1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/InstVisitor.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/FormattedStream.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <climits>
47 #include <limits>
48 #include <optional>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "inline-cost"
53
54 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
55
56 static cl::opt<int>
57 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
58 cl::desc("Default amount of inlining to perform"));
59
60 // We introduce this option since there is a minor compile-time win by avoiding
61 // addition of TTI attributes (target-features in particular) to inline
62 // candidates when they are guaranteed to be the same as top level methods in
63 // some use cases. If we avoid adding the attribute, we need an option to avoid
64 // checking these attributes.
65 static cl::opt<bool> IgnoreTTIInlineCompatible(
66 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false),
67 cl::desc("Ignore TTI attributes compatibility check between callee/caller "
68 "during inline cost calculation"));
69
70 static cl::opt<bool> PrintInstructionComments(
71 "print-instruction-comments", cl::Hidden, cl::init(false),
72 cl::desc("Prints comments for instruction based on inline cost analysis"));
73
74 static cl::opt<int> InlineThreshold(
75 "inline-threshold", cl::Hidden, cl::init(225),
76 cl::desc("Control the amount of inlining to perform (default = 225)"));
77
78 static cl::opt<int> HintThreshold(
79 "inlinehint-threshold", cl::Hidden, cl::init(325),
80 cl::desc("Threshold for inlining functions with inline hint"));
81
82 static cl::opt<int>
83 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
84 cl::init(45),
85 cl::desc("Threshold for inlining cold callsites"));
86
87 static cl::opt<bool> InlineEnableCostBenefitAnalysis(
88 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
89 cl::desc("Enable the cost-benefit analysis for the inliner"));
90
91 static cl::opt<int> InlineSavingsMultiplier(
92 "inline-savings-multiplier", cl::Hidden, cl::init(8),
93 cl::desc("Multiplier to multiply cycle savings by during inlining"));
94
95 static cl::opt<int>
96 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
97 cl::desc("The maximum size of a callee that get's "
98 "inlined without sufficient cycle savings"));
99
100 // We introduce this threshold to help performance of instrumentation based
101 // PGO before we actually hook up inliner with analysis passes such as BPI and
102 // BFI.
103 static cl::opt<int> ColdThreshold(
104 "inlinecold-threshold", cl::Hidden, cl::init(45),
105 cl::desc("Threshold for inlining functions with cold attribute"));
106
107 static cl::opt<int>
108 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
109 cl::desc("Threshold for hot callsites "));
110
111 static cl::opt<int> LocallyHotCallSiteThreshold(
112 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525),
113 cl::desc("Threshold for locally hot callsites "));
114
115 static cl::opt<int> ColdCallSiteRelFreq(
116 "cold-callsite-rel-freq", cl::Hidden, cl::init(2),
117 cl::desc("Maximum block frequency, expressed as a percentage of caller's "
118 "entry frequency, for a callsite to be cold in the absence of "
119 "profile information."));
120
121 static cl::opt<int> HotCallSiteRelFreq(
122 "hot-callsite-rel-freq", cl::Hidden, cl::init(60),
123 cl::desc("Minimum block frequency, expressed as a multiple of caller's "
124 "entry frequency, for a callsite to be hot in the absence of "
125 "profile information."));
126
127 static cl::opt<int>
128 InstrCost("inline-instr-cost", cl::Hidden, cl::init(5),
129 cl::desc("Cost of a single instruction when inlining"));
130
131 static cl::opt<int>
132 MemAccessCost("inline-memaccess-cost", cl::Hidden, cl::init(0),
133 cl::desc("Cost of load/store instruction when inlining"));
134
135 static cl::opt<int> CallPenalty(
136 "inline-call-penalty", cl::Hidden, cl::init(25),
137 cl::desc("Call penalty that is applied per callsite when inlining"));
138
139 static cl::opt<size_t>
140 StackSizeThreshold("inline-max-stacksize", cl::Hidden,
141 cl::init(std::numeric_limits<size_t>::max()),
142 cl::desc("Do not inline functions with a stack size "
143 "that exceeds the specified limit"));
144
145 static cl::opt<size_t>
146 RecurStackSizeThreshold("recursive-inline-max-stacksize", cl::Hidden,
147 cl::init(InlineConstants::TotalAllocaSizeRecursiveCaller),
148 cl::desc("Do not inline recursive functions with a stack "
149 "size that exceeds the specified limit"));
150
151 static cl::opt<bool> OptComputeFullInlineCost(
152 "inline-cost-full", cl::Hidden,
153 cl::desc("Compute the full inline cost of a call site even when the cost "
154 "exceeds the threshold."));
155
156 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
157 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
158 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
159 "attributes."));
160
161 static cl::opt<bool> DisableGEPConstOperand(
162 "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
163 cl::desc("Disables evaluation of GetElementPtr with constant operands"));
164
165 namespace llvm {
getStringFnAttrAsInt(const Attribute & Attr)166 std::optional<int> getStringFnAttrAsInt(const Attribute &Attr) {
167 if (Attr.isValid()) {
168 int AttrValue = 0;
169 if (!Attr.getValueAsString().getAsInteger(10, AttrValue))
170 return AttrValue;
171 }
172 return std::nullopt;
173 }
174
getStringFnAttrAsInt(CallBase & CB,StringRef AttrKind)175 std::optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) {
176 return getStringFnAttrAsInt(CB.getFnAttr(AttrKind));
177 }
178
getStringFnAttrAsInt(Function * F,StringRef AttrKind)179 std::optional<int> getStringFnAttrAsInt(Function *F, StringRef AttrKind) {
180 return getStringFnAttrAsInt(F->getFnAttribute(AttrKind));
181 }
182
183 namespace InlineConstants {
getInstrCost()184 int getInstrCost() { return InstrCost; }
185
186 } // namespace InlineConstants
187
188 } // namespace llvm
189
190 namespace {
191 class InlineCostCallAnalyzer;
192
193 // This struct is used to store information about inline cost of a
194 // particular instruction
195 struct InstructionCostDetail {
196 int CostBefore = 0;
197 int CostAfter = 0;
198 int ThresholdBefore = 0;
199 int ThresholdAfter = 0;
200
getThresholdDelta__anonedc2a5c80111::InstructionCostDetail201 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
202
getCostDelta__anonedc2a5c80111::InstructionCostDetail203 int getCostDelta() const { return CostAfter - CostBefore; }
204
hasThresholdChanged__anonedc2a5c80111::InstructionCostDetail205 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
206 };
207
208 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
209 private:
210 InlineCostCallAnalyzer *const ICCA;
211
212 public:
InlineCostAnnotationWriter(InlineCostCallAnalyzer * ICCA)213 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
214 void emitInstructionAnnot(const Instruction *I,
215 formatted_raw_ostream &OS) override;
216 };
217
218 /// Carry out call site analysis, in order to evaluate inlinability.
219 /// NOTE: the type is currently used as implementation detail of functions such
220 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
221 /// expectation is that they come from the outer scope, from the wrapper
222 /// functions. If we want to support constructing CallAnalyzer objects where
223 /// lambdas are provided inline at construction, or where the object needs to
224 /// otherwise survive past the scope of the provided functions, we need to
225 /// revisit the argument types.
226 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
227 typedef InstVisitor<CallAnalyzer, bool> Base;
228 friend class InstVisitor<CallAnalyzer, bool>;
229
230 protected:
231 virtual ~CallAnalyzer() = default;
232 /// The TargetTransformInfo available for this compilation.
233 const TargetTransformInfo &TTI;
234
235 /// Getter for the cache of @llvm.assume intrinsics.
236 function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
237
238 /// Getter for BlockFrequencyInfo
239 function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
240
241 /// Profile summary information.
242 ProfileSummaryInfo *PSI;
243
244 /// The called function.
245 Function &F;
246
247 // Cache the DataLayout since we use it a lot.
248 const DataLayout &DL;
249
250 /// The OptimizationRemarkEmitter available for this compilation.
251 OptimizationRemarkEmitter *ORE;
252
253 /// The candidate callsite being analyzed. Please do not use this to do
254 /// analysis in the caller function; we want the inline cost query to be
255 /// easily cacheable. Instead, use the cover function paramHasAttr.
256 CallBase &CandidateCall;
257
258 /// Extension points for handling callsite features.
259 // Called before a basic block was analyzed.
onBlockStart(const BasicBlock * BB)260 virtual void onBlockStart(const BasicBlock *BB) {}
261
262 /// Called after a basic block was analyzed.
onBlockAnalyzed(const BasicBlock * BB)263 virtual void onBlockAnalyzed(const BasicBlock *BB) {}
264
265 /// Called before an instruction was analyzed
onInstructionAnalysisStart(const Instruction * I)266 virtual void onInstructionAnalysisStart(const Instruction *I) {}
267
268 /// Called after an instruction was analyzed
onInstructionAnalysisFinish(const Instruction * I)269 virtual void onInstructionAnalysisFinish(const Instruction *I) {}
270
271 /// Called at the end of the analysis of the callsite. Return the outcome of
272 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
273 /// the reason it can't.
finalizeAnalysis()274 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
275 /// Called when we're about to start processing a basic block, and every time
276 /// we are done processing an instruction. Return true if there is no point in
277 /// continuing the analysis (e.g. we've determined already the call site is
278 /// too expensive to inline)
shouldStop()279 virtual bool shouldStop() { return false; }
280
281 /// Called before the analysis of the callee body starts (with callsite
282 /// contexts propagated). It checks callsite-specific information. Return a
283 /// reason analysis can't continue if that's the case, or 'true' if it may
284 /// continue.
onAnalysisStart()285 virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
286 /// Called if the analysis engine decides SROA cannot be done for the given
287 /// alloca.
onDisableSROA(AllocaInst * Arg)288 virtual void onDisableSROA(AllocaInst *Arg) {}
289
290 /// Called the analysis engine determines load elimination won't happen.
onDisableLoadElimination()291 virtual void onDisableLoadElimination() {}
292
293 /// Called when we visit a CallBase, before the analysis starts. Return false
294 /// to stop further processing of the instruction.
onCallBaseVisitStart(CallBase & Call)295 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; }
296
297 /// Called to account for a call.
onCallPenalty()298 virtual void onCallPenalty() {}
299
300 /// Called to account for a load or store.
onMemAccess()301 virtual void onMemAccess(){};
302
303 /// Called to account for the expectation the inlining would result in a load
304 /// elimination.
onLoadEliminationOpportunity()305 virtual void onLoadEliminationOpportunity() {}
306
307 /// Called to account for the cost of argument setup for the Call in the
308 /// callee's body (not the callsite currently under analysis).
onCallArgumentSetup(const CallBase & Call)309 virtual void onCallArgumentSetup(const CallBase &Call) {}
310
311 /// Called to account for a load relative intrinsic.
onLoadRelativeIntrinsic()312 virtual void onLoadRelativeIntrinsic() {}
313
314 /// Called to account for a lowered call.
onLoweredCall(Function * F,CallBase & Call,bool IsIndirectCall)315 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
316 }
317
318 /// Account for a jump table of given size. Return false to stop further
319 /// processing the switch instruction
onJumpTable(unsigned JumpTableSize)320 virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
321
322 /// Account for a case cluster of given size. Return false to stop further
323 /// processing of the instruction.
onCaseCluster(unsigned NumCaseCluster)324 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
325
326 /// Called at the end of processing a switch instruction, with the given
327 /// number of case clusters.
onFinalizeSwitch(unsigned JumpTableSize,unsigned NumCaseCluster)328 virtual void onFinalizeSwitch(unsigned JumpTableSize,
329 unsigned NumCaseCluster) {}
330
331 /// Called to account for any other instruction not specifically accounted
332 /// for.
onMissedSimplification()333 virtual void onMissedSimplification() {}
334
335 /// Start accounting potential benefits due to SROA for the given alloca.
onInitializeSROAArg(AllocaInst * Arg)336 virtual void onInitializeSROAArg(AllocaInst *Arg) {}
337
338 /// Account SROA savings for the AllocaInst value.
onAggregateSROAUse(AllocaInst * V)339 virtual void onAggregateSROAUse(AllocaInst *V) {}
340
handleSROA(Value * V,bool DoNotDisable)341 bool handleSROA(Value *V, bool DoNotDisable) {
342 // Check for SROA candidates in comparisons.
343 if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
344 if (DoNotDisable) {
345 onAggregateSROAUse(SROAArg);
346 return true;
347 }
348 disableSROAForArg(SROAArg);
349 }
350 return false;
351 }
352
353 bool IsCallerRecursive = false;
354 bool IsRecursiveCall = false;
355 bool ExposesReturnsTwice = false;
356 bool HasDynamicAlloca = false;
357 bool ContainsNoDuplicateCall = false;
358 bool HasReturn = false;
359 bool HasIndirectBr = false;
360 bool HasUninlineableIntrinsic = false;
361 bool InitsVargArgs = false;
362
363 /// Number of bytes allocated statically by the callee.
364 uint64_t AllocatedSize = 0;
365 unsigned NumInstructions = 0;
366 unsigned NumVectorInstructions = 0;
367
368 /// While we walk the potentially-inlined instructions, we build up and
369 /// maintain a mapping of simplified values specific to this callsite. The
370 /// idea is to propagate any special information we have about arguments to
371 /// this call through the inlinable section of the function, and account for
372 /// likely simplifications post-inlining. The most important aspect we track
373 /// is CFG altering simplifications -- when we prove a basic block dead, that
374 /// can cause dramatic shifts in the cost of inlining a function.
375 DenseMap<Value *, Constant *> SimplifiedValues;
376
377 /// Keep track of the values which map back (through function arguments) to
378 /// allocas on the caller stack which could be simplified through SROA.
379 DenseMap<Value *, AllocaInst *> SROAArgValues;
380
381 /// Keep track of Allocas for which we believe we may get SROA optimization.
382 DenseSet<AllocaInst *> EnabledSROAAllocas;
383
384 /// Keep track of values which map to a pointer base and constant offset.
385 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
386
387 /// Keep track of dead blocks due to the constant arguments.
388 SmallPtrSet<BasicBlock *, 16> DeadBlocks;
389
390 /// The mapping of the blocks to their known unique successors due to the
391 /// constant arguments.
392 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
393
394 /// Model the elimination of repeated loads that is expected to happen
395 /// whenever we simplify away the stores that would otherwise cause them to be
396 /// loads.
397 bool EnableLoadElimination = true;
398
399 /// Whether we allow inlining for recursive call.
400 bool AllowRecursiveCall = false;
401
402 SmallPtrSet<Value *, 16> LoadAddrSet;
403
getSROAArgForValueOrNull(Value * V) const404 AllocaInst *getSROAArgForValueOrNull(Value *V) const {
405 auto It = SROAArgValues.find(V);
406 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
407 return nullptr;
408 return It->second;
409 }
410
411 // Custom simplification helper routines.
412 bool isAllocaDerivedArg(Value *V);
413 void disableSROAForArg(AllocaInst *SROAArg);
414 void disableSROA(Value *V);
415 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
416 void disableLoadElimination();
417 bool isGEPFree(GetElementPtrInst &GEP);
418 bool canFoldInboundsGEP(GetElementPtrInst &I);
419 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
420 bool simplifyCallSite(Function *F, CallBase &Call);
421 bool simplifyInstruction(Instruction &I);
422 bool simplifyIntrinsicCallIsConstant(CallBase &CB);
423 bool simplifyIntrinsicCallObjectSize(CallBase &CB);
424 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
425
426 /// Return true if the given argument to the function being considered for
427 /// inlining has the given attribute set either at the call site or the
428 /// function declaration. Primarily used to inspect call site specific
429 /// attributes since these can be more precise than the ones on the callee
430 /// itself.
431 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
432
433 /// Return true if the given value is known non null within the callee if
434 /// inlined through this particular callsite.
435 bool isKnownNonNullInCallee(Value *V);
436
437 /// Return true if size growth is allowed when inlining the callee at \p Call.
438 bool allowSizeGrowth(CallBase &Call);
439
440 // Custom analysis routines.
441 InlineResult analyzeBlock(BasicBlock *BB,
442 SmallPtrSetImpl<const Value *> &EphValues);
443
444 // Disable several entry points to the visitor so we don't accidentally use
445 // them by declaring but not defining them here.
446 void visit(Module *);
447 void visit(Module &);
448 void visit(Function *);
449 void visit(Function &);
450 void visit(BasicBlock *);
451 void visit(BasicBlock &);
452
453 // Provide base case for our instruction visit.
454 bool visitInstruction(Instruction &I);
455
456 // Our visit overrides.
457 bool visitAlloca(AllocaInst &I);
458 bool visitPHI(PHINode &I);
459 bool visitGetElementPtr(GetElementPtrInst &I);
460 bool visitBitCast(BitCastInst &I);
461 bool visitPtrToInt(PtrToIntInst &I);
462 bool visitIntToPtr(IntToPtrInst &I);
463 bool visitCastInst(CastInst &I);
464 bool visitCmpInst(CmpInst &I);
465 bool visitSub(BinaryOperator &I);
466 bool visitBinaryOperator(BinaryOperator &I);
467 bool visitFNeg(UnaryOperator &I);
468 bool visitLoad(LoadInst &I);
469 bool visitStore(StoreInst &I);
470 bool visitExtractValue(ExtractValueInst &I);
471 bool visitInsertValue(InsertValueInst &I);
472 bool visitCallBase(CallBase &Call);
473 bool visitReturnInst(ReturnInst &RI);
474 bool visitBranchInst(BranchInst &BI);
475 bool visitSelectInst(SelectInst &SI);
476 bool visitSwitchInst(SwitchInst &SI);
477 bool visitIndirectBrInst(IndirectBrInst &IBI);
478 bool visitResumeInst(ResumeInst &RI);
479 bool visitCleanupReturnInst(CleanupReturnInst &RI);
480 bool visitCatchReturnInst(CatchReturnInst &RI);
481 bool visitUnreachableInst(UnreachableInst &I);
482
483 public:
CallAnalyzer(Function & Callee,CallBase & Call,const TargetTransformInfo & TTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<BlockFrequencyInfo & (Function &)> GetBFI=nullptr,ProfileSummaryInfo * PSI=nullptr,OptimizationRemarkEmitter * ORE=nullptr)484 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
485 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
486 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
487 ProfileSummaryInfo *PSI = nullptr,
488 OptimizationRemarkEmitter *ORE = nullptr)
489 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
490 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
491 CandidateCall(Call) {}
492
493 InlineResult analyze();
494
getSimplifiedValue(Instruction * I)495 std::optional<Constant *> getSimplifiedValue(Instruction *I) {
496 if (SimplifiedValues.find(I) != SimplifiedValues.end())
497 return SimplifiedValues[I];
498 return std::nullopt;
499 }
500
501 // Keep a bunch of stats about the cost savings found so we can print them
502 // out when debugging.
503 unsigned NumConstantArgs = 0;
504 unsigned NumConstantOffsetPtrArgs = 0;
505 unsigned NumAllocaArgs = 0;
506 unsigned NumConstantPtrCmps = 0;
507 unsigned NumConstantPtrDiffs = 0;
508 unsigned NumInstructionsSimplified = 0;
509
510 void dump();
511 };
512
513 // Considering forming a binary search, we should find the number of nodes
514 // which is same as the number of comparisons when lowered. For a given
515 // number of clusters, n, we can define a recursive function, f(n), to find
516 // the number of nodes in the tree. The recursion is :
517 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
518 // and f(n) = n, when n <= 3.
519 // This will lead a binary tree where the leaf should be either f(2) or f(3)
520 // when n > 3. So, the number of comparisons from leaves should be n, while
521 // the number of non-leaf should be :
522 // 2^(log2(n) - 1) - 1
523 // = 2^log2(n) * 2^-1 - 1
524 // = n / 2 - 1.
525 // Considering comparisons from leaf and non-leaf nodes, we can estimate the
526 // number of comparisons in a simple closed form :
527 // n + n / 2 - 1 = n * 3 / 2 - 1
getExpectedNumberOfCompare(int NumCaseCluster)528 int64_t getExpectedNumberOfCompare(int NumCaseCluster) {
529 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1;
530 }
531
532 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
533 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
534 class InlineCostCallAnalyzer final : public CallAnalyzer {
535 const bool ComputeFullInlineCost;
536 int LoadEliminationCost = 0;
537 /// Bonus to be applied when percentage of vector instructions in callee is
538 /// high (see more details in updateThreshold).
539 int VectorBonus = 0;
540 /// Bonus to be applied when the callee has only one reachable basic block.
541 int SingleBBBonus = 0;
542
543 /// Tunable parameters that control the analysis.
544 const InlineParams &Params;
545
546 // This DenseMap stores the delta change in cost and threshold after
547 // accounting for the given instruction. The map is filled only with the
548 // flag PrintInstructionComments on.
549 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
550
551 /// Upper bound for the inlining cost. Bonuses are being applied to account
552 /// for speculative "expected profit" of the inlining decision.
553 int Threshold = 0;
554
555 /// The amount of StaticBonus applied.
556 int StaticBonusApplied = 0;
557
558 /// Attempt to evaluate indirect calls to boost its inline cost.
559 const bool BoostIndirectCalls;
560
561 /// Ignore the threshold when finalizing analysis.
562 const bool IgnoreThreshold;
563
564 // True if the cost-benefit-analysis-based inliner is enabled.
565 const bool CostBenefitAnalysisEnabled;
566
567 /// Inlining cost measured in abstract units, accounts for all the
568 /// instructions expected to be executed for a given function invocation.
569 /// Instructions that are statically proven to be dead based on call-site
570 /// arguments are not counted here.
571 int Cost = 0;
572
573 // The cumulative cost at the beginning of the basic block being analyzed. At
574 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
575 // the size of that basic block.
576 int CostAtBBStart = 0;
577
578 // The static size of live but cold basic blocks. This is "static" in the
579 // sense that it's not weighted by profile counts at all.
580 int ColdSize = 0;
581
582 // Whether inlining is decided by cost-threshold analysis.
583 bool DecidedByCostThreshold = false;
584
585 // Whether inlining is decided by cost-benefit analysis.
586 bool DecidedByCostBenefit = false;
587
588 // The cost-benefit pair computed by cost-benefit analysis.
589 std::optional<CostBenefitPair> CostBenefit;
590
591 bool SingleBB = true;
592
593 unsigned SROACostSavings = 0;
594 unsigned SROACostSavingsLost = 0;
595
596 /// The mapping of caller Alloca values to their accumulated cost savings. If
597 /// we have to disable SROA for one of the allocas, this tells us how much
598 /// cost must be added.
599 DenseMap<AllocaInst *, int> SROAArgCosts;
600
601 /// Return true if \p Call is a cold callsite.
602 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
603
604 /// Update Threshold based on callsite properties such as callee
605 /// attributes and callee hotness for PGO builds. The Callee is explicitly
606 /// passed to support analyzing indirect calls whose target is inferred by
607 /// analysis.
608 void updateThreshold(CallBase &Call, Function &Callee);
609 /// Return a higher threshold if \p Call is a hot callsite.
610 std::optional<int> getHotCallSiteThreshold(CallBase &Call,
611 BlockFrequencyInfo *CallerBFI);
612
613 /// Handle a capped 'int' increment for Cost.
addCost(int64_t Inc)614 void addCost(int64_t Inc) {
615 Inc = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc), INT_MIN);
616 Cost = std::max<int64_t>(std::min<int64_t>(INT_MAX, Inc + Cost), INT_MIN);
617 }
618
onDisableSROA(AllocaInst * Arg)619 void onDisableSROA(AllocaInst *Arg) override {
620 auto CostIt = SROAArgCosts.find(Arg);
621 if (CostIt == SROAArgCosts.end())
622 return;
623 addCost(CostIt->second);
624 SROACostSavings -= CostIt->second;
625 SROACostSavingsLost += CostIt->second;
626 SROAArgCosts.erase(CostIt);
627 }
628
onDisableLoadElimination()629 void onDisableLoadElimination() override {
630 addCost(LoadEliminationCost);
631 LoadEliminationCost = 0;
632 }
633
onCallBaseVisitStart(CallBase & Call)634 bool onCallBaseVisitStart(CallBase &Call) override {
635 if (std::optional<int> AttrCallThresholdBonus =
636 getStringFnAttrAsInt(Call, "call-threshold-bonus"))
637 Threshold += *AttrCallThresholdBonus;
638
639 if (std::optional<int> AttrCallCost =
640 getStringFnAttrAsInt(Call, "call-inline-cost")) {
641 addCost(*AttrCallCost);
642 // Prevent further processing of the call since we want to override its
643 // inline cost, not just add to it.
644 return false;
645 }
646 return true;
647 }
648
onCallPenalty()649 void onCallPenalty() override { addCost(CallPenalty); }
650
onMemAccess()651 void onMemAccess() override { addCost(MemAccessCost); }
652
onCallArgumentSetup(const CallBase & Call)653 void onCallArgumentSetup(const CallBase &Call) override {
654 // Pay the price of the argument setup. We account for the average 1
655 // instruction per call argument setup here.
656 addCost(Call.arg_size() * InstrCost);
657 }
onLoadRelativeIntrinsic()658 void onLoadRelativeIntrinsic() override {
659 // This is normally lowered to 4 LLVM instructions.
660 addCost(3 * InstrCost);
661 }
onLoweredCall(Function * F,CallBase & Call,bool IsIndirectCall)662 void onLoweredCall(Function *F, CallBase &Call,
663 bool IsIndirectCall) override {
664 // We account for the average 1 instruction per call argument setup here.
665 addCost(Call.arg_size() * InstrCost);
666
667 // If we have a constant that we are calling as a function, we can peer
668 // through it and see the function target. This happens not infrequently
669 // during devirtualization and so we want to give it a hefty bonus for
670 // inlining, but cap that bonus in the event that inlining wouldn't pan out.
671 // Pretend to inline the function, with a custom threshold.
672 if (IsIndirectCall && BoostIndirectCalls) {
673 auto IndirectCallParams = Params;
674 IndirectCallParams.DefaultThreshold =
675 InlineConstants::IndirectCallThreshold;
676 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
677 /// to instantiate the derived class.
678 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
679 GetAssumptionCache, GetBFI, PSI, ORE, false);
680 if (CA.analyze().isSuccess()) {
681 // We were able to inline the indirect call! Subtract the cost from the
682 // threshold to get the bonus we want to apply, but don't go below zero.
683 Cost -= std::max(0, CA.getThreshold() - CA.getCost());
684 }
685 } else
686 // Otherwise simply add the cost for merely making the call.
687 addCost(CallPenalty);
688 }
689
onFinalizeSwitch(unsigned JumpTableSize,unsigned NumCaseCluster)690 void onFinalizeSwitch(unsigned JumpTableSize,
691 unsigned NumCaseCluster) override {
692 // If suitable for a jump table, consider the cost for the table size and
693 // branch to destination.
694 // Maximum valid cost increased in this function.
695 if (JumpTableSize) {
696 int64_t JTCost =
697 static_cast<int64_t>(JumpTableSize) * InstrCost + 4 * InstrCost;
698
699 addCost(JTCost);
700 return;
701 }
702
703 if (NumCaseCluster <= 3) {
704 // Suppose a comparison includes one compare and one conditional branch.
705 addCost(NumCaseCluster * 2 * InstrCost);
706 return;
707 }
708
709 int64_t ExpectedNumberOfCompare =
710 getExpectedNumberOfCompare(NumCaseCluster);
711 int64_t SwitchCost = ExpectedNumberOfCompare * 2 * InstrCost;
712
713 addCost(SwitchCost);
714 }
onMissedSimplification()715 void onMissedSimplification() override { addCost(InstrCost); }
716
onInitializeSROAArg(AllocaInst * Arg)717 void onInitializeSROAArg(AllocaInst *Arg) override {
718 assert(Arg != nullptr &&
719 "Should not initialize SROA costs for null value.");
720 SROAArgCosts[Arg] = 0;
721 }
722
onAggregateSROAUse(AllocaInst * SROAArg)723 void onAggregateSROAUse(AllocaInst *SROAArg) override {
724 auto CostIt = SROAArgCosts.find(SROAArg);
725 assert(CostIt != SROAArgCosts.end() &&
726 "expected this argument to have a cost");
727 CostIt->second += InstrCost;
728 SROACostSavings += InstrCost;
729 }
730
onBlockStart(const BasicBlock * BB)731 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
732
onBlockAnalyzed(const BasicBlock * BB)733 void onBlockAnalyzed(const BasicBlock *BB) override {
734 if (CostBenefitAnalysisEnabled) {
735 // Keep track of the static size of live but cold basic blocks. For now,
736 // we define a cold basic block to be one that's never executed.
737 assert(GetBFI && "GetBFI must be available");
738 BlockFrequencyInfo *BFI = &(GetBFI(F));
739 assert(BFI && "BFI must be available");
740 auto ProfileCount = BFI->getBlockProfileCount(BB);
741 if (*ProfileCount == 0)
742 ColdSize += Cost - CostAtBBStart;
743 }
744
745 auto *TI = BB->getTerminator();
746 // If we had any successors at this point, than post-inlining is likely to
747 // have them as well. Note that we assume any basic blocks which existed
748 // due to branches or switches which folded above will also fold after
749 // inlining.
750 if (SingleBB && TI->getNumSuccessors() > 1) {
751 // Take off the bonus we applied to the threshold.
752 Threshold -= SingleBBBonus;
753 SingleBB = false;
754 }
755 }
756
onInstructionAnalysisStart(const Instruction * I)757 void onInstructionAnalysisStart(const Instruction *I) override {
758 // This function is called to store the initial cost of inlining before
759 // the given instruction was assessed.
760 if (!PrintInstructionComments)
761 return;
762 InstructionCostDetailMap[I].CostBefore = Cost;
763 InstructionCostDetailMap[I].ThresholdBefore = Threshold;
764 }
765
onInstructionAnalysisFinish(const Instruction * I)766 void onInstructionAnalysisFinish(const Instruction *I) override {
767 // This function is called to find new values of cost and threshold after
768 // the instruction has been assessed.
769 if (!PrintInstructionComments)
770 return;
771 InstructionCostDetailMap[I].CostAfter = Cost;
772 InstructionCostDetailMap[I].ThresholdAfter = Threshold;
773 }
774
isCostBenefitAnalysisEnabled()775 bool isCostBenefitAnalysisEnabled() {
776 if (!PSI || !PSI->hasProfileSummary())
777 return false;
778
779 if (!GetBFI)
780 return false;
781
782 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
783 // Honor the explicit request from the user.
784 if (!InlineEnableCostBenefitAnalysis)
785 return false;
786 } else {
787 // Otherwise, require instrumentation profile.
788 if (!PSI->hasInstrumentationProfile())
789 return false;
790 }
791
792 auto *Caller = CandidateCall.getParent()->getParent();
793 if (!Caller->getEntryCount())
794 return false;
795
796 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
797 if (!CallerBFI)
798 return false;
799
800 // For now, limit to hot call site.
801 if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
802 return false;
803
804 // Make sure we have a nonzero entry count.
805 auto EntryCount = F.getEntryCount();
806 if (!EntryCount || !EntryCount->getCount())
807 return false;
808
809 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
810 if (!CalleeBFI)
811 return false;
812
813 return true;
814 }
815
816 // Determine whether we should inline the given call site, taking into account
817 // both the size cost and the cycle savings. Return std::nullopt if we don't
818 // have suficient profiling information to determine.
costBenefitAnalysis()819 std::optional<bool> costBenefitAnalysis() {
820 if (!CostBenefitAnalysisEnabled)
821 return std::nullopt;
822
823 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
824 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by
825 // falling back to the cost-based metric.
826 // TODO: Improve this hacky condition.
827 if (Threshold == 0)
828 return std::nullopt;
829
830 assert(GetBFI);
831 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
832 assert(CalleeBFI);
833
834 // The cycle savings expressed as the sum of InstrCost
835 // multiplied by the estimated dynamic count of each instruction we can
836 // avoid. Savings come from the call site cost, such as argument setup and
837 // the call instruction, as well as the instructions that are folded.
838 //
839 // We use 128-bit APInt here to avoid potential overflow. This variable
840 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case
841 // assumes that we can avoid or fold a billion instructions, each with a
842 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
843 // period on a 4GHz machine.
844 APInt CycleSavings(128, 0);
845
846 for (auto &BB : F) {
847 APInt CurrentSavings(128, 0);
848 for (auto &I : BB) {
849 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
850 // Count a conditional branch as savings if it becomes unconditional.
851 if (BI->isConditional() &&
852 isa_and_nonnull<ConstantInt>(
853 SimplifiedValues.lookup(BI->getCondition()))) {
854 CurrentSavings += InstrCost;
855 }
856 } else if (Value *V = dyn_cast<Value>(&I)) {
857 // Count an instruction as savings if we can fold it.
858 if (SimplifiedValues.count(V)) {
859 CurrentSavings += InstrCost;
860 }
861 }
862 }
863
864 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
865 CurrentSavings *= *ProfileCount;
866 CycleSavings += CurrentSavings;
867 }
868
869 // Compute the cycle savings per call.
870 auto EntryProfileCount = F.getEntryCount();
871 assert(EntryProfileCount && EntryProfileCount->getCount());
872 auto EntryCount = EntryProfileCount->getCount();
873 CycleSavings += EntryCount / 2;
874 CycleSavings = CycleSavings.udiv(EntryCount);
875
876 // Compute the total savings for the call site.
877 auto *CallerBB = CandidateCall.getParent();
878 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
879 CycleSavings += getCallsiteCost(this->CandidateCall, DL);
880 CycleSavings *= *CallerBFI->getBlockProfileCount(CallerBB);
881
882 // Remove the cost of the cold basic blocks.
883 int Size = Cost - ColdSize;
884
885 // Allow tiny callees to be inlined regardless of whether they meet the
886 // savings threshold.
887 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
888
889 CostBenefit.emplace(APInt(128, Size), CycleSavings);
890
891 // Return true if the savings justify the cost of inlining. Specifically,
892 // we evaluate the following inequality:
893 //
894 // CycleSavings PSI->getOrCompHotCountThreshold()
895 // -------------- >= -----------------------------------
896 // Size InlineSavingsMultiplier
897 //
898 // Note that the left hand side is specific to a call site. The right hand
899 // side is a constant for the entire executable.
900 APInt LHS = CycleSavings;
901 LHS *= InlineSavingsMultiplier;
902 APInt RHS(128, PSI->getOrCompHotCountThreshold());
903 RHS *= Size;
904 return LHS.uge(RHS);
905 }
906
finalizeAnalysis()907 InlineResult finalizeAnalysis() override {
908 // Loops generally act a lot like calls in that they act like barriers to
909 // movement, require a certain amount of setup, etc. So when optimising for
910 // size, we penalise any call sites that perform loops. We do this after all
911 // other costs here, so will likely only be dealing with relatively small
912 // functions (and hence DT and LI will hopefully be cheap).
913 auto *Caller = CandidateCall.getFunction();
914 if (Caller->hasMinSize()) {
915 DominatorTree DT(F);
916 LoopInfo LI(DT);
917 int NumLoops = 0;
918 for (Loop *L : LI) {
919 // Ignore loops that will not be executed
920 if (DeadBlocks.count(L->getHeader()))
921 continue;
922 NumLoops++;
923 }
924 addCost(NumLoops * InlineConstants::LoopPenalty);
925 }
926
927 // We applied the maximum possible vector bonus at the beginning. Now,
928 // subtract the excess bonus, if any, from the Threshold before
929 // comparing against Cost.
930 if (NumVectorInstructions <= NumInstructions / 10)
931 Threshold -= VectorBonus;
932 else if (NumVectorInstructions <= NumInstructions / 2)
933 Threshold -= VectorBonus / 2;
934
935 if (std::optional<int> AttrCost =
936 getStringFnAttrAsInt(CandidateCall, "function-inline-cost"))
937 Cost = *AttrCost;
938
939 if (std::optional<int> AttrCostMult = getStringFnAttrAsInt(
940 CandidateCall,
941 InlineConstants::FunctionInlineCostMultiplierAttributeName))
942 Cost *= *AttrCostMult;
943
944 if (std::optional<int> AttrThreshold =
945 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold"))
946 Threshold = *AttrThreshold;
947
948 if (auto Result = costBenefitAnalysis()) {
949 DecidedByCostBenefit = true;
950 if (*Result)
951 return InlineResult::success();
952 else
953 return InlineResult::failure("Cost over threshold.");
954 }
955
956 if (IgnoreThreshold)
957 return InlineResult::success();
958
959 DecidedByCostThreshold = true;
960 return Cost < std::max(1, Threshold)
961 ? InlineResult::success()
962 : InlineResult::failure("Cost over threshold.");
963 }
964
shouldStop()965 bool shouldStop() override {
966 if (IgnoreThreshold || ComputeFullInlineCost)
967 return false;
968 // Bail out the moment we cross the threshold. This means we'll under-count
969 // the cost, but only when undercounting doesn't matter.
970 if (Cost < Threshold)
971 return false;
972 DecidedByCostThreshold = true;
973 return true;
974 }
975
onLoadEliminationOpportunity()976 void onLoadEliminationOpportunity() override {
977 LoadEliminationCost += InstrCost;
978 }
979
onAnalysisStart()980 InlineResult onAnalysisStart() override {
981 // Perform some tweaks to the cost and threshold based on the direct
982 // callsite information.
983
984 // We want to more aggressively inline vector-dense kernels, so up the
985 // threshold, and we'll lower it if the % of vector instructions gets too
986 // low. Note that these bonuses are some what arbitrary and evolved over
987 // time by accident as much as because they are principled bonuses.
988 //
989 // FIXME: It would be nice to remove all such bonuses. At least it would be
990 // nice to base the bonus values on something more scientific.
991 assert(NumInstructions == 0);
992 assert(NumVectorInstructions == 0);
993
994 // Update the threshold based on callsite properties
995 updateThreshold(CandidateCall, F);
996
997 // While Threshold depends on commandline options that can take negative
998 // values, we want to enforce the invariant that the computed threshold and
999 // bonuses are non-negative.
1000 assert(Threshold >= 0);
1001 assert(SingleBBBonus >= 0);
1002 assert(VectorBonus >= 0);
1003
1004 // Speculatively apply all possible bonuses to Threshold. If cost exceeds
1005 // this Threshold any time, and cost cannot decrease, we can stop processing
1006 // the rest of the function body.
1007 Threshold += (SingleBBBonus + VectorBonus);
1008
1009 // Give out bonuses for the callsite, as the instructions setting them up
1010 // will be gone after inlining.
1011 addCost(-getCallsiteCost(this->CandidateCall, DL));
1012
1013 // If this function uses the coldcc calling convention, prefer not to inline
1014 // it.
1015 if (F.getCallingConv() == CallingConv::Cold)
1016 Cost += InlineConstants::ColdccPenalty;
1017
1018 LLVM_DEBUG(dbgs() << " Initial cost: " << Cost << "\n");
1019
1020 // Check if we're done. This can happen due to bonuses and penalties.
1021 if (Cost >= Threshold && !ComputeFullInlineCost)
1022 return InlineResult::failure("high cost");
1023
1024 return InlineResult::success();
1025 }
1026
1027 public:
InlineCostCallAnalyzer(Function & Callee,CallBase & Call,const InlineParams & Params,const TargetTransformInfo & TTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<BlockFrequencyInfo & (Function &)> GetBFI=nullptr,ProfileSummaryInfo * PSI=nullptr,OptimizationRemarkEmitter * ORE=nullptr,bool BoostIndirect=true,bool IgnoreThreshold=false)1028 InlineCostCallAnalyzer(
1029 Function &Callee, CallBase &Call, const InlineParams &Params,
1030 const TargetTransformInfo &TTI,
1031 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
1032 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
1033 ProfileSummaryInfo *PSI = nullptr,
1034 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
1035 bool IgnoreThreshold = false)
1036 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
1037 ComputeFullInlineCost(OptComputeFullInlineCost ||
1038 Params.ComputeFullInlineCost || ORE ||
1039 isCostBenefitAnalysisEnabled()),
1040 Params(Params), Threshold(Params.DefaultThreshold),
1041 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
1042 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
1043 Writer(this) {
1044 AllowRecursiveCall = *Params.AllowRecursiveCall;
1045 }
1046
1047 /// Annotation Writer for instruction details
1048 InlineCostAnnotationWriter Writer;
1049
1050 void dump();
1051
1052 // Prints the same analysis as dump(), but its definition is not dependent
1053 // on the build.
1054 void print(raw_ostream &OS);
1055
getCostDetails(const Instruction * I)1056 std::optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
1057 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
1058 return InstructionCostDetailMap[I];
1059 return std::nullopt;
1060 }
1061
1062 virtual ~InlineCostCallAnalyzer() = default;
getThreshold() const1063 int getThreshold() const { return Threshold; }
getCost() const1064 int getCost() const { return Cost; }
getStaticBonusApplied() const1065 int getStaticBonusApplied() const { return StaticBonusApplied; }
getCostBenefitPair()1066 std::optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; }
wasDecidedByCostBenefit() const1067 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; }
wasDecidedByCostThreshold() const1068 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; }
1069 };
1070
1071 // Return true if CB is the sole call to local function Callee.
isSoleCallToLocalFunction(const CallBase & CB,const Function & Callee)1072 static bool isSoleCallToLocalFunction(const CallBase &CB,
1073 const Function &Callee) {
1074 return Callee.hasLocalLinkage() && Callee.hasOneLiveUse() &&
1075 &Callee == CB.getCalledFunction();
1076 }
1077
1078 class InlineCostFeaturesAnalyzer final : public CallAnalyzer {
1079 private:
1080 InlineCostFeatures Cost = {};
1081
1082 // FIXME: These constants are taken from the heuristic-based cost visitor.
1083 // These should be removed entirely in a later revision to avoid reliance on
1084 // heuristics in the ML inliner.
1085 static constexpr int JTCostMultiplier = 4;
1086 static constexpr int CaseClusterCostMultiplier = 2;
1087 static constexpr int SwitchCostMultiplier = 2;
1088
1089 // FIXME: These are taken from the heuristic-based cost visitor: we should
1090 // eventually abstract these to the CallAnalyzer to avoid duplication.
1091 unsigned SROACostSavingOpportunities = 0;
1092 int VectorBonus = 0;
1093 int SingleBBBonus = 0;
1094 int Threshold = 5;
1095
1096 DenseMap<AllocaInst *, unsigned> SROACosts;
1097
increment(InlineCostFeatureIndex Feature,int64_t Delta=1)1098 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) {
1099 Cost[static_cast<size_t>(Feature)] += Delta;
1100 }
1101
set(InlineCostFeatureIndex Feature,int64_t Value)1102 void set(InlineCostFeatureIndex Feature, int64_t Value) {
1103 Cost[static_cast<size_t>(Feature)] = Value;
1104 }
1105
onDisableSROA(AllocaInst * Arg)1106 void onDisableSROA(AllocaInst *Arg) override {
1107 auto CostIt = SROACosts.find(Arg);
1108 if (CostIt == SROACosts.end())
1109 return;
1110
1111 increment(InlineCostFeatureIndex::SROALosses, CostIt->second);
1112 SROACostSavingOpportunities -= CostIt->second;
1113 SROACosts.erase(CostIt);
1114 }
1115
onDisableLoadElimination()1116 void onDisableLoadElimination() override {
1117 set(InlineCostFeatureIndex::LoadElimination, 1);
1118 }
1119
onCallPenalty()1120 void onCallPenalty() override {
1121 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty);
1122 }
1123
onCallArgumentSetup(const CallBase & Call)1124 void onCallArgumentSetup(const CallBase &Call) override {
1125 increment(InlineCostFeatureIndex::CallArgumentSetup,
1126 Call.arg_size() * InstrCost);
1127 }
1128
onLoadRelativeIntrinsic()1129 void onLoadRelativeIntrinsic() override {
1130 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 3 * InstrCost);
1131 }
1132
onLoweredCall(Function * F,CallBase & Call,bool IsIndirectCall)1133 void onLoweredCall(Function *F, CallBase &Call,
1134 bool IsIndirectCall) override {
1135 increment(InlineCostFeatureIndex::LoweredCallArgSetup,
1136 Call.arg_size() * InstrCost);
1137
1138 if (IsIndirectCall) {
1139 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0,
1140 /*HintThreshold*/ {},
1141 /*ColdThreshold*/ {},
1142 /*OptSizeThreshold*/ {},
1143 /*OptMinSizeThreshold*/ {},
1144 /*HotCallSiteThreshold*/ {},
1145 /*LocallyHotCallSiteThreshold*/ {},
1146 /*ColdCallSiteThreshold*/ {},
1147 /*ComputeFullInlineCost*/ true,
1148 /*EnableDeferral*/ true};
1149 IndirectCallParams.DefaultThreshold =
1150 InlineConstants::IndirectCallThreshold;
1151
1152 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
1153 GetAssumptionCache, GetBFI, PSI, ORE, false,
1154 true);
1155 if (CA.analyze().isSuccess()) {
1156 increment(InlineCostFeatureIndex::NestedInlineCostEstimate,
1157 CA.getCost());
1158 increment(InlineCostFeatureIndex::NestedInlines, 1);
1159 }
1160 } else {
1161 onCallPenalty();
1162 }
1163 }
1164
onFinalizeSwitch(unsigned JumpTableSize,unsigned NumCaseCluster)1165 void onFinalizeSwitch(unsigned JumpTableSize,
1166 unsigned NumCaseCluster) override {
1167
1168 if (JumpTableSize) {
1169 int64_t JTCost = static_cast<int64_t>(JumpTableSize) * InstrCost +
1170 JTCostMultiplier * InstrCost;
1171 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost);
1172 return;
1173 }
1174
1175 if (NumCaseCluster <= 3) {
1176 increment(InlineCostFeatureIndex::CaseClusterPenalty,
1177 NumCaseCluster * CaseClusterCostMultiplier * InstrCost);
1178 return;
1179 }
1180
1181 int64_t ExpectedNumberOfCompare =
1182 getExpectedNumberOfCompare(NumCaseCluster);
1183
1184 int64_t SwitchCost =
1185 ExpectedNumberOfCompare * SwitchCostMultiplier * InstrCost;
1186 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost);
1187 }
1188
onMissedSimplification()1189 void onMissedSimplification() override {
1190 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions,
1191 InstrCost);
1192 }
1193
onInitializeSROAArg(AllocaInst * Arg)1194 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; }
onAggregateSROAUse(AllocaInst * Arg)1195 void onAggregateSROAUse(AllocaInst *Arg) override {
1196 SROACosts.find(Arg)->second += InstrCost;
1197 SROACostSavingOpportunities += InstrCost;
1198 }
1199
onBlockAnalyzed(const BasicBlock * BB)1200 void onBlockAnalyzed(const BasicBlock *BB) override {
1201 if (BB->getTerminator()->getNumSuccessors() > 1)
1202 set(InlineCostFeatureIndex::IsMultipleBlocks, 1);
1203 Threshold -= SingleBBBonus;
1204 }
1205
finalizeAnalysis()1206 InlineResult finalizeAnalysis() override {
1207 auto *Caller = CandidateCall.getFunction();
1208 if (Caller->hasMinSize()) {
1209 DominatorTree DT(F);
1210 LoopInfo LI(DT);
1211 for (Loop *L : LI) {
1212 // Ignore loops that will not be executed
1213 if (DeadBlocks.count(L->getHeader()))
1214 continue;
1215 increment(InlineCostFeatureIndex::NumLoops,
1216 InlineConstants::LoopPenalty);
1217 }
1218 }
1219 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size());
1220 set(InlineCostFeatureIndex::SimplifiedInstructions,
1221 NumInstructionsSimplified);
1222 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs);
1223 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs,
1224 NumConstantOffsetPtrArgs);
1225 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities);
1226
1227 if (NumVectorInstructions <= NumInstructions / 10)
1228 Threshold -= VectorBonus;
1229 else if (NumVectorInstructions <= NumInstructions / 2)
1230 Threshold -= VectorBonus / 2;
1231
1232 set(InlineCostFeatureIndex::Threshold, Threshold);
1233
1234 return InlineResult::success();
1235 }
1236
shouldStop()1237 bool shouldStop() override { return false; }
1238
onLoadEliminationOpportunity()1239 void onLoadEliminationOpportunity() override {
1240 increment(InlineCostFeatureIndex::LoadElimination, 1);
1241 }
1242
onAnalysisStart()1243 InlineResult onAnalysisStart() override {
1244 increment(InlineCostFeatureIndex::CallSiteCost,
1245 -1 * getCallsiteCost(this->CandidateCall, DL));
1246
1247 set(InlineCostFeatureIndex::ColdCcPenalty,
1248 (F.getCallingConv() == CallingConv::Cold));
1249
1250 set(InlineCostFeatureIndex::LastCallToStaticBonus,
1251 isSoleCallToLocalFunction(CandidateCall, F));
1252
1253 // FIXME: we shouldn't repeat this logic in both the Features and Cost
1254 // analyzer - instead, we should abstract it to a common method in the
1255 // CallAnalyzer
1256 int SingleBBBonusPercent = 50;
1257 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1258 Threshold += TTI.adjustInliningThreshold(&CandidateCall);
1259 Threshold *= TTI.getInliningThresholdMultiplier();
1260 SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1261 VectorBonus = Threshold * VectorBonusPercent / 100;
1262 Threshold += (SingleBBBonus + VectorBonus);
1263
1264 return InlineResult::success();
1265 }
1266
1267 public:
InlineCostFeaturesAnalyzer(const TargetTransformInfo & TTI,function_ref<AssumptionCache & (Function &)> & GetAssumptionCache,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter * ORE,Function & Callee,CallBase & Call)1268 InlineCostFeaturesAnalyzer(
1269 const TargetTransformInfo &TTI,
1270 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache,
1271 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1272 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee,
1273 CallBase &Call)
1274 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {}
1275
features() const1276 const InlineCostFeatures &features() const { return Cost; }
1277 };
1278
1279 } // namespace
1280
1281 /// Test whether the given value is an Alloca-derived function argument.
isAllocaDerivedArg(Value * V)1282 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
1283 return SROAArgValues.count(V);
1284 }
1285
disableSROAForArg(AllocaInst * SROAArg)1286 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
1287 onDisableSROA(SROAArg);
1288 EnabledSROAAllocas.erase(SROAArg);
1289 disableLoadElimination();
1290 }
1291
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)1292 void InlineCostAnnotationWriter::emitInstructionAnnot(
1293 const Instruction *I, formatted_raw_ostream &OS) {
1294 // The cost of inlining of the given instruction is printed always.
1295 // The threshold delta is printed only when it is non-zero. It happens
1296 // when we decided to give a bonus at a particular instruction.
1297 std::optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
1298 if (!Record)
1299 OS << "; No analysis for the instruction";
1300 else {
1301 OS << "; cost before = " << Record->CostBefore
1302 << ", cost after = " << Record->CostAfter
1303 << ", threshold before = " << Record->ThresholdBefore
1304 << ", threshold after = " << Record->ThresholdAfter << ", ";
1305 OS << "cost delta = " << Record->getCostDelta();
1306 if (Record->hasThresholdChanged())
1307 OS << ", threshold delta = " << Record->getThresholdDelta();
1308 }
1309 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
1310 if (C) {
1311 OS << ", simplified to ";
1312 (*C)->print(OS, true);
1313 }
1314 OS << "\n";
1315 }
1316
1317 /// If 'V' maps to a SROA candidate, disable SROA for it.
disableSROA(Value * V)1318 void CallAnalyzer::disableSROA(Value *V) {
1319 if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
1320 disableSROAForArg(SROAArg);
1321 }
1322 }
1323
disableLoadElimination()1324 void CallAnalyzer::disableLoadElimination() {
1325 if (EnableLoadElimination) {
1326 onDisableLoadElimination();
1327 EnableLoadElimination = false;
1328 }
1329 }
1330
1331 /// Accumulate a constant GEP offset into an APInt if possible.
1332 ///
1333 /// Returns false if unable to compute the offset for any reason. Respects any
1334 /// simplified values known during the analysis of this callsite.
accumulateGEPOffset(GEPOperator & GEP,APInt & Offset)1335 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
1336 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
1337 assert(IntPtrWidth == Offset.getBitWidth());
1338
1339 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1340 GTI != GTE; ++GTI) {
1341 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1342 if (!OpC)
1343 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1344 OpC = dyn_cast<ConstantInt>(SimpleOp);
1345 if (!OpC)
1346 return false;
1347 if (OpC->isZero())
1348 continue;
1349
1350 // Handle a struct index, which adds its field offset to the pointer.
1351 if (StructType *STy = GTI.getStructTypeOrNull()) {
1352 unsigned ElementIdx = OpC->getZExtValue();
1353 const StructLayout *SL = DL.getStructLayout(STy);
1354 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1355 continue;
1356 }
1357
1358 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
1359 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1360 }
1361 return true;
1362 }
1363
1364 /// Use TTI to check whether a GEP is free.
1365 ///
1366 /// Respects any simplified values known during the analysis of this callsite.
isGEPFree(GetElementPtrInst & GEP)1367 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1368 SmallVector<Value *, 4> Operands;
1369 Operands.push_back(GEP.getOperand(0));
1370 for (const Use &Op : GEP.indices())
1371 if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1372 Operands.push_back(SimpleOp);
1373 else
1374 Operands.push_back(Op);
1375 return TTI.getInstructionCost(&GEP, Operands,
1376 TargetTransformInfo::TCK_SizeAndLatency) ==
1377 TargetTransformInfo::TCC_Free;
1378 }
1379
visitAlloca(AllocaInst & I)1380 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1381 disableSROA(I.getOperand(0));
1382
1383 // Check whether inlining will turn a dynamic alloca into a static
1384 // alloca and handle that case.
1385 if (I.isArrayAllocation()) {
1386 Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1387 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1388 // Sometimes a dynamic alloca could be converted into a static alloca
1389 // after this constant prop, and become a huge static alloca on an
1390 // unconditional CFG path. Avoid inlining if this is going to happen above
1391 // a threshold.
1392 // FIXME: If the threshold is removed or lowered too much, we could end up
1393 // being too pessimistic and prevent inlining non-problematic code. This
1394 // could result in unintended perf regressions. A better overall strategy
1395 // is needed to track stack usage during inlining.
1396 Type *Ty = I.getAllocatedType();
1397 AllocatedSize = SaturatingMultiplyAdd(
1398 AllocSize->getLimitedValue(),
1399 DL.getTypeAllocSize(Ty).getKnownMinValue(), AllocatedSize);
1400 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline)
1401 HasDynamicAlloca = true;
1402 return false;
1403 }
1404 }
1405
1406 // Accumulate the allocated size.
1407 if (I.isStaticAlloca()) {
1408 Type *Ty = I.getAllocatedType();
1409 AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinValue(),
1410 AllocatedSize);
1411 }
1412
1413 // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1414 // a variety of reasons, and so we would like to not inline them into
1415 // functions which don't currently have a dynamic alloca. This simply
1416 // disables inlining altogether in the presence of a dynamic alloca.
1417 if (!I.isStaticAlloca())
1418 HasDynamicAlloca = true;
1419
1420 return false;
1421 }
1422
visitPHI(PHINode & I)1423 bool CallAnalyzer::visitPHI(PHINode &I) {
1424 // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1425 // though we don't want to propagate it's bonuses. The idea is to disable
1426 // SROA if it *might* be used in an inappropriate manner.
1427
1428 // Phi nodes are always zero-cost.
1429 // FIXME: Pointer sizes may differ between different address spaces, so do we
1430 // need to use correct address space in the call to getPointerSizeInBits here?
1431 // Or could we skip the getPointerSizeInBits call completely? As far as I can
1432 // see the ZeroOffset is used as a dummy value, so we can probably use any
1433 // bit width for the ZeroOffset?
1434 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0));
1435 bool CheckSROA = I.getType()->isPointerTy();
1436
1437 // Track the constant or pointer with constant offset we've seen so far.
1438 Constant *FirstC = nullptr;
1439 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1440 Value *FirstV = nullptr;
1441
1442 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1443 BasicBlock *Pred = I.getIncomingBlock(i);
1444 // If the incoming block is dead, skip the incoming block.
1445 if (DeadBlocks.count(Pred))
1446 continue;
1447 // If the parent block of phi is not the known successor of the incoming
1448 // block, skip the incoming block.
1449 BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1450 if (KnownSuccessor && KnownSuccessor != I.getParent())
1451 continue;
1452
1453 Value *V = I.getIncomingValue(i);
1454 // If the incoming value is this phi itself, skip the incoming value.
1455 if (&I == V)
1456 continue;
1457
1458 Constant *C = dyn_cast<Constant>(V);
1459 if (!C)
1460 C = SimplifiedValues.lookup(V);
1461
1462 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1463 if (!C && CheckSROA)
1464 BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1465
1466 if (!C && !BaseAndOffset.first)
1467 // The incoming value is neither a constant nor a pointer with constant
1468 // offset, exit early.
1469 return true;
1470
1471 if (FirstC) {
1472 if (FirstC == C)
1473 // If we've seen a constant incoming value before and it is the same
1474 // constant we see this time, continue checking the next incoming value.
1475 continue;
1476 // Otherwise early exit because we either see a different constant or saw
1477 // a constant before but we have a pointer with constant offset this time.
1478 return true;
1479 }
1480
1481 if (FirstV) {
1482 // The same logic as above, but check pointer with constant offset here.
1483 if (FirstBaseAndOffset == BaseAndOffset)
1484 continue;
1485 return true;
1486 }
1487
1488 if (C) {
1489 // This is the 1st time we've seen a constant, record it.
1490 FirstC = C;
1491 continue;
1492 }
1493
1494 // The remaining case is that this is the 1st time we've seen a pointer with
1495 // constant offset, record it.
1496 FirstV = V;
1497 FirstBaseAndOffset = BaseAndOffset;
1498 }
1499
1500 // Check if we can map phi to a constant.
1501 if (FirstC) {
1502 SimplifiedValues[&I] = FirstC;
1503 return true;
1504 }
1505
1506 // Check if we can map phi to a pointer with constant offset.
1507 if (FirstBaseAndOffset.first) {
1508 ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1509
1510 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1511 SROAArgValues[&I] = SROAArg;
1512 }
1513
1514 return true;
1515 }
1516
1517 /// Check we can fold GEPs of constant-offset call site argument pointers.
1518 /// This requires target data and inbounds GEPs.
1519 ///
1520 /// \return true if the specified GEP can be folded.
canFoldInboundsGEP(GetElementPtrInst & I)1521 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1522 // Check if we have a base + offset for the pointer.
1523 std::pair<Value *, APInt> BaseAndOffset =
1524 ConstantOffsetPtrs.lookup(I.getPointerOperand());
1525 if (!BaseAndOffset.first)
1526 return false;
1527
1528 // Check if the offset of this GEP is constant, and if so accumulate it
1529 // into Offset.
1530 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1531 return false;
1532
1533 // Add the result as a new mapping to Base + Offset.
1534 ConstantOffsetPtrs[&I] = BaseAndOffset;
1535
1536 return true;
1537 }
1538
visitGetElementPtr(GetElementPtrInst & I)1539 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1540 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1541
1542 // Lambda to check whether a GEP's indices are all constant.
1543 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1544 for (const Use &Op : GEP.indices())
1545 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1546 return false;
1547 return true;
1548 };
1549
1550 if (!DisableGEPConstOperand)
1551 if (simplifyInstruction(I))
1552 return true;
1553
1554 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1555 if (SROAArg)
1556 SROAArgValues[&I] = SROAArg;
1557
1558 // Constant GEPs are modeled as free.
1559 return true;
1560 }
1561
1562 // Variable GEPs will require math and will disable SROA.
1563 if (SROAArg)
1564 disableSROAForArg(SROAArg);
1565 return isGEPFree(I);
1566 }
1567
1568 /// Simplify \p I if its operands are constants and update SimplifiedValues.
simplifyInstruction(Instruction & I)1569 bool CallAnalyzer::simplifyInstruction(Instruction &I) {
1570 SmallVector<Constant *> COps;
1571 for (Value *Op : I.operands()) {
1572 Constant *COp = dyn_cast<Constant>(Op);
1573 if (!COp)
1574 COp = SimplifiedValues.lookup(Op);
1575 if (!COp)
1576 return false;
1577 COps.push_back(COp);
1578 }
1579 auto *C = ConstantFoldInstOperands(&I, COps, DL);
1580 if (!C)
1581 return false;
1582 SimplifiedValues[&I] = C;
1583 return true;
1584 }
1585
1586 /// Try to simplify a call to llvm.is.constant.
1587 ///
1588 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since
1589 /// we expect calls of this specific intrinsic to be infrequent.
1590 ///
1591 /// FIXME: Given that we know CB's parent (F) caller
1592 /// (CandidateCall->getParent()->getParent()), we might be able to determine
1593 /// whether inlining F into F's caller would change how the call to
1594 /// llvm.is.constant would evaluate.
simplifyIntrinsicCallIsConstant(CallBase & CB)1595 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) {
1596 Value *Arg = CB.getArgOperand(0);
1597 auto *C = dyn_cast<Constant>(Arg);
1598
1599 if (!C)
1600 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg));
1601
1602 Type *RT = CB.getFunctionType()->getReturnType();
1603 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0);
1604 return true;
1605 }
1606
simplifyIntrinsicCallObjectSize(CallBase & CB)1607 bool CallAnalyzer::simplifyIntrinsicCallObjectSize(CallBase &CB) {
1608 // As per the langref, "The fourth argument to llvm.objectsize determines if
1609 // the value should be evaluated at runtime."
1610 if(cast<ConstantInt>(CB.getArgOperand(3))->isOne())
1611 return false;
1612
1613 Value *V = lowerObjectSizeCall(&cast<IntrinsicInst>(CB), DL, nullptr,
1614 /*MustSucceed=*/true);
1615 Constant *C = dyn_cast_or_null<Constant>(V);
1616 if (C)
1617 SimplifiedValues[&CB] = C;
1618 return C;
1619 }
1620
visitBitCast(BitCastInst & I)1621 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1622 // Propagate constants through bitcasts.
1623 if (simplifyInstruction(I))
1624 return true;
1625
1626 // Track base/offsets through casts
1627 std::pair<Value *, APInt> BaseAndOffset =
1628 ConstantOffsetPtrs.lookup(I.getOperand(0));
1629 // Casts don't change the offset, just wrap it up.
1630 if (BaseAndOffset.first)
1631 ConstantOffsetPtrs[&I] = BaseAndOffset;
1632
1633 // Also look for SROA candidates here.
1634 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1635 SROAArgValues[&I] = SROAArg;
1636
1637 // Bitcasts are always zero cost.
1638 return true;
1639 }
1640
visitPtrToInt(PtrToIntInst & I)1641 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1642 // Propagate constants through ptrtoint.
1643 if (simplifyInstruction(I))
1644 return true;
1645
1646 // Track base/offset pairs when converted to a plain integer provided the
1647 // integer is large enough to represent the pointer.
1648 unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1649 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1650 if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1651 std::pair<Value *, APInt> BaseAndOffset =
1652 ConstantOffsetPtrs.lookup(I.getOperand(0));
1653 if (BaseAndOffset.first)
1654 ConstantOffsetPtrs[&I] = BaseAndOffset;
1655 }
1656
1657 // This is really weird. Technically, ptrtoint will disable SROA. However,
1658 // unless that ptrtoint is *used* somewhere in the live basic blocks after
1659 // inlining, it will be nuked, and SROA should proceed. All of the uses which
1660 // would block SROA would also block SROA if applied directly to a pointer,
1661 // and so we can just add the integer in here. The only places where SROA is
1662 // preserved either cannot fire on an integer, or won't in-and-of themselves
1663 // disable SROA (ext) w/o some later use that we would see and disable.
1664 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1665 SROAArgValues[&I] = SROAArg;
1666
1667 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1668 TargetTransformInfo::TCC_Free;
1669 }
1670
visitIntToPtr(IntToPtrInst & I)1671 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1672 // Propagate constants through ptrtoint.
1673 if (simplifyInstruction(I))
1674 return true;
1675
1676 // Track base/offset pairs when round-tripped through a pointer without
1677 // modifications provided the integer is not too large.
1678 Value *Op = I.getOperand(0);
1679 unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1680 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1681 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1682 if (BaseAndOffset.first)
1683 ConstantOffsetPtrs[&I] = BaseAndOffset;
1684 }
1685
1686 // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1687 if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1688 SROAArgValues[&I] = SROAArg;
1689
1690 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1691 TargetTransformInfo::TCC_Free;
1692 }
1693
visitCastInst(CastInst & I)1694 bool CallAnalyzer::visitCastInst(CastInst &I) {
1695 // Propagate constants through casts.
1696 if (simplifyInstruction(I))
1697 return true;
1698
1699 // Disable SROA in the face of arbitrary casts we don't explicitly list
1700 // elsewhere.
1701 disableSROA(I.getOperand(0));
1702
1703 // If this is a floating-point cast, and the target says this operation
1704 // is expensive, this may eventually become a library call. Treat the cost
1705 // as such.
1706 switch (I.getOpcode()) {
1707 case Instruction::FPTrunc:
1708 case Instruction::FPExt:
1709 case Instruction::UIToFP:
1710 case Instruction::SIToFP:
1711 case Instruction::FPToUI:
1712 case Instruction::FPToSI:
1713 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1714 onCallPenalty();
1715 break;
1716 default:
1717 break;
1718 }
1719
1720 return TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1721 TargetTransformInfo::TCC_Free;
1722 }
1723
paramHasAttr(Argument * A,Attribute::AttrKind Attr)1724 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1725 return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1726 }
1727
isKnownNonNullInCallee(Value * V)1728 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1729 // Does the *call site* have the NonNull attribute set on an argument? We
1730 // use the attribute on the call site to memoize any analysis done in the
1731 // caller. This will also trip if the callee function has a non-null
1732 // parameter attribute, but that's a less interesting case because hopefully
1733 // the callee would already have been simplified based on that.
1734 if (Argument *A = dyn_cast<Argument>(V))
1735 if (paramHasAttr(A, Attribute::NonNull))
1736 return true;
1737
1738 // Is this an alloca in the caller? This is distinct from the attribute case
1739 // above because attributes aren't updated within the inliner itself and we
1740 // always want to catch the alloca derived case.
1741 if (isAllocaDerivedArg(V))
1742 // We can actually predict the result of comparisons between an
1743 // alloca-derived value and null. Note that this fires regardless of
1744 // SROA firing.
1745 return true;
1746
1747 return false;
1748 }
1749
allowSizeGrowth(CallBase & Call)1750 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1751 // If the normal destination of the invoke or the parent block of the call
1752 // site is unreachable-terminated, there is little point in inlining this
1753 // unless there is literally zero cost.
1754 // FIXME: Note that it is possible that an unreachable-terminated block has a
1755 // hot entry. For example, in below scenario inlining hot_call_X() may be
1756 // beneficial :
1757 // main() {
1758 // hot_call_1();
1759 // ...
1760 // hot_call_N()
1761 // exit(0);
1762 // }
1763 // For now, we are not handling this corner case here as it is rare in real
1764 // code. In future, we should elaborate this based on BPI and BFI in more
1765 // general threshold adjusting heuristics in updateThreshold().
1766 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1767 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1768 return false;
1769 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1770 return false;
1771
1772 return true;
1773 }
1774
isColdCallSite(CallBase & Call,BlockFrequencyInfo * CallerBFI)1775 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1776 BlockFrequencyInfo *CallerBFI) {
1777 // If global profile summary is available, then callsite's coldness is
1778 // determined based on that.
1779 if (PSI && PSI->hasProfileSummary())
1780 return PSI->isColdCallSite(Call, CallerBFI);
1781
1782 // Otherwise we need BFI to be available.
1783 if (!CallerBFI)
1784 return false;
1785
1786 // Determine if the callsite is cold relative to caller's entry. We could
1787 // potentially cache the computation of scaled entry frequency, but the added
1788 // complexity is not worth it unless this scaling shows up high in the
1789 // profiles.
1790 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1791 auto CallSiteBB = Call.getParent();
1792 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1793 auto CallerEntryFreq =
1794 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1795 return CallSiteFreq < CallerEntryFreq * ColdProb;
1796 }
1797
1798 std::optional<int>
getHotCallSiteThreshold(CallBase & Call,BlockFrequencyInfo * CallerBFI)1799 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1800 BlockFrequencyInfo *CallerBFI) {
1801
1802 // If global profile summary is available, then callsite's hotness is
1803 // determined based on that.
1804 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1805 return Params.HotCallSiteThreshold;
1806
1807 // Otherwise we need BFI to be available and to have a locally hot callsite
1808 // threshold.
1809 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1810 return std::nullopt;
1811
1812 // Determine if the callsite is hot relative to caller's entry. We could
1813 // potentially cache the computation of scaled entry frequency, but the added
1814 // complexity is not worth it unless this scaling shows up high in the
1815 // profiles.
1816 auto CallSiteBB = Call.getParent();
1817 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
1818 auto CallerEntryFreq = CallerBFI->getEntryFreq();
1819 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
1820 return Params.LocallyHotCallSiteThreshold;
1821
1822 // Otherwise treat it normally.
1823 return std::nullopt;
1824 }
1825
updateThreshold(CallBase & Call,Function & Callee)1826 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1827 // If no size growth is allowed for this inlining, set Threshold to 0.
1828 if (!allowSizeGrowth(Call)) {
1829 Threshold = 0;
1830 return;
1831 }
1832
1833 Function *Caller = Call.getCaller();
1834
1835 // return min(A, B) if B is valid.
1836 auto MinIfValid = [](int A, std::optional<int> B) {
1837 return B ? std::min(A, *B) : A;
1838 };
1839
1840 // return max(A, B) if B is valid.
1841 auto MaxIfValid = [](int A, std::optional<int> B) {
1842 return B ? std::max(A, *B) : A;
1843 };
1844
1845 // Various bonus percentages. These are multiplied by Threshold to get the
1846 // bonus values.
1847 // SingleBBBonus: This bonus is applied if the callee has a single reachable
1848 // basic block at the given callsite context. This is speculatively applied
1849 // and withdrawn if more than one basic block is seen.
1850 //
1851 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1852 // of the last call to a static function as inlining such functions is
1853 // guaranteed to reduce code size.
1854 //
1855 // These bonus percentages may be set to 0 based on properties of the caller
1856 // and the callsite.
1857 int SingleBBBonusPercent = 50;
1858 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1859 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1860
1861 // Lambda to set all the above bonus and bonus percentages to 0.
1862 auto DisallowAllBonuses = [&]() {
1863 SingleBBBonusPercent = 0;
1864 VectorBonusPercent = 0;
1865 LastCallToStaticBonus = 0;
1866 };
1867
1868 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1869 // and reduce the threshold if the caller has the necessary attribute.
1870 if (Caller->hasMinSize()) {
1871 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1872 // For minsize, we want to disable the single BB bonus and the vector
1873 // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1874 // a static function will, at the minimum, eliminate the parameter setup and
1875 // call/return instructions.
1876 SingleBBBonusPercent = 0;
1877 VectorBonusPercent = 0;
1878 } else if (Caller->hasOptSize())
1879 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1880
1881 // Adjust the threshold based on inlinehint attribute and profile based
1882 // hotness information if the caller does not have MinSize attribute.
1883 if (!Caller->hasMinSize()) {
1884 if (Callee.hasFnAttribute(Attribute::InlineHint))
1885 Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1886
1887 // FIXME: After switching to the new passmanager, simplify the logic below
1888 // by checking only the callsite hotness/coldness as we will reliably
1889 // have local profile information.
1890 //
1891 // Callsite hotness and coldness can be determined if sample profile is
1892 // used (which adds hotness metadata to calls) or if caller's
1893 // BlockFrequencyInfo is available.
1894 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1895 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1896 if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1897 LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1898 // FIXME: This should update the threshold only if it exceeds the
1899 // current threshold, but AutoFDO + ThinLTO currently relies on this
1900 // behavior to prevent inlining of hot callsites during ThinLTO
1901 // compile phase.
1902 Threshold = *HotCallSiteThreshold;
1903 } else if (isColdCallSite(Call, CallerBFI)) {
1904 LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1905 // Do not apply bonuses for a cold callsite including the
1906 // LastCallToStatic bonus. While this bonus might result in code size
1907 // reduction, it can cause the size of a non-cold caller to increase
1908 // preventing it from being inlined.
1909 DisallowAllBonuses();
1910 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1911 } else if (PSI) {
1912 // Use callee's global profile information only if we have no way of
1913 // determining this via callsite information.
1914 if (PSI->isFunctionEntryHot(&Callee)) {
1915 LLVM_DEBUG(dbgs() << "Hot callee.\n");
1916 // If callsite hotness can not be determined, we may still know
1917 // that the callee is hot and treat it as a weaker hint for threshold
1918 // increase.
1919 Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1920 } else if (PSI->isFunctionEntryCold(&Callee)) {
1921 LLVM_DEBUG(dbgs() << "Cold callee.\n");
1922 // Do not apply bonuses for a cold callee including the
1923 // LastCallToStatic bonus. While this bonus might result in code size
1924 // reduction, it can cause the size of a non-cold caller to increase
1925 // preventing it from being inlined.
1926 DisallowAllBonuses();
1927 Threshold = MinIfValid(Threshold, Params.ColdThreshold);
1928 }
1929 }
1930 }
1931
1932 Threshold += TTI.adjustInliningThreshold(&Call);
1933
1934 // Finally, take the target-specific inlining threshold multiplier into
1935 // account.
1936 Threshold *= TTI.getInliningThresholdMultiplier();
1937
1938 SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1939 VectorBonus = Threshold * VectorBonusPercent / 100;
1940
1941 // If there is only one call of the function, and it has internal linkage,
1942 // the cost of inlining it drops dramatically. It may seem odd to update
1943 // Cost in updateThreshold, but the bonus depends on the logic in this method.
1944 if (isSoleCallToLocalFunction(Call, F)) {
1945 Cost -= LastCallToStaticBonus;
1946 StaticBonusApplied = LastCallToStaticBonus;
1947 }
1948 }
1949
visitCmpInst(CmpInst & I)1950 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
1951 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1952 // First try to handle simplified comparisons.
1953 if (simplifyInstruction(I))
1954 return true;
1955
1956 if (I.getOpcode() == Instruction::FCmp)
1957 return false;
1958
1959 // Otherwise look for a comparison between constant offset pointers with
1960 // a common base.
1961 Value *LHSBase, *RHSBase;
1962 APInt LHSOffset, RHSOffset;
1963 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1964 if (LHSBase) {
1965 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1966 if (RHSBase && LHSBase == RHSBase) {
1967 // We have common bases, fold the icmp to a constant based on the
1968 // offsets.
1969 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1970 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1971 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1972 SimplifiedValues[&I] = C;
1973 ++NumConstantPtrCmps;
1974 return true;
1975 }
1976 }
1977 }
1978
1979 // If the comparison is an equality comparison with null, we can simplify it
1980 // if we know the value (argument) can't be null
1981 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1982 isKnownNonNullInCallee(I.getOperand(0))) {
1983 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1984 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1985 : ConstantInt::getFalse(I.getType());
1986 return true;
1987 }
1988 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
1989 }
1990
visitSub(BinaryOperator & I)1991 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1992 // Try to handle a special case: we can fold computing the difference of two
1993 // constant-related pointers.
1994 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1995 Value *LHSBase, *RHSBase;
1996 APInt LHSOffset, RHSOffset;
1997 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1998 if (LHSBase) {
1999 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
2000 if (RHSBase && LHSBase == RHSBase) {
2001 // We have common bases, fold the subtract to a constant based on the
2002 // offsets.
2003 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
2004 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
2005 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
2006 SimplifiedValues[&I] = C;
2007 ++NumConstantPtrDiffs;
2008 return true;
2009 }
2010 }
2011 }
2012
2013 // Otherwise, fall back to the generic logic for simplifying and handling
2014 // instructions.
2015 return Base::visitSub(I);
2016 }
2017
visitBinaryOperator(BinaryOperator & I)2018 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
2019 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2020 Constant *CLHS = dyn_cast<Constant>(LHS);
2021 if (!CLHS)
2022 CLHS = SimplifiedValues.lookup(LHS);
2023 Constant *CRHS = dyn_cast<Constant>(RHS);
2024 if (!CRHS)
2025 CRHS = SimplifiedValues.lookup(RHS);
2026
2027 Value *SimpleV = nullptr;
2028 if (auto FI = dyn_cast<FPMathOperator>(&I))
2029 SimpleV = simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
2030 FI->getFastMathFlags(), DL);
2031 else
2032 SimpleV =
2033 simplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
2034
2035 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2036 SimplifiedValues[&I] = C;
2037
2038 if (SimpleV)
2039 return true;
2040
2041 // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
2042 disableSROA(LHS);
2043 disableSROA(RHS);
2044
2045 // If the instruction is floating point, and the target says this operation
2046 // is expensive, this may eventually become a library call. Treat the cost
2047 // as such. Unless it's fneg which can be implemented with an xor.
2048 using namespace llvm::PatternMatch;
2049 if (I.getType()->isFloatingPointTy() &&
2050 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
2051 !match(&I, m_FNeg(m_Value())))
2052 onCallPenalty();
2053
2054 return false;
2055 }
2056
visitFNeg(UnaryOperator & I)2057 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
2058 Value *Op = I.getOperand(0);
2059 Constant *COp = dyn_cast<Constant>(Op);
2060 if (!COp)
2061 COp = SimplifiedValues.lookup(Op);
2062
2063 Value *SimpleV = simplifyFNegInst(
2064 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
2065
2066 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
2067 SimplifiedValues[&I] = C;
2068
2069 if (SimpleV)
2070 return true;
2071
2072 // Disable any SROA on arguments to arbitrary, unsimplified fneg.
2073 disableSROA(Op);
2074
2075 return false;
2076 }
2077
visitLoad(LoadInst & I)2078 bool CallAnalyzer::visitLoad(LoadInst &I) {
2079 if (handleSROA(I.getPointerOperand(), I.isSimple()))
2080 return true;
2081
2082 // If the data is already loaded from this address and hasn't been clobbered
2083 // by any stores or calls, this load is likely to be redundant and can be
2084 // eliminated.
2085 if (EnableLoadElimination &&
2086 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
2087 onLoadEliminationOpportunity();
2088 return true;
2089 }
2090
2091 onMemAccess();
2092 return false;
2093 }
2094
visitStore(StoreInst & I)2095 bool CallAnalyzer::visitStore(StoreInst &I) {
2096 if (handleSROA(I.getPointerOperand(), I.isSimple()))
2097 return true;
2098
2099 // The store can potentially clobber loads and prevent repeated loads from
2100 // being eliminated.
2101 // FIXME:
2102 // 1. We can probably keep an initial set of eliminatable loads substracted
2103 // from the cost even when we finally see a store. We just need to disable
2104 // *further* accumulation of elimination savings.
2105 // 2. We should probably at some point thread MemorySSA for the callee into
2106 // this and then use that to actually compute *really* precise savings.
2107 disableLoadElimination();
2108
2109 onMemAccess();
2110 return false;
2111 }
2112
visitExtractValue(ExtractValueInst & I)2113 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
2114 // Constant folding for extract value is trivial.
2115 if (simplifyInstruction(I))
2116 return true;
2117
2118 // SROA can't look through these, but they may be free.
2119 return Base::visitExtractValue(I);
2120 }
2121
visitInsertValue(InsertValueInst & I)2122 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
2123 // Constant folding for insert value is trivial.
2124 if (simplifyInstruction(I))
2125 return true;
2126
2127 // SROA can't look through these, but they may be free.
2128 return Base::visitInsertValue(I);
2129 }
2130
2131 /// Try to simplify a call site.
2132 ///
2133 /// Takes a concrete function and callsite and tries to actually simplify it by
2134 /// analyzing the arguments and call itself with instsimplify. Returns true if
2135 /// it has simplified the callsite to some other entity (a constant), making it
2136 /// free.
simplifyCallSite(Function * F,CallBase & Call)2137 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
2138 // FIXME: Using the instsimplify logic directly for this is inefficient
2139 // because we have to continually rebuild the argument list even when no
2140 // simplifications can be performed. Until that is fixed with remapping
2141 // inside of instsimplify, directly constant fold calls here.
2142 if (!canConstantFoldCallTo(&Call, F))
2143 return false;
2144
2145 // Try to re-map the arguments to constants.
2146 SmallVector<Constant *, 4> ConstantArgs;
2147 ConstantArgs.reserve(Call.arg_size());
2148 for (Value *I : Call.args()) {
2149 Constant *C = dyn_cast<Constant>(I);
2150 if (!C)
2151 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
2152 if (!C)
2153 return false; // This argument doesn't map to a constant.
2154
2155 ConstantArgs.push_back(C);
2156 }
2157 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
2158 SimplifiedValues[&Call] = C;
2159 return true;
2160 }
2161
2162 return false;
2163 }
2164
visitCallBase(CallBase & Call)2165 bool CallAnalyzer::visitCallBase(CallBase &Call) {
2166 if (!onCallBaseVisitStart(Call))
2167 return true;
2168
2169 if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
2170 !F.hasFnAttribute(Attribute::ReturnsTwice)) {
2171 // This aborts the entire analysis.
2172 ExposesReturnsTwice = true;
2173 return false;
2174 }
2175 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
2176 ContainsNoDuplicateCall = true;
2177
2178 Function *F = Call.getCalledFunction();
2179 bool IsIndirectCall = !F;
2180 if (IsIndirectCall) {
2181 // Check if this happens to be an indirect function call to a known function
2182 // in this inline context. If not, we've done all we can.
2183 Value *Callee = Call.getCalledOperand();
2184 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
2185 if (!F || F->getFunctionType() != Call.getFunctionType()) {
2186 onCallArgumentSetup(Call);
2187
2188 if (!Call.onlyReadsMemory())
2189 disableLoadElimination();
2190 return Base::visitCallBase(Call);
2191 }
2192 }
2193
2194 assert(F && "Expected a call to a known function");
2195
2196 // When we have a concrete function, first try to simplify it directly.
2197 if (simplifyCallSite(F, Call))
2198 return true;
2199
2200 // Next check if it is an intrinsic we know about.
2201 // FIXME: Lift this into part of the InstVisitor.
2202 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
2203 switch (II->getIntrinsicID()) {
2204 default:
2205 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
2206 disableLoadElimination();
2207 return Base::visitCallBase(Call);
2208
2209 case Intrinsic::load_relative:
2210 onLoadRelativeIntrinsic();
2211 return false;
2212
2213 case Intrinsic::memset:
2214 case Intrinsic::memcpy:
2215 case Intrinsic::memmove:
2216 disableLoadElimination();
2217 // SROA can usually chew through these intrinsics, but they aren't free.
2218 return false;
2219 case Intrinsic::icall_branch_funnel:
2220 case Intrinsic::localescape:
2221 HasUninlineableIntrinsic = true;
2222 return false;
2223 case Intrinsic::vastart:
2224 InitsVargArgs = true;
2225 return false;
2226 case Intrinsic::launder_invariant_group:
2227 case Intrinsic::strip_invariant_group:
2228 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0)))
2229 SROAArgValues[II] = SROAArg;
2230 return true;
2231 case Intrinsic::is_constant:
2232 return simplifyIntrinsicCallIsConstant(Call);
2233 case Intrinsic::objectsize:
2234 return simplifyIntrinsicCallObjectSize(Call);
2235 }
2236 }
2237
2238 if (F == Call.getFunction()) {
2239 // This flag will fully abort the analysis, so don't bother with anything
2240 // else.
2241 IsRecursiveCall = true;
2242 if (!AllowRecursiveCall)
2243 return false;
2244 }
2245
2246 if (TTI.isLoweredToCall(F)) {
2247 onLoweredCall(F, Call, IsIndirectCall);
2248 }
2249
2250 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
2251 disableLoadElimination();
2252 return Base::visitCallBase(Call);
2253 }
2254
visitReturnInst(ReturnInst & RI)2255 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
2256 // At least one return instruction will be free after inlining.
2257 bool Free = !HasReturn;
2258 HasReturn = true;
2259 return Free;
2260 }
2261
visitBranchInst(BranchInst & BI)2262 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
2263 // We model unconditional branches as essentially free -- they really
2264 // shouldn't exist at all, but handling them makes the behavior of the
2265 // inliner more regular and predictable. Interestingly, conditional branches
2266 // which will fold away are also free.
2267 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
2268 isa_and_nonnull<ConstantInt>(
2269 SimplifiedValues.lookup(BI.getCondition()));
2270 }
2271
visitSelectInst(SelectInst & SI)2272 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
2273 bool CheckSROA = SI.getType()->isPointerTy();
2274 Value *TrueVal = SI.getTrueValue();
2275 Value *FalseVal = SI.getFalseValue();
2276
2277 Constant *TrueC = dyn_cast<Constant>(TrueVal);
2278 if (!TrueC)
2279 TrueC = SimplifiedValues.lookup(TrueVal);
2280 Constant *FalseC = dyn_cast<Constant>(FalseVal);
2281 if (!FalseC)
2282 FalseC = SimplifiedValues.lookup(FalseVal);
2283 Constant *CondC =
2284 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
2285
2286 if (!CondC) {
2287 // Select C, X, X => X
2288 if (TrueC == FalseC && TrueC) {
2289 SimplifiedValues[&SI] = TrueC;
2290 return true;
2291 }
2292
2293 if (!CheckSROA)
2294 return Base::visitSelectInst(SI);
2295
2296 std::pair<Value *, APInt> TrueBaseAndOffset =
2297 ConstantOffsetPtrs.lookup(TrueVal);
2298 std::pair<Value *, APInt> FalseBaseAndOffset =
2299 ConstantOffsetPtrs.lookup(FalseVal);
2300 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
2301 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
2302
2303 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
2304 SROAArgValues[&SI] = SROAArg;
2305 return true;
2306 }
2307
2308 return Base::visitSelectInst(SI);
2309 }
2310
2311 // Select condition is a constant.
2312 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal
2313 : (CondC->isNullValue()) ? FalseVal
2314 : nullptr;
2315 if (!SelectedV) {
2316 // Condition is a vector constant that is not all 1s or all 0s. If all
2317 // operands are constants, ConstantExpr::getSelect() can handle the cases
2318 // such as select vectors.
2319 if (TrueC && FalseC) {
2320 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
2321 SimplifiedValues[&SI] = C;
2322 return true;
2323 }
2324 }
2325 return Base::visitSelectInst(SI);
2326 }
2327
2328 // Condition is either all 1s or all 0s. SI can be simplified.
2329 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
2330 SimplifiedValues[&SI] = SelectedC;
2331 return true;
2332 }
2333
2334 if (!CheckSROA)
2335 return true;
2336
2337 std::pair<Value *, APInt> BaseAndOffset =
2338 ConstantOffsetPtrs.lookup(SelectedV);
2339 if (BaseAndOffset.first) {
2340 ConstantOffsetPtrs[&SI] = BaseAndOffset;
2341
2342 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
2343 SROAArgValues[&SI] = SROAArg;
2344 }
2345
2346 return true;
2347 }
2348
visitSwitchInst(SwitchInst & SI)2349 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2350 // We model unconditional switches as free, see the comments on handling
2351 // branches.
2352 if (isa<ConstantInt>(SI.getCondition()))
2353 return true;
2354 if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2355 if (isa<ConstantInt>(V))
2356 return true;
2357
2358 // Assume the most general case where the switch is lowered into
2359 // either a jump table, bit test, or a balanced binary tree consisting of
2360 // case clusters without merging adjacent clusters with the same
2361 // destination. We do not consider the switches that are lowered with a mix
2362 // of jump table/bit test/binary search tree. The cost of the switch is
2363 // proportional to the size of the tree or the size of jump table range.
2364 //
2365 // NB: We convert large switches which are just used to initialize large phi
2366 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent
2367 // inlining those. It will prevent inlining in cases where the optimization
2368 // does not (yet) fire.
2369
2370 unsigned JumpTableSize = 0;
2371 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2372 unsigned NumCaseCluster =
2373 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2374
2375 onFinalizeSwitch(JumpTableSize, NumCaseCluster);
2376 return false;
2377 }
2378
visitIndirectBrInst(IndirectBrInst & IBI)2379 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2380 // We never want to inline functions that contain an indirectbr. This is
2381 // incorrect because all the blockaddress's (in static global initializers
2382 // for example) would be referring to the original function, and this
2383 // indirect jump would jump from the inlined copy of the function into the
2384 // original function which is extremely undefined behavior.
2385 // FIXME: This logic isn't really right; we can safely inline functions with
2386 // indirectbr's as long as no other function or global references the
2387 // blockaddress of a block within the current function.
2388 HasIndirectBr = true;
2389 return false;
2390 }
2391
visitResumeInst(ResumeInst & RI)2392 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2393 // FIXME: It's not clear that a single instruction is an accurate model for
2394 // the inline cost of a resume instruction.
2395 return false;
2396 }
2397
visitCleanupReturnInst(CleanupReturnInst & CRI)2398 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2399 // FIXME: It's not clear that a single instruction is an accurate model for
2400 // the inline cost of a cleanupret instruction.
2401 return false;
2402 }
2403
visitCatchReturnInst(CatchReturnInst & CRI)2404 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2405 // FIXME: It's not clear that a single instruction is an accurate model for
2406 // the inline cost of a catchret instruction.
2407 return false;
2408 }
2409
visitUnreachableInst(UnreachableInst & I)2410 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2411 // FIXME: It might be reasonably to discount the cost of instructions leading
2412 // to unreachable as they have the lowest possible impact on both runtime and
2413 // code size.
2414 return true; // No actual code is needed for unreachable.
2415 }
2416
visitInstruction(Instruction & I)2417 bool CallAnalyzer::visitInstruction(Instruction &I) {
2418 // Some instructions are free. All of the free intrinsics can also be
2419 // handled by SROA, etc.
2420 if (TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2421 TargetTransformInfo::TCC_Free)
2422 return true;
2423
2424 // We found something we don't understand or can't handle. Mark any SROA-able
2425 // values in the operand list as no longer viable.
2426 for (const Use &Op : I.operands())
2427 disableSROA(Op);
2428
2429 return false;
2430 }
2431
2432 /// Analyze a basic block for its contribution to the inline cost.
2433 ///
2434 /// This method walks the analyzer over every instruction in the given basic
2435 /// block and accounts for their cost during inlining at this callsite. It
2436 /// aborts early if the threshold has been exceeded or an impossible to inline
2437 /// construct has been detected. It returns false if inlining is no longer
2438 /// viable, and true if inlining remains viable.
2439 InlineResult
analyzeBlock(BasicBlock * BB,SmallPtrSetImpl<const Value * > & EphValues)2440 CallAnalyzer::analyzeBlock(BasicBlock *BB,
2441 SmallPtrSetImpl<const Value *> &EphValues) {
2442 for (Instruction &I : *BB) {
2443 // FIXME: Currently, the number of instructions in a function regardless of
2444 // our ability to simplify them during inline to constants or dead code,
2445 // are actually used by the vector bonus heuristic. As long as that's true,
2446 // we have to special case debug intrinsics here to prevent differences in
2447 // inlining due to debug symbols. Eventually, the number of unsimplified
2448 // instructions shouldn't factor into the cost computation, but until then,
2449 // hack around it here.
2450 // Similarly, skip pseudo-probes.
2451 if (I.isDebugOrPseudoInst())
2452 continue;
2453
2454 // Skip ephemeral values.
2455 if (EphValues.count(&I))
2456 continue;
2457
2458 ++NumInstructions;
2459 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2460 ++NumVectorInstructions;
2461
2462 // If the instruction simplified to a constant, there is no cost to this
2463 // instruction. Visit the instructions using our InstVisitor to account for
2464 // all of the per-instruction logic. The visit tree returns true if we
2465 // consumed the instruction in any way, and false if the instruction's base
2466 // cost should count against inlining.
2467 onInstructionAnalysisStart(&I);
2468
2469 if (Base::visit(&I))
2470 ++NumInstructionsSimplified;
2471 else
2472 onMissedSimplification();
2473
2474 onInstructionAnalysisFinish(&I);
2475 using namespace ore;
2476 // If the visit this instruction detected an uninlinable pattern, abort.
2477 InlineResult IR = InlineResult::success();
2478 if (IsRecursiveCall && !AllowRecursiveCall)
2479 IR = InlineResult::failure("recursive");
2480 else if (ExposesReturnsTwice)
2481 IR = InlineResult::failure("exposes returns twice");
2482 else if (HasDynamicAlloca)
2483 IR = InlineResult::failure("dynamic alloca");
2484 else if (HasIndirectBr)
2485 IR = InlineResult::failure("indirect branch");
2486 else if (HasUninlineableIntrinsic)
2487 IR = InlineResult::failure("uninlinable intrinsic");
2488 else if (InitsVargArgs)
2489 IR = InlineResult::failure("varargs");
2490 if (!IR.isSuccess()) {
2491 if (ORE)
2492 ORE->emit([&]() {
2493 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2494 &CandidateCall)
2495 << NV("Callee", &F) << " has uninlinable pattern ("
2496 << NV("InlineResult", IR.getFailureReason())
2497 << ") and cost is not fully computed";
2498 });
2499 return IR;
2500 }
2501
2502 // If the caller is a recursive function then we don't want to inline
2503 // functions which allocate a lot of stack space because it would increase
2504 // the caller stack usage dramatically.
2505 if (IsCallerRecursive && AllocatedSize > RecurStackSizeThreshold) {
2506 auto IR =
2507 InlineResult::failure("recursive and allocates too much stack space");
2508 if (ORE)
2509 ORE->emit([&]() {
2510 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2511 &CandidateCall)
2512 << NV("Callee", &F) << " is "
2513 << NV("InlineResult", IR.getFailureReason())
2514 << ". Cost is not fully computed";
2515 });
2516 return IR;
2517 }
2518
2519 if (shouldStop())
2520 return InlineResult::failure(
2521 "Call site analysis is not favorable to inlining.");
2522 }
2523
2524 return InlineResult::success();
2525 }
2526
2527 /// Compute the base pointer and cumulative constant offsets for V.
2528 ///
2529 /// This strips all constant offsets off of V, leaving it the base pointer, and
2530 /// accumulates the total constant offset applied in the returned constant. It
2531 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
2532 /// no constant offsets applied.
stripAndComputeInBoundsConstantOffsets(Value * & V)2533 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2534 if (!V->getType()->isPointerTy())
2535 return nullptr;
2536
2537 unsigned AS = V->getType()->getPointerAddressSpace();
2538 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2539 APInt Offset = APInt::getZero(IntPtrWidth);
2540
2541 // Even though we don't look through PHI nodes, we could be called on an
2542 // instruction in an unreachable block, which may be on a cycle.
2543 SmallPtrSet<Value *, 4> Visited;
2544 Visited.insert(V);
2545 do {
2546 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2547 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2548 return nullptr;
2549 V = GEP->getPointerOperand();
2550 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2551 V = cast<Operator>(V)->getOperand(0);
2552 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2553 if (GA->isInterposable())
2554 break;
2555 V = GA->getAliasee();
2556 } else {
2557 break;
2558 }
2559 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2560 } while (Visited.insert(V).second);
2561
2562 Type *IdxPtrTy = DL.getIndexType(V->getType());
2563 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2564 }
2565
2566 /// Find dead blocks due to deleted CFG edges during inlining.
2567 ///
2568 /// If we know the successor of the current block, \p CurrBB, has to be \p
2569 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2570 /// no live incoming CFG edges. If one block is found to be dead, we can
2571 /// continue growing the dead block list by checking the successors of the dead
2572 /// blocks to see if all their incoming edges are dead or not.
findDeadBlocks(BasicBlock * CurrBB,BasicBlock * NextBB)2573 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2574 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2575 // A CFG edge is dead if the predecessor is dead or the predecessor has a
2576 // known successor which is not the one under exam.
2577 return (DeadBlocks.count(Pred) ||
2578 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2579 };
2580
2581 auto IsNewlyDead = [&](BasicBlock *BB) {
2582 // If all the edges to a block are dead, the block is also dead.
2583 return (!DeadBlocks.count(BB) &&
2584 llvm::all_of(predecessors(BB),
2585 [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2586 };
2587
2588 for (BasicBlock *Succ : successors(CurrBB)) {
2589 if (Succ == NextBB || !IsNewlyDead(Succ))
2590 continue;
2591 SmallVector<BasicBlock *, 4> NewDead;
2592 NewDead.push_back(Succ);
2593 while (!NewDead.empty()) {
2594 BasicBlock *Dead = NewDead.pop_back_val();
2595 if (DeadBlocks.insert(Dead).second)
2596 // Continue growing the dead block lists.
2597 for (BasicBlock *S : successors(Dead))
2598 if (IsNewlyDead(S))
2599 NewDead.push_back(S);
2600 }
2601 }
2602 }
2603
2604 /// Analyze a call site for potential inlining.
2605 ///
2606 /// Returns true if inlining this call is viable, and false if it is not
2607 /// viable. It computes the cost and adjusts the threshold based on numerous
2608 /// factors and heuristics. If this method returns false but the computed cost
2609 /// is below the computed threshold, then inlining was forcibly disabled by
2610 /// some artifact of the routine.
analyze()2611 InlineResult CallAnalyzer::analyze() {
2612 ++NumCallsAnalyzed;
2613
2614 auto Result = onAnalysisStart();
2615 if (!Result.isSuccess())
2616 return Result;
2617
2618 if (F.empty())
2619 return InlineResult::success();
2620
2621 Function *Caller = CandidateCall.getFunction();
2622 // Check if the caller function is recursive itself.
2623 for (User *U : Caller->users()) {
2624 CallBase *Call = dyn_cast<CallBase>(U);
2625 if (Call && Call->getFunction() == Caller) {
2626 IsCallerRecursive = true;
2627 break;
2628 }
2629 }
2630
2631 // Populate our simplified values by mapping from function arguments to call
2632 // arguments with known important simplifications.
2633 auto CAI = CandidateCall.arg_begin();
2634 for (Argument &FAI : F.args()) {
2635 assert(CAI != CandidateCall.arg_end());
2636 if (Constant *C = dyn_cast<Constant>(CAI))
2637 SimplifiedValues[&FAI] = C;
2638
2639 Value *PtrArg = *CAI;
2640 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2641 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2642
2643 // We can SROA any pointer arguments derived from alloca instructions.
2644 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2645 SROAArgValues[&FAI] = SROAArg;
2646 onInitializeSROAArg(SROAArg);
2647 EnabledSROAAllocas.insert(SROAArg);
2648 }
2649 }
2650 ++CAI;
2651 }
2652 NumConstantArgs = SimplifiedValues.size();
2653 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2654 NumAllocaArgs = SROAArgValues.size();
2655
2656 // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2657 // the ephemeral values multiple times (and they're completely determined by
2658 // the callee, so this is purely duplicate work).
2659 SmallPtrSet<const Value *, 32> EphValues;
2660 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2661
2662 // The worklist of live basic blocks in the callee *after* inlining. We avoid
2663 // adding basic blocks of the callee which can be proven to be dead for this
2664 // particular call site in order to get more accurate cost estimates. This
2665 // requires a somewhat heavyweight iteration pattern: we need to walk the
2666 // basic blocks in a breadth-first order as we insert live successors. To
2667 // accomplish this, prioritizing for small iterations because we exit after
2668 // crossing our threshold, we use a small-size optimized SetVector.
2669 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
2670 SmallPtrSet<BasicBlock *, 16>>
2671 BBSetVector;
2672 BBSetVector BBWorklist;
2673 BBWorklist.insert(&F.getEntryBlock());
2674
2675 // Note that we *must not* cache the size, this loop grows the worklist.
2676 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2677 if (shouldStop())
2678 break;
2679
2680 BasicBlock *BB = BBWorklist[Idx];
2681 if (BB->empty())
2682 continue;
2683
2684 onBlockStart(BB);
2685
2686 // Disallow inlining a blockaddress with uses other than strictly callbr.
2687 // A blockaddress only has defined behavior for an indirect branch in the
2688 // same function, and we do not currently support inlining indirect
2689 // branches. But, the inliner may not see an indirect branch that ends up
2690 // being dead code at a particular call site. If the blockaddress escapes
2691 // the function, e.g., via a global variable, inlining may lead to an
2692 // invalid cross-function reference.
2693 // FIXME: pr/39560: continue relaxing this overt restriction.
2694 if (BB->hasAddressTaken())
2695 for (User *U : BlockAddress::get(&*BB)->users())
2696 if (!isa<CallBrInst>(*U))
2697 return InlineResult::failure("blockaddress used outside of callbr");
2698
2699 // Analyze the cost of this block. If we blow through the threshold, this
2700 // returns false, and we can bail on out.
2701 InlineResult IR = analyzeBlock(BB, EphValues);
2702 if (!IR.isSuccess())
2703 return IR;
2704
2705 Instruction *TI = BB->getTerminator();
2706
2707 // Add in the live successors by first checking whether we have terminator
2708 // that may be simplified based on the values simplified by this call.
2709 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2710 if (BI->isConditional()) {
2711 Value *Cond = BI->getCondition();
2712 if (ConstantInt *SimpleCond =
2713 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2714 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2715 BBWorklist.insert(NextBB);
2716 KnownSuccessors[BB] = NextBB;
2717 findDeadBlocks(BB, NextBB);
2718 continue;
2719 }
2720 }
2721 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2722 Value *Cond = SI->getCondition();
2723 if (ConstantInt *SimpleCond =
2724 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2725 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2726 BBWorklist.insert(NextBB);
2727 KnownSuccessors[BB] = NextBB;
2728 findDeadBlocks(BB, NextBB);
2729 continue;
2730 }
2731 }
2732
2733 // If we're unable to select a particular successor, just count all of
2734 // them.
2735 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2736 ++TIdx)
2737 BBWorklist.insert(TI->getSuccessor(TIdx));
2738
2739 onBlockAnalyzed(BB);
2740 }
2741
2742 // If this is a noduplicate call, we can still inline as long as
2743 // inlining this would cause the removal of the caller (so the instruction
2744 // is not actually duplicated, just moved).
2745 if (!isSoleCallToLocalFunction(CandidateCall, F) && ContainsNoDuplicateCall)
2746 return InlineResult::failure("noduplicate");
2747
2748 // If the callee's stack size exceeds the user-specified threshold,
2749 // do not let it be inlined.
2750 // The command line option overrides a limit set in the function attributes.
2751 size_t FinalStackSizeThreshold = StackSizeThreshold;
2752 if (!StackSizeThreshold.getNumOccurrences())
2753 if (std::optional<int> AttrMaxStackSize = getStringFnAttrAsInt(
2754 Caller, InlineConstants::MaxInlineStackSizeAttributeName))
2755 FinalStackSizeThreshold = *AttrMaxStackSize;
2756 if (AllocatedSize > FinalStackSizeThreshold)
2757 return InlineResult::failure("stacksize");
2758
2759 return finalizeAnalysis();
2760 }
2761
print(raw_ostream & OS)2762 void InlineCostCallAnalyzer::print(raw_ostream &OS) {
2763 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n"
2764 if (PrintInstructionComments)
2765 F.print(OS, &Writer);
2766 DEBUG_PRINT_STAT(NumConstantArgs);
2767 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2768 DEBUG_PRINT_STAT(NumAllocaArgs);
2769 DEBUG_PRINT_STAT(NumConstantPtrCmps);
2770 DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2771 DEBUG_PRINT_STAT(NumInstructionsSimplified);
2772 DEBUG_PRINT_STAT(NumInstructions);
2773 DEBUG_PRINT_STAT(SROACostSavings);
2774 DEBUG_PRINT_STAT(SROACostSavingsLost);
2775 DEBUG_PRINT_STAT(LoadEliminationCost);
2776 DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2777 DEBUG_PRINT_STAT(Cost);
2778 DEBUG_PRINT_STAT(Threshold);
2779 #undef DEBUG_PRINT_STAT
2780 }
2781
2782 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2783 /// Dump stats about this call's analysis.
dump()2784 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); }
2785 #endif
2786
2787 /// Test that there are no attribute conflicts between Caller and Callee
2788 /// that prevent inlining.
functionsHaveCompatibleAttributes(Function * Caller,Function * Callee,TargetTransformInfo & TTI,function_ref<const TargetLibraryInfo & (Function &)> & GetTLI)2789 static bool functionsHaveCompatibleAttributes(
2790 Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2791 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2792 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2793 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2794 // object, and always returns the same object (which is overwritten on each
2795 // GetTLI call). Therefore we copy the first result.
2796 auto CalleeTLI = GetTLI(*Callee);
2797 return (IgnoreTTIInlineCompatible ||
2798 TTI.areInlineCompatible(Caller, Callee)) &&
2799 GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2800 InlineCallerSupersetNoBuiltin) &&
2801 AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2802 }
2803
getCallsiteCost(const CallBase & Call,const DataLayout & DL)2804 int llvm::getCallsiteCost(const CallBase &Call, const DataLayout &DL) {
2805 int64_t Cost = 0;
2806 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2807 if (Call.isByValArgument(I)) {
2808 // We approximate the number of loads and stores needed by dividing the
2809 // size of the byval type by the target's pointer size.
2810 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2811 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I));
2812 unsigned AS = PTy->getAddressSpace();
2813 unsigned PointerSize = DL.getPointerSizeInBits(AS);
2814 // Ceiling division.
2815 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2816
2817 // If it generates more than 8 stores it is likely to be expanded as an
2818 // inline memcpy so we take that as an upper bound. Otherwise we assume
2819 // one load and one store per word copied.
2820 // FIXME: The maxStoresPerMemcpy setting from the target should be used
2821 // here instead of a magic number of 8, but it's not available via
2822 // DataLayout.
2823 NumStores = std::min(NumStores, 8U);
2824
2825 Cost += 2 * NumStores * InstrCost;
2826 } else {
2827 // For non-byval arguments subtract off one instruction per call
2828 // argument.
2829 Cost += InstrCost;
2830 }
2831 }
2832 // The call instruction also disappears after inlining.
2833 Cost += InstrCost;
2834 Cost += CallPenalty;
2835 return std::min<int64_t>(Cost, INT_MAX);
2836 }
2837
getInlineCost(CallBase & Call,const InlineParams & Params,TargetTransformInfo & CalleeTTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter * ORE)2838 InlineCost llvm::getInlineCost(
2839 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2840 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2841 function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2842 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2843 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2844 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2845 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2846 }
2847
getInliningCostEstimate(CallBase & Call,TargetTransformInfo & CalleeTTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter * ORE)2848 std::optional<int> llvm::getInliningCostEstimate(
2849 CallBase &Call, TargetTransformInfo &CalleeTTI,
2850 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2851 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2852 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2853 const InlineParams Params = {/* DefaultThreshold*/ 0,
2854 /*HintThreshold*/ {},
2855 /*ColdThreshold*/ {},
2856 /*OptSizeThreshold*/ {},
2857 /*OptMinSizeThreshold*/ {},
2858 /*HotCallSiteThreshold*/ {},
2859 /*LocallyHotCallSiteThreshold*/ {},
2860 /*ColdCallSiteThreshold*/ {},
2861 /*ComputeFullInlineCost*/ true,
2862 /*EnableDeferral*/ true};
2863
2864 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2865 GetAssumptionCache, GetBFI, PSI, ORE, true,
2866 /*IgnoreThreshold*/ true);
2867 auto R = CA.analyze();
2868 if (!R.isSuccess())
2869 return std::nullopt;
2870 return CA.getCost();
2871 }
2872
getInliningCostFeatures(CallBase & Call,TargetTransformInfo & CalleeTTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter * ORE)2873 std::optional<InlineCostFeatures> llvm::getInliningCostFeatures(
2874 CallBase &Call, TargetTransformInfo &CalleeTTI,
2875 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2876 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2877 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2878 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI,
2879 ORE, *Call.getCalledFunction(), Call);
2880 auto R = CFA.analyze();
2881 if (!R.isSuccess())
2882 return std::nullopt;
2883 return CFA.features();
2884 }
2885
getAttributeBasedInliningDecision(CallBase & Call,Function * Callee,TargetTransformInfo & CalleeTTI,function_ref<const TargetLibraryInfo & (Function &)> GetTLI)2886 std::optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2887 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2888 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2889
2890 // Cannot inline indirect calls.
2891 if (!Callee)
2892 return InlineResult::failure("indirect call");
2893
2894 // When callee coroutine function is inlined into caller coroutine function
2895 // before coro-split pass,
2896 // coro-early pass can not handle this quiet well.
2897 // So we won't inline the coroutine function if it have not been unsplited
2898 if (Callee->isPresplitCoroutine())
2899 return InlineResult::failure("unsplited coroutine call");
2900
2901 // Never inline calls with byval arguments that does not have the alloca
2902 // address space. Since byval arguments can be replaced with a copy to an
2903 // alloca, the inlined code would need to be adjusted to handle that the
2904 // argument is in the alloca address space (so it is a little bit complicated
2905 // to solve).
2906 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2907 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2908 if (Call.isByValArgument(I)) {
2909 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2910 if (PTy->getAddressSpace() != AllocaAS)
2911 return InlineResult::failure("byval arguments without alloca"
2912 " address space");
2913 }
2914
2915 // Calls to functions with always-inline attributes should be inlined
2916 // whenever possible.
2917 if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2918 if (Call.getAttributes().hasFnAttr(Attribute::NoInline))
2919 return InlineResult::failure("noinline call site attribute");
2920
2921 auto IsViable = isInlineViable(*Callee);
2922 if (IsViable.isSuccess())
2923 return InlineResult::success();
2924 return InlineResult::failure(IsViable.getFailureReason());
2925 }
2926
2927 // Never inline functions with conflicting attributes (unless callee has
2928 // always-inline attribute).
2929 Function *Caller = Call.getCaller();
2930 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
2931 return InlineResult::failure("conflicting attributes");
2932
2933 // Don't inline this call if the caller has the optnone attribute.
2934 if (Caller->hasOptNone())
2935 return InlineResult::failure("optnone attribute");
2936
2937 // Don't inline a function that treats null pointer as valid into a caller
2938 // that does not have this attribute.
2939 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2940 return InlineResult::failure("nullptr definitions incompatible");
2941
2942 // Don't inline functions which can be interposed at link-time.
2943 if (Callee->isInterposable())
2944 return InlineResult::failure("interposable");
2945
2946 // Don't inline functions marked noinline.
2947 if (Callee->hasFnAttribute(Attribute::NoInline))
2948 return InlineResult::failure("noinline function attribute");
2949
2950 // Don't inline call sites marked noinline.
2951 if (Call.isNoInline())
2952 return InlineResult::failure("noinline call site attribute");
2953
2954 return std::nullopt;
2955 }
2956
getInlineCost(CallBase & Call,Function * Callee,const InlineParams & Params,TargetTransformInfo & CalleeTTI,function_ref<AssumptionCache & (Function &)> GetAssumptionCache,function_ref<const TargetLibraryInfo & (Function &)> GetTLI,function_ref<BlockFrequencyInfo & (Function &)> GetBFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter * ORE)2957 InlineCost llvm::getInlineCost(
2958 CallBase &Call, Function *Callee, const InlineParams &Params,
2959 TargetTransformInfo &CalleeTTI,
2960 function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2961 function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2962 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2963 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2964
2965 auto UserDecision =
2966 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
2967
2968 if (UserDecision) {
2969 if (UserDecision->isSuccess())
2970 return llvm::InlineCost::getAlways("always inline attribute");
2971 return llvm::InlineCost::getNever(UserDecision->getFailureReason());
2972 }
2973
2974 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName()
2975 << "... (caller:" << Call.getCaller()->getName()
2976 << ")\n");
2977
2978 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
2979 GetAssumptionCache, GetBFI, PSI, ORE);
2980 InlineResult ShouldInline = CA.analyze();
2981
2982 LLVM_DEBUG(CA.dump());
2983
2984 // Always make cost benefit based decision explicit.
2985 // We use always/never here since threshold is not meaningful,
2986 // as it's not what drives cost-benefit analysis.
2987 if (CA.wasDecidedByCostBenefit()) {
2988 if (ShouldInline.isSuccess())
2989 return InlineCost::getAlways("benefit over cost",
2990 CA.getCostBenefitPair());
2991 else
2992 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair());
2993 }
2994
2995 if (CA.wasDecidedByCostThreshold())
2996 return InlineCost::get(CA.getCost(), CA.getThreshold(),
2997 CA.getStaticBonusApplied());
2998
2999 // No details on how the decision was made, simply return always or never.
3000 return ShouldInline.isSuccess()
3001 ? InlineCost::getAlways("empty function")
3002 : InlineCost::getNever(ShouldInline.getFailureReason());
3003 }
3004
isInlineViable(Function & F)3005 InlineResult llvm::isInlineViable(Function &F) {
3006 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
3007 for (BasicBlock &BB : F) {
3008 // Disallow inlining of functions which contain indirect branches.
3009 if (isa<IndirectBrInst>(BB.getTerminator()))
3010 return InlineResult::failure("contains indirect branches");
3011
3012 // Disallow inlining of blockaddresses which are used by non-callbr
3013 // instructions.
3014 if (BB.hasAddressTaken())
3015 for (User *U : BlockAddress::get(&BB)->users())
3016 if (!isa<CallBrInst>(*U))
3017 return InlineResult::failure("blockaddress used outside of callbr");
3018
3019 for (auto &II : BB) {
3020 CallBase *Call = dyn_cast<CallBase>(&II);
3021 if (!Call)
3022 continue;
3023
3024 // Disallow recursive calls.
3025 Function *Callee = Call->getCalledFunction();
3026 if (&F == Callee)
3027 return InlineResult::failure("recursive call");
3028
3029 // Disallow calls which expose returns-twice to a function not previously
3030 // attributed as such.
3031 if (!ReturnsTwice && isa<CallInst>(Call) &&
3032 cast<CallInst>(Call)->canReturnTwice())
3033 return InlineResult::failure("exposes returns-twice attribute");
3034
3035 if (Callee)
3036 switch (Callee->getIntrinsicID()) {
3037 default:
3038 break;
3039 case llvm::Intrinsic::icall_branch_funnel:
3040 // Disallow inlining of @llvm.icall.branch.funnel because current
3041 // backend can't separate call targets from call arguments.
3042 return InlineResult::failure(
3043 "disallowed inlining of @llvm.icall.branch.funnel");
3044 case llvm::Intrinsic::localescape:
3045 // Disallow inlining functions that call @llvm.localescape. Doing this
3046 // correctly would require major changes to the inliner.
3047 return InlineResult::failure(
3048 "disallowed inlining of @llvm.localescape");
3049 case llvm::Intrinsic::vastart:
3050 // Disallow inlining of functions that initialize VarArgs with
3051 // va_start.
3052 return InlineResult::failure(
3053 "contains VarArgs initialized with va_start");
3054 }
3055 }
3056 }
3057
3058 return InlineResult::success();
3059 }
3060
3061 // APIs to create InlineParams based on command line flags and/or other
3062 // parameters.
3063
getInlineParams(int Threshold)3064 InlineParams llvm::getInlineParams(int Threshold) {
3065 InlineParams Params;
3066
3067 // This field is the threshold to use for a callee by default. This is
3068 // derived from one or more of:
3069 // * optimization or size-optimization levels,
3070 // * a value passed to createFunctionInliningPass function, or
3071 // * the -inline-threshold flag.
3072 // If the -inline-threshold flag is explicitly specified, that is used
3073 // irrespective of anything else.
3074 if (InlineThreshold.getNumOccurrences() > 0)
3075 Params.DefaultThreshold = InlineThreshold;
3076 else
3077 Params.DefaultThreshold = Threshold;
3078
3079 // Set the HintThreshold knob from the -inlinehint-threshold.
3080 Params.HintThreshold = HintThreshold;
3081
3082 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
3083 Params.HotCallSiteThreshold = HotCallSiteThreshold;
3084
3085 // If the -locally-hot-callsite-threshold is explicitly specified, use it to
3086 // populate LocallyHotCallSiteThreshold. Later, we populate
3087 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
3088 // we know that optimization level is O3 (in the getInlineParams variant that
3089 // takes the opt and size levels).
3090 // FIXME: Remove this check (and make the assignment unconditional) after
3091 // addressing size regression issues at O2.
3092 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
3093 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3094
3095 // Set the ColdCallSiteThreshold knob from the
3096 // -inline-cold-callsite-threshold.
3097 Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
3098
3099 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
3100 // -inlinehint-threshold commandline option is not explicitly given. If that
3101 // option is present, then its value applies even for callees with size and
3102 // minsize attributes.
3103 // If the -inline-threshold is not specified, set the ColdThreshold from the
3104 // -inlinecold-threshold even if it is not explicitly passed. If
3105 // -inline-threshold is specified, then -inlinecold-threshold needs to be
3106 // explicitly specified to set the ColdThreshold knob
3107 if (InlineThreshold.getNumOccurrences() == 0) {
3108 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
3109 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
3110 Params.ColdThreshold = ColdThreshold;
3111 } else if (ColdThreshold.getNumOccurrences() > 0) {
3112 Params.ColdThreshold = ColdThreshold;
3113 }
3114 return Params;
3115 }
3116
getInlineParams()3117 InlineParams llvm::getInlineParams() {
3118 return getInlineParams(DefaultThreshold);
3119 }
3120
3121 // Compute the default threshold for inlining based on the opt level and the
3122 // size opt level.
computeThresholdFromOptLevels(unsigned OptLevel,unsigned SizeOptLevel)3123 static int computeThresholdFromOptLevels(unsigned OptLevel,
3124 unsigned SizeOptLevel) {
3125 if (OptLevel > 2)
3126 return InlineConstants::OptAggressiveThreshold;
3127 if (SizeOptLevel == 1) // -Os
3128 return InlineConstants::OptSizeThreshold;
3129 if (SizeOptLevel == 2) // -Oz
3130 return InlineConstants::OptMinSizeThreshold;
3131 return DefaultThreshold;
3132 }
3133
getInlineParams(unsigned OptLevel,unsigned SizeOptLevel)3134 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
3135 auto Params =
3136 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
3137 // At O3, use the value of -locally-hot-callsite-threshold option to populate
3138 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
3139 // when it is specified explicitly.
3140 if (OptLevel > 2)
3141 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
3142 return Params;
3143 }
3144
3145 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & FAM)3146 InlineCostAnnotationPrinterPass::run(Function &F,
3147 FunctionAnalysisManager &FAM) {
3148 PrintInstructionComments = true;
3149 std::function<AssumptionCache &(Function &)> GetAssumptionCache =
3150 [&](Function &F) -> AssumptionCache & {
3151 return FAM.getResult<AssumptionAnalysis>(F);
3152 };
3153 Module *M = F.getParent();
3154 ProfileSummaryInfo PSI(*M);
3155 DataLayout DL(M);
3156 TargetTransformInfo TTI(DL);
3157 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
3158 // In the current implementation, the type of InlineParams doesn't matter as
3159 // the pass serves only for verification of inliner's decisions.
3160 // We can add a flag which determines InlineParams for this run. Right now,
3161 // the default InlineParams are used.
3162 const InlineParams Params = llvm::getInlineParams();
3163 for (BasicBlock &BB : F) {
3164 for (Instruction &I : BB) {
3165 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
3166 Function *CalledFunction = CI->getCalledFunction();
3167 if (!CalledFunction || CalledFunction->isDeclaration())
3168 continue;
3169 OptimizationRemarkEmitter ORE(CalledFunction);
3170 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
3171 GetAssumptionCache, nullptr, &PSI, &ORE);
3172 ICCA.analyze();
3173 OS << " Analyzing call of " << CalledFunction->getName()
3174 << "... (caller:" << CI->getCaller()->getName() << ")\n";
3175 ICCA.print(OS);
3176 OS << "\n";
3177 }
3178 }
3179 }
3180 return PreservedAnalyses::all();
3181 }
3182