1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the DAGTypeLegalizer class. This is a private interface 10 // shared between the code that implements the SelectionDAG::LegalizeTypes 11 // method. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/CodeGen/SelectionDAG.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/Support/Compiler.h" 22 23 namespace llvm { 24 25 //===----------------------------------------------------------------------===// 26 /// This takes an arbitrary SelectionDAG as input and hacks on it until only 27 /// value types the target machine can handle are left. This involves promoting 28 /// small sizes to large sizes or splitting up large values into small values. 29 /// 30 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { 31 const TargetLowering &TLI; 32 SelectionDAG &DAG; 33 public: 34 /// This pass uses the NodeId on the SDNodes to hold information about the 35 /// state of the node. The enum has all the values. 36 enum NodeIdFlags { 37 /// All operands have been processed, so this node is ready to be handled. 38 ReadyToProcess = 0, 39 40 /// This is a new node, not before seen, that was created in the process of 41 /// legalizing some other node. 42 NewNode = -1, 43 44 /// This node's ID needs to be set to the number of its unprocessed 45 /// operands. 46 Unanalyzed = -2, 47 48 /// This is a node that has already been processed. 49 Processed = -3 50 51 // 1+ - This is a node which has this many unprocessed operands. 52 }; 53 private: 54 55 /// This is a bitvector that contains two bits for each simple value type, 56 /// where the two bits correspond to the LegalizeAction enum from 57 /// TargetLowering. This can be queried with "getTypeAction(VT)". 58 TargetLowering::ValueTypeActionImpl ValueTypeActions; 59 60 /// Return how we should legalize values of this type. getTypeAction(EVT VT)61 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { 62 return TLI.getTypeAction(*DAG.getContext(), VT); 63 } 64 65 /// Return true if this type is legal on this target. isTypeLegal(EVT VT)66 bool isTypeLegal(EVT VT) const { 67 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; 68 } 69 70 /// Return true if this is a simple legal type. isSimpleLegalType(EVT VT)71 bool isSimpleLegalType(EVT VT) const { 72 return VT.isSimple() && TLI.isTypeLegal(VT); 73 } 74 getSetCCResultType(EVT VT)75 EVT getSetCCResultType(EVT VT) const { 76 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 77 } 78 79 /// Pretend all of this node's results are legal. IgnoreNodeResults(SDNode * N)80 bool IgnoreNodeResults(SDNode *N) const { 81 return N->getOpcode() == ISD::TargetConstant || 82 N->getOpcode() == ISD::Register; 83 } 84 85 // Bijection from SDValue to unique id. As each created node gets a 86 // new id we do not need to worry about reuse expunging. Should we 87 // run out of ids, we can do a one time expensive compactifcation. 88 typedef unsigned TableId; 89 90 TableId NextValueId = 1; 91 92 SmallDenseMap<SDValue, TableId, 8> ValueToIdMap; 93 SmallDenseMap<TableId, SDValue, 8> IdToValueMap; 94 95 /// For integer nodes that are below legal width, this map indicates what 96 /// promoted value to use. 97 SmallDenseMap<TableId, TableId, 8> PromotedIntegers; 98 99 /// For integer nodes that need to be expanded this map indicates which 100 /// operands are the expanded version of the input. 101 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; 102 103 /// For floating-point nodes converted to integers of the same size, this map 104 /// indicates the converted value to use. 105 SmallDenseMap<TableId, TableId, 8> SoftenedFloats; 106 107 /// For floating-point nodes that have a smaller precision than the smallest 108 /// supported precision, this map indicates what promoted value to use. 109 SmallDenseMap<TableId, TableId, 8> PromotedFloats; 110 111 /// For floating-point nodes that have a smaller precision than the smallest 112 /// supported precision, this map indicates the converted value to use. 113 SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs; 114 115 /// For float nodes that need to be expanded this map indicates which operands 116 /// are the expanded version of the input. 117 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; 118 119 /// For nodes that are <1 x ty>, this map indicates the scalar value of type 120 /// 'ty' to use. 121 SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; 122 123 /// For nodes that need to be split this map indicates which operands are the 124 /// expanded version of the input. 125 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; 126 127 /// For vector nodes that need to be widened, indicates the widened value to 128 /// use. 129 SmallDenseMap<TableId, TableId, 8> WidenedVectors; 130 131 /// For values that have been replaced with another, indicates the replacement 132 /// value to use. 133 SmallDenseMap<TableId, TableId, 8> ReplacedValues; 134 135 /// This defines a worklist of nodes to process. In order to be pushed onto 136 /// this worklist, all operands of a node must have already been processed. 137 SmallVector<SDNode*, 128> Worklist; 138 getTableId(SDValue V)139 TableId getTableId(SDValue V) { 140 assert(V.getNode() && "Getting TableId on SDValue()"); 141 142 auto I = ValueToIdMap.find(V); 143 if (I != ValueToIdMap.end()) { 144 // replace if there's been a shift. 145 RemapId(I->second); 146 assert(I->second && "All Ids should be nonzero"); 147 return I->second; 148 } 149 // Add if it's not there. 150 ValueToIdMap.insert(std::make_pair(V, NextValueId)); 151 IdToValueMap.insert(std::make_pair(NextValueId, V)); 152 ++NextValueId; 153 assert(NextValueId != 0 && 154 "Ran out of Ids. Increase id type size or add compactification"); 155 return NextValueId - 1; 156 } 157 getSDValue(TableId & Id)158 const SDValue &getSDValue(TableId &Id) { 159 RemapId(Id); 160 assert(Id && "TableId should be non-zero"); 161 auto I = IdToValueMap.find(Id); 162 assert(I != IdToValueMap.end() && "cannot find Id in map"); 163 return I->second; 164 } 165 166 public: DAGTypeLegalizer(SelectionDAG & dag)167 explicit DAGTypeLegalizer(SelectionDAG &dag) 168 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 169 ValueTypeActions(TLI.getValueTypeActions()) { 170 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 171 "Too many value types for ValueTypeActions to hold!"); 172 } 173 174 /// This is the main entry point for the type legalizer. This does a 175 /// top-down traversal of the dag, legalizing types as it goes. Returns 176 /// "true" if it made any changes. 177 bool run(); 178 NoteDeletion(SDNode * Old,SDNode * New)179 void NoteDeletion(SDNode *Old, SDNode *New) { 180 assert(Old != New && "node replaced with self"); 181 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 182 TableId NewId = getTableId(SDValue(New, i)); 183 TableId OldId = getTableId(SDValue(Old, i)); 184 185 if (OldId != NewId) { 186 ReplacedValues[OldId] = NewId; 187 188 // Delete Node from tables. We cannot do this when OldId == NewId, 189 // because NewId can still have table references to it in 190 // ReplacedValues. 191 IdToValueMap.erase(OldId); 192 PromotedIntegers.erase(OldId); 193 ExpandedIntegers.erase(OldId); 194 SoftenedFloats.erase(OldId); 195 PromotedFloats.erase(OldId); 196 SoftPromotedHalfs.erase(OldId); 197 ExpandedFloats.erase(OldId); 198 ScalarizedVectors.erase(OldId); 199 SplitVectors.erase(OldId); 200 WidenedVectors.erase(OldId); 201 } 202 203 ValueToIdMap.erase(SDValue(Old, i)); 204 } 205 } 206 getDAG()207 SelectionDAG &getDAG() const { return DAG; } 208 209 private: 210 SDNode *AnalyzeNewNode(SDNode *N); 211 void AnalyzeNewValue(SDValue &Val); 212 void PerformExpensiveChecks(); 213 void RemapId(TableId &Id); 214 void RemapValue(SDValue &V); 215 216 // Common routines. 217 SDValue BitConvertToInteger(SDValue Op); 218 SDValue BitConvertVectorToIntegerVector(SDValue Op); 219 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); 220 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); 221 bool CustomWidenLowerNode(SDNode *N, EVT VT); 222 223 /// Replace each result of the given MERGE_VALUES node with the corresponding 224 /// input operand, except for the result 'ResNo', for which the corresponding 225 /// input operand is returned. 226 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); 227 228 SDValue JoinIntegers(SDValue Lo, SDValue Hi); 229 230 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 231 232 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); 233 234 void ReplaceValueWith(SDValue From, SDValue To); 235 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 236 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, 237 SDValue &Lo, SDValue &Hi); 238 239 //===--------------------------------------------------------------------===// 240 // Integer Promotion Support: LegalizeIntegerTypes.cpp 241 //===--------------------------------------------------------------------===// 242 243 /// Given a processed operand Op which was promoted to a larger integer type, 244 /// this returns the promoted value. The low bits of the promoted value 245 /// corresponding to the original type are exactly equal to Op. 246 /// The extra bits contain rubbish, so the promoted value may need to be zero- 247 /// or sign-extended from the original type before it is usable (the helpers 248 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). 249 /// For example, if Op is an i16 and was promoted to an i32, then this method 250 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper 251 /// 16 bits of which contain rubbish. GetPromotedInteger(SDValue Op)252 SDValue GetPromotedInteger(SDValue Op) { 253 TableId &PromotedId = PromotedIntegers[getTableId(Op)]; 254 SDValue PromotedOp = getSDValue(PromotedId); 255 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 256 return PromotedOp; 257 } 258 void SetPromotedInteger(SDValue Op, SDValue Result); 259 260 /// Get a promoted operand and sign extend it to the final size. SExtPromotedInteger(SDValue Op)261 SDValue SExtPromotedInteger(SDValue Op) { 262 EVT OldVT = Op.getValueType(); 263 SDLoc dl(Op); 264 Op = GetPromotedInteger(Op); 265 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, 266 DAG.getValueType(OldVT)); 267 } 268 269 /// Get a promoted operand and zero extend it to the final size. ZExtPromotedInteger(SDValue Op)270 SDValue ZExtPromotedInteger(SDValue Op) { 271 EVT OldVT = Op.getValueType(); 272 SDLoc dl(Op); 273 Op = GetPromotedInteger(Op); 274 return DAG.getZeroExtendInReg(Op, dl, OldVT); 275 } 276 277 // Get a promoted operand and sign or zero extend it to the final size 278 // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given 279 // subtarget and type, the choice of sign or zero-extension will be 280 // consistent. SExtOrZExtPromotedInteger(SDValue Op)281 SDValue SExtOrZExtPromotedInteger(SDValue Op) { 282 EVT OldVT = Op.getValueType(); 283 SDLoc DL(Op); 284 Op = GetPromotedInteger(Op); 285 if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType())) 286 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op, 287 DAG.getValueType(OldVT)); 288 return DAG.getZeroExtendInReg(Op, DL, OldVT); 289 } 290 291 // Promote the given operand V (vector or scalar) according to N's specific 292 // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns 293 // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the 294 // promoted value. 295 SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V); 296 297 // Integer Result Promotion. 298 void PromoteIntegerResult(SDNode *N, unsigned ResNo); 299 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 300 SDValue PromoteIntRes_AssertSext(SDNode *N); 301 SDValue PromoteIntRes_AssertZext(SDNode *N); 302 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); 303 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); 304 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); 305 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); 306 SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N); 307 SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N); 308 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); 309 SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N); 310 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); 311 SDValue PromoteIntRes_ScalarOp(SDNode *N); 312 SDValue PromoteIntRes_STEP_VECTOR(SDNode *N); 313 SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); 314 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); 315 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); 316 SDValue PromoteIntRes_BITCAST(SDNode *N); 317 SDValue PromoteIntRes_BSWAP(SDNode *N); 318 SDValue PromoteIntRes_BITREVERSE(SDNode *N); 319 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); 320 SDValue PromoteIntRes_Constant(SDNode *N); 321 SDValue PromoteIntRes_CTLZ(SDNode *N); 322 SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N); 323 SDValue PromoteIntRes_CTTZ(SDNode *N); 324 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); 325 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); 326 SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N); 327 SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N); 328 SDValue PromoteIntRes_FREEZE(SDNode *N); 329 SDValue PromoteIntRes_INT_EXTEND(SDNode *N); 330 SDValue PromoteIntRes_LOAD(LoadSDNode *N); 331 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); 332 SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); 333 SDValue PromoteIntRes_Overflow(SDNode *N); 334 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); 335 SDValue PromoteIntRes_Select(SDNode *N); 336 SDValue PromoteIntRes_SELECT_CC(SDNode *N); 337 SDValue PromoteIntRes_SETCC(SDNode *N); 338 SDValue PromoteIntRes_SHL(SDNode *N); 339 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); 340 SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); 341 SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); 342 SDValue PromoteIntRes_UMINUMAX(SDNode *N); 343 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); 344 SDValue PromoteIntRes_SRA(SDNode *N); 345 SDValue PromoteIntRes_SRL(SDNode *N); 346 SDValue PromoteIntRes_TRUNCATE(SDNode *N); 347 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); 348 SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo); 349 SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo); 350 SDValue PromoteIntRes_UNDEF(SDNode *N); 351 SDValue PromoteIntRes_VAARG(SDNode *N); 352 SDValue PromoteIntRes_VSCALE(SDNode *N); 353 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); 354 SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N); 355 SDValue PromoteIntRes_MULFIX(SDNode *N); 356 SDValue PromoteIntRes_DIVFIX(SDNode *N); 357 SDValue PromoteIntRes_GET_ROUNDING(SDNode *N); 358 SDValue PromoteIntRes_VECREDUCE(SDNode *N); 359 SDValue PromoteIntRes_VP_REDUCE(SDNode *N); 360 SDValue PromoteIntRes_ABS(SDNode *N); 361 SDValue PromoteIntRes_Rotate(SDNode *N); 362 SDValue PromoteIntRes_FunnelShift(SDNode *N); 363 SDValue PromoteIntRes_IS_FPCLASS(SDNode *N); 364 365 // Integer Operand Promotion. 366 bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); 367 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); 368 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); 369 SDValue PromoteIntOp_BITCAST(SDNode *N); 370 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); 371 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); 372 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); 373 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); 374 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); 375 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); 376 SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N); 377 SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N); 378 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); 379 SDValue PromoteIntOp_ScalarOp(SDNode *N); 380 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); 381 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); 382 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); 383 SDValue PromoteIntOp_Shift(SDNode *N); 384 SDValue PromoteIntOp_FunnelShift(SDNode *N); 385 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); 386 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); 387 SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N); 388 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); 389 SDValue PromoteIntOp_TRUNCATE(SDNode *N); 390 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); 391 SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N); 392 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); 393 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 394 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); 395 SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); 396 SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); 397 SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo); 398 SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N); 399 SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo); 400 SDValue PromoteIntOp_FIX(SDNode *N); 401 SDValue PromoteIntOp_FPOWI(SDNode *N); 402 SDValue PromoteIntOp_VECREDUCE(SDNode *N); 403 SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo); 404 SDValue PromoteIntOp_SET_ROUNDING(SDNode *N); 405 SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo); 406 SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); 407 SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); 408 409 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); 410 411 //===--------------------------------------------------------------------===// 412 // Integer Expansion Support: LegalizeIntegerTypes.cpp 413 //===--------------------------------------------------------------------===// 414 415 /// Given a processed operand Op which was expanded into two integers of half 416 /// the size, this returns the two halves. The low bits of Op are exactly 417 /// equal to the bits of Lo; the high bits exactly equal Hi. 418 /// For example, if Op is an i64 which was expanded into two i32's, then this 419 /// method returns the two i32's, with Lo being equal to the lower 32 bits of 420 /// Op, and Hi being equal to the upper 32 bits. 421 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 422 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); 423 424 // Integer Result Expansion. 425 void ExpandIntegerResult(SDNode *N, unsigned ResNo); 426 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 427 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); 428 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); 429 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); 430 void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi); 431 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); 432 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); 433 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); 434 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); 435 void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); 436 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 437 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); 438 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); 439 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 440 void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi); 441 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); 442 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); 443 void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi); 444 void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 445 446 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); 447 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 448 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); 449 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); 450 void ExpandIntRes_ADDSUBCARRY (SDNode *N, SDValue &Lo, SDValue &Hi); 451 void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); 452 void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); 453 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); 454 void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi); 455 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); 456 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 457 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); 458 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 459 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); 460 void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi); 461 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); 462 463 void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); 464 465 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 466 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 467 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); 468 void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi); 469 void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi); 470 void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi); 471 void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi); 472 473 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 474 void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi); 475 476 void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi); 477 void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi); 478 479 void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi); 480 481 void ExpandShiftByConstant(SDNode *N, const APInt &Amt, 482 SDValue &Lo, SDValue &Hi); 483 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 484 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 485 486 // Integer Operand Expansion. 487 bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); 488 SDValue ExpandIntOp_BR_CC(SDNode *N); 489 SDValue ExpandIntOp_SELECT_CC(SDNode *N); 490 SDValue ExpandIntOp_SETCC(SDNode *N); 491 SDValue ExpandIntOp_SETCCCARRY(SDNode *N); 492 SDValue ExpandIntOp_Shift(SDNode *N); 493 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); 494 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); 495 SDValue ExpandIntOp_TRUNCATE(SDNode *N); 496 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); 497 SDValue ExpandIntOp_RETURNADDR(SDNode *N); 498 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); 499 SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N); 500 SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo); 501 SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); 502 SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); 503 504 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 505 ISD::CondCode &CCCode, const SDLoc &dl); 506 507 //===--------------------------------------------------------------------===// 508 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp 509 //===--------------------------------------------------------------------===// 510 511 /// GetSoftenedFloat - Given a processed operand Op which was converted to an 512 /// integer of the same size, this returns the integer. The integer contains 513 /// exactly the same bits as Op - only the type changed. For example, if Op 514 /// is an f32 which was softened to an i32, then this method returns an i32, 515 /// the bits of which coincide with those of Op GetSoftenedFloat(SDValue Op)516 SDValue GetSoftenedFloat(SDValue Op) { 517 TableId Id = getTableId(Op); 518 auto Iter = SoftenedFloats.find(Id); 519 if (Iter == SoftenedFloats.end()) { 520 assert(isSimpleLegalType(Op.getValueType()) && 521 "Operand wasn't converted to integer?"); 522 return Op; 523 } 524 SDValue SoftenedOp = getSDValue(Iter->second); 525 assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); 526 return SoftenedOp; 527 } 528 void SetSoftenedFloat(SDValue Op, SDValue Result); 529 530 // Convert Float Results to Integer. 531 void SoftenFloatResult(SDNode *N, unsigned ResNo); 532 SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC); 533 SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC); 534 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 535 SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N); 536 SDValue SoftenFloatRes_BITCAST(SDNode *N); 537 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); 538 SDValue SoftenFloatRes_ConstantFP(SDNode *N); 539 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo); 540 SDValue SoftenFloatRes_FABS(SDNode *N); 541 SDValue SoftenFloatRes_FMINNUM(SDNode *N); 542 SDValue SoftenFloatRes_FMAXNUM(SDNode *N); 543 SDValue SoftenFloatRes_FADD(SDNode *N); 544 SDValue SoftenFloatRes_FCBRT(SDNode *N); 545 SDValue SoftenFloatRes_FCEIL(SDNode *N); 546 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); 547 SDValue SoftenFloatRes_FCOS(SDNode *N); 548 SDValue SoftenFloatRes_FDIV(SDNode *N); 549 SDValue SoftenFloatRes_FEXP(SDNode *N); 550 SDValue SoftenFloatRes_FEXP2(SDNode *N); 551 SDValue SoftenFloatRes_FFLOOR(SDNode *N); 552 SDValue SoftenFloatRes_FLOG(SDNode *N); 553 SDValue SoftenFloatRes_FLOG2(SDNode *N); 554 SDValue SoftenFloatRes_FLOG10(SDNode *N); 555 SDValue SoftenFloatRes_FMA(SDNode *N); 556 SDValue SoftenFloatRes_FMUL(SDNode *N); 557 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); 558 SDValue SoftenFloatRes_FNEG(SDNode *N); 559 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); 560 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); 561 SDValue SoftenFloatRes_FP_ROUND(SDNode *N); 562 SDValue SoftenFloatRes_FPOW(SDNode *N); 563 SDValue SoftenFloatRes_FPOWI(SDNode *N); 564 SDValue SoftenFloatRes_FREEZE(SDNode *N); 565 SDValue SoftenFloatRes_FREM(SDNode *N); 566 SDValue SoftenFloatRes_FRINT(SDNode *N); 567 SDValue SoftenFloatRes_FROUND(SDNode *N); 568 SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N); 569 SDValue SoftenFloatRes_FSIN(SDNode *N); 570 SDValue SoftenFloatRes_FSQRT(SDNode *N); 571 SDValue SoftenFloatRes_FSUB(SDNode *N); 572 SDValue SoftenFloatRes_FTRUNC(SDNode *N); 573 SDValue SoftenFloatRes_LOAD(SDNode *N); 574 SDValue SoftenFloatRes_SELECT(SDNode *N); 575 SDValue SoftenFloatRes_SELECT_CC(SDNode *N); 576 SDValue SoftenFloatRes_UNDEF(SDNode *N); 577 SDValue SoftenFloatRes_VAARG(SDNode *N); 578 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); 579 SDValue SoftenFloatRes_VECREDUCE(SDNode *N); 580 SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N); 581 582 // Convert Float Operand to Integer. 583 bool SoftenFloatOperand(SDNode *N, unsigned OpNo); 584 SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC); 585 SDValue SoftenFloatOp_BITCAST(SDNode *N); 586 SDValue SoftenFloatOp_BR_CC(SDNode *N); 587 SDValue SoftenFloatOp_FP_ROUND(SDNode *N); 588 SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); 589 SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N); 590 SDValue SoftenFloatOp_LROUND(SDNode *N); 591 SDValue SoftenFloatOp_LLROUND(SDNode *N); 592 SDValue SoftenFloatOp_LRINT(SDNode *N); 593 SDValue SoftenFloatOp_LLRINT(SDNode *N); 594 SDValue SoftenFloatOp_SELECT_CC(SDNode *N); 595 SDValue SoftenFloatOp_SETCC(SDNode *N); 596 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); 597 SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); 598 599 //===--------------------------------------------------------------------===// 600 // Float Expansion Support: LegalizeFloatTypes.cpp 601 //===--------------------------------------------------------------------===// 602 603 /// Given a processed operand Op which was expanded into two floating-point 604 /// values of half the size, this returns the two halves. 605 /// The low bits of Op are exactly equal to the bits of Lo; the high bits 606 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded 607 /// into two f64's, then this method returns the two f64's, with Lo being 608 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. 609 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); 610 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); 611 612 // Float Result Expansion. 613 void ExpandFloatResult(SDNode *N, unsigned ResNo); 614 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); 615 void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, 616 SDValue &Lo, SDValue &Hi); 617 void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, 618 SDValue &Lo, SDValue &Hi); 619 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); 620 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 621 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 622 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); 623 void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi); 624 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); 625 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); 626 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); 627 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 628 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); 629 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); 630 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); 631 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); 632 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); 633 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); 634 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); 635 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); 636 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); 637 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); 638 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 639 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); 640 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); 641 void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); 642 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); 643 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 644 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); 645 void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi); 646 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); 647 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); 648 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 649 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); 650 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 651 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); 652 653 // Float Operand Expansion. 654 bool ExpandFloatOperand(SDNode *N, unsigned OpNo); 655 SDValue ExpandFloatOp_BR_CC(SDNode *N); 656 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); 657 SDValue ExpandFloatOp_FP_ROUND(SDNode *N); 658 SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N); 659 SDValue ExpandFloatOp_LROUND(SDNode *N); 660 SDValue ExpandFloatOp_LLROUND(SDNode *N); 661 SDValue ExpandFloatOp_LRINT(SDNode *N); 662 SDValue ExpandFloatOp_LLRINT(SDNode *N); 663 SDValue ExpandFloatOp_SELECT_CC(SDNode *N); 664 SDValue ExpandFloatOp_SETCC(SDNode *N); 665 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); 666 667 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 668 ISD::CondCode &CCCode, const SDLoc &dl, 669 SDValue &Chain, bool IsSignaling = false); 670 671 //===--------------------------------------------------------------------===// 672 // Float promotion support: LegalizeFloatTypes.cpp 673 //===--------------------------------------------------------------------===// 674 GetPromotedFloat(SDValue Op)675 SDValue GetPromotedFloat(SDValue Op) { 676 TableId &PromotedId = PromotedFloats[getTableId(Op)]; 677 SDValue PromotedOp = getSDValue(PromotedId); 678 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 679 return PromotedOp; 680 } 681 void SetPromotedFloat(SDValue Op, SDValue Result); 682 683 void PromoteFloatResult(SDNode *N, unsigned ResNo); 684 SDValue PromoteFloatRes_BITCAST(SDNode *N); 685 SDValue PromoteFloatRes_BinOp(SDNode *N); 686 SDValue PromoteFloatRes_ConstantFP(SDNode *N); 687 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); 688 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); 689 SDValue PromoteFloatRes_FMAD(SDNode *N); 690 SDValue PromoteFloatRes_FPOWI(SDNode *N); 691 SDValue PromoteFloatRes_FP_ROUND(SDNode *N); 692 SDValue PromoteFloatRes_LOAD(SDNode *N); 693 SDValue PromoteFloatRes_SELECT(SDNode *N); 694 SDValue PromoteFloatRes_SELECT_CC(SDNode *N); 695 SDValue PromoteFloatRes_UnaryOp(SDNode *N); 696 SDValue PromoteFloatRes_UNDEF(SDNode *N); 697 SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N); 698 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); 699 SDValue PromoteFloatRes_VECREDUCE(SDNode *N); 700 SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N); 701 702 bool PromoteFloatOperand(SDNode *N, unsigned OpNo); 703 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); 704 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 705 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); 706 SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo); 707 SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo); 708 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); 709 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); 710 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); 711 712 //===--------------------------------------------------------------------===// 713 // Half soft promotion support: LegalizeFloatTypes.cpp 714 //===--------------------------------------------------------------------===// 715 GetSoftPromotedHalf(SDValue Op)716 SDValue GetSoftPromotedHalf(SDValue Op) { 717 TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)]; 718 SDValue PromotedOp = getSDValue(PromotedId); 719 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 720 return PromotedOp; 721 } 722 void SetSoftPromotedHalf(SDValue Op, SDValue Result); 723 724 void SoftPromoteHalfResult(SDNode *N, unsigned ResNo); 725 SDValue SoftPromoteHalfRes_BinOp(SDNode *N); 726 SDValue SoftPromoteHalfRes_BITCAST(SDNode *N); 727 SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N); 728 SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N); 729 SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N); 730 SDValue SoftPromoteHalfRes_FMAD(SDNode *N); 731 SDValue SoftPromoteHalfRes_FPOWI(SDNode *N); 732 SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N); 733 SDValue SoftPromoteHalfRes_LOAD(SDNode *N); 734 SDValue SoftPromoteHalfRes_SELECT(SDNode *N); 735 SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N); 736 SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N); 737 SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N); 738 SDValue SoftPromoteHalfRes_UNDEF(SDNode *N); 739 SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N); 740 SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N); 741 742 bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo); 743 SDValue SoftPromoteHalfOp_BITCAST(SDNode *N); 744 SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 745 SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N); 746 SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N); 747 SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N); 748 SDValue SoftPromoteHalfOp_SETCC(SDNode *N); 749 SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo); 750 SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo); 751 SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo); 752 SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo); 753 754 //===--------------------------------------------------------------------===// 755 // Scalarization Support: LegalizeVectorTypes.cpp 756 //===--------------------------------------------------------------------===// 757 758 /// Given a processed one-element vector Op which was scalarized to its 759 /// element type, this returns the element. For example, if Op is a v1i32, 760 /// Op = < i32 val >, this method returns val, an i32. GetScalarizedVector(SDValue Op)761 SDValue GetScalarizedVector(SDValue Op) { 762 TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; 763 SDValue ScalarizedOp = getSDValue(ScalarizedId); 764 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); 765 return ScalarizedOp; 766 } 767 void SetScalarizedVector(SDValue Op, SDValue Result); 768 769 // Vector Result Scalarization: <1 x ty> -> ty. 770 void ScalarizeVectorResult(SDNode *N, unsigned ResNo); 771 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 772 SDValue ScalarizeVecRes_BinOp(SDNode *N); 773 SDValue ScalarizeVecRes_TernaryOp(SDNode *N); 774 SDValue ScalarizeVecRes_UnaryOp(SDNode *N); 775 SDValue ScalarizeVecRes_StrictFPOp(SDNode *N); 776 SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo); 777 SDValue ScalarizeVecRes_InregOp(SDNode *N); 778 SDValue ScalarizeVecRes_VecInregOp(SDNode *N); 779 780 SDValue ScalarizeVecRes_BITCAST(SDNode *N); 781 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); 782 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); 783 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); 784 SDValue ScalarizeVecRes_FPOWI(SDNode *N); 785 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); 786 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); 787 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); 788 SDValue ScalarizeVecRes_VSELECT(SDNode *N); 789 SDValue ScalarizeVecRes_SELECT(SDNode *N); 790 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); 791 SDValue ScalarizeVecRes_SETCC(SDNode *N); 792 SDValue ScalarizeVecRes_UNDEF(SDNode *N); 793 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); 794 SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N); 795 SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N); 796 797 SDValue ScalarizeVecRes_FIX(SDNode *N); 798 799 // Vector Operand Scalarization: <1 x ty> -> ty. 800 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); 801 SDValue ScalarizeVecOp_BITCAST(SDNode *N); 802 SDValue ScalarizeVecOp_UnaryOp(SDNode *N); 803 SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N); 804 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); 805 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 806 SDValue ScalarizeVecOp_VSELECT(SDNode *N); 807 SDValue ScalarizeVecOp_VSETCC(SDNode *N); 808 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); 809 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); 810 SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo); 811 SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N); 812 SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N); 813 SDValue ScalarizeVecOp_VECREDUCE(SDNode *N); 814 SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N); 815 816 //===--------------------------------------------------------------------===// 817 // Vector Splitting Support: LegalizeVectorTypes.cpp 818 //===--------------------------------------------------------------------===// 819 820 /// Given a processed vector Op which was split into vectors of half the size, 821 /// this method returns the halves. The first elements of Op coincide with the 822 /// elements of Lo; the remaining elements of Op coincide with the elements of 823 /// Hi: Op is what you would get by concatenating Lo and Hi. 824 /// For example, if Op is a v8i32 that was split into two v4i32's, then this 825 /// method returns the two v4i32's, with Lo corresponding to the first 4 826 /// elements of Op, and Hi to the last 4 elements. 827 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); 828 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); 829 830 /// Split mask operator of a VP intrinsic. 831 std::pair<SDValue, SDValue> SplitMask(SDValue Mask); 832 833 /// Split mask operator of a VP intrinsic in a given location. 834 std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL); 835 836 // Helper function for incrementing the pointer when splitting 837 // memory operations 838 void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI, 839 SDValue &Ptr, uint64_t *ScaledOffset = nullptr); 840 841 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. 842 void SplitVectorResult(SDNode *N, unsigned ResNo); 843 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); 844 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 845 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 846 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); 847 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); 848 void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); 849 void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); 850 void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo, 851 SDValue &Lo, SDValue &Hi); 852 853 void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi); 854 855 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); 856 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 857 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); 858 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 859 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 860 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); 861 void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi); 862 void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi); 863 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 864 void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); 865 void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi); 866 void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo, 867 SDValue &Hi); 868 void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); 869 void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi, 870 bool SplitSETCC = false); 871 void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi); 872 void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 873 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); 874 void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); 875 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, 876 SDValue &Hi); 877 void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi); 878 void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi); 879 void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi); 880 881 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. 882 bool SplitVectorOperand(SDNode *N, unsigned OpNo); 883 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); 884 SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); 885 SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N); 886 SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo); 887 SDValue SplitVecOp_UnaryOp(SDNode *N); 888 SDValue SplitVecOp_TruncateHelper(SDNode *N); 889 890 SDValue SplitVecOp_BITCAST(SDNode *N); 891 SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo); 892 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); 893 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 894 SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); 895 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); 896 SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo); 897 SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo); 898 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 899 SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo); 900 SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo); 901 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); 902 SDValue SplitVecOp_VSETCC(SDNode *N); 903 SDValue SplitVecOp_FP_ROUND(SDNode *N); 904 SDValue SplitVecOp_FCOPYSIGN(SDNode *N); 905 SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N); 906 907 //===--------------------------------------------------------------------===// 908 // Vector Widening Support: LegalizeVectorTypes.cpp 909 //===--------------------------------------------------------------------===// 910 911 /// Given a processed vector Op which was widened into a larger vector, this 912 /// method returns the larger vector. The elements of the returned vector 913 /// consist of the elements of Op followed by elements containing rubbish. 914 /// For example, if Op is a v2i32 that was widened to a v4i32, then this 915 /// method returns a v4i32 for which the first two elements are the same as 916 /// those of Op, while the last two elements contain rubbish. GetWidenedVector(SDValue Op)917 SDValue GetWidenedVector(SDValue Op) { 918 TableId &WidenedId = WidenedVectors[getTableId(Op)]; 919 SDValue WidenedOp = getSDValue(WidenedId); 920 assert(WidenedOp.getNode() && "Operand wasn't widened?"); 921 return WidenedOp; 922 } 923 void SetWidenedVector(SDValue Op, SDValue Result); 924 925 /// Given a mask Mask, returns the larger vector into which Mask was widened. GetWidenedMask(SDValue Mask,ElementCount EC)926 SDValue GetWidenedMask(SDValue Mask, ElementCount EC) { 927 // For VP operations, we must also widen the mask. Note that the mask type 928 // may not actually need widening, leading it be split along with the VP 929 // operation. 930 // FIXME: This could lead to an infinite split/widen loop. We only handle 931 // the case where the mask needs widening to an identically-sized type as 932 // the vector inputs. 933 assert(getTypeAction(Mask.getValueType()) == 934 TargetLowering::TypeWidenVector && 935 "Unable to widen binary VP op"); 936 Mask = GetWidenedVector(Mask); 937 assert(Mask.getValueType().getVectorElementCount() == EC && 938 "Unable to widen binary VP op"); 939 return Mask; 940 } 941 942 // Widen Vector Result Promotion. 943 void WidenVectorResult(SDNode *N, unsigned ResNo); 944 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); 945 SDValue WidenVecRes_BITCAST(SDNode* N); 946 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); 947 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); 948 SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); 949 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); 950 SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N); 951 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); 952 SDValue WidenVecRes_LOAD(SDNode* N); 953 SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N); 954 SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N); 955 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); 956 SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); 957 SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N); 958 SDValue WidenVecRes_ScalarOp(SDNode* N); 959 SDValue WidenVecRes_Select(SDNode *N); 960 SDValue WidenVSELECTMask(SDNode *N); 961 SDValue WidenVecRes_SELECT_CC(SDNode* N); 962 SDValue WidenVecRes_SETCC(SDNode* N); 963 SDValue WidenVecRes_STRICT_FSETCC(SDNode* N); 964 SDValue WidenVecRes_UNDEF(SDNode *N); 965 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); 966 SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N); 967 968 SDValue WidenVecRes_Ternary(SDNode *N); 969 SDValue WidenVecRes_Binary(SDNode *N); 970 SDValue WidenVecRes_BinaryCanTrap(SDNode *N); 971 SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N); 972 SDValue WidenVecRes_StrictFP(SDNode *N); 973 SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo); 974 SDValue WidenVecRes_Convert(SDNode *N); 975 SDValue WidenVecRes_Convert_StrictFP(SDNode *N); 976 SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N); 977 SDValue WidenVecRes_FCOPYSIGN(SDNode *N); 978 SDValue WidenVecRes_IS_FPCLASS(SDNode *N); 979 SDValue WidenVecRes_POWI(SDNode *N); 980 SDValue WidenVecRes_Unary(SDNode *N); 981 SDValue WidenVecRes_InregOp(SDNode *N); 982 983 // Widen Vector Operand. 984 bool WidenVectorOperand(SDNode *N, unsigned OpNo); 985 SDValue WidenVecOp_BITCAST(SDNode *N); 986 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); 987 SDValue WidenVecOp_EXTEND(SDNode *N); 988 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 989 SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N); 990 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); 991 SDValue WidenVecOp_STORE(SDNode* N); 992 SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo); 993 SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo); 994 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); 995 SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo); 996 SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); 997 SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo); 998 SDValue WidenVecOp_SETCC(SDNode* N); 999 SDValue WidenVecOp_STRICT_FSETCC(SDNode* N); 1000 SDValue WidenVecOp_VSELECT(SDNode *N); 1001 1002 SDValue WidenVecOp_Convert(SDNode *N); 1003 SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N); 1004 SDValue WidenVecOp_FCOPYSIGN(SDNode *N); 1005 SDValue WidenVecOp_IS_FPCLASS(SDNode *N); 1006 SDValue WidenVecOp_VECREDUCE(SDNode *N); 1007 SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N); 1008 SDValue WidenVecOp_VP_REDUCE(SDNode *N); 1009 1010 /// Helper function to generate a set of operations to perform 1011 /// a vector operation for a wider type. 1012 /// 1013 SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE); 1014 1015 //===--------------------------------------------------------------------===// 1016 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp 1017 //===--------------------------------------------------------------------===// 1018 1019 /// Helper function to generate a set of loads to load a vector with a 1020 /// resulting wider type. It takes: 1021 /// LdChain: list of chains for the load to be generated. 1022 /// Ld: load to widen 1023 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, 1024 LoadSDNode *LD); 1025 1026 /// Helper function to generate a set of extension loads to load a vector with 1027 /// a resulting wider type. It takes: 1028 /// LdChain: list of chains for the load to be generated. 1029 /// Ld: load to widen 1030 /// ExtType: extension element type 1031 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, 1032 LoadSDNode *LD, ISD::LoadExtType ExtType); 1033 1034 /// Helper function to generate a set of stores to store a widen vector into 1035 /// non-widen memory. Returns true if successful, false otherwise. 1036 /// StChain: list of chains for the stores we have generated 1037 /// ST: store of a widen value 1038 bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); 1039 1040 /// Modifies a vector input (widen or narrows) to a vector of NVT. The 1041 /// input vector must have the same element type as NVT. 1042 /// When FillWithZeroes is "on" the vector will be widened with zeroes. 1043 /// By default, the vector will be widened with undefined values. 1044 SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); 1045 1046 /// Return a mask of vector type MaskVT to replace InMask. Also adjust 1047 /// MaskVT to ToMaskVT if needed with vector extension or truncation. 1048 SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); 1049 1050 //===--------------------------------------------------------------------===// 1051 // Generic Splitting: LegalizeTypesGeneric.cpp 1052 //===--------------------------------------------------------------------===// 1053 1054 // Legalization methods which only use that the illegal type is split into two 1055 // not necessarily identical types. As such they can be used for splitting 1056 // vectors and expanding integers and floats. 1057 GetSplitOp(SDValue Op,SDValue & Lo,SDValue & Hi)1058 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 1059 if (Op.getValueType().isVector()) 1060 GetSplitVector(Op, Lo, Hi); 1061 else if (Op.getValueType().isInteger()) 1062 GetExpandedInteger(Op, Lo, Hi); 1063 else 1064 GetExpandedFloat(Op, Lo, Hi); 1065 } 1066 1067 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the 1068 /// given value. 1069 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); 1070 1071 // Generic Result Splitting. 1072 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, 1073 SDValue &Lo, SDValue &Hi); 1074 void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi); 1075 void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi); 1076 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); 1077 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); 1078 void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); 1079 1080 //===--------------------------------------------------------------------===// 1081 // Generic Expansion: LegalizeTypesGeneric.cpp 1082 //===--------------------------------------------------------------------===// 1083 1084 // Legalization methods which only use that the illegal type is split into two 1085 // identical types of half the size, and that the Lo/Hi part is stored first 1086 // in memory on little/big-endian machines, followed by the Hi/Lo part. As 1087 // such they can be used for expanding integers and floats. 1088 GetExpandedOp(SDValue Op,SDValue & Lo,SDValue & Hi)1089 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 1090 if (Op.getValueType().isInteger()) 1091 GetExpandedInteger(Op, Lo, Hi); 1092 else 1093 GetExpandedFloat(Op, Lo, Hi); 1094 } 1095 1096 1097 /// This function will split the integer \p Op into \p NumElements 1098 /// operations of type \p EltVT and store them in \p Ops. 1099 void IntegerToVector(SDValue Op, unsigned NumElements, 1100 SmallVectorImpl<SDValue> &Ops, EVT EltVT); 1101 1102 // Generic Result Expansion. 1103 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, 1104 SDValue &Lo, SDValue &Hi); 1105 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); 1106 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); 1107 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); 1108 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 1109 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); 1110 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); 1111 1112 // Generic Operand Expansion. 1113 SDValue ExpandOp_BITCAST (SDNode *N); 1114 SDValue ExpandOp_BUILD_VECTOR (SDNode *N); 1115 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); 1116 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); 1117 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); 1118 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); 1119 }; 1120 1121 } // end namespace llvm. 1122 1123 #endif 1124