1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "instr-emitter"
37 
38 /// MinRCSize - Smallest register class we allow when constraining virtual
39 /// registers.  If satisfying all register class constraints would require
40 /// using a smaller register class, emit a COPY to a new virtual register
41 /// instead.
42 const unsigned MinRCSize = 4;
43 
44 /// CountResults - The results of target nodes have register or immediate
45 /// operands first, then an optional chain, and optional glue operands (which do
46 /// not go into the resulting MachineInstr).
CountResults(SDNode * Node)47 unsigned InstrEmitter::CountResults(SDNode *Node) {
48   unsigned N = Node->getNumValues();
49   while (N && Node->getValueType(N - 1) == MVT::Glue)
50     --N;
51   if (N && Node->getValueType(N - 1) == MVT::Other)
52     --N;    // Skip over chain result.
53   return N;
54 }
55 
56 /// countOperands - The inputs to target nodes have any actual inputs first,
57 /// followed by an optional chain operand, then an optional glue operand.
58 /// Compute the number of actual operands that will go into the resulting
59 /// MachineInstr.
60 ///
61 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
62 /// the chain and glue. These operands may be implicit on the machine instr.
countOperands(SDNode * Node,unsigned NumExpUses,unsigned & NumImpUses)63 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
64                               unsigned &NumImpUses) {
65   unsigned N = Node->getNumOperands();
66   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
67     --N;
68   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
69     --N; // Ignore chain if it exists.
70 
71   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
72   NumImpUses = N - NumExpUses;
73   for (unsigned I = N; I > NumExpUses; --I) {
74     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
75       continue;
76     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
77       if (Register::isPhysicalRegister(RN->getReg()))
78         continue;
79     NumImpUses = N - I;
80     break;
81   }
82 
83   return N;
84 }
85 
86 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
87 /// implicit physical register output.
88 void InstrEmitter::
EmitCopyFromReg(SDNode * Node,unsigned ResNo,bool IsClone,bool IsCloned,Register SrcReg,DenseMap<SDValue,Register> & VRBaseMap)89 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
90                 Register SrcReg, DenseMap<SDValue, Register> &VRBaseMap) {
91   Register VRBase;
92   if (SrcReg.isVirtual()) {
93     // Just use the input register directly!
94     SDValue Op(Node, ResNo);
95     if (IsClone)
96       VRBaseMap.erase(Op);
97     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
98     (void)isNew; // Silence compiler warning.
99     assert(isNew && "Node emitted out of order - early");
100     return;
101   }
102 
103   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
104   // the CopyToReg'd destination register instead of creating a new vreg.
105   bool MatchReg = true;
106   const TargetRegisterClass *UseRC = nullptr;
107   MVT VT = Node->getSimpleValueType(ResNo);
108 
109   // Stick to the preferred register classes for legal types.
110   if (TLI->isTypeLegal(VT))
111     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
112 
113   if (!IsClone && !IsCloned)
114     for (SDNode *User : Node->uses()) {
115       bool Match = true;
116       if (User->getOpcode() == ISD::CopyToReg &&
117           User->getOperand(2).getNode() == Node &&
118           User->getOperand(2).getResNo() == ResNo) {
119         Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120         if (DestReg.isVirtual()) {
121           VRBase = DestReg;
122           Match = false;
123         } else if (DestReg != SrcReg)
124           Match = false;
125       } else {
126         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
127           SDValue Op = User->getOperand(i);
128           if (Op.getNode() != Node || Op.getResNo() != ResNo)
129             continue;
130           MVT VT = Node->getSimpleValueType(Op.getResNo());
131           if (VT == MVT::Other || VT == MVT::Glue)
132             continue;
133           Match = false;
134           if (User->isMachineOpcode()) {
135             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
136             const TargetRegisterClass *RC = nullptr;
137             if (i+II.getNumDefs() < II.getNumOperands()) {
138               RC = TRI->getAllocatableClass(
139                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
140             }
141             if (!UseRC)
142               UseRC = RC;
143             else if (RC) {
144               const TargetRegisterClass *ComRC =
145                 TRI->getCommonSubClass(UseRC, RC);
146               // If multiple uses expect disjoint register classes, we emit
147               // copies in AddRegisterOperand.
148               if (ComRC)
149                 UseRC = ComRC;
150             }
151           }
152         }
153       }
154       MatchReg &= Match;
155       if (VRBase)
156         break;
157     }
158 
159   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
160   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
161 
162   // Figure out the register class to create for the destreg.
163   if (VRBase) {
164     DstRC = MRI->getRegClass(VRBase);
165   } else if (UseRC) {
166     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
167            "Incompatible phys register def and uses!");
168     DstRC = UseRC;
169   } else {
170     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
171   }
172 
173   // If all uses are reading from the src physical register and copying the
174   // register is either impossible or very expensive, then don't create a copy.
175   if (MatchReg && SrcRC->getCopyCost() < 0) {
176     VRBase = SrcReg;
177   } else {
178     // Create the reg, emit the copy.
179     VRBase = MRI->createVirtualRegister(DstRC);
180     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
181             VRBase).addReg(SrcReg);
182   }
183 
184   SDValue Op(Node, ResNo);
185   if (IsClone)
186     VRBaseMap.erase(Op);
187   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
188   (void)isNew; // Silence compiler warning.
189   assert(isNew && "Node emitted out of order - early");
190 }
191 
CreateVirtualRegisters(SDNode * Node,MachineInstrBuilder & MIB,const MCInstrDesc & II,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)192 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
193                                        MachineInstrBuilder &MIB,
194                                        const MCInstrDesc &II,
195                                        bool IsClone, bool IsCloned,
196                                        DenseMap<SDValue, Register> &VRBaseMap) {
197   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
198          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
199 
200   unsigned NumResults = CountResults(Node);
201   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
202                              II.isVariadic() && II.variadicOpsAreDefs();
203   unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
204   if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
205     NumVRegs = NumResults;
206   for (unsigned i = 0; i < NumVRegs; ++i) {
207     // If the specific node value is only used by a CopyToReg and the dest reg
208     // is a vreg in the same register class, use the CopyToReg'd destination
209     // register instead of creating a new vreg.
210     Register VRBase;
211     const TargetRegisterClass *RC =
212       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
213     // Always let the value type influence the used register class. The
214     // constraints on the instruction may be too lax to represent the value
215     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
216     // the 32-bit float super-class (X86::FR32).
217     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
218       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
219           Node->getSimpleValueType(i),
220           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
221       if (RC)
222         VTRC = TRI->getCommonSubClass(RC, VTRC);
223       if (VTRC)
224         RC = VTRC;
225     }
226 
227     if (II.OpInfo != nullptr && II.OpInfo[i].isOptionalDef()) {
228       // Optional def must be a physical register.
229       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
230       assert(VRBase.isPhysical());
231       MIB.addReg(VRBase, RegState::Define);
232     }
233 
234     if (!VRBase && !IsClone && !IsCloned)
235       for (SDNode *User : Node->uses()) {
236         if (User->getOpcode() == ISD::CopyToReg &&
237             User->getOperand(2).getNode() == Node &&
238             User->getOperand(2).getResNo() == i) {
239           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
240           if (Register::isVirtualRegister(Reg)) {
241             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
242             if (RegRC == RC) {
243               VRBase = Reg;
244               MIB.addReg(VRBase, RegState::Define);
245               break;
246             }
247           }
248         }
249       }
250 
251     // Create the result registers for this node and add the result regs to
252     // the machine instruction.
253     if (VRBase == 0) {
254       assert(RC && "Isn't a register operand!");
255       VRBase = MRI->createVirtualRegister(RC);
256       MIB.addReg(VRBase, RegState::Define);
257     }
258 
259     // If this def corresponds to a result of the SDNode insert the VRBase into
260     // the lookup map.
261     if (i < NumResults) {
262       SDValue Op(Node, i);
263       if (IsClone)
264         VRBaseMap.erase(Op);
265       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
266       (void)isNew; // Silence compiler warning.
267       assert(isNew && "Node emitted out of order - early");
268     }
269   }
270 }
271 
272 /// getVR - Return the virtual register corresponding to the specified result
273 /// of the specified node.
getVR(SDValue Op,DenseMap<SDValue,Register> & VRBaseMap)274 Register InstrEmitter::getVR(SDValue Op,
275                              DenseMap<SDValue, Register> &VRBaseMap) {
276   if (Op.isMachineOpcode() &&
277       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
278     // Add an IMPLICIT_DEF instruction before every use.
279     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
280     // does not include operand register class info.
281     const TargetRegisterClass *RC = TLI->getRegClassFor(
282         Op.getSimpleValueType(), Op.getNode()->isDivergent());
283     Register VReg = MRI->createVirtualRegister(RC);
284     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
285             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
286     return VReg;
287   }
288 
289   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
290   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
291   return I->second;
292 }
293 
294 
295 /// AddRegisterOperand - Add the specified register as an operand to the
296 /// specified machine instr. Insert register copies if the register is
297 /// not in the required register class.
298 void
AddRegisterOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)299 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
300                                  SDValue Op,
301                                  unsigned IIOpNum,
302                                  const MCInstrDesc *II,
303                                  DenseMap<SDValue, Register> &VRBaseMap,
304                                  bool IsDebug, bool IsClone, bool IsCloned) {
305   assert(Op.getValueType() != MVT::Other &&
306          Op.getValueType() != MVT::Glue &&
307          "Chain and glue operands should occur at end of operand list!");
308   // Get/emit the operand.
309   Register VReg = getVR(Op, VRBaseMap);
310 
311   const MCInstrDesc &MCID = MIB->getDesc();
312   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
313     MCID.OpInfo[IIOpNum].isOptionalDef();
314 
315   // If the instruction requires a register in a different class, create
316   // a new virtual register and copy the value into it, but first attempt to
317   // shrink VReg's register class within reason.  For example, if VReg == GR32
318   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
319   if (II) {
320     const TargetRegisterClass *OpRC = nullptr;
321     if (IIOpNum < II->getNumOperands())
322       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
323 
324     if (OpRC) {
325       const TargetRegisterClass *ConstrainedRC
326         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
327       if (!ConstrainedRC) {
328         OpRC = TRI->getAllocatableClass(OpRC);
329         assert(OpRC && "Constraints cannot be fulfilled for allocation");
330         Register NewVReg = MRI->createVirtualRegister(OpRC);
331         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
332                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
333         VReg = NewVReg;
334       } else {
335         assert(ConstrainedRC->isAllocatable() &&
336            "Constraining an allocatable VReg produced an unallocatable class?");
337       }
338     }
339   }
340 
341   // If this value has only one use, that use is a kill. This is a
342   // conservative approximation. InstrEmitter does trivial coalescing
343   // with CopyFromReg nodes, so don't emit kill flags for them.
344   // Avoid kill flags on Schedule cloned nodes, since there will be
345   // multiple uses.
346   // Tied operands are never killed, so we need to check that. And that
347   // means we need to determine the index of the operand.
348   bool isKill = Op.hasOneUse() &&
349                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
350                 !IsDebug &&
351                 !(IsClone || IsCloned);
352   if (isKill) {
353     unsigned Idx = MIB->getNumOperands();
354     while (Idx > 0 &&
355            MIB->getOperand(Idx-1).isReg() &&
356            MIB->getOperand(Idx-1).isImplicit())
357       --Idx;
358     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
359     if (isTied)
360       isKill = false;
361   }
362 
363   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
364              getDebugRegState(IsDebug));
365 }
366 
367 /// AddOperand - Add the specified operand to the specified machine instr.  II
368 /// specifies the instruction information for the node, and IIOpNum is the
369 /// operand number (in the II) that we are adding.
AddOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,Register> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)370 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
371                               SDValue Op,
372                               unsigned IIOpNum,
373                               const MCInstrDesc *II,
374                               DenseMap<SDValue, Register> &VRBaseMap,
375                               bool IsDebug, bool IsClone, bool IsCloned) {
376   if (Op.isMachineOpcode()) {
377     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
378                        IsDebug, IsClone, IsCloned);
379   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
380     MIB.addImm(C->getSExtValue());
381   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
382     MIB.addFPImm(F->getConstantFPValue());
383   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
384     Register VReg = R->getReg();
385     MVT OpVT = Op.getSimpleValueType();
386     const TargetRegisterClass *IIRC =
387         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
388            : nullptr;
389     const TargetRegisterClass *OpRC =
390         TLI->isTypeLegal(OpVT)
391             ? TLI->getRegClassFor(OpVT,
392                                   Op.getNode()->isDivergent() ||
393                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
394             : nullptr;
395 
396     if (OpRC && IIRC && OpRC != IIRC && Register::isVirtualRegister(VReg)) {
397       Register NewVReg = MRI->createVirtualRegister(IIRC);
398       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
399                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
400       VReg = NewVReg;
401     }
402     // Turn additional physreg operands into implicit uses on non-variadic
403     // instructions. This is used by call and return instructions passing
404     // arguments in registers.
405     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
406     MIB.addReg(VReg, getImplRegState(Imp));
407   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
408     MIB.addRegMask(RM->getRegMask());
409   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
410     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
411                          TGA->getTargetFlags());
412   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
413     MIB.addMBB(BBNode->getBasicBlock());
414   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
415     MIB.addFrameIndex(FI->getIndex());
416   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
417     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
418   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
419     int Offset = CP->getOffset();
420     Align Alignment = CP->getAlign();
421 
422     unsigned Idx;
423     MachineConstantPool *MCP = MF->getConstantPool();
424     if (CP->isMachineConstantPoolEntry())
425       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
426     else
427       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
428     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
429   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
430     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
431   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
432     MIB.addSym(SymNode->getMCSymbol());
433   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
434     MIB.addBlockAddress(BA->getBlockAddress(),
435                         BA->getOffset(),
436                         BA->getTargetFlags());
437   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
438     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
439   } else {
440     assert(Op.getValueType() != MVT::Other &&
441            Op.getValueType() != MVT::Glue &&
442            "Chain and glue operands should occur at end of operand list!");
443     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
444                        IsDebug, IsClone, IsCloned);
445   }
446 }
447 
ConstrainForSubReg(Register VReg,unsigned SubIdx,MVT VT,bool isDivergent,const DebugLoc & DL)448 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
449                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
450   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
451   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
452 
453   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
454   // within reason.
455   if (RC && RC != VRC)
456     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
457 
458   // VReg has been adjusted.  It can be used with SubIdx operands now.
459   if (RC)
460     return VReg;
461 
462   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
463   // register instead.
464   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
465   assert(RC && "No legal register class for VT supports that SubIdx");
466   Register NewReg = MRI->createVirtualRegister(RC);
467   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
468     .addReg(VReg);
469   return NewReg;
470 }
471 
472 /// EmitSubregNode - Generate machine code for subreg nodes.
473 ///
EmitSubregNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)474 void InstrEmitter::EmitSubregNode(SDNode *Node,
475                                   DenseMap<SDValue, Register> &VRBaseMap,
476                                   bool IsClone, bool IsCloned) {
477   Register VRBase;
478   unsigned Opc = Node->getMachineOpcode();
479 
480   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
481   // the CopyToReg'd destination register instead of creating a new vreg.
482   for (SDNode *User : Node->uses()) {
483     if (User->getOpcode() == ISD::CopyToReg &&
484         User->getOperand(2).getNode() == Node) {
485       Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
486       if (DestReg.isVirtual()) {
487         VRBase = DestReg;
488         break;
489       }
490     }
491   }
492 
493   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
494     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
495     // constraints on the %dst register, COPY can target all legal register
496     // classes.
497     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
498     const TargetRegisterClass *TRC =
499       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
500 
501     Register Reg;
502     MachineInstr *DefMI;
503     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
504     if (R && Register::isPhysicalRegister(R->getReg())) {
505       Reg = R->getReg();
506       DefMI = nullptr;
507     } else {
508       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
509       DefMI = MRI->getVRegDef(Reg);
510     }
511 
512     Register SrcReg, DstReg;
513     unsigned DefSubIdx;
514     if (DefMI &&
515         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
516         SubIdx == DefSubIdx &&
517         TRC == MRI->getRegClass(SrcReg)) {
518       // Optimize these:
519       // r1025 = s/zext r1024, 4
520       // r1026 = extract_subreg r1025, 4
521       // to a copy
522       // r1026 = copy r1024
523       VRBase = MRI->createVirtualRegister(TRC);
524       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
525               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
526       MRI->clearKillFlags(SrcReg);
527     } else {
528       // Reg may not support a SubIdx sub-register, and we may need to
529       // constrain its register class or issue a COPY to a compatible register
530       // class.
531       if (Reg.isVirtual())
532         Reg = ConstrainForSubReg(Reg, SubIdx,
533                                  Node->getOperand(0).getSimpleValueType(),
534                                  Node->isDivergent(), Node->getDebugLoc());
535       // Create the destreg if it is missing.
536       if (!VRBase)
537         VRBase = MRI->createVirtualRegister(TRC);
538 
539       // Create the extract_subreg machine instruction.
540       MachineInstrBuilder CopyMI =
541           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
542                   TII->get(TargetOpcode::COPY), VRBase);
543       if (Reg.isVirtual())
544         CopyMI.addReg(Reg, 0, SubIdx);
545       else
546         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
547     }
548   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
549              Opc == TargetOpcode::SUBREG_TO_REG) {
550     SDValue N0 = Node->getOperand(0);
551     SDValue N1 = Node->getOperand(1);
552     SDValue N2 = Node->getOperand(2);
553     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
554 
555     // Figure out the register class to create for the destreg.  It should be
556     // the largest legal register class supporting SubIdx sub-registers.
557     // RegisterCoalescer will constrain it further if it decides to eliminate
558     // the INSERT_SUBREG instruction.
559     //
560     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
561     //
562     // is lowered by TwoAddressInstructionPass to:
563     //
564     //   %dst = COPY %src
565     //   %dst:SubIdx = COPY %sub
566     //
567     // There is no constraint on the %src register class.
568     //
569     const TargetRegisterClass *SRC =
570         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
571     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
572     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
573 
574     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
575       VRBase = MRI->createVirtualRegister(SRC);
576 
577     // Create the insert_subreg or subreg_to_reg machine instruction.
578     MachineInstrBuilder MIB =
579       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
580 
581     // If creating a subreg_to_reg, then the first input operand
582     // is an implicit value immediate, otherwise it's a register
583     if (Opc == TargetOpcode::SUBREG_TO_REG) {
584       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
585       MIB.addImm(SD->getZExtValue());
586     } else
587       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
588                  IsClone, IsCloned);
589     // Add the subregister being inserted
590     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
591                IsClone, IsCloned);
592     MIB.addImm(SubIdx);
593     MBB->insert(InsertPos, MIB);
594   } else
595     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
596 
597   SDValue Op(Node, 0);
598   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
599   (void)isNew; // Silence compiler warning.
600   assert(isNew && "Node emitted out of order - early");
601 }
602 
603 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
604 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
605 /// register is constrained to be in a particular register class.
606 ///
607 void
EmitCopyToRegClassNode(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap)608 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
609                                      DenseMap<SDValue, Register> &VRBaseMap) {
610   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
611 
612   // Create the new VReg in the destination class and emit a copy.
613   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
614   const TargetRegisterClass *DstRC =
615     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
616   Register NewVReg = MRI->createVirtualRegister(DstRC);
617   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
618     NewVReg).addReg(VReg);
619 
620   SDValue Op(Node, 0);
621   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
622   (void)isNew; // Silence compiler warning.
623   assert(isNew && "Node emitted out of order - early");
624 }
625 
626 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
627 ///
EmitRegSequence(SDNode * Node,DenseMap<SDValue,Register> & VRBaseMap,bool IsClone,bool IsCloned)628 void InstrEmitter::EmitRegSequence(SDNode *Node,
629                                   DenseMap<SDValue, Register> &VRBaseMap,
630                                   bool IsClone, bool IsCloned) {
631   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
632   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
633   Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
634   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
635   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
636   unsigned NumOps = Node->getNumOperands();
637   // If the input pattern has a chain, then the root of the corresponding
638   // output pattern will get a chain as well. This can happen to be a
639   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
640   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
641     --NumOps; // Ignore chain if it exists.
642 
643   assert((NumOps & 1) == 1 &&
644          "REG_SEQUENCE must have an odd number of operands!");
645   for (unsigned i = 1; i != NumOps; ++i) {
646     SDValue Op = Node->getOperand(i);
647     if ((i & 1) == 0) {
648       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
649       // Skip physical registers as they don't have a vreg to get and we'll
650       // insert copies for them in TwoAddressInstructionPass anyway.
651       if (!R || !Register::isPhysicalRegister(R->getReg())) {
652         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
653         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
654         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
655         const TargetRegisterClass *SRC =
656         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
657         if (SRC && SRC != RC) {
658           MRI->setRegClass(NewVReg, SRC);
659           RC = SRC;
660         }
661       }
662     }
663     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
664                IsClone, IsCloned);
665   }
666 
667   MBB->insert(InsertPos, MIB);
668   SDValue Op(Node, 0);
669   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
670   (void)isNew; // Silence compiler warning.
671   assert(isNew && "Node emitted out of order - early");
672 }
673 
674 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
675 ///
676 MachineInstr *
EmitDbgValue(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)677 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
678                            DenseMap<SDValue, Register> &VRBaseMap) {
679   MDNode *Var = SD->getVariable();
680   MDNode *Expr = SD->getExpression();
681   DebugLoc DL = SD->getDebugLoc();
682   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
683          "Expected inlined-at fields to agree");
684 
685   SD->setIsEmitted();
686 
687   ArrayRef<SDDbgOperand> LocationOps = SD->getLocationOps();
688   assert(!LocationOps.empty() && "dbg_value with no location operands?");
689 
690   // Emit variadic dbg_value nodes as DBG_VALUE_LIST.
691   if (SD->isVariadic()) {
692     // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
693     const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
694     // Build the DBG_VALUE_LIST instruction base.
695     auto MIB = BuildMI(*MF, DL, DbgValDesc);
696     MIB.addMetadata(Var);
697     MIB.addMetadata(Expr);
698     if (SD->isInvalidated()) {
699       // At least one node is no longer computed so we are unable to emit the
700       // location. Simply mark all of the operands as undef.
701       for (size_t i = 0; i < LocationOps.size(); ++i)
702         MIB.addReg(0U, RegState::Debug);
703     } else {
704       AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
705     }
706     return &*MIB;
707   }
708 
709   if (SD->isInvalidated()) {
710     // An invalidated SDNode must generate an undef DBG_VALUE: although the
711     // original value is no longer computed, earlier DBG_VALUEs live ranges
712     // must not leak into later code.
713     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
714     MIB.addReg(0U);
715     MIB.addReg(0U, RegState::Debug);
716     MIB.addMetadata(Var);
717     MIB.addMetadata(Expr);
718     return &*MIB;
719   }
720 
721   // Attempt to produce a DBG_INSTR_REF if we've been asked to.
722   // We currently exclude the possibility of instruction references for
723   // variadic nodes; if at some point we enable them, this should be moved
724   // above the variadic block.
725   if (EmitDebugInstrRefs)
726     if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
727       return InstrRef;
728 
729   // Emit non-variadic dbg_value nodes as DBG_VALUE.
730   // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
731   const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE);
732   // Build the DBG_VALUE instruction base.
733   auto MIB = BuildMI(*MF, DL, DbgValDesc);
734   // Add the single location componenet 'loc'.
735   assert(LocationOps.size() == 1 &&
736          "Non variadic dbg_value should have only one location op");
737   AddDbgValueLocationOps(MIB, DbgValDesc, LocationOps, VRBaseMap);
738   // Add 'isIndirect'.
739   if (SD->isIndirect())
740     MIB.addImm(0U);
741   else
742     MIB.addReg(0U, RegState::Debug);
743   MIB.addMetadata(Var);
744   MIB.addMetadata(Expr);
745   return &*MIB;
746 }
747 
AddDbgValueLocationOps(MachineInstrBuilder & MIB,const MCInstrDesc & DbgValDesc,ArrayRef<SDDbgOperand> LocationOps,DenseMap<SDValue,Register> & VRBaseMap)748 void InstrEmitter::AddDbgValueLocationOps(
749     MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
750     ArrayRef<SDDbgOperand> LocationOps,
751     DenseMap<SDValue, Register> &VRBaseMap) {
752   for (const SDDbgOperand &Op : LocationOps) {
753     switch (Op.getKind()) {
754     case SDDbgOperand::FRAMEIX:
755       MIB.addFrameIndex(Op.getFrameIx());
756       break;
757     case SDDbgOperand::VREG:
758       MIB.addReg(Op.getVReg(), RegState::Debug);
759       break;
760     case SDDbgOperand::SDNODE: {
761       SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
762       // It's possible we replaced this SDNode with other(s) and therefore
763       // didn't generate code for it. It's better to catch these cases where
764       // they happen and transfer the debug info, but trying to guarantee that
765       // in all cases would be very fragile; this is a safeguard for any
766       // that were missed.
767       if (VRBaseMap.count(V) == 0)
768         MIB.addReg(0U); // undef
769       else
770         AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
771                    /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
772     } break;
773     case SDDbgOperand::CONST: {
774       const Value *V = Op.getConst();
775       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
776         if (CI->getBitWidth() > 64)
777           MIB.addCImm(CI);
778         else
779           MIB.addImm(CI->getSExtValue());
780       } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
781         MIB.addFPImm(CF);
782       } else if (isa<ConstantPointerNull>(V)) {
783         // Note: This assumes that all nullptr constants are zero-valued.
784         MIB.addImm(0);
785       } else {
786         // Could be an Undef. In any case insert an Undef so we can see what we
787         // dropped.
788         MIB.addReg(0U);
789       }
790     } break;
791     }
792   }
793 }
794 
795 MachineInstr *
EmitDbgInstrRef(SDDbgValue * SD,DenseMap<SDValue,Register> & VRBaseMap)796 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
797                               DenseMap<SDValue, Register> &VRBaseMap) {
798   // No support for instruction references for variadic values yet.
799   if (SD->isVariadic())
800     return nullptr;
801   SDDbgOperand DbgOperand = SD->getLocationOps()[0];
802   // Instruction referencing is still in a prototype state: for now we're only
803   // going to support SDNodes within a block. Copies are not supported, they
804   // don't actually define a value.
805   if (DbgOperand.getKind() != SDDbgOperand::SDNODE)
806     return nullptr;
807 
808   SDNode *Node = DbgOperand.getSDNode();
809   SDValue Op = SDValue(Node, DbgOperand.getResNo());
810   DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
811   if (I==VRBaseMap.end())
812     return nullptr; // undef value: let EmitDbgValue produce a DBG_VALUE $noreg.
813 
814   MDNode *Var = SD->getVariable();
815   MDNode *Expr = SD->getExpression();
816   DebugLoc DL = SD->getDebugLoc();
817 
818   // Try to pick out a defining instruction at this point.
819   unsigned VReg = getVR(Op, VRBaseMap);
820   MachineInstr *ResultInstr = nullptr;
821 
822   // No definition corresponds to scenarios where a vreg is live-in to a block,
823   // and doesn't have a defining instruction (yet). This can be patched up
824   // later; at this early stage of implementation, fall back to using DBG_VALUE.
825   if (!MRI->hasOneDef(VReg))
826     return nullptr;
827 
828   MachineInstr &DefMI = *MRI->def_instr_begin(VReg);
829   // Some target specific opcodes can become copies. As stated above, we're
830   // ignoring those for now.
831   if (DefMI.isCopy() || DefMI.getOpcode() == TargetOpcode::SUBREG_TO_REG)
832     return nullptr;
833 
834   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
835   auto MIB = BuildMI(*MF, DL, RefII);
836 
837   // Find the operand which defines the specified VReg.
838   unsigned OperandIdx = 0;
839   for (const auto &MO : DefMI.operands()) {
840     if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
841       break;
842     ++OperandIdx;
843   }
844   assert(OperandIdx < DefMI.getNumOperands());
845 
846   // Make the DBG_INSTR_REF refer to that instruction, and that operand.
847   unsigned InstrNum = DefMI.getDebugInstrNum();
848   MIB.addImm(InstrNum);
849   MIB.addImm(OperandIdx);
850   MIB.addMetadata(Var);
851   MIB.addMetadata(Expr);
852   ResultInstr = &*MIB;
853   return ResultInstr;
854 }
855 
856 MachineInstr *
EmitDbgLabel(SDDbgLabel * SD)857 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
858   MDNode *Label = SD->getLabel();
859   DebugLoc DL = SD->getDebugLoc();
860   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
861          "Expected inlined-at fields to agree");
862 
863   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
864   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
865   MIB.addMetadata(Label);
866 
867   return &*MIB;
868 }
869 
870 /// EmitMachineNode - Generate machine code for a target-specific node and
871 /// needed dependencies.
872 ///
873 void InstrEmitter::
EmitMachineNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)874 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
875                 DenseMap<SDValue, Register> &VRBaseMap) {
876   unsigned Opc = Node->getMachineOpcode();
877 
878   // Handle subreg insert/extract specially
879   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
880       Opc == TargetOpcode::INSERT_SUBREG ||
881       Opc == TargetOpcode::SUBREG_TO_REG) {
882     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
883     return;
884   }
885 
886   // Handle COPY_TO_REGCLASS specially.
887   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
888     EmitCopyToRegClassNode(Node, VRBaseMap);
889     return;
890   }
891 
892   // Handle REG_SEQUENCE specially.
893   if (Opc == TargetOpcode::REG_SEQUENCE) {
894     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
895     return;
896   }
897 
898   if (Opc == TargetOpcode::IMPLICIT_DEF)
899     // We want a unique VR for each IMPLICIT_DEF use.
900     return;
901 
902   const MCInstrDesc &II = TII->get(Opc);
903   unsigned NumResults = CountResults(Node);
904   unsigned NumDefs = II.getNumDefs();
905   const MCPhysReg *ScratchRegs = nullptr;
906 
907   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
908   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
909     // Stackmaps do not have arguments and do not preserve their calling
910     // convention. However, to simplify runtime support, they clobber the same
911     // scratch registers as AnyRegCC.
912     unsigned CC = CallingConv::AnyReg;
913     if (Opc == TargetOpcode::PATCHPOINT) {
914       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
915       NumDefs = NumResults;
916     }
917     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
918   } else if (Opc == TargetOpcode::STATEPOINT) {
919     NumDefs = NumResults;
920   }
921 
922   unsigned NumImpUses = 0;
923   unsigned NodeOperands =
924     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
925   bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
926                              II.isVariadic() && II.variadicOpsAreDefs();
927   bool HasPhysRegOuts = NumResults > NumDefs &&
928                         II.getImplicitDefs() != nullptr && !HasVRegVariadicDefs;
929 #ifndef NDEBUG
930   unsigned NumMIOperands = NodeOperands + NumResults;
931   if (II.isVariadic())
932     assert(NumMIOperands >= II.getNumOperands() &&
933            "Too few operands for a variadic node!");
934   else
935     assert(NumMIOperands >= II.getNumOperands() &&
936            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
937                             NumImpUses &&
938            "#operands for dag node doesn't match .td file!");
939 #endif
940 
941   // Create the new machine instruction.
942   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
943 
944   // Add result register values for things that are defined by this
945   // instruction.
946   if (NumResults) {
947     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
948 
949     // Transfer any IR flags from the SDNode to the MachineInstr
950     MachineInstr *MI = MIB.getInstr();
951     const SDNodeFlags Flags = Node->getFlags();
952     if (Flags.hasNoSignedZeros())
953       MI->setFlag(MachineInstr::MIFlag::FmNsz);
954 
955     if (Flags.hasAllowReciprocal())
956       MI->setFlag(MachineInstr::MIFlag::FmArcp);
957 
958     if (Flags.hasNoNaNs())
959       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
960 
961     if (Flags.hasNoInfs())
962       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
963 
964     if (Flags.hasAllowContract())
965       MI->setFlag(MachineInstr::MIFlag::FmContract);
966 
967     if (Flags.hasApproximateFuncs())
968       MI->setFlag(MachineInstr::MIFlag::FmAfn);
969 
970     if (Flags.hasAllowReassociation())
971       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
972 
973     if (Flags.hasNoUnsignedWrap())
974       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
975 
976     if (Flags.hasNoSignedWrap())
977       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
978 
979     if (Flags.hasExact())
980       MI->setFlag(MachineInstr::MIFlag::IsExact);
981 
982     if (Flags.hasNoFPExcept())
983       MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
984   }
985 
986   // Emit all of the actual operands of this instruction, adding them to the
987   // instruction as appropriate.
988   bool HasOptPRefs = NumDefs > NumResults;
989   assert((!HasOptPRefs || !HasPhysRegOuts) &&
990          "Unable to cope with optional defs and phys regs defs!");
991   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
992   for (unsigned i = NumSkip; i != NodeOperands; ++i)
993     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
994                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
995 
996   // Add scratch registers as implicit def and early clobber
997   if (ScratchRegs)
998     for (unsigned i = 0; ScratchRegs[i]; ++i)
999       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1000                                  RegState::EarlyClobber);
1001 
1002   // Set the memory reference descriptions of this instruction now that it is
1003   // part of the function.
1004   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1005 
1006   // Insert the instruction into position in the block. This needs to
1007   // happen before any custom inserter hook is called so that the
1008   // hook knows where in the block to insert the replacement code.
1009   MBB->insert(InsertPos, MIB);
1010 
1011   // The MachineInstr may also define physregs instead of virtregs.  These
1012   // physreg values can reach other instructions in different ways:
1013   //
1014   // 1. When there is a use of a Node value beyond the explicitly defined
1015   //    virtual registers, we emit a CopyFromReg for one of the implicitly
1016   //    defined physregs.  This only happens when HasPhysRegOuts is true.
1017   //
1018   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1019   //
1020   // 3. A glued instruction may implicitly use a physreg.
1021   //
1022   // 4. A glued instruction may use a RegisterSDNode operand.
1023   //
1024   // Collect all the used physreg defs, and make sure that any unused physreg
1025   // defs are marked as dead.
1026   SmallVector<Register, 8> UsedRegs;
1027 
1028   // Additional results must be physical register defs.
1029   if (HasPhysRegOuts) {
1030     for (unsigned i = NumDefs; i < NumResults; ++i) {
1031       Register Reg = II.getImplicitDefs()[i - NumDefs];
1032       if (!Node->hasAnyUseOfValue(i))
1033         continue;
1034       // This implicitly defined physreg has a use.
1035       UsedRegs.push_back(Reg);
1036       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
1037     }
1038   }
1039 
1040   // Scan the glue chain for any used physregs.
1041   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1042     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1043       if (F->getOpcode() == ISD::CopyFromReg) {
1044         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1045         continue;
1046       } else if (F->getOpcode() == ISD::CopyToReg) {
1047         // Skip CopyToReg nodes that are internal to the glue chain.
1048         continue;
1049       }
1050       // Collect declared implicit uses.
1051       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1052       UsedRegs.append(MCID.getImplicitUses(),
1053                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
1054       // In addition to declared implicit uses, we must also check for
1055       // direct RegisterSDNode operands.
1056       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1057         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1058           Register Reg = R->getReg();
1059           if (Reg.isPhysical())
1060             UsedRegs.push_back(Reg);
1061         }
1062     }
1063   }
1064 
1065   // Finally mark unused registers as dead.
1066   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
1067     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1068 
1069   // STATEPOINT is too 'dynamic' to have meaningful machine description.
1070   // We have to manually tie operands.
1071   if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1072     assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1073     MachineInstr *MI = MIB;
1074     unsigned Def = 0;
1075     int First = StatepointOpers(MI).getFirstGCPtrIdx();
1076     assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1077     unsigned Use = (unsigned)First;
1078     while (Def < NumDefs) {
1079       if (MI->getOperand(Use).isReg())
1080         MI->tieOperands(Def++, Use);
1081       Use = StackMaps::getNextMetaArgIdx(MI, Use);
1082     }
1083   }
1084 
1085   // Run post-isel target hook to adjust this instruction if needed.
1086   if (II.hasPostISelHook())
1087     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1088 }
1089 
1090 /// EmitSpecialNode - Generate machine code for a target-independent node and
1091 /// needed dependencies.
1092 void InstrEmitter::
EmitSpecialNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,Register> & VRBaseMap)1093 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1094                 DenseMap<SDValue, Register> &VRBaseMap) {
1095   switch (Node->getOpcode()) {
1096   default:
1097 #ifndef NDEBUG
1098     Node->dump();
1099 #endif
1100     llvm_unreachable("This target-independent node should have been selected!");
1101   case ISD::EntryToken:
1102     llvm_unreachable("EntryToken should have been excluded from the schedule!");
1103   case ISD::MERGE_VALUES:
1104   case ISD::TokenFactor: // fall thru
1105     break;
1106   case ISD::CopyToReg: {
1107     Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1108     SDValue SrcVal = Node->getOperand(2);
1109     if (Register::isVirtualRegister(DestReg) && SrcVal.isMachineOpcode() &&
1110         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1111       // Instead building a COPY to that vreg destination, build an
1112       // IMPLICIT_DEF instruction instead.
1113       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1114               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1115       break;
1116     }
1117     Register SrcReg;
1118     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1119       SrcReg = R->getReg();
1120     else
1121       SrcReg = getVR(SrcVal, VRBaseMap);
1122 
1123     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1124       break;
1125 
1126     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1127             DestReg).addReg(SrcReg);
1128     break;
1129   }
1130   case ISD::CopyFromReg: {
1131     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1132     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1133     break;
1134   }
1135   case ISD::EH_LABEL:
1136   case ISD::ANNOTATION_LABEL: {
1137     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1138                        ? TargetOpcode::EH_LABEL
1139                        : TargetOpcode::ANNOTATION_LABEL;
1140     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1141     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1142             TII->get(Opc)).addSym(S);
1143     break;
1144   }
1145 
1146   case ISD::LIFETIME_START:
1147   case ISD::LIFETIME_END: {
1148     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1149     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1150 
1151     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1152     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1153     .addFrameIndex(FI->getIndex());
1154     break;
1155   }
1156 
1157   case ISD::PSEUDO_PROBE: {
1158     unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1159     auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1160     auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1161     auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1162 
1163     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1164         .addImm(Guid)
1165         .addImm(Index)
1166         .addImm((uint8_t)PseudoProbeType::Block)
1167         .addImm(Attr);
1168     break;
1169   }
1170 
1171   case ISD::INLINEASM:
1172   case ISD::INLINEASM_BR: {
1173     unsigned NumOps = Node->getNumOperands();
1174     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1175       --NumOps;  // Ignore the glue operand.
1176 
1177     // Create the inline asm machine instruction.
1178     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1179                           ? TargetOpcode::INLINEASM_BR
1180                           : TargetOpcode::INLINEASM;
1181     MachineInstrBuilder MIB =
1182         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1183 
1184     // Add the asm string as an external symbol operand.
1185     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1186     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1187     MIB.addExternalSymbol(AsmStr);
1188 
1189     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1190     // bits.
1191     int64_t ExtraInfo =
1192       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1193                           getZExtValue();
1194     MIB.addImm(ExtraInfo);
1195 
1196     // Remember to operand index of the group flags.
1197     SmallVector<unsigned, 8> GroupIdx;
1198 
1199     // Remember registers that are part of early-clobber defs.
1200     SmallVector<unsigned, 8> ECRegs;
1201 
1202     // Add all of the operand registers to the instruction.
1203     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1204       unsigned Flags =
1205         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1206       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1207 
1208       GroupIdx.push_back(MIB->getNumOperands());
1209       MIB.addImm(Flags);
1210       ++i;  // Skip the ID value.
1211 
1212       switch (InlineAsm::getKind(Flags)) {
1213       default: llvm_unreachable("Bad flags!");
1214         case InlineAsm::Kind_RegDef:
1215         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1216           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1217           // FIXME: Add dead flags for physical and virtual registers defined.
1218           // For now, mark physical register defs as implicit to help fast
1219           // regalloc. This makes inline asm look a lot like calls.
1220           MIB.addReg(Reg,
1221                      RegState::Define |
1222                          getImplRegState(Register::isPhysicalRegister(Reg)));
1223         }
1224         break;
1225       case InlineAsm::Kind_RegDefEarlyClobber:
1226       case InlineAsm::Kind_Clobber:
1227         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1228           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1229           MIB.addReg(Reg,
1230                      RegState::Define | RegState::EarlyClobber |
1231                          getImplRegState(Register::isPhysicalRegister(Reg)));
1232           ECRegs.push_back(Reg);
1233         }
1234         break;
1235       case InlineAsm::Kind_RegUse:  // Use of register.
1236       case InlineAsm::Kind_Imm:  // Immediate.
1237       case InlineAsm::Kind_Mem:  // Addressing mode.
1238         // The addressing mode has been selected, just add all of the
1239         // operands to the machine instruction.
1240         for (unsigned j = 0; j != NumVals; ++j, ++i)
1241           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1242                      /*IsDebug=*/false, IsClone, IsCloned);
1243 
1244         // Manually set isTied bits.
1245         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1246           unsigned DefGroup = 0;
1247           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1248             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1249             unsigned UseIdx = GroupIdx.back() + 1;
1250             for (unsigned j = 0; j != NumVals; ++j)
1251               MIB->tieOperands(DefIdx + j, UseIdx + j);
1252           }
1253         }
1254         break;
1255       }
1256     }
1257 
1258     // GCC inline assembly allows input operands to also be early-clobber
1259     // output operands (so long as the operand is written only after it's
1260     // used), but this does not match the semantics of our early-clobber flag.
1261     // If an early-clobber operand register is also an input operand register,
1262     // then remove the early-clobber flag.
1263     for (unsigned Reg : ECRegs) {
1264       if (MIB->readsRegister(Reg, TRI)) {
1265         MachineOperand *MO =
1266             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1267         assert(MO && "No def operand for clobbered register?");
1268         MO->setIsEarlyClobber(false);
1269       }
1270     }
1271 
1272     // Get the mdnode from the asm if it exists and add it to the instruction.
1273     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1274     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1275     if (MD)
1276       MIB.addMetadata(MD);
1277 
1278     MBB->insert(InsertPos, MIB);
1279     break;
1280   }
1281   }
1282 }
1283 
1284 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1285 /// at the given position in the given block.
InstrEmitter(const TargetMachine & TM,MachineBasicBlock * mbb,MachineBasicBlock::iterator insertpos)1286 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1287                            MachineBasicBlock::iterator insertpos)
1288     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1289       TII(MF->getSubtarget().getInstrInfo()),
1290       TRI(MF->getSubtarget().getRegisterInfo()),
1291       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1292       InsertPos(insertpos) {
1293   EmitDebugInstrRefs = TM.Options.ValueTrackingVariableLocations;
1294 }
1295