1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91 do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97 } while (0)
98
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118 do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132
133 union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139 };
140
141 extern union ib_gid zgid;
142
143 enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148 };
149
150 #define ROCE_V2_UDP_DPORT 4791
151 struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158 };
159
160 enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163 };
164
165 enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171 };
172
173 enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178 };
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182
183 enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188 };
189
ib_network_to_gid_type(enum rdma_network_type network_type)190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199 }
200
201 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214 }
215
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220 };
221
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277 };
278
279 enum ib_kernel_cap_flags {
280 /*
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
286 */
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
296
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 IBK_UD_TSO = 1 << 6,
301 /* iopib will use the device ops:
302 * get_vf_config
303 * get_vf_guid
304 * get_vf_stats
305 * set_vf_guid
306 * set_vf_link_state
307 */
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
311 };
312
313 enum ib_atomic_cap {
314 IB_ATOMIC_NONE,
315 IB_ATOMIC_HCA,
316 IB_ATOMIC_GLOB
317 };
318
319 enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322 };
323
324 enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331 };
332
333 struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341 };
342
343 struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351 };
352
353 enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357
358 struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369 };
370
371 struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375 };
376
377 enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379 };
380
381 struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384 };
385
386 struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390 };
391
392 struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396 };
397
398 struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453 };
454
455 enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461 };
462
463 enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466 };
467
ib_mtu_enum_to_int(enum ib_mtu mtu)468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478 }
479
ib_mtu_int_to_enum(int mtu)480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492 }
493
opa_mtu_enum_to_int(enum opa_mtu mtu)494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 }
504 }
505
opa_mtu_int_to_enum(int mtu)506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515
516 enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523 };
524
525 enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
533 };
534
535 enum ib_port_width {
536 IB_WIDTH_1X = 1,
537 IB_WIDTH_2X = 16,
538 IB_WIDTH_4X = 2,
539 IB_WIDTH_8X = 4,
540 IB_WIDTH_12X = 8
541 };
542
ib_width_enum_to_int(enum ib_port_width width)543 static inline int ib_width_enum_to_int(enum ib_port_width width)
544 {
545 switch (width) {
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
551 default: return -1;
552 }
553 }
554
555 enum ib_port_speed {
556 IB_SPEED_SDR = 1,
557 IB_SPEED_DDR = 2,
558 IB_SPEED_QDR = 4,
559 IB_SPEED_FDR10 = 8,
560 IB_SPEED_FDR = 16,
561 IB_SPEED_EDR = 32,
562 IB_SPEED_HDR = 64,
563 IB_SPEED_NDR = 128,
564 IB_SPEED_XDR = 256,
565 };
566
567 enum ib_stat_flag {
568 IB_STAT_FLAG_OPTIONAL = 1 << 0,
569 };
570
571 /**
572 * struct rdma_stat_desc
573 * @name - The name of the counter
574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575 * @priv - Driver private information; Core code should not use
576 */
577 struct rdma_stat_desc {
578 const char *name;
579 unsigned int flags;
580 const void *priv;
581 };
582
583 /**
584 * struct rdma_hw_stats
585 * @lock - Mutex to protect parallel write access to lifespan and values
586 * of counters, which are 64bits and not guaranteed to be written
587 * atomicaly on 32bits systems.
588 * @timestamp - Used by the core code to track when the last update was
589 * @lifespan - Used by the core code to determine how old the counters
590 * should be before being updated again. Stored in jiffies, defaults
591 * to 10 milliseconds, drivers can override the default be specifying
592 * their own value during their allocation routine.
593 * @descs - Array of pointers to static descriptors used for the counters
594 * in directory.
595 * @is_disabled - A bitmap to indicate each counter is currently disabled
596 * or not.
597 * @num_counters - How many hardware counters there are. If name is
598 * shorter than this number, a kernel oops will result. Driver authors
599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600 * in their code to prevent this.
601 * @value - Array of u64 counters that are accessed by the sysfs code and
602 * filled in by the drivers get_stats routine
603 */
604 struct rdma_hw_stats {
605 struct mutex lock; /* Protect lifespan and values[] */
606 unsigned long timestamp;
607 unsigned long lifespan;
608 const struct rdma_stat_desc *descs;
609 unsigned long *is_disabled;
610 int num_counters;
611 u64 value[] __counted_by(num_counters);
612 };
613
614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615
616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617 const struct rdma_stat_desc *descs, int num_counters,
618 unsigned long lifespan);
619
620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621
622 /* Define bits for the various functionality this port needs to be supported by
623 * the core.
624 */
625 /* Management 0x00000FFF */
626 #define RDMA_CORE_CAP_IB_MAD 0x00000001
627 #define RDMA_CORE_CAP_IB_SMI 0x00000002
628 #define RDMA_CORE_CAP_IB_CM 0x00000004
629 #define RDMA_CORE_CAP_IW_CM 0x00000008
630 #define RDMA_CORE_CAP_IB_SA 0x00000010
631 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
632
633 /* Address format 0x000FF000 */
634 #define RDMA_CORE_CAP_AF_IB 0x00001000
635 #define RDMA_CORE_CAP_ETH_AH 0x00002000
636 #define RDMA_CORE_CAP_OPA_AH 0x00004000
637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
638
639 /* Protocol 0xFFF00000 */
640 #define RDMA_CORE_CAP_PROT_IB 0x00100000
641 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
642 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
645 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
646
647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 | RDMA_CORE_CAP_PROT_ROCE \
649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650
651 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
652 | RDMA_CORE_CAP_IB_MAD \
653 | RDMA_CORE_CAP_IB_SMI \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_IB_SA \
656 | RDMA_CORE_CAP_AF_IB)
657 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
658 | RDMA_CORE_CAP_IB_MAD \
659 | RDMA_CORE_CAP_IB_CM \
660 | RDMA_CORE_CAP_AF_IB \
661 | RDMA_CORE_CAP_ETH_AH)
662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 | RDMA_CORE_CAP_IB_MAD \
665 | RDMA_CORE_CAP_IB_CM \
666 | RDMA_CORE_CAP_AF_IB \
667 | RDMA_CORE_CAP_ETH_AH)
668 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
669 | RDMA_CORE_CAP_IW_CM)
670 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
671 | RDMA_CORE_CAP_OPA_MAD)
672
673 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
674
675 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
676
677 struct ib_port_attr {
678 u64 subnet_prefix;
679 enum ib_port_state state;
680 enum ib_mtu max_mtu;
681 enum ib_mtu active_mtu;
682 u32 phys_mtu;
683 int gid_tbl_len;
684 unsigned int ip_gids:1;
685 /* This is the value from PortInfo CapabilityMask, defined by IBA */
686 u32 port_cap_flags;
687 u32 max_msg_sz;
688 u32 bad_pkey_cntr;
689 u32 qkey_viol_cntr;
690 u16 pkey_tbl_len;
691 u32 sm_lid;
692 u32 lid;
693 u8 lmc;
694 u8 max_vl_num;
695 u8 sm_sl;
696 u8 subnet_timeout;
697 u8 init_type_reply;
698 u8 active_width;
699 u16 active_speed;
700 u8 phys_state;
701 u16 port_cap_flags2;
702 };
703
704 enum ib_device_modify_flags {
705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
707 };
708
709 #define IB_DEVICE_NODE_DESC_MAX 64
710
711 struct ib_device_modify {
712 u64 sys_image_guid;
713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
714 };
715
716 enum ib_port_modify_flags {
717 IB_PORT_SHUTDOWN = 1,
718 IB_PORT_INIT_TYPE = (1<<2),
719 IB_PORT_RESET_QKEY_CNTR = (1<<3),
720 IB_PORT_OPA_MASK_CHG = (1<<4)
721 };
722
723 struct ib_port_modify {
724 u32 set_port_cap_mask;
725 u32 clr_port_cap_mask;
726 u8 init_type;
727 };
728
729 enum ib_event_type {
730 IB_EVENT_CQ_ERR,
731 IB_EVENT_QP_FATAL,
732 IB_EVENT_QP_REQ_ERR,
733 IB_EVENT_QP_ACCESS_ERR,
734 IB_EVENT_COMM_EST,
735 IB_EVENT_SQ_DRAINED,
736 IB_EVENT_PATH_MIG,
737 IB_EVENT_PATH_MIG_ERR,
738 IB_EVENT_DEVICE_FATAL,
739 IB_EVENT_PORT_ACTIVE,
740 IB_EVENT_PORT_ERR,
741 IB_EVENT_LID_CHANGE,
742 IB_EVENT_PKEY_CHANGE,
743 IB_EVENT_SM_CHANGE,
744 IB_EVENT_SRQ_ERR,
745 IB_EVENT_SRQ_LIMIT_REACHED,
746 IB_EVENT_QP_LAST_WQE_REACHED,
747 IB_EVENT_CLIENT_REREGISTER,
748 IB_EVENT_GID_CHANGE,
749 IB_EVENT_WQ_FATAL,
750 };
751
752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753
754 struct ib_event {
755 struct ib_device *device;
756 union {
757 struct ib_cq *cq;
758 struct ib_qp *qp;
759 struct ib_srq *srq;
760 struct ib_wq *wq;
761 u32 port_num;
762 } element;
763 enum ib_event_type event;
764 };
765
766 struct ib_event_handler {
767 struct ib_device *device;
768 void (*handler)(struct ib_event_handler *, struct ib_event *);
769 struct list_head list;
770 };
771
772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
773 do { \
774 (_ptr)->device = _device; \
775 (_ptr)->handler = _handler; \
776 INIT_LIST_HEAD(&(_ptr)->list); \
777 } while (0)
778
779 struct ib_global_route {
780 const struct ib_gid_attr *sgid_attr;
781 union ib_gid dgid;
782 u32 flow_label;
783 u8 sgid_index;
784 u8 hop_limit;
785 u8 traffic_class;
786 };
787
788 struct ib_grh {
789 __be32 version_tclass_flow;
790 __be16 paylen;
791 u8 next_hdr;
792 u8 hop_limit;
793 union ib_gid sgid;
794 union ib_gid dgid;
795 };
796
797 union rdma_network_hdr {
798 struct ib_grh ibgrh;
799 struct {
800 /* The IB spec states that if it's IPv4, the header
801 * is located in the last 20 bytes of the header.
802 */
803 u8 reserved[20];
804 struct iphdr roce4grh;
805 };
806 };
807
808 #define IB_QPN_MASK 0xFFFFFF
809
810 enum {
811 IB_MULTICAST_QPN = 0xffffff
812 };
813
814 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
815 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
816
817 enum ib_ah_flags {
818 IB_AH_GRH = 1
819 };
820
821 enum ib_rate {
822 IB_RATE_PORT_CURRENT = 0,
823 IB_RATE_2_5_GBPS = 2,
824 IB_RATE_5_GBPS = 5,
825 IB_RATE_10_GBPS = 3,
826 IB_RATE_20_GBPS = 6,
827 IB_RATE_30_GBPS = 4,
828 IB_RATE_40_GBPS = 7,
829 IB_RATE_60_GBPS = 8,
830 IB_RATE_80_GBPS = 9,
831 IB_RATE_120_GBPS = 10,
832 IB_RATE_14_GBPS = 11,
833 IB_RATE_56_GBPS = 12,
834 IB_RATE_112_GBPS = 13,
835 IB_RATE_168_GBPS = 14,
836 IB_RATE_25_GBPS = 15,
837 IB_RATE_100_GBPS = 16,
838 IB_RATE_200_GBPS = 17,
839 IB_RATE_300_GBPS = 18,
840 IB_RATE_28_GBPS = 19,
841 IB_RATE_50_GBPS = 20,
842 IB_RATE_400_GBPS = 21,
843 IB_RATE_600_GBPS = 22,
844 IB_RATE_800_GBPS = 23,
845 };
846
847 /**
848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851 * @rate: rate to convert.
852 */
853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854
855 /**
856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858 * @rate: rate to convert.
859 */
860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861
862
863 /**
864 * enum ib_mr_type - memory region type
865 * @IB_MR_TYPE_MEM_REG: memory region that is used for
866 * normal registration
867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
868 * register any arbitrary sg lists (without
869 * the normal mr constraints - see
870 * ib_map_mr_sg)
871 * @IB_MR_TYPE_DM: memory region that is used for device
872 * memory registration
873 * @IB_MR_TYPE_USER: memory region that is used for the user-space
874 * application
875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
876 * without address translations (VA=PA)
877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
878 * data integrity operations
879 */
880 enum ib_mr_type {
881 IB_MR_TYPE_MEM_REG,
882 IB_MR_TYPE_SG_GAPS,
883 IB_MR_TYPE_DM,
884 IB_MR_TYPE_USER,
885 IB_MR_TYPE_DMA,
886 IB_MR_TYPE_INTEGRITY,
887 };
888
889 enum ib_mr_status_check {
890 IB_MR_CHECK_SIG_STATUS = 1,
891 };
892
893 /**
894 * struct ib_mr_status - Memory region status container
895 *
896 * @fail_status: Bitmask of MR checks status. For each
897 * failed check a corresponding status bit is set.
898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899 * failure.
900 */
901 struct ib_mr_status {
902 u32 fail_status;
903 struct ib_sig_err sig_err;
904 };
905
906 /**
907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908 * enum.
909 * @mult: multiple to convert.
910 */
911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912
913 struct rdma_ah_init_attr {
914 struct rdma_ah_attr *ah_attr;
915 u32 flags;
916 struct net_device *xmit_slave;
917 };
918
919 enum rdma_ah_attr_type {
920 RDMA_AH_ATTR_TYPE_UNDEFINED,
921 RDMA_AH_ATTR_TYPE_IB,
922 RDMA_AH_ATTR_TYPE_ROCE,
923 RDMA_AH_ATTR_TYPE_OPA,
924 };
925
926 struct ib_ah_attr {
927 u16 dlid;
928 u8 src_path_bits;
929 };
930
931 struct roce_ah_attr {
932 u8 dmac[ETH_ALEN];
933 };
934
935 struct opa_ah_attr {
936 u32 dlid;
937 u8 src_path_bits;
938 bool make_grd;
939 };
940
941 struct rdma_ah_attr {
942 struct ib_global_route grh;
943 u8 sl;
944 u8 static_rate;
945 u32 port_num;
946 u8 ah_flags;
947 enum rdma_ah_attr_type type;
948 union {
949 struct ib_ah_attr ib;
950 struct roce_ah_attr roce;
951 struct opa_ah_attr opa;
952 };
953 };
954
955 enum ib_wc_status {
956 IB_WC_SUCCESS,
957 IB_WC_LOC_LEN_ERR,
958 IB_WC_LOC_QP_OP_ERR,
959 IB_WC_LOC_EEC_OP_ERR,
960 IB_WC_LOC_PROT_ERR,
961 IB_WC_WR_FLUSH_ERR,
962 IB_WC_MW_BIND_ERR,
963 IB_WC_BAD_RESP_ERR,
964 IB_WC_LOC_ACCESS_ERR,
965 IB_WC_REM_INV_REQ_ERR,
966 IB_WC_REM_ACCESS_ERR,
967 IB_WC_REM_OP_ERR,
968 IB_WC_RETRY_EXC_ERR,
969 IB_WC_RNR_RETRY_EXC_ERR,
970 IB_WC_LOC_RDD_VIOL_ERR,
971 IB_WC_REM_INV_RD_REQ_ERR,
972 IB_WC_REM_ABORT_ERR,
973 IB_WC_INV_EECN_ERR,
974 IB_WC_INV_EEC_STATE_ERR,
975 IB_WC_FATAL_ERR,
976 IB_WC_RESP_TIMEOUT_ERR,
977 IB_WC_GENERAL_ERR
978 };
979
980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981
982 enum ib_wc_opcode {
983 IB_WC_SEND = IB_UVERBS_WC_SEND,
984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990 IB_WC_LSO = IB_UVERBS_WC_TSO,
991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992 IB_WC_REG_MR,
993 IB_WC_MASKED_COMP_SWAP,
994 IB_WC_MASKED_FETCH_ADD,
995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996 /*
997 * Set value of IB_WC_RECV so consumers can test if a completion is a
998 * receive by testing (opcode & IB_WC_RECV).
999 */
1000 IB_WC_RECV = 1 << 7,
1001 IB_WC_RECV_RDMA_WITH_IMM
1002 };
1003
1004 enum ib_wc_flags {
1005 IB_WC_GRH = 1,
1006 IB_WC_WITH_IMM = (1<<1),
1007 IB_WC_WITH_INVALIDATE = (1<<2),
1008 IB_WC_IP_CSUM_OK = (1<<3),
1009 IB_WC_WITH_SMAC = (1<<4),
1010 IB_WC_WITH_VLAN = (1<<5),
1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1012 };
1013
1014 struct ib_wc {
1015 union {
1016 u64 wr_id;
1017 struct ib_cqe *wr_cqe;
1018 };
1019 enum ib_wc_status status;
1020 enum ib_wc_opcode opcode;
1021 u32 vendor_err;
1022 u32 byte_len;
1023 struct ib_qp *qp;
1024 union {
1025 __be32 imm_data;
1026 u32 invalidate_rkey;
1027 } ex;
1028 u32 src_qp;
1029 u32 slid;
1030 int wc_flags;
1031 u16 pkey_index;
1032 u8 sl;
1033 u8 dlid_path_bits;
1034 u32 port_num; /* valid only for DR SMPs on switches */
1035 u8 smac[ETH_ALEN];
1036 u16 vlan_id;
1037 u8 network_hdr_type;
1038 };
1039
1040 enum ib_cq_notify_flags {
1041 IB_CQ_SOLICITED = 1 << 0,
1042 IB_CQ_NEXT_COMP = 1 << 1,
1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1045 };
1046
1047 enum ib_srq_type {
1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051 };
1052
ib_srq_has_cq(enum ib_srq_type srq_type)1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054 {
1055 return srq_type == IB_SRQT_XRC ||
1056 srq_type == IB_SRQT_TM;
1057 }
1058
1059 enum ib_srq_attr_mask {
1060 IB_SRQ_MAX_WR = 1 << 0,
1061 IB_SRQ_LIMIT = 1 << 1,
1062 };
1063
1064 struct ib_srq_attr {
1065 u32 max_wr;
1066 u32 max_sge;
1067 u32 srq_limit;
1068 };
1069
1070 struct ib_srq_init_attr {
1071 void (*event_handler)(struct ib_event *, void *);
1072 void *srq_context;
1073 struct ib_srq_attr attr;
1074 enum ib_srq_type srq_type;
1075
1076 struct {
1077 struct ib_cq *cq;
1078 union {
1079 struct {
1080 struct ib_xrcd *xrcd;
1081 } xrc;
1082
1083 struct {
1084 u32 max_num_tags;
1085 } tag_matching;
1086 };
1087 } ext;
1088 };
1089
1090 struct ib_qp_cap {
1091 u32 max_send_wr;
1092 u32 max_recv_wr;
1093 u32 max_send_sge;
1094 u32 max_recv_sge;
1095 u32 max_inline_data;
1096
1097 /*
1098 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099 * ib_create_qp() will calculate the right amount of needed WRs
1100 * and MRs based on this.
1101 */
1102 u32 max_rdma_ctxs;
1103 };
1104
1105 enum ib_sig_type {
1106 IB_SIGNAL_ALL_WR,
1107 IB_SIGNAL_REQ_WR
1108 };
1109
1110 enum ib_qp_type {
1111 /*
1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113 * here (and in that order) since the MAD layer uses them as
1114 * indices into a 2-entry table.
1115 */
1116 IB_QPT_SMI,
1117 IB_QPT_GSI,
1118
1119 IB_QPT_RC = IB_UVERBS_QPT_RC,
1120 IB_QPT_UC = IB_UVERBS_QPT_UC,
1121 IB_QPT_UD = IB_UVERBS_QPT_UD,
1122 IB_QPT_RAW_IPV6,
1123 IB_QPT_RAW_ETHERTYPE,
1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127 IB_QPT_MAX,
1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129 /* Reserve a range for qp types internal to the low level driver.
1130 * These qp types will not be visible at the IB core layer, so the
1131 * IB_QPT_MAX usages should not be affected in the core layer
1132 */
1133 IB_QPT_RESERVED1 = 0x1000,
1134 IB_QPT_RESERVED2,
1135 IB_QPT_RESERVED3,
1136 IB_QPT_RESERVED4,
1137 IB_QPT_RESERVED5,
1138 IB_QPT_RESERVED6,
1139 IB_QPT_RESERVED7,
1140 IB_QPT_RESERVED8,
1141 IB_QPT_RESERVED9,
1142 IB_QPT_RESERVED10,
1143 };
1144
1145 enum ib_qp_create_flags {
1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1152 IB_QP_CREATE_NETIF_QP = 1 << 5,
1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1154 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1155 IB_QP_CREATE_SCATTER_FCS =
1156 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157 IB_QP_CREATE_CVLAN_STRIPPING =
1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1160 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162 /* reserve bits 26-31 for low level drivers' internal use */
1163 IB_QP_CREATE_RESERVED_START = 1 << 26,
1164 IB_QP_CREATE_RESERVED_END = 1 << 31,
1165 };
1166
1167 /*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1172 struct ib_qp_init_attr {
1173 /* This callback occurs in workqueue context */
1174 void (*event_handler)(struct ib_event *, void *);
1175
1176 void *qp_context;
1177 struct ib_cq *send_cq;
1178 struct ib_cq *recv_cq;
1179 struct ib_srq *srq;
1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1181 struct ib_qp_cap cap;
1182 enum ib_sig_type sq_sig_type;
1183 enum ib_qp_type qp_type;
1184 u32 create_flags;
1185
1186 /*
1187 * Only needed for special QP types, or when using the RW API.
1188 */
1189 u32 port_num;
1190 struct ib_rwq_ind_table *rwq_ind_tbl;
1191 u32 source_qpn;
1192 };
1193
1194 struct ib_qp_open_attr {
1195 void (*event_handler)(struct ib_event *, void *);
1196 void *qp_context;
1197 u32 qp_num;
1198 enum ib_qp_type qp_type;
1199 };
1200
1201 enum ib_rnr_timeout {
1202 IB_RNR_TIMER_655_36 = 0,
1203 IB_RNR_TIMER_000_01 = 1,
1204 IB_RNR_TIMER_000_02 = 2,
1205 IB_RNR_TIMER_000_03 = 3,
1206 IB_RNR_TIMER_000_04 = 4,
1207 IB_RNR_TIMER_000_06 = 5,
1208 IB_RNR_TIMER_000_08 = 6,
1209 IB_RNR_TIMER_000_12 = 7,
1210 IB_RNR_TIMER_000_16 = 8,
1211 IB_RNR_TIMER_000_24 = 9,
1212 IB_RNR_TIMER_000_32 = 10,
1213 IB_RNR_TIMER_000_48 = 11,
1214 IB_RNR_TIMER_000_64 = 12,
1215 IB_RNR_TIMER_000_96 = 13,
1216 IB_RNR_TIMER_001_28 = 14,
1217 IB_RNR_TIMER_001_92 = 15,
1218 IB_RNR_TIMER_002_56 = 16,
1219 IB_RNR_TIMER_003_84 = 17,
1220 IB_RNR_TIMER_005_12 = 18,
1221 IB_RNR_TIMER_007_68 = 19,
1222 IB_RNR_TIMER_010_24 = 20,
1223 IB_RNR_TIMER_015_36 = 21,
1224 IB_RNR_TIMER_020_48 = 22,
1225 IB_RNR_TIMER_030_72 = 23,
1226 IB_RNR_TIMER_040_96 = 24,
1227 IB_RNR_TIMER_061_44 = 25,
1228 IB_RNR_TIMER_081_92 = 26,
1229 IB_RNR_TIMER_122_88 = 27,
1230 IB_RNR_TIMER_163_84 = 28,
1231 IB_RNR_TIMER_245_76 = 29,
1232 IB_RNR_TIMER_327_68 = 30,
1233 IB_RNR_TIMER_491_52 = 31
1234 };
1235
1236 enum ib_qp_attr_mask {
1237 IB_QP_STATE = 1,
1238 IB_QP_CUR_STATE = (1<<1),
1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1240 IB_QP_ACCESS_FLAGS = (1<<3),
1241 IB_QP_PKEY_INDEX = (1<<4),
1242 IB_QP_PORT = (1<<5),
1243 IB_QP_QKEY = (1<<6),
1244 IB_QP_AV = (1<<7),
1245 IB_QP_PATH_MTU = (1<<8),
1246 IB_QP_TIMEOUT = (1<<9),
1247 IB_QP_RETRY_CNT = (1<<10),
1248 IB_QP_RNR_RETRY = (1<<11),
1249 IB_QP_RQ_PSN = (1<<12),
1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1251 IB_QP_ALT_PATH = (1<<14),
1252 IB_QP_MIN_RNR_TIMER = (1<<15),
1253 IB_QP_SQ_PSN = (1<<16),
1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1255 IB_QP_PATH_MIG_STATE = (1<<18),
1256 IB_QP_CAP = (1<<19),
1257 IB_QP_DEST_QPN = (1<<20),
1258 IB_QP_RESERVED1 = (1<<21),
1259 IB_QP_RESERVED2 = (1<<22),
1260 IB_QP_RESERVED3 = (1<<23),
1261 IB_QP_RESERVED4 = (1<<24),
1262 IB_QP_RATE_LIMIT = (1<<25),
1263
1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265 };
1266
1267 enum ib_qp_state {
1268 IB_QPS_RESET,
1269 IB_QPS_INIT,
1270 IB_QPS_RTR,
1271 IB_QPS_RTS,
1272 IB_QPS_SQD,
1273 IB_QPS_SQE,
1274 IB_QPS_ERR
1275 };
1276
1277 enum ib_mig_state {
1278 IB_MIG_MIGRATED,
1279 IB_MIG_REARM,
1280 IB_MIG_ARMED
1281 };
1282
1283 enum ib_mw_type {
1284 IB_MW_TYPE_1 = 1,
1285 IB_MW_TYPE_2 = 2
1286 };
1287
1288 struct ib_qp_attr {
1289 enum ib_qp_state qp_state;
1290 enum ib_qp_state cur_qp_state;
1291 enum ib_mtu path_mtu;
1292 enum ib_mig_state path_mig_state;
1293 u32 qkey;
1294 u32 rq_psn;
1295 u32 sq_psn;
1296 u32 dest_qp_num;
1297 int qp_access_flags;
1298 struct ib_qp_cap cap;
1299 struct rdma_ah_attr ah_attr;
1300 struct rdma_ah_attr alt_ah_attr;
1301 u16 pkey_index;
1302 u16 alt_pkey_index;
1303 u8 en_sqd_async_notify;
1304 u8 sq_draining;
1305 u8 max_rd_atomic;
1306 u8 max_dest_rd_atomic;
1307 u8 min_rnr_timer;
1308 u32 port_num;
1309 u8 timeout;
1310 u8 retry_cnt;
1311 u8 rnr_retry;
1312 u32 alt_port_num;
1313 u8 alt_timeout;
1314 u32 rate_limit;
1315 struct net_device *xmit_slave;
1316 };
1317
1318 enum ib_wr_opcode {
1319 /* These are shared with userspace */
1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322 IB_WR_SEND = IB_UVERBS_WR_SEND,
1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328 IB_WR_LSO = IB_UVERBS_WR_TSO,
1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338
1339 /* These are kernel only and can not be issued by userspace */
1340 IB_WR_REG_MR = 0x20,
1341 IB_WR_REG_MR_INTEGRITY,
1342
1343 /* reserve values for low level drivers' internal use.
1344 * These values will not be used at all in the ib core layer.
1345 */
1346 IB_WR_RESERVED1 = 0xf0,
1347 IB_WR_RESERVED2,
1348 IB_WR_RESERVED3,
1349 IB_WR_RESERVED4,
1350 IB_WR_RESERVED5,
1351 IB_WR_RESERVED6,
1352 IB_WR_RESERVED7,
1353 IB_WR_RESERVED8,
1354 IB_WR_RESERVED9,
1355 IB_WR_RESERVED10,
1356 };
1357
1358 enum ib_send_flags {
1359 IB_SEND_FENCE = 1,
1360 IB_SEND_SIGNALED = (1<<1),
1361 IB_SEND_SOLICITED = (1<<2),
1362 IB_SEND_INLINE = (1<<3),
1363 IB_SEND_IP_CSUM = (1<<4),
1364
1365 /* reserve bits 26-31 for low level drivers' internal use */
1366 IB_SEND_RESERVED_START = (1 << 26),
1367 IB_SEND_RESERVED_END = (1 << 31),
1368 };
1369
1370 struct ib_sge {
1371 u64 addr;
1372 u32 length;
1373 u32 lkey;
1374 };
1375
1376 struct ib_cqe {
1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378 };
1379
1380 struct ib_send_wr {
1381 struct ib_send_wr *next;
1382 union {
1383 u64 wr_id;
1384 struct ib_cqe *wr_cqe;
1385 };
1386 struct ib_sge *sg_list;
1387 int num_sge;
1388 enum ib_wr_opcode opcode;
1389 int send_flags;
1390 union {
1391 __be32 imm_data;
1392 u32 invalidate_rkey;
1393 } ex;
1394 };
1395
1396 struct ib_rdma_wr {
1397 struct ib_send_wr wr;
1398 u64 remote_addr;
1399 u32 rkey;
1400 };
1401
rdma_wr(const struct ib_send_wr * wr)1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403 {
1404 return container_of(wr, struct ib_rdma_wr, wr);
1405 }
1406
1407 struct ib_atomic_wr {
1408 struct ib_send_wr wr;
1409 u64 remote_addr;
1410 u64 compare_add;
1411 u64 swap;
1412 u64 compare_add_mask;
1413 u64 swap_mask;
1414 u32 rkey;
1415 };
1416
atomic_wr(const struct ib_send_wr * wr)1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418 {
1419 return container_of(wr, struct ib_atomic_wr, wr);
1420 }
1421
1422 struct ib_ud_wr {
1423 struct ib_send_wr wr;
1424 struct ib_ah *ah;
1425 void *header;
1426 int hlen;
1427 int mss;
1428 u32 remote_qpn;
1429 u32 remote_qkey;
1430 u16 pkey_index; /* valid for GSI only */
1431 u32 port_num; /* valid for DR SMPs on switch only */
1432 };
1433
ud_wr(const struct ib_send_wr * wr)1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435 {
1436 return container_of(wr, struct ib_ud_wr, wr);
1437 }
1438
1439 struct ib_reg_wr {
1440 struct ib_send_wr wr;
1441 struct ib_mr *mr;
1442 u32 key;
1443 int access;
1444 };
1445
reg_wr(const struct ib_send_wr * wr)1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447 {
1448 return container_of(wr, struct ib_reg_wr, wr);
1449 }
1450
1451 struct ib_recv_wr {
1452 struct ib_recv_wr *next;
1453 union {
1454 u64 wr_id;
1455 struct ib_cqe *wr_cqe;
1456 };
1457 struct ib_sge *sg_list;
1458 int num_sge;
1459 };
1460
1461 enum ib_access_flags {
1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473
1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475 IB_ACCESS_SUPPORTED =
1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477 };
1478
1479 /*
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1482 */
1483 enum ib_mr_rereg_flags {
1484 IB_MR_REREG_TRANS = 1,
1485 IB_MR_REREG_PD = (1<<1),
1486 IB_MR_REREG_ACCESS = (1<<2),
1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1488 };
1489
1490 struct ib_umem;
1491
1492 enum rdma_remove_reason {
1493 /*
1494 * Userspace requested uobject deletion or initial try
1495 * to remove uobject via cleanup. Call could fail
1496 */
1497 RDMA_REMOVE_DESTROY,
1498 /* Context deletion. This call should delete the actual object itself */
1499 RDMA_REMOVE_CLOSE,
1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1501 RDMA_REMOVE_DRIVER_REMOVE,
1502 /* uobj is being cleaned-up before being committed */
1503 RDMA_REMOVE_ABORT,
1504 /* The driver failed to destroy the uobject and is being disconnected */
1505 RDMA_REMOVE_DRIVER_FAILURE,
1506 };
1507
1508 struct ib_rdmacg_object {
1509 #ifdef CONFIG_CGROUP_RDMA
1510 struct rdma_cgroup *cg; /* owner rdma cgroup */
1511 #endif
1512 };
1513
1514 struct ib_ucontext {
1515 struct ib_device *device;
1516 struct ib_uverbs_file *ufile;
1517
1518 struct ib_rdmacg_object cg_obj;
1519 /*
1520 * Implementation details of the RDMA core, don't use in drivers:
1521 */
1522 struct rdma_restrack_entry res;
1523 struct xarray mmap_xa;
1524 };
1525
1526 struct ib_uobject {
1527 u64 user_handle; /* handle given to us by userspace */
1528 /* ufile & ucontext owning this object */
1529 struct ib_uverbs_file *ufile;
1530 /* FIXME, save memory: ufile->context == context */
1531 struct ib_ucontext *context; /* associated user context */
1532 void *object; /* containing object */
1533 struct list_head list; /* link to context's list */
1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1535 int id; /* index into kernel idr */
1536 struct kref ref;
1537 atomic_t usecnt; /* protects exclusive access */
1538 struct rcu_head rcu; /* kfree_rcu() overhead */
1539
1540 const struct uverbs_api_object *uapi_object;
1541 };
1542
1543 struct ib_udata {
1544 const void __user *inbuf;
1545 void __user *outbuf;
1546 size_t inlen;
1547 size_t outlen;
1548 };
1549
1550 struct ib_pd {
1551 u32 local_dma_lkey;
1552 u32 flags;
1553 struct ib_device *device;
1554 struct ib_uobject *uobject;
1555 atomic_t usecnt; /* count all resources */
1556
1557 u32 unsafe_global_rkey;
1558
1559 /*
1560 * Implementation details of the RDMA core, don't use in drivers:
1561 */
1562 struct ib_mr *__internal_mr;
1563 struct rdma_restrack_entry res;
1564 };
1565
1566 struct ib_xrcd {
1567 struct ib_device *device;
1568 atomic_t usecnt; /* count all exposed resources */
1569 struct inode *inode;
1570 struct rw_semaphore tgt_qps_rwsem;
1571 struct xarray tgt_qps;
1572 };
1573
1574 struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
1577 struct ib_uobject *uobject;
1578 const struct ib_gid_attr *sgid_attr;
1579 enum rdma_ah_attr_type type;
1580 };
1581
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584 enum ib_poll_context {
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
1591 };
1592
1593 struct ib_cq {
1594 struct ib_device *device;
1595 struct ib_ucq_object *uobject;
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
1598 void *cq_context;
1599 int cqe;
1600 unsigned int cqe_used;
1601 atomic_t usecnt; /* count number of work queues */
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
1604 struct list_head pool_entry;
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
1609 struct workqueue_struct *comp_wq;
1610 struct dim *dim;
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
1614 u8 interrupt:1;
1615 u8 shared:1;
1616 unsigned int comp_vector;
1617
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1622 };
1623
1624 struct ib_srq {
1625 struct ib_device *device;
1626 struct ib_pd *pd;
1627 struct ib_usrq_object *uobject;
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
1630 enum ib_srq_type srq_type;
1631 atomic_t usecnt;
1632
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
1641 } ext;
1642
1643 /*
1644 * Implementation details of the RDMA core, don't use in drivers:
1645 */
1646 struct rdma_restrack_entry res;
1647 };
1648
1649 enum ib_raw_packet_caps {
1650 /*
1651 * Strip cvlan from incoming packet and report it in the matching work
1652 * completion is supported.
1653 */
1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656 /*
1657 * Scatter FCS field of an incoming packet to host memory is supported.
1658 */
1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660 /* Checksum offloads are supported (for both send and receive). */
1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662 /*
1663 * When a packet is received for an RQ with no receive WQEs, the
1664 * packet processing is delayed.
1665 */
1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667 };
1668
1669 enum ib_wq_type {
1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671 };
1672
1673 enum ib_wq_state {
1674 IB_WQS_RESET,
1675 IB_WQS_RDY,
1676 IB_WQS_ERR
1677 };
1678
1679 struct ib_wq {
1680 struct ib_device *device;
1681 struct ib_uwq_object *uobject;
1682 void *wq_context;
1683 void (*event_handler)(struct ib_event *, void *);
1684 struct ib_pd *pd;
1685 struct ib_cq *cq;
1686 u32 wq_num;
1687 enum ib_wq_state state;
1688 enum ib_wq_type wq_type;
1689 atomic_t usecnt;
1690 };
1691
1692 enum ib_wq_flags {
1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698 };
1699
1700 struct ib_wq_init_attr {
1701 void *wq_context;
1702 enum ib_wq_type wq_type;
1703 u32 max_wr;
1704 u32 max_sge;
1705 struct ib_cq *cq;
1706 void (*event_handler)(struct ib_event *, void *);
1707 u32 create_flags; /* Use enum ib_wq_flags */
1708 };
1709
1710 enum ib_wq_attr_mask {
1711 IB_WQ_STATE = 1 << 0,
1712 IB_WQ_CUR_STATE = 1 << 1,
1713 IB_WQ_FLAGS = 1 << 2,
1714 };
1715
1716 struct ib_wq_attr {
1717 enum ib_wq_state wq_state;
1718 enum ib_wq_state curr_wq_state;
1719 u32 flags; /* Use enum ib_wq_flags */
1720 u32 flags_mask; /* Use enum ib_wq_flags */
1721 };
1722
1723 struct ib_rwq_ind_table {
1724 struct ib_device *device;
1725 struct ib_uobject *uobject;
1726 atomic_t usecnt;
1727 u32 ind_tbl_num;
1728 u32 log_ind_tbl_size;
1729 struct ib_wq **ind_tbl;
1730 };
1731
1732 struct ib_rwq_ind_table_init_attr {
1733 u32 log_ind_tbl_size;
1734 /* Each entry is a pointer to Receive Work Queue */
1735 struct ib_wq **ind_tbl;
1736 };
1737
1738 enum port_pkey_state {
1739 IB_PORT_PKEY_NOT_VALID = 0,
1740 IB_PORT_PKEY_VALID = 1,
1741 IB_PORT_PKEY_LISTED = 2,
1742 };
1743
1744 struct ib_qp_security;
1745
1746 struct ib_port_pkey {
1747 enum port_pkey_state state;
1748 u16 pkey_index;
1749 u32 port_num;
1750 struct list_head qp_list;
1751 struct list_head to_error_list;
1752 struct ib_qp_security *sec;
1753 };
1754
1755 struct ib_ports_pkeys {
1756 struct ib_port_pkey main;
1757 struct ib_port_pkey alt;
1758 };
1759
1760 struct ib_qp_security {
1761 struct ib_qp *qp;
1762 struct ib_device *dev;
1763 /* Hold this mutex when changing port and pkey settings. */
1764 struct mutex mutex;
1765 struct ib_ports_pkeys *ports_pkeys;
1766 /* A list of all open shared QP handles. Required to enforce security
1767 * properly for all users of a shared QP.
1768 */
1769 struct list_head shared_qp_list;
1770 void *security;
1771 bool destroying;
1772 atomic_t error_list_count;
1773 struct completion error_complete;
1774 int error_comps_pending;
1775 };
1776
1777 /*
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1780 */
1781 struct ib_qp {
1782 struct ib_device *device;
1783 struct ib_pd *pd;
1784 struct ib_cq *send_cq;
1785 struct ib_cq *recv_cq;
1786 spinlock_t mr_lock;
1787 int mrs_used;
1788 struct list_head rdma_mrs;
1789 struct list_head sig_mrs;
1790 struct ib_srq *srq;
1791 struct completion srq_completion;
1792 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1793 struct list_head xrcd_list;
1794
1795 /* count times opened, mcast attaches, flow attaches */
1796 atomic_t usecnt;
1797 struct list_head open_list;
1798 struct ib_qp *real_qp;
1799 struct ib_uqp_object *uobject;
1800 void (*event_handler)(struct ib_event *, void *);
1801 void (*registered_event_handler)(struct ib_event *, void *);
1802 void *qp_context;
1803 /* sgid_attrs associated with the AV's */
1804 const struct ib_gid_attr *av_sgid_attr;
1805 const struct ib_gid_attr *alt_path_sgid_attr;
1806 u32 qp_num;
1807 u32 max_write_sge;
1808 u32 max_read_sge;
1809 enum ib_qp_type qp_type;
1810 struct ib_rwq_ind_table *rwq_ind_tbl;
1811 struct ib_qp_security *qp_sec;
1812 u32 port;
1813
1814 bool integrity_en;
1815 /*
1816 * Implementation details of the RDMA core, don't use in drivers:
1817 */
1818 struct rdma_restrack_entry res;
1819
1820 /* The counter the qp is bind to */
1821 struct rdma_counter *counter;
1822 };
1823
1824 struct ib_dm {
1825 struct ib_device *device;
1826 u32 length;
1827 u32 flags;
1828 struct ib_uobject *uobject;
1829 atomic_t usecnt;
1830 };
1831
1832 struct ib_mr {
1833 struct ib_device *device;
1834 struct ib_pd *pd;
1835 u32 lkey;
1836 u32 rkey;
1837 u64 iova;
1838 u64 length;
1839 unsigned int page_size;
1840 enum ib_mr_type type;
1841 bool need_inval;
1842 union {
1843 struct ib_uobject *uobject; /* user */
1844 struct list_head qp_entry; /* FR */
1845 };
1846
1847 struct ib_dm *dm;
1848 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1849 /*
1850 * Implementation details of the RDMA core, don't use in drivers:
1851 */
1852 struct rdma_restrack_entry res;
1853 };
1854
1855 struct ib_mw {
1856 struct ib_device *device;
1857 struct ib_pd *pd;
1858 struct ib_uobject *uobject;
1859 u32 rkey;
1860 enum ib_mw_type type;
1861 };
1862
1863 /* Supported steering options */
1864 enum ib_flow_attr_type {
1865 /* steering according to rule specifications */
1866 IB_FLOW_ATTR_NORMAL = 0x0,
1867 /* default unicast and multicast rule -
1868 * receive all Eth traffic which isn't steered to any QP
1869 */
1870 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1871 /* default multicast rule -
1872 * receive all Eth multicast traffic which isn't steered to any QP
1873 */
1874 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1875 /* sniffer rule - receive all port traffic */
1876 IB_FLOW_ATTR_SNIFFER = 0x3
1877 };
1878
1879 /* Supported steering header types */
1880 enum ib_flow_spec_type {
1881 /* L2 headers*/
1882 IB_FLOW_SPEC_ETH = 0x20,
1883 IB_FLOW_SPEC_IB = 0x22,
1884 /* L3 header*/
1885 IB_FLOW_SPEC_IPV4 = 0x30,
1886 IB_FLOW_SPEC_IPV6 = 0x31,
1887 IB_FLOW_SPEC_ESP = 0x34,
1888 /* L4 headers*/
1889 IB_FLOW_SPEC_TCP = 0x40,
1890 IB_FLOW_SPEC_UDP = 0x41,
1891 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1892 IB_FLOW_SPEC_GRE = 0x51,
1893 IB_FLOW_SPEC_MPLS = 0x60,
1894 IB_FLOW_SPEC_INNER = 0x100,
1895 /* Actions */
1896 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1897 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1898 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1899 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1900 };
1901 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1903
1904 enum ib_flow_flags {
1905 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1908 };
1909
1910 struct ib_flow_eth_filter {
1911 u8 dst_mac[6];
1912 u8 src_mac[6];
1913 __be16 ether_type;
1914 __be16 vlan_tag;
1915 };
1916
1917 struct ib_flow_spec_eth {
1918 u32 type;
1919 u16 size;
1920 struct ib_flow_eth_filter val;
1921 struct ib_flow_eth_filter mask;
1922 };
1923
1924 struct ib_flow_ib_filter {
1925 __be16 dlid;
1926 __u8 sl;
1927 };
1928
1929 struct ib_flow_spec_ib {
1930 u32 type;
1931 u16 size;
1932 struct ib_flow_ib_filter val;
1933 struct ib_flow_ib_filter mask;
1934 };
1935
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1940 last have this flag set */
1941 };
1942
1943 struct ib_flow_ipv4_filter {
1944 __be32 src_ip;
1945 __be32 dst_ip;
1946 u8 proto;
1947 u8 tos;
1948 u8 ttl;
1949 u8 flags;
1950 };
1951
1952 struct ib_flow_spec_ipv4 {
1953 u32 type;
1954 u16 size;
1955 struct ib_flow_ipv4_filter val;
1956 struct ib_flow_ipv4_filter mask;
1957 };
1958
1959 struct ib_flow_ipv6_filter {
1960 u8 src_ip[16];
1961 u8 dst_ip[16];
1962 __be32 flow_label;
1963 u8 next_hdr;
1964 u8 traffic_class;
1965 u8 hop_limit;
1966 } __packed;
1967
1968 struct ib_flow_spec_ipv6 {
1969 u32 type;
1970 u16 size;
1971 struct ib_flow_ipv6_filter val;
1972 struct ib_flow_ipv6_filter mask;
1973 };
1974
1975 struct ib_flow_tcp_udp_filter {
1976 __be16 dst_port;
1977 __be16 src_port;
1978 };
1979
1980 struct ib_flow_spec_tcp_udp {
1981 u32 type;
1982 u16 size;
1983 struct ib_flow_tcp_udp_filter val;
1984 struct ib_flow_tcp_udp_filter mask;
1985 };
1986
1987 struct ib_flow_tunnel_filter {
1988 __be32 tunnel_id;
1989 };
1990
1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992 * the tunnel_id from val has the vni value
1993 */
1994 struct ib_flow_spec_tunnel {
1995 u32 type;
1996 u16 size;
1997 struct ib_flow_tunnel_filter val;
1998 struct ib_flow_tunnel_filter mask;
1999 };
2000
2001 struct ib_flow_esp_filter {
2002 __be32 spi;
2003 __be32 seq;
2004 };
2005
2006 struct ib_flow_spec_esp {
2007 u32 type;
2008 u16 size;
2009 struct ib_flow_esp_filter val;
2010 struct ib_flow_esp_filter mask;
2011 };
2012
2013 struct ib_flow_gre_filter {
2014 __be16 c_ks_res0_ver;
2015 __be16 protocol;
2016 __be32 key;
2017 };
2018
2019 struct ib_flow_spec_gre {
2020 u32 type;
2021 u16 size;
2022 struct ib_flow_gre_filter val;
2023 struct ib_flow_gre_filter mask;
2024 };
2025
2026 struct ib_flow_mpls_filter {
2027 __be32 tag;
2028 };
2029
2030 struct ib_flow_spec_mpls {
2031 u32 type;
2032 u16 size;
2033 struct ib_flow_mpls_filter val;
2034 struct ib_flow_mpls_filter mask;
2035 };
2036
2037 struct ib_flow_spec_action_tag {
2038 enum ib_flow_spec_type type;
2039 u16 size;
2040 u32 tag_id;
2041 };
2042
2043 struct ib_flow_spec_action_drop {
2044 enum ib_flow_spec_type type;
2045 u16 size;
2046 };
2047
2048 struct ib_flow_spec_action_handle {
2049 enum ib_flow_spec_type type;
2050 u16 size;
2051 struct ib_flow_action *act;
2052 };
2053
2054 enum ib_counters_description {
2055 IB_COUNTER_PACKETS,
2056 IB_COUNTER_BYTES,
2057 };
2058
2059 struct ib_flow_spec_action_count {
2060 enum ib_flow_spec_type type;
2061 u16 size;
2062 struct ib_counters *counters;
2063 };
2064
2065 union ib_flow_spec {
2066 struct {
2067 u32 type;
2068 u16 size;
2069 };
2070 struct ib_flow_spec_eth eth;
2071 struct ib_flow_spec_ib ib;
2072 struct ib_flow_spec_ipv4 ipv4;
2073 struct ib_flow_spec_tcp_udp tcp_udp;
2074 struct ib_flow_spec_ipv6 ipv6;
2075 struct ib_flow_spec_tunnel tunnel;
2076 struct ib_flow_spec_esp esp;
2077 struct ib_flow_spec_gre gre;
2078 struct ib_flow_spec_mpls mpls;
2079 struct ib_flow_spec_action_tag flow_tag;
2080 struct ib_flow_spec_action_drop drop;
2081 struct ib_flow_spec_action_handle action;
2082 struct ib_flow_spec_action_count flow_count;
2083 };
2084
2085 struct ib_flow_attr {
2086 enum ib_flow_attr_type type;
2087 u16 size;
2088 u16 priority;
2089 u32 flags;
2090 u8 num_of_specs;
2091 u32 port;
2092 union ib_flow_spec flows[];
2093 };
2094
2095 struct ib_flow {
2096 struct ib_qp *qp;
2097 struct ib_device *device;
2098 struct ib_uobject *uobject;
2099 };
2100
2101 enum ib_flow_action_type {
2102 IB_FLOW_ACTION_UNSPECIFIED,
2103 IB_FLOW_ACTION_ESP = 1,
2104 };
2105
2106 struct ib_flow_action_attrs_esp_keymats {
2107 enum ib_uverbs_flow_action_esp_keymat protocol;
2108 union {
2109 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2110 } keymat;
2111 };
2112
2113 struct ib_flow_action_attrs_esp_replays {
2114 enum ib_uverbs_flow_action_esp_replay protocol;
2115 union {
2116 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2117 } replay;
2118 };
2119
2120 enum ib_flow_action_attrs_esp_flags {
2121 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122 * This is done in order to share the same flags between user-space and
2123 * kernel and spare an unnecessary translation.
2124 */
2125
2126 /* Kernel flags */
2127 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2128 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2129 };
2130
2131 struct ib_flow_spec_list {
2132 struct ib_flow_spec_list *next;
2133 union ib_flow_spec spec;
2134 };
2135
2136 struct ib_flow_action_attrs_esp {
2137 struct ib_flow_action_attrs_esp_keymats *keymat;
2138 struct ib_flow_action_attrs_esp_replays *replay;
2139 struct ib_flow_spec_list *encap;
2140 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141 * Value of 0 is a valid value.
2142 */
2143 u32 esn;
2144 u32 spi;
2145 u32 seq;
2146 u32 tfc_pad;
2147 /* Use enum ib_flow_action_attrs_esp_flags */
2148 u64 flags;
2149 u64 hard_limit_pkts;
2150 };
2151
2152 struct ib_flow_action {
2153 struct ib_device *device;
2154 struct ib_uobject *uobject;
2155 enum ib_flow_action_type type;
2156 atomic_t usecnt;
2157 };
2158
2159 struct ib_mad;
2160
2161 enum ib_process_mad_flags {
2162 IB_MAD_IGNORE_MKEY = 1,
2163 IB_MAD_IGNORE_BKEY = 2,
2164 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165 };
2166
2167 enum ib_mad_result {
2168 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2169 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2170 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2171 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2172 };
2173
2174 struct ib_port_cache {
2175 u64 subnet_prefix;
2176 struct ib_pkey_cache *pkey;
2177 struct ib_gid_table *gid;
2178 u8 lmc;
2179 enum ib_port_state port_state;
2180 };
2181
2182 struct ib_port_immutable {
2183 int pkey_tbl_len;
2184 int gid_tbl_len;
2185 u32 core_cap_flags;
2186 u32 max_mad_size;
2187 };
2188
2189 struct ib_port_data {
2190 struct ib_device *ib_dev;
2191
2192 struct ib_port_immutable immutable;
2193
2194 spinlock_t pkey_list_lock;
2195
2196 spinlock_t netdev_lock;
2197
2198 struct list_head pkey_list;
2199
2200 struct ib_port_cache cache;
2201
2202 struct net_device __rcu *netdev;
2203 netdevice_tracker netdev_tracker;
2204 struct hlist_node ndev_hash_link;
2205 struct rdma_port_counter port_counter;
2206 struct ib_port *sysfs;
2207 };
2208
2209 /* rdma netdev type - specifies protocol type */
2210 enum rdma_netdev_t {
2211 RDMA_NETDEV_OPA_VNIC,
2212 RDMA_NETDEV_IPOIB,
2213 };
2214
2215 /**
2216 * struct rdma_netdev - rdma netdev
2217 * For cases where netstack interfacing is required.
2218 */
2219 struct rdma_netdev {
2220 void *clnt_priv;
2221 struct ib_device *hca;
2222 u32 port_num;
2223 int mtu;
2224
2225 /*
2226 * cleanup function must be specified.
2227 * FIXME: This is only used for OPA_VNIC and that usage should be
2228 * removed too.
2229 */
2230 void (*free_rdma_netdev)(struct net_device *netdev);
2231
2232 /* control functions */
2233 void (*set_id)(struct net_device *netdev, int id);
2234 /* send packet */
2235 int (*send)(struct net_device *dev, struct sk_buff *skb,
2236 struct ib_ah *address, u32 dqpn);
2237 /* multicast */
2238 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239 union ib_gid *gid, u16 mlid,
2240 int set_qkey, u32 qkey);
2241 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242 union ib_gid *gid, u16 mlid);
2243 /* timeout */
2244 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2245 };
2246
2247 struct rdma_netdev_alloc_params {
2248 size_t sizeof_priv;
2249 unsigned int txqs;
2250 unsigned int rxqs;
2251 void *param;
2252
2253 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254 struct net_device *netdev, void *param);
2255 };
2256
2257 struct ib_odp_counters {
2258 atomic64_t faults;
2259 atomic64_t invalidations;
2260 atomic64_t prefetch;
2261 };
2262
2263 struct ib_counters {
2264 struct ib_device *device;
2265 struct ib_uobject *uobject;
2266 /* num of objects attached */
2267 atomic_t usecnt;
2268 };
2269
2270 struct ib_counters_read_attr {
2271 u64 *counters_buff;
2272 u32 ncounters;
2273 u32 flags; /* use enum ib_read_counters_flags */
2274 };
2275
2276 struct uverbs_attr_bundle;
2277 struct iw_cm_id;
2278 struct iw_cm_conn_param;
2279
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2281 .size_##ib_struct = \
2282 (sizeof(struct drv_struct) + \
2283 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2284 BUILD_BUG_ON_ZERO( \
2285 !__same_type(((struct drv_struct *)NULL)->member, \
2286 struct ib_struct)))
2287
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2289 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290 gfp, false))
2291
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2293 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294 GFP_KERNEL, true))
2295
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2297 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300
2301 struct rdma_user_mmap_entry {
2302 struct kref ref;
2303 struct ib_ucontext *ucontext;
2304 unsigned long start_pgoff;
2305 size_t npages;
2306 bool driver_removed;
2307 };
2308
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312 {
2313 return (u64)entry->start_pgoff << PAGE_SHIFT;
2314 }
2315
2316 /**
2317 * struct ib_device_ops - InfiniBand device operations
2318 * This structure defines all the InfiniBand device operations, providers will
2319 * need to define the supported operations, otherwise they will be set to null.
2320 */
2321 struct ib_device_ops {
2322 struct module *owner;
2323 enum rdma_driver_id driver_id;
2324 u32 uverbs_abi_ver;
2325 unsigned int uverbs_no_driver_id_binding:1;
2326
2327 /*
2328 * NOTE: New drivers should not make use of device_group; instead new
2329 * device parameter should be exposed via netlink command. This
2330 * mechanism exists only for existing drivers.
2331 */
2332 const struct attribute_group *device_group;
2333 const struct attribute_group **port_groups;
2334
2335 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 const struct ib_send_wr **bad_send_wr);
2337 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 const struct ib_recv_wr **bad_recv_wr);
2339 void (*drain_rq)(struct ib_qp *qp);
2340 void (*drain_sq)(struct ib_qp *qp);
2341 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 int (*post_srq_recv)(struct ib_srq *srq,
2345 const struct ib_recv_wr *recv_wr,
2346 const struct ib_recv_wr **bad_recv_wr);
2347 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 u32 port_num, const struct ib_wc *in_wc,
2349 const struct ib_grh *in_grh,
2350 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 int (*query_device)(struct ib_device *device,
2353 struct ib_device_attr *device_attr,
2354 struct ib_udata *udata);
2355 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 struct ib_device_modify *device_modify);
2357 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 int comp_vector);
2360 int (*query_port)(struct ib_device *device, u32 port_num,
2361 struct ib_port_attr *port_attr);
2362 int (*modify_port)(struct ib_device *device, u32 port_num,
2363 int port_modify_mask,
2364 struct ib_port_modify *port_modify);
2365 /**
2366 * The following mandatory functions are used only at device
2367 * registration. Keep functions such as these at the end of this
2368 * structure to avoid cache line misses when accessing struct ib_device
2369 * in fast paths.
2370 */
2371 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372 struct ib_port_immutable *immutable);
2373 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 u32 port_num);
2375 /**
2376 * When calling get_netdev, the HW vendor's driver should return the
2377 * net device of device @device at port @port_num or NULL if such
2378 * a net device doesn't exist. The vendor driver should call dev_hold
2379 * on this net device. The HW vendor's device driver must guarantee
2380 * that this function returns NULL before the net device has finished
2381 * NETDEV_UNREGISTER state.
2382 */
2383 struct net_device *(*get_netdev)(struct ib_device *device,
2384 u32 port_num);
2385 /**
2386 * rdma netdev operation
2387 *
2388 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390 */
2391 struct net_device *(*alloc_rdma_netdev)(
2392 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393 const char *name, unsigned char name_assign_type,
2394 void (*setup)(struct net_device *));
2395
2396 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397 enum rdma_netdev_t type,
2398 struct rdma_netdev_alloc_params *params);
2399 /**
2400 * query_gid should be return GID value for @device, when @port_num
2401 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 * is RoCE link layer.
2403 */
2404 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405 union ib_gid *gid);
2406 /**
2407 * When calling add_gid, the HW vendor's driver should add the gid
2408 * of device of port at gid index available at @attr. Meta-info of
2409 * that gid (for example, the network device related to this gid) is
2410 * available at @attr. @context allows the HW vendor driver to store
2411 * extra information together with a GID entry. The HW vendor driver may
2412 * allocate memory to contain this information and store it in @context
2413 * when a new GID entry is written to. Params are consistent until the
2414 * next call of add_gid or delete_gid. The function should return 0 on
2415 * success or error otherwise. The function could be called
2416 * concurrently for different ports. This function is only called when
2417 * roce_gid_table is used.
2418 */
2419 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420 /**
2421 * When calling del_gid, the HW vendor's driver should delete the
2422 * gid of device @device at gid index gid_index of port port_num
2423 * available in @attr.
2424 * Upon the deletion of a GID entry, the HW vendor must free any
2425 * allocated memory. The caller will clear @context afterwards.
2426 * This function is only called when roce_gid_table is used.
2427 */
2428 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430 u16 *pkey);
2431 int (*alloc_ucontext)(struct ib_ucontext *context,
2432 struct ib_udata *udata);
2433 void (*dealloc_ucontext)(struct ib_ucontext *context);
2434 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435 /**
2436 * This will be called once refcount of an entry in mmap_xa reaches
2437 * zero. The type of the memory that was mapped may differ between
2438 * entries and is opaque to the rdma_user_mmap interface.
2439 * Therefore needs to be implemented by the driver in mmap_free.
2440 */
2441 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 struct ib_udata *udata);
2447 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 struct ib_udata *udata);
2449 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452 int (*create_srq)(struct ib_srq *srq,
2453 struct ib_srq_init_attr *srq_init_attr,
2454 struct ib_udata *udata);
2455 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456 enum ib_srq_attr_mask srq_attr_mask,
2457 struct ib_udata *udata);
2458 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461 struct ib_udata *udata);
2462 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 int qp_attr_mask, struct ib_udata *udata);
2464 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474 u64 virt_addr, int mr_access_flags,
2475 struct ib_udata *udata);
2476 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477 u64 length, u64 virt_addr, int fd,
2478 int mr_access_flags,
2479 struct uverbs_attr_bundle *attrs);
2480 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481 u64 length, u64 virt_addr,
2482 int mr_access_flags, struct ib_pd *pd,
2483 struct ib_udata *udata);
2484 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486 u32 max_num_sg);
2487 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488 u32 max_num_data_sg,
2489 u32 max_num_meta_sg);
2490 int (*advise_mr)(struct ib_pd *pd,
2491 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492 struct ib_sge *sg_list, u32 num_sge,
2493 struct uverbs_attr_bundle *attrs);
2494
2495 /*
2496 * Kernel users should universally support relaxed ordering (RO), as
2497 * they are designed to read data only after observing the CQE and use
2498 * the DMA API correctly.
2499 *
2500 * Some drivers implicitly enable RO if platform supports it.
2501 */
2502 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503 unsigned int *sg_offset);
2504 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505 struct ib_mr_status *mr_status);
2506 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507 int (*dealloc_mw)(struct ib_mw *mw);
2508 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513 struct ib_flow_attr *flow_attr,
2514 struct ib_udata *udata);
2515 int (*destroy_flow)(struct ib_flow *flow_id);
2516 int (*destroy_flow_action)(struct ib_flow_action *action);
2517 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518 int state);
2519 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520 struct ifla_vf_info *ivf);
2521 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522 struct ifla_vf_stats *stats);
2523 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524 struct ifla_vf_guid *node_guid,
2525 struct ifla_vf_guid *port_guid);
2526 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527 int type);
2528 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529 struct ib_wq_init_attr *init_attr,
2530 struct ib_udata *udata);
2531 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533 u32 wq_attr_mask, struct ib_udata *udata);
2534 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535 struct ib_rwq_ind_table_init_attr *init_attr,
2536 struct ib_udata *udata);
2537 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539 struct ib_ucontext *context,
2540 struct ib_dm_alloc_attr *attr,
2541 struct uverbs_attr_bundle *attrs);
2542 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544 struct ib_dm_mr_attr *attr,
2545 struct uverbs_attr_bundle *attrs);
2546 int (*create_counters)(struct ib_counters *counters,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*destroy_counters)(struct ib_counters *counters);
2549 int (*read_counters)(struct ib_counters *counters,
2550 struct ib_counters_read_attr *counters_read_attr,
2551 struct uverbs_attr_bundle *attrs);
2552 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553 int data_sg_nents, unsigned int *data_sg_offset,
2554 struct scatterlist *meta_sg, int meta_sg_nents,
2555 unsigned int *meta_sg_offset);
2556
2557 /**
2558 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559 * fill in the driver initialized data. The struct is kfree()'ed by
2560 * the sysfs core when the device is removed. A lifespan of -1 in the
2561 * return struct tells the core to set a default lifespan.
2562 */
2563 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565 u32 port_num);
2566 /**
2567 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568 * @index - The index in the value array we wish to have updated, or
2569 * num_counters if we want all stats updated
2570 * Return codes -
2571 * < 0 - Error, no counters updated
2572 * index - Updated the single counter pointed to by index
2573 * num_counters - Updated all counters (will reset the timestamp
2574 * and prevent further calls for lifespan milliseconds)
2575 * Drivers are allowed to update all counters in leiu of just the
2576 * one given in index at their option
2577 */
2578 int (*get_hw_stats)(struct ib_device *device,
2579 struct rdma_hw_stats *stats, u32 port, int index);
2580
2581 /**
2582 * modify_hw_stat - Modify the counter configuration
2583 * @enable: true/false when enable/disable a counter
2584 * Return codes - 0 on success or error code otherwise.
2585 */
2586 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587 unsigned int counter_index, bool enable);
2588 /**
2589 * Allows rdma drivers to add their own restrack attributes.
2590 */
2591 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600
2601 /* Device lifecycle callbacks */
2602 /*
2603 * Called after the device becomes registered, before clients are
2604 * attached
2605 */
2606 int (*enable_driver)(struct ib_device *dev);
2607 /*
2608 * This is called as part of ib_dealloc_device().
2609 */
2610 void (*dealloc_driver)(struct ib_device *dev);
2611
2612 /* iWarp CM callbacks */
2613 void (*iw_add_ref)(struct ib_qp *qp);
2614 void (*iw_rem_ref)(struct ib_qp *qp);
2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 int (*iw_connect)(struct iw_cm_id *cm_id,
2617 struct iw_cm_conn_param *conn_param);
2618 int (*iw_accept)(struct iw_cm_id *cm_id,
2619 struct iw_cm_conn_param *conn_param);
2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621 u8 pdata_len);
2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624 /**
2625 * counter_bind_qp - Bind a QP to a counter.
2626 * @counter - The counter to be bound. If counter->id is zero then
2627 * the driver needs to allocate a new counter and set counter->id
2628 */
2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630 /**
2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 * counter and bind it onto the default one
2633 */
2634 int (*counter_unbind_qp)(struct ib_qp *qp);
2635 /**
2636 * counter_dealloc -De-allocate the hw counter
2637 */
2638 int (*counter_dealloc)(struct rdma_counter *counter);
2639 /**
2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 * the driver initialized data.
2642 */
2643 struct rdma_hw_stats *(*counter_alloc_stats)(
2644 struct rdma_counter *counter);
2645 /**
2646 * counter_update_stats - Query the stats value of this counter
2647 */
2648 int (*counter_update_stats)(struct rdma_counter *counter);
2649
2650 /**
2651 * Allows rdma drivers to add their own restrack attributes
2652 * dumped via 'rdma stat' iproute2 command.
2653 */
2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655
2656 /* query driver for its ucontext properties */
2657 int (*query_ucontext)(struct ib_ucontext *context,
2658 struct uverbs_attr_bundle *attrs);
2659
2660 /*
2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 * Everyone else relies on Linux memory management model.
2663 */
2664 int (*get_numa_node)(struct ib_device *dev);
2665
2666 /**
2667 * add_sub_dev - Add a sub IB device
2668 */
2669 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670 enum rdma_nl_dev_type type,
2671 const char *name);
2672
2673 /**
2674 * del_sub_dev - Delete a sub IB device
2675 */
2676 void (*del_sub_dev)(struct ib_device *sub_dev);
2677
2678 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2679 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2680 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2681 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2682 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2683 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2684 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2685 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2686 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2687 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2688 };
2689
2690 struct ib_core_device {
2691 /* device must be the first element in structure until,
2692 * union of ib_core_device and device exists in ib_device.
2693 */
2694 struct device dev;
2695 possible_net_t rdma_net;
2696 struct kobject *ports_kobj;
2697 struct list_head port_list;
2698 struct ib_device *owner; /* reach back to owner ib_device */
2699 };
2700
2701 struct rdma_restrack_root;
2702 struct ib_device {
2703 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2704 struct device *dma_device;
2705 struct ib_device_ops ops;
2706 char name[IB_DEVICE_NAME_MAX];
2707 struct rcu_head rcu_head;
2708
2709 struct list_head event_handler_list;
2710 /* Protects event_handler_list */
2711 struct rw_semaphore event_handler_rwsem;
2712
2713 /* Protects QP's event_handler calls and open_qp list */
2714 spinlock_t qp_open_list_lock;
2715
2716 struct rw_semaphore client_data_rwsem;
2717 struct xarray client_data;
2718 struct mutex unregistration_lock;
2719
2720 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2721 rwlock_t cache_lock;
2722 /**
2723 * port_data is indexed by port number
2724 */
2725 struct ib_port_data *port_data;
2726
2727 int num_comp_vectors;
2728
2729 union {
2730 struct device dev;
2731 struct ib_core_device coredev;
2732 };
2733
2734 /* First group is for device attributes,
2735 * Second group is for driver provided attributes (optional).
2736 * Third group is for the hw_stats
2737 * It is a NULL terminated array.
2738 */
2739 const struct attribute_group *groups[4];
2740
2741 u64 uverbs_cmd_mask;
2742
2743 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2744 __be64 node_guid;
2745 u32 local_dma_lkey;
2746 u16 is_switch:1;
2747 /* Indicates kernel verbs support, should not be used in drivers */
2748 u16 kverbs_provider:1;
2749 /* CQ adaptive moderation (RDMA DIM) */
2750 u16 use_cq_dim:1;
2751 u8 node_type;
2752 u32 phys_port_cnt;
2753 struct ib_device_attr attrs;
2754 struct hw_stats_device_data *hw_stats_data;
2755
2756 #ifdef CONFIG_CGROUP_RDMA
2757 struct rdmacg_device cg_device;
2758 #endif
2759
2760 u32 index;
2761
2762 spinlock_t cq_pools_lock;
2763 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2764
2765 struct rdma_restrack_root *res;
2766
2767 const struct uapi_definition *driver_def;
2768
2769 /*
2770 * Positive refcount indicates that the device is currently
2771 * registered and cannot be unregistered.
2772 */
2773 refcount_t refcount;
2774 struct completion unreg_completion;
2775 struct work_struct unregistration_work;
2776
2777 const struct rdma_link_ops *link_ops;
2778
2779 /* Protects compat_devs xarray modifications */
2780 struct mutex compat_devs_mutex;
2781 /* Maintains compat devices for each net namespace */
2782 struct xarray compat_devs;
2783
2784 /* Used by iWarp CM */
2785 char iw_ifname[IFNAMSIZ];
2786 u32 iw_driver_flags;
2787 u32 lag_flags;
2788
2789 /* A parent device has a list of sub-devices */
2790 struct mutex subdev_lock;
2791 struct list_head subdev_list_head;
2792
2793 /* A sub device has a type and a parent */
2794 enum rdma_nl_dev_type type;
2795 struct ib_device *parent;
2796 struct list_head subdev_list;
2797
2798 enum rdma_nl_name_assign_type name_assign_type;
2799 };
2800
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2801 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2802 gfp_t gfp, bool is_numa_aware)
2803 {
2804 if (is_numa_aware && dev->ops.get_numa_node)
2805 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2806
2807 return kzalloc(size, gfp);
2808 }
2809
2810 struct ib_client_nl_info;
2811 struct ib_client {
2812 const char *name;
2813 int (*add)(struct ib_device *ibdev);
2814 void (*remove)(struct ib_device *, void *client_data);
2815 void (*rename)(struct ib_device *dev, void *client_data);
2816 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2817 struct ib_client_nl_info *res);
2818 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2819
2820 /* Returns the net_dev belonging to this ib_client and matching the
2821 * given parameters.
2822 * @dev: An RDMA device that the net_dev use for communication.
2823 * @port: A physical port number on the RDMA device.
2824 * @pkey: P_Key that the net_dev uses if applicable.
2825 * @gid: A GID that the net_dev uses to communicate.
2826 * @addr: An IP address the net_dev is configured with.
2827 * @client_data: The device's client data set by ib_set_client_data().
2828 *
2829 * An ib_client that implements a net_dev on top of RDMA devices
2830 * (such as IP over IB) should implement this callback, allowing the
2831 * rdma_cm module to find the right net_dev for a given request.
2832 *
2833 * The caller is responsible for calling dev_put on the returned
2834 * netdev. */
2835 struct net_device *(*get_net_dev_by_params)(
2836 struct ib_device *dev,
2837 u32 port,
2838 u16 pkey,
2839 const union ib_gid *gid,
2840 const struct sockaddr *addr,
2841 void *client_data);
2842
2843 refcount_t uses;
2844 struct completion uses_zero;
2845 u32 client_id;
2846
2847 /* kverbs are not required by the client */
2848 u8 no_kverbs_req:1;
2849 };
2850
2851 /*
2852 * IB block DMA iterator
2853 *
2854 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2855 * to a HW supported page size.
2856 */
2857 struct ib_block_iter {
2858 /* internal states */
2859 struct scatterlist *__sg; /* sg holding the current aligned block */
2860 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2861 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2862 unsigned int __sg_nents; /* number of SG entries */
2863 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2864 unsigned int __pg_bit; /* alignment of current block */
2865 };
2866
2867 struct ib_device *_ib_alloc_device(size_t size);
2868 #define ib_alloc_device(drv_struct, member) \
2869 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2870 BUILD_BUG_ON_ZERO(offsetof( \
2871 struct drv_struct, member))), \
2872 struct drv_struct, member)
2873
2874 void ib_dealloc_device(struct ib_device *device);
2875
2876 void ib_get_device_fw_str(struct ib_device *device, char *str);
2877
2878 int ib_register_device(struct ib_device *device, const char *name,
2879 struct device *dma_device);
2880 void ib_unregister_device(struct ib_device *device);
2881 void ib_unregister_driver(enum rdma_driver_id driver_id);
2882 void ib_unregister_device_and_put(struct ib_device *device);
2883 void ib_unregister_device_queued(struct ib_device *ib_dev);
2884
2885 int ib_register_client (struct ib_client *client);
2886 void ib_unregister_client(struct ib_client *client);
2887
2888 void __rdma_block_iter_start(struct ib_block_iter *biter,
2889 struct scatterlist *sglist,
2890 unsigned int nents,
2891 unsigned long pgsz);
2892 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2893
2894 /**
2895 * rdma_block_iter_dma_address - get the aligned dma address of the current
2896 * block held by the block iterator.
2897 * @biter: block iterator holding the memory block
2898 */
2899 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2900 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2901 {
2902 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2903 }
2904
2905 /**
2906 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2907 * @sglist: sglist to iterate over
2908 * @biter: block iterator holding the memory block
2909 * @nents: maximum number of sg entries to iterate over
2910 * @pgsz: best HW supported page size to use
2911 *
2912 * Callers may use rdma_block_iter_dma_address() to get each
2913 * blocks aligned DMA address.
2914 */
2915 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2916 for (__rdma_block_iter_start(biter, sglist, nents, \
2917 pgsz); \
2918 __rdma_block_iter_next(biter);)
2919
2920 /**
2921 * ib_get_client_data - Get IB client context
2922 * @device:Device to get context for
2923 * @client:Client to get context for
2924 *
2925 * ib_get_client_data() returns the client context data set with
2926 * ib_set_client_data(). This can only be called while the client is
2927 * registered to the device, once the ib_client remove() callback returns this
2928 * cannot be called.
2929 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2930 static inline void *ib_get_client_data(struct ib_device *device,
2931 struct ib_client *client)
2932 {
2933 return xa_load(&device->client_data, client->client_id);
2934 }
2935 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2936 void *data);
2937 void ib_set_device_ops(struct ib_device *device,
2938 const struct ib_device_ops *ops);
2939
2940 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2941 unsigned long pfn, unsigned long size, pgprot_t prot,
2942 struct rdma_user_mmap_entry *entry);
2943 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2944 struct rdma_user_mmap_entry *entry,
2945 size_t length);
2946 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2947 struct rdma_user_mmap_entry *entry,
2948 size_t length, u32 min_pgoff,
2949 u32 max_pgoff);
2950
2951 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2952 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2953 struct rdma_user_mmap_entry *entry,
2954 size_t length, u32 pgoff)
2955 {
2956 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2957 pgoff);
2958 }
2959
2960 struct rdma_user_mmap_entry *
2961 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2962 unsigned long pgoff);
2963 struct rdma_user_mmap_entry *
2964 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2965 struct vm_area_struct *vma);
2966 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2967
2968 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2969
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2970 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2971 {
2972 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2973 }
2974
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2975 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2976 {
2977 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2978 }
2979
ib_is_buffer_cleared(const void __user * p,size_t len)2980 static inline bool ib_is_buffer_cleared(const void __user *p,
2981 size_t len)
2982 {
2983 bool ret;
2984 u8 *buf;
2985
2986 if (len > USHRT_MAX)
2987 return false;
2988
2989 buf = memdup_user(p, len);
2990 if (IS_ERR(buf))
2991 return false;
2992
2993 ret = !memchr_inv(buf, 0, len);
2994 kfree(buf);
2995 return ret;
2996 }
2997
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2998 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2999 size_t offset,
3000 size_t len)
3001 {
3002 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3003 }
3004
3005 /**
3006 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3007 * contains all required attributes and no attributes not allowed for
3008 * the given QP state transition.
3009 * @cur_state: Current QP state
3010 * @next_state: Next QP state
3011 * @type: QP type
3012 * @mask: Mask of supplied QP attributes
3013 *
3014 * This function is a helper function that a low-level driver's
3015 * modify_qp method can use to validate the consumer's input. It
3016 * checks that cur_state and next_state are valid QP states, that a
3017 * transition from cur_state to next_state is allowed by the IB spec,
3018 * and that the attribute mask supplied is allowed for the transition.
3019 */
3020 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3021 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3022
3023 void ib_register_event_handler(struct ib_event_handler *event_handler);
3024 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3025 void ib_dispatch_event(const struct ib_event *event);
3026
3027 int ib_query_port(struct ib_device *device,
3028 u32 port_num, struct ib_port_attr *port_attr);
3029
3030 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3031 u32 port_num);
3032
3033 /**
3034 * rdma_cap_ib_switch - Check if the device is IB switch
3035 * @device: Device to check
3036 *
3037 * Device driver is responsible for setting is_switch bit on
3038 * in ib_device structure at init time.
3039 *
3040 * Return: true if the device is IB switch.
3041 */
rdma_cap_ib_switch(const struct ib_device * device)3042 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3043 {
3044 return device->is_switch;
3045 }
3046
3047 /**
3048 * rdma_start_port - Return the first valid port number for the device
3049 * specified
3050 *
3051 * @device: Device to be checked
3052 *
3053 * Return start port number
3054 */
rdma_start_port(const struct ib_device * device)3055 static inline u32 rdma_start_port(const struct ib_device *device)
3056 {
3057 return rdma_cap_ib_switch(device) ? 0 : 1;
3058 }
3059
3060 /**
3061 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3062 * @device - The struct ib_device * to iterate over
3063 * @iter - The unsigned int to store the port number
3064 */
3065 #define rdma_for_each_port(device, iter) \
3066 for (iter = rdma_start_port(device + \
3067 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3068 iter))); \
3069 iter <= rdma_end_port(device); iter++)
3070
3071 /**
3072 * rdma_end_port - Return the last valid port number for the device
3073 * specified
3074 *
3075 * @device: Device to be checked
3076 *
3077 * Return last port number
3078 */
rdma_end_port(const struct ib_device * device)3079 static inline u32 rdma_end_port(const struct ib_device *device)
3080 {
3081 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3082 }
3083
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3084 static inline int rdma_is_port_valid(const struct ib_device *device,
3085 unsigned int port)
3086 {
3087 return (port >= rdma_start_port(device) &&
3088 port <= rdma_end_port(device));
3089 }
3090
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3091 static inline bool rdma_is_grh_required(const struct ib_device *device,
3092 u32 port_num)
3093 {
3094 return device->port_data[port_num].immutable.core_cap_flags &
3095 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3096 }
3097
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3098 static inline bool rdma_protocol_ib(const struct ib_device *device,
3099 u32 port_num)
3100 {
3101 return device->port_data[port_num].immutable.core_cap_flags &
3102 RDMA_CORE_CAP_PROT_IB;
3103 }
3104
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3105 static inline bool rdma_protocol_roce(const struct ib_device *device,
3106 u32 port_num)
3107 {
3108 return device->port_data[port_num].immutable.core_cap_flags &
3109 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3110 }
3111
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3112 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3113 u32 port_num)
3114 {
3115 return device->port_data[port_num].immutable.core_cap_flags &
3116 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3117 }
3118
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3119 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3120 u32 port_num)
3121 {
3122 return device->port_data[port_num].immutable.core_cap_flags &
3123 RDMA_CORE_CAP_PROT_ROCE;
3124 }
3125
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3126 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3127 u32 port_num)
3128 {
3129 return device->port_data[port_num].immutable.core_cap_flags &
3130 RDMA_CORE_CAP_PROT_IWARP;
3131 }
3132
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3133 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3134 u32 port_num)
3135 {
3136 return rdma_protocol_ib(device, port_num) ||
3137 rdma_protocol_roce(device, port_num);
3138 }
3139
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3140 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3141 u32 port_num)
3142 {
3143 return device->port_data[port_num].immutable.core_cap_flags &
3144 RDMA_CORE_CAP_PROT_RAW_PACKET;
3145 }
3146
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3147 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3148 u32 port_num)
3149 {
3150 return device->port_data[port_num].immutable.core_cap_flags &
3151 RDMA_CORE_CAP_PROT_USNIC;
3152 }
3153
3154 /**
3155 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3156 * Management Datagrams.
3157 * @device: Device to check
3158 * @port_num: Port number to check
3159 *
3160 * Management Datagrams (MAD) are a required part of the InfiniBand
3161 * specification and are supported on all InfiniBand devices. A slightly
3162 * extended version are also supported on OPA interfaces.
3163 *
3164 * Return: true if the port supports sending/receiving of MAD packets.
3165 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3166 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3167 {
3168 return device->port_data[port_num].immutable.core_cap_flags &
3169 RDMA_CORE_CAP_IB_MAD;
3170 }
3171
3172 /**
3173 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3174 * Management Datagrams.
3175 * @device: Device to check
3176 * @port_num: Port number to check
3177 *
3178 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3179 * datagrams with their own versions. These OPA MADs share many but not all of
3180 * the characteristics of InfiniBand MADs.
3181 *
3182 * OPA MADs differ in the following ways:
3183 *
3184 * 1) MADs are variable size up to 2K
3185 * IBTA defined MADs remain fixed at 256 bytes
3186 * 2) OPA SMPs must carry valid PKeys
3187 * 3) OPA SMP packets are a different format
3188 *
3189 * Return: true if the port supports OPA MAD packet formats.
3190 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3191 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3192 {
3193 return device->port_data[port_num].immutable.core_cap_flags &
3194 RDMA_CORE_CAP_OPA_MAD;
3195 }
3196
3197 /**
3198 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3199 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3200 * @device: Device to check
3201 * @port_num: Port number to check
3202 *
3203 * Each InfiniBand node is required to provide a Subnet Management Agent
3204 * that the subnet manager can access. Prior to the fabric being fully
3205 * configured by the subnet manager, the SMA is accessed via a well known
3206 * interface called the Subnet Management Interface (SMI). This interface
3207 * uses directed route packets to communicate with the SM to get around the
3208 * chicken and egg problem of the SM needing to know what's on the fabric
3209 * in order to configure the fabric, and needing to configure the fabric in
3210 * order to send packets to the devices on the fabric. These directed
3211 * route packets do not need the fabric fully configured in order to reach
3212 * their destination. The SMI is the only method allowed to send
3213 * directed route packets on an InfiniBand fabric.
3214 *
3215 * Return: true if the port provides an SMI.
3216 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3217 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3218 {
3219 return device->port_data[port_num].immutable.core_cap_flags &
3220 RDMA_CORE_CAP_IB_SMI;
3221 }
3222
3223 /**
3224 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3225 * Communication Manager.
3226 * @device: Device to check
3227 * @port_num: Port number to check
3228 *
3229 * The InfiniBand Communication Manager is one of many pre-defined General
3230 * Service Agents (GSA) that are accessed via the General Service
3231 * Interface (GSI). It's role is to facilitate establishment of connections
3232 * between nodes as well as other management related tasks for established
3233 * connections.
3234 *
3235 * Return: true if the port supports an IB CM (this does not guarantee that
3236 * a CM is actually running however).
3237 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3238 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3239 {
3240 return device->port_data[port_num].immutable.core_cap_flags &
3241 RDMA_CORE_CAP_IB_CM;
3242 }
3243
3244 /**
3245 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3246 * Communication Manager.
3247 * @device: Device to check
3248 * @port_num: Port number to check
3249 *
3250 * Similar to above, but specific to iWARP connections which have a different
3251 * managment protocol than InfiniBand.
3252 *
3253 * Return: true if the port supports an iWARP CM (this does not guarantee that
3254 * a CM is actually running however).
3255 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3256 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3257 {
3258 return device->port_data[port_num].immutable.core_cap_flags &
3259 RDMA_CORE_CAP_IW_CM;
3260 }
3261
3262 /**
3263 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3264 * Subnet Administration.
3265 * @device: Device to check
3266 * @port_num: Port number to check
3267 *
3268 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3269 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3270 * fabrics, devices should resolve routes to other hosts by contacting the
3271 * SA to query the proper route.
3272 *
3273 * Return: true if the port should act as a client to the fabric Subnet
3274 * Administration interface. This does not imply that the SA service is
3275 * running locally.
3276 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3277 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3278 {
3279 return device->port_data[port_num].immutable.core_cap_flags &
3280 RDMA_CORE_CAP_IB_SA;
3281 }
3282
3283 /**
3284 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3285 * Multicast.
3286 * @device: Device to check
3287 * @port_num: Port number to check
3288 *
3289 * InfiniBand multicast registration is more complex than normal IPv4 or
3290 * IPv6 multicast registration. Each Host Channel Adapter must register
3291 * with the Subnet Manager when it wishes to join a multicast group. It
3292 * should do so only once regardless of how many queue pairs it subscribes
3293 * to this group. And it should leave the group only after all queue pairs
3294 * attached to the group have been detached.
3295 *
3296 * Return: true if the port must undertake the additional adminstrative
3297 * overhead of registering/unregistering with the SM and tracking of the
3298 * total number of queue pairs attached to the multicast group.
3299 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3300 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3301 u32 port_num)
3302 {
3303 return rdma_cap_ib_sa(device, port_num);
3304 }
3305
3306 /**
3307 * rdma_cap_af_ib - Check if the port of device has the capability
3308 * Native Infiniband Address.
3309 * @device: Device to check
3310 * @port_num: Port number to check
3311 *
3312 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3313 * GID. RoCE uses a different mechanism, but still generates a GID via
3314 * a prescribed mechanism and port specific data.
3315 *
3316 * Return: true if the port uses a GID address to identify devices on the
3317 * network.
3318 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3319 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3320 {
3321 return device->port_data[port_num].immutable.core_cap_flags &
3322 RDMA_CORE_CAP_AF_IB;
3323 }
3324
3325 /**
3326 * rdma_cap_eth_ah - Check if the port of device has the capability
3327 * Ethernet Address Handle.
3328 * @device: Device to check
3329 * @port_num: Port number to check
3330 *
3331 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3332 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3333 * port. Normally, packet headers are generated by the sending host
3334 * adapter, but when sending connectionless datagrams, we must manually
3335 * inject the proper headers for the fabric we are communicating over.
3336 *
3337 * Return: true if we are running as a RoCE port and must force the
3338 * addition of a Global Route Header built from our Ethernet Address
3339 * Handle into our header list for connectionless packets.
3340 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3341 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3342 {
3343 return device->port_data[port_num].immutable.core_cap_flags &
3344 RDMA_CORE_CAP_ETH_AH;
3345 }
3346
3347 /**
3348 * rdma_cap_opa_ah - Check if the port of device supports
3349 * OPA Address handles
3350 * @device: Device to check
3351 * @port_num: Port number to check
3352 *
3353 * Return: true if we are running on an OPA device which supports
3354 * the extended OPA addressing.
3355 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3356 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3357 {
3358 return (device->port_data[port_num].immutable.core_cap_flags &
3359 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3360 }
3361
3362 /**
3363 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3364 *
3365 * @device: Device
3366 * @port_num: Port number
3367 *
3368 * This MAD size includes the MAD headers and MAD payload. No other headers
3369 * are included.
3370 *
3371 * Return the max MAD size required by the Port. Will return 0 if the port
3372 * does not support MADs
3373 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3374 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3375 u32 port_num)
3376 {
3377 return device->port_data[port_num].immutable.max_mad_size;
3378 }
3379
3380 /**
3381 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3382 * @device: Device to check
3383 * @port_num: Port number to check
3384 *
3385 * RoCE GID table mechanism manages the various GIDs for a device.
3386 *
3387 * NOTE: if allocating the port's GID table has failed, this call will still
3388 * return true, but any RoCE GID table API will fail.
3389 *
3390 * Return: true if the port uses RoCE GID table mechanism in order to manage
3391 * its GIDs.
3392 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3393 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3394 u32 port_num)
3395 {
3396 return rdma_protocol_roce(device, port_num) &&
3397 device->ops.add_gid && device->ops.del_gid;
3398 }
3399
3400 /*
3401 * Check if the device supports READ W/ INVALIDATE.
3402 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3403 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3404 {
3405 /*
3406 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3407 * has support for it yet.
3408 */
3409 return rdma_protocol_iwarp(dev, port_num);
3410 }
3411
3412 /**
3413 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3414 * @device: Device
3415 * @port_num: 1 based Port number
3416 *
3417 * Return true if port is an Intel OPA port , false if not
3418 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3419 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3420 u32 port_num)
3421 {
3422 return (device->port_data[port_num].immutable.core_cap_flags &
3423 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3424 }
3425
3426 /**
3427 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3428 * @device: Device
3429 * @port_num: Port number
3430 * @mtu: enum value of MTU
3431 *
3432 * Return the MTU size supported by the port as an integer value. Will return
3433 * -1 if enum value of mtu is not supported.
3434 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3435 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3436 int mtu)
3437 {
3438 if (rdma_core_cap_opa_port(device, port))
3439 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3440 else
3441 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3442 }
3443
3444 /**
3445 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3446 * @device: Device
3447 * @port_num: Port number
3448 * @attr: port attribute
3449 *
3450 * Return the MTU size supported by the port as an integer value.
3451 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3452 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3453 struct ib_port_attr *attr)
3454 {
3455 if (rdma_core_cap_opa_port(device, port))
3456 return attr->phys_mtu;
3457 else
3458 return ib_mtu_enum_to_int(attr->max_mtu);
3459 }
3460
3461 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3462 int state);
3463 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3464 struct ifla_vf_info *info);
3465 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3466 struct ifla_vf_stats *stats);
3467 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3468 struct ifla_vf_guid *node_guid,
3469 struct ifla_vf_guid *port_guid);
3470 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3471 int type);
3472
3473 int ib_query_pkey(struct ib_device *device,
3474 u32 port_num, u16 index, u16 *pkey);
3475
3476 int ib_modify_device(struct ib_device *device,
3477 int device_modify_mask,
3478 struct ib_device_modify *device_modify);
3479
3480 int ib_modify_port(struct ib_device *device,
3481 u32 port_num, int port_modify_mask,
3482 struct ib_port_modify *port_modify);
3483
3484 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3485 u32 *port_num, u16 *index);
3486
3487 int ib_find_pkey(struct ib_device *device,
3488 u32 port_num, u16 pkey, u16 *index);
3489
3490 enum ib_pd_flags {
3491 /*
3492 * Create a memory registration for all memory in the system and place
3493 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3494 * ULPs to avoid the overhead of dynamic MRs.
3495 *
3496 * This flag is generally considered unsafe and must only be used in
3497 * extremly trusted environments. Every use of it will log a warning
3498 * in the kernel log.
3499 */
3500 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3501 };
3502
3503 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3504 const char *caller);
3505
3506 /**
3507 * ib_alloc_pd - Allocates an unused protection domain.
3508 * @device: The device on which to allocate the protection domain.
3509 * @flags: protection domain flags
3510 *
3511 * A protection domain object provides an association between QPs, shared
3512 * receive queues, address handles, memory regions, and memory windows.
3513 *
3514 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3515 * memory operations.
3516 */
3517 #define ib_alloc_pd(device, flags) \
3518 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3519
3520 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3521
3522 /**
3523 * ib_dealloc_pd - Deallocate kernel PD
3524 * @pd: The protection domain
3525 *
3526 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3527 */
ib_dealloc_pd(struct ib_pd * pd)3528 static inline void ib_dealloc_pd(struct ib_pd *pd)
3529 {
3530 int ret = ib_dealloc_pd_user(pd, NULL);
3531
3532 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3533 }
3534
3535 enum rdma_create_ah_flags {
3536 /* In a sleepable context */
3537 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3538 };
3539
3540 /**
3541 * rdma_create_ah - Creates an address handle for the given address vector.
3542 * @pd: The protection domain associated with the address handle.
3543 * @ah_attr: The attributes of the address vector.
3544 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3545 *
3546 * The address handle is used to reference a local or global destination
3547 * in all UD QP post sends.
3548 */
3549 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3550 u32 flags);
3551
3552 /**
3553 * rdma_create_user_ah - Creates an address handle for the given address vector.
3554 * It resolves destination mac address for ah attribute of RoCE type.
3555 * @pd: The protection domain associated with the address handle.
3556 * @ah_attr: The attributes of the address vector.
3557 * @udata: pointer to user's input output buffer information need by
3558 * provider driver.
3559 *
3560 * It returns 0 on success and returns appropriate error code on error.
3561 * The address handle is used to reference a local or global destination
3562 * in all UD QP post sends.
3563 */
3564 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3565 struct rdma_ah_attr *ah_attr,
3566 struct ib_udata *udata);
3567 /**
3568 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3569 * work completion.
3570 * @hdr: the L3 header to parse
3571 * @net_type: type of header to parse
3572 * @sgid: place to store source gid
3573 * @dgid: place to store destination gid
3574 */
3575 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3576 enum rdma_network_type net_type,
3577 union ib_gid *sgid, union ib_gid *dgid);
3578
3579 /**
3580 * ib_get_rdma_header_version - Get the header version
3581 * @hdr: the L3 header to parse
3582 */
3583 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3584
3585 /**
3586 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3587 * work completion.
3588 * @device: Device on which the received message arrived.
3589 * @port_num: Port on which the received message arrived.
3590 * @wc: Work completion associated with the received message.
3591 * @grh: References the received global route header. This parameter is
3592 * ignored unless the work completion indicates that the GRH is valid.
3593 * @ah_attr: Returned attributes that can be used when creating an address
3594 * handle for replying to the message.
3595 * When ib_init_ah_attr_from_wc() returns success,
3596 * (a) for IB link layer it optionally contains a reference to SGID attribute
3597 * when GRH is present for IB link layer.
3598 * (b) for RoCE link layer it contains a reference to SGID attribute.
3599 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3600 * attributes which are initialized using ib_init_ah_attr_from_wc().
3601 *
3602 */
3603 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3604 const struct ib_wc *wc, const struct ib_grh *grh,
3605 struct rdma_ah_attr *ah_attr);
3606
3607 /**
3608 * ib_create_ah_from_wc - Creates an address handle associated with the
3609 * sender of the specified work completion.
3610 * @pd: The protection domain associated with the address handle.
3611 * @wc: Work completion information associated with a received message.
3612 * @grh: References the received global route header. This parameter is
3613 * ignored unless the work completion indicates that the GRH is valid.
3614 * @port_num: The outbound port number to associate with the address.
3615 *
3616 * The address handle is used to reference a local or global destination
3617 * in all UD QP post sends.
3618 */
3619 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3620 const struct ib_grh *grh, u32 port_num);
3621
3622 /**
3623 * rdma_modify_ah - Modifies the address vector associated with an address
3624 * handle.
3625 * @ah: The address handle to modify.
3626 * @ah_attr: The new address vector attributes to associate with the
3627 * address handle.
3628 */
3629 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3630
3631 /**
3632 * rdma_query_ah - Queries the address vector associated with an address
3633 * handle.
3634 * @ah: The address handle to query.
3635 * @ah_attr: The address vector attributes associated with the address
3636 * handle.
3637 */
3638 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3639
3640 enum rdma_destroy_ah_flags {
3641 /* In a sleepable context */
3642 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3643 };
3644
3645 /**
3646 * rdma_destroy_ah_user - Destroys an address handle.
3647 * @ah: The address handle to destroy.
3648 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3649 * @udata: Valid user data or NULL for kernel objects
3650 */
3651 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3652
3653 /**
3654 * rdma_destroy_ah - Destroys an kernel address handle.
3655 * @ah: The address handle to destroy.
3656 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3657 *
3658 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3659 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3660 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3661 {
3662 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3663
3664 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3665 }
3666
3667 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3668 struct ib_srq_init_attr *srq_init_attr,
3669 struct ib_usrq_object *uobject,
3670 struct ib_udata *udata);
3671 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3672 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3673 {
3674 if (!pd->device->ops.create_srq)
3675 return ERR_PTR(-EOPNOTSUPP);
3676
3677 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3678 }
3679
3680 /**
3681 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3682 * @srq: The SRQ to modify.
3683 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3684 * the current values of selected SRQ attributes are returned.
3685 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3686 * are being modified.
3687 *
3688 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3689 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3690 * the number of receives queued drops below the limit.
3691 */
3692 int ib_modify_srq(struct ib_srq *srq,
3693 struct ib_srq_attr *srq_attr,
3694 enum ib_srq_attr_mask srq_attr_mask);
3695
3696 /**
3697 * ib_query_srq - Returns the attribute list and current values for the
3698 * specified SRQ.
3699 * @srq: The SRQ to query.
3700 * @srq_attr: The attributes of the specified SRQ.
3701 */
3702 int ib_query_srq(struct ib_srq *srq,
3703 struct ib_srq_attr *srq_attr);
3704
3705 /**
3706 * ib_destroy_srq_user - Destroys the specified SRQ.
3707 * @srq: The SRQ to destroy.
3708 * @udata: Valid user data or NULL for kernel objects
3709 */
3710 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3711
3712 /**
3713 * ib_destroy_srq - Destroys the specified kernel SRQ.
3714 * @srq: The SRQ to destroy.
3715 *
3716 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3717 */
ib_destroy_srq(struct ib_srq * srq)3718 static inline void ib_destroy_srq(struct ib_srq *srq)
3719 {
3720 int ret = ib_destroy_srq_user(srq, NULL);
3721
3722 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3723 }
3724
3725 /**
3726 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3727 * @srq: The SRQ to post the work request on.
3728 * @recv_wr: A list of work requests to post on the receive queue.
3729 * @bad_recv_wr: On an immediate failure, this parameter will reference
3730 * the work request that failed to be posted on the QP.
3731 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3732 static inline int ib_post_srq_recv(struct ib_srq *srq,
3733 const struct ib_recv_wr *recv_wr,
3734 const struct ib_recv_wr **bad_recv_wr)
3735 {
3736 const struct ib_recv_wr *dummy;
3737
3738 return srq->device->ops.post_srq_recv(srq, recv_wr,
3739 bad_recv_wr ? : &dummy);
3740 }
3741
3742 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3743 struct ib_qp_init_attr *qp_init_attr,
3744 const char *caller);
3745 /**
3746 * ib_create_qp - Creates a kernel QP associated with the specific protection
3747 * domain.
3748 * @pd: The protection domain associated with the QP.
3749 * @init_attr: A list of initial attributes required to create the
3750 * QP. If QP creation succeeds, then the attributes are updated to
3751 * the actual capabilities of the created QP.
3752 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3753 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3754 struct ib_qp_init_attr *init_attr)
3755 {
3756 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3757 }
3758
3759 /**
3760 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3761 * @qp: The QP to modify.
3762 * @attr: On input, specifies the QP attributes to modify. On output,
3763 * the current values of selected QP attributes are returned.
3764 * @attr_mask: A bit-mask used to specify which attributes of the QP
3765 * are being modified.
3766 * @udata: pointer to user's input output buffer information
3767 * are being modified.
3768 * It returns 0 on success and returns appropriate error code on error.
3769 */
3770 int ib_modify_qp_with_udata(struct ib_qp *qp,
3771 struct ib_qp_attr *attr,
3772 int attr_mask,
3773 struct ib_udata *udata);
3774
3775 /**
3776 * ib_modify_qp - Modifies the attributes for the specified QP and then
3777 * transitions the QP to the given state.
3778 * @qp: The QP to modify.
3779 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3780 * the current values of selected QP attributes are returned.
3781 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3782 * are being modified.
3783 */
3784 int ib_modify_qp(struct ib_qp *qp,
3785 struct ib_qp_attr *qp_attr,
3786 int qp_attr_mask);
3787
3788 /**
3789 * ib_query_qp - Returns the attribute list and current values for the
3790 * specified QP.
3791 * @qp: The QP to query.
3792 * @qp_attr: The attributes of the specified QP.
3793 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3794 * @qp_init_attr: Additional attributes of the selected QP.
3795 *
3796 * The qp_attr_mask may be used to limit the query to gathering only the
3797 * selected attributes.
3798 */
3799 int ib_query_qp(struct ib_qp *qp,
3800 struct ib_qp_attr *qp_attr,
3801 int qp_attr_mask,
3802 struct ib_qp_init_attr *qp_init_attr);
3803
3804 /**
3805 * ib_destroy_qp - Destroys the specified QP.
3806 * @qp: The QP to destroy.
3807 * @udata: Valid udata or NULL for kernel objects
3808 */
3809 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3810
3811 /**
3812 * ib_destroy_qp - Destroys the specified kernel QP.
3813 * @qp: The QP to destroy.
3814 *
3815 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3816 */
ib_destroy_qp(struct ib_qp * qp)3817 static inline int ib_destroy_qp(struct ib_qp *qp)
3818 {
3819 return ib_destroy_qp_user(qp, NULL);
3820 }
3821
3822 /**
3823 * ib_open_qp - Obtain a reference to an existing sharable QP.
3824 * @xrcd - XRC domain
3825 * @qp_open_attr: Attributes identifying the QP to open.
3826 *
3827 * Returns a reference to a sharable QP.
3828 */
3829 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3830 struct ib_qp_open_attr *qp_open_attr);
3831
3832 /**
3833 * ib_close_qp - Release an external reference to a QP.
3834 * @qp: The QP handle to release
3835 *
3836 * The opened QP handle is released by the caller. The underlying
3837 * shared QP is not destroyed until all internal references are released.
3838 */
3839 int ib_close_qp(struct ib_qp *qp);
3840
3841 /**
3842 * ib_post_send - Posts a list of work requests to the send queue of
3843 * the specified QP.
3844 * @qp: The QP to post the work request on.
3845 * @send_wr: A list of work requests to post on the send queue.
3846 * @bad_send_wr: On an immediate failure, this parameter will reference
3847 * the work request that failed to be posted on the QP.
3848 *
3849 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3850 * error is returned, the QP state shall not be affected,
3851 * ib_post_send() will return an immediate error after queueing any
3852 * earlier work requests in the list.
3853 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3854 static inline int ib_post_send(struct ib_qp *qp,
3855 const struct ib_send_wr *send_wr,
3856 const struct ib_send_wr **bad_send_wr)
3857 {
3858 const struct ib_send_wr *dummy;
3859
3860 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3861 }
3862
3863 /**
3864 * ib_post_recv - Posts a list of work requests to the receive queue of
3865 * the specified QP.
3866 * @qp: The QP to post the work request on.
3867 * @recv_wr: A list of work requests to post on the receive queue.
3868 * @bad_recv_wr: On an immediate failure, this parameter will reference
3869 * the work request that failed to be posted on the QP.
3870 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3871 static inline int ib_post_recv(struct ib_qp *qp,
3872 const struct ib_recv_wr *recv_wr,
3873 const struct ib_recv_wr **bad_recv_wr)
3874 {
3875 const struct ib_recv_wr *dummy;
3876
3877 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3878 }
3879
3880 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3881 int comp_vector, enum ib_poll_context poll_ctx,
3882 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3883 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3884 int nr_cqe, int comp_vector,
3885 enum ib_poll_context poll_ctx)
3886 {
3887 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3888 KBUILD_MODNAME);
3889 }
3890
3891 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3892 int nr_cqe, enum ib_poll_context poll_ctx,
3893 const char *caller);
3894
3895 /**
3896 * ib_alloc_cq_any: Allocate kernel CQ
3897 * @dev: The IB device
3898 * @private: Private data attached to the CQE
3899 * @nr_cqe: Number of CQEs in the CQ
3900 * @poll_ctx: Context used for polling the CQ
3901 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3902 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3903 void *private, int nr_cqe,
3904 enum ib_poll_context poll_ctx)
3905 {
3906 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3907 KBUILD_MODNAME);
3908 }
3909
3910 void ib_free_cq(struct ib_cq *cq);
3911 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3912
3913 /**
3914 * ib_create_cq - Creates a CQ on the specified device.
3915 * @device: The device on which to create the CQ.
3916 * @comp_handler: A user-specified callback that is invoked when a
3917 * completion event occurs on the CQ.
3918 * @event_handler: A user-specified callback that is invoked when an
3919 * asynchronous event not associated with a completion occurs on the CQ.
3920 * @cq_context: Context associated with the CQ returned to the user via
3921 * the associated completion and event handlers.
3922 * @cq_attr: The attributes the CQ should be created upon.
3923 *
3924 * Users can examine the cq structure to determine the actual CQ size.
3925 */
3926 struct ib_cq *__ib_create_cq(struct ib_device *device,
3927 ib_comp_handler comp_handler,
3928 void (*event_handler)(struct ib_event *, void *),
3929 void *cq_context,
3930 const struct ib_cq_init_attr *cq_attr,
3931 const char *caller);
3932 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3933 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3934
3935 /**
3936 * ib_resize_cq - Modifies the capacity of the CQ.
3937 * @cq: The CQ to resize.
3938 * @cqe: The minimum size of the CQ.
3939 *
3940 * Users can examine the cq structure to determine the actual CQ size.
3941 */
3942 int ib_resize_cq(struct ib_cq *cq, int cqe);
3943
3944 /**
3945 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3946 * @cq: The CQ to modify.
3947 * @cq_count: number of CQEs that will trigger an event
3948 * @cq_period: max period of time in usec before triggering an event
3949 *
3950 */
3951 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3952
3953 /**
3954 * ib_destroy_cq_user - Destroys the specified CQ.
3955 * @cq: The CQ to destroy.
3956 * @udata: Valid user data or NULL for kernel objects
3957 */
3958 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3959
3960 /**
3961 * ib_destroy_cq - Destroys the specified kernel CQ.
3962 * @cq: The CQ to destroy.
3963 *
3964 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3965 */
ib_destroy_cq(struct ib_cq * cq)3966 static inline void ib_destroy_cq(struct ib_cq *cq)
3967 {
3968 int ret = ib_destroy_cq_user(cq, NULL);
3969
3970 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3971 }
3972
3973 /**
3974 * ib_poll_cq - poll a CQ for completion(s)
3975 * @cq:the CQ being polled
3976 * @num_entries:maximum number of completions to return
3977 * @wc:array of at least @num_entries &struct ib_wc where completions
3978 * will be returned
3979 *
3980 * Poll a CQ for (possibly multiple) completions. If the return value
3981 * is < 0, an error occurred. If the return value is >= 0, it is the
3982 * number of completions returned. If the return value is
3983 * non-negative and < num_entries, then the CQ was emptied.
3984 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3985 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3986 struct ib_wc *wc)
3987 {
3988 return cq->device->ops.poll_cq(cq, num_entries, wc);
3989 }
3990
3991 /**
3992 * ib_req_notify_cq - Request completion notification on a CQ.
3993 * @cq: The CQ to generate an event for.
3994 * @flags:
3995 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3996 * to request an event on the next solicited event or next work
3997 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3998 * may also be |ed in to request a hint about missed events, as
3999 * described below.
4000 *
4001 * Return Value:
4002 * < 0 means an error occurred while requesting notification
4003 * == 0 means notification was requested successfully, and if
4004 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4005 * were missed and it is safe to wait for another event. In
4006 * this case is it guaranteed that any work completions added
4007 * to the CQ since the last CQ poll will trigger a completion
4008 * notification event.
4009 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4010 * in. It means that the consumer must poll the CQ again to
4011 * make sure it is empty to avoid missing an event because of a
4012 * race between requesting notification and an entry being
4013 * added to the CQ. This return value means it is possible
4014 * (but not guaranteed) that a work completion has been added
4015 * to the CQ since the last poll without triggering a
4016 * completion notification event.
4017 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4018 static inline int ib_req_notify_cq(struct ib_cq *cq,
4019 enum ib_cq_notify_flags flags)
4020 {
4021 return cq->device->ops.req_notify_cq(cq, flags);
4022 }
4023
4024 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4025 int comp_vector_hint,
4026 enum ib_poll_context poll_ctx);
4027
4028 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4029
4030 /*
4031 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4032 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4033 * address into the dma address.
4034 */
ib_uses_virt_dma(struct ib_device * dev)4035 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4036 {
4037 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4038 }
4039
4040 /*
4041 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4042 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4043 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4044 {
4045 if (ib_uses_virt_dma(dev))
4046 return false;
4047
4048 return dma_pci_p2pdma_supported(dev->dma_device);
4049 }
4050
4051 /**
4052 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4053 * @dma_addr: The DMA address
4054 *
4055 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4056 * going through the dma_addr marshalling.
4057 */
ib_virt_dma_to_ptr(u64 dma_addr)4058 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4059 {
4060 /* virt_dma mode maps the kvs's directly into the dma addr */
4061 return (void *)(uintptr_t)dma_addr;
4062 }
4063
4064 /**
4065 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4066 * @dma_addr: The DMA address
4067 *
4068 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4069 * through the dma_addr marshalling.
4070 */
ib_virt_dma_to_page(u64 dma_addr)4071 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4072 {
4073 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4074 }
4075
4076 /**
4077 * ib_dma_mapping_error - check a DMA addr for error
4078 * @dev: The device for which the dma_addr was created
4079 * @dma_addr: The DMA address to check
4080 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4081 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4082 {
4083 if (ib_uses_virt_dma(dev))
4084 return 0;
4085 return dma_mapping_error(dev->dma_device, dma_addr);
4086 }
4087
4088 /**
4089 * ib_dma_map_single - Map a kernel virtual address to DMA address
4090 * @dev: The device for which the dma_addr is to be created
4091 * @cpu_addr: The kernel virtual address
4092 * @size: The size of the region in bytes
4093 * @direction: The direction of the DMA
4094 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4095 static inline u64 ib_dma_map_single(struct ib_device *dev,
4096 void *cpu_addr, size_t size,
4097 enum dma_data_direction direction)
4098 {
4099 if (ib_uses_virt_dma(dev))
4100 return (uintptr_t)cpu_addr;
4101 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4102 }
4103
4104 /**
4105 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4106 * @dev: The device for which the DMA address was created
4107 * @addr: The DMA address
4108 * @size: The size of the region in bytes
4109 * @direction: The direction of the DMA
4110 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4111 static inline void ib_dma_unmap_single(struct ib_device *dev,
4112 u64 addr, size_t size,
4113 enum dma_data_direction direction)
4114 {
4115 if (!ib_uses_virt_dma(dev))
4116 dma_unmap_single(dev->dma_device, addr, size, direction);
4117 }
4118
4119 /**
4120 * ib_dma_map_page - Map a physical page to DMA address
4121 * @dev: The device for which the dma_addr is to be created
4122 * @page: The page to be mapped
4123 * @offset: The offset within the page
4124 * @size: The size of the region in bytes
4125 * @direction: The direction of the DMA
4126 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4127 static inline u64 ib_dma_map_page(struct ib_device *dev,
4128 struct page *page,
4129 unsigned long offset,
4130 size_t size,
4131 enum dma_data_direction direction)
4132 {
4133 if (ib_uses_virt_dma(dev))
4134 return (uintptr_t)(page_address(page) + offset);
4135 return dma_map_page(dev->dma_device, page, offset, size, direction);
4136 }
4137
4138 /**
4139 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4140 * @dev: The device for which the DMA address was created
4141 * @addr: The DMA address
4142 * @size: The size of the region in bytes
4143 * @direction: The direction of the DMA
4144 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4145 static inline void ib_dma_unmap_page(struct ib_device *dev,
4146 u64 addr, size_t size,
4147 enum dma_data_direction direction)
4148 {
4149 if (!ib_uses_virt_dma(dev))
4150 dma_unmap_page(dev->dma_device, addr, size, direction);
4151 }
4152
4153 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4154 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4155 struct scatterlist *sg, int nents,
4156 enum dma_data_direction direction,
4157 unsigned long dma_attrs)
4158 {
4159 if (ib_uses_virt_dma(dev))
4160 return ib_dma_virt_map_sg(dev, sg, nents);
4161 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4162 dma_attrs);
4163 }
4164
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4165 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4166 struct scatterlist *sg, int nents,
4167 enum dma_data_direction direction,
4168 unsigned long dma_attrs)
4169 {
4170 if (!ib_uses_virt_dma(dev))
4171 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4172 dma_attrs);
4173 }
4174
4175 /**
4176 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4177 * @dev: The device for which the DMA addresses are to be created
4178 * @sg: The sg_table object describing the buffer
4179 * @direction: The direction of the DMA
4180 * @attrs: Optional DMA attributes for the map operation
4181 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4182 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4183 struct sg_table *sgt,
4184 enum dma_data_direction direction,
4185 unsigned long dma_attrs)
4186 {
4187 int nents;
4188
4189 if (ib_uses_virt_dma(dev)) {
4190 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4191 if (!nents)
4192 return -EIO;
4193 sgt->nents = nents;
4194 return 0;
4195 }
4196 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4197 }
4198
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4199 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4200 struct sg_table *sgt,
4201 enum dma_data_direction direction,
4202 unsigned long dma_attrs)
4203 {
4204 if (!ib_uses_virt_dma(dev))
4205 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4206 }
4207
4208 /**
4209 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4210 * @dev: The device for which the DMA addresses are to be created
4211 * @sg: The array of scatter/gather entries
4212 * @nents: The number of scatter/gather entries
4213 * @direction: The direction of the DMA
4214 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4215 static inline int ib_dma_map_sg(struct ib_device *dev,
4216 struct scatterlist *sg, int nents,
4217 enum dma_data_direction direction)
4218 {
4219 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4220 }
4221
4222 /**
4223 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4224 * @dev: The device for which the DMA addresses were created
4225 * @sg: The array of scatter/gather entries
4226 * @nents: The number of scatter/gather entries
4227 * @direction: The direction of the DMA
4228 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4229 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4230 struct scatterlist *sg, int nents,
4231 enum dma_data_direction direction)
4232 {
4233 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4234 }
4235
4236 /**
4237 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4238 * @dev: The device to query
4239 *
4240 * The returned value represents a size in bytes.
4241 */
ib_dma_max_seg_size(struct ib_device * dev)4242 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4243 {
4244 if (ib_uses_virt_dma(dev))
4245 return UINT_MAX;
4246 return dma_get_max_seg_size(dev->dma_device);
4247 }
4248
4249 /**
4250 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4251 * @dev: The device for which the DMA address was created
4252 * @addr: The DMA address
4253 * @size: The size of the region in bytes
4254 * @dir: The direction of the DMA
4255 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4256 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4257 u64 addr,
4258 size_t size,
4259 enum dma_data_direction dir)
4260 {
4261 if (!ib_uses_virt_dma(dev))
4262 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4263 }
4264
4265 /**
4266 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4267 * @dev: The device for which the DMA address was created
4268 * @addr: The DMA address
4269 * @size: The size of the region in bytes
4270 * @dir: The direction of the DMA
4271 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4272 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4273 u64 addr,
4274 size_t size,
4275 enum dma_data_direction dir)
4276 {
4277 if (!ib_uses_virt_dma(dev))
4278 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4279 }
4280
4281 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4282 * space. This function should be called when 'current' is the owning MM.
4283 */
4284 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4285 u64 virt_addr, int mr_access_flags);
4286
4287 /* ib_advise_mr - give an advice about an address range in a memory region */
4288 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4289 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4290 /**
4291 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4292 * HCA translation table.
4293 * @mr: The memory region to deregister.
4294 * @udata: Valid user data or NULL for kernel object
4295 *
4296 * This function can fail, if the memory region has memory windows bound to it.
4297 */
4298 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4299
4300 /**
4301 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4302 * HCA translation table.
4303 * @mr: The memory region to deregister.
4304 *
4305 * This function can fail, if the memory region has memory windows bound to it.
4306 *
4307 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4308 */
ib_dereg_mr(struct ib_mr * mr)4309 static inline int ib_dereg_mr(struct ib_mr *mr)
4310 {
4311 return ib_dereg_mr_user(mr, NULL);
4312 }
4313
4314 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4315 u32 max_num_sg);
4316
4317 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4318 u32 max_num_data_sg,
4319 u32 max_num_meta_sg);
4320
4321 /**
4322 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4323 * R_Key and L_Key.
4324 * @mr - struct ib_mr pointer to be updated.
4325 * @newkey - new key to be used.
4326 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4327 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4328 {
4329 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4330 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4331 }
4332
4333 /**
4334 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4335 * for calculating a new rkey for type 2 memory windows.
4336 * @rkey - the rkey to increment.
4337 */
ib_inc_rkey(u32 rkey)4338 static inline u32 ib_inc_rkey(u32 rkey)
4339 {
4340 const u32 mask = 0x000000ff;
4341 return ((rkey + 1) & mask) | (rkey & ~mask);
4342 }
4343
4344 /**
4345 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4346 * @qp: QP to attach to the multicast group. The QP must be type
4347 * IB_QPT_UD.
4348 * @gid: Multicast group GID.
4349 * @lid: Multicast group LID in host byte order.
4350 *
4351 * In order to send and receive multicast packets, subnet
4352 * administration must have created the multicast group and configured
4353 * the fabric appropriately. The port associated with the specified
4354 * QP must also be a member of the multicast group.
4355 */
4356 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4357
4358 /**
4359 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4360 * @qp: QP to detach from the multicast group.
4361 * @gid: Multicast group GID.
4362 * @lid: Multicast group LID in host byte order.
4363 */
4364 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4365
4366 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4367 struct inode *inode, struct ib_udata *udata);
4368 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4369
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4370 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4371 unsigned int flags)
4372 {
4373 u64 device_cap = ib_dev->attrs.device_cap_flags;
4374
4375 /*
4376 * Local write permission is required if remote write or
4377 * remote atomic permission is also requested.
4378 */
4379 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4380 !(flags & IB_ACCESS_LOCAL_WRITE))
4381 return -EINVAL;
4382
4383 if (flags & ~IB_ACCESS_SUPPORTED)
4384 return -EINVAL;
4385
4386 if (flags & IB_ACCESS_ON_DEMAND &&
4387 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4388 return -EOPNOTSUPP;
4389
4390 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4391 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4392 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4393 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4394 return -EOPNOTSUPP;
4395
4396 return 0;
4397 }
4398
ib_access_writable(int access_flags)4399 static inline bool ib_access_writable(int access_flags)
4400 {
4401 /*
4402 * We have writable memory backing the MR if any of the following
4403 * access flags are set. "Local write" and "remote write" obviously
4404 * require write access. "Remote atomic" can do things like fetch and
4405 * add, which will modify memory, and "MW bind" can change permissions
4406 * by binding a window.
4407 */
4408 return access_flags &
4409 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4410 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4411 }
4412
4413 /**
4414 * ib_check_mr_status: lightweight check of MR status.
4415 * This routine may provide status checks on a selected
4416 * ib_mr. first use is for signature status check.
4417 *
4418 * @mr: A memory region.
4419 * @check_mask: Bitmask of which checks to perform from
4420 * ib_mr_status_check enumeration.
4421 * @mr_status: The container of relevant status checks.
4422 * failed checks will be indicated in the status bitmask
4423 * and the relevant info shall be in the error item.
4424 */
4425 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4426 struct ib_mr_status *mr_status);
4427
4428 /**
4429 * ib_device_try_get: Hold a registration lock
4430 * device: The device to lock
4431 *
4432 * A device under an active registration lock cannot become unregistered. It
4433 * is only possible to obtain a registration lock on a device that is fully
4434 * registered, otherwise this function returns false.
4435 *
4436 * The registration lock is only necessary for actions which require the
4437 * device to still be registered. Uses that only require the device pointer to
4438 * be valid should use get_device(&ibdev->dev) to hold the memory.
4439 *
4440 */
ib_device_try_get(struct ib_device * dev)4441 static inline bool ib_device_try_get(struct ib_device *dev)
4442 {
4443 return refcount_inc_not_zero(&dev->refcount);
4444 }
4445
4446 void ib_device_put(struct ib_device *device);
4447 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4448 enum rdma_driver_id driver_id);
4449 struct ib_device *ib_device_get_by_name(const char *name,
4450 enum rdma_driver_id driver_id);
4451 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4452 u16 pkey, const union ib_gid *gid,
4453 const struct sockaddr *addr);
4454 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4455 unsigned int port);
4456 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4457 u32 port);
4458 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4459 struct ib_wq_init_attr *init_attr);
4460 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4461
4462 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4463 unsigned int *sg_offset, unsigned int page_size);
4464 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4465 int data_sg_nents, unsigned int *data_sg_offset,
4466 struct scatterlist *meta_sg, int meta_sg_nents,
4467 unsigned int *meta_sg_offset, unsigned int page_size);
4468
4469 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4470 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4471 unsigned int *sg_offset, unsigned int page_size)
4472 {
4473 int n;
4474
4475 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4476 mr->iova = 0;
4477
4478 return n;
4479 }
4480
4481 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4482 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4483
4484 void ib_drain_rq(struct ib_qp *qp);
4485 void ib_drain_sq(struct ib_qp *qp);
4486 void ib_drain_qp(struct ib_qp *qp);
4487
4488 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4489 u8 *width);
4490
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4491 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4492 {
4493 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4494 return attr->roce.dmac;
4495 return NULL;
4496 }
4497
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4498 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4499 {
4500 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4501 attr->ib.dlid = (u16)dlid;
4502 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4503 attr->opa.dlid = dlid;
4504 }
4505
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4506 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4507 {
4508 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4509 return attr->ib.dlid;
4510 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4511 return attr->opa.dlid;
4512 return 0;
4513 }
4514
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4515 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4516 {
4517 attr->sl = sl;
4518 }
4519
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4520 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4521 {
4522 return attr->sl;
4523 }
4524
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4525 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4526 u8 src_path_bits)
4527 {
4528 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4529 attr->ib.src_path_bits = src_path_bits;
4530 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4531 attr->opa.src_path_bits = src_path_bits;
4532 }
4533
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4534 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4535 {
4536 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4537 return attr->ib.src_path_bits;
4538 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4539 return attr->opa.src_path_bits;
4540 return 0;
4541 }
4542
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4543 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4544 bool make_grd)
4545 {
4546 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4547 attr->opa.make_grd = make_grd;
4548 }
4549
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4550 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4551 {
4552 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4553 return attr->opa.make_grd;
4554 return false;
4555 }
4556
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4557 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4558 {
4559 attr->port_num = port_num;
4560 }
4561
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4562 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4563 {
4564 return attr->port_num;
4565 }
4566
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4567 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4568 u8 static_rate)
4569 {
4570 attr->static_rate = static_rate;
4571 }
4572
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4573 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4574 {
4575 return attr->static_rate;
4576 }
4577
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4578 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4579 enum ib_ah_flags flag)
4580 {
4581 attr->ah_flags = flag;
4582 }
4583
4584 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4585 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4586 {
4587 return attr->ah_flags;
4588 }
4589
4590 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4591 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4592 {
4593 return &attr->grh;
4594 }
4595
4596 /*To retrieve and modify the grh */
4597 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4598 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4599 {
4600 return &attr->grh;
4601 }
4602
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4603 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4604 {
4605 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4606
4607 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4608 }
4609
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4610 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4611 __be64 prefix)
4612 {
4613 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4614
4615 grh->dgid.global.subnet_prefix = prefix;
4616 }
4617
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4618 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4619 __be64 if_id)
4620 {
4621 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4622
4623 grh->dgid.global.interface_id = if_id;
4624 }
4625
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4626 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4627 union ib_gid *dgid, u32 flow_label,
4628 u8 sgid_index, u8 hop_limit,
4629 u8 traffic_class)
4630 {
4631 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4632
4633 attr->ah_flags = IB_AH_GRH;
4634 if (dgid)
4635 grh->dgid = *dgid;
4636 grh->flow_label = flow_label;
4637 grh->sgid_index = sgid_index;
4638 grh->hop_limit = hop_limit;
4639 grh->traffic_class = traffic_class;
4640 grh->sgid_attr = NULL;
4641 }
4642
4643 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4644 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4645 u32 flow_label, u8 hop_limit, u8 traffic_class,
4646 const struct ib_gid_attr *sgid_attr);
4647 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4648 const struct rdma_ah_attr *src);
4649 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4650 const struct rdma_ah_attr *new);
4651 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4652
4653 /**
4654 * rdma_ah_find_type - Return address handle type.
4655 *
4656 * @dev: Device to be checked
4657 * @port_num: Port number
4658 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4659 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4660 u32 port_num)
4661 {
4662 if (rdma_protocol_roce(dev, port_num))
4663 return RDMA_AH_ATTR_TYPE_ROCE;
4664 if (rdma_protocol_ib(dev, port_num)) {
4665 if (rdma_cap_opa_ah(dev, port_num))
4666 return RDMA_AH_ATTR_TYPE_OPA;
4667 return RDMA_AH_ATTR_TYPE_IB;
4668 }
4669 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4670 return RDMA_AH_ATTR_TYPE_IB;
4671
4672 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4673 }
4674
4675 /**
4676 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4677 * In the current implementation the only way to
4678 * get the 32bit lid is from other sources for OPA.
4679 * For IB, lids will always be 16bits so cast the
4680 * value accordingly.
4681 *
4682 * @lid: A 32bit LID
4683 */
ib_lid_cpu16(u32 lid)4684 static inline u16 ib_lid_cpu16(u32 lid)
4685 {
4686 WARN_ON_ONCE(lid & 0xFFFF0000);
4687 return (u16)lid;
4688 }
4689
4690 /**
4691 * ib_lid_be16 - Return lid in 16bit BE encoding.
4692 *
4693 * @lid: A 32bit LID
4694 */
ib_lid_be16(u32 lid)4695 static inline __be16 ib_lid_be16(u32 lid)
4696 {
4697 WARN_ON_ONCE(lid & 0xFFFF0000);
4698 return cpu_to_be16((u16)lid);
4699 }
4700
4701 /**
4702 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4703 * vector
4704 * @device: the rdma device
4705 * @comp_vector: index of completion vector
4706 *
4707 * Returns NULL on failure, otherwise a corresponding cpu map of the
4708 * completion vector (returns all-cpus map if the device driver doesn't
4709 * implement get_vector_affinity).
4710 */
4711 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4712 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4713 {
4714 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4715 !device->ops.get_vector_affinity)
4716 return NULL;
4717
4718 return device->ops.get_vector_affinity(device, comp_vector);
4719
4720 }
4721
4722 /**
4723 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4724 * and add their gids, as needed, to the relevant RoCE devices.
4725 *
4726 * @device: the rdma device
4727 */
4728 void rdma_roce_rescan_device(struct ib_device *ibdev);
4729
4730 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4731
4732 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4733
4734 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4735 enum rdma_netdev_t type, const char *name,
4736 unsigned char name_assign_type,
4737 void (*setup)(struct net_device *));
4738
4739 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4740 enum rdma_netdev_t type, const char *name,
4741 unsigned char name_assign_type,
4742 void (*setup)(struct net_device *),
4743 struct net_device *netdev);
4744
4745 /**
4746 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4747 *
4748 * @device: device pointer for which ib_device pointer to retrieve
4749 *
4750 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4751 *
4752 */
rdma_device_to_ibdev(struct device * device)4753 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4754 {
4755 struct ib_core_device *coredev =
4756 container_of(device, struct ib_core_device, dev);
4757
4758 return coredev->owner;
4759 }
4760
4761 /**
4762 * ibdev_to_node - return the NUMA node for a given ib_device
4763 * @dev: device to get the NUMA node for.
4764 */
ibdev_to_node(struct ib_device * ibdev)4765 static inline int ibdev_to_node(struct ib_device *ibdev)
4766 {
4767 struct device *parent = ibdev->dev.parent;
4768
4769 if (!parent)
4770 return NUMA_NO_NODE;
4771 return dev_to_node(parent);
4772 }
4773
4774 /**
4775 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4776 * ib_device holder structure from device pointer.
4777 *
4778 * NOTE: New drivers should not make use of this API; This API is only for
4779 * existing drivers who have exposed sysfs entries using
4780 * ops->device_group.
4781 */
4782 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4783 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4784
4785 bool rdma_dev_access_netns(const struct ib_device *device,
4786 const struct net *net);
4787
4788 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4789 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4790 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4791
4792 /**
4793 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4794 * on the flow_label
4795 *
4796 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4797 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4798 * convention.
4799 */
rdma_flow_label_to_udp_sport(u32 fl)4800 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4801 {
4802 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4803
4804 fl_low ^= fl_high >> 14;
4805 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4806 }
4807
4808 /**
4809 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4810 * local and remote qpn values
4811 *
4812 * This function folded the multiplication results of two qpns, 24 bit each,
4813 * fields, and converts it to a 20 bit results.
4814 *
4815 * This function will create symmetric flow_label value based on the local
4816 * and remote qpn values. this will allow both the requester and responder
4817 * to calculate the same flow_label for a given connection.
4818 *
4819 * This helper function should be used by driver in case the upper layer
4820 * provide a zero flow_label value. This is to improve entropy of RDMA
4821 * traffic in the network.
4822 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4823 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4824 {
4825 u64 v = (u64)lqpn * rqpn;
4826
4827 v ^= v >> 20;
4828 v ^= v >> 40;
4829
4830 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4831 }
4832
4833 /**
4834 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4835 * label. If flow label is not defined in GRH then
4836 * calculate it based on lqpn/rqpn.
4837 *
4838 * @fl: flow label from GRH
4839 * @lqpn: local qp number
4840 * @rqpn: remote qp number
4841 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4842 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4843 {
4844 if (!fl)
4845 fl = rdma_calc_flow_label(lqpn, rqpn);
4846
4847 return rdma_flow_label_to_udp_sport(fl);
4848 }
4849
4850 const struct ib_port_immutable*
4851 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4852
4853 /** ib_add_sub_device - Add a sub IB device on an existing one
4854 *
4855 * @parent: The IB device that needs to add a sub device
4856 * @type: The type of the new sub device
4857 * @name: The name of the new sub device
4858 *
4859 *
4860 * Return 0 on success, an error code otherwise
4861 */
4862 int ib_add_sub_device(struct ib_device *parent,
4863 enum rdma_nl_dev_type type,
4864 const char *name);
4865
4866
4867 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4868 *
4869 * @sub: The sub device that is going to be deleted
4870 *
4871 * Return 0 on success, an error code otherwise
4872 */
4873 int ib_del_sub_device_and_put(struct ib_device *sub);
4874
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4875 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4876 {
4877 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4878 }
4879
4880 #endif /* IB_VERBS_H */
4881