1 //===- Overload.h - C++ Overloading -----------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the data structures and types used in C++
10 // overload resolution.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_OVERLOAD_H
15 #define LLVM_CLANG_SEMA_OVERLOAD_H
16 
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclAccessPair.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Basic/LLVM.h"
25 #include "clang/Basic/SourceLocation.h"
26 #include "clang/Sema/SemaFixItUtils.h"
27 #include "clang/Sema/TemplateDeduction.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AlignOf.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 namespace clang {
43 
44 class APValue;
45 class ASTContext;
46 class Sema;
47 
48   /// OverloadingResult - Capture the result of performing overload
49   /// resolution.
50   enum OverloadingResult {
51     /// Overload resolution succeeded.
52     OR_Success,
53 
54     /// No viable function found.
55     OR_No_Viable_Function,
56 
57     /// Ambiguous candidates found.
58     OR_Ambiguous,
59 
60     /// Succeeded, but refers to a deleted function.
61     OR_Deleted
62   };
63 
64   enum OverloadCandidateDisplayKind {
65     /// Requests that all candidates be shown.  Viable candidates will
66     /// be printed first.
67     OCD_AllCandidates,
68 
69     /// Requests that only viable candidates be shown.
70     OCD_ViableCandidates,
71 
72     /// Requests that only tied-for-best candidates be shown.
73     OCD_AmbiguousCandidates
74   };
75 
76   /// The parameter ordering that will be used for the candidate. This is
77   /// used to represent C++20 binary operator rewrites that reverse the order
78   /// of the arguments. If the parameter ordering is Reversed, the Args list is
79   /// reversed (but obviously the ParamDecls for the function are not).
80   ///
81   /// After forming an OverloadCandidate with reversed parameters, the list
82   /// of conversions will (as always) be indexed by argument, so will be
83   /// in reverse parameter order.
84   enum class OverloadCandidateParamOrder : char { Normal, Reversed };
85 
86   /// The kinds of rewrite we perform on overload candidates. Note that the
87   /// values here are chosen to serve as both bitflags and as a rank (lower
88   /// values are preferred by overload resolution).
89   enum OverloadCandidateRewriteKind : unsigned {
90     /// Candidate is not a rewritten candidate.
91     CRK_None = 0x0,
92 
93     /// Candidate is a rewritten candidate with a different operator name.
94     CRK_DifferentOperator = 0x1,
95 
96     /// Candidate is a rewritten candidate with a reversed order of parameters.
97     CRK_Reversed = 0x2,
98   };
99 
100   /// ImplicitConversionKind - The kind of implicit conversion used to
101   /// convert an argument to a parameter's type. The enumerator values
102   /// match with the table titled 'Conversions' in [over.ics.scs] and are listed
103   /// such that better conversion kinds have smaller values.
104   enum ImplicitConversionKind {
105     /// Identity conversion (no conversion)
106     ICK_Identity = 0,
107 
108     /// Lvalue-to-rvalue conversion (C++ [conv.lval])
109     ICK_Lvalue_To_Rvalue,
110 
111     /// Array-to-pointer conversion (C++ [conv.array])
112     ICK_Array_To_Pointer,
113 
114     /// Function-to-pointer (C++ [conv.array])
115     ICK_Function_To_Pointer,
116 
117     /// Function pointer conversion (C++17 [conv.fctptr])
118     ICK_Function_Conversion,
119 
120     /// Qualification conversions (C++ [conv.qual])
121     ICK_Qualification,
122 
123     /// Integral promotions (C++ [conv.prom])
124     ICK_Integral_Promotion,
125 
126     /// Floating point promotions (C++ [conv.fpprom])
127     ICK_Floating_Promotion,
128 
129     /// Complex promotions (Clang extension)
130     ICK_Complex_Promotion,
131 
132     /// Integral conversions (C++ [conv.integral])
133     ICK_Integral_Conversion,
134 
135     /// Floating point conversions (C++ [conv.double]
136     ICK_Floating_Conversion,
137 
138     /// Complex conversions (C99 6.3.1.6)
139     ICK_Complex_Conversion,
140 
141     /// Floating-integral conversions (C++ [conv.fpint])
142     ICK_Floating_Integral,
143 
144     /// Pointer conversions (C++ [conv.ptr])
145     ICK_Pointer_Conversion,
146 
147     /// Pointer-to-member conversions (C++ [conv.mem])
148     ICK_Pointer_Member,
149 
150     /// Boolean conversions (C++ [conv.bool])
151     ICK_Boolean_Conversion,
152 
153     /// Conversions between compatible types in C99
154     ICK_Compatible_Conversion,
155 
156     /// Derived-to-base (C++ [over.best.ics])
157     ICK_Derived_To_Base,
158 
159     /// Vector conversions
160     ICK_Vector_Conversion,
161 
162     /// Arm SVE Vector conversions
163     ICK_SVE_Vector_Conversion,
164 
165     /// A vector splat from an arithmetic type
166     ICK_Vector_Splat,
167 
168     /// Complex-real conversions (C99 6.3.1.7)
169     ICK_Complex_Real,
170 
171     /// Block Pointer conversions
172     ICK_Block_Pointer_Conversion,
173 
174     /// Transparent Union Conversions
175     ICK_TransparentUnionConversion,
176 
177     /// Objective-C ARC writeback conversion
178     ICK_Writeback_Conversion,
179 
180     /// Zero constant to event (OpenCL1.2 6.12.10)
181     ICK_Zero_Event_Conversion,
182 
183     /// Zero constant to queue
184     ICK_Zero_Queue_Conversion,
185 
186     /// Conversions allowed in C, but not C++
187     ICK_C_Only_Conversion,
188 
189     /// C-only conversion between pointers with incompatible types
190     ICK_Incompatible_Pointer_Conversion,
191 
192     /// The number of conversion kinds
193     ICK_Num_Conversion_Kinds,
194   };
195 
196   /// ImplicitConversionRank - The rank of an implicit conversion
197   /// kind. The enumerator values match with Table 9 of (C++
198   /// 13.3.3.1.1) and are listed such that better conversion ranks
199   /// have smaller values.
200   enum ImplicitConversionRank {
201     /// Exact Match
202     ICR_Exact_Match = 0,
203 
204     /// Promotion
205     ICR_Promotion,
206 
207     /// Conversion
208     ICR_Conversion,
209 
210     /// OpenCL Scalar Widening
211     ICR_OCL_Scalar_Widening,
212 
213     /// Complex <-> Real conversion
214     ICR_Complex_Real_Conversion,
215 
216     /// ObjC ARC writeback conversion
217     ICR_Writeback_Conversion,
218 
219     /// Conversion only allowed in the C standard (e.g. void* to char*).
220     ICR_C_Conversion,
221 
222     /// Conversion not allowed by the C standard, but that we accept as an
223     /// extension anyway.
224     ICR_C_Conversion_Extension
225   };
226 
227   ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind);
228 
229   /// NarrowingKind - The kind of narrowing conversion being performed by a
230   /// standard conversion sequence according to C++11 [dcl.init.list]p7.
231   enum NarrowingKind {
232     /// Not a narrowing conversion.
233     NK_Not_Narrowing,
234 
235     /// A narrowing conversion by virtue of the source and destination types.
236     NK_Type_Narrowing,
237 
238     /// A narrowing conversion, because a constant expression got narrowed.
239     NK_Constant_Narrowing,
240 
241     /// A narrowing conversion, because a non-constant-expression variable might
242     /// have got narrowed.
243     NK_Variable_Narrowing,
244 
245     /// Cannot tell whether this is a narrowing conversion because the
246     /// expression is value-dependent.
247     NK_Dependent_Narrowing,
248   };
249 
250   /// StandardConversionSequence - represents a standard conversion
251   /// sequence (C++ 13.3.3.1.1). A standard conversion sequence
252   /// contains between zero and three conversions. If a particular
253   /// conversion is not needed, it will be set to the identity conversion
254   /// (ICK_Identity). Note that the three conversions are
255   /// specified as separate members (rather than in an array) so that
256   /// we can keep the size of a standard conversion sequence to a
257   /// single word.
258   class StandardConversionSequence {
259   public:
260     /// First -- The first conversion can be an lvalue-to-rvalue
261     /// conversion, array-to-pointer conversion, or
262     /// function-to-pointer conversion.
263     ImplicitConversionKind First : 8;
264 
265     /// Second - The second conversion can be an integral promotion,
266     /// floating point promotion, integral conversion, floating point
267     /// conversion, floating-integral conversion, pointer conversion,
268     /// pointer-to-member conversion, or boolean conversion.
269     ImplicitConversionKind Second : 8;
270 
271     /// Third - The third conversion can be a qualification conversion
272     /// or a function conversion.
273     ImplicitConversionKind Third : 8;
274 
275     /// Whether this is the deprecated conversion of a
276     /// string literal to a pointer to non-const character data
277     /// (C++ 4.2p2).
278     unsigned DeprecatedStringLiteralToCharPtr : 1;
279 
280     /// Whether the qualification conversion involves a change in the
281     /// Objective-C lifetime (for automatic reference counting).
282     unsigned QualificationIncludesObjCLifetime : 1;
283 
284     /// IncompatibleObjC - Whether this is an Objective-C conversion
285     /// that we should warn about (if we actually use it).
286     unsigned IncompatibleObjC : 1;
287 
288     /// ReferenceBinding - True when this is a reference binding
289     /// (C++ [over.ics.ref]).
290     unsigned ReferenceBinding : 1;
291 
292     /// DirectBinding - True when this is a reference binding that is a
293     /// direct binding (C++ [dcl.init.ref]).
294     unsigned DirectBinding : 1;
295 
296     /// Whether this is an lvalue reference binding (otherwise, it's
297     /// an rvalue reference binding).
298     unsigned IsLvalueReference : 1;
299 
300     /// Whether we're binding to a function lvalue.
301     unsigned BindsToFunctionLvalue : 1;
302 
303     /// Whether we're binding to an rvalue.
304     unsigned BindsToRvalue : 1;
305 
306     /// Whether this binds an implicit object argument to a
307     /// non-static member function without a ref-qualifier.
308     unsigned BindsImplicitObjectArgumentWithoutRefQualifier : 1;
309 
310     /// Whether this binds a reference to an object with a different
311     /// Objective-C lifetime qualifier.
312     unsigned ObjCLifetimeConversionBinding : 1;
313 
314     /// FromType - The type that this conversion is converting
315     /// from. This is an opaque pointer that can be translated into a
316     /// QualType.
317     void *FromTypePtr;
318 
319     /// ToType - The types that this conversion is converting to in
320     /// each step. This is an opaque pointer that can be translated
321     /// into a QualType.
322     void *ToTypePtrs[3];
323 
324     /// CopyConstructor - The copy constructor that is used to perform
325     /// this conversion, when the conversion is actually just the
326     /// initialization of an object via copy constructor. Such
327     /// conversions are either identity conversions or derived-to-base
328     /// conversions.
329     CXXConstructorDecl *CopyConstructor;
330     DeclAccessPair FoundCopyConstructor;
331 
setFromType(QualType T)332     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
333 
setToType(unsigned Idx,QualType T)334     void setToType(unsigned Idx, QualType T) {
335       assert(Idx < 3 && "To type index is out of range");
336       ToTypePtrs[Idx] = T.getAsOpaquePtr();
337     }
338 
setAllToTypes(QualType T)339     void setAllToTypes(QualType T) {
340       ToTypePtrs[0] = T.getAsOpaquePtr();
341       ToTypePtrs[1] = ToTypePtrs[0];
342       ToTypePtrs[2] = ToTypePtrs[0];
343     }
344 
getFromType()345     QualType getFromType() const {
346       return QualType::getFromOpaquePtr(FromTypePtr);
347     }
348 
getToType(unsigned Idx)349     QualType getToType(unsigned Idx) const {
350       assert(Idx < 3 && "To type index is out of range");
351       return QualType::getFromOpaquePtr(ToTypePtrs[Idx]);
352     }
353 
354     void setAsIdentityConversion();
355 
isIdentityConversion()356     bool isIdentityConversion() const {
357       return Second == ICK_Identity && Third == ICK_Identity;
358     }
359 
360     ImplicitConversionRank getRank() const;
361     NarrowingKind
362     getNarrowingKind(ASTContext &Context, const Expr *Converted,
363                      APValue &ConstantValue, QualType &ConstantType,
364                      bool IgnoreFloatToIntegralConversion = false) const;
365     bool isPointerConversionToBool() const;
366     bool isPointerConversionToVoidPointer(ASTContext& Context) const;
367     void dump() const;
368   };
369 
370   /// UserDefinedConversionSequence - Represents a user-defined
371   /// conversion sequence (C++ 13.3.3.1.2).
372   struct UserDefinedConversionSequence {
373     /// Represents the standard conversion that occurs before
374     /// the actual user-defined conversion.
375     ///
376     /// C++11 13.3.3.1.2p1:
377     ///   If the user-defined conversion is specified by a constructor
378     ///   (12.3.1), the initial standard conversion sequence converts
379     ///   the source type to the type required by the argument of the
380     ///   constructor. If the user-defined conversion is specified by
381     ///   a conversion function (12.3.2), the initial standard
382     ///   conversion sequence converts the source type to the implicit
383     ///   object parameter of the conversion function.
384     StandardConversionSequence Before;
385 
386     /// EllipsisConversion - When this is true, it means user-defined
387     /// conversion sequence starts with a ... (ellipsis) conversion, instead of
388     /// a standard conversion. In this case, 'Before' field must be ignored.
389     // FIXME. I much rather put this as the first field. But there seems to be
390     // a gcc code gen. bug which causes a crash in a test. Putting it here seems
391     // to work around the crash.
392     bool EllipsisConversion : 1;
393 
394     /// HadMultipleCandidates - When this is true, it means that the
395     /// conversion function was resolved from an overloaded set having
396     /// size greater than 1.
397     bool HadMultipleCandidates : 1;
398 
399     /// After - Represents the standard conversion that occurs after
400     /// the actual user-defined conversion.
401     StandardConversionSequence After;
402 
403     /// ConversionFunction - The function that will perform the
404     /// user-defined conversion. Null if the conversion is an
405     /// aggregate initialization from an initializer list.
406     FunctionDecl* ConversionFunction;
407 
408     /// The declaration that we found via name lookup, which might be
409     /// the same as \c ConversionFunction or it might be a using declaration
410     /// that refers to \c ConversionFunction.
411     DeclAccessPair FoundConversionFunction;
412 
413     void dump() const;
414   };
415 
416   /// Represents an ambiguous user-defined conversion sequence.
417   struct AmbiguousConversionSequence {
418     using ConversionSet =
419         SmallVector<std::pair<NamedDecl *, FunctionDecl *>, 4>;
420 
421     void *FromTypePtr;
422     void *ToTypePtr;
423     char Buffer[sizeof(ConversionSet)];
424 
getFromTypeAmbiguousConversionSequence425     QualType getFromType() const {
426       return QualType::getFromOpaquePtr(FromTypePtr);
427     }
428 
getToTypeAmbiguousConversionSequence429     QualType getToType() const {
430       return QualType::getFromOpaquePtr(ToTypePtr);
431     }
432 
setFromTypeAmbiguousConversionSequence433     void setFromType(QualType T) { FromTypePtr = T.getAsOpaquePtr(); }
setToTypeAmbiguousConversionSequence434     void setToType(QualType T) { ToTypePtr = T.getAsOpaquePtr(); }
435 
conversionsAmbiguousConversionSequence436     ConversionSet &conversions() {
437       return *reinterpret_cast<ConversionSet*>(Buffer);
438     }
439 
conversionsAmbiguousConversionSequence440     const ConversionSet &conversions() const {
441       return *reinterpret_cast<const ConversionSet*>(Buffer);
442     }
443 
addConversionAmbiguousConversionSequence444     void addConversion(NamedDecl *Found, FunctionDecl *D) {
445       conversions().push_back(std::make_pair(Found, D));
446     }
447 
448     using iterator = ConversionSet::iterator;
449 
beginAmbiguousConversionSequence450     iterator begin() { return conversions().begin(); }
endAmbiguousConversionSequence451     iterator end() { return conversions().end(); }
452 
453     using const_iterator = ConversionSet::const_iterator;
454 
beginAmbiguousConversionSequence455     const_iterator begin() const { return conversions().begin(); }
endAmbiguousConversionSequence456     const_iterator end() const { return conversions().end(); }
457 
458     void construct();
459     void destruct();
460     void copyFrom(const AmbiguousConversionSequence &);
461   };
462 
463   /// BadConversionSequence - Records information about an invalid
464   /// conversion sequence.
465   struct BadConversionSequence {
466     enum FailureKind {
467       no_conversion,
468       unrelated_class,
469       bad_qualifiers,
470       lvalue_ref_to_rvalue,
471       rvalue_ref_to_lvalue,
472       too_few_initializers,
473       too_many_initializers,
474     };
475 
476     // This can be null, e.g. for implicit object arguments.
477     Expr *FromExpr;
478 
479     FailureKind Kind;
480 
481   private:
482     // The type we're converting from (an opaque QualType).
483     void *FromTy;
484 
485     // The type we're converting to (an opaque QualType).
486     void *ToTy;
487 
488   public:
initBadConversionSequence489     void init(FailureKind K, Expr *From, QualType To) {
490       init(K, From->getType(), To);
491       FromExpr = From;
492     }
493 
initBadConversionSequence494     void init(FailureKind K, QualType From, QualType To) {
495       Kind = K;
496       FromExpr = nullptr;
497       setFromType(From);
498       setToType(To);
499     }
500 
getFromTypeBadConversionSequence501     QualType getFromType() const { return QualType::getFromOpaquePtr(FromTy); }
getToTypeBadConversionSequence502     QualType getToType() const { return QualType::getFromOpaquePtr(ToTy); }
503 
setFromExprBadConversionSequence504     void setFromExpr(Expr *E) {
505       FromExpr = E;
506       setFromType(E->getType());
507     }
508 
setFromTypeBadConversionSequence509     void setFromType(QualType T) { FromTy = T.getAsOpaquePtr(); }
setToTypeBadConversionSequence510     void setToType(QualType T) { ToTy = T.getAsOpaquePtr(); }
511   };
512 
513   /// ImplicitConversionSequence - Represents an implicit conversion
514   /// sequence, which may be a standard conversion sequence
515   /// (C++ 13.3.3.1.1), user-defined conversion sequence (C++ 13.3.3.1.2),
516   /// or an ellipsis conversion sequence (C++ 13.3.3.1.3).
517   class ImplicitConversionSequence {
518   public:
519     /// Kind - The kind of implicit conversion sequence. BadConversion
520     /// specifies that there is no conversion from the source type to
521     /// the target type.  AmbiguousConversion represents the unique
522     /// ambiguous conversion (C++0x [over.best.ics]p10).
523     /// StaticObjectArgumentConversion represents the conversion rules for
524     /// the synthesized first argument of calls to static member functions
525     /// ([over.best.ics.general]p8).
526     enum Kind {
527       StandardConversion = 0,
528       StaticObjectArgumentConversion,
529       UserDefinedConversion,
530       AmbiguousConversion,
531       EllipsisConversion,
532       BadConversion
533     };
534 
535   private:
536     enum {
537       Uninitialized = BadConversion + 1
538     };
539 
540     /// ConversionKind - The kind of implicit conversion sequence.
541     unsigned ConversionKind : 31;
542 
543     // Whether the initializer list was of an incomplete array.
544     unsigned InitializerListOfIncompleteArray : 1;
545 
546     /// When initializing an array or std::initializer_list from an
547     /// initializer-list, this is the array or std::initializer_list type being
548     /// initialized. The remainder of the conversion sequence, including ToType,
549     /// describe the worst conversion of an initializer to an element of the
550     /// array or std::initializer_list. (Note, 'worst' is not well defined.)
551     QualType InitializerListContainerType;
552 
setKind(Kind K)553     void setKind(Kind K) {
554       destruct();
555       ConversionKind = K;
556     }
557 
destruct()558     void destruct() {
559       if (ConversionKind == AmbiguousConversion) Ambiguous.destruct();
560     }
561 
562   public:
563     union {
564       /// When ConversionKind == StandardConversion, provides the
565       /// details of the standard conversion sequence.
566       StandardConversionSequence Standard;
567 
568       /// When ConversionKind == UserDefinedConversion, provides the
569       /// details of the user-defined conversion sequence.
570       UserDefinedConversionSequence UserDefined;
571 
572       /// When ConversionKind == AmbiguousConversion, provides the
573       /// details of the ambiguous conversion.
574       AmbiguousConversionSequence Ambiguous;
575 
576       /// When ConversionKind == BadConversion, provides the details
577       /// of the bad conversion.
578       BadConversionSequence Bad;
579     };
580 
ImplicitConversionSequence()581     ImplicitConversionSequence()
582         : ConversionKind(Uninitialized),
583           InitializerListOfIncompleteArray(false) {
584       Standard.setAsIdentityConversion();
585     }
586 
ImplicitConversionSequence(const ImplicitConversionSequence & Other)587     ImplicitConversionSequence(const ImplicitConversionSequence &Other)
588         : ConversionKind(Other.ConversionKind),
589           InitializerListOfIncompleteArray(
590               Other.InitializerListOfIncompleteArray),
591           InitializerListContainerType(Other.InitializerListContainerType) {
592       switch (ConversionKind) {
593       case Uninitialized: break;
594       case StandardConversion: Standard = Other.Standard; break;
595       case StaticObjectArgumentConversion:
596         break;
597       case UserDefinedConversion: UserDefined = Other.UserDefined; break;
598       case AmbiguousConversion: Ambiguous.copyFrom(Other.Ambiguous); break;
599       case EllipsisConversion: break;
600       case BadConversion: Bad = Other.Bad; break;
601       }
602     }
603 
604     ImplicitConversionSequence &
605     operator=(const ImplicitConversionSequence &Other) {
606       destruct();
607       new (this) ImplicitConversionSequence(Other);
608       return *this;
609     }
610 
~ImplicitConversionSequence()611     ~ImplicitConversionSequence() {
612       destruct();
613     }
614 
getKind()615     Kind getKind() const {
616       assert(isInitialized() && "querying uninitialized conversion");
617       return Kind(ConversionKind);
618     }
619 
620     /// Return a ranking of the implicit conversion sequence
621     /// kind, where smaller ranks represent better conversion
622     /// sequences.
623     ///
624     /// In particular, this routine gives user-defined conversion
625     /// sequences and ambiguous conversion sequences the same rank,
626     /// per C++ [over.best.ics]p10.
getKindRank()627     unsigned getKindRank() const {
628       switch (getKind()) {
629       case StandardConversion:
630       case StaticObjectArgumentConversion:
631         return 0;
632 
633       case UserDefinedConversion:
634       case AmbiguousConversion:
635         return 1;
636 
637       case EllipsisConversion:
638         return 2;
639 
640       case BadConversion:
641         return 3;
642       }
643 
644       llvm_unreachable("Invalid ImplicitConversionSequence::Kind!");
645     }
646 
isBad()647     bool isBad() const { return getKind() == BadConversion; }
isStandard()648     bool isStandard() const { return getKind() == StandardConversion; }
isStaticObjectArgument()649     bool isStaticObjectArgument() const {
650       return getKind() == StaticObjectArgumentConversion;
651     }
isEllipsis()652     bool isEllipsis() const { return getKind() == EllipsisConversion; }
isAmbiguous()653     bool isAmbiguous() const { return getKind() == AmbiguousConversion; }
isUserDefined()654     bool isUserDefined() const { return getKind() == UserDefinedConversion; }
isFailure()655     bool isFailure() const { return isBad() || isAmbiguous(); }
656 
657     /// Determines whether this conversion sequence has been
658     /// initialized.  Most operations should never need to query
659     /// uninitialized conversions and should assert as above.
isInitialized()660     bool isInitialized() const { return ConversionKind != Uninitialized; }
661 
662     /// Sets this sequence as a bad conversion for an explicit argument.
setBad(BadConversionSequence::FailureKind Failure,Expr * FromExpr,QualType ToType)663     void setBad(BadConversionSequence::FailureKind Failure,
664                 Expr *FromExpr, QualType ToType) {
665       setKind(BadConversion);
666       Bad.init(Failure, FromExpr, ToType);
667     }
668 
669     /// Sets this sequence as a bad conversion for an implicit argument.
setBad(BadConversionSequence::FailureKind Failure,QualType FromType,QualType ToType)670     void setBad(BadConversionSequence::FailureKind Failure,
671                 QualType FromType, QualType ToType) {
672       setKind(BadConversion);
673       Bad.init(Failure, FromType, ToType);
674     }
675 
setStandard()676     void setStandard() { setKind(StandardConversion); }
setStaticObjectArgument()677     void setStaticObjectArgument() { setKind(StaticObjectArgumentConversion); }
setEllipsis()678     void setEllipsis() { setKind(EllipsisConversion); }
setUserDefined()679     void setUserDefined() { setKind(UserDefinedConversion); }
680 
setAmbiguous()681     void setAmbiguous() {
682       if (ConversionKind == AmbiguousConversion) return;
683       ConversionKind = AmbiguousConversion;
684       Ambiguous.construct();
685     }
686 
setAsIdentityConversion(QualType T)687     void setAsIdentityConversion(QualType T) {
688       setStandard();
689       Standard.setAsIdentityConversion();
690       Standard.setFromType(T);
691       Standard.setAllToTypes(T);
692     }
693 
694     // True iff this is a conversion sequence from an initializer list to an
695     // array or std::initializer.
hasInitializerListContainerType()696     bool hasInitializerListContainerType() const {
697       return !InitializerListContainerType.isNull();
698     }
setInitializerListContainerType(QualType T,bool IA)699     void setInitializerListContainerType(QualType T, bool IA) {
700       InitializerListContainerType = T;
701       InitializerListOfIncompleteArray = IA;
702     }
isInitializerListOfIncompleteArray()703     bool isInitializerListOfIncompleteArray() const {
704       return InitializerListOfIncompleteArray;
705     }
getInitializerListContainerType()706     QualType getInitializerListContainerType() const {
707       assert(hasInitializerListContainerType() &&
708              "not initializer list container");
709       return InitializerListContainerType;
710     }
711 
712     /// Form an "implicit" conversion sequence from nullptr_t to bool, for a
713     /// direct-initialization of a bool object from nullptr_t.
getNullptrToBool(QualType SourceType,QualType DestType,bool NeedLValToRVal)714     static ImplicitConversionSequence getNullptrToBool(QualType SourceType,
715                                                        QualType DestType,
716                                                        bool NeedLValToRVal) {
717       ImplicitConversionSequence ICS;
718       ICS.setStandard();
719       ICS.Standard.setAsIdentityConversion();
720       ICS.Standard.setFromType(SourceType);
721       if (NeedLValToRVal)
722         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
723       ICS.Standard.setToType(0, SourceType);
724       ICS.Standard.Second = ICK_Boolean_Conversion;
725       ICS.Standard.setToType(1, DestType);
726       ICS.Standard.setToType(2, DestType);
727       return ICS;
728     }
729 
730     // The result of a comparison between implicit conversion
731     // sequences. Use Sema::CompareImplicitConversionSequences to
732     // actually perform the comparison.
733     enum CompareKind {
734       Better = -1,
735       Indistinguishable = 0,
736       Worse = 1
737     };
738 
739     void DiagnoseAmbiguousConversion(Sema &S,
740                                      SourceLocation CaretLoc,
741                                      const PartialDiagnostic &PDiag) const;
742 
743     void dump() const;
744   };
745 
746   enum OverloadFailureKind {
747     ovl_fail_too_many_arguments,
748     ovl_fail_too_few_arguments,
749     ovl_fail_bad_conversion,
750     ovl_fail_bad_deduction,
751 
752     /// This conversion candidate was not considered because it
753     /// duplicates the work of a trivial or derived-to-base
754     /// conversion.
755     ovl_fail_trivial_conversion,
756 
757     /// This conversion candidate was not considered because it is
758     /// an illegal instantiation of a constructor temploid: it is
759     /// callable with one argument, we only have one argument, and
760     /// its first parameter type is exactly the type of the class.
761     ///
762     /// Defining such a constructor directly is illegal, and
763     /// template-argument deduction is supposed to ignore such
764     /// instantiations, but we can still get one with the right
765     /// kind of implicit instantiation.
766     ovl_fail_illegal_constructor,
767 
768     /// This conversion candidate is not viable because its result
769     /// type is not implicitly convertible to the desired type.
770     ovl_fail_bad_final_conversion,
771 
772     /// This conversion function template specialization candidate is not
773     /// viable because the final conversion was not an exact match.
774     ovl_fail_final_conversion_not_exact,
775 
776     /// (CUDA) This candidate was not viable because the callee
777     /// was not accessible from the caller's target (i.e. host->device,
778     /// global->host, device->host).
779     ovl_fail_bad_target,
780 
781     /// This candidate function was not viable because an enable_if
782     /// attribute disabled it.
783     ovl_fail_enable_if,
784 
785     /// This candidate constructor or conversion function is explicit but
786     /// the context doesn't permit explicit functions.
787     ovl_fail_explicit,
788 
789     /// This candidate was not viable because its address could not be taken.
790     ovl_fail_addr_not_available,
791 
792     /// This inherited constructor is not viable because it would slice the
793     /// argument.
794     ovl_fail_inhctor_slice,
795 
796     /// This candidate was not viable because it is a non-default multiversioned
797     /// function.
798     ovl_non_default_multiversion_function,
799 
800     /// This constructor/conversion candidate fail due to an address space
801     /// mismatch between the object being constructed and the overload
802     /// candidate.
803     ovl_fail_object_addrspace_mismatch,
804 
805     /// This candidate was not viable because its associated constraints were
806     /// not satisfied.
807     ovl_fail_constraints_not_satisfied,
808 
809     /// This candidate was not viable because it has internal linkage and is
810     /// from a different module unit than the use.
811     ovl_fail_module_mismatched,
812   };
813 
814   /// A list of implicit conversion sequences for the arguments of an
815   /// OverloadCandidate.
816   using ConversionSequenceList =
817       llvm::MutableArrayRef<ImplicitConversionSequence>;
818 
819   /// OverloadCandidate - A single candidate in an overload set (C++ 13.3).
820   struct OverloadCandidate {
821     /// Function - The actual function that this candidate
822     /// represents. When NULL, this is a built-in candidate
823     /// (C++ [over.oper]) or a surrogate for a conversion to a
824     /// function pointer or reference (C++ [over.call.object]).
825     FunctionDecl *Function;
826 
827     /// FoundDecl - The original declaration that was looked up /
828     /// invented / otherwise found, together with its access.
829     /// Might be a UsingShadowDecl or a FunctionTemplateDecl.
830     DeclAccessPair FoundDecl;
831 
832     /// BuiltinParamTypes - Provides the parameter types of a built-in overload
833     /// candidate. Only valid when Function is NULL.
834     QualType BuiltinParamTypes[3];
835 
836     /// Surrogate - The conversion function for which this candidate
837     /// is a surrogate, but only if IsSurrogate is true.
838     CXXConversionDecl *Surrogate;
839 
840     /// The conversion sequences used to convert the function arguments
841     /// to the function parameters. Note that these are indexed by argument,
842     /// so may not match the parameter order of Function.
843     ConversionSequenceList Conversions;
844 
845     /// The FixIt hints which can be used to fix the Bad candidate.
846     ConversionFixItGenerator Fix;
847 
848     /// Viable - True to indicate that this overload candidate is viable.
849     bool Viable : 1;
850 
851     /// Whether this candidate is the best viable function, or tied for being
852     /// the best viable function.
853     ///
854     /// For an ambiguous overload resolution, indicates whether this candidate
855     /// was part of the ambiguity kernel: the minimal non-empty set of viable
856     /// candidates such that all elements of the ambiguity kernel are better
857     /// than all viable candidates not in the ambiguity kernel.
858     bool Best : 1;
859 
860     /// IsSurrogate - True to indicate that this candidate is a
861     /// surrogate for a conversion to a function pointer or reference
862     /// (C++ [over.call.object]).
863     bool IsSurrogate : 1;
864 
865     /// IgnoreObjectArgument - True to indicate that the first
866     /// argument's conversion, which for this function represents the
867     /// implicit object argument, should be ignored. This will be true
868     /// when the candidate is a static member function (where the
869     /// implicit object argument is just a placeholder) or a
870     /// non-static member function when the call doesn't have an
871     /// object argument.
872     bool IgnoreObjectArgument : 1;
873 
874     /// True if the candidate was found using ADL.
875     CallExpr::ADLCallKind IsADLCandidate : 1;
876 
877     /// Whether this is a rewritten candidate, and if so, of what kind?
878     unsigned RewriteKind : 2;
879 
880     /// FailureKind - The reason why this candidate is not viable.
881     /// Actually an OverloadFailureKind.
882     unsigned char FailureKind;
883 
884     /// The number of call arguments that were explicitly provided,
885     /// to be used while performing partial ordering of function templates.
886     unsigned ExplicitCallArguments;
887 
888     union {
889       DeductionFailureInfo DeductionFailure;
890 
891       /// FinalConversion - For a conversion function (where Function is
892       /// a CXXConversionDecl), the standard conversion that occurs
893       /// after the call to the overload candidate to convert the result
894       /// of calling the conversion function to the required type.
895       StandardConversionSequence FinalConversion;
896     };
897 
898     /// Get RewriteKind value in OverloadCandidateRewriteKind type (This
899     /// function is to workaround the spurious GCC bitfield enum warning)
getRewriteKindOverloadCandidate900     OverloadCandidateRewriteKind getRewriteKind() const {
901       return static_cast<OverloadCandidateRewriteKind>(RewriteKind);
902     }
903 
isReversedOverloadCandidate904     bool isReversed() const { return getRewriteKind() & CRK_Reversed; }
905 
906     /// hasAmbiguousConversion - Returns whether this overload
907     /// candidate requires an ambiguous conversion or not.
hasAmbiguousConversionOverloadCandidate908     bool hasAmbiguousConversion() const {
909       for (auto &C : Conversions) {
910         if (!C.isInitialized()) return false;
911         if (C.isAmbiguous()) return true;
912       }
913       return false;
914     }
915 
TryToFixBadConversionOverloadCandidate916     bool TryToFixBadConversion(unsigned Idx, Sema &S) {
917       bool CanFix = Fix.tryToFixConversion(
918                       Conversions[Idx].Bad.FromExpr,
919                       Conversions[Idx].Bad.getFromType(),
920                       Conversions[Idx].Bad.getToType(), S);
921 
922       // If at least one conversion fails, the candidate cannot be fixed.
923       if (!CanFix)
924         Fix.clear();
925 
926       return CanFix;
927     }
928 
getNumParamsOverloadCandidate929     unsigned getNumParams() const {
930       if (IsSurrogate) {
931         QualType STy = Surrogate->getConversionType();
932         while (STy->isPointerType() || STy->isReferenceType())
933           STy = STy->getPointeeType();
934         return STy->castAs<FunctionProtoType>()->getNumParams();
935       }
936       if (Function)
937         return Function->getNumParams();
938       return ExplicitCallArguments;
939     }
940 
941     bool NotValidBecauseConstraintExprHasError() const;
942 
943   private:
944     friend class OverloadCandidateSet;
OverloadCandidateOverloadCandidate945     OverloadCandidate()
946         : IsSurrogate(false), IsADLCandidate(CallExpr::NotADL), RewriteKind(CRK_None) {}
947   };
948 
949   /// OverloadCandidateSet - A set of overload candidates, used in C++
950   /// overload resolution (C++ 13.3).
951   class OverloadCandidateSet {
952   public:
953     enum CandidateSetKind {
954       /// Normal lookup.
955       CSK_Normal,
956 
957       /// C++ [over.match.oper]:
958       /// Lookup of operator function candidates in a call using operator
959       /// syntax. Candidates that have no parameters of class type will be
960       /// skipped unless there is a parameter of (reference to) enum type and
961       /// the corresponding argument is of the same enum type.
962       CSK_Operator,
963 
964       /// C++ [over.match.copy]:
965       /// Copy-initialization of an object of class type by user-defined
966       /// conversion.
967       CSK_InitByUserDefinedConversion,
968 
969       /// C++ [over.match.ctor], [over.match.list]
970       /// Initialization of an object of class type by constructor,
971       /// using either a parenthesized or braced list of arguments.
972       CSK_InitByConstructor,
973     };
974 
975     /// Information about operator rewrites to consider when adding operator
976     /// functions to a candidate set.
977     struct OperatorRewriteInfo {
OperatorRewriteInfoOperatorRewriteInfo978       OperatorRewriteInfo()
979           : OriginalOperator(OO_None), OpLoc(), AllowRewrittenCandidates(false) {}
OperatorRewriteInfoOperatorRewriteInfo980       OperatorRewriteInfo(OverloadedOperatorKind Op, SourceLocation OpLoc,
981                           bool AllowRewritten)
982           : OriginalOperator(Op), OpLoc(OpLoc),
983             AllowRewrittenCandidates(AllowRewritten) {}
984 
985       /// The original operator as written in the source.
986       OverloadedOperatorKind OriginalOperator;
987       /// The source location of the operator.
988       SourceLocation OpLoc;
989       /// Whether we should include rewritten candidates in the overload set.
990       bool AllowRewrittenCandidates;
991 
992       /// Would use of this function result in a rewrite using a different
993       /// operator?
isRewrittenOperatorOperatorRewriteInfo994       bool isRewrittenOperator(const FunctionDecl *FD) {
995         return OriginalOperator &&
996                FD->getDeclName().getCXXOverloadedOperator() != OriginalOperator;
997       }
998 
isAcceptableCandidateOperatorRewriteInfo999       bool isAcceptableCandidate(const FunctionDecl *FD) {
1000         if (!OriginalOperator)
1001           return true;
1002 
1003         // For an overloaded operator, we can have candidates with a different
1004         // name in our unqualified lookup set. Make sure we only consider the
1005         // ones we're supposed to.
1006         OverloadedOperatorKind OO =
1007             FD->getDeclName().getCXXOverloadedOperator();
1008         return OO && (OO == OriginalOperator ||
1009                       (AllowRewrittenCandidates &&
1010                        OO == getRewrittenOverloadedOperator(OriginalOperator)));
1011       }
1012 
1013       /// Determine the kind of rewrite that should be performed for this
1014       /// candidate.
1015       OverloadCandidateRewriteKind
getRewriteKindOperatorRewriteInfo1016       getRewriteKind(const FunctionDecl *FD, OverloadCandidateParamOrder PO) {
1017         OverloadCandidateRewriteKind CRK = CRK_None;
1018         if (isRewrittenOperator(FD))
1019           CRK = OverloadCandidateRewriteKind(CRK | CRK_DifferentOperator);
1020         if (PO == OverloadCandidateParamOrder::Reversed)
1021           CRK = OverloadCandidateRewriteKind(CRK | CRK_Reversed);
1022         return CRK;
1023       }
1024       /// Determines whether this operator could be implemented by a function
1025       /// with reversed parameter order.
isReversibleOperatorRewriteInfo1026       bool isReversible() {
1027         return AllowRewrittenCandidates && OriginalOperator &&
1028                (getRewrittenOverloadedOperator(OriginalOperator) != OO_None ||
1029                 allowsReversed(OriginalOperator));
1030       }
1031 
1032       /// Determine whether reversing parameter order is allowed for operator
1033       /// Op.
1034       bool allowsReversed(OverloadedOperatorKind Op);
1035 
1036       /// Determine whether we should add a rewritten candidate for \p FD with
1037       /// reversed parameter order.
1038       /// \param OriginalArgs are the original non reversed arguments.
1039       bool shouldAddReversed(Sema &S, ArrayRef<Expr *> OriginalArgs,
1040                              FunctionDecl *FD);
1041     };
1042 
1043   private:
1044     SmallVector<OverloadCandidate, 16> Candidates;
1045     llvm::SmallPtrSet<uintptr_t, 16> Functions;
1046 
1047     // Allocator for ConversionSequenceLists. We store the first few of these
1048     // inline to avoid allocation for small sets.
1049     llvm::BumpPtrAllocator SlabAllocator;
1050 
1051     SourceLocation Loc;
1052     CandidateSetKind Kind;
1053     OperatorRewriteInfo RewriteInfo;
1054 
1055     constexpr static unsigned NumInlineBytes =
1056         24 * sizeof(ImplicitConversionSequence);
1057     unsigned NumInlineBytesUsed = 0;
1058     alignas(void *) char InlineSpace[NumInlineBytes];
1059 
1060     // Address space of the object being constructed.
1061     LangAS DestAS = LangAS::Default;
1062 
1063     /// If we have space, allocates from inline storage. Otherwise, allocates
1064     /// from the slab allocator.
1065     /// FIXME: It would probably be nice to have a SmallBumpPtrAllocator
1066     /// instead.
1067     /// FIXME: Now that this only allocates ImplicitConversionSequences, do we
1068     /// want to un-generalize this?
1069     template <typename T>
slabAllocate(unsigned N)1070     T *slabAllocate(unsigned N) {
1071       // It's simpler if this doesn't need to consider alignment.
1072       static_assert(alignof(T) == alignof(void *),
1073                     "Only works for pointer-aligned types.");
1074       static_assert(std::is_trivial<T>::value ||
1075                         std::is_same<ImplicitConversionSequence, T>::value,
1076                     "Add destruction logic to OverloadCandidateSet::clear().");
1077 
1078       unsigned NBytes = sizeof(T) * N;
1079       if (NBytes > NumInlineBytes - NumInlineBytesUsed)
1080         return SlabAllocator.Allocate<T>(N);
1081       char *FreeSpaceStart = InlineSpace + NumInlineBytesUsed;
1082       assert(uintptr_t(FreeSpaceStart) % alignof(void *) == 0 &&
1083              "Misaligned storage!");
1084 
1085       NumInlineBytesUsed += NBytes;
1086       return reinterpret_cast<T *>(FreeSpaceStart);
1087     }
1088 
1089     void destroyCandidates();
1090 
1091   public:
1092     OverloadCandidateSet(SourceLocation Loc, CandidateSetKind CSK,
1093                          OperatorRewriteInfo RewriteInfo = {})
Loc(Loc)1094         : Loc(Loc), Kind(CSK), RewriteInfo(RewriteInfo) {}
1095     OverloadCandidateSet(const OverloadCandidateSet &) = delete;
1096     OverloadCandidateSet &operator=(const OverloadCandidateSet &) = delete;
~OverloadCandidateSet()1097     ~OverloadCandidateSet() { destroyCandidates(); }
1098 
getLocation()1099     SourceLocation getLocation() const { return Loc; }
getKind()1100     CandidateSetKind getKind() const { return Kind; }
getRewriteInfo()1101     OperatorRewriteInfo getRewriteInfo() const { return RewriteInfo; }
1102 
1103     /// Whether diagnostics should be deferred.
1104     bool shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, SourceLocation OpLoc);
1105 
1106     /// Determine when this overload candidate will be new to the
1107     /// overload set.
1108     bool isNewCandidate(Decl *F, OverloadCandidateParamOrder PO =
1109                                      OverloadCandidateParamOrder::Normal) {
1110       uintptr_t Key = reinterpret_cast<uintptr_t>(F->getCanonicalDecl());
1111       Key |= static_cast<uintptr_t>(PO);
1112       return Functions.insert(Key).second;
1113     }
1114 
1115     /// Exclude a function from being considered by overload resolution.
exclude(Decl * F)1116     void exclude(Decl *F) {
1117       isNewCandidate(F, OverloadCandidateParamOrder::Normal);
1118       isNewCandidate(F, OverloadCandidateParamOrder::Reversed);
1119     }
1120 
1121     /// Clear out all of the candidates.
1122     void clear(CandidateSetKind CSK);
1123 
1124     using iterator = SmallVectorImpl<OverloadCandidate>::iterator;
1125 
begin()1126     iterator begin() { return Candidates.begin(); }
end()1127     iterator end() { return Candidates.end(); }
1128 
size()1129     size_t size() const { return Candidates.size(); }
empty()1130     bool empty() const { return Candidates.empty(); }
1131 
1132     /// Allocate storage for conversion sequences for NumConversions
1133     /// conversions.
1134     ConversionSequenceList
allocateConversionSequences(unsigned NumConversions)1135     allocateConversionSequences(unsigned NumConversions) {
1136       ImplicitConversionSequence *Conversions =
1137           slabAllocate<ImplicitConversionSequence>(NumConversions);
1138 
1139       // Construct the new objects.
1140       for (unsigned I = 0; I != NumConversions; ++I)
1141         new (&Conversions[I]) ImplicitConversionSequence();
1142 
1143       return ConversionSequenceList(Conversions, NumConversions);
1144     }
1145 
1146     /// Add a new candidate with NumConversions conversion sequence slots
1147     /// to the overload set.
1148     OverloadCandidate &
1149     addCandidate(unsigned NumConversions = 0,
1150                  ConversionSequenceList Conversions = std::nullopt) {
1151       assert((Conversions.empty() || Conversions.size() == NumConversions) &&
1152              "preallocated conversion sequence has wrong length");
1153 
1154       Candidates.push_back(OverloadCandidate());
1155       OverloadCandidate &C = Candidates.back();
1156       C.Conversions = Conversions.empty()
1157                           ? allocateConversionSequences(NumConversions)
1158                           : Conversions;
1159       return C;
1160     }
1161 
1162     /// Find the best viable function on this overload set, if it exists.
1163     OverloadingResult BestViableFunction(Sema &S, SourceLocation Loc,
1164                                          OverloadCandidateSet::iterator& Best);
1165 
1166     SmallVector<OverloadCandidate *, 32> CompleteCandidates(
1167         Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
1168         SourceLocation OpLoc = SourceLocation(),
1169         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1170             [](OverloadCandidate &) { return true; });
1171 
1172     void NoteCandidates(
1173         PartialDiagnosticAt PA, Sema &S, OverloadCandidateDisplayKind OCD,
1174         ArrayRef<Expr *> Args, StringRef Opc = "",
1175         SourceLocation Loc = SourceLocation(),
1176         llvm::function_ref<bool(OverloadCandidate &)> Filter =
1177             [](OverloadCandidate &) { return true; });
1178 
1179     void NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
1180                         ArrayRef<OverloadCandidate *> Cands,
1181                         StringRef Opc = "",
1182                         SourceLocation OpLoc = SourceLocation());
1183 
getDestAS()1184     LangAS getDestAS() { return DestAS; }
1185 
setDestAS(LangAS AS)1186     void setDestAS(LangAS AS) {
1187       assert((Kind == CSK_InitByConstructor ||
1188               Kind == CSK_InitByUserDefinedConversion) &&
1189              "can't set the destination address space when not constructing an "
1190              "object");
1191       DestAS = AS;
1192     }
1193 
1194   };
1195 
1196   bool isBetterOverloadCandidate(Sema &S,
1197                                  const OverloadCandidate &Cand1,
1198                                  const OverloadCandidate &Cand2,
1199                                  SourceLocation Loc,
1200                                  OverloadCandidateSet::CandidateSetKind Kind);
1201 
1202   struct ConstructorInfo {
1203     DeclAccessPair FoundDecl;
1204     CXXConstructorDecl *Constructor;
1205     FunctionTemplateDecl *ConstructorTmpl;
1206 
1207     explicit operator bool() const { return Constructor; }
1208   };
1209 
1210   // FIXME: Add an AddOverloadCandidate / AddTemplateOverloadCandidate overload
1211   // that takes one of these.
getConstructorInfo(NamedDecl * ND)1212   inline ConstructorInfo getConstructorInfo(NamedDecl *ND) {
1213     if (isa<UsingDecl>(ND))
1214       return ConstructorInfo{};
1215 
1216     // For constructors, the access check is performed against the underlying
1217     // declaration, not the found declaration.
1218     auto *D = ND->getUnderlyingDecl();
1219     ConstructorInfo Info = {DeclAccessPair::make(ND, D->getAccess()), nullptr,
1220                             nullptr};
1221     Info.ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
1222     if (Info.ConstructorTmpl)
1223       D = Info.ConstructorTmpl->getTemplatedDecl();
1224     Info.Constructor = dyn_cast<CXXConstructorDecl>(D);
1225     return Info;
1226   }
1227 
1228   // Returns false if signature help is relevant despite number of arguments
1229   // exceeding parameters. Specifically, it returns false when
1230   // PartialOverloading is true and one of the following:
1231   // * Function is variadic
1232   // * Function is template variadic
1233   // * Function is an instantiation of template variadic function
1234   // The last case may seem strange. The idea is that if we added one more
1235   // argument, we'd end up with a function similar to Function. Since, in the
1236   // context of signature help and/or code completion, we do not know what the
1237   // type of the next argument (that the user is typing) will be, this is as
1238   // good candidate as we can get, despite the fact that it takes one less
1239   // parameter.
1240   bool shouldEnforceArgLimit(bool PartialOverloading, FunctionDecl *Function);
1241 
1242 } // namespace clang
1243 
1244 #endif // LLVM_CLANG_SEMA_OVERLOAD_H
1245