xref: /openbsd/gnu/usr.bin/gcc/gcc/config/ia64/ia64.h (revision 4e43c760)
1 /* Definitions of target machine GNU compiler.  IA-64 version.
2    Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3    Contributed by James E. Wilson <wilson@cygnus.com> and
4    		  David Mosberger <davidm@hpl.hp.com>.
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24    other features required for ABI compliance.  */
25 
26 /* ??? Functions containing a non-local goto target save many registers.  Why?
27    See for instance execute/920428-2.c.  */
28 
29 /* ??? Add support for short data/bss sections.  */
30 
31 
32 /* Run-time target specifications */
33 
34 /* Target CPU builtins.  */
35 #define TARGET_CPU_CPP_BUILTINS()		\
36 do {						\
37 	builtin_assert("cpu=ia64");		\
38 	builtin_assert("machine=ia64");		\
39 	builtin_define("__ia64");		\
40 	builtin_define("__ia64__");		\
41 	builtin_define("__itanium__");		\
42 	builtin_define("__ELF__");		\
43 	if (!TARGET_ILP32)			\
44 	  {					\
45 	    builtin_define("_LP64");		\
46 	    builtin_define("__LP64__");		\
47 	  }					\
48 	if (TARGET_BIG_ENDIAN)			\
49 	  builtin_define("__BIG_ENDIAN__");	\
50 } while (0)
51 
52 #define EXTRA_SPECS \
53   { "asm_extra", ASM_EXTRA_SPEC },
54 
55 #define CC1_SPEC "%(cc1_cpu) "
56 
57 #define ASM_EXTRA_SPEC ""
58 
59 
60 /* This declaration should be present.  */
61 extern int target_flags;
62 
63 /* This series of macros is to allow compiler command arguments to enable or
64    disable the use of optional features of the target machine.  */
65 
66 #define MASK_BIG_ENDIAN	0x00000001	/* Generate big endian code.  */
67 
68 #define MASK_GNU_AS	0x00000002	/* Generate code for GNU as.  */
69 
70 #define MASK_GNU_LD	0x00000004	/* Generate code for GNU ld.  */
71 
72 #define MASK_NO_PIC	0x00000008	/* Generate code without GP reg.  */
73 
74 #define MASK_VOL_ASM_STOP 0x00000010	/* Emit stop bits for vol ext asm.  */
75 
76 #define MASK_ILP32      0x00000020      /* Generate ILP32 code.  */
77 
78 #define MASK_B_STEP	0x00000040	/* Emit code for Itanium B step.  */
79 
80 #define MASK_REG_NAMES	0x00000080	/* Use in/loc/out register names.  */
81 
82 #define MASK_NO_SDATA   0x00000100	/* Disable sdata/scommon/sbss.  */
83 
84 #define MASK_CONST_GP	0x00000200	/* treat gp as program-wide constant */
85 
86 #define MASK_AUTO_PIC	0x00000400	/* generate automatically PIC */
87 
88 #define MASK_INLINE_FLOAT_DIV_LAT 0x00000800 /* inline div, min latency.  */
89 
90 #define MASK_INLINE_FLOAT_DIV_THR 0x00001000 /* inline div, max throughput.  */
91 
92 #define MASK_INLINE_INT_DIV_LAT   0x00000800 /* inline div, min latency.  */
93 
94 #define MASK_INLINE_INT_DIV_THR   0x00001000 /* inline div, max throughput.  */
95 
96 #define MASK_DWARF2_ASM 0x40000000	/* test dwarf2 line info via gas.  */
97 
98 #define TARGET_BIG_ENDIAN	(target_flags & MASK_BIG_ENDIAN)
99 
100 #define TARGET_GNU_AS		(target_flags & MASK_GNU_AS)
101 
102 #define TARGET_GNU_LD		(target_flags & MASK_GNU_LD)
103 
104 #define TARGET_NO_PIC		(target_flags & MASK_NO_PIC)
105 
106 #define TARGET_VOL_ASM_STOP	(target_flags & MASK_VOL_ASM_STOP)
107 
108 #define TARGET_ILP32            (target_flags & MASK_ILP32)
109 
110 #define TARGET_B_STEP		(target_flags & MASK_B_STEP)
111 
112 #define TARGET_REG_NAMES	(target_flags & MASK_REG_NAMES)
113 
114 #define TARGET_NO_SDATA		(target_flags & MASK_NO_SDATA)
115 
116 #define TARGET_CONST_GP		(target_flags & MASK_CONST_GP)
117 
118 #define TARGET_AUTO_PIC		(target_flags & MASK_AUTO_PIC)
119 
120 #define TARGET_INLINE_FLOAT_DIV_LAT (target_flags & MASK_INLINE_FLOAT_DIV_LAT)
121 
122 #define TARGET_INLINE_FLOAT_DIV_THR (target_flags & MASK_INLINE_FLOAT_DIV_THR)
123 
124 #define TARGET_INLINE_INT_DIV_LAT   (target_flags & MASK_INLINE_INT_DIV_LAT)
125 
126 #define TARGET_INLINE_INT_DIV_THR   (target_flags & MASK_INLINE_INT_DIV_THR)
127 
128 #define TARGET_INLINE_FLOAT_DIV \
129   (target_flags & (MASK_INLINE_FLOAT_DIV_LAT | MASK_INLINE_FLOAT_DIV_THR))
130 
131 #define TARGET_INLINE_INT_DIV \
132   (target_flags & (MASK_INLINE_INT_DIV_LAT | MASK_INLINE_INT_DIV_THR))
133 
134 #define TARGET_DWARF2_ASM	(target_flags & MASK_DWARF2_ASM)
135 
136 /* If the assembler supports thread-local storage, assume that the
137    system does as well.  If a particular target system has an
138    assembler that supports TLS -- but the rest of the system does not
139    support TLS -- that system should explicit define TARGET_HAVE_TLS
140    to false in its own configuration file.  */
141 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
142 #define TARGET_HAVE_TLS true
143 #endif
144 
145 extern int ia64_tls_size;
146 #define TARGET_TLS14		(ia64_tls_size == 14)
147 #define TARGET_TLS22		(ia64_tls_size == 22)
148 #define TARGET_TLS64		(ia64_tls_size == 64)
149 
150 #define TARGET_HPUX_LD		0
151 
152 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
153 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
154 #endif
155 
156 /* This macro defines names of command options to set and clear bits in
157    `target_flags'.  Its definition is an initializer with a subgrouping for
158    each command option.  */
159 
160 #define TARGET_SWITCHES							\
161 {									\
162   { "big-endian",	MASK_BIG_ENDIAN,				\
163       N_("Generate big endian code") },					\
164   { "little-endian",	-MASK_BIG_ENDIAN,				\
165       N_("Generate little endian code") },				\
166   { "gnu-as",		MASK_GNU_AS,					\
167       N_("Generate code for GNU as") },					\
168   { "no-gnu-as",	-MASK_GNU_AS,					\
169       N_("Generate code for Intel as") },				\
170   { "gnu-ld",		MASK_GNU_LD,					\
171       N_("Generate code for GNU ld") },					\
172   { "no-gnu-ld",	-MASK_GNU_LD,					\
173       N_("Generate code for Intel ld") },				\
174   { "no-pic",		MASK_NO_PIC,					\
175       N_("Generate code without GP reg") },				\
176   { "volatile-asm-stop", MASK_VOL_ASM_STOP,				\
177       N_("Emit stop bits before and after volatile extended asms") },	\
178   { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP,				\
179       N_("Don't emit stop bits before and after volatile extended asms") }, \
180   { "b-step",		MASK_B_STEP,					\
181       N_("Emit code for Itanium (TM) processor B step")},		\
182   { "register-names",	MASK_REG_NAMES,					\
183       N_("Use in/loc/out register names")},				\
184   { "no-sdata",		MASK_NO_SDATA,					\
185       N_("Disable use of sdata/scommon/sbss")},				\
186   { "sdata",		-MASK_NO_SDATA,					\
187       N_("Enable use of sdata/scommon/sbss")},				\
188   { "constant-gp",	MASK_CONST_GP,					\
189       N_("gp is constant (but save/restore gp on indirect calls)") },	\
190   { "auto-pic",		MASK_AUTO_PIC,					\
191       N_("Generate self-relocatable code") },				\
192   { "inline-float-divide-min-latency", MASK_INLINE_FLOAT_DIV_LAT,	\
193       N_("Generate inline floating point division, optimize for latency") },\
194   { "inline-float-divide-max-throughput", MASK_INLINE_FLOAT_DIV_THR,	\
195       N_("Generate inline floating point division, optimize for throughput") },\
196   { "inline-int-divide-min-latency", MASK_INLINE_INT_DIV_LAT,		\
197       N_("Generate inline integer division, optimize for latency") },	\
198   { "inline-int-divide-max-throughput", MASK_INLINE_INT_DIV_THR,	\
199       N_("Generate inline integer division, optimize for throughput") },\
200   { "dwarf2-asm", 	MASK_DWARF2_ASM,				\
201       N_("Enable Dwarf 2 line debug info via GNU as")},			\
202   { "no-dwarf2-asm", 	-MASK_DWARF2_ASM,				\
203       N_("Disable Dwarf 2 line debug info via GNU as")},		\
204   SUBTARGET_SWITCHES							\
205   { "",			TARGET_DEFAULT | TARGET_CPU_DEFAULT,		\
206       NULL }								\
207 }
208 
209 /* Default target_flags if no switches are specified  */
210 
211 #ifndef TARGET_DEFAULT
212 #define TARGET_DEFAULT MASK_DWARF2_ASM
213 #endif
214 
215 #ifndef TARGET_CPU_DEFAULT
216 #define TARGET_CPU_DEFAULT 0
217 #endif
218 
219 #ifndef SUBTARGET_SWITCHES
220 #define SUBTARGET_SWITCHES
221 #endif
222 
223 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
224    options that have values.  Its definition is an initializer with a
225    subgrouping for each command option.  */
226 
227 extern const char *ia64_fixed_range_string;
228 extern const char *ia64_tls_size_string;
229 #define TARGET_OPTIONS \
230 {									\
231   { "fixed-range=", 	&ia64_fixed_range_string,			\
232       N_("Specify range of registers to make fixed")},			\
233   { "tls-size=",	&ia64_tls_size_string,				\
234       N_("Specify bit size of immediate TLS offsets")},			\
235 }
236 
237 /* Sometimes certain combinations of command options do not make sense on a
238    particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
239    take account of this.  This macro, if defined, is executed once just after
240    all the command options have been parsed.  */
241 
242 #define OVERRIDE_OPTIONS ia64_override_options ()
243 
244 /* Some machines may desire to change what optimizations are performed for
245    various optimization levels.  This macro, if defined, is executed once just
246    after the optimization level is determined and before the remainder of the
247    command options have been parsed.  Values set in this macro are used as the
248    default values for the other command line options.  */
249 
250 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
251 
252 /* Driver configuration */
253 
254 /* A C string constant that tells the GNU CC driver program options to pass to
255    `cc1'.  It can also specify how to translate options you give to GNU CC into
256    options for GNU CC to pass to the `cc1'.  */
257 
258 #undef CC1_SPEC
259 #define CC1_SPEC "%{G*}"
260 
261 /* A C string constant that tells the GNU CC driver program options to pass to
262    `cc1plus'.  It can also specify how to translate options you give to GNU CC
263    into options for GNU CC to pass to the `cc1plus'.  */
264 
265 /* #define CC1PLUS_SPEC "" */
266 
267 /* Storage Layout */
268 
269 /* Define this macro to have the value 1 if the most significant bit in a byte
270    has the lowest number; otherwise define it to have the value zero.  */
271 
272 #define BITS_BIG_ENDIAN 0
273 
274 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
275 
276 /* Define this macro to have the value 1 if, in a multiword object, the most
277    significant word has the lowest number.  */
278 
279 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
280 
281 #if defined(__BIG_ENDIAN__)
282 #define LIBGCC2_WORDS_BIG_ENDIAN 1
283 #else
284 #define LIBGCC2_WORDS_BIG_ENDIAN 0
285 #endif
286 
287 #define UNITS_PER_WORD 8
288 
289 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
290 
291 /* A C expression whose value is zero if pointers that need to be extended
292    from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
293    they are zero-extended and negative one if there is an ptr_extend operation.
294 
295    You need not define this macro if the `POINTER_SIZE' is equal to the width
296    of `Pmode'.  */
297 /* Need this for 32 bit pointers, see hpux.h for setting it.  */
298 /* #define POINTERS_EXTEND_UNSIGNED */
299 
300 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
301    which has the specified mode and signedness is to be stored in a register.
302    This macro is only called when TYPE is a scalar type.  */
303 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
304 do									\
305   {									\
306     if (GET_MODE_CLASS (MODE) == MODE_INT				\
307 	&& GET_MODE_SIZE (MODE) < 4)					\
308       (MODE) = SImode;							\
309   }									\
310 while (0)
311 
312 /* ??? ABI doesn't allow us to define this.  */
313 /* #define PROMOTE_FUNCTION_ARGS */
314 
315 /* ??? ABI doesn't allow us to define this.  */
316 /* #define PROMOTE_FUNCTION_RETURN */
317 
318 #define PARM_BOUNDARY 64
319 
320 /* Define this macro if you wish to preserve a certain alignment for the stack
321    pointer.  The definition is a C expression for the desired alignment
322    (measured in bits).  */
323 
324 #define STACK_BOUNDARY 128
325 
326 /* Align frames on double word boundaries */
327 #ifndef IA64_STACK_ALIGN
328 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
329 #endif
330 
331 #define FUNCTION_BOUNDARY 128
332 
333 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
334    128 bit integers all require 128 bit alignment.  */
335 #define BIGGEST_ALIGNMENT 128
336 
337 /* If defined, a C expression to compute the alignment for a static variable.
338    TYPE is the data type, and ALIGN is the alignment that the object
339    would ordinarily have.  The value of this macro is used instead of that
340    alignment to align the object.  */
341 
342 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
343   (TREE_CODE (TYPE) == ARRAY_TYPE		\
344    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
345    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
346 
347 /* If defined, a C expression to compute the alignment given to a constant that
348    is being placed in memory.  CONSTANT is the constant and ALIGN is the
349    alignment that the object would ordinarily have.  The value of this macro is
350    used instead of that alignment to align the object.  */
351 
352 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
353   (TREE_CODE (EXP) == STRING_CST	\
354    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
355 
356 #define STRICT_ALIGNMENT 1
357 
358 /* Define this if you wish to imitate the way many other C compilers handle
359    alignment of bitfields and the structures that contain them.
360    The behavior is that the type written for a bit-field (`int', `short', or
361    other integer type) imposes an alignment for the entire structure, as if the
362    structure really did contain an ordinary field of that type.  In addition,
363    the bit-field is placed within the structure so that it would fit within such
364    a field, not crossing a boundary for it.  */
365 #define PCC_BITFIELD_TYPE_MATTERS 1
366 
367 /* An integer expression for the size in bits of the largest integer machine
368    mode that should actually be used.  */
369 
370 /* Allow pairs of registers to be used, which is the intent of the default.  */
371 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
372 
373 /* By default, the C++ compiler will use function addresses in the
374    vtable entries.  Setting this nonzero tells the compiler to use
375    function descriptors instead.  The value of this macro says how
376    many words wide the descriptor is (normally 2).  It is assumed
377    that the address of a function descriptor may be treated as a
378    pointer to a function.
379 
380    For reasons known only to HP, the vtable entries (as opposed to
381    normal function descriptors) are 16 bytes wide in 32-bit mode as
382    well, even though the 3rd and 4th words are unused.  */
383 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
384 
385 /* Due to silliness in the HPUX linker, vtable entries must be
386    8-byte aligned even in 32-bit mode.  Rather than create multiple
387    ABIs, force this restriction on everyone else too.  */
388 #define TARGET_VTABLE_ENTRY_ALIGN  64
389 
390 /* Due to the above, we need extra padding for the data entries below 0
391    to retain the alignment of the descriptors.  */
392 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
393 
394 /* Layout of Source Language Data Types */
395 
396 #define INT_TYPE_SIZE 32
397 
398 #define SHORT_TYPE_SIZE 16
399 
400 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
401 
402 #define MAX_LONG_TYPE_SIZE 64
403 
404 #define LONG_LONG_TYPE_SIZE 64
405 
406 #define FLOAT_TYPE_SIZE 32
407 
408 #define DOUBLE_TYPE_SIZE 64
409 
410 #define LONG_DOUBLE_TYPE_SIZE 128
411 
412 /* By default we use the 80-bit Intel extended float format packaged
413    in a 128-bit entity.  */
414 #define INTEL_EXTENDED_IEEE_FORMAT 1
415 
416 #define DEFAULT_SIGNED_CHAR 1
417 
418 /* A C expression for a string describing the name of the data type to use for
419    size values.  The typedef name `size_t' is defined using the contents of the
420    string.  */
421 /* ??? Needs to be defined for P64 code.  */
422 /* #define SIZE_TYPE */
423 
424 /* A C expression for a string describing the name of the data type to use for
425    the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
426    defined using the contents of the string.  See `SIZE_TYPE' above for more
427    information.  */
428 /* ??? Needs to be defined for P64 code.  */
429 /* #define PTRDIFF_TYPE */
430 
431 /* A C expression for a string describing the name of the data type to use for
432    wide characters.  The typedef name `wchar_t' is defined using the contents
433    of the string.  See `SIZE_TYPE' above for more information.  */
434 /* #define WCHAR_TYPE */
435 
436 /* A C expression for the size in bits of the data type for wide characters.
437    This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
438 /* #define WCHAR_TYPE_SIZE */
439 
440 
441 /* Register Basics */
442 
443 /* Number of hardware registers known to the compiler.
444    We have 128 general registers, 128 floating point registers,
445    64 predicate registers, 8 branch registers, one frame pointer,
446    and several "application" registers.  */
447 
448 #define FIRST_PSEUDO_REGISTER 334
449 
450 /* Ranges for the various kinds of registers.  */
451 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
452 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
453 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
454 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
455 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
456 #define GENERAL_REGNO_P(REGNO) \
457   (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
458 
459 #define GR_REG(REGNO) ((REGNO) + 0)
460 #define FR_REG(REGNO) ((REGNO) + 128)
461 #define PR_REG(REGNO) ((REGNO) + 256)
462 #define BR_REG(REGNO) ((REGNO) + 320)
463 #define OUT_REG(REGNO) ((REGNO) + 120)
464 #define IN_REG(REGNO) ((REGNO) + 112)
465 #define LOC_REG(REGNO) ((REGNO) + 32)
466 
467 #define AR_CCV_REGNUM	329
468 #define AR_UNAT_REGNUM  330
469 #define AR_PFS_REGNUM	331
470 #define AR_LC_REGNUM	332
471 #define AR_EC_REGNUM	333
472 
473 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
474 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
475 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
476 
477 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
478 			     || (REGNO) == AR_UNAT_REGNUM)
479 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
480 			     && (REGNO) < FIRST_PSEUDO_REGISTER)
481 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
482 			   && (REGNO) < FIRST_PSEUDO_REGISTER)
483 
484 
485 /* ??? Don't really need two sets of macros.  I like this one better because
486    it is less typing.  */
487 #define R_GR(REGNO) GR_REG (REGNO)
488 #define R_FR(REGNO) FR_REG (REGNO)
489 #define R_PR(REGNO) PR_REG (REGNO)
490 #define R_BR(REGNO) BR_REG (REGNO)
491 
492 /* An initializer that says which registers are used for fixed purposes all
493    throughout the compiled code and are therefore not available for general
494    allocation.
495 
496    r0: constant 0
497    r1: global pointer (gp)
498    r12: stack pointer (sp)
499    r13: thread pointer (tp)
500    f0: constant 0.0
501    f1: constant 1.0
502    p0: constant true
503    fp: eliminable frame pointer */
504 
505 /* The last 16 stacked regs are reserved for the 8 input and 8 output
506    registers.  */
507 
508 #define FIXED_REGISTERS \
509 { /* General registers.  */				\
510   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\
511   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
512   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
513   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
514   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
515   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
516   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
517   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
518   /* Floating-point registers.  */			\
519   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
520   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
521   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
522   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
523   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
524   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
525   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
526   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
527   /* Predicate registers.  */				\
528   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
529   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
530   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
531   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
532   /* Branch registers.  */				\
533   0, 0, 0, 0, 0, 0, 0, 0,				\
534   /*FP CCV UNAT PFS LC EC */				\
535      1,  1,   1,  1, 0, 1				\
536  }
537 
538 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
539    (in general) by function calls as well as for fixed registers.  This
540    macro therefore identifies the registers that are not available for
541    general allocation of values that must live across function calls.  */
542 
543 #define CALL_USED_REGISTERS \
544 { /* General registers.  */				\
545   1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
546   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
547   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
548   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
549   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
550   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
551   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
552   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
553   /* Floating-point registers.  */			\
554   1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
555   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
556   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
557   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
558   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
559   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
560   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
561   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
562   /* Predicate registers.  */				\
563   1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
564   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
565   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
566   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
567   /* Branch registers.  */				\
568   1, 0, 0, 0, 0, 0, 1, 1,				\
569   /*FP CCV UNAT PFS LC EC */				\
570      1,  1,   1,  1, 0, 1				\
571 }
572 
573 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
574    problem which makes CALL_USED_REGISTERS *always* include
575    all the FIXED_REGISTERS.  Until this problem has been
576    resolved this macro can be used to overcome this situation.
577    In particular, block_propagate() requires this list
578    be acurate, or we can remove registers which should be live.
579    This macro is used in regs_invalidated_by_call.  */
580 
581 #define CALL_REALLY_USED_REGISTERS \
582 { /* General registers.  */				\
583   1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,	\
584   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
585   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
586   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
587   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
588   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
589   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
590   0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
591   /* Floating-point registers.  */			\
592   1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
593   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
594   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
595   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
596   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
597   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
598   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
599   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
600   /* Predicate registers.  */				\
601   1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
602   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
603   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
604   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
605   /* Branch registers.  */				\
606   1, 0, 0, 0, 0, 0, 1, 1,				\
607   /*FP CCV UNAT PFS LC EC */				\
608      0,  1,   0,  1, 0, 0				\
609 }
610 
611 
612 /* Define this macro if the target machine has register windows.  This C
613    expression returns the register number as seen by the called function
614    corresponding to the register number OUT as seen by the calling function.
615    Return OUT if register number OUT is not an outbound register.  */
616 
617 #define INCOMING_REGNO(OUT) \
618   ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
619 
620 /* Define this macro if the target machine has register windows.  This C
621    expression returns the register number as seen by the calling function
622    corresponding to the register number IN as seen by the called function.
623    Return IN if register number IN is not an inbound register.  */
624 
625 #define OUTGOING_REGNO(IN) \
626   ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
627 
628 /* Define this macro if the target machine has register windows.  This
629    C expression returns true if the register is call-saved but is in the
630    register window.  */
631 
632 #define LOCAL_REGNO(REGNO) \
633   (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
634 
635 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
636    return the mode to be used for the comparison.  Must be defined if
637    EXTRA_CC_MODES is defined.  */
638 
639 #define SELECT_CC_MODE(OP,X,Y)  CCmode
640 
641 /* Order of allocation of registers */
642 
643 /* If defined, an initializer for a vector of integers, containing the numbers
644    of hard registers in the order in which GNU CC should prefer to use them
645    (from most preferred to least).
646 
647    If this macro is not defined, registers are used lowest numbered first (all
648    else being equal).
649 
650    One use of this macro is on machines where the highest numbered registers
651    must always be saved and the save-multiple-registers instruction supports
652    only sequences of consecutive registers.  On such machines, define
653    `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
654    allocatable register first.  */
655 
656 /* ??? Should the GR return value registers come before or after the rest
657    of the caller-save GRs?  */
658 
659 #define REG_ALLOC_ORDER							   \
660 {									   \
661   /* Caller-saved general registers.  */				   \
662   R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \
663   R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \
664   R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \
665   R_GR (30), R_GR (31),							   \
666   /* Output registers.  */						   \
667   R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
668   R_GR (126), R_GR (127),						   \
669   /* Caller-saved general registers, also used for return values.  */	   \
670   R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \
671   /* addl caller-saved general registers.  */				   \
672   R_GR (2), R_GR (3),							   \
673   /* Caller-saved FP registers.  */					   \
674   R_FR (6), R_FR (7),							   \
675   /* Caller-saved FP registers, used for parameters and return values.  */ \
676   R_FR (8), R_FR (9), R_FR (10), R_FR (11),				   \
677   R_FR (12), R_FR (13), R_FR (14), R_FR (15),				   \
678   /* Rotating caller-saved FP registers.  */				   \
679   R_FR (32), R_FR (33), R_FR (34), R_FR (35),				   \
680   R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),	   \
681   R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),	   \
682   R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),	   \
683   R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),	   \
684   R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),	   \
685   R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),	   \
686   R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),	   \
687   R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),	   \
688   R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),	   \
689   R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),	   \
690   R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),	   \
691   R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
692   R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
693   R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
694   R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
695   R_FR (126), R_FR (127),						   \
696   /* Caller-saved predicate registers.  */				   \
697   R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),		   \
698   R_PR (12), R_PR (13), R_PR (14), R_PR (15),				   \
699   /* Rotating caller-saved predicate registers.  */			   \
700   R_PR (16), R_PR (17),							   \
701   R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),	   \
702   R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),	   \
703   R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),	   \
704   R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),	   \
705   R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),	   \
706   R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),	   \
707   R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),	   \
708   R_PR (60), R_PR (61), R_PR (62), R_PR (63),				   \
709   /* Caller-saved branch registers.  */					   \
710   R_BR (6), R_BR (7),							   \
711 									   \
712   /* Stacked callee-saved general registers.  */			   \
713   R_GR (32), R_GR (33), R_GR (34), R_GR (35),				   \
714   R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),	   \
715   R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),	   \
716   R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),	   \
717   R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),	   \
718   R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),	   \
719   R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),	   \
720   R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),	   \
721   R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),	   \
722   R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),	   \
723   R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),	   \
724   R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),	   \
725   R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
726   R_GR (108),								   \
727   /* Input registers.  */						   \
728   R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
729   R_GR (118), R_GR (119),						   \
730   /* Callee-saved general registers.  */				   \
731   R_GR (4), R_GR (5), R_GR (6), R_GR (7),				   \
732   /* Callee-saved FP registers.  */					   \
733   R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),		   \
734   R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),	   \
735   R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),	   \
736   R_FR (30), R_FR (31),							   \
737   /* Callee-saved predicate registers.  */				   \
738   R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),			   \
739   /* Callee-saved branch registers.  */					   \
740   R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),			   \
741 									   \
742   /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */		   \
743   R_GR (109), R_GR (110), R_GR (111),					   \
744 									   \
745   /* Special general registers.  */					   \
746   R_GR (0), R_GR (1), R_GR (12), R_GR (13),				   \
747   /* Special FP registers.  */						   \
748   R_FR (0), R_FR (1),							   \
749   /* Special predicate registers.  */					   \
750   R_PR (0),								   \
751   /* Special branch registers.  */					   \
752   R_BR (0),								   \
753   /* Other fixed registers.  */						   \
754   FRAME_POINTER_REGNUM, 						   \
755   AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,		   \
756   AR_EC_REGNUM		  						   \
757 }
758 
759 /* How Values Fit in Registers */
760 
761 /* A C expression for the number of consecutive hard registers, starting at
762    register number REGNO, required to hold a value of mode MODE.  */
763 
764 /* ??? We say that BImode PR values require two registers.  This allows us to
765    easily store the normal and inverted values.  We use CCImode to indicate
766    a single predicate register.  */
767 
768 #define HARD_REGNO_NREGS(REGNO, MODE)					\
769   ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64			\
770    : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2				\
771    : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1			\
772    : FR_REGNO_P (REGNO) && (MODE) == TFmode && INTEL_EXTENDED_IEEE_FORMAT ? 1 \
773    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
774 
775 /* A C expression that is nonzero if it is permissible to store a value of mode
776    MODE in hard register number REGNO (or in several registers starting with
777    that one).  */
778 
779 #define HARD_REGNO_MODE_OK(REGNO, MODE)				\
780   (FR_REGNO_P (REGNO) ?						\
781      GET_MODE_CLASS (MODE) != MODE_CC &&			\
782      (MODE) != TImode &&					\
783      (MODE) != BImode &&					\
784      ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT) 		\
785    : PR_REGNO_P (REGNO) ?					\
786      (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC	\
787    : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != TFmode	\
788    : AR_REGNO_P (REGNO) ? (MODE) == DImode			\
789    : BR_REGNO_P (REGNO) ? (MODE) == DImode			\
790    : 0)
791 
792 /* A C expression that is nonzero if it is desirable to choose register
793    allocation so as to avoid move instructions between a value of mode MODE1
794    and a value of mode MODE2.
795 
796    If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
797    ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
798    zero.  */
799 /* Don't tie integer and FP modes, as that causes us to get integer registers
800    allocated for FP instructions.  TFmode only supported in FP registers so
801    we can't tie it with any other modes.  */
802 #define MODES_TIEABLE_P(MODE1, MODE2)			\
803   (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)	\
804    && (((MODE1) == TFmode) == ((MODE2) == TFmode))	\
805    && (((MODE1) == BImode) == ((MODE2) == BImode)))
806 
807 /* Handling Leaf Functions */
808 
809 /* A C initializer for a vector, indexed by hard register number, which
810    contains 1 for a register that is allowable in a candidate for leaf function
811    treatment.  */
812 /* ??? This might be useful.  */
813 /* #define LEAF_REGISTERS */
814 
815 /* A C expression whose value is the register number to which REGNO should be
816    renumbered, when a function is treated as a leaf function.  */
817 /* ??? This might be useful.  */
818 /* #define LEAF_REG_REMAP(REGNO) */
819 
820 
821 /* Register Classes */
822 
823 /* An enumeral type that must be defined with all the register class names as
824    enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
825    register class, followed by one more enumeral value, `LIM_REG_CLASSES',
826    which is not a register class but rather tells how many classes there
827    are.  */
828 /* ??? When compiling without optimization, it is possible for the only use of
829    a pseudo to be a parameter load from the stack with a REG_EQUIV note.
830    Regclass handles this case specially and does not assign any costs to the
831    pseudo.  The pseudo then ends up using the last class before ALL_REGS.
832    Thus we must not let either PR_REGS or BR_REGS be the last class.  The
833    testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
834 enum reg_class
835 {
836   NO_REGS,
837   PR_REGS,
838   BR_REGS,
839   AR_M_REGS,
840   AR_I_REGS,
841   ADDL_REGS,
842   GR_REGS,
843   FR_REGS,
844   GR_AND_BR_REGS,
845   GR_AND_FR_REGS,
846   ALL_REGS,
847   LIM_REG_CLASSES
848 };
849 
850 #define GENERAL_REGS GR_REGS
851 
852 /* The number of distinct register classes.  */
853 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
854 
855 /* An initializer containing the names of the register classes as C string
856    constants.  These names are used in writing some of the debugging dumps.  */
857 #define REG_CLASS_NAMES \
858 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
859   "ADDL_REGS", "GR_REGS", "FR_REGS", \
860   "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
861 
862 /* An initializer containing the contents of the register classes, as integers
863    which are bit masks.  The Nth integer specifies the contents of class N.
864    The way the integer MASK is interpreted is that register R is in the class
865    if `MASK & (1 << R)' is 1.  */
866 #define REG_CLASS_CONTENTS \
867 { 							\
868   /* NO_REGS.  */					\
869   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
870     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
871     0x00000000, 0x00000000, 0x0000 },			\
872   /* PR_REGS.  */					\
873   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
874     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
875     0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },			\
876   /* BR_REGS.  */					\
877   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
878     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
879     0x00000000, 0x00000000, 0x00FF },			\
880   /* AR_M_REGS.  */					\
881   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
882     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
883     0x00000000, 0x00000000, 0x0600 },			\
884   /* AR_I_REGS.  */					\
885   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
886     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
887     0x00000000, 0x00000000, 0x3800 },			\
888   /* ADDL_REGS.  */					\
889   { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,	\
890     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
891     0x00000000, 0x00000000, 0x0000 },			\
892   /* GR_REGS.  */					\
893   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
894     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
895     0x00000000, 0x00000000, 0x0100 },			\
896   /* FR_REGS.  */					\
897   { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
898     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
899     0x00000000, 0x00000000, 0x0000 },			\
900   /* GR_AND_BR_REGS.  */				\
901   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
902     0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
903     0x00000000, 0x00000000, 0x01FF },			\
904   /* GR_AND_FR_REGS.  */				\
905   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
906     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
907     0x00000000, 0x00000000, 0x0100 },			\
908   /* ALL_REGS.  */					\
909   { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
910     0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
911     0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },			\
912 }
913 
914 /* A C expression whose value is a register class containing hard register
915    REGNO.  In general there is more than one such class; choose a class which
916    is "minimal", meaning that no smaller class also contains the register.  */
917 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
918    may call here with private (invalid) register numbers, such as
919    REG_VOLATILE.  */
920 #define REGNO_REG_CLASS(REGNO) \
921 (ADDL_REGNO_P (REGNO) ? ADDL_REGS	\
922  : GENERAL_REGNO_P (REGNO) ? GR_REGS	\
923  : FR_REGNO_P (REGNO) ? FR_REGS		\
924  : PR_REGNO_P (REGNO) ? PR_REGS		\
925  : BR_REGNO_P (REGNO) ? BR_REGS		\
926  : AR_M_REGNO_P (REGNO) ? AR_M_REGS	\
927  : AR_I_REGNO_P (REGNO) ? AR_I_REGS	\
928  : NO_REGS)
929 
930 /* A macro whose definition is the name of the class to which a valid base
931    register must belong.  A base register is one used in an address which is
932    the register value plus a displacement.  */
933 #define BASE_REG_CLASS GENERAL_REGS
934 
935 /* A macro whose definition is the name of the class to which a valid index
936    register must belong.  An index register is one used in an address where its
937    value is either multiplied by a scale factor or added to another register
938    (as well as added to a displacement).  This is needed for POST_MODIFY.  */
939 #define INDEX_REG_CLASS GENERAL_REGS
940 
941 /* A C expression which defines the machine-dependent operand constraint
942    letters for register classes.  If CHAR is such a letter, the value should be
943    the register class corresponding to it.  Otherwise, the value should be
944    `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
945    will not be passed to this macro; you do not need to handle it.  */
946 
947 #define REG_CLASS_FROM_LETTER(CHAR) \
948 ((CHAR) == 'f' ? FR_REGS		\
949  : (CHAR) == 'a' ? ADDL_REGS		\
950  : (CHAR) == 'b' ? BR_REGS		\
951  : (CHAR) == 'c' ? PR_REGS		\
952  : (CHAR) == 'd' ? AR_M_REGS		\
953  : (CHAR) == 'e' ? AR_I_REGS		\
954  : NO_REGS)
955 
956 /* A C expression which is nonzero if register number NUM is suitable for use
957    as a base register in operand addresses.  It may be either a suitable hard
958    register or a pseudo register that has been allocated such a hard reg.  */
959 #define REGNO_OK_FOR_BASE_P(REGNO) \
960   (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
961 
962 /* A C expression which is nonzero if register number NUM is suitable for use
963    as an index register in operand addresses.  It may be either a suitable hard
964    register or a pseudo register that has been allocated such a hard reg.
965    This is needed for POST_MODIFY.  */
966 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
967 
968 /* A C expression that places additional restrictions on the register class to
969    use when it is necessary to copy value X into a register in class CLASS.
970    The value is a register class; perhaps CLASS, or perhaps another, smaller
971    class.  */
972 
973 /* Don't allow volatile mem reloads into floating point registers.  This
974    is defined to force reload to choose the r/m case instead of the f/f case
975    when reloading (set (reg fX) (mem/v)).
976 
977    Do not reload expressions into AR regs.  */
978 
979 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
980   (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS   \
981    : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS		     \
982    : GET_RTX_CLASS (GET_CODE (X)) != 'o'				     \
983      && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS		     \
984    : CLASS)
985 
986 /* You should define this macro to indicate to the reload phase that it may
987    need to allocate at least one register for a reload in addition to the
988    register to contain the data.  Specifically, if copying X to a register
989    CLASS in MODE requires an intermediate register, you should define this
990    to return the largest register class all of whose registers can be used
991    as intermediate registers or scratch registers.  */
992 
993 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
994  ia64_secondary_reload_class (CLASS, MODE, X)
995 
996 /* Certain machines have the property that some registers cannot be copied to
997    some other registers without using memory.  Define this macro on those
998    machines to be a C expression that is nonzero if objects of mode M in
999    registers of CLASS1 can only be copied to registers of class CLASS2 by
1000    storing a register of CLASS1 into memory and loading that memory location
1001    into a register of CLASS2.  */
1002 
1003 #if 0
1004 /* ??? May need this, but since we've disallowed TFmode in GR_REGS,
1005    I'm not quite sure how it could be invoked.  The normal problems
1006    with unions should be solved with the addressof fiddling done by
1007    movtf and friends.  */
1008 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
1009   ((MODE) == TFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)	\
1010 			|| ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1011 #endif
1012 
1013 /* A C expression for the maximum number of consecutive registers of
1014    class CLASS needed to hold a value of mode MODE.
1015    This is closely related to the macro `HARD_REGNO_NREGS'.  */
1016 
1017 #define CLASS_MAX_NREGS(CLASS, MODE) \
1018   ((MODE) == BImode && (CLASS) == PR_REGS ? 2			\
1019    : ((CLASS) == FR_REGS && (MODE) == TFmode) ? 1		\
1020    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1021 
1022 /* In FP regs, we can't change FP values to integer values and vice
1023    versa, but we can change e.g. DImode to SImode.  */
1024 
1025 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 	\
1026   (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO)		\
1027    ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
1028 
1029 /* A C expression that defines the machine-dependent operand constraint
1030    letters (`I', `J', `K', .. 'P') that specify particular ranges of
1031    integer values.  */
1032 
1033 /* 14 bit signed immediate for arithmetic instructions.  */
1034 #define CONST_OK_FOR_I(VALUE) \
1035   ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1036 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source.  */
1037 #define CONST_OK_FOR_J(VALUE) \
1038   ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1039 /* 8 bit signed immediate for logical instructions.  */
1040 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1041 /* 8 bit adjusted signed immediate for compare pseudo-ops.  */
1042 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1043 /* 6 bit unsigned immediate for shift counts.  */
1044 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1045 /* 9 bit signed immediate for load/store post-increments.  */
1046 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1047 /* 0 for r0.  Used by Linux kernel, do not change.  */
1048 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1049 /* 0 or -1 for dep instruction.  */
1050 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1051 
1052 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1053 ((C) == 'I' ? CONST_OK_FOR_I (VALUE)		\
1054  : (C) == 'J' ? CONST_OK_FOR_J (VALUE)		\
1055  : (C) == 'K' ? CONST_OK_FOR_K (VALUE)		\
1056  : (C) == 'L' ? CONST_OK_FOR_L (VALUE)		\
1057  : (C) == 'M' ? CONST_OK_FOR_M (VALUE)		\
1058  : (C) == 'N' ? CONST_OK_FOR_N (VALUE)		\
1059  : (C) == 'O' ? CONST_OK_FOR_O (VALUE)		\
1060  : (C) == 'P' ? CONST_OK_FOR_P (VALUE)		\
1061  : 0)
1062 
1063 /* A C expression that defines the machine-dependent operand constraint letters
1064    (`G', `H') that specify particular ranges of `const_double' values.  */
1065 
1066 /* 0.0 and 1.0 for fr0 and fr1.  */
1067 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1068   ((VALUE) == CONST0_RTX (GET_MODE (VALUE))	\
1069    || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1070 
1071 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1072   ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1073 
1074 /* A C expression that defines the optional machine-dependent constraint
1075    letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1076    types of operands, usually memory references, for the target machine.  */
1077 
1078 /* Non-volatile memory for FP_REG loads/stores.  */
1079 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1080   (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1081 /* 1..4 for shladd arguments.  */
1082 #define CONSTRAINT_OK_FOR_R(VALUE) \
1083   (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1084 /* Non-post-inc memory for asms and other unsavory creatures.  */
1085 #define CONSTRAINT_OK_FOR_S(VALUE)				\
1086   (GET_CODE (VALUE) == MEM					\
1087    && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a'	\
1088    && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1089 
1090 #define EXTRA_CONSTRAINT(VALUE, C) \
1091   ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE)	\
1092    : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE)	\
1093    : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE)	\
1094    : 0)
1095 
1096 /* Basic Stack Layout */
1097 
1098 /* Define this macro if pushing a word onto the stack moves the stack pointer
1099    to a smaller address.  */
1100 #define STACK_GROWS_DOWNWARD 1
1101 
1102 /* Define this macro if the addresses of local variable slots are at negative
1103    offsets from the frame pointer.  */
1104 /* #define FRAME_GROWS_DOWNWARD */
1105 
1106 /* Offset from the frame pointer to the first local variable slot to
1107    be allocated.  */
1108 #define STARTING_FRAME_OFFSET 0
1109 
1110 /* Offset from the stack pointer register to the first location at which
1111    outgoing arguments are placed.  If not specified, the default value of zero
1112    is used.  This is the proper value for most machines.  */
1113 /* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
1114 #define STACK_POINTER_OFFSET 16
1115 
1116 /* Offset from the argument pointer register to the first argument's address.
1117    On some machines it may depend on the data type of the function.  */
1118 #define FIRST_PARM_OFFSET(FUNDECL) 0
1119 
1120 /* A C expression whose value is RTL representing the value of the return
1121    address for the frame COUNT steps up from the current frame, after the
1122    prologue.  */
1123 
1124 /* ??? Frames other than zero would likely require interpreting the frame
1125    unwind info, so we don't try to support them.  We would also need to define
1126    DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
1127 
1128 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1129   ia64_return_addr_rtx (COUNT, FRAME)
1130 
1131 /* A C expression whose value is RTL representing the location of the incoming
1132    return address at the beginning of any function, before the prologue.  This
1133    RTL is either a `REG', indicating that the return value is saved in `REG',
1134    or a `MEM' representing a location in the stack.  This enables DWARF2
1135    unwind info for C++ EH.  */
1136 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1137 
1138 /* ??? This is not defined because of three problems.
1139    1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1140    The default value is FIRST_PSEUDO_REGISTER which doesn't.  This can be
1141    worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1142    unused register number.
1143    2) dwarf2out_frame_debug core dumps while processing prologue insns.  We
1144    need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1145    3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1146    to zero, despite what the documentation implies, because it is tested in
1147    a few places with #ifdef instead of #if.  */
1148 #undef INCOMING_RETURN_ADDR_RTX
1149 
1150 /* A C expression whose value is an integer giving the offset, in bytes, from
1151    the value of the stack pointer register to the top of the stack frame at the
1152    beginning of any function, before the prologue.  The top of the frame is
1153    defined to be the value of the stack pointer in the previous frame, just
1154    before the call instruction.  */
1155 #define INCOMING_FRAME_SP_OFFSET 0
1156 
1157 
1158 /* Register That Address the Stack Frame.  */
1159 
1160 /* The register number of the stack pointer register, which must also be a
1161    fixed register according to `FIXED_REGISTERS'.  On most machines, the
1162    hardware determines which register this is.  */
1163 
1164 #define STACK_POINTER_REGNUM 12
1165 
1166 /* The register number of the frame pointer register, which is used to access
1167    automatic variables in the stack frame.  On some machines, the hardware
1168    determines which register this is.  On other machines, you can choose any
1169    register you wish for this purpose.  */
1170 
1171 #define FRAME_POINTER_REGNUM 328
1172 
1173 /* Base register for access to local variables of the function.  */
1174 #define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
1175 
1176 /* The register number of the arg pointer register, which is used to access the
1177    function's argument list.  */
1178 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1179    in it.  */
1180 #define ARG_POINTER_REGNUM R_GR(0)
1181 
1182 /* Due to the way varargs and argument spilling happens, the argument
1183    pointer is not 16-byte aligned like the stack pointer.  */
1184 #define INIT_EXPANDERS					\
1185   do {							\
1186     if (cfun && cfun->emit->regno_pointer_align)	\
1187       REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;	\
1188   } while (0)
1189 
1190 /* Register numbers used for passing a function's static chain pointer.  */
1191 /* ??? The ABI sez the static chain should be passed as a normal parameter.  */
1192 #define STATIC_CHAIN_REGNUM 15
1193 
1194 /* Eliminating the Frame Pointer and the Arg Pointer */
1195 
1196 /* A C expression which is nonzero if a function must have and use a frame
1197    pointer.  This expression is evaluated in the reload pass.  If its value is
1198    nonzero the function will have a frame pointer.  */
1199 #define FRAME_POINTER_REQUIRED 0
1200 
1201 /* Show we can debug even without a frame pointer.  */
1202 #define CAN_DEBUG_WITHOUT_FP
1203 
1204 /* If defined, this macro specifies a table of register pairs used to eliminate
1205    unneeded registers that point into the stack frame.  */
1206 
1207 #define ELIMINABLE_REGS							\
1208 {									\
1209   {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1210   {ARG_POINTER_REGNUM,	 HARD_FRAME_POINTER_REGNUM},			\
1211   {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1212   {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},			\
1213 }
1214 
1215 /* A C expression that returns nonzero if the compiler is allowed to try to
1216    replace register number FROM with register number TO.  The frame pointer
1217    is automatically handled.  */
1218 
1219 #define CAN_ELIMINATE(FROM, TO) \
1220   (TO == BR_REG (0) ? current_function_is_leaf : 1)
1221 
1222 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1223    specifies the initial difference between the specified pair of
1224    registers.  This macro must be defined if `ELIMINABLE_REGS' is
1225    defined.  */
1226 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1227   ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1228 
1229 /* Passing Function Arguments on the Stack */
1230 
1231 /* Define this macro if an argument declared in a prototype as an integral type
1232    smaller than `int' should actually be passed as an `int'.  In addition to
1233    avoiding errors in certain cases of mismatch, it also makes for better code
1234    on certain machines.  */
1235 /* ??? Investigate.  */
1236 /* #define PROMOTE_PROTOTYPES */
1237 
1238 /* If defined, the maximum amount of space required for outgoing arguments will
1239    be computed and placed into the variable
1240    `current_function_outgoing_args_size'.  */
1241 
1242 #define ACCUMULATE_OUTGOING_ARGS 1
1243 
1244 /* A C expression that should indicate the number of bytes of its own arguments
1245    that a function pops on returning, or 0 if the function pops no arguments
1246    and the caller must therefore pop them all after the function returns.  */
1247 
1248 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1249 
1250 
1251 /* Function Arguments in Registers */
1252 
1253 #define MAX_ARGUMENT_SLOTS 8
1254 #define MAX_INT_RETURN_SLOTS 4
1255 #define GR_ARG_FIRST IN_REG (0)
1256 #define GR_RET_FIRST GR_REG (8)
1257 #define GR_RET_LAST  GR_REG (11)
1258 #define FR_ARG_FIRST FR_REG (8)
1259 #define FR_RET_FIRST FR_REG (8)
1260 #define FR_RET_LAST  FR_REG (15)
1261 #define AR_ARG_FIRST OUT_REG (0)
1262 
1263 /* A C expression that controls whether a function argument is passed in a
1264    register, and which register.  */
1265 
1266 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1267   ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1268 
1269 /* Define this macro if the target machine has "register windows", so that the
1270    register in which a function sees an arguments is not necessarily the same
1271    as the one in which the caller passed the argument.  */
1272 
1273 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1274   ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1275 
1276 /* A C expression for the number of words, at the beginning of an argument,
1277    must be put in registers.  The value must be zero for arguments that are
1278    passed entirely in registers or that are entirely pushed on the stack.  */
1279 
1280 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1281  ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1282 
1283 /* A C expression that indicates when an argument must be passed by reference.
1284    If nonzero for an argument, a copy of that argument is made in memory and a
1285    pointer to the argument is passed instead of the argument itself.  The
1286    pointer is passed in whatever way is appropriate for passing a pointer to
1287    that type.  */
1288 
1289 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1290   ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1291 
1292 /* Nonzero if we do not know how to pass TYPE solely in registers.  */
1293 
1294 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1295   ((TYPE) != 0							\
1296    && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1297        || TREE_ADDRESSABLE (TYPE)))
1298 
1299 /* A C type for declaring a variable that is used as the first argument of
1300    `FUNCTION_ARG' and other related values.  For some target machines, the type
1301    `int' suffices and can hold the number of bytes of argument so far.  */
1302 
1303 typedef struct ia64_args
1304 {
1305   int words;			/* # words of arguments so far  */
1306   int int_regs;			/* # GR registers used so far  */
1307   int fp_regs;			/* # FR registers used so far  */
1308   int prototype;		/* whether function prototyped  */
1309 } CUMULATIVE_ARGS;
1310 
1311 /* A C statement (sans semicolon) for initializing the variable CUM for the
1312    state at the beginning of the argument list.  */
1313 
1314 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1315 do {									\
1316   (CUM).words = 0;							\
1317   (CUM).int_regs = 0;							\
1318   (CUM).fp_regs = 0;							\
1319   (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME);	\
1320 } while (0)
1321 
1322 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1323    arguments for the function being compiled.  If this macro is undefined,
1324    `INIT_CUMULATIVE_ARGS' is used instead.  */
1325 
1326 /* We set prototype to true so that we never try to return a PARALLEL from
1327    function_arg.  */
1328 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1329 do {									\
1330   (CUM).words = 0;							\
1331   (CUM).int_regs = 0;							\
1332   (CUM).fp_regs = 0;							\
1333   (CUM).prototype = 1;							\
1334 } while (0)
1335 
1336 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1337    advance past an argument in the argument list.  The values MODE, TYPE and
1338    NAMED describe that argument.  Once this is done, the variable CUM is
1339    suitable for analyzing the *following* argument with `FUNCTION_ARG'.  */
1340 
1341 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1342  ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1343 
1344 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1345    argument with the specified mode and type.  */
1346 
1347 /* Arguments with alignment larger than 8 bytes start at the next even
1348    boundary.  See ia64_function_arg.  */
1349 
1350 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1351   (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT)		\
1352     : (((((MODE) == BLKmode					\
1353 	  ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))	\
1354 	 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1))		\
1355     ? 128 : PARM_BOUNDARY)
1356 
1357 /* A C expression that is nonzero if REGNO is the number of a hard register in
1358    which function arguments are sometimes passed.  This does *not* include
1359    implicit arguments such as the static chain and the structure-value address.
1360    On many machines, no registers can be used for this purpose since all
1361    function arguments are pushed on the stack.  */
1362 #define FUNCTION_ARG_REGNO_P(REGNO) \
1363 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1364  || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1365 
1366 /* Implement `va_arg'.  */
1367 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1368   ia64_va_arg (valist, type)
1369 
1370 /* How Scalar Function Values are Returned */
1371 
1372 /* A C expression to create an RTX representing the place where a function
1373    returns a value of data type VALTYPE.  */
1374 
1375 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1376   ia64_function_value (VALTYPE, FUNC)
1377 
1378 /* A C expression to create an RTX representing the place where a library
1379    function returns a value of mode MODE.  */
1380 
1381 #define LIBCALL_VALUE(MODE) \
1382   gen_rtx_REG (MODE,							\
1383 	       (((GET_MODE_CLASS (MODE) == MODE_FLOAT			\
1384 		 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) &&	\
1385 		      ((MODE) != TFmode || INTEL_EXTENDED_IEEE_FORMAT))	\
1386 		? FR_RET_FIRST : GR_RET_FIRST))
1387 
1388 /* A C expression that is nonzero if REGNO is the number of a hard register in
1389    which the values of called function may come back.  */
1390 
1391 #define FUNCTION_VALUE_REGNO_P(REGNO)				\
1392   (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST)		\
1393    || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1394 
1395 
1396 /* How Large Values are Returned */
1397 
1398 /* A nonzero value says to return the function value in memory, just as large
1399    structures are always returned.  */
1400 
1401 #define RETURN_IN_MEMORY(TYPE) \
1402   ia64_return_in_memory (TYPE)
1403 
1404 /* If you define this macro to be 0, then the conventions used for structure
1405    and union return values are decided by the `RETURN_IN_MEMORY' macro.  */
1406 
1407 #define DEFAULT_PCC_STRUCT_RETURN 0
1408 
1409 /* If the structure value address is passed in a register, then
1410    `STRUCT_VALUE_REGNUM' should be the number of that register.  */
1411 
1412 #define STRUCT_VALUE_REGNUM GR_REG (8)
1413 
1414 
1415 /* Caller-Saves Register Allocation */
1416 
1417 /* A C expression to determine whether it is worthwhile to consider placing a
1418    pseudo-register in a call-clobbered hard register and saving and restoring
1419    it around each function call.  The expression should be 1 when this is worth
1420    doing, and 0 otherwise.
1421 
1422    If you don't define this macro, a default is used which is good on most
1423    machines: `4 * CALLS < REFS'.  */
1424 /* ??? Investigate.  */
1425 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1426 
1427 
1428 /* Function Entry and Exit */
1429 
1430 /* Define this macro as a C expression that is nonzero if the return
1431    instruction or the function epilogue ignores the value of the stack pointer;
1432    in other words, if it is safe to delete an instruction to adjust the stack
1433    pointer before a return from the function.  */
1434 
1435 #define EXIT_IGNORE_STACK 1
1436 
1437 /* Define this macro as a C expression that is nonzero for registers
1438    used by the epilogue or the `return' pattern.  */
1439 
1440 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1441 
1442 /* Nonzero for registers used by the exception handling mechanism.  */
1443 
1444 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1445 
1446 /* Output at beginning of assembler file.  */
1447 
1448 #define ASM_FILE_START(FILE) \
1449   emit_safe_across_calls (FILE)
1450 
1451 /* Output part N of a function descriptor for DECL.  For ia64, both
1452    words are emitted with a single relocation, so ignore N > 0.  */
1453 #define ASM_OUTPUT_FDESC(FILE, DECL, PART)				\
1454 do {									\
1455   if ((PART) == 0)							\
1456     {									\
1457       if (TARGET_ILP32)							\
1458         fputs ("\tdata8.ua @iplt(", FILE);				\
1459       else								\
1460         fputs ("\tdata16.ua @iplt(", FILE);				\
1461       assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));	\
1462       fputs (")\n", FILE);						\
1463       if (TARGET_ILP32)							\
1464 	fputs ("\tdata8.ua 0\n", FILE);					\
1465     }									\
1466 } while (0)
1467 
1468 /* Generating Code for Profiling.  */
1469 
1470 /* A C statement or compound statement to output to FILE some assembler code to
1471    call the profiling subroutine `mcount'.  */
1472 
1473 #undef FUNCTION_PROFILER
1474 #define FUNCTION_PROFILER(FILE, LABELNO)				\
1475 do {									\
1476   char buf[20];								\
1477   ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO);			\
1478   fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE);			\
1479   if (TARGET_AUTO_PIC)							\
1480     fputs ("\tmovl out3 = @gprel(", FILE);				\
1481   else									\
1482     fputs ("\taddl out3 = @ltoff(", FILE);				\
1483   assemble_name (FILE, buf);						\
1484   if (TARGET_AUTO_PIC)							\
1485     fputs (");;\n", FILE);						\
1486   else									\
1487     fputs ("), r1;;\n", FILE);						\
1488   fputs ("\tmov out1 = r1\n", FILE);					\
1489   fputs ("\tmov out2 = b0\n", FILE);					\
1490   fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE);			\
1491 } while (0)
1492 
1493 /* Implementing the Varargs Macros.  */
1494 
1495 /* Define this macro to store the anonymous register arguments into the stack
1496    so that all the arguments appear to have been passed consecutively on the
1497    stack.  */
1498 
1499 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1500     ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1501 
1502 /* Define this macro if the location where a function argument is passed
1503    depends on whether or not it is a named argument.  */
1504 
1505 #define STRICT_ARGUMENT_NAMING  1
1506 
1507 
1508 /* Trampolines for Nested Functions.  */
1509 
1510 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1511    the function containing a non-local goto target.  */
1512 
1513 #define STACK_SAVEAREA_MODE(LEVEL) \
1514   ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1515 
1516 /* Output assembler code for a block containing the constant parts of
1517    a trampoline, leaving space for the variable parts.
1518 
1519    The trampoline should set the static chain pointer to value placed
1520    into the trampoline and should branch to the specified routine.
1521    To make the normal indirect-subroutine calling convention work,
1522    the trampoline must look like a function descriptor; the first
1523    word being the target address and the second being the target's
1524    global pointer.
1525 
1526    We abuse the concept of a global pointer by arranging for it
1527    to point to the data we need to load.  The complete trampoline
1528    has the following form:
1529 
1530 		+-------------------+ \
1531 	TRAMP:	| __ia64_trampoline | |
1532 		+-------------------+  > fake function descriptor
1533 		| TRAMP+16          | |
1534 		+-------------------+ /
1535 		| target descriptor |
1536 		+-------------------+
1537 		| static link	    |
1538 		+-------------------+
1539 */
1540 
1541 /* A C expression for the size in bytes of the trampoline, as an integer.  */
1542 
1543 #define TRAMPOLINE_SIZE		32
1544 
1545 /* Alignment required for trampolines, in bits.  */
1546 
1547 #define TRAMPOLINE_ALIGNMENT	64
1548 
1549 /* A C statement to initialize the variable parts of a trampoline.  */
1550 
1551 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1552   ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1553 
1554 /* Implicit Calls to Library Routines */
1555 
1556 /* Define this macro if GNU CC should generate calls to the System V (and ANSI
1557    C) library functions `memcpy' and `memset' rather than the BSD functions
1558    `bcopy' and `bzero'.  */
1559 
1560 #define TARGET_MEM_FUNCTIONS
1561 
1562 
1563 /* Addressing Modes */
1564 
1565 /* Define this macro if the machine supports post-increment addressing.  */
1566 
1567 #define HAVE_POST_INCREMENT 1
1568 #define HAVE_POST_DECREMENT 1
1569 #define HAVE_POST_MODIFY_DISP 1
1570 #define HAVE_POST_MODIFY_REG 1
1571 
1572 /* A C expression that is 1 if the RTX X is a constant which is a valid
1573    address.  */
1574 
1575 #define CONSTANT_ADDRESS_P(X) 0
1576 
1577 /* The max number of registers that can appear in a valid memory address.  */
1578 
1579 #define MAX_REGS_PER_ADDRESS 2
1580 
1581 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1582    RTX) is a legitimate memory address on the target machine for a memory
1583    operand of mode MODE.  */
1584 
1585 #define LEGITIMATE_ADDRESS_REG(X)					\
1586   ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
1587    || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG		\
1588        && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1589 
1590 #define LEGITIMATE_ADDRESS_DISP(R, X)					\
1591   (GET_CODE (X) == PLUS							\
1592    && rtx_equal_p (R, XEXP (X, 0))					\
1593    && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1))				\
1594        || (GET_CODE (XEXP (X, 1)) == CONST_INT				\
1595 	   && INTVAL (XEXP (X, 1)) >= -256				\
1596 	   && INTVAL (XEXP (X, 1)) < 256)))
1597 
1598 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) 			\
1599 do {									\
1600   if (LEGITIMATE_ADDRESS_REG (X))					\
1601     goto LABEL;								\
1602   else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC)	\
1603 	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1604 	   && XEXP (X, 0) != arg_pointer_rtx)				\
1605     goto LABEL;								\
1606   else if (GET_CODE (X) == POST_MODIFY					\
1607 	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1608 	   && XEXP (X, 0) != arg_pointer_rtx				\
1609 	   && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1)))	\
1610     goto LABEL;								\
1611 } while (0)
1612 
1613 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1614    use as a base register.  */
1615 
1616 #ifdef REG_OK_STRICT
1617 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1618 #else
1619 #define REG_OK_FOR_BASE_P(X) \
1620   (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1621 #endif
1622 
1623 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1624    use as an index register.  This is needed for POST_MODIFY.  */
1625 
1626 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1627 
1628 /* A C compound statement that attempts to replace X with a valid memory
1629    address for an operand of mode MODE.
1630 
1631    This must be present, but there is nothing useful to be done here.  */
1632 
1633 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1634 
1635 /* A C statement or compound statement with a conditional `goto LABEL;'
1636    executed if memory address X (an RTX) can have different meanings depending
1637    on the machine mode of the memory reference it is used for or if the address
1638    is valid for some modes but not others.  */
1639 
1640 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)			\
1641   if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC)	\
1642     goto LABEL;
1643 
1644 /* A C expression that is nonzero if X is a legitimate constant for an
1645    immediate operand on the target machine.  */
1646 
1647 #define LEGITIMATE_CONSTANT_P(X) \
1648   (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode	\
1649    || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X))	\
1650 
1651 
1652 /* Condition Code Status */
1653 
1654 /* One some machines not all possible comparisons are defined, but you can
1655    convert an invalid comparison into a valid one.  */
1656 /* ??? Investigate.  See the alpha definition.  */
1657 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1658 
1659 
1660 /* Describing Relative Costs of Operations */
1661 
1662 /* A part of a C `switch' statement that describes the relative costs of
1663    constant RTL expressions.  */
1664 
1665 /* ??? This is incomplete.  */
1666 
1667 #define CONST_COSTS(X, CODE, OUTER_CODE)				\
1668   case CONST_INT:							\
1669     if ((X) == const0_rtx)						\
1670       return 0;								\
1671     switch (OUTER_CODE)							\
1672       {									\
1673       case SET:								\
1674 	return CONST_OK_FOR_J (INTVAL (X)) ? 0 : COSTS_N_INSNS (1);	\
1675       case PLUS:							\
1676 	if (CONST_OK_FOR_I (INTVAL (X)))				\
1677 	  return 0;							\
1678 	if (CONST_OK_FOR_J (INTVAL (X)))				\
1679 	  return 1;							\
1680 	return COSTS_N_INSNS (1);					\
1681       default:								\
1682 	if (CONST_OK_FOR_K (INTVAL (X)) || CONST_OK_FOR_L (INTVAL (X)))	\
1683 	  return 0;							\
1684 	return COSTS_N_INSNS (1);					\
1685       }									\
1686   case CONST_DOUBLE:							\
1687     return COSTS_N_INSNS (1);						\
1688   case CONST:								\
1689   case SYMBOL_REF:							\
1690   case LABEL_REF:							\
1691     return COSTS_N_INSNS (3);
1692 
1693 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.  */
1694 
1695 #define RTX_COSTS(X, CODE, OUTER_CODE)					\
1696   case MULT:								\
1697     /* For multiplies wider than HImode, we have to go to the FPU,	\
1698        which normally involves copies.  Plus there's the latency	\
1699        of the multiply itself, and the latency of the instructions to	\
1700        transfer integer regs to FP regs.  */				\
1701     if (GET_MODE_SIZE (GET_MODE (X)) > 2)				\
1702       return COSTS_N_INSNS (10);					\
1703     return COSTS_N_INSNS (2);						\
1704   case PLUS:								\
1705   case MINUS:								\
1706   case ASHIFT:								\
1707   case ASHIFTRT:							\
1708   case LSHIFTRT:							\
1709     return COSTS_N_INSNS (1);						\
1710   case DIV:								\
1711   case UDIV:								\
1712   case MOD:								\
1713   case UMOD:								\
1714     /* We make divide expensive, so that divide-by-constant will be	\
1715        optimized to a multiply.  */					\
1716     return COSTS_N_INSNS (60);
1717 
1718 /* An expression giving the cost of an addressing mode that contains ADDRESS.
1719    If not defined, the cost is computed from the ADDRESS expression and the
1720    `CONST_COSTS' values.  */
1721 
1722 #define ADDRESS_COST(ADDRESS) 0
1723 
1724 /* A C expression for the cost of moving data from a register in class FROM to
1725    one in class TO, using MODE.  */
1726 
1727 #define REGISTER_MOVE_COST  ia64_register_move_cost
1728 
1729 /* A C expression for the cost of moving data of mode M between a
1730    register and memory.  */
1731 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1732   ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1733    || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1734 
1735 /* A C expression for the cost of a branch instruction.  A value of 1 is the
1736    default; other values are interpreted relative to that.  Used by the
1737    if-conversion code as max instruction count.  */
1738 /* ??? This requires investigation.  The primary effect might be how
1739    many additional insn groups we run into, vs how good the dynamic
1740    branch predictor is.  */
1741 
1742 #define BRANCH_COST 6
1743 
1744 /* Define this macro as a C expression which is nonzero if accessing less than
1745    a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1746    word of memory.  */
1747 
1748 #define SLOW_BYTE_ACCESS 1
1749 
1750 /* Define this macro if it is as good or better to call a constant function
1751    address than to call an address kept in a register.
1752 
1753    Indirect function calls are more expensive that direct function calls, so
1754    don't cse function addresses.  */
1755 
1756 #define NO_FUNCTION_CSE
1757 
1758 
1759 /* Dividing the output into sections.  */
1760 
1761 /* A C expression whose value is a string containing the assembler operation
1762    that should precede instructions and read-only data.  */
1763 
1764 #define TEXT_SECTION_ASM_OP "\t.text"
1765 
1766 /* A C expression whose value is a string containing the assembler operation to
1767    identify the following data as writable initialized data.  */
1768 
1769 #define DATA_SECTION_ASM_OP "\t.data"
1770 
1771 /* If defined, a C expression whose value is a string containing the assembler
1772    operation to identify the following data as uninitialized global data.  */
1773 
1774 #define BSS_SECTION_ASM_OP "\t.bss"
1775 
1776 #define ENCODE_SECTION_INFO_CHAR '@'
1777 
1778 #define IA64_DEFAULT_GVALUE 8
1779 
1780 /* Position Independent Code.  */
1781 
1782 /* The register number of the register used to address a table of static data
1783    addresses in memory.  */
1784 
1785 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1786    gen_rtx_REG (DImode, 1).  */
1787 
1788 /* ??? Should we set flag_pic?  Probably need to define
1789    LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1790 
1791 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1792 
1793 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1794    clobbered by calls.  */
1795 
1796 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1797 
1798 
1799 /* The Overall Framework of an Assembler File.  */
1800 
1801 /* A C string constant describing how to begin a comment in the target
1802    assembler language.  The compiler assumes that the comment will end at the
1803    end of the line.  */
1804 
1805 #define ASM_COMMENT_START "//"
1806 
1807 /* A C string constant for text to be output before each `asm' statement or
1808    group of consecutive ones.  */
1809 
1810 /* ??? This won't work with the Intel assembler, because it does not accept
1811    # as a comment start character.  However, //APP does not work in gas, so we
1812    can't use that either.  Same problem for ASM_APP_OFF below.  */
1813 
1814 #define ASM_APP_ON "#APP\n"
1815 
1816 /* A C string constant for text to be output after each `asm' statement or
1817    group of consecutive ones.  */
1818 
1819 #define ASM_APP_OFF "#NO_APP\n"
1820 
1821 
1822 /* Output of Uninitialized Variables.  */
1823 
1824 /* This is all handled by svr4.h.  */
1825 
1826 
1827 /* Output and Generation of Labels.  */
1828 
1829 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1830    assembler definition of a label named NAME.  */
1831 
1832 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1833    why ia64_asm_output_label exists.  */
1834 
1835 extern int ia64_asm_output_label;
1836 #define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1837 do {									\
1838   ia64_asm_output_label = 1;						\
1839   assemble_name (STREAM, NAME);						\
1840   fputs (":\n", STREAM);						\
1841   ia64_asm_output_label = 0;						\
1842 } while (0)
1843 
1844 /* Globalizing directive for a label.  */
1845 #define GLOBAL_ASM_OP "\t.global "
1846 
1847 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1848    necessary for declaring the name of an external symbol named NAME which is
1849    referenced in this compilation but not defined.  */
1850 
1851 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1852   ia64_asm_output_external (FILE, DECL, NAME)
1853 
1854 /* A C statement to store into the string STRING a label whose name is made
1855    from the string PREFIX and the number NUM.  */
1856 
1857 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1858 do {									\
1859   sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
1860 } while (0)
1861 
1862 /* A C expression to assign to OUTVAR (which is a variable of type `char *') a
1863    newly allocated string made from the string NAME and the number NUMBER, with
1864    some suitable punctuation added.  */
1865 
1866 /* ??? Not sure if using a ? in the name for Intel as is safe.  */
1867 
1868 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER)			\
1869 do {									\
1870   (OUTVAR) = (char *) alloca (strlen (NAME) + 12);			\
1871   sprintf (OUTVAR, "%s%c%ld", (NAME), (TARGET_GNU_AS ? '.' : '?'),	\
1872 	   (long)(NUMBER));						\
1873 } while (0)
1874 
1875 /* A C statement to output to the stdio stream STREAM assembler code which
1876    defines (equates) the symbol NAME to have the value VALUE.  */
1877 
1878 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1879 do {									\
1880   assemble_name (STREAM, NAME);						\
1881   fputs (" = ", STREAM);						\
1882   assemble_name (STREAM, VALUE);					\
1883   fputc ('\n', STREAM);							\
1884 } while (0)
1885 
1886 
1887 /* Macros Controlling Initialization Routines.  */
1888 
1889 /* This is handled by svr4.h and sysv4.h.  */
1890 
1891 
1892 /* Output of Assembler Instructions.  */
1893 
1894 /* A C initializer containing the assembler's names for the machine registers,
1895    each one as a C string constant.  */
1896 
1897 #define REGISTER_NAMES \
1898 {									\
1899   /* General registers.  */						\
1900   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",		\
1901   "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1902   "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1903   "r30", "r31",								\
1904   /* Local registers.  */						\
1905   "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",	\
1906   "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",	\
1907   "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",	\
1908   "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",	\
1909   "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",	\
1910   "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",	\
1911   "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",	\
1912   "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",	\
1913   "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",	\
1914   "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",	\
1915   /* Input registers.  */						\
1916   "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",	\
1917   /* Output registers.  */						\
1918   "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",	\
1919   /* Floating-point registers.  */					\
1920   "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1921   "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1922   "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1923   "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",	\
1924   "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",	\
1925   "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",	\
1926   "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69",	\
1927   "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",	\
1928   "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89",	\
1929   "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99",	\
1930   "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1931   "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1932   "f120","f121","f122","f123","f124","f125","f126","f127",		\
1933   /* Predicate registers.  */						\
1934   "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",		\
1935   "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19",	\
1936   "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29",	\
1937   "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",	\
1938   "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49",	\
1939   "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59",	\
1940   "p60", "p61", "p62", "p63",						\
1941   /* Branch registers.  */						\
1942   "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",			\
1943   /* Frame pointer.  Application registers.  */				\
1944   "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",	\
1945 }
1946 
1947 /* If defined, a C initializer for an array of structures containing a name and
1948    a register number.  This macro defines additional names for hard registers,
1949    thus allowing the `asm' option in declarations to refer to registers using
1950    alternate names.  */
1951 
1952 #define ADDITIONAL_REGISTER_NAMES \
1953 {									\
1954   { "gp", R_GR (1) },							\
1955   { "sp", R_GR (12) },							\
1956   { "in0", IN_REG (0) },						\
1957   { "in1", IN_REG (1) },						\
1958   { "in2", IN_REG (2) },						\
1959   { "in3", IN_REG (3) },						\
1960   { "in4", IN_REG (4) },						\
1961   { "in5", IN_REG (5) },						\
1962   { "in6", IN_REG (6) },						\
1963   { "in7", IN_REG (7) },						\
1964   { "out0", OUT_REG (0) },						\
1965   { "out1", OUT_REG (1) },						\
1966   { "out2", OUT_REG (2) },						\
1967   { "out3", OUT_REG (3) },						\
1968   { "out4", OUT_REG (4) },						\
1969   { "out5", OUT_REG (5) },						\
1970   { "out6", OUT_REG (6) },						\
1971   { "out7", OUT_REG (7) },						\
1972   { "loc0", LOC_REG (0) },						\
1973   { "loc1", LOC_REG (1) },						\
1974   { "loc2", LOC_REG (2) },						\
1975   { "loc3", LOC_REG (3) },						\
1976   { "loc4", LOC_REG (4) },						\
1977   { "loc5", LOC_REG (5) },						\
1978   { "loc6", LOC_REG (6) },						\
1979   { "loc7", LOC_REG (7) },						\
1980   { "loc8", LOC_REG (8) }, 						\
1981   { "loc9", LOC_REG (9) }, 						\
1982   { "loc10", LOC_REG (10) }, 						\
1983   { "loc11", LOC_REG (11) }, 						\
1984   { "loc12", LOC_REG (12) }, 						\
1985   { "loc13", LOC_REG (13) }, 						\
1986   { "loc14", LOC_REG (14) }, 						\
1987   { "loc15", LOC_REG (15) }, 						\
1988   { "loc16", LOC_REG (16) }, 						\
1989   { "loc17", LOC_REG (17) }, 						\
1990   { "loc18", LOC_REG (18) }, 						\
1991   { "loc19", LOC_REG (19) }, 						\
1992   { "loc20", LOC_REG (20) }, 						\
1993   { "loc21", LOC_REG (21) }, 						\
1994   { "loc22", LOC_REG (22) }, 						\
1995   { "loc23", LOC_REG (23) }, 						\
1996   { "loc24", LOC_REG (24) }, 						\
1997   { "loc25", LOC_REG (25) }, 						\
1998   { "loc26", LOC_REG (26) }, 						\
1999   { "loc27", LOC_REG (27) }, 						\
2000   { "loc28", LOC_REG (28) }, 						\
2001   { "loc29", LOC_REG (29) }, 						\
2002   { "loc30", LOC_REG (30) }, 						\
2003   { "loc31", LOC_REG (31) }, 						\
2004   { "loc32", LOC_REG (32) }, 						\
2005   { "loc33", LOC_REG (33) }, 						\
2006   { "loc34", LOC_REG (34) }, 						\
2007   { "loc35", LOC_REG (35) }, 						\
2008   { "loc36", LOC_REG (36) }, 						\
2009   { "loc37", LOC_REG (37) }, 						\
2010   { "loc38", LOC_REG (38) }, 						\
2011   { "loc39", LOC_REG (39) }, 						\
2012   { "loc40", LOC_REG (40) }, 						\
2013   { "loc41", LOC_REG (41) }, 						\
2014   { "loc42", LOC_REG (42) }, 						\
2015   { "loc43", LOC_REG (43) }, 						\
2016   { "loc44", LOC_REG (44) }, 						\
2017   { "loc45", LOC_REG (45) }, 						\
2018   { "loc46", LOC_REG (46) }, 						\
2019   { "loc47", LOC_REG (47) }, 						\
2020   { "loc48", LOC_REG (48) }, 						\
2021   { "loc49", LOC_REG (49) }, 						\
2022   { "loc50", LOC_REG (50) }, 						\
2023   { "loc51", LOC_REG (51) }, 						\
2024   { "loc52", LOC_REG (52) }, 						\
2025   { "loc53", LOC_REG (53) }, 						\
2026   { "loc54", LOC_REG (54) }, 						\
2027   { "loc55", LOC_REG (55) }, 						\
2028   { "loc56", LOC_REG (56) }, 						\
2029   { "loc57", LOC_REG (57) }, 						\
2030   { "loc58", LOC_REG (58) }, 						\
2031   { "loc59", LOC_REG (59) }, 						\
2032   { "loc60", LOC_REG (60) }, 						\
2033   { "loc61", LOC_REG (61) }, 						\
2034   { "loc62", LOC_REG (62) }, 						\
2035   { "loc63", LOC_REG (63) }, 						\
2036   { "loc64", LOC_REG (64) }, 						\
2037   { "loc65", LOC_REG (65) }, 						\
2038   { "loc66", LOC_REG (66) }, 						\
2039   { "loc67", LOC_REG (67) }, 						\
2040   { "loc68", LOC_REG (68) }, 						\
2041   { "loc69", LOC_REG (69) }, 						\
2042   { "loc70", LOC_REG (70) }, 						\
2043   { "loc71", LOC_REG (71) }, 						\
2044   { "loc72", LOC_REG (72) }, 						\
2045   { "loc73", LOC_REG (73) }, 						\
2046   { "loc74", LOC_REG (74) }, 						\
2047   { "loc75", LOC_REG (75) }, 						\
2048   { "loc76", LOC_REG (76) }, 						\
2049   { "loc77", LOC_REG (77) }, 						\
2050   { "loc78", LOC_REG (78) }, 						\
2051   { "loc79", LOC_REG (79) }, 						\
2052 }
2053 
2054 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2055    for an instruction operand X.  X is an RTL expression.  */
2056 
2057 #define PRINT_OPERAND(STREAM, X, CODE) \
2058   ia64_print_operand (STREAM, X, CODE)
2059 
2060 /* A C expression which evaluates to true if CODE is a valid punctuation
2061    character for use in the `PRINT_OPERAND' macro.  */
2062 
2063 /* ??? Keep this around for now, as we might need it later.  */
2064 
2065 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2066   ((CODE) == '+' || (CODE) == ',')
2067 
2068 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2069    for an instruction operand that is a memory reference whose address is X.  X
2070    is an RTL expression.  */
2071 
2072 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2073   ia64_print_operand_address (STREAM, X)
2074 
2075 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2076    `%I' options of `asm_fprintf' (see `final.c').  */
2077 
2078 #define REGISTER_PREFIX ""
2079 #define LOCAL_LABEL_PREFIX "."
2080 #define USER_LABEL_PREFIX ""
2081 #define IMMEDIATE_PREFIX ""
2082 
2083 
2084 /* Output of dispatch tables.  */
2085 
2086 /* This macro should be provided on machines where the addresses in a dispatch
2087    table are relative to the table's own address.  */
2088 
2089 /* ??? Depends on the pointer size.  */
2090 
2091 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	\
2092   do {								\
2093   if (TARGET_ILP32)						\
2094     fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);		\
2095   else								\
2096     fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);		\
2097   } while (0)
2098 
2099 /* This is how to output an element of a case-vector that is absolute.
2100    (Ia64 does not use such vectors, but we must define this macro anyway.)  */
2101 
2102 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2103 
2104 /* Jump tables only need 8 byte alignment.  */
2105 
2106 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2107 
2108 
2109 /* Assembler Commands for Exception Regions.  */
2110 
2111 /* Select a format to encode pointers in exception handling data.  CODE
2112    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2113    true if the symbol may be affected by dynamic relocations.  */
2114 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)	\
2115   (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)	\
2116    | ((GLOBAL) ? DW_EH_PE_indirect : 0)			\
2117    | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
2118 
2119 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
2120    indirect are handled automatically.  */
2121 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2122   do {									\
2123     const char *reltag = NULL;						\
2124     if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)			\
2125       reltag = "@segrel(";						\
2126     else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)			\
2127       reltag = "@gprel(";						\
2128     if (reltag)								\
2129       {									\
2130 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
2131 	fputs (reltag, FILE);						\
2132 	assemble_name (FILE, XSTR (ADDR, 0));				\
2133 	fputc (')', FILE);						\
2134 	goto DONE;							\
2135       }									\
2136   } while (0)
2137 
2138 
2139 /* Assembler Commands for Alignment.  */
2140 
2141 /* ??? Investigate.  */
2142 
2143 /* The alignment (log base 2) to put in front of LABEL, which follows
2144    a BARRIER.  */
2145 
2146 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2147 
2148 /* The desired alignment for the location counter at the beginning
2149    of a loop.  */
2150 
2151 /* #define LOOP_ALIGN(LABEL) */
2152 
2153 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2154    section because it fails put zeros in the bytes that are skipped.  */
2155 
2156 #define ASM_NO_SKIP_IN_TEXT 1
2157 
2158 /* A C statement to output to the stdio stream STREAM an assembler command to
2159    advance the location counter to a multiple of 2 to the POWER bytes.  */
2160 
2161 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2162   fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2163 
2164 
2165 /* Macros Affecting all Debug Formats.  */
2166 
2167 /* This is handled in svr4.h and sysv4.h.  */
2168 
2169 
2170 /* Specific Options for DBX Output.  */
2171 
2172 /* This is handled by dbxelf.h which is included by svr4.h.  */
2173 
2174 
2175 /* Open ended Hooks for DBX Output.  */
2176 
2177 /* Likewise.  */
2178 
2179 
2180 /* File names in DBX format.  */
2181 
2182 /* Likewise.  */
2183 
2184 
2185 /* Macros for SDB and Dwarf Output.  */
2186 
2187 /* Define this macro if GNU CC should produce dwarf version 2 format debugging
2188    output in response to the `-g' option.  */
2189 
2190 #define DWARF2_DEBUGGING_INFO 1
2191 
2192 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2193 
2194 /* Use tags for debug info labels, so that they don't break instruction
2195    bundles.  This also avoids getting spurious DV warnings from the
2196    assembler.  This is similar to ASM_OUTPUT_INTERNAL_LABEL, except that we
2197    add brackets around the label.  */
2198 
2199 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2200   fprintf (FILE, "[.%s%d:]\n", PREFIX, NUM)
2201 
2202 /* Use section-relative relocations for debugging offsets.  Unlike other
2203    targets that fake this by putting the section VMA at 0, IA-64 has
2204    proper relocations for them.  */
2205 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL)	\
2206   do {							\
2207     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
2208     fputs ("@secrel(", FILE);				\
2209     assemble_name (FILE, LABEL);			\
2210     fputc (')', FILE);					\
2211   } while (0)
2212 
2213 /* Emit a PC-relative relocation.  */
2214 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
2215   do {							\
2216     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
2217     fputs ("@pcrel(", FILE);				\
2218     assemble_name (FILE, LABEL);			\
2219     fputc (')', FILE);					\
2220   } while (0)
2221 
2222 /* Register Renaming Parameters.  */
2223 
2224 /* A C expression that is nonzero if hard register number REGNO2 can be
2225    considered for use as a rename register for REGNO1 */
2226 
2227 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2228   ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2229 
2230 
2231 /* Miscellaneous Parameters.  */
2232 
2233 /* Define this if you have defined special-purpose predicates in the file
2234    `MACHINE.c'.  For each predicate, list all rtl codes that can be in
2235    expressions matched by the predicate.  */
2236 
2237 #define PREDICATE_CODES \
2238 { "call_operand", {SUBREG, REG, SYMBOL_REF}},				\
2239 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}},		\
2240 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}},			\
2241 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}},			\
2242 { "function_operand", {SYMBOL_REF}},					\
2243 { "setjmp_operand", {SYMBOL_REF}},					\
2244 { "destination_operand", {SUBREG, REG, MEM}},				\
2245 { "not_postinc_memory_operand", {MEM}},					\
2246 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE,		\
2247 		     CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}},	\
2248 { "gr_register_operand", {SUBREG, REG}},				\
2249 { "fr_register_operand", {SUBREG, REG}},				\
2250 { "grfr_register_operand", {SUBREG, REG}},				\
2251 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}},			\
2252 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}},			\
2253 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}},			\
2254 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}},			\
2255 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}},	\
2256 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}},	\
2257 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}},	\
2258 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2259 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT,		\
2260 				     CONSTANT_P_RTX}},			\
2261 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT,	\
2262 					 CONSTANT_P_RTX}},		\
2263 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2264 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2265 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}},	\
2266 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT,			\
2267 				  CONSTANT_P_RTX}},			\
2268 { "shladd_operand", {CONST_INT}},					\
2269 { "fetchadd_operand", {CONST_INT}},					\
2270 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}},		\
2271 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}},		\
2272 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}},			\
2273 { "signed_inequality_operator", {GE, GT, LE, LT}},			\
2274 { "predicate_operator", {NE, EQ}},					\
2275 { "condop_operator", {PLUS, MINUS, IOR, XOR, AND}},			\
2276 { "ar_lc_reg_operand", {REG}},						\
2277 { "ar_ccv_reg_operand", {REG}},						\
2278 { "ar_pfs_reg_operand", {REG}},						\
2279 { "general_tfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}},		\
2280 { "destination_tfmode_operand", {SUBREG, REG, MEM}},			\
2281 { "tfreg_or_fp01_operand", {REG, CONST_DOUBLE}},			\
2282 { "basereg_operand", {SUBREG, REG}},
2283 
2284 /* An alias for a machine mode name.  This is the machine mode that elements of
2285    a jump-table should have.  */
2286 
2287 #define CASE_VECTOR_MODE ptr_mode
2288 
2289 /* Define as C expression which evaluates to nonzero if the tablejump
2290    instruction expects the table to contain offsets from the address of the
2291    table.  */
2292 
2293 #define CASE_VECTOR_PC_RELATIVE 1
2294 
2295 /* Define this macro if operations between registers with integral mode smaller
2296    than a word are always performed on the entire register.  */
2297 
2298 #define WORD_REGISTER_OPERATIONS
2299 
2300 /* Define this macro to be a C expression indicating when insns that read
2301    memory in MODE, an integral mode narrower than a word, set the bits outside
2302    of MODE to be either the sign-extension or the zero-extension of the data
2303    read.  */
2304 
2305 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2306 
2307 /* The maximum number of bytes that a single instruction can move quickly from
2308    memory to memory.  */
2309 #define MOVE_MAX 8
2310 
2311 /* A C expression which is nonzero if on this machine it is safe to "convert"
2312    an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2313    than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
2314 
2315 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2316 
2317 /* A C expression describing the value returned by a comparison operator with
2318    an integral mode and stored by a store-flag instruction (`sCOND') when the
2319    condition is true.  */
2320 
2321 /* ??? Investigate using -1 instead of 1.  */
2322 
2323 #define STORE_FLAG_VALUE 1
2324 
2325 /* An alias for the machine mode for pointers.  */
2326 
2327 /* ??? This would change if we had ILP32 support.  */
2328 
2329 #define Pmode DImode
2330 
2331 /* An alias for the machine mode used for memory references to functions being
2332    called, in `call' RTL expressions.  */
2333 
2334 #define FUNCTION_MODE Pmode
2335 
2336 /* Define this macro to handle System V style pragmas: #pragma pack and
2337    #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
2338    defined.  */
2339 
2340 /* If this architecture supports prefetch, define this to be the number of
2341    prefetch commands that can be executed in parallel.
2342 
2343    ??? This number is bogus and needs to be replaced before the value is
2344    actually used in optimizations.  */
2345 
2346 #define SIMULTANEOUS_PREFETCHES 6
2347 
2348 /* If this architecture supports prefetch, define this to be the size of
2349    the cache line that is prefetched.  */
2350 
2351 #define PREFETCH_BLOCK 32
2352 
2353 #define HANDLE_SYSV_PRAGMA 1
2354 
2355 /* In rare cases, correct code generation requires extra machine dependent
2356    processing between the second jump optimization pass and delayed branch
2357    scheduling.  On those machines, define this macro as a C statement to act on
2358    the code starting at INSN.  */
2359 
2360 #define MACHINE_DEPENDENT_REORG(INSN) ia64_reorg (INSN)
2361 
2362 /* A C expression for the maximum number of instructions to execute via
2363    conditional execution instructions instead of a branch.  A value of
2364    BRANCH_COST+1 is the default if the machine does not use
2365    cc0, and 1 if it does use cc0.  */
2366 /* ??? Investigate.  */
2367 #define MAX_CONDITIONAL_EXECUTE 12
2368 
2369 extern int ia64_final_schedule;
2370 
2371 #define IA64_UNWIND_INFO	1
2372 #define IA64_UNWIND_EMIT(f,i)	process_for_unwind_directive (f,i)
2373 
2374 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2375 
2376 /* This function contains machine specific function data.  */
2377 struct machine_function GTY(())
2378 {
2379   /* The new stack pointer when unwinding from EH.  */
2380   rtx ia64_eh_epilogue_sp;
2381 
2382   /* The new bsp value when unwinding from EH.  */
2383   rtx ia64_eh_epilogue_bsp;
2384 
2385   /* The GP value save register.  */
2386   rtx ia64_gp_save;
2387 
2388   /* The number of varargs registers to save.  */
2389   int n_varargs;
2390 };
2391 
2392 
2393 enum ia64_builtins
2394 {
2395   IA64_BUILTIN_SYNCHRONIZE,
2396 
2397   IA64_BUILTIN_FETCH_AND_ADD_SI,
2398   IA64_BUILTIN_FETCH_AND_SUB_SI,
2399   IA64_BUILTIN_FETCH_AND_OR_SI,
2400   IA64_BUILTIN_FETCH_AND_AND_SI,
2401   IA64_BUILTIN_FETCH_AND_XOR_SI,
2402   IA64_BUILTIN_FETCH_AND_NAND_SI,
2403 
2404   IA64_BUILTIN_ADD_AND_FETCH_SI,
2405   IA64_BUILTIN_SUB_AND_FETCH_SI,
2406   IA64_BUILTIN_OR_AND_FETCH_SI,
2407   IA64_BUILTIN_AND_AND_FETCH_SI,
2408   IA64_BUILTIN_XOR_AND_FETCH_SI,
2409   IA64_BUILTIN_NAND_AND_FETCH_SI,
2410 
2411   IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2412   IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2413 
2414   IA64_BUILTIN_SYNCHRONIZE_SI,
2415 
2416   IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2417 
2418   IA64_BUILTIN_LOCK_RELEASE_SI,
2419 
2420   IA64_BUILTIN_FETCH_AND_ADD_DI,
2421   IA64_BUILTIN_FETCH_AND_SUB_DI,
2422   IA64_BUILTIN_FETCH_AND_OR_DI,
2423   IA64_BUILTIN_FETCH_AND_AND_DI,
2424   IA64_BUILTIN_FETCH_AND_XOR_DI,
2425   IA64_BUILTIN_FETCH_AND_NAND_DI,
2426 
2427   IA64_BUILTIN_ADD_AND_FETCH_DI,
2428   IA64_BUILTIN_SUB_AND_FETCH_DI,
2429   IA64_BUILTIN_OR_AND_FETCH_DI,
2430   IA64_BUILTIN_AND_AND_FETCH_DI,
2431   IA64_BUILTIN_XOR_AND_FETCH_DI,
2432   IA64_BUILTIN_NAND_AND_FETCH_DI,
2433 
2434   IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2435   IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2436 
2437   IA64_BUILTIN_SYNCHRONIZE_DI,
2438 
2439   IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2440 
2441   IA64_BUILTIN_LOCK_RELEASE_DI,
2442 
2443   IA64_BUILTIN_BSP,
2444   IA64_BUILTIN_FLUSHRS
2445 };
2446 
2447 /* Codes for expand_compare_and_swap and expand_swap_and_compare.  */
2448 enum fetchop_code {
2449   IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2450 };
2451 
2452 #define DONT_USE_BUILTIN_SETJMP
2453 
2454 /* Output any profiling code before the prologue.  */
2455 
2456 #undef  PROFILE_BEFORE_PROLOGUE
2457 #define PROFILE_BEFORE_PROLOGUE 1
2458 
2459 #define FUNCTION_OK_FOR_SIBCALL(DECL) ia64_function_ok_for_sibcall (DECL)
2460 /* End of ia64.h */
2461