1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "lsan_common.h"
15
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28 #if CAN_SANITIZE_LEAKS
29
30 # if SANITIZER_APPLE
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 # if SANITIZER_IOS && !SANITIZER_IOSSIM
33 # define OBJC_DATA_MASK 0x0000007ffffffff8UL
34 # else
35 # define OBJC_DATA_MASK 0x00007ffffffffff8UL
36 # endif
37 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L139
38 # define OBJC_FAST_IS_RW 0x8000000000000000UL
39 # endif
40
41 namespace __lsan {
42
43 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
44 // also to protect the global list of root regions.
45 Mutex global_mutex;
46
47 Flags lsan_flags;
48
DisableCounterUnderflow()49 void DisableCounterUnderflow() {
50 if (common_flags()->detect_leaks) {
51 Report("Unmatched call to __lsan_enable().\n");
52 Die();
53 }
54 }
55
SetDefaults()56 void Flags::SetDefaults() {
57 # define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
58 # include "lsan_flags.inc"
59 # undef LSAN_FLAG
60 }
61
RegisterLsanFlags(FlagParser * parser,Flags * f)62 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
63 # define LSAN_FLAG(Type, Name, DefaultValue, Description) \
64 RegisterFlag(parser, #Name, Description, &f->Name);
65 # include "lsan_flags.inc"
66 # undef LSAN_FLAG
67 }
68
69 # define LOG_POINTERS(...) \
70 do { \
71 if (flags()->log_pointers) \
72 Report(__VA_ARGS__); \
73 } while (0)
74
75 # define LOG_THREADS(...) \
76 do { \
77 if (flags()->log_threads) \
78 Report(__VA_ARGS__); \
79 } while (0)
80
81 class LeakSuppressionContext {
82 bool parsed = false;
83 SuppressionContext context;
84 bool suppressed_stacks_sorted = true;
85 InternalMmapVector<u32> suppressed_stacks;
86 const LoadedModule *suppress_module = nullptr;
87
88 void LazyInit();
89 Suppression *GetSuppressionForAddr(uptr addr);
90 bool SuppressInvalid(const StackTrace &stack);
91 bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
92
93 public:
LeakSuppressionContext(const char * supprression_types[],int suppression_types_num)94 LeakSuppressionContext(const char *supprression_types[],
95 int suppression_types_num)
96 : context(supprression_types, suppression_types_num) {}
97
98 bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
99
GetSortedSuppressedStacks()100 const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
101 if (!suppressed_stacks_sorted) {
102 suppressed_stacks_sorted = true;
103 SortAndDedup(suppressed_stacks);
104 }
105 return suppressed_stacks;
106 }
107 void PrintMatchedSuppressions();
108 };
109
110 ALIGNED(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
111 static LeakSuppressionContext *suppression_ctx = nullptr;
112 static const char kSuppressionLeak[] = "leak";
113 static const char *kSuppressionTypes[] = {kSuppressionLeak};
114 static const char kStdSuppressions[] =
115 # if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
116 // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117 // definition.
118 "leak:*pthread_exit*\n"
119 # endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
120 # if SANITIZER_APPLE
121 // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
122 "leak:*_os_trace*\n"
123 # endif
124 // TLS leak in some glibc versions, described in
125 // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
126 "leak:*tls_get_addr*\n";
127
InitializeSuppressions()128 void InitializeSuppressions() {
129 CHECK_EQ(nullptr, suppression_ctx);
130 suppression_ctx = new (suppression_placeholder)
131 LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
132 }
133
LazyInit()134 void LeakSuppressionContext::LazyInit() {
135 if (!parsed) {
136 parsed = true;
137 context.ParseFromFile(flags()->suppressions);
138 if (&__lsan_default_suppressions)
139 context.Parse(__lsan_default_suppressions());
140 context.Parse(kStdSuppressions);
141 if (flags()->use_tls && flags()->use_ld_allocations)
142 suppress_module = GetLinker();
143 }
144 }
145
GetSuppressionForAddr(uptr addr)146 Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
147 Suppression *s = nullptr;
148
149 // Suppress by module name.
150 const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
151 if (!module_name)
152 module_name = "<unknown module>";
153 if (context.Match(module_name, kSuppressionLeak, &s))
154 return s;
155
156 // Suppress by file or function name.
157 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
158 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
159 if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
160 context.Match(cur->info.file, kSuppressionLeak, &s)) {
161 break;
162 }
163 }
164 frames->ClearAll();
165 return s;
166 }
167
GetCallerPC(const StackTrace & stack)168 static uptr GetCallerPC(const StackTrace &stack) {
169 // The top frame is our malloc/calloc/etc. The next frame is the caller.
170 if (stack.size >= 2)
171 return stack.trace[1];
172 return 0;
173 }
174
175 # if SANITIZER_APPLE
176 // Objective-C class data pointers are stored with flags in the low bits, so
177 // they need to be transformed back into something that looks like a pointer.
MaybeTransformPointer(void * p)178 static inline void *MaybeTransformPointer(void *p) {
179 uptr ptr = reinterpret_cast<uptr>(p);
180 if ((ptr & OBJC_FAST_IS_RW) == OBJC_FAST_IS_RW)
181 ptr &= OBJC_DATA_MASK;
182 return reinterpret_cast<void *>(ptr);
183 }
184 # endif
185
186 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188 // modules accounting etc.
189 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190 // They are allocated with a __libc_memalign() call in allocate_and_init()
191 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192 // blocks, but we can make sure they come from our own allocator by intercepting
193 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
194 // addresses are stored in a dynamically allocated array (the DTV) which is
195 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196 // being reachable from the static TLS, and the dynamic TLS being reachable from
197 // the DTV. This is because the initial DTV is allocated before our interception
198 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
199 // can't special-case it either, since we don't know its size.
200 // Our solution is to include in the root set all allocations made from
201 // ld-linux.so (which is where allocate_and_init() is implemented). This is
202 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
203 // which we don't care about).
204 // On all other platforms, this simply checks to ensure that the caller pc is
205 // valid before reporting chunks as leaked.
SuppressInvalid(const StackTrace & stack)206 bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207 uptr caller_pc = GetCallerPC(stack);
208 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209 // it as reachable, as we can't properly report its allocation stack anyway.
210 return !caller_pc ||
211 (suppress_module && suppress_module->containsAddress(caller_pc));
212 }
213
SuppressByRule(const StackTrace & stack,uptr hit_count,uptr total_size)214 bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215 uptr hit_count, uptr total_size) {
216 for (uptr i = 0; i < stack.size; i++) {
217 Suppression *s = GetSuppressionForAddr(
218 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219 if (s) {
220 s->weight += total_size;
221 atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222 return true;
223 }
224 }
225 return false;
226 }
227
Suppress(u32 stack_trace_id,uptr hit_count,uptr total_size)228 bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229 uptr total_size) {
230 LazyInit();
231 StackTrace stack = StackDepotGet(stack_trace_id);
232 if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233 return false;
234 suppressed_stacks_sorted = false;
235 suppressed_stacks.push_back(stack_trace_id);
236 return true;
237 }
238
GetSuppressionContext()239 static LeakSuppressionContext *GetSuppressionContext() {
240 CHECK(suppression_ctx);
241 return suppression_ctx;
242 }
243
244 static InternalMmapVectorNoCtor<RootRegion> root_regions;
245
GetRootRegions()246 InternalMmapVectorNoCtor<RootRegion> const *GetRootRegions() {
247 return &root_regions;
248 }
249
InitCommonLsan()250 void InitCommonLsan() {
251 if (common_flags()->detect_leaks) {
252 // Initialization which can fail or print warnings should only be done if
253 // LSan is actually enabled.
254 InitializeSuppressions();
255 InitializePlatformSpecificModules();
256 }
257 }
258
259 class Decorator : public __sanitizer::SanitizerCommonDecorator {
260 public:
Decorator()261 Decorator() : SanitizerCommonDecorator() {}
Error()262 const char *Error() { return Red(); }
Leak()263 const char *Leak() { return Blue(); }
264 };
265
MaybeUserPointer(uptr p)266 static inline bool MaybeUserPointer(uptr p) {
267 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
268 // bound on heap addresses.
269 const uptr kMinAddress = 4 * 4096;
270 if (p < kMinAddress)
271 return false;
272 # if defined(__x86_64__)
273 // Accept only canonical form user-space addresses.
274 return ((p >> 47) == 0);
275 # elif defined(__mips64)
276 return ((p >> 40) == 0);
277 # elif defined(__aarch64__)
278 // Accept up to 48 bit VMA.
279 return ((p >> 48) == 0);
280 # elif defined(__loongarch_lp64)
281 // Allow 47-bit user-space VMA at current.
282 return ((p >> 47) == 0);
283 # else
284 return true;
285 # endif
286 }
287
288 // Scans the memory range, looking for byte patterns that point into allocator
289 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
290 // There are two usage modes for this function: finding reachable chunks
291 // (|tag| = kReachable) and finding indirectly leaked chunks
292 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
293 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)294 void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
295 const char *region_type, ChunkTag tag) {
296 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
297 const uptr alignment = flags()->pointer_alignment();
298 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
299 (void *)end);
300 uptr pp = begin;
301 if (pp % alignment)
302 pp = pp + alignment - pp % alignment;
303 for (; pp + sizeof(void *) <= end; pp += alignment) {
304 void *p = *reinterpret_cast<void **>(pp);
305 # if SANITIZER_APPLE
306 p = MaybeTransformPointer(p);
307 # endif
308 if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
309 continue;
310 uptr chunk = PointsIntoChunk(p);
311 if (!chunk)
312 continue;
313 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
314 if (chunk == begin)
315 continue;
316 LsanMetadata m(chunk);
317 if (m.tag() == kReachable || m.tag() == kIgnored)
318 continue;
319
320 // Do this check relatively late so we can log only the interesting cases.
321 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
322 LOG_POINTERS(
323 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
324 "%zu.\n",
325 (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
326 m.requested_size());
327 continue;
328 }
329
330 m.set_tag(tag);
331 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
332 (void *)pp, p, (void *)chunk,
333 (void *)(chunk + m.requested_size()), m.requested_size());
334 if (frontier)
335 frontier->push_back(chunk);
336 }
337 }
338
339 // Scans a global range for pointers
ScanGlobalRange(uptr begin,uptr end,Frontier * frontier)340 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
341 uptr allocator_begin = 0, allocator_end = 0;
342 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
343 if (begin <= allocator_begin && allocator_begin < end) {
344 CHECK_LE(allocator_begin, allocator_end);
345 CHECK_LE(allocator_end, end);
346 if (begin < allocator_begin)
347 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
348 kReachable);
349 if (allocator_end < end)
350 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
351 } else {
352 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
353 }
354 }
355
ScanExtraStackRanges(const InternalMmapVector<Range> & ranges,Frontier * frontier)356 void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
357 Frontier *frontier) {
358 for (uptr i = 0; i < ranges.size(); i++) {
359 ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
360 kReachable);
361 }
362 }
363
364 # if SANITIZER_FUCHSIA
365
366 // Fuchsia handles all threads together with its own callback.
ProcessThreads(SuspendedThreadsList const &,Frontier *,tid_t,uptr)367 static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
368 uptr) {}
369
370 # else
371
372 # if SANITIZER_ANDROID
373 // FIXME: Move this out into *libcdep.cpp
374 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
375 pid_t, void (*cb)(void *, void *, uptr, void *), void *);
376 # endif
377
ProcessThreadRegistry(Frontier * frontier)378 static void ProcessThreadRegistry(Frontier *frontier) {
379 InternalMmapVector<uptr> ptrs;
380 GetAdditionalThreadContextPtrsLocked(&ptrs);
381
382 for (uptr i = 0; i < ptrs.size(); ++i) {
383 void *ptr = reinterpret_cast<void *>(ptrs[i]);
384 uptr chunk = PointsIntoChunk(ptr);
385 if (!chunk)
386 continue;
387 LsanMetadata m(chunk);
388 if (!m.allocated())
389 continue;
390
391 // Mark as reachable and add to frontier.
392 LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
393 m.set_tag(kReachable);
394 frontier->push_back(chunk);
395 }
396 }
397
398 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier,tid_t caller_tid,uptr caller_sp)399 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
400 Frontier *frontier, tid_t caller_tid,
401 uptr caller_sp) {
402 InternalMmapVector<uptr> registers;
403 InternalMmapVector<Range> extra_ranges;
404 for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
405 tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
406 LOG_THREADS("Processing thread %llu.\n", os_id);
407 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
408 DTLS *dtls;
409 bool thread_found =
410 GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
411 &tls_end, &cache_begin, &cache_end, &dtls);
412 if (!thread_found) {
413 // If a thread can't be found in the thread registry, it's probably in the
414 // process of destruction. Log this event and move on.
415 LOG_THREADS("Thread %llu not found in registry.\n", os_id);
416 continue;
417 }
418 uptr sp;
419 PtraceRegistersStatus have_registers =
420 suspended_threads.GetRegistersAndSP(i, ®isters, &sp);
421 if (have_registers != REGISTERS_AVAILABLE) {
422 Report("Unable to get registers from thread %llu.\n", os_id);
423 // If unable to get SP, consider the entire stack to be reachable unless
424 // GetRegistersAndSP failed with ESRCH.
425 if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
426 continue;
427 sp = stack_begin;
428 }
429 if (suspended_threads.GetThreadID(i) == caller_tid) {
430 sp = caller_sp;
431 }
432
433 if (flags()->use_registers && have_registers) {
434 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
435 uptr registers_end =
436 reinterpret_cast<uptr>(registers.data() + registers.size());
437 ScanRangeForPointers(registers_begin, registers_end, frontier,
438 "REGISTERS", kReachable);
439 }
440
441 if (flags()->use_stacks) {
442 LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
443 (void *)stack_end, (void *)sp);
444 if (sp < stack_begin || sp >= stack_end) {
445 // SP is outside the recorded stack range (e.g. the thread is running a
446 // signal handler on alternate stack, or swapcontext was used).
447 // Again, consider the entire stack range to be reachable.
448 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
449 uptr page_size = GetPageSizeCached();
450 int skipped = 0;
451 while (stack_begin < stack_end &&
452 !IsAccessibleMemoryRange(stack_begin, 1)) {
453 skipped++;
454 stack_begin += page_size;
455 }
456 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
457 skipped, (void *)stack_begin, (void *)stack_end);
458 } else {
459 // Shrink the stack range to ignore out-of-scope values.
460 stack_begin = sp;
461 }
462 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
463 kReachable);
464 extra_ranges.clear();
465 GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
466 ScanExtraStackRanges(extra_ranges, frontier);
467 }
468
469 if (flags()->use_tls) {
470 if (tls_begin) {
471 LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
472 // If the tls and cache ranges don't overlap, scan full tls range,
473 // otherwise, only scan the non-overlapping portions
474 if (cache_begin == cache_end || tls_end < cache_begin ||
475 tls_begin > cache_end) {
476 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
477 } else {
478 if (tls_begin < cache_begin)
479 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
480 kReachable);
481 if (tls_end > cache_end)
482 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
483 kReachable);
484 }
485 }
486 # if SANITIZER_ANDROID
487 auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
488 void *arg) -> void {
489 ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
490 reinterpret_cast<uptr>(dtls_end),
491 reinterpret_cast<Frontier *>(arg), "DTLS",
492 kReachable);
493 };
494
495 // FIXME: There might be a race-condition here (and in Bionic) if the
496 // thread is suspended in the middle of updating its DTLS. IOWs, we
497 // could scan already freed memory. (probably fine for now)
498 __libc_iterate_dynamic_tls(os_id, cb, frontier);
499 # else
500 if (dtls && !DTLSInDestruction(dtls)) {
501 ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
502 uptr dtls_beg = dtv.beg;
503 uptr dtls_end = dtls_beg + dtv.size;
504 if (dtls_beg < dtls_end) {
505 LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
506 (void *)dtls_end);
507 ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
508 kReachable);
509 }
510 });
511 } else {
512 // We are handling a thread with DTLS under destruction. Log about
513 // this and continue.
514 LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
515 }
516 # endif
517 }
518 }
519
520 // Add pointers reachable from ThreadContexts
521 ProcessThreadRegistry(frontier);
522 }
523
524 # endif // SANITIZER_FUCHSIA
525
ScanRootRegion(Frontier * frontier,const RootRegion & root_region,uptr region_begin,uptr region_end,bool is_readable)526 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
527 uptr region_begin, uptr region_end, bool is_readable) {
528 uptr intersection_begin = Max(root_region.begin, region_begin);
529 uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
530 if (intersection_begin >= intersection_end)
531 return;
532 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
533 (void *)root_region.begin,
534 (void *)(root_region.begin + root_region.size),
535 (void *)region_begin, (void *)region_end,
536 is_readable ? "readable" : "unreadable");
537 if (is_readable)
538 ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
539 kReachable);
540 }
541
ProcessRootRegion(Frontier * frontier,const RootRegion & root_region)542 static void ProcessRootRegion(Frontier *frontier,
543 const RootRegion &root_region) {
544 MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
545 MemoryMappedSegment segment;
546 while (proc_maps.Next(&segment)) {
547 ScanRootRegion(frontier, root_region, segment.start, segment.end,
548 segment.IsReadable());
549 }
550 }
551
552 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)553 static void ProcessRootRegions(Frontier *frontier) {
554 if (!flags()->use_root_regions)
555 return;
556 for (uptr i = 0; i < root_regions.size(); i++)
557 ProcessRootRegion(frontier, root_regions[i]);
558 }
559
FloodFillTag(Frontier * frontier,ChunkTag tag)560 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
561 while (frontier->size()) {
562 uptr next_chunk = frontier->back();
563 frontier->pop_back();
564 LsanMetadata m(next_chunk);
565 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
566 "HEAP", tag);
567 }
568 }
569
570 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
571 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)572 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
573 chunk = GetUserBegin(chunk);
574 LsanMetadata m(chunk);
575 if (m.allocated() && m.tag() != kReachable) {
576 ScanRangeForPointers(chunk, chunk + m.requested_size(),
577 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
578 }
579 }
580
IgnoredSuppressedCb(uptr chunk,void * arg)581 static void IgnoredSuppressedCb(uptr chunk, void *arg) {
582 CHECK(arg);
583 chunk = GetUserBegin(chunk);
584 LsanMetadata m(chunk);
585 if (!m.allocated() || m.tag() == kIgnored)
586 return;
587
588 const InternalMmapVector<u32> &suppressed =
589 *static_cast<const InternalMmapVector<u32> *>(arg);
590 uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
591 if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
592 return;
593
594 LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
595 (void *)(chunk + m.requested_size()), m.requested_size());
596 m.set_tag(kIgnored);
597 }
598
599 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
600 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)601 static void CollectIgnoredCb(uptr chunk, void *arg) {
602 CHECK(arg);
603 chunk = GetUserBegin(chunk);
604 LsanMetadata m(chunk);
605 if (m.allocated() && m.tag() == kIgnored) {
606 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
607 (void *)(chunk + m.requested_size()), m.requested_size());
608 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
609 }
610 }
611
612 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads,Frontier * frontier,tid_t caller_tid,uptr caller_sp)613 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
614 Frontier *frontier, tid_t caller_tid,
615 uptr caller_sp) {
616 const InternalMmapVector<u32> &suppressed_stacks =
617 GetSuppressionContext()->GetSortedSuppressedStacks();
618 if (!suppressed_stacks.empty()) {
619 ForEachChunk(IgnoredSuppressedCb,
620 const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
621 }
622 ForEachChunk(CollectIgnoredCb, frontier);
623 ProcessGlobalRegions(frontier);
624 ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
625 ProcessRootRegions(frontier);
626 FloodFillTag(frontier, kReachable);
627
628 // The check here is relatively expensive, so we do this in a separate flood
629 // fill. That way we can skip the check for chunks that are reachable
630 // otherwise.
631 LOG_POINTERS("Processing platform-specific allocations.\n");
632 ProcessPlatformSpecificAllocations(frontier);
633 FloodFillTag(frontier, kReachable);
634
635 // Iterate over leaked chunks and mark those that are reachable from other
636 // leaked chunks.
637 LOG_POINTERS("Scanning leaked chunks.\n");
638 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
639 }
640
641 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)642 static void ResetTagsCb(uptr chunk, void *arg) {
643 (void)arg;
644 chunk = GetUserBegin(chunk);
645 LsanMetadata m(chunk);
646 if (m.allocated() && m.tag() != kIgnored)
647 m.set_tag(kDirectlyLeaked);
648 }
649
650 // ForEachChunk callback. Aggregates information about unreachable chunks into
651 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)652 static void CollectLeaksCb(uptr chunk, void *arg) {
653 CHECK(arg);
654 LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
655 chunk = GetUserBegin(chunk);
656 LsanMetadata m(chunk);
657 if (!m.allocated())
658 return;
659 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
660 leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
661 }
662
PrintMatchedSuppressions()663 void LeakSuppressionContext::PrintMatchedSuppressions() {
664 InternalMmapVector<Suppression *> matched;
665 context.GetMatched(&matched);
666 if (!matched.size())
667 return;
668 const char *line = "-----------------------------------------------------";
669 Printf("%s\n", line);
670 Printf("Suppressions used:\n");
671 Printf(" count bytes template\n");
672 for (uptr i = 0; i < matched.size(); i++) {
673 Printf("%7zu %10zu %s\n",
674 static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
675 matched[i]->weight, matched[i]->templ);
676 }
677 Printf("%s\n\n", line);
678 }
679
680 # if SANITIZER_FUCHSIA
681
682 // Fuchsia provides a libc interface that guarantees all threads are
683 // covered, and SuspendedThreadList is never really used.
ReportUnsuspendedThreads(const SuspendedThreadsList &)684 static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
685
686 # else // !SANITIZER_FUCHSIA
687
ReportUnsuspendedThreads(const SuspendedThreadsList & suspended_threads)688 static void ReportUnsuspendedThreads(
689 const SuspendedThreadsList &suspended_threads) {
690 InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
691 for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
692 threads[i] = suspended_threads.GetThreadID(i);
693
694 Sort(threads.data(), threads.size());
695
696 InternalMmapVector<tid_t> unsuspended;
697 GetRunningThreadsLocked(&unsuspended);
698
699 for (auto os_id : unsuspended) {
700 uptr i = InternalLowerBound(threads, os_id);
701 if (i >= threads.size() || threads[i] != os_id)
702 Report(
703 "Running thread %zu was not suspended. False leaks are possible.\n",
704 os_id);
705 }
706 }
707
708 # endif // !SANITIZER_FUCHSIA
709
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)710 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
711 void *arg) {
712 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
713 CHECK(param);
714 CHECK(!param->success);
715 ReportUnsuspendedThreads(suspended_threads);
716 ClassifyAllChunks(suspended_threads, ¶m->frontier, param->caller_tid,
717 param->caller_sp);
718 ForEachChunk(CollectLeaksCb, ¶m->leaks);
719 // Clean up for subsequent leak checks. This assumes we did not overwrite any
720 // kIgnored tags.
721 ForEachChunk(ResetTagsCb, nullptr);
722 param->success = true;
723 }
724
PrintResults(LeakReport & report)725 static bool PrintResults(LeakReport &report) {
726 uptr unsuppressed_count = report.UnsuppressedLeakCount();
727 if (unsuppressed_count) {
728 Decorator d;
729 Printf(
730 "\n"
731 "================================================================="
732 "\n");
733 Printf("%s", d.Error());
734 Report("ERROR: LeakSanitizer: detected memory leaks\n");
735 Printf("%s", d.Default());
736 report.ReportTopLeaks(flags()->max_leaks);
737 }
738 if (common_flags()->print_suppressions)
739 GetSuppressionContext()->PrintMatchedSuppressions();
740 if (unsuppressed_count > 0) {
741 report.PrintSummary();
742 return true;
743 }
744 return false;
745 }
746
CheckForLeaks()747 static bool CheckForLeaks() {
748 if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
749 VReport(1, "LeakSanitizer is disabled");
750 return false;
751 }
752 VReport(1, "LeakSanitizer: checking for leaks");
753 // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
754 // suppressions. However if a stack id was previously suppressed, it should be
755 // suppressed in future checks as well.
756 for (int i = 0;; ++i) {
757 EnsureMainThreadIDIsCorrect();
758 CheckForLeaksParam param;
759 // Capture calling thread's stack pointer early, to avoid false negatives.
760 // Old frame with dead pointers might be overlapped by new frame inside
761 // CheckForLeaks which does not use bytes with pointers before the
762 // threads are suspended and stack pointers captured.
763 param.caller_tid = GetTid();
764 param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
765 LockStuffAndStopTheWorld(CheckForLeaksCallback, ¶m);
766 if (!param.success) {
767 Report("LeakSanitizer has encountered a fatal error.\n");
768 Report(
769 "HINT: For debugging, try setting environment variable "
770 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
771 Report(
772 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
773 "etc)\n");
774 Die();
775 }
776 LeakReport leak_report;
777 leak_report.AddLeakedChunks(param.leaks);
778
779 // No new suppressions stacks, so rerun will not help and we can report.
780 if (!leak_report.ApplySuppressions())
781 return PrintResults(leak_report);
782
783 // No indirect leaks to report, so we are done here.
784 if (!leak_report.IndirectUnsuppressedLeakCount())
785 return PrintResults(leak_report);
786
787 if (i >= 8) {
788 Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
789 return PrintResults(leak_report);
790 }
791
792 // We found a new previously unseen suppressed call stack. Rerun to make
793 // sure it does not hold indirect leaks.
794 VReport(1, "Rerun with %zu suppressed stacks.",
795 GetSuppressionContext()->GetSortedSuppressedStacks().size());
796 }
797 }
798
799 static bool has_reported_leaks = false;
HasReportedLeaks()800 bool HasReportedLeaks() { return has_reported_leaks; }
801
DoLeakCheck()802 void DoLeakCheck() {
803 Lock l(&global_mutex);
804 static bool already_done;
805 if (already_done)
806 return;
807 already_done = true;
808 has_reported_leaks = CheckForLeaks();
809 if (has_reported_leaks)
810 HandleLeaks();
811 }
812
DoRecoverableLeakCheck()813 static int DoRecoverableLeakCheck() {
814 Lock l(&global_mutex);
815 bool have_leaks = CheckForLeaks();
816 return have_leaks ? 1 : 0;
817 }
818
DoRecoverableLeakCheckVoid()819 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
820
821 ///// LeakReport implementation. /////
822
823 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
824 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
825 // in real-world applications.
826 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
827 const uptr kMaxLeaksConsidered = 5000;
828
AddLeakedChunks(const LeakedChunks & chunks)829 void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
830 for (const LeakedChunk &leak : chunks) {
831 uptr chunk = leak.chunk;
832 u32 stack_trace_id = leak.stack_trace_id;
833 uptr leaked_size = leak.leaked_size;
834 ChunkTag tag = leak.tag;
835 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
836
837 if (u32 resolution = flags()->resolution) {
838 StackTrace stack = StackDepotGet(stack_trace_id);
839 stack.size = Min(stack.size, resolution);
840 stack_trace_id = StackDepotPut(stack);
841 }
842
843 bool is_directly_leaked = (tag == kDirectlyLeaked);
844 uptr i;
845 for (i = 0; i < leaks_.size(); i++) {
846 if (leaks_[i].stack_trace_id == stack_trace_id &&
847 leaks_[i].is_directly_leaked == is_directly_leaked) {
848 leaks_[i].hit_count++;
849 leaks_[i].total_size += leaked_size;
850 break;
851 }
852 }
853 if (i == leaks_.size()) {
854 if (leaks_.size() == kMaxLeaksConsidered)
855 return;
856 Leak leak = {next_id_++, /* hit_count */ 1,
857 leaked_size, stack_trace_id,
858 is_directly_leaked, /* is_suppressed */ false};
859 leaks_.push_back(leak);
860 }
861 if (flags()->report_objects) {
862 LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
863 leaked_objects_.push_back(obj);
864 }
865 }
866 }
867
LeakComparator(const Leak & leak1,const Leak & leak2)868 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
869 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
870 return leak1.total_size > leak2.total_size;
871 else
872 return leak1.is_directly_leaked;
873 }
874
ReportTopLeaks(uptr num_leaks_to_report)875 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
876 CHECK(leaks_.size() <= kMaxLeaksConsidered);
877 Printf("\n");
878 if (leaks_.size() == kMaxLeaksConsidered)
879 Printf(
880 "Too many leaks! Only the first %zu leaks encountered will be "
881 "reported.\n",
882 kMaxLeaksConsidered);
883
884 uptr unsuppressed_count = UnsuppressedLeakCount();
885 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
886 Printf("The %zu top leak(s):\n", num_leaks_to_report);
887 Sort(leaks_.data(), leaks_.size(), &LeakComparator);
888 uptr leaks_reported = 0;
889 for (uptr i = 0; i < leaks_.size(); i++) {
890 if (leaks_[i].is_suppressed)
891 continue;
892 PrintReportForLeak(i);
893 leaks_reported++;
894 if (leaks_reported == num_leaks_to_report)
895 break;
896 }
897 if (leaks_reported < unsuppressed_count) {
898 uptr remaining = unsuppressed_count - leaks_reported;
899 Printf("Omitting %zu more leak(s).\n", remaining);
900 }
901 }
902
PrintReportForLeak(uptr index)903 void LeakReport::PrintReportForLeak(uptr index) {
904 Decorator d;
905 Printf("%s", d.Leak());
906 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
907 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
908 leaks_[index].total_size, leaks_[index].hit_count);
909 Printf("%s", d.Default());
910
911 CHECK(leaks_[index].stack_trace_id);
912 StackDepotGet(leaks_[index].stack_trace_id).Print();
913
914 if (flags()->report_objects) {
915 Printf("Objects leaked above:\n");
916 PrintLeakedObjectsForLeak(index);
917 Printf("\n");
918 }
919 }
920
PrintLeakedObjectsForLeak(uptr index)921 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
922 u32 leak_id = leaks_[index].id;
923 for (uptr j = 0; j < leaked_objects_.size(); j++) {
924 if (leaked_objects_[j].leak_id == leak_id)
925 Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
926 leaked_objects_[j].size);
927 }
928 }
929
PrintSummary()930 void LeakReport::PrintSummary() {
931 CHECK(leaks_.size() <= kMaxLeaksConsidered);
932 uptr bytes = 0, allocations = 0;
933 for (uptr i = 0; i < leaks_.size(); i++) {
934 if (leaks_[i].is_suppressed)
935 continue;
936 bytes += leaks_[i].total_size;
937 allocations += leaks_[i].hit_count;
938 }
939 InternalScopedString summary;
940 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
941 allocations);
942 ReportErrorSummary(summary.data());
943 }
944
ApplySuppressions()945 uptr LeakReport::ApplySuppressions() {
946 LeakSuppressionContext *suppressions = GetSuppressionContext();
947 uptr new_suppressions = false;
948 for (uptr i = 0; i < leaks_.size(); i++) {
949 if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
950 leaks_[i].total_size)) {
951 leaks_[i].is_suppressed = true;
952 ++new_suppressions;
953 }
954 }
955 return new_suppressions;
956 }
957
UnsuppressedLeakCount()958 uptr LeakReport::UnsuppressedLeakCount() {
959 uptr result = 0;
960 for (uptr i = 0; i < leaks_.size(); i++)
961 if (!leaks_[i].is_suppressed)
962 result++;
963 return result;
964 }
965
IndirectUnsuppressedLeakCount()966 uptr LeakReport::IndirectUnsuppressedLeakCount() {
967 uptr result = 0;
968 for (uptr i = 0; i < leaks_.size(); i++)
969 if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
970 result++;
971 return result;
972 }
973
974 } // namespace __lsan
975 #else // CAN_SANITIZE_LEAKS
976 namespace __lsan {
InitCommonLsan()977 void InitCommonLsan() {}
DoLeakCheck()978 void DoLeakCheck() {}
DoRecoverableLeakCheckVoid()979 void DoRecoverableLeakCheckVoid() {}
DisableInThisThread()980 void DisableInThisThread() {}
EnableInThisThread()981 void EnableInThisThread() {}
982 } // namespace __lsan
983 #endif // CAN_SANITIZE_LEAKS
984
985 using namespace __lsan;
986
987 extern "C" {
988 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)989 void __lsan_ignore_object(const void *p) {
990 #if CAN_SANITIZE_LEAKS
991 if (!common_flags()->detect_leaks)
992 return;
993 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
994 // locked.
995 Lock l(&global_mutex);
996 IgnoreObjectResult res = IgnoreObjectLocked(p);
997 if (res == kIgnoreObjectInvalid)
998 VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
999 if (res == kIgnoreObjectAlreadyIgnored)
1000 VReport(1,
1001 "__lsan_ignore_object(): "
1002 "heap object at %p is already being ignored\n",
1003 p);
1004 if (res == kIgnoreObjectSuccess)
1005 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1006 #endif // CAN_SANITIZE_LEAKS
1007 }
1008
1009 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)1010 void __lsan_register_root_region(const void *begin, uptr size) {
1011 #if CAN_SANITIZE_LEAKS
1012 Lock l(&global_mutex);
1013 RootRegion region = {reinterpret_cast<uptr>(begin), size};
1014 root_regions.push_back(region);
1015 VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1016 #endif // CAN_SANITIZE_LEAKS
1017 }
1018
1019 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)1020 void __lsan_unregister_root_region(const void *begin, uptr size) {
1021 #if CAN_SANITIZE_LEAKS
1022 Lock l(&global_mutex);
1023 bool removed = false;
1024 for (uptr i = 0; i < root_regions.size(); i++) {
1025 RootRegion region = root_regions[i];
1026 if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
1027 removed = true;
1028 uptr last_index = root_regions.size() - 1;
1029 root_regions[i] = root_regions[last_index];
1030 root_regions.pop_back();
1031 VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1032 break;
1033 }
1034 }
1035 if (!removed) {
1036 Report(
1037 "__lsan_unregister_root_region(): region at %p of size %zu has not "
1038 "been registered.\n",
1039 begin, size);
1040 Die();
1041 }
1042 #endif // CAN_SANITIZE_LEAKS
1043 }
1044
1045 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()1046 void __lsan_disable() {
1047 #if CAN_SANITIZE_LEAKS
1048 __lsan::DisableInThisThread();
1049 #endif
1050 }
1051
1052 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()1053 void __lsan_enable() {
1054 #if CAN_SANITIZE_LEAKS
1055 __lsan::EnableInThisThread();
1056 #endif
1057 }
1058
1059 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()1060 void __lsan_do_leak_check() {
1061 #if CAN_SANITIZE_LEAKS
1062 if (common_flags()->detect_leaks)
1063 __lsan::DoLeakCheck();
1064 #endif // CAN_SANITIZE_LEAKS
1065 }
1066
1067 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()1068 int __lsan_do_recoverable_leak_check() {
1069 #if CAN_SANITIZE_LEAKS
1070 if (common_flags()->detect_leaks)
1071 return __lsan::DoRecoverableLeakCheck();
1072 #endif // CAN_SANITIZE_LEAKS
1073 return 0;
1074 }
1075
SANITIZER_INTERFACE_WEAK_DEF(const char *,__lsan_default_options,void)1076 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1077 return "";
1078 }
1079
1080 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(int,__lsan_is_turned_off,void)1081 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1082 return 0;
1083 }
1084
SANITIZER_INTERFACE_WEAK_DEF(const char *,__lsan_default_suppressions,void)1085 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1086 return "";
1087 }
1088 #endif
1089 } // extern "C"
1090