
2700                                    expr_path_str);
2701     return ValueObjectSP();
2702 
2703   case eAddressTypeFile:
2704   case eAddressTypeLoad: {
2705     CompilerType compiler_type = GetCompilerType();
2706     if (!compiler_type) {
2707       error.SetErrorStringWithFormat("'%s' doesn't have a compiler type",
2708                                      expr_path_str);
2709       return ValueObjectSP();
2710     }
2711 
2712     std::string name(1, '&');
2713     name.append(m_name.AsCString(""));
2714     m_addr_of_valobj_sp = ValueObjectConstResult::Create(
2715         scope, compiler_type.GetPointerType(), ConstString(name.c_str()), addr,
2716         eAddressTypeInvalid, m_data.GetAddressByteSize());
2717     return m_addr_of_valobj_sp;
2718   }
2719   }
2720 }
2721 
DoCast(const CompilerType & compiler_type)2722 ValueObjectSP ValueObject::DoCast(const CompilerType &compiler_type) {
2723     return ValueObjectCast::Create(*this, GetName(), compiler_type);
2724 }
2725 
Cast(const CompilerType & compiler_type)2726 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) {
2727   // Only allow casts if the original type is equal or larger than the cast
2728   // type.  We don't know how to fetch more data for all the ConstResult types,
2729   // so we can't guarantee this will work:
2730   Status error;
2731   CompilerType my_type = GetCompilerType();
2732 
2733   ExecutionContextScope *exe_scope
2734       = ExecutionContext(GetExecutionContextRef())
2735           .GetBestExecutionContextScope();
2736   if (compiler_type.GetByteSize(exe_scope)
2737       <= GetCompilerType().GetByteSize(exe_scope)) {
2738         return DoCast(compiler_type);
2739   }
2740   error.SetErrorString("Can only cast to a type that is equal to or smaller "
2741                        "than the orignal type.");
2742 
2743   return ValueObjectConstResult::Create(
2744       ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(),
2745                        error);
2746 }
2747 
Clone(ConstString new_name)2748 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) {
2749   return ValueObjectCast::Create(*this, new_name, GetCompilerType());
2750 }
2751 
CastPointerType(const char * name,CompilerType & compiler_type)2752 ValueObjectSP ValueObject::CastPointerType(const char *name,
2753                                            CompilerType &compiler_type) {
2754   ValueObjectSP valobj_sp;
2755   AddressType address_type;
2756   addr_t ptr_value = GetPointerValue(&address_type);
2757 
2758   if (ptr_value != LLDB_INVALID_ADDRESS) {
2759     Address ptr_addr(ptr_value);
2760     ExecutionContext exe_ctx(GetExecutionContextRef());
2761     valobj_sp = ValueObjectMemory::Create(
2762         exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
2763   }
2764   return valobj_sp;
2765 }
2766 
CastPointerType(const char * name,TypeSP & type_sp)2767 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) {
2768   ValueObjectSP valobj_sp;
2769   AddressType address_type;
2770   addr_t ptr_value = GetPointerValue(&address_type);
2771 
2772   if (ptr_value != LLDB_INVALID_ADDRESS) {
2773     Address ptr_addr(ptr_value);
2774     ExecutionContext exe_ctx(GetExecutionContextRef());
2775     valobj_sp = ValueObjectMemory::Create(
2776         exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
2777   }
2778   return valobj_sp;
2779 }
2780 
EvaluationPoint()2781 ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {}
2782 
EvaluationPoint(ExecutionContextScope * exe_scope,bool use_selected)2783 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope,
2784                                               bool use_selected)
2785     : m_mod_id(), m_exe_ctx_ref() {
2786   ExecutionContext exe_ctx(exe_scope);
2787   TargetSP target_sp(exe_ctx.GetTargetSP());
2788   if (target_sp) {
2789     m_exe_ctx_ref.SetTargetSP(target_sp);
2790     ProcessSP process_sp(exe_ctx.GetProcessSP());
2791     if (!process_sp)
2792       process_sp = target_sp->GetProcessSP();
2793 
2794     if (process_sp) {
2795       m_mod_id = process_sp->GetModID();
2796       m_exe_ctx_ref.SetProcessSP(process_sp);
2797 
2798       ThreadSP thread_sp(exe_ctx.GetThreadSP());
2799 
2800       if (!thread_sp) {
2801         if (use_selected)
2802           thread_sp = process_sp->GetThreadList().GetSelectedThread();
2803       }
2804 
2805       if (thread_sp) {
2806         m_exe_ctx_ref.SetThreadSP(thread_sp);
2807 
2808         StackFrameSP frame_sp(exe_ctx.GetFrameSP());
2809         if (!frame_sp) {
2810           if (use_selected)
2811             frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame);
2812         }
2813         if (frame_sp)
2814           m_exe_ctx_ref.SetFrameSP(frame_sp);
2815       }
2816     }
2817   }
2818 }
2819 
EvaluationPoint(const ValueObject::EvaluationPoint & rhs)2820 ValueObject::EvaluationPoint::EvaluationPoint(
2821     const ValueObject::EvaluationPoint &rhs)
2822     : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {}
2823 
2824 ValueObject::EvaluationPoint::~EvaluationPoint() = default;
2825 
2826 // This function checks the EvaluationPoint against the current process state.
2827 // If the current state matches the evaluation point, or the evaluation point
2828 // is already invalid, then we return false, meaning "no change".  If the
2829 // current state is different, we update our state, and return true meaning
2830 // "yes, change".  If we did see a change, we also set m_needs_update to true,
2831 // so future calls to NeedsUpdate will return true. exe_scope will be set to
2832 // the current execution context scope.
2833 
SyncWithProcessState(bool accept_invalid_exe_ctx)2834 bool ValueObject::EvaluationPoint::SyncWithProcessState(
2835     bool accept_invalid_exe_ctx) {
2836   // Start with the target, if it is NULL, then we're obviously not going to
2837   // get any further:
2838   const bool thread_and_frame_only_if_stopped = true;
2839   ExecutionContext exe_ctx(
2840       m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
2841 
2842   if (exe_ctx.GetTargetPtr() == nullptr)
2843     return false;
2844 
2845   // If we don't have a process nothing can change.
2846   Process *process = exe_ctx.GetProcessPtr();
2847   if (process == nullptr)
2848     return false;
2849 
2850   // If our stop id is the current stop ID, nothing has changed:
2851   ProcessModID current_mod_id = process->GetModID();
2852 
2853   // If the current stop id is 0, either we haven't run yet, or the process
2854   // state has been cleared. In either case, we aren't going to be able to sync
2855   // with the process state.
2856   if (current_mod_id.GetStopID() == 0)
2857     return false;
2858 
2859   bool changed = false;
2860   const bool was_valid = m_mod_id.IsValid();
2861   if (was_valid) {
2862     if (m_mod_id == current_mod_id) {
2863       // Everything is already up to date in this object, no need to update the
2864       // execution context scope.
2865       changed = false;
2866     } else {
2867       m_mod_id = current_mod_id;
2868       m_needs_update = true;
2869       changed = true;
2870     }
2871   }
2872 
2873   // Now re-look up the thread and frame in case the underlying objects have
2874   // gone away & been recreated. That way we'll be sure to return a valid
2875   // exe_scope. If we used to have a thread or a frame but can't find it
2876   // anymore, then mark ourselves as invalid.
2877 
2878   if (!accept_invalid_exe_ctx) {
2879     if (m_exe_ctx_ref.HasThreadRef()) {
2880       ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
2881       if (thread_sp) {
2882         if (m_exe_ctx_ref.HasFrameRef()) {
2883           StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
2884           if (!frame_sp) {
2885             // We used to have a frame, but now it is gone
2886             SetInvalid();
2887             changed = was_valid;
2888           }
2889         }
2890       } else {
2891         // We used to have a thread, but now it is gone
2892         SetInvalid();
2893         changed = was_valid;
2894       }
2895     }
2896   }
2897 
2898   return changed;
2899 }
2900 
SetUpdated()2901 void ValueObject::EvaluationPoint::SetUpdated() {
2902   ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
2903   if (process_sp)
2904     m_mod_id = process_sp->GetModID();
2905   m_needs_update = false;
2906 }
2907 
ClearUserVisibleData(uint32_t clear_mask)2908 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
2909   if ((clear_mask & eClearUserVisibleDataItemsValue) ==
2910       eClearUserVisibleDataItemsValue)
2911     m_value_str.clear();
2912 
2913   if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
2914       eClearUserVisibleDataItemsLocation)
2915     m_location_str.clear();
2916 
2917   if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
2918       eClearUserVisibleDataItemsSummary)
2919     m_summary_str.clear();
2920 
2921   if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
2922       eClearUserVisibleDataItemsDescription)
2923     m_object_desc_str.clear();
2924 
2925   if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) ==
2926       eClearUserVisibleDataItemsSyntheticChildren) {
2927     if (m_synthetic_value)
2928       m_synthetic_value = nullptr;
2929   }
2930 }
2931 
GetSymbolContextScope()2932 SymbolContextScope *ValueObject::GetSymbolContextScope() {
2933   if (m_parent) {
2934     if (!m_parent->IsPointerOrReferenceType())
2935       return m_parent->GetSymbolContextScope();
2936   }
2937   return nullptr;
2938 }
2939 
2940 lldb::ValueObjectSP
CreateValueObjectFromExpression(llvm::StringRef name,llvm::StringRef expression,const ExecutionContext & exe_ctx)2941 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name,
2942                                              llvm::StringRef expression,
2943                                              const ExecutionContext &exe_ctx) {
2944   return CreateValueObjectFromExpression(name, expression, exe_ctx,
2945                                          EvaluateExpressionOptions());
2946 }
2947 
CreateValueObjectFromExpression(llvm::StringRef name,llvm::StringRef expression,const ExecutionContext & exe_ctx,const EvaluateExpressionOptions & options)2948 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression(
2949     llvm::StringRef name, llvm::StringRef expression,
2950     const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
2951   lldb::ValueObjectSP retval_sp;
2952   lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
2953   if (!target_sp)
2954     return retval_sp;
2955   if (expression.empty())
2956     return retval_sp;
2957   target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
2958                                 retval_sp, options);
2959   if (retval_sp && !name.empty())
2960     retval_sp->SetName(ConstString(name));
2961   return retval_sp;
2962 }
2963 
CreateValueObjectFromAddress(llvm::StringRef name,uint64_t address,const ExecutionContext & exe_ctx,CompilerType type)2964 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress(
2965     llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
2966     CompilerType type) {
2967   if (type) {
2968     CompilerType pointer_type(type.GetPointerType());
2969     if (pointer_type) {
2970       lldb::DataBufferSP buffer(
2971           new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
2972       lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create(
2973           exe_ctx.GetBestExecutionContextScope(), pointer_type,
2974           ConstString(name), buffer, exe_ctx.GetByteOrder(),
2975           exe_ctx.GetAddressByteSize()));
2976       if (ptr_result_valobj_sp) {
2977         ptr_result_valobj_sp->GetValue().SetValueType(
2978             Value::ValueType::LoadAddress);
2979         Status err;
2980         ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
2981         if (ptr_result_valobj_sp && !name.empty())
2982           ptr_result_valobj_sp->SetName(ConstString(name));
2983       }
2984       return ptr_result_valobj_sp;
2985     }
2986   }
2987   return lldb::ValueObjectSP();
2988 }
2989 
CreateValueObjectFromData(llvm::StringRef name,const DataExtractor & data,const ExecutionContext & exe_ctx,CompilerType type)2990 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData(
2991     llvm::StringRef name, const DataExtractor &data,
2992     const ExecutionContext &exe_ctx, CompilerType type) {
2993   lldb::ValueObjectSP new_value_sp;
2994   new_value_sp = ValueObjectConstResult::Create(
2995       exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
2996       LLDB_INVALID_ADDRESS);
2997   new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
2998   if (new_value_sp && !name.empty())
2999     new_value_sp->SetName(ConstString(name));
3000   return new_value_sp;
3001 }
3002 
GetModule()3003 ModuleSP ValueObject::GetModule() {
3004   ValueObject *root(GetRoot());
3005   if (root != this)
3006     return root->GetModule();
3007   return lldb::ModuleSP();
3008 }
3009 
GetRoot()3010 ValueObject *ValueObject::GetRoot() {
3011   if (m_root)
3012     return m_root;
3013   return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
3014             return (vo->m_parent != nullptr);
3015           }));
3016 }
3017 
3018 ValueObject *
FollowParentChain(std::function<bool (ValueObject *)> f)3019 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) {
3020   ValueObject *vo = this;
3021   while (vo) {
3022     if (!f(vo))
3023       break;
3024     vo = vo->m_parent;
3025   }
3026   return vo;
3027 }
3028 
GetAddressTypeOfChildren()3029 AddressType ValueObject::GetAddressTypeOfChildren() {
3030   if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) {
3031     ValueObject *root(GetRoot());
3032     if (root != this)
3033       return root->GetAddressTypeOfChildren();
3034   }
3035   return m_address_type_of_ptr_or_ref_children;
3036 }
3037 
GetDynamicValueType()3038 lldb::DynamicValueType ValueObject::GetDynamicValueType() {
3039   ValueObject *with_dv_info = this;
3040   while (with_dv_info) {
3041     if (with_dv_info->HasDynamicValueTypeInfo())
3042       return with_dv_info->GetDynamicValueTypeImpl();
3043     with_dv_info = with_dv_info->m_parent;
3044   }
3045   return lldb::eNoDynamicValues;
3046 }
3047 
GetFormat() const3048 lldb::Format ValueObject::GetFormat() const {
3049   const ValueObject *with_fmt_info = this;
3050   while (with_fmt_info) {
3051     if (with_fmt_info->m_format != lldb::eFormatDefault)
3052       return with_fmt_info->m_format;
3053     with_fmt_info = with_fmt_info->m_parent;
3054   }
3055   return m_format;
3056 }
3057 
GetPreferredDisplayLanguage()3058 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() {
3059   lldb::LanguageType type = m_preferred_display_language;
3060   if (m_preferred_display_language == lldb::eLanguageTypeUnknown) {
3061     if (GetRoot()) {
3062       if (GetRoot() == this) {
3063         if (StackFrameSP frame_sp = GetFrameSP()) {
3064           const SymbolContext &sc(
3065               frame_sp->GetSymbolContext(eSymbolContextCompUnit));
3066           if (CompileUnit *cu = sc.comp_unit)
3067             type = cu->GetLanguage();
3068         }
3069       } else {
3070         type = GetRoot()->GetPreferredDisplayLanguage();
3071       }
3072     }
3073   }
3074   return (m_preferred_display_language = type); // only compute it once
3075 }
3076 
SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt)3077 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) {
3078   if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
3079     SetPreferredDisplayLanguage(lt);
3080 }
3081 
CanProvideValue()3082 bool ValueObject::CanProvideValue() {
3083   // we need to support invalid types as providers of values because some bare-
3084   // board debugging scenarios have no notion of types, but still manage to
3085   // have raw numeric values for things like registers. sigh.
3086   CompilerType type = GetCompilerType();
3087   return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
3088 }
3089 
3090 
3091 
Persist()3092 ValueObjectSP ValueObject::Persist() {
3093   if (!UpdateValueIfNeeded())
3094     return nullptr;
3095 
3096   TargetSP target_sp(GetTargetSP());
3097   if (!target_sp)
3098     return nullptr;
3099 
3100   PersistentExpressionState *persistent_state =
3101       target_sp->GetPersistentExpressionStateForLanguage(
3102           GetPreferredDisplayLanguage());
3103 
3104   if (!persistent_state)
3105     return nullptr;
3106 
3107   ConstString name = persistent_state->GetNextPersistentVariableName();
3108 
3109   ValueObjectSP const_result_sp =
3110       ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
3111 
3112   ExpressionVariableSP persistent_var_sp =
3113       persistent_state->CreatePersistentVariable(const_result_sp);
3114   persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp;
3115   persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
3116 
3117   return persistent_var_sp->GetValueObject();
3118 }
3119 
GetVTable()3120 lldb::ValueObjectSP ValueObject::GetVTable() {
3121   return ValueObjectVTable::Create(*this);
3122 }
3123