1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #ifdef GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 
59 #include <cstdint>
60 #include <functional>
61 #include <iomanip>
62 #include <limits>
63 #include <map>
64 #include <set>
65 #include <string>
66 #include <type_traits>
67 #include <utility>
68 #include <vector>
69 
70 #include "gtest/gtest-message.h"
71 #include "gtest/internal/gtest-filepath.h"
72 #include "gtest/internal/gtest-string.h"
73 #include "gtest/internal/gtest-type-util.h"
74 
75 // Due to C++ preprocessor weirdness, we need double indirection to
76 // concatenate two tokens when one of them is __LINE__.  Writing
77 //
78 //   foo ## __LINE__
79 //
80 // will result in the token foo__LINE__, instead of foo followed by
81 // the current line number.  For more details, see
82 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
83 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
84 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
85 
86 // Stringifies its argument.
87 // Work around a bug in visual studio which doesn't accept code like this:
88 //
89 //   #define GTEST_STRINGIFY_(name) #name
90 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
91 //   MACRO(, x, y)
92 //
93 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
94 // This is allowed by the spec.
95 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
96 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
97 
98 namespace proto2 {
99 class MessageLite;
100 }
101 
102 namespace testing {
103 
104 // Forward declarations.
105 
106 class AssertionResult;  // Result of an assertion.
107 class Message;          // Represents a failure message.
108 class Test;             // Represents a test.
109 class TestInfo;         // Information about a test.
110 class TestPartResult;   // Result of a test part.
111 class UnitTest;         // A collection of test suites.
112 
113 template <typename T>
114 ::std::string PrintToString(const T& value);
115 
116 namespace internal {
117 
118 struct TraceInfo;    // Information about a trace point.
119 class TestInfoImpl;  // Opaque implementation of TestInfo
120 class UnitTestImpl;  // Opaque implementation of UnitTest
121 
122 // The text used in failure messages to indicate the start of the
123 // stack trace.
124 GTEST_API_ extern const char kStackTraceMarker[];
125 
126 // An IgnoredValue object can be implicitly constructed from ANY value.
127 class IgnoredValue {
128   struct Sink {};
129 
130  public:
131   // This constructor template allows any value to be implicitly
132   // converted to IgnoredValue.  The object has no data member and
133   // doesn't try to remember anything about the argument.  We
134   // deliberately omit the 'explicit' keyword in order to allow the
135   // conversion to be implicit.
136   // Disable the conversion if T already has a magical conversion operator.
137   // Otherwise we get ambiguity.
138   template <typename T,
139             typename std::enable_if<!std::is_convertible<T, Sink>::value,
140                                     int>::type = 0>
IgnoredValue(const T &)141   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
142 };
143 
144 // Appends the user-supplied message to the Google-Test-generated message.
145 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
146                                          const Message& user_msg);
147 
148 #if GTEST_HAS_EXCEPTIONS
149 
150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
151     4275 /* an exported class was derived from a class that was not exported */)
152 
153 // This exception is thrown by (and only by) a failed Google Test
154 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
155 // are enabled).  We derive it from std::runtime_error, which is for
156 // errors presumably detectable only at run time.  Since
157 // std::runtime_error inherits from std::exception, many testing
158 // frameworks know how to extract and print the message inside it.
159 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
160  public:
161   explicit GoogleTestFailureException(const TestPartResult& failure);
162 };
163 
GTEST_DISABLE_MSC_WARNINGS_POP_()164 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
165 
166 #endif  // GTEST_HAS_EXCEPTIONS
167 
168 namespace edit_distance {
169 // Returns the optimal edits to go from 'left' to 'right'.
170 // All edits cost the same, with replace having lower priority than
171 // add/remove.
172 // Simple implementation of the Wagner-Fischer algorithm.
173 // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
174 enum EditType { kMatch, kAdd, kRemove, kReplace };
175 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
176     const std::vector<size_t>& left, const std::vector<size_t>& right);
177 
178 // Same as above, but the input is represented as strings.
179 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
180     const std::vector<std::string>& left,
181     const std::vector<std::string>& right);
182 
183 // Create a diff of the input strings in Unified diff format.
184 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
185                                          const std::vector<std::string>& right,
186                                          size_t context = 2);
187 
188 }  // namespace edit_distance
189 
190 // Constructs and returns the message for an equality assertion
191 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
192 //
193 // The first four parameters are the expressions used in the assertion
194 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
195 // where foo is 5 and bar is 6, we have:
196 //
197 //   expected_expression: "foo"
198 //   actual_expression:   "bar"
199 //   expected_value:      "5"
200 //   actual_value:        "6"
201 //
202 // The ignoring_case parameter is true if and only if the assertion is a
203 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
204 // be inserted into the message.
205 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
206                                      const char* actual_expression,
207                                      const std::string& expected_value,
208                                      const std::string& actual_value,
209                                      bool ignoring_case);
210 
211 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
212 GTEST_API_ std::string GetBoolAssertionFailureMessage(
213     const AssertionResult& assertion_result, const char* expression_text,
214     const char* actual_predicate_value, const char* expected_predicate_value);
215 
216 // This template class represents an IEEE floating-point number
217 // (either single-precision or double-precision, depending on the
218 // template parameters).
219 //
220 // The purpose of this class is to do more sophisticated number
221 // comparison.  (Due to round-off error, etc, it's very unlikely that
222 // two floating-points will be equal exactly.  Hence a naive
223 // comparison by the == operation often doesn't work.)
224 //
225 // Format of IEEE floating-point:
226 //
227 //   The most-significant bit being the leftmost, an IEEE
228 //   floating-point looks like
229 //
230 //     sign_bit exponent_bits fraction_bits
231 //
232 //   Here, sign_bit is a single bit that designates the sign of the
233 //   number.
234 //
235 //   For float, there are 8 exponent bits and 23 fraction bits.
236 //
237 //   For double, there are 11 exponent bits and 52 fraction bits.
238 //
239 //   More details can be found at
240 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
241 //
242 // Template parameter:
243 //
244 //   RawType: the raw floating-point type (either float or double)
245 template <typename RawType>
246 class FloatingPoint {
247  public:
248   // Defines the unsigned integer type that has the same size as the
249   // floating point number.
250   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
251 
252   // Constants.
253 
254   // # of bits in a number.
255   static const size_t kBitCount = 8 * sizeof(RawType);
256 
257   // # of fraction bits in a number.
258   static const size_t kFractionBitCount =
259       std::numeric_limits<RawType>::digits - 1;
260 
261   // # of exponent bits in a number.
262   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
263 
264   // The mask for the sign bit.
265   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
266 
267   // The mask for the fraction bits.
268   static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
269                                        (kExponentBitCount + 1);
270 
271   // The mask for the exponent bits.
272   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
273 
274   // How many ULP's (Units in the Last Place) we want to tolerate when
275   // comparing two numbers.  The larger the value, the more error we
276   // allow.  A 0 value means that two numbers must be exactly the same
277   // to be considered equal.
278   //
279   // The maximum error of a single floating-point operation is 0.5
280   // units in the last place.  On Intel CPU's, all floating-point
281   // calculations are done with 80-bit precision, while double has 64
282   // bits.  Therefore, 4 should be enough for ordinary use.
283   //
284   // See the following article for more details on ULP:
285   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
286   static const uint32_t kMaxUlps = 4;
287 
288   // Constructs a FloatingPoint from a raw floating-point number.
289   //
290   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
291   // around may change its bits, although the new value is guaranteed
292   // to be also a NAN.  Therefore, don't expect this constructor to
293   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)294   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
295 
296   // Static methods
297 
298   // Reinterprets a bit pattern as a floating-point number.
299   //
300   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)301   static RawType ReinterpretBits(const Bits bits) {
302     FloatingPoint fp(0);
303     fp.u_.bits_ = bits;
304     return fp.u_.value_;
305   }
306 
307   // Returns the floating-point number that represent positive infinity.
Infinity()308   static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
309 
310   // Non-static methods
311 
312   // Returns the bits that represents this number.
bits()313   const Bits& bits() const { return u_.bits_; }
314 
315   // Returns the exponent bits of this number.
exponent_bits()316   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
317 
318   // Returns the fraction bits of this number.
fraction_bits()319   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
320 
321   // Returns the sign bit of this number.
sign_bit()322   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
323 
324   // Returns true if and only if this is NAN (not a number).
is_nan()325   bool is_nan() const {
326     // It's a NAN if the exponent bits are all ones and the fraction
327     // bits are not entirely zeros.
328     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
329   }
330 
331   // Returns true if and only if this number is at most kMaxUlps ULP's away
332   // from rhs.  In particular, this function:
333   //
334   //   - returns false if either number is (or both are) NAN.
335   //   - treats really large numbers as almost equal to infinity.
336   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)337   bool AlmostEquals(const FloatingPoint& rhs) const {
338     // The IEEE standard says that any comparison operation involving
339     // a NAN must return false.
340     if (is_nan() || rhs.is_nan()) return false;
341 
342     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
343            kMaxUlps;
344   }
345 
346  private:
347   // The data type used to store the actual floating-point number.
348   union FloatingPointUnion {
349     RawType value_;  // The raw floating-point number.
350     Bits bits_;      // The bits that represent the number.
351   };
352 
353   // Converts an integer from the sign-and-magnitude representation to
354   // the biased representation.  More precisely, let N be 2 to the
355   // power of (kBitCount - 1), an integer x is represented by the
356   // unsigned number x + N.
357   //
358   // For instance,
359   //
360   //   -N + 1 (the most negative number representable using
361   //          sign-and-magnitude) is represented by 1;
362   //   0      is represented by N; and
363   //   N - 1  (the biggest number representable using
364   //          sign-and-magnitude) is represented by 2N - 1.
365   //
366   // Read http://en.wikipedia.org/wiki/Signed_number_representations
367   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)368   static Bits SignAndMagnitudeToBiased(const Bits& sam) {
369     if (kSignBitMask & sam) {
370       // sam represents a negative number.
371       return ~sam + 1;
372     } else {
373       // sam represents a positive number.
374       return kSignBitMask | sam;
375     }
376   }
377 
378   // Given two numbers in the sign-and-magnitude representation,
379   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)380   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
381                                                      const Bits& sam2) {
382     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
383     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
384     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
385   }
386 
387   FloatingPointUnion u_;
388 };
389 
390 // Typedefs the instances of the FloatingPoint template class that we
391 // care to use.
392 typedef FloatingPoint<float> Float;
393 typedef FloatingPoint<double> Double;
394 
395 // In order to catch the mistake of putting tests that use different
396 // test fixture classes in the same test suite, we need to assign
397 // unique IDs to fixture classes and compare them.  The TypeId type is
398 // used to hold such IDs.  The user should treat TypeId as an opaque
399 // type: the only operation allowed on TypeId values is to compare
400 // them for equality using the == operator.
401 typedef const void* TypeId;
402 
403 template <typename T>
404 class TypeIdHelper {
405  public:
406   // dummy_ must not have a const type.  Otherwise an overly eager
407   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
408   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
409   static bool dummy_;
410 };
411 
412 template <typename T>
413 bool TypeIdHelper<T>::dummy_ = false;
414 
415 // GetTypeId<T>() returns the ID of type T.  Different values will be
416 // returned for different types.  Calling the function twice with the
417 // same type argument is guaranteed to return the same ID.
418 template <typename T>
GetTypeId()419 TypeId GetTypeId() {
420   // The compiler is required to allocate a different
421   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
422   // the template.  Therefore, the address of dummy_ is guaranteed to
423   // be unique.
424   return &(TypeIdHelper<T>::dummy_);
425 }
426 
427 // Returns the type ID of ::testing::Test.  Always call this instead
428 // of GetTypeId< ::testing::Test>() to get the type ID of
429 // ::testing::Test, as the latter may give the wrong result due to a
430 // suspected linker bug when compiling Google Test as a Mac OS X
431 // framework.
432 GTEST_API_ TypeId GetTestTypeId();
433 
434 // Defines the abstract factory interface that creates instances
435 // of a Test object.
436 class TestFactoryBase {
437  public:
438   virtual ~TestFactoryBase() = default;
439 
440   // Creates a test instance to run. The instance is both created and destroyed
441   // within TestInfoImpl::Run()
442   virtual Test* CreateTest() = 0;
443 
444  protected:
TestFactoryBase()445   TestFactoryBase() {}
446 
447  private:
448   TestFactoryBase(const TestFactoryBase&) = delete;
449   TestFactoryBase& operator=(const TestFactoryBase&) = delete;
450 };
451 
452 // This class provides implementation of TestFactoryBase interface.
453 // It is used in TEST and TEST_F macros.
454 template <class TestClass>
455 class TestFactoryImpl : public TestFactoryBase {
456  public:
CreateTest()457   Test* CreateTest() override { return new TestClass; }
458 };
459 
460 #ifdef GTEST_OS_WINDOWS
461 
462 // Predicate-formatters for implementing the HRESULT checking macros
463 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
464 // We pass a long instead of HRESULT to avoid causing an
465 // include dependency for the HRESULT type.
466 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
467                                             long hr);  // NOLINT
468 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
469                                             long hr);  // NOLINT
470 
471 #endif  // GTEST_OS_WINDOWS
472 
473 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
474 using SetUpTestSuiteFunc = void (*)();
475 using TearDownTestSuiteFunc = void (*)();
476 
477 struct CodeLocation {
CodeLocationCodeLocation478   CodeLocation(const std::string& a_file, int a_line)
479       : file(a_file), line(a_line) {}
480 
481   std::string file;
482   int line;
483 };
484 
485 //  Helper to identify which setup function for TestCase / TestSuite to call.
486 //  Only one function is allowed, either TestCase or TestSute but not both.
487 
488 // Utility functions to help SuiteApiResolver
489 using SetUpTearDownSuiteFuncType = void (*)();
490 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)491 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
492     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
493   return a == def ? nullptr : a;
494 }
495 
496 template <typename T>
497 //  Note that SuiteApiResolver inherits from T because
498 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
499 //  SuiteApiResolver can access them.
500 struct SuiteApiResolver : T {
501   // testing::Test is only forward declared at this point. So we make it a
502   // dependent class for the compiler to be OK with it.
503   using Test =
504       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
505 
GetSetUpCaseOrSuiteSuiteApiResolver506   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
507                                                         int line_num) {
508 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
509     SetUpTearDownSuiteFuncType test_case_fp =
510         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
511     SetUpTearDownSuiteFuncType test_suite_fp =
512         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
513 
514     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
515         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
516            "make sure there is only one present at "
517         << filename << ":" << line_num;
518 
519     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
520 #else
521     (void)(filename);
522     (void)(line_num);
523     return &T::SetUpTestSuite;
524 #endif
525   }
526 
GetTearDownCaseOrSuiteSuiteApiResolver527   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
528                                                            int line_num) {
529 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
530     SetUpTearDownSuiteFuncType test_case_fp =
531         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
532     SetUpTearDownSuiteFuncType test_suite_fp =
533         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
534 
535     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
536         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
537            " please make sure there is only one present at"
538         << filename << ":" << line_num;
539 
540     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
541 #else
542     (void)(filename);
543     (void)(line_num);
544     return &T::TearDownTestSuite;
545 #endif
546   }
547 };
548 
549 // Creates a new TestInfo object and registers it with Google Test;
550 // returns the created object.
551 //
552 // Arguments:
553 //
554 //   test_suite_name:  name of the test suite
555 //   name:             name of the test
556 //   type_param:       the name of the test's type parameter, or NULL if
557 //                     this is not a typed or a type-parameterized test.
558 //   value_param:      text representation of the test's value parameter,
559 //                     or NULL if this is not a type-parameterized test.
560 //   code_location:    code location where the test is defined
561 //   fixture_class_id: ID of the test fixture class
562 //   set_up_tc:        pointer to the function that sets up the test suite
563 //   tear_down_tc:     pointer to the function that tears down the test suite
564 //   factory:          pointer to the factory that creates a test object.
565 //                     The newly created TestInfo instance will assume
566 //                     ownership of the factory object.
567 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
568     const char* test_suite_name, const char* name, const char* type_param,
569     const char* value_param, CodeLocation code_location,
570     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
571     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
572 
573 // If *pstr starts with the given prefix, modifies *pstr to be right
574 // past the prefix and returns true; otherwise leaves *pstr unchanged
575 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
576 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
577 
578 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
579 /* class A needs to have dll-interface to be used by clients of class B */)
580 
581 // State of the definition of a type-parameterized test suite.
582 class GTEST_API_ TypedTestSuitePState {
583  public:
TypedTestSuitePState()584   TypedTestSuitePState() : registered_(false) {}
585 
586   // Adds the given test name to defined_test_names_ and return true
587   // if the test suite hasn't been registered; otherwise aborts the
588   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)589   bool AddTestName(const char* file, int line, const char* case_name,
590                    const char* test_name) {
591     if (registered_) {
592       fprintf(stderr,
593               "%s Test %s must be defined before "
594               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
595               FormatFileLocation(file, line).c_str(), test_name, case_name);
596       fflush(stderr);
597       posix::Abort();
598     }
599     registered_tests_.insert(
600         ::std::make_pair(test_name, CodeLocation(file, line)));
601     return true;
602   }
603 
TestExists(const std::string & test_name)604   bool TestExists(const std::string& test_name) const {
605     return registered_tests_.count(test_name) > 0;
606   }
607 
GetCodeLocation(const std::string & test_name)608   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
609     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
610     GTEST_CHECK_(it != registered_tests_.end());
611     return it->second;
612   }
613 
614   // Verifies that registered_tests match the test names in
615   // defined_test_names_; returns registered_tests if successful, or
616   // aborts the program otherwise.
617   const char* VerifyRegisteredTestNames(const char* test_suite_name,
618                                         const char* file, int line,
619                                         const char* registered_tests);
620 
621  private:
622   typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
623 
624   bool registered_;
625   RegisteredTestsMap registered_tests_;
626 };
627 
628 //  Legacy API is deprecated but still available
629 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
630 using TypedTestCasePState = TypedTestSuitePState;
631 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
632 
GTEST_DISABLE_MSC_WARNINGS_POP_()633 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
634 
635 // Skips to the first non-space char after the first comma in 'str';
636 // returns NULL if no comma is found in 'str'.
637 inline const char* SkipComma(const char* str) {
638   const char* comma = strchr(str, ',');
639   if (comma == nullptr) {
640     return nullptr;
641   }
642   while (IsSpace(*(++comma))) {
643   }
644   return comma;
645 }
646 
647 // Returns the prefix of 'str' before the first comma in it; returns
648 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)649 inline std::string GetPrefixUntilComma(const char* str) {
650   const char* comma = strchr(str, ',');
651   return comma == nullptr ? str : std::string(str, comma);
652 }
653 
654 // Splits a given string on a given delimiter, populating a given
655 // vector with the fields.
656 void SplitString(const ::std::string& str, char delimiter,
657                  ::std::vector<::std::string>* dest);
658 
659 // The default argument to the template below for the case when the user does
660 // not provide a name generator.
661 struct DefaultNameGenerator {
662   template <typename T>
GetNameDefaultNameGenerator663   static std::string GetName(int i) {
664     return StreamableToString(i);
665   }
666 };
667 
668 template <typename Provided = DefaultNameGenerator>
669 struct NameGeneratorSelector {
670   typedef Provided type;
671 };
672 
673 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)674 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
675 
676 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)677 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
678   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
679   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
680                                           i + 1);
681 }
682 
683 template <typename NameGenerator, typename Types>
GenerateNames()684 std::vector<std::string> GenerateNames() {
685   std::vector<std::string> result;
686   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
687   return result;
688 }
689 
690 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
691 // registers a list of type-parameterized tests with Google Test.  The
692 // return value is insignificant - we just need to return something
693 // such that we can call this function in a namespace scope.
694 //
695 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
696 // template parameter.  It's defined in gtest-type-util.h.
697 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
698 class TypeParameterizedTest {
699  public:
700   // 'index' is the index of the test in the type list 'Types'
701   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
702   // Types).  Valid values for 'index' are [0, N - 1] where N is the
703   // length of Types.
704   static bool Register(const char* prefix, const CodeLocation& code_location,
705                        const char* case_name, const char* test_names, int index,
706                        const std::vector<std::string>& type_names =
707                            GenerateNames<DefaultNameGenerator, Types>()) {
708     typedef typename Types::Head Type;
709     typedef Fixture<Type> FixtureClass;
710     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
711 
712     // First, registers the first type-parameterized test in the type
713     // list.
714     MakeAndRegisterTestInfo(
715         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
716          "/" + type_names[static_cast<size_t>(index)])
717             .c_str(),
718         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
719         GetTypeName<Type>().c_str(),
720         nullptr,  // No value parameter.
721         code_location, GetTypeId<FixtureClass>(),
722         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
723             code_location.file.c_str(), code_location.line),
724         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
725             code_location.file.c_str(), code_location.line),
726         new TestFactoryImpl<TestClass>);
727 
728     // Next, recurses (at compile time) with the tail of the type list.
729     return TypeParameterizedTest<Fixture, TestSel,
730                                  typename Types::Tail>::Register(prefix,
731                                                                  code_location,
732                                                                  case_name,
733                                                                  test_names,
734                                                                  index + 1,
735                                                                  type_names);
736   }
737 };
738 
739 // The base case for the compile time recursion.
740 template <GTEST_TEMPLATE_ Fixture, class TestSel>
741 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
742  public:
743   static bool Register(const char* /*prefix*/, const CodeLocation&,
744                        const char* /*case_name*/, const char* /*test_names*/,
745                        int /*index*/,
746                        const std::vector<std::string>& =
747                            std::vector<std::string>() /*type_names*/) {
748     return true;
749   }
750 };
751 
752 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
753                                                    CodeLocation code_location);
754 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
755     const char* case_name);
756 
757 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
758 // registers *all combinations* of 'Tests' and 'Types' with Google
759 // Test.  The return value is insignificant - we just need to return
760 // something such that we can call this function in a namespace scope.
761 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
762 class TypeParameterizedTestSuite {
763  public:
764   static bool Register(const char* prefix, CodeLocation code_location,
765                        const TypedTestSuitePState* state, const char* case_name,
766                        const char* test_names,
767                        const std::vector<std::string>& type_names =
768                            GenerateNames<DefaultNameGenerator, Types>()) {
769     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
770     std::string test_name =
771         StripTrailingSpaces(GetPrefixUntilComma(test_names));
772     if (!state->TestExists(test_name)) {
773       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
774               case_name, test_name.c_str(),
775               FormatFileLocation(code_location.file.c_str(), code_location.line)
776                   .c_str());
777       fflush(stderr);
778       posix::Abort();
779     }
780     const CodeLocation& test_location = state->GetCodeLocation(test_name);
781 
782     typedef typename Tests::Head Head;
783 
784     // First, register the first test in 'Test' for each type in 'Types'.
785     TypeParameterizedTest<Fixture, Head, Types>::Register(
786         prefix, test_location, case_name, test_names, 0, type_names);
787 
788     // Next, recurses (at compile time) with the tail of the test list.
789     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
790                                       Types>::Register(prefix, code_location,
791                                                        state, case_name,
792                                                        SkipComma(test_names),
793                                                        type_names);
794   }
795 };
796 
797 // The base case for the compile time recursion.
798 template <GTEST_TEMPLATE_ Fixture, typename Types>
799 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
800  public:
801   static bool Register(const char* /*prefix*/, const CodeLocation&,
802                        const TypedTestSuitePState* /*state*/,
803                        const char* /*case_name*/, const char* /*test_names*/,
804                        const std::vector<std::string>& =
805                            std::vector<std::string>() /*type_names*/) {
806     return true;
807   }
808 };
809 
810 // Returns the current OS stack trace as an std::string.
811 //
812 // The maximum number of stack frames to be included is specified by
813 // the gtest_stack_trace_depth flag.  The skip_count parameter
814 // specifies the number of top frames to be skipped, which doesn't
815 // count against the number of frames to be included.
816 //
817 // For example, if Foo() calls Bar(), which in turn calls
818 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
819 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
820 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
821 
822 // Helpers for suppressing warnings on unreachable code or constant
823 // condition.
824 
825 // Always returns true.
826 GTEST_API_ bool AlwaysTrue();
827 
828 // Always returns false.
AlwaysFalse()829 inline bool AlwaysFalse() { return !AlwaysTrue(); }
830 
831 // Helper for suppressing false warning from Clang on a const char*
832 // variable declared in a conditional expression always being NULL in
833 // the else branch.
834 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr835   ConstCharPtr(const char* str) : value(str) {}
836   operator bool() const { return true; }
837   const char* value;
838 };
839 
840 // Helper for declaring std::string within 'if' statement
841 // in pre C++17 build environment.
842 struct TrueWithString {
843   TrueWithString() = default;
TrueWithStringTrueWithString844   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString845   explicit TrueWithString(const std::string& str) : value(str) {}
846   explicit operator bool() const { return true; }
847   std::string value;
848 };
849 
850 // A simple Linear Congruential Generator for generating random
851 // numbers with a uniform distribution.  Unlike rand() and srand(), it
852 // doesn't use global state (and therefore can't interfere with user
853 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
854 // but it's good enough for our purposes.
855 class GTEST_API_ Random {
856  public:
857   static const uint32_t kMaxRange = 1u << 31;
858 
Random(uint32_t seed)859   explicit Random(uint32_t seed) : state_(seed) {}
860 
Reseed(uint32_t seed)861   void Reseed(uint32_t seed) { state_ = seed; }
862 
863   // Generates a random number from [0, range).  Crashes if 'range' is
864   // 0 or greater than kMaxRange.
865   uint32_t Generate(uint32_t range);
866 
867  private:
868   uint32_t state_;
869   Random(const Random&) = delete;
870   Random& operator=(const Random&) = delete;
871 };
872 
873 // Turns const U&, U&, const U, and U all into U.
874 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
875   typename std::remove_const<typename std::remove_reference<T>::type>::type
876 
877 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
878 // that's true if and only if T has methods DebugString() and ShortDebugString()
879 // that return std::string.
880 template <typename T>
881 class HasDebugStringAndShortDebugString {
882  private:
883   template <typename C>
884   static auto CheckDebugString(C*) -> typename std::is_same<
885       std::string, decltype(std::declval<const C>().DebugString())>::type;
886   template <typename>
887   static std::false_type CheckDebugString(...);
888 
889   template <typename C>
890   static auto CheckShortDebugString(C*) -> typename std::is_same<
891       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
892   template <typename>
893   static std::false_type CheckShortDebugString(...);
894 
895   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
896   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
897 
898  public:
899   static constexpr bool value =
900       HasDebugStringType::value && HasShortDebugStringType::value;
901 };
902 
903 #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
904 template <typename T>
905 constexpr bool HasDebugStringAndShortDebugString<T>::value;
906 #endif
907 
908 // When the compiler sees expression IsContainerTest<C>(0), if C is an
909 // STL-style container class, the first overload of IsContainerTest
910 // will be viable (since both C::iterator* and C::const_iterator* are
911 // valid types and NULL can be implicitly converted to them).  It will
912 // be picked over the second overload as 'int' is a perfect match for
913 // the type of argument 0.  If C::iterator or C::const_iterator is not
914 // a valid type, the first overload is not viable, and the second
915 // overload will be picked.  Therefore, we can determine whether C is
916 // a container class by checking the type of IsContainerTest<C>(0).
917 // The value of the expression is insignificant.
918 //
919 // In C++11 mode we check the existence of a const_iterator and that an
920 // iterator is properly implemented for the container.
921 //
922 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
923 // The reason is that C++ injects the name of a class as a member of the
924 // class itself (e.g. you can refer to class iterator as either
925 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
926 // only, for example, we would mistakenly think that a class named
927 // iterator is an STL container.
928 //
929 // Also note that the simpler approach of overloading
930 // IsContainerTest(typename C::const_iterator*) and
931 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
932 typedef int IsContainer;
933 template <class C,
934           class Iterator = decltype(::std::declval<const C&>().begin()),
935           class = decltype(::std::declval<const C&>().end()),
936           class = decltype(++::std::declval<Iterator&>()),
937           class = decltype(*::std::declval<Iterator>()),
938           class = typename C::const_iterator>
IsContainerTest(int)939 IsContainer IsContainerTest(int /* dummy */) {
940   return 0;
941 }
942 
943 typedef char IsNotContainer;
944 template <class C>
IsContainerTest(long)945 IsNotContainer IsContainerTest(long /* dummy */) {
946   return '\0';
947 }
948 
949 // Trait to detect whether a type T is a hash table.
950 // The heuristic used is that the type contains an inner type `hasher` and does
951 // not contain an inner type `reverse_iterator`.
952 // If the container is iterable in reverse, then order might actually matter.
953 template <typename T>
954 struct IsHashTable {
955  private:
956   template <typename U>
957   static char test(typename U::hasher*, typename U::reverse_iterator*);
958   template <typename U>
959   static int test(typename U::hasher*, ...);
960   template <typename U>
961   static char test(...);
962 
963  public:
964   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
965 };
966 
967 template <typename T>
968 const bool IsHashTable<T>::value;
969 
970 template <typename C,
971           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
972 struct IsRecursiveContainerImpl;
973 
974 template <typename C>
975 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
976 
977 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
978 // obey the same inconsistencies as the IsContainerTest, namely check if
979 // something is a container is relying on only const_iterator in C++11 and
980 // is relying on both const_iterator and iterator otherwise
981 template <typename C>
982 struct IsRecursiveContainerImpl<C, true> {
983   using value_type = decltype(*std::declval<typename C::const_iterator>());
984   using type =
985       std::is_same<typename std::remove_const<
986                        typename std::remove_reference<value_type>::type>::type,
987                    C>;
988 };
989 
990 // IsRecursiveContainer<Type> is a unary compile-time predicate that
991 // evaluates whether C is a recursive container type. A recursive container
992 // type is a container type whose value_type is equal to the container type
993 // itself. An example for a recursive container type is
994 // boost::filesystem::path, whose iterator has a value_type that is equal to
995 // boost::filesystem::path.
996 template <typename C>
997 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
998 
999 // Utilities for native arrays.
1000 
1001 // ArrayEq() compares two k-dimensional native arrays using the
1002 // elements' operator==, where k can be any integer >= 0.  When k is
1003 // 0, ArrayEq() degenerates into comparing a single pair of values.
1004 
1005 template <typename T, typename U>
1006 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1007 
1008 // This generic version is used when k is 0.
1009 template <typename T, typename U>
1010 inline bool ArrayEq(const T& lhs, const U& rhs) {
1011   return lhs == rhs;
1012 }
1013 
1014 // This overload is used when k >= 1.
1015 template <typename T, typename U, size_t N>
1016 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1017   return internal::ArrayEq(lhs, N, rhs);
1018 }
1019 
1020 // This helper reduces code bloat.  If we instead put its logic inside
1021 // the previous ArrayEq() function, arrays with different sizes would
1022 // lead to different copies of the template code.
1023 template <typename T, typename U>
1024 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1025   for (size_t i = 0; i != size; i++) {
1026     if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1027   }
1028   return true;
1029 }
1030 
1031 // Finds the first element in the iterator range [begin, end) that
1032 // equals elem.  Element may be a native array type itself.
1033 template <typename Iter, typename Element>
1034 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1035   for (Iter it = begin; it != end; ++it) {
1036     if (internal::ArrayEq(*it, elem)) return it;
1037   }
1038   return end;
1039 }
1040 
1041 // CopyArray() copies a k-dimensional native array using the elements'
1042 // operator=, where k can be any integer >= 0.  When k is 0,
1043 // CopyArray() degenerates into copying a single value.
1044 
1045 template <typename T, typename U>
1046 void CopyArray(const T* from, size_t size, U* to);
1047 
1048 // This generic version is used when k is 0.
1049 template <typename T, typename U>
1050 inline void CopyArray(const T& from, U* to) {
1051   *to = from;
1052 }
1053 
1054 // This overload is used when k >= 1.
1055 template <typename T, typename U, size_t N>
1056 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1057   internal::CopyArray(from, N, *to);
1058 }
1059 
1060 // This helper reduces code bloat.  If we instead put its logic inside
1061 // the previous CopyArray() function, arrays with different sizes
1062 // would lead to different copies of the template code.
1063 template <typename T, typename U>
1064 void CopyArray(const T* from, size_t size, U* to) {
1065   for (size_t i = 0; i != size; i++) {
1066     internal::CopyArray(from[i], to + i);
1067   }
1068 }
1069 
1070 // The relation between an NativeArray object (see below) and the
1071 // native array it represents.
1072 // We use 2 different structs to allow non-copyable types to be used, as long
1073 // as RelationToSourceReference() is passed.
1074 struct RelationToSourceReference {};
1075 struct RelationToSourceCopy {};
1076 
1077 // Adapts a native array to a read-only STL-style container.  Instead
1078 // of the complete STL container concept, this adaptor only implements
1079 // members useful for Google Mock's container matchers.  New members
1080 // should be added as needed.  To simplify the implementation, we only
1081 // support Element being a raw type (i.e. having no top-level const or
1082 // reference modifier).  It's the client's responsibility to satisfy
1083 // this requirement.  Element can be an array type itself (hence
1084 // multi-dimensional arrays are supported).
1085 template <typename Element>
1086 class NativeArray {
1087  public:
1088   // STL-style container typedefs.
1089   typedef Element value_type;
1090   typedef Element* iterator;
1091   typedef const Element* const_iterator;
1092 
1093   // Constructs from a native array. References the source.
1094   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1095     InitRef(array, count);
1096   }
1097 
1098   // Constructs from a native array. Copies the source.
1099   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1100     InitCopy(array, count);
1101   }
1102 
1103   // Copy constructor.
1104   NativeArray(const NativeArray& rhs) {
1105     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1106   }
1107 
1108   ~NativeArray() {
1109     if (clone_ != &NativeArray::InitRef) delete[] array_;
1110   }
1111 
1112   // STL-style container methods.
1113   size_t size() const { return size_; }
1114   const_iterator begin() const { return array_; }
1115   const_iterator end() const { return array_ + size_; }
1116   bool operator==(const NativeArray& rhs) const {
1117     return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1118   }
1119 
1120  private:
1121   static_assert(!std::is_const<Element>::value, "Type must not be const");
1122   static_assert(!std::is_reference<Element>::value,
1123                 "Type must not be a reference");
1124 
1125   // Initializes this object with a copy of the input.
1126   void InitCopy(const Element* array, size_t a_size) {
1127     Element* const copy = new Element[a_size];
1128     CopyArray(array, a_size, copy);
1129     array_ = copy;
1130     size_ = a_size;
1131     clone_ = &NativeArray::InitCopy;
1132   }
1133 
1134   // Initializes this object with a reference of the input.
1135   void InitRef(const Element* array, size_t a_size) {
1136     array_ = array;
1137     size_ = a_size;
1138     clone_ = &NativeArray::InitRef;
1139   }
1140 
1141   const Element* array_;
1142   size_t size_;
1143   void (NativeArray::*clone_)(const Element*, size_t);
1144 };
1145 
1146 // Backport of std::index_sequence.
1147 template <size_t... Is>
1148 struct IndexSequence {
1149   using type = IndexSequence;
1150 };
1151 
1152 // Double the IndexSequence, and one if plus_one is true.
1153 template <bool plus_one, typename T, size_t sizeofT>
1154 struct DoubleSequence;
1155 template <size_t... I, size_t sizeofT>
1156 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1157   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1158 };
1159 template <size_t... I, size_t sizeofT>
1160 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1161   using type = IndexSequence<I..., (sizeofT + I)...>;
1162 };
1163 
1164 // Backport of std::make_index_sequence.
1165 // It uses O(ln(N)) instantiation depth.
1166 template <size_t N>
1167 struct MakeIndexSequenceImpl
1168     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1169                      N / 2>::type {};
1170 
1171 template <>
1172 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1173 
1174 template <size_t N>
1175 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1176 
1177 template <typename... T>
1178 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1179 
1180 template <size_t>
1181 struct Ignore {
1182   Ignore(...);  // NOLINT
1183 };
1184 
1185 template <typename>
1186 struct ElemFromListImpl;
1187 template <size_t... I>
1188 struct ElemFromListImpl<IndexSequence<I...>> {
1189   // We make Ignore a template to solve a problem with MSVC.
1190   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1191   // MSVC doesn't understand how to deal with that pack expansion.
1192   // Use `0 * I` to have a single instantiation of Ignore.
1193   template <typename R>
1194   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1195 };
1196 
1197 template <size_t N, typename... T>
1198 struct ElemFromList {
1199   using type =
1200       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1201           static_cast<T (*)()>(nullptr)...));
1202 };
1203 
1204 struct FlatTupleConstructTag {};
1205 
1206 template <typename... T>
1207 class FlatTuple;
1208 
1209 template <typename Derived, size_t I>
1210 struct FlatTupleElemBase;
1211 
1212 template <typename... T, size_t I>
1213 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1214   using value_type = typename ElemFromList<I, T...>::type;
1215   FlatTupleElemBase() = default;
1216   template <typename Arg>
1217   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1218       : value(std::forward<Arg>(t)) {}
1219   value_type value;
1220 };
1221 
1222 template <typename Derived, typename Idx>
1223 struct FlatTupleBase;
1224 
1225 template <size_t... Idx, typename... T>
1226 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1227     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1228   using Indices = IndexSequence<Idx...>;
1229   FlatTupleBase() = default;
1230   template <typename... Args>
1231   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1232       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1233                                                 std::forward<Args>(args))... {}
1234 
1235   template <size_t I>
1236   const typename ElemFromList<I, T...>::type& Get() const {
1237     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1238   }
1239 
1240   template <size_t I>
1241   typename ElemFromList<I, T...>::type& Get() {
1242     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1243   }
1244 
1245   template <typename F>
1246   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1247     return std::forward<F>(f)(Get<Idx>()...);
1248   }
1249 
1250   template <typename F>
1251   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1252     return std::forward<F>(f)(Get<Idx>()...);
1253   }
1254 };
1255 
1256 // Analog to std::tuple but with different tradeoffs.
1257 // This class minimizes the template instantiation depth, thus allowing more
1258 // elements than std::tuple would. std::tuple has been seen to require an
1259 // instantiation depth of more than 10x the number of elements in some
1260 // implementations.
1261 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1262 // regardless of T...
1263 // MakeIndexSequence, on the other hand, it is recursive but with an
1264 // instantiation depth of O(ln(N)).
1265 template <typename... T>
1266 class FlatTuple
1267     : private FlatTupleBase<FlatTuple<T...>,
1268                             typename MakeIndexSequence<sizeof...(T)>::type> {
1269   using Indices = typename FlatTupleBase<
1270       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1271 
1272  public:
1273   FlatTuple() = default;
1274   template <typename... Args>
1275   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1276       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1277 
1278   using FlatTuple::FlatTupleBase::Apply;
1279   using FlatTuple::FlatTupleBase::Get;
1280 };
1281 
1282 // Utility functions to be called with static_assert to induce deprecation
1283 // warnings.
1284 GTEST_INTERNAL_DEPRECATED(
1285     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1286     "INSTANTIATE_TEST_SUITE_P")
1287 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1288 
1289 GTEST_INTERNAL_DEPRECATED(
1290     "TYPED_TEST_CASE_P is deprecated, please use "
1291     "TYPED_TEST_SUITE_P")
1292 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1293 
1294 GTEST_INTERNAL_DEPRECATED(
1295     "TYPED_TEST_CASE is deprecated, please use "
1296     "TYPED_TEST_SUITE")
1297 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1298 
1299 GTEST_INTERNAL_DEPRECATED(
1300     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1301     "REGISTER_TYPED_TEST_SUITE_P")
1302 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1303 
1304 GTEST_INTERNAL_DEPRECATED(
1305     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1306     "INSTANTIATE_TYPED_TEST_SUITE_P")
1307 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1308 
1309 }  // namespace internal
1310 }  // namespace testing
1311 
1312 namespace std {
1313 // Some standard library implementations use `struct tuple_size` and some use
1314 // `class tuple_size`. Clang warns about the mismatch.
1315 // https://reviews.llvm.org/D55466
1316 #ifdef __clang__
1317 #pragma clang diagnostic push
1318 #pragma clang diagnostic ignored "-Wmismatched-tags"
1319 #endif
1320 template <typename... Ts>
1321 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1322     : std::integral_constant<size_t, sizeof...(Ts)> {};
1323 #ifdef __clang__
1324 #pragma clang diagnostic pop
1325 #endif
1326 }  // namespace std
1327 
1328 #define GTEST_MESSAGE_AT_(file, line, message, result_type)             \
1329   ::testing::internal::AssertHelper(result_type, file, line, message) = \
1330       ::testing::Message()
1331 
1332 #define GTEST_MESSAGE_(message, result_type) \
1333   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1334 
1335 #define GTEST_FATAL_FAILURE_(message) \
1336   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1337 
1338 #define GTEST_NONFATAL_FAILURE_(message) \
1339   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1340 
1341 #define GTEST_SUCCESS_(message) \
1342   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1343 
1344 #define GTEST_SKIP_(message) \
1345   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1346 
1347 // Suppress MSVC warning 4072 (unreachable code) for the code following
1348 // statement if it returns or throws (or doesn't return or throw in some
1349 // situations).
1350 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1351 // "else" from attaching to our "if".
1352 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1353   if (::testing::internal::AlwaysTrue()) {                        \
1354     statement;                                                    \
1355   } else                     /* NOLINT */                         \
1356     static_assert(true, "")  // User must have a semicolon after expansion.
1357 
1358 #if GTEST_HAS_EXCEPTIONS
1359 
1360 namespace testing {
1361 namespace internal {
1362 
1363 class NeverThrown {
1364  public:
1365   const char* what() const noexcept {
1366     return "this exception should never be thrown";
1367   }
1368 };
1369 
1370 }  // namespace internal
1371 }  // namespace testing
1372 
1373 #if GTEST_HAS_RTTI
1374 
1375 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1376 
1377 #else  // GTEST_HAS_RTTI
1378 
1379 #define GTEST_EXCEPTION_TYPE_(e) \
1380   std::string { "an std::exception-derived error" }
1381 
1382 #endif  // GTEST_HAS_RTTI
1383 
1384 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1385   catch (typename std::conditional<                                            \
1386          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1387                           expected_exception>::type>::type,                    \
1388                       std::exception>::value,                                  \
1389          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1390              e) {                                                              \
1391     gtest_msg.value = "Expected: " #statement                                  \
1392                       " throws an exception of type " #expected_exception      \
1393                       ".\n  Actual: it throws ";                               \
1394     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1395     gtest_msg.value += " with description \"";                                 \
1396     gtest_msg.value += e.what();                                               \
1397     gtest_msg.value += "\".";                                                  \
1398     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1399   }
1400 
1401 #else  // GTEST_HAS_EXCEPTIONS
1402 
1403 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1404 
1405 #endif  // GTEST_HAS_EXCEPTIONS
1406 
1407 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1408   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1409   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1410     bool gtest_caught_expected = false;                                     \
1411     try {                                                                   \
1412       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1413     } catch (expected_exception const&) {                                   \
1414       gtest_caught_expected = true;                                         \
1415     }                                                                       \
1416     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1417     catch (...) {                                                           \
1418       gtest_msg.value = "Expected: " #statement                             \
1419                         " throws an exception of type " #expected_exception \
1420                         ".\n  Actual: it throws a different type.";         \
1421       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1422     }                                                                       \
1423     if (!gtest_caught_expected) {                                           \
1424       gtest_msg.value = "Expected: " #statement                             \
1425                         " throws an exception of type " #expected_exception \
1426                         ".\n  Actual: it throws nothing.";                  \
1427       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1428     }                                                                       \
1429   } else /*NOLINT*/                                                         \
1430     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1431         : fail(gtest_msg.value.c_str())
1432 
1433 #if GTEST_HAS_EXCEPTIONS
1434 
1435 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1436   catch (std::exception const& e) {                               \
1437     gtest_msg.value = "it throws ";                               \
1438     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1439     gtest_msg.value += " with description \"";                    \
1440     gtest_msg.value += e.what();                                  \
1441     gtest_msg.value += "\".";                                     \
1442     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1443   }
1444 
1445 #else  // GTEST_HAS_EXCEPTIONS
1446 
1447 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1448 
1449 #endif  // GTEST_HAS_EXCEPTIONS
1450 
1451 #define GTEST_TEST_NO_THROW_(statement, fail)                            \
1452   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                          \
1453   if (::testing::internal::TrueWithString gtest_msg{}) {                 \
1454     try {                                                                \
1455       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);         \
1456     }                                                                    \
1457     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                           \
1458     catch (...) {                                                        \
1459       gtest_msg.value = "it throws.";                                    \
1460       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__);      \
1461     }                                                                    \
1462   } else                                                                 \
1463     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__)              \
1464         : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1465                 "  Actual: " +                                           \
1466                 gtest_msg.value)                                         \
1467                    .c_str())
1468 
1469 #define GTEST_TEST_ANY_THROW_(statement, fail)                       \
1470   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                      \
1471   if (::testing::internal::AlwaysTrue()) {                           \
1472     bool gtest_caught_any = false;                                   \
1473     try {                                                            \
1474       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);     \
1475     } catch (...) {                                                  \
1476       gtest_caught_any = true;                                       \
1477     }                                                                \
1478     if (!gtest_caught_any) {                                         \
1479       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1480     }                                                                \
1481   } else                                                             \
1482     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__)         \
1483         : fail("Expected: " #statement                               \
1484                " throws an exception.\n"                             \
1485                "  Actual: it doesn't.")
1486 
1487 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1488 // either a boolean expression or an AssertionResult. text is a textual
1489 // representation of expression as it was passed into the EXPECT_TRUE.
1490 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1491   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                       \
1492   if (const ::testing::AssertionResult gtest_ar_ =                    \
1493           ::testing::AssertionResult(expression))                     \
1494     ;                                                                 \
1495   else                                                                \
1496     fail(::testing::internal::GetBoolAssertionFailureMessage(         \
1497              gtest_ar_, text, #actual, #expected)                     \
1498              .c_str())
1499 
1500 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail)               \
1501   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                     \
1502   if (::testing::internal::AlwaysTrue()) {                          \
1503     const ::testing::internal::HasNewFatalFailureHelper             \
1504         gtest_fatal_failure_checker;                                \
1505     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);      \
1506     if (gtest_fatal_failure_checker.has_new_fatal_failure()) {      \
1507       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1508     }                                                               \
1509   } else /* NOLINT */                                               \
1510     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__)         \
1511         : fail("Expected: " #statement                              \
1512                " doesn't generate new fatal "                       \
1513                "failures in the current thread.\n"                  \
1514                "  Actual: it does.")
1515 
1516 // Expands to the name of the class that implements the given test.
1517 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1518   test_suite_name##_##test_name##_Test
1519 
1520 // Helper macro for defining tests.
1521 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)       \
1522   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                 \
1523                 "test_suite_name must not be empty");                          \
1524   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                       \
1525                 "test_name must not be empty");                                \
1526   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                     \
1527       : public parent_class {                                                  \
1528    public:                                                                     \
1529     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;            \
1530     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default;  \
1531     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1532     (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete;     \
1533     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1534         const GTEST_TEST_CLASS_NAME_(test_suite_name,                          \
1535                                      test_name) &) = delete; /* NOLINT */      \
1536     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1537     (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1538     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1539         GTEST_TEST_CLASS_NAME_(test_suite_name,                                \
1540                                test_name) &&) noexcept = delete; /* NOLINT */  \
1541                                                                                \
1542    private:                                                                    \
1543     void TestBody() override;                                                  \
1544     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;      \
1545   };                                                                           \
1546                                                                                \
1547   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,           \
1548                                                     test_name)::test_info_ =   \
1549       ::testing::internal::MakeAndRegisterTestInfo(                            \
1550           #test_suite_name, #test_name, nullptr, nullptr,                      \
1551           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id),  \
1552           ::testing::internal::SuiteApiResolver<                               \
1553               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),          \
1554           ::testing::internal::SuiteApiResolver<                               \
1555               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),       \
1556           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(     \
1557               test_suite_name, test_name)>);                                   \
1558   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1559 
1560 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1561