1 /*	$NetBSD: sysmacros.h,v 1.7 2016/02/01 02:12:55 christos Exp $	*/
2 
3 /*
4  * CDDL HEADER START
5  *
6  * The contents of this file are subject to the terms of the
7  * Common Development and Distribution License (the "License").
8  * You may not use this file except in compliance with the License.
9  *
10  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11  * or http://www.opensolaris.org/os/licensing.
12  * See the License for the specific language governing permissions
13  * and limitations under the License.
14  *
15  * When distributing Covered Code, include this CDDL HEADER in each
16  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17  * If applicable, add the following below this CDDL HEADER, with the
18  * fields enclosed by brackets "[]" replaced with your own identifying
19  * information: Portions Copyright [yyyy] [name of copyright owner]
20  *
21  * CDDL HEADER END
22  */
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
24 /*	  All Rights Reserved  	*/
25 
26 
27 /*
28  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
29  * Use is subject to license terms.
30  */
31 
32 #ifndef _SYS_SYSMACROS_H
33 #define	_SYS_SYSMACROS_H
34 
35 #include <sys/param.h>
36 #include <sys/opentypes.h>
37 
38 #ifdef	__cplusplus
39 extern "C" {
40 #endif
41 
42 /*
43  * Some macros for units conversion
44  */
45 /*
46  * Disk blocks (sectors) and bytes.
47  */
48 #ifndef dtob
49 #define	dtob(DD)	((DD) << DEV_BSHIFT)
50 #endif
51 #define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
52 #define	btodt(BB)	((BB) >> DEV_BSHIFT)
53 #define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
54 
55 /* common macros */
56 #ifndef MIN
57 #define	MIN(a, b)	((a) < (b) ? (a) : (b))
58 #endif
59 #ifndef MAX
60 #define	MAX(a, b)	((a) < (b) ? (b) : (a))
61 #endif
62 #ifndef ABS
63 #define	ABS(a)		((a) < 0 ? -(a) : (a))
64 #endif
65 #ifndef	SIGNOF
66 #define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
67 #endif
68 
69 #ifdef _KERNEL
70 
71 /*
72  * Convert a single byte to/from binary-coded decimal (BCD).
73  */
74 extern unsigned char byte_to_bcd[256];
75 extern unsigned char bcd_to_byte[256];
76 
77 #define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
78 #define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
79 
80 #define MAXMIN        0xfffffffful /* max minor value with 64b dev_t*/
81 
82 #endif	/* _KERNEL */
83 
84 #ifndef __NetBSD__
85 
86 /*
87  * WARNING: The device number macros defined here should not be used by device
88  * drivers or user software. Device drivers should use the device functions
89  * defined in the DDI/DKI interface (see also ddi.h). Application software
90  * should make use of the library routines available in makedev(3). A set of
91  * new device macros are provided to operate on the expanded device number
92  * format supported in SVR4. Macro versions of the DDI device functions are
93  * provided for use by kernel proper routines only. Macro routines bmajor(),
94  * major(), minor(), emajor(), eminor(), and makedev() will be removed or
95  * their definitions changed at the next major release following SVR4.
96  */
97 
98 #define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
99 #define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
100 #define	O_MAXMAJ	0x7f	/* SVR3 max major value */
101 #define	O_MAXMIN	0xff	/* SVR3 max minor value */
102 
103 
104 #define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
105 #define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
106 #define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
107 #define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
108 				/* For 3b2 hardware devices the minor is */
109 				/* restricted to 256 (0-255) */
110 
111 #ifdef _LP64
112 #define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
113 #define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
114 #define	L_MAXMAJ	0xfffffffful	/* max major value */
115 #define	L_MAXMIN	0xfffffffful	/* max minor value */
116 #else
117 #define	L_BITSMAJOR	L_BITSMAJOR32
118 #define	L_BITSMINOR	L_BITSMINOR32
119 #define	L_MAXMAJ	L_MAXMAJ32
120 #define	L_MAXMIN	L_MAXMIN32
121 #endif
122 
123 #ifdef _KERNEL
124 
125 /* major part of a device internal to the kernel */
126 
127 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
128 #define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
129 
130 /* get internal major part of expanded device number */
131 
132 #define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
133 
134 /* minor part of a device internal to the kernel */
135 
136 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
137 
138 /* get internal minor part of expanded device number */
139 
140 #define	getminor(x)	(minor_t)((x) & L_MAXMIN)
141 
142 #else
143 
144 /* major part of a device external from the kernel (same as emajor below) */
145 
146 #undef major
147 #define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
148 
149 /* minor part of a device external from the kernel  (same as eminor below) */
150 #undef minor
151 #define	minor(x)	(minor_t)((x) & O_MAXMIN)
152 
153 #endif	/* _KERNEL */
154 
155 /* create old device number */
156 
157 #undef makedev
158 #define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
159 
160 /* make an new device number */
161 
162 #define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
163 
164 
165 /*
166  * emajor() allows kernel/driver code to print external major numbers
167  * eminor() allows kernel/driver code to print external minor numbers
168  */
169 
170 #define	emajor(x) \
171 	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
172 	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
173 
174 #define	eminor(x) \
175 	(minor_t)((x) & O_MAXMIN)
176 
177 /*
178  * get external major and minor device
179  * components from expanded device number
180  */
181 #define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
182 			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
183 #define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
184 
185 /*
186  * These are versions of the kernel routines for compressing and
187  * expanding long device numbers that don't return errors.
188  */
189 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
190 
191 #define	DEVCMPL(x)	(x)
192 #define	DEVEXPL(x)	(x)
193 
194 #else
195 
196 #define	DEVCMPL(x)	\
197 	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
198 	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
199 	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
200 
201 #define	DEVEXPL(x)	\
202 	(((x) == NODEV32) ? NODEV : \
203 	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
204 
205 #endif /* L_BITSMAJOR32 ... */
206 
207 /* convert to old (SVR3.2) dev format */
208 
209 #define	cmpdev(x) \
210 	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
211 	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
212 	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
213 
214 /* convert to new (SVR4) dev format */
215 
216 #define	expdev(x) \
217 	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
218 	    ((x) & O_MAXMIN))
219 
220 #endif	/* !__NetBSD__ */
221 
222 /*
223  * Macro for checking power of 2 address alignment.
224  */
225 #define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
226 
227 #ifndef __NetBSD__
228 
229 /*
230  * Macros for counting and rounding.
231  */
232 #undef howmany
233 #define	howmany(x, y)	(((x)+((y)-1))/(y))
234 #undef roundup
235 #define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
236 
237 #endif	/* !__NetBSD__ */
238 
239 /*
240  * Macro to determine if value is a power of 2
241  */
242 #define	ISP2(x)		(((x) & ((x) - 1)) == 0)
243 
244 /*
245  * Macros for various sorts of alignment and rounding.  The "align" must
246  * be a power of 2.  Often times it is a block, sector, or page.
247  */
248 
249 /*
250  * return x rounded down to an align boundary
251  * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
252  * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
253  * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
254  * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
255  */
256 #define	P2ALIGN(x, align)		((x) & -(align))
257 
258 /*
259  * return x % (mod) align
260  * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
261  * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
262  */
263 #define	P2PHASE(x, align)		((x) & ((align) - 1))
264 
265 /*
266  * return how much space is left in this block (but if it's perfectly
267  * aligned, return 0).
268  * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
269  * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
270  */
271 #define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
272 
273 /*
274  * return x rounded up to an align boundary
275  * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
276  * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
277  */
278 #define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
279 
280 /*
281  * return the ending address of the block that x is in
282  * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
283  * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
284  */
285 #define	P2END(x, align)			(-(~(x) & -(align)))
286 
287 /*
288  * return x rounded up to the next phase (offset) within align.
289  * phase should be < align.
290  * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
291  * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
292  */
293 #define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
294 
295 /*
296  * return TRUE if adding len to off would cause it to cross an align
297  * boundary.
298  * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
299  * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
300  */
301 #define	P2BOUNDARY(off, len, align) \
302 	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
303 
304 /*
305  * Return TRUE if they have the same highest bit set.
306  * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
307  * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
308  */
309 #define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
310 
311 /*
312  * Typed version of the P2* macros.  These macros should be used to ensure
313  * that the result is correctly calculated based on the data type of (x),
314  * which is passed in as the last argument, regardless of the data
315  * type of the alignment.  For example, if (x) is of type uint64_t,
316  * and we want to round it up to a page boundary using "PAGESIZE" as
317  * the alignment, we can do either
318  *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
319  * or
320  *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
321  */
322 #define	P2ALIGN_TYPED(x, align, type)	\
323 	((type)(x) & -(type)(align))
324 #define	P2PHASE_TYPED(x, align, type)	\
325 	((type)(x) & ((type)(align) - 1))
326 #define	P2NPHASE_TYPED(x, align, type)	\
327 	(-(type)(x) & ((type)(align) - 1))
328 #define	P2ROUNDUP_TYPED(x, align, type)	\
329 	(-(-(type)(x) & -(type)(align)))
330 #define	P2END_TYPED(x, align, type)	\
331 	(-(~(type)(x) & -(type)(align)))
332 #define	P2PHASEUP_TYPED(x, align, phase, type)	\
333 	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
334 #define	P2CROSS_TYPED(x, y, align, type)	\
335 	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
336 #define	P2SAMEHIGHBIT_TYPED(x, y, type) \
337 	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
338 
339 /*
340  * Macros to atomically increment/decrement a variable.  mutex and var
341  * must be pointers.
342  */
343 #define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
344 #define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
345 
346 /*
347  * Macros to declare bitfields - the order in the parameter list is
348  * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
349  * because if a field crosses a byte boundary it's not likely to be meaningful
350  * without reassembly in its nonnative endianness.
351  */
352 #ifdef notdef
353 #if defined(_BIT_FIELDS_LTOH)
354 #define	DECL_BITFIELD2(_a, _b)				\
355 	uint8_t _a, _b
356 #define	DECL_BITFIELD3(_a, _b, _c)			\
357 	uint8_t _a, _b, _c
358 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
359 	uint8_t _a, _b, _c, _d
360 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
361 	uint8_t _a, _b, _c, _d, _e
362 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
363 	uint8_t _a, _b, _c, _d, _e, _f
364 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
365 	uint8_t _a, _b, _c, _d, _e, _f, _g
366 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
367 	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
368 #elif defined(_BIT_FIELDS_HTOL)
369 #define	DECL_BITFIELD2(_a, _b)				\
370 	uint8_t _b, _a
371 #define	DECL_BITFIELD3(_a, _b, _c)			\
372 	uint8_t _c, _b, _a
373 #define	DECL_BITFIELD4(_a, _b, _c, _d)			\
374 	uint8_t _d, _c, _b, _a
375 #define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
376 	uint8_t _e, _d, _c, _b, _a
377 #define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
378 	uint8_t _f, _e, _d, _c, _b, _a
379 #define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
380 	uint8_t _g, _f, _e, _d, _c, _b, _a
381 #define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
382 	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
383 #else
384 #error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
385 #endif  /* _BIT_FIELDS_LTOH */
386 #endif
387 
388 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
389 
390 /* avoid any possibility of clashing with <stddef.h> version */
391 
392 #define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
393 #endif
394 
395 /*
396  * Find highest one bit set.
397  *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
398  * High order bit is 31 (or 63 in _LP64 kernel).
399  */
400 static __inline int
highbit(ulong_t i)401 highbit(ulong_t i)
402 {
403 	register int h = 1;
404 
405 	if (i == 0)
406 		return (0);
407 #ifdef _LP64
408 	if (i & 0xffffffff00000000ul) {
409 		h += 32; i >>= 32;
410 	}
411 #endif
412 	if (i & 0xffff0000ul) {
413 		h += 16; i >>= 16;
414 	}
415 	if (i & 0xff00ul) {
416 		h += 8; i >>= 8;
417 	}
418 	if (i & 0xf0ul) {
419 		h += 4; i >>= 4;
420 	}
421 	if (i & 0xcul) {
422 		h += 2; i >>= 2;
423 	}
424 	if (i & 0x2ul) {
425 		h += 1;
426 	}
427 	return (h);
428 }
429 
430 #ifdef	__cplusplus
431 }
432 #endif
433 
434 #endif	/* _SYS_SYSMACROS_H */
435