1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAGISel class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectionDAGISel.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/CFG.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
36 #include "llvm/CodeGen/CodeGenCommonISel.h"
37 #include "llvm/CodeGen/FastISel.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/ISDOpcodes.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachinePassRegistry.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/SchedulerRegistry.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/StackProtector.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/CodeGen/ValueTypes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/InlineAsm.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsWebAssembly.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Statepoint.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/InitializePasses.h"
84 #include "llvm/MC/MCInstrDesc.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/BranchProbability.h"
87 #include "llvm/Support/Casting.h"
88 #include "llvm/Support/CodeGen.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/ErrorHandling.h"
93 #include "llvm/Support/KnownBits.h"
94 #include "llvm/Support/MachineValueType.h"
95 #include "llvm/Support/Timer.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
101 #include <algorithm>
102 #include <cassert>
103 #include <cstdint>
104 #include <iterator>
105 #include <limits>
106 #include <memory>
107 #include <optional>
108 #include <string>
109 #include <utility>
110 #include <vector>
111
112 using namespace llvm;
113
114 #define DEBUG_TYPE "isel"
115
116 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
117 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
118 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
119 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
120 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
121 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
122 STATISTIC(NumFastIselFailLowerArguments,
123 "Number of entry blocks where fast isel failed to lower arguments");
124
125 static cl::opt<int> EnableFastISelAbort(
126 "fast-isel-abort", cl::Hidden,
127 cl::desc("Enable abort calls when \"fast\" instruction selection "
128 "fails to lower an instruction: 0 disable the abort, 1 will "
129 "abort but for args, calls and terminators, 2 will also "
130 "abort for argument lowering, and 3 will never fallback "
131 "to SelectionDAG."));
132
133 static cl::opt<bool> EnableFastISelFallbackReport(
134 "fast-isel-report-on-fallback", cl::Hidden,
135 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
136 "falls back to SelectionDAG."));
137
138 static cl::opt<bool>
139 UseMBPI("use-mbpi",
140 cl::desc("use Machine Branch Probability Info"),
141 cl::init(true), cl::Hidden);
142
143 #ifndef NDEBUG
144 static cl::opt<std::string>
145 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
146 cl::desc("Only display the basic block whose name "
147 "matches this for all view-*-dags options"));
148 static cl::opt<bool>
149 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
150 cl::desc("Pop up a window to show dags before the first "
151 "dag combine pass"));
152 static cl::opt<bool>
153 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
154 cl::desc("Pop up a window to show dags before legalize types"));
155 static cl::opt<bool>
156 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
157 cl::desc("Pop up a window to show dags before the post "
158 "legalize types dag combine pass"));
159 static cl::opt<bool>
160 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
161 cl::desc("Pop up a window to show dags before legalize"));
162 static cl::opt<bool>
163 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
164 cl::desc("Pop up a window to show dags before the second "
165 "dag combine pass"));
166 static cl::opt<bool>
167 ViewISelDAGs("view-isel-dags", cl::Hidden,
168 cl::desc("Pop up a window to show isel dags as they are selected"));
169 static cl::opt<bool>
170 ViewSchedDAGs("view-sched-dags", cl::Hidden,
171 cl::desc("Pop up a window to show sched dags as they are processed"));
172 static cl::opt<bool>
173 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
174 cl::desc("Pop up a window to show SUnit dags after they are processed"));
175 #else
176 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
177 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
178 ViewDAGCombine2 = false, ViewISelDAGs = false,
179 ViewSchedDAGs = false, ViewSUnitDAGs = false;
180 #endif
181
182 //===---------------------------------------------------------------------===//
183 ///
184 /// RegisterScheduler class - Track the registration of instruction schedulers.
185 ///
186 //===---------------------------------------------------------------------===//
187 MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
188 RegisterScheduler::Registry;
189
190 //===---------------------------------------------------------------------===//
191 ///
192 /// ISHeuristic command line option for instruction schedulers.
193 ///
194 //===---------------------------------------------------------------------===//
195 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
196 RegisterPassParser<RegisterScheduler>>
197 ISHeuristic("pre-RA-sched",
198 cl::init(&createDefaultScheduler), cl::Hidden,
199 cl::desc("Instruction schedulers available (before register"
200 " allocation):"));
201
202 static RegisterScheduler
203 defaultListDAGScheduler("default", "Best scheduler for the target",
204 createDefaultScheduler);
205
206 namespace llvm {
207
208 //===--------------------------------------------------------------------===//
209 /// This class is used by SelectionDAGISel to temporarily override
210 /// the optimization level on a per-function basis.
211 class OptLevelChanger {
212 SelectionDAGISel &IS;
213 CodeGenOpt::Level SavedOptLevel;
214 bool SavedFastISel;
215
216 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)217 OptLevelChanger(SelectionDAGISel &ISel,
218 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
219 SavedOptLevel = IS.OptLevel;
220 SavedFastISel = IS.TM.Options.EnableFastISel;
221 if (NewOptLevel == SavedOptLevel)
222 return;
223 IS.OptLevel = NewOptLevel;
224 IS.TM.setOptLevel(NewOptLevel);
225 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
226 << IS.MF->getFunction().getName() << "\n");
227 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
228 << NewOptLevel << "\n");
229 if (NewOptLevel == CodeGenOpt::None) {
230 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
231 LLVM_DEBUG(
232 dbgs() << "\tFastISel is "
233 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
234 << "\n");
235 }
236 }
237
~OptLevelChanger()238 ~OptLevelChanger() {
239 if (IS.OptLevel == SavedOptLevel)
240 return;
241 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
242 << IS.MF->getFunction().getName() << "\n");
243 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
244 << SavedOptLevel << "\n");
245 IS.OptLevel = SavedOptLevel;
246 IS.TM.setOptLevel(SavedOptLevel);
247 IS.TM.setFastISel(SavedFastISel);
248 }
249 };
250
251 //===--------------------------------------------------------------------===//
252 /// createDefaultScheduler - This creates an instruction scheduler appropriate
253 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)254 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
255 CodeGenOpt::Level OptLevel) {
256 const TargetLowering *TLI = IS->TLI;
257 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
258
259 // Try first to see if the Target has its own way of selecting a scheduler
260 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
261 return SchedulerCtor(IS, OptLevel);
262 }
263
264 if (OptLevel == CodeGenOpt::None ||
265 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
266 TLI->getSchedulingPreference() == Sched::Source)
267 return createSourceListDAGScheduler(IS, OptLevel);
268 if (TLI->getSchedulingPreference() == Sched::RegPressure)
269 return createBURRListDAGScheduler(IS, OptLevel);
270 if (TLI->getSchedulingPreference() == Sched::Hybrid)
271 return createHybridListDAGScheduler(IS, OptLevel);
272 if (TLI->getSchedulingPreference() == Sched::VLIW)
273 return createVLIWDAGScheduler(IS, OptLevel);
274 if (TLI->getSchedulingPreference() == Sched::Fast)
275 return createFastDAGScheduler(IS, OptLevel);
276 if (TLI->getSchedulingPreference() == Sched::Linearize)
277 return createDAGLinearizer(IS, OptLevel);
278 assert(TLI->getSchedulingPreference() == Sched::ILP &&
279 "Unknown sched type!");
280 return createILPListDAGScheduler(IS, OptLevel);
281 }
282
283 } // end namespace llvm
284
285 // EmitInstrWithCustomInserter - This method should be implemented by targets
286 // that mark instructions with the 'usesCustomInserter' flag. These
287 // instructions are special in various ways, which require special support to
288 // insert. The specified MachineInstr is created but not inserted into any
289 // basic blocks, and this method is called to expand it into a sequence of
290 // instructions, potentially also creating new basic blocks and control flow.
291 // When new basic blocks are inserted and the edges from MBB to its successors
292 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
293 // DenseMap.
294 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const295 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
296 MachineBasicBlock *MBB) const {
297 #ifndef NDEBUG
298 dbgs() << "If a target marks an instruction with "
299 "'usesCustomInserter', it must implement "
300 "TargetLowering::EmitInstrWithCustomInserter!\n";
301 #endif
302 llvm_unreachable(nullptr);
303 }
304
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const305 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
306 SDNode *Node) const {
307 assert(!MI.hasPostISelHook() &&
308 "If a target marks an instruction with 'hasPostISelHook', "
309 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
310 }
311
312 //===----------------------------------------------------------------------===//
313 // SelectionDAGISel code
314 //===----------------------------------------------------------------------===//
315
SelectionDAGISel(char & ID,TargetMachine & tm,CodeGenOpt::Level OL)316 SelectionDAGISel::SelectionDAGISel(char &ID, TargetMachine &tm,
317 CodeGenOpt::Level OL)
318 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
319 SwiftError(new SwiftErrorValueTracking()),
320 CurDAG(new SelectionDAG(tm, OL)),
321 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
322 OL)),
323 OptLevel(OL) {
324 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
325 initializeBranchProbabilityInfoWrapperPassPass(
326 *PassRegistry::getPassRegistry());
327 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
328 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
329 }
330
~SelectionDAGISel()331 SelectionDAGISel::~SelectionDAGISel() {
332 delete CurDAG;
333 delete SwiftError;
334 }
335
getAnalysisUsage(AnalysisUsage & AU) const336 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
337 if (OptLevel != CodeGenOpt::None)
338 AU.addRequired<AAResultsWrapperPass>();
339 AU.addRequired<GCModuleInfo>();
340 AU.addRequired<StackProtector>();
341 AU.addPreserved<GCModuleInfo>();
342 AU.addRequired<TargetLibraryInfoWrapperPass>();
343 AU.addRequired<TargetTransformInfoWrapperPass>();
344 AU.addRequired<AssumptionCacheTracker>();
345 if (UseMBPI && OptLevel != CodeGenOpt::None)
346 AU.addRequired<BranchProbabilityInfoWrapperPass>();
347 AU.addRequired<ProfileSummaryInfoWrapperPass>();
348 // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
349 // the module.
350 AU.addRequired<AssignmentTrackingAnalysis>();
351 AU.addPreserved<AssignmentTrackingAnalysis>();
352 if (OptLevel != CodeGenOpt::None)
353 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
354 MachineFunctionPass::getAnalysisUsage(AU);
355 }
356
computeUsesMSVCFloatingPoint(const Triple & TT,const Function & F,MachineModuleInfo & MMI)357 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
358 MachineModuleInfo &MMI) {
359 // Only needed for MSVC
360 if (!TT.isWindowsMSVCEnvironment())
361 return;
362
363 // If it's already set, nothing to do.
364 if (MMI.usesMSVCFloatingPoint())
365 return;
366
367 for (const Instruction &I : instructions(F)) {
368 if (I.getType()->isFPOrFPVectorTy()) {
369 MMI.setUsesMSVCFloatingPoint(true);
370 return;
371 }
372 for (const auto &Op : I.operands()) {
373 if (Op->getType()->isFPOrFPVectorTy()) {
374 MMI.setUsesMSVCFloatingPoint(true);
375 return;
376 }
377 }
378 }
379 }
380
runOnMachineFunction(MachineFunction & mf)381 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
382 // If we already selected that function, we do not need to run SDISel.
383 if (mf.getProperties().hasProperty(
384 MachineFunctionProperties::Property::Selected))
385 return false;
386 // Do some sanity-checking on the command-line options.
387 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
388 "-fast-isel-abort > 0 requires -fast-isel");
389
390 const Function &Fn = mf.getFunction();
391 MF = &mf;
392
393 // Decide what flavour of variable location debug-info will be used, before
394 // we change the optimisation level.
395 bool InstrRef = mf.shouldUseDebugInstrRef();
396 mf.setUseDebugInstrRef(InstrRef);
397
398 // Reset the target options before resetting the optimization
399 // level below.
400 // FIXME: This is a horrible hack and should be processed via
401 // codegen looking at the optimization level explicitly when
402 // it wants to look at it.
403 TM.resetTargetOptions(Fn);
404 // Reset OptLevel to None for optnone functions.
405 CodeGenOpt::Level NewOptLevel = OptLevel;
406 if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
407 NewOptLevel = CodeGenOpt::None;
408 OptLevelChanger OLC(*this, NewOptLevel);
409
410 TII = MF->getSubtarget().getInstrInfo();
411 TLI = MF->getSubtarget().getTargetLowering();
412 RegInfo = &MF->getRegInfo();
413 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
414 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
415 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
416 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(mf.getFunction());
417 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
418 BlockFrequencyInfo *BFI = nullptr;
419 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
420 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
421
422 FunctionVarLocs const *FnVarLocs = nullptr;
423 if (isAssignmentTrackingEnabled(*Fn.getParent()))
424 FnVarLocs = getAnalysis<AssignmentTrackingAnalysis>().getResults();
425
426 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
427
428 CurDAG->init(*MF, *ORE, this, LibInfo,
429 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI,
430 FnVarLocs);
431 FuncInfo->set(Fn, *MF, CurDAG);
432 SwiftError->setFunction(*MF);
433
434 // Now get the optional analyzes if we want to.
435 // This is based on the possibly changed OptLevel (after optnone is taken
436 // into account). That's unfortunate but OK because it just means we won't
437 // ask for passes that have been required anyway.
438
439 if (UseMBPI && OptLevel != CodeGenOpt::None)
440 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
441 else
442 FuncInfo->BPI = nullptr;
443
444 if (OptLevel != CodeGenOpt::None)
445 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
446 else
447 AA = nullptr;
448
449 SDB->init(GFI, AA, AC, LibInfo);
450
451 MF->setHasInlineAsm(false);
452
453 FuncInfo->SplitCSR = false;
454
455 // We split CSR if the target supports it for the given function
456 // and the function has only return exits.
457 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
458 FuncInfo->SplitCSR = true;
459
460 // Collect all the return blocks.
461 for (const BasicBlock &BB : Fn) {
462 if (!succ_empty(&BB))
463 continue;
464
465 const Instruction *Term = BB.getTerminator();
466 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
467 continue;
468
469 // Bail out if the exit block is not Return nor Unreachable.
470 FuncInfo->SplitCSR = false;
471 break;
472 }
473 }
474
475 MachineBasicBlock *EntryMBB = &MF->front();
476 if (FuncInfo->SplitCSR)
477 // This performs initialization so lowering for SplitCSR will be correct.
478 TLI->initializeSplitCSR(EntryMBB);
479
480 SelectAllBasicBlocks(Fn);
481 if (FastISelFailed && EnableFastISelFallbackReport) {
482 DiagnosticInfoISelFallback DiagFallback(Fn);
483 Fn.getContext().diagnose(DiagFallback);
484 }
485
486 // Replace forward-declared registers with the registers containing
487 // the desired value.
488 // Note: it is important that this happens **before** the call to
489 // EmitLiveInCopies, since implementations can skip copies of unused
490 // registers. If we don't apply the reg fixups before, some registers may
491 // appear as unused and will be skipped, resulting in bad MI.
492 MachineRegisterInfo &MRI = MF->getRegInfo();
493 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
494 E = FuncInfo->RegFixups.end();
495 I != E; ++I) {
496 Register From = I->first;
497 Register To = I->second;
498 // If To is also scheduled to be replaced, find what its ultimate
499 // replacement is.
500 while (true) {
501 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
502 if (J == E)
503 break;
504 To = J->second;
505 }
506 // Make sure the new register has a sufficiently constrained register class.
507 if (From.isVirtual() && To.isVirtual())
508 MRI.constrainRegClass(To, MRI.getRegClass(From));
509 // Replace it.
510
511 // Replacing one register with another won't touch the kill flags.
512 // We need to conservatively clear the kill flags as a kill on the old
513 // register might dominate existing uses of the new register.
514 if (!MRI.use_empty(To))
515 MRI.clearKillFlags(From);
516 MRI.replaceRegWith(From, To);
517 }
518
519 // If the first basic block in the function has live ins that need to be
520 // copied into vregs, emit the copies into the top of the block before
521 // emitting the code for the block.
522 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
523 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
524
525 // Insert copies in the entry block and the return blocks.
526 if (FuncInfo->SplitCSR) {
527 SmallVector<MachineBasicBlock*, 4> Returns;
528 // Collect all the return blocks.
529 for (MachineBasicBlock &MBB : mf) {
530 if (!MBB.succ_empty())
531 continue;
532
533 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
534 if (Term != MBB.end() && Term->isReturn()) {
535 Returns.push_back(&MBB);
536 continue;
537 }
538 }
539 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
540 }
541
542 DenseMap<unsigned, unsigned> LiveInMap;
543 if (!FuncInfo->ArgDbgValues.empty())
544 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
545 if (LI.second)
546 LiveInMap.insert(LI);
547
548 // Insert DBG_VALUE instructions for function arguments to the entry block.
549 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
550 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
551 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
552 "Function parameters should not be described by DBG_VALUE_LIST.");
553 bool hasFI = MI->getDebugOperand(0).isFI();
554 Register Reg =
555 hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg();
556 if (Reg.isPhysical())
557 EntryMBB->insert(EntryMBB->begin(), MI);
558 else {
559 MachineInstr *Def = RegInfo->getVRegDef(Reg);
560 if (Def) {
561 MachineBasicBlock::iterator InsertPos = Def;
562 // FIXME: VR def may not be in entry block.
563 Def->getParent()->insert(std::next(InsertPos), MI);
564 } else
565 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
566 << Register::virtReg2Index(Reg) << "\n");
567 }
568
569 // Don't try and extend through copies in instruction referencing mode.
570 if (InstrRef)
571 continue;
572
573 // If Reg is live-in then update debug info to track its copy in a vreg.
574 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
575 if (LDI != LiveInMap.end()) {
576 assert(!hasFI && "There's no handling of frame pointer updating here yet "
577 "- add if needed");
578 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
579 MachineBasicBlock::iterator InsertPos = Def;
580 const MDNode *Variable = MI->getDebugVariable();
581 const MDNode *Expr = MI->getDebugExpression();
582 DebugLoc DL = MI->getDebugLoc();
583 bool IsIndirect = MI->isIndirectDebugValue();
584 if (IsIndirect)
585 assert(MI->getDebugOffset().getImm() == 0 &&
586 "DBG_VALUE with nonzero offset");
587 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
588 "Expected inlined-at fields to agree");
589 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
590 "Didn't expect to see a DBG_VALUE_LIST here");
591 // Def is never a terminator here, so it is ok to increment InsertPos.
592 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
593 IsIndirect, LDI->second, Variable, Expr);
594
595 // If this vreg is directly copied into an exported register then
596 // that COPY instructions also need DBG_VALUE, if it is the only
597 // user of LDI->second.
598 MachineInstr *CopyUseMI = nullptr;
599 for (MachineRegisterInfo::use_instr_iterator
600 UI = RegInfo->use_instr_begin(LDI->second),
601 E = RegInfo->use_instr_end(); UI != E; ) {
602 MachineInstr *UseMI = &*(UI++);
603 if (UseMI->isDebugValue()) continue;
604 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
605 CopyUseMI = UseMI; continue;
606 }
607 // Otherwise this is another use or second copy use.
608 CopyUseMI = nullptr; break;
609 }
610 if (CopyUseMI &&
611 TRI.getRegSizeInBits(LDI->second, MRI) ==
612 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
613 // Use MI's debug location, which describes where Variable was
614 // declared, rather than whatever is attached to CopyUseMI.
615 MachineInstr *NewMI =
616 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
617 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
618 MachineBasicBlock::iterator Pos = CopyUseMI;
619 EntryMBB->insertAfter(Pos, NewMI);
620 }
621 }
622 }
623
624 // For debug-info, in instruction referencing mode, we need to perform some
625 // post-isel maintenence.
626 if (MF->useDebugInstrRef())
627 MF->finalizeDebugInstrRefs();
628
629 // Determine if there are any calls in this machine function.
630 MachineFrameInfo &MFI = MF->getFrameInfo();
631 for (const auto &MBB : *MF) {
632 if (MFI.hasCalls() && MF->hasInlineAsm())
633 break;
634
635 for (const auto &MI : MBB) {
636 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
637 if ((MCID.isCall() && !MCID.isReturn()) ||
638 MI.isStackAligningInlineAsm()) {
639 MFI.setHasCalls(true);
640 }
641 if (MI.isInlineAsm()) {
642 MF->setHasInlineAsm(true);
643 }
644 }
645 }
646
647 // Determine if there is a call to setjmp in the machine function.
648 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
649
650 // Determine if floating point is used for msvc
651 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
652
653 // Release function-specific state. SDB and CurDAG are already cleared
654 // at this point.
655 FuncInfo->clear();
656
657 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
658 LLVM_DEBUG(MF->print(dbgs()));
659
660 return true;
661 }
662
reportFastISelFailure(MachineFunction & MF,OptimizationRemarkEmitter & ORE,OptimizationRemarkMissed & R,bool ShouldAbort)663 static void reportFastISelFailure(MachineFunction &MF,
664 OptimizationRemarkEmitter &ORE,
665 OptimizationRemarkMissed &R,
666 bool ShouldAbort) {
667 // Print the function name explicitly if we don't have a debug location (which
668 // makes the diagnostic less useful) or if we're going to emit a raw error.
669 if (!R.getLocation().isValid() || ShouldAbort)
670 R << (" (in function: " + MF.getName() + ")").str();
671
672 if (ShouldAbort)
673 report_fatal_error(Twine(R.getMsg()));
674
675 ORE.emit(R);
676 LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
677 }
678
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)679 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
680 BasicBlock::const_iterator End,
681 bool &HadTailCall) {
682 // Allow creating illegal types during DAG building for the basic block.
683 CurDAG->NewNodesMustHaveLegalTypes = false;
684
685 // Lower the instructions. If a call is emitted as a tail call, cease emitting
686 // nodes for this block.
687 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
688 if (!ElidedArgCopyInstrs.count(&*I))
689 SDB->visit(*I);
690 }
691
692 // Make sure the root of the DAG is up-to-date.
693 CurDAG->setRoot(SDB->getControlRoot());
694 HadTailCall = SDB->HasTailCall;
695 SDB->resolveOrClearDbgInfo();
696 SDB->clear();
697
698 // Final step, emit the lowered DAG as machine code.
699 CodeGenAndEmitDAG();
700 }
701
ComputeLiveOutVRegInfo()702 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
703 SmallPtrSet<SDNode *, 16> Added;
704 SmallVector<SDNode*, 128> Worklist;
705
706 Worklist.push_back(CurDAG->getRoot().getNode());
707 Added.insert(CurDAG->getRoot().getNode());
708
709 KnownBits Known;
710
711 do {
712 SDNode *N = Worklist.pop_back_val();
713
714 // Otherwise, add all chain operands to the worklist.
715 for (const SDValue &Op : N->op_values())
716 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
717 Worklist.push_back(Op.getNode());
718
719 // If this is a CopyToReg with a vreg dest, process it.
720 if (N->getOpcode() != ISD::CopyToReg)
721 continue;
722
723 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
724 if (!Register::isVirtualRegister(DestReg))
725 continue;
726
727 // Ignore non-integer values.
728 SDValue Src = N->getOperand(2);
729 EVT SrcVT = Src.getValueType();
730 if (!SrcVT.isInteger())
731 continue;
732
733 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
734 Known = CurDAG->computeKnownBits(Src);
735 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
736 } while (!Worklist.empty());
737 }
738
CodeGenAndEmitDAG()739 void SelectionDAGISel::CodeGenAndEmitDAG() {
740 StringRef GroupName = "sdag";
741 StringRef GroupDescription = "Instruction Selection and Scheduling";
742 std::string BlockName;
743 bool MatchFilterBB = false; (void)MatchFilterBB;
744 #ifndef NDEBUG
745 TargetTransformInfo &TTI =
746 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
747 #endif
748
749 // Pre-type legalization allow creation of any node types.
750 CurDAG->NewNodesMustHaveLegalTypes = false;
751
752 #ifndef NDEBUG
753 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
754 FilterDAGBasicBlockName ==
755 FuncInfo->MBB->getBasicBlock()->getName());
756 #endif
757 #ifdef NDEBUG
758 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
759 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
760 ViewSUnitDAGs)
761 #endif
762 {
763 BlockName =
764 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
765 }
766 LLVM_DEBUG(dbgs() << "Initial selection DAG: "
767 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
768 << "'\n";
769 CurDAG->dump());
770
771 #ifndef NDEBUG
772 if (TTI.hasBranchDivergence())
773 CurDAG->VerifyDAGDivergence();
774 #endif
775
776 if (ViewDAGCombine1 && MatchFilterBB)
777 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
778
779 // Run the DAG combiner in pre-legalize mode.
780 {
781 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
782 GroupDescription, TimePassesIsEnabled);
783 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
784 }
785
786 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
787 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
788 << "'\n";
789 CurDAG->dump());
790
791 #ifndef NDEBUG
792 if (TTI.hasBranchDivergence())
793 CurDAG->VerifyDAGDivergence();
794 #endif
795
796 // Second step, hack on the DAG until it only uses operations and types that
797 // the target supports.
798 if (ViewLegalizeTypesDAGs && MatchFilterBB)
799 CurDAG->viewGraph("legalize-types input for " + BlockName);
800
801 bool Changed;
802 {
803 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
804 GroupDescription, TimePassesIsEnabled);
805 Changed = CurDAG->LegalizeTypes();
806 }
807
808 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
809 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
810 << "'\n";
811 CurDAG->dump());
812
813 #ifndef NDEBUG
814 if (TTI.hasBranchDivergence())
815 CurDAG->VerifyDAGDivergence();
816 #endif
817
818 // Only allow creation of legal node types.
819 CurDAG->NewNodesMustHaveLegalTypes = true;
820
821 if (Changed) {
822 if (ViewDAGCombineLT && MatchFilterBB)
823 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
824
825 // Run the DAG combiner in post-type-legalize mode.
826 {
827 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
828 GroupName, GroupDescription, TimePassesIsEnabled);
829 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
830 }
831
832 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
833 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
834 << "'\n";
835 CurDAG->dump());
836
837 #ifndef NDEBUG
838 if (TTI.hasBranchDivergence())
839 CurDAG->VerifyDAGDivergence();
840 #endif
841 }
842
843 {
844 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
845 GroupDescription, TimePassesIsEnabled);
846 Changed = CurDAG->LegalizeVectors();
847 }
848
849 if (Changed) {
850 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
851 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
852 << "'\n";
853 CurDAG->dump());
854
855 #ifndef NDEBUG
856 if (TTI.hasBranchDivergence())
857 CurDAG->VerifyDAGDivergence();
858 #endif
859
860 {
861 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
862 GroupDescription, TimePassesIsEnabled);
863 CurDAG->LegalizeTypes();
864 }
865
866 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
867 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
868 << "'\n";
869 CurDAG->dump());
870
871 #ifndef NDEBUG
872 if (TTI.hasBranchDivergence())
873 CurDAG->VerifyDAGDivergence();
874 #endif
875
876 if (ViewDAGCombineLT && MatchFilterBB)
877 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
878
879 // Run the DAG combiner in post-type-legalize mode.
880 {
881 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
882 GroupName, GroupDescription, TimePassesIsEnabled);
883 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
884 }
885
886 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
887 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
888 << "'\n";
889 CurDAG->dump());
890
891 #ifndef NDEBUG
892 if (TTI.hasBranchDivergence())
893 CurDAG->VerifyDAGDivergence();
894 #endif
895 }
896
897 if (ViewLegalizeDAGs && MatchFilterBB)
898 CurDAG->viewGraph("legalize input for " + BlockName);
899
900 {
901 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
902 GroupDescription, TimePassesIsEnabled);
903 CurDAG->Legalize();
904 }
905
906 LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
907 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
908 << "'\n";
909 CurDAG->dump());
910
911 #ifndef NDEBUG
912 if (TTI.hasBranchDivergence())
913 CurDAG->VerifyDAGDivergence();
914 #endif
915
916 if (ViewDAGCombine2 && MatchFilterBB)
917 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
918
919 // Run the DAG combiner in post-legalize mode.
920 {
921 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
922 GroupDescription, TimePassesIsEnabled);
923 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
924 }
925
926 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
927 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
928 << "'\n";
929 CurDAG->dump());
930
931 #ifndef NDEBUG
932 if (TTI.hasBranchDivergence())
933 CurDAG->VerifyDAGDivergence();
934 #endif
935
936 if (OptLevel != CodeGenOpt::None)
937 ComputeLiveOutVRegInfo();
938
939 if (ViewISelDAGs && MatchFilterBB)
940 CurDAG->viewGraph("isel input for " + BlockName);
941
942 // Third, instruction select all of the operations to machine code, adding the
943 // code to the MachineBasicBlock.
944 {
945 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
946 GroupDescription, TimePassesIsEnabled);
947 DoInstructionSelection();
948 }
949
950 LLVM_DEBUG(dbgs() << "Selected selection DAG: "
951 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
952 << "'\n";
953 CurDAG->dump());
954
955 if (ViewSchedDAGs && MatchFilterBB)
956 CurDAG->viewGraph("scheduler input for " + BlockName);
957
958 // Schedule machine code.
959 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
960 {
961 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
962 GroupDescription, TimePassesIsEnabled);
963 Scheduler->Run(CurDAG, FuncInfo->MBB);
964 }
965
966 if (ViewSUnitDAGs && MatchFilterBB)
967 Scheduler->viewGraph();
968
969 // Emit machine code to BB. This can change 'BB' to the last block being
970 // inserted into.
971 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
972 {
973 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
974 GroupDescription, TimePassesIsEnabled);
975
976 // FuncInfo->InsertPt is passed by reference and set to the end of the
977 // scheduled instructions.
978 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
979 }
980
981 // If the block was split, make sure we update any references that are used to
982 // update PHI nodes later on.
983 if (FirstMBB != LastMBB)
984 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
985
986 // Free the scheduler state.
987 {
988 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
989 GroupDescription, TimePassesIsEnabled);
990 delete Scheduler;
991 }
992
993 // Free the SelectionDAG state, now that we're finished with it.
994 CurDAG->clear();
995 }
996
997 namespace {
998
999 /// ISelUpdater - helper class to handle updates of the instruction selection
1000 /// graph.
1001 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1002 SelectionDAG::allnodes_iterator &ISelPosition;
1003
1004 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)1005 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1006 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1007
1008 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1009 /// deleted is the current ISelPosition node, update ISelPosition.
1010 ///
NodeDeleted(SDNode * N,SDNode * E)1011 void NodeDeleted(SDNode *N, SDNode *E) override {
1012 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1013 ++ISelPosition;
1014 }
1015
1016 /// NodeInserted - Handle new nodes inserted into the graph: propagate
1017 /// metadata from root nodes that also applies to new nodes, in case the root
1018 /// is later deleted.
NodeInserted(SDNode * N)1019 void NodeInserted(SDNode *N) override {
1020 SDNode *CurNode = &*ISelPosition;
1021 if (MDNode *MD = DAG.getPCSections(CurNode))
1022 DAG.addPCSections(N, MD);
1023 }
1024 };
1025
1026 } // end anonymous namespace
1027
1028 // This function is used to enforce the topological node id property
1029 // leveraged during instruction selection. Before the selection process all
1030 // nodes are given a non-negative id such that all nodes have a greater id than
1031 // their operands. As this holds transitively we can prune checks that a node N
1032 // is a predecessor of M another by not recursively checking through M's
1033 // operands if N's ID is larger than M's ID. This significantly improves
1034 // performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1035
1036 // However, when we fuse multiple nodes into a single node during the
1037 // selection we may induce a predecessor relationship between inputs and
1038 // outputs of distinct nodes being merged, violating the topological property.
1039 // Should a fused node have a successor which has yet to be selected,
1040 // our legality checks would be incorrect. To avoid this we mark all unselected
1041 // successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1042 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1043 // We use bit-negation to more clearly enforce that node id -1 can only be
1044 // achieved by selected nodes. As the conversion is reversable to the original
1045 // Id, topological pruning can still be leveraged when looking for unselected
1046 // nodes. This method is called internally in all ISel replacement related
1047 // functions.
EnforceNodeIdInvariant(SDNode * Node)1048 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1049 SmallVector<SDNode *, 4> Nodes;
1050 Nodes.push_back(Node);
1051
1052 while (!Nodes.empty()) {
1053 SDNode *N = Nodes.pop_back_val();
1054 for (auto *U : N->uses()) {
1055 auto UId = U->getNodeId();
1056 if (UId > 0) {
1057 InvalidateNodeId(U);
1058 Nodes.push_back(U);
1059 }
1060 }
1061 }
1062 }
1063
1064 // InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1065 // NodeId with the equivalent node id which is invalid for topological
1066 // pruning.
InvalidateNodeId(SDNode * N)1067 void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1068 int InvalidId = -(N->getNodeId() + 1);
1069 N->setNodeId(InvalidId);
1070 }
1071
1072 // getUninvalidatedNodeId - get original uninvalidated node id.
getUninvalidatedNodeId(SDNode * N)1073 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1074 int Id = N->getNodeId();
1075 if (Id < -1)
1076 return -(Id + 1);
1077 return Id;
1078 }
1079
DoInstructionSelection()1080 void SelectionDAGISel::DoInstructionSelection() {
1081 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1082 << printMBBReference(*FuncInfo->MBB) << " '"
1083 << FuncInfo->MBB->getName() << "'\n");
1084
1085 PreprocessISelDAG();
1086
1087 // Select target instructions for the DAG.
1088 {
1089 // Number all nodes with a topological order and set DAGSize.
1090 DAGSize = CurDAG->AssignTopologicalOrder();
1091
1092 // Create a dummy node (which is not added to allnodes), that adds
1093 // a reference to the root node, preventing it from being deleted,
1094 // and tracking any changes of the root.
1095 HandleSDNode Dummy(CurDAG->getRoot());
1096 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1097 ++ISelPosition;
1098
1099 // Make sure that ISelPosition gets properly updated when nodes are deleted
1100 // in calls made from this function. New nodes inherit relevant metadata.
1101 ISelUpdater ISU(*CurDAG, ISelPosition);
1102
1103 // The AllNodes list is now topological-sorted. Visit the
1104 // nodes by starting at the end of the list (the root of the
1105 // graph) and preceding back toward the beginning (the entry
1106 // node).
1107 while (ISelPosition != CurDAG->allnodes_begin()) {
1108 SDNode *Node = &*--ISelPosition;
1109 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1110 // but there are currently some corner cases that it misses. Also, this
1111 // makes it theoretically possible to disable the DAGCombiner.
1112 if (Node->use_empty())
1113 continue;
1114
1115 #ifndef NDEBUG
1116 SmallVector<SDNode *, 4> Nodes;
1117 Nodes.push_back(Node);
1118
1119 while (!Nodes.empty()) {
1120 auto N = Nodes.pop_back_val();
1121 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1122 continue;
1123 for (const SDValue &Op : N->op_values()) {
1124 if (Op->getOpcode() == ISD::TokenFactor)
1125 Nodes.push_back(Op.getNode());
1126 else {
1127 // We rely on topological ordering of node ids for checking for
1128 // cycles when fusing nodes during selection. All unselected nodes
1129 // successors of an already selected node should have a negative id.
1130 // This assertion will catch such cases. If this assertion triggers
1131 // it is likely you using DAG-level Value/Node replacement functions
1132 // (versus equivalent ISEL replacement) in backend-specific
1133 // selections. See comment in EnforceNodeIdInvariant for more
1134 // details.
1135 assert(Op->getNodeId() != -1 &&
1136 "Node has already selected predecessor node");
1137 }
1138 }
1139 }
1140 #endif
1141
1142 // When we are using non-default rounding modes or FP exception behavior
1143 // FP operations are represented by StrictFP pseudo-operations. For
1144 // targets that do not (yet) understand strict FP operations directly,
1145 // we convert them to normal FP opcodes instead at this point. This
1146 // will allow them to be handled by existing target-specific instruction
1147 // selectors.
1148 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1149 // For some opcodes, we need to call TLI->getOperationAction using
1150 // the first operand type instead of the result type. Note that this
1151 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1152 EVT ActionVT;
1153 switch (Node->getOpcode()) {
1154 case ISD::STRICT_SINT_TO_FP:
1155 case ISD::STRICT_UINT_TO_FP:
1156 case ISD::STRICT_LRINT:
1157 case ISD::STRICT_LLRINT:
1158 case ISD::STRICT_LROUND:
1159 case ISD::STRICT_LLROUND:
1160 case ISD::STRICT_FSETCC:
1161 case ISD::STRICT_FSETCCS:
1162 ActionVT = Node->getOperand(1).getValueType();
1163 break;
1164 default:
1165 ActionVT = Node->getValueType(0);
1166 break;
1167 }
1168 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1169 == TargetLowering::Expand)
1170 Node = CurDAG->mutateStrictFPToFP(Node);
1171 }
1172
1173 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1174 Node->dump(CurDAG));
1175
1176 Select(Node);
1177 }
1178
1179 CurDAG->setRoot(Dummy.getValue());
1180 }
1181
1182 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1183
1184 PostprocessISelDAG();
1185 }
1186
hasExceptionPointerOrCodeUser(const CatchPadInst * CPI)1187 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1188 for (const User *U : CPI->users()) {
1189 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1190 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1191 if (IID == Intrinsic::eh_exceptionpointer ||
1192 IID == Intrinsic::eh_exceptioncode)
1193 return true;
1194 }
1195 }
1196 return false;
1197 }
1198
1199 // wasm.landingpad.index intrinsic is for associating a landing pad index number
1200 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1201 // and store the mapping in the function.
mapWasmLandingPadIndex(MachineBasicBlock * MBB,const CatchPadInst * CPI)1202 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1203 const CatchPadInst *CPI) {
1204 MachineFunction *MF = MBB->getParent();
1205 // In case of single catch (...), we don't emit LSDA, so we don't need
1206 // this information.
1207 bool IsSingleCatchAllClause =
1208 CPI->arg_size() == 1 &&
1209 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1210 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1211 // and they don't need LSDA info
1212 bool IsCatchLongjmp = CPI->arg_size() == 0;
1213 if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1214 // Create a mapping from landing pad label to landing pad index.
1215 bool IntrFound = false;
1216 for (const User *U : CPI->users()) {
1217 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1218 Intrinsic::ID IID = Call->getIntrinsicID();
1219 if (IID == Intrinsic::wasm_landingpad_index) {
1220 Value *IndexArg = Call->getArgOperand(1);
1221 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1222 MF->setWasmLandingPadIndex(MBB, Index);
1223 IntrFound = true;
1224 break;
1225 }
1226 }
1227 }
1228 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1229 (void)IntrFound;
1230 }
1231 }
1232
1233 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1234 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()1235 bool SelectionDAGISel::PrepareEHLandingPad() {
1236 MachineBasicBlock *MBB = FuncInfo->MBB;
1237 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1238 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1239 const TargetRegisterClass *PtrRC =
1240 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1241
1242 auto Pers = classifyEHPersonality(PersonalityFn);
1243
1244 // Catchpads have one live-in register, which typically holds the exception
1245 // pointer or code.
1246 if (isFuncletEHPersonality(Pers)) {
1247 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1248 if (hasExceptionPointerOrCodeUser(CPI)) {
1249 // Get or create the virtual register to hold the pointer or code. Mark
1250 // the live in physreg and copy into the vreg.
1251 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1252 assert(EHPhysReg && "target lacks exception pointer register");
1253 MBB->addLiveIn(EHPhysReg);
1254 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1255 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1256 TII->get(TargetOpcode::COPY), VReg)
1257 .addReg(EHPhysReg, RegState::Kill);
1258 }
1259 }
1260 return true;
1261 }
1262
1263 // Add a label to mark the beginning of the landing pad. Deletion of the
1264 // landing pad can thus be detected via the MachineModuleInfo.
1265 MCSymbol *Label = MF->addLandingPad(MBB);
1266
1267 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1268 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1269 .addSym(Label);
1270
1271 // If the unwinder does not preserve all registers, ensure that the
1272 // function marks the clobbered registers as used.
1273 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1274 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1275 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1276
1277 if (Pers == EHPersonality::Wasm_CXX) {
1278 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1279 mapWasmLandingPadIndex(MBB, CPI);
1280 } else {
1281 // Assign the call site to the landing pad's begin label.
1282 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1283 // Mark exception register as live in.
1284 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1285 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1286 // Mark exception selector register as live in.
1287 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1288 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1289 }
1290
1291 return true;
1292 }
1293
1294 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1295 /// side-effect free and is either dead or folded into a generated instruction.
1296 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,const FunctionLoweringInfo & FuncInfo)1297 static bool isFoldedOrDeadInstruction(const Instruction *I,
1298 const FunctionLoweringInfo &FuncInfo) {
1299 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1300 !I->isTerminator() && // Terminators aren't folded.
1301 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1302 !I->isEHPad() && // EH pad instructions aren't folded.
1303 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1304 }
1305
processDbgDeclare(FunctionLoweringInfo & FuncInfo,const Value * Address,DIExpression * Expr,DILocalVariable * Var,DebugLoc DbgLoc)1306 static void processDbgDeclare(FunctionLoweringInfo &FuncInfo,
1307 const Value *Address, DIExpression *Expr,
1308 DILocalVariable *Var, DebugLoc DbgLoc) {
1309 MachineFunction *MF = FuncInfo.MF;
1310 const DataLayout &DL = MF->getDataLayout();
1311
1312 assert(Var && "Missing variable");
1313 assert(DbgLoc && "Missing location");
1314
1315 // Look through casts and constant offset GEPs. These mostly come from
1316 // inalloca.
1317 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1318 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1319
1320 // Check if the variable is a static alloca or a byval or inalloca
1321 // argument passed in memory. If it is not, then we will ignore this
1322 // intrinsic and handle this during isel like dbg.value.
1323 int FI = std::numeric_limits<int>::max();
1324 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1325 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1326 if (SI != FuncInfo.StaticAllocaMap.end())
1327 FI = SI->second;
1328 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1329 FI = FuncInfo.getArgumentFrameIndex(Arg);
1330
1331 if (FI == std::numeric_limits<int>::max())
1332 return;
1333
1334 if (Offset.getBoolValue())
1335 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1336 Offset.getZExtValue());
1337
1338 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1339 << ", Expr=" << *Expr << ", FI=" << FI
1340 << ", DbgLoc=" << DbgLoc << "\n");
1341 MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc);
1342 }
1343
1344 /// Collect llvm.dbg.declare information. This is done after argument lowering
1345 /// in case the declarations refer to arguments.
processDbgDeclares(FunctionLoweringInfo & FuncInfo)1346 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1347 for (const BasicBlock &BB : *FuncInfo.Fn) {
1348 for (const Instruction &I : BB) {
1349 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I)) {
1350 Value *Address = DI->getAddress();
1351 if (!Address) {
1352 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1353 << " (bad address)\n");
1354 continue;
1355 }
1356 processDbgDeclare(FuncInfo, Address, DI->getExpression(),
1357 DI->getVariable(), DI->getDebugLoc());
1358 }
1359 }
1360 }
1361 }
1362
1363 /// Collect single location variable information generated with assignment
1364 /// tracking. This is done after argument lowering in case the declarations
1365 /// refer to arguments.
processSingleLocVars(FunctionLoweringInfo & FuncInfo,FunctionVarLocs const * FnVarLocs)1366 static void processSingleLocVars(FunctionLoweringInfo &FuncInfo,
1367 FunctionVarLocs const *FnVarLocs) {
1368 for (auto It = FnVarLocs->single_locs_begin(),
1369 End = FnVarLocs->single_locs_end();
1370 It != End; ++It)
1371 processDbgDeclare(FuncInfo, It->V, It->Expr,
1372 FnVarLocs->getDILocalVariable(It->VariableID), It->DL);
1373 }
1374
SelectAllBasicBlocks(const Function & Fn)1375 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1376 FastISelFailed = false;
1377 // Initialize the Fast-ISel state, if needed.
1378 FastISel *FastIS = nullptr;
1379 if (TM.Options.EnableFastISel) {
1380 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1381 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1382 }
1383
1384 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1385
1386 // Lower arguments up front. An RPO iteration always visits the entry block
1387 // first.
1388 assert(*RPOT.begin() == &Fn.getEntryBlock());
1389 ++NumEntryBlocks;
1390
1391 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1392 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1393 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1394
1395 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1396
1397 if (!FastIS) {
1398 LowerArguments(Fn);
1399 } else {
1400 // See if fast isel can lower the arguments.
1401 FastIS->startNewBlock();
1402 if (!FastIS->lowerArguments()) {
1403 FastISelFailed = true;
1404 // Fast isel failed to lower these arguments
1405 ++NumFastIselFailLowerArguments;
1406
1407 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1408 Fn.getSubprogram(),
1409 &Fn.getEntryBlock());
1410 R << "FastISel didn't lower all arguments: "
1411 << ore::NV("Prototype", Fn.getType());
1412 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1413
1414 // Use SelectionDAG argument lowering
1415 LowerArguments(Fn);
1416 CurDAG->setRoot(SDB->getControlRoot());
1417 SDB->clear();
1418 CodeGenAndEmitDAG();
1419 }
1420
1421 // If we inserted any instructions at the beginning, make a note of
1422 // where they are, so we can be sure to emit subsequent instructions
1423 // after them.
1424 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1425 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1426 else
1427 FastIS->setLastLocalValue(nullptr);
1428 }
1429
1430 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1431
1432 if (FastIS && Inserted)
1433 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1434
1435 if (isAssignmentTrackingEnabled(*Fn.getParent())) {
1436 assert(CurDAG->getFunctionVarLocs() &&
1437 "expected AssignmentTrackingAnalysis pass results");
1438 processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs());
1439 } else {
1440 processDbgDeclares(*FuncInfo);
1441 }
1442
1443 // Iterate over all basic blocks in the function.
1444 StackProtector &SP = getAnalysis<StackProtector>();
1445 for (const BasicBlock *LLVMBB : RPOT) {
1446 if (OptLevel != CodeGenOpt::None) {
1447 bool AllPredsVisited = true;
1448 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1449 if (!FuncInfo->VisitedBBs.count(Pred)) {
1450 AllPredsVisited = false;
1451 break;
1452 }
1453 }
1454
1455 if (AllPredsVisited) {
1456 for (const PHINode &PN : LLVMBB->phis())
1457 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1458 } else {
1459 for (const PHINode &PN : LLVMBB->phis())
1460 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1461 }
1462
1463 FuncInfo->VisitedBBs.insert(LLVMBB);
1464 }
1465
1466 BasicBlock::const_iterator const Begin =
1467 LLVMBB->getFirstNonPHI()->getIterator();
1468 BasicBlock::const_iterator const End = LLVMBB->end();
1469 BasicBlock::const_iterator BI = End;
1470
1471 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1472 if (!FuncInfo->MBB)
1473 continue; // Some blocks like catchpads have no code or MBB.
1474
1475 // Insert new instructions after any phi or argument setup code.
1476 FuncInfo->InsertPt = FuncInfo->MBB->end();
1477
1478 // Setup an EH landing-pad block.
1479 FuncInfo->ExceptionPointerVirtReg = 0;
1480 FuncInfo->ExceptionSelectorVirtReg = 0;
1481 if (LLVMBB->isEHPad())
1482 if (!PrepareEHLandingPad())
1483 continue;
1484
1485 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1486 if (FastIS) {
1487 if (LLVMBB != &Fn.getEntryBlock())
1488 FastIS->startNewBlock();
1489
1490 unsigned NumFastIselRemaining = std::distance(Begin, End);
1491
1492 // Pre-assign swifterror vregs.
1493 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1494
1495 // Do FastISel on as many instructions as possible.
1496 for (; BI != Begin; --BI) {
1497 const Instruction *Inst = &*std::prev(BI);
1498
1499 // If we no longer require this instruction, skip it.
1500 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1501 ElidedArgCopyInstrs.count(Inst)) {
1502 --NumFastIselRemaining;
1503 continue;
1504 }
1505
1506 // Bottom-up: reset the insert pos at the top, after any local-value
1507 // instructions.
1508 FastIS->recomputeInsertPt();
1509
1510 // Try to select the instruction with FastISel.
1511 if (FastIS->selectInstruction(Inst)) {
1512 --NumFastIselRemaining;
1513 ++NumFastIselSuccess;
1514 // If fast isel succeeded, skip over all the folded instructions, and
1515 // then see if there is a load right before the selected instructions.
1516 // Try to fold the load if so.
1517 const Instruction *BeforeInst = Inst;
1518 while (BeforeInst != &*Begin) {
1519 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1520 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1521 break;
1522 }
1523 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1524 BeforeInst->hasOneUse() &&
1525 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1526 // If we succeeded, don't re-select the load.
1527 LLVM_DEBUG(dbgs()
1528 << "FastISel folded load: " << *BeforeInst << "\n");
1529 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1530 --NumFastIselRemaining;
1531 ++NumFastIselSuccess;
1532 }
1533 continue;
1534 }
1535
1536 FastISelFailed = true;
1537
1538 // Then handle certain instructions as single-LLVM-Instruction blocks.
1539 // We cannot separate out GCrelocates to their own blocks since we need
1540 // to keep track of gc-relocates for a particular gc-statepoint. This is
1541 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1542 // visitGCRelocate.
1543 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1544 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1545 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1546 Inst->getDebugLoc(), LLVMBB);
1547
1548 R << "FastISel missed call";
1549
1550 if (R.isEnabled() || EnableFastISelAbort) {
1551 std::string InstStrStorage;
1552 raw_string_ostream InstStr(InstStrStorage);
1553 InstStr << *Inst;
1554
1555 R << ": " << InstStr.str();
1556 }
1557
1558 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1559
1560 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1561 !Inst->use_empty()) {
1562 Register &R = FuncInfo->ValueMap[Inst];
1563 if (!R)
1564 R = FuncInfo->CreateRegs(Inst);
1565 }
1566
1567 bool HadTailCall = false;
1568 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1569 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1570
1571 // If the call was emitted as a tail call, we're done with the block.
1572 // We also need to delete any previously emitted instructions.
1573 if (HadTailCall) {
1574 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1575 --BI;
1576 break;
1577 }
1578
1579 // Recompute NumFastIselRemaining as Selection DAG instruction
1580 // selection may have handled the call, input args, etc.
1581 unsigned RemainingNow = std::distance(Begin, BI);
1582 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1583 NumFastIselRemaining = RemainingNow;
1584 continue;
1585 }
1586
1587 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1588 Inst->getDebugLoc(), LLVMBB);
1589
1590 bool ShouldAbort = EnableFastISelAbort;
1591 if (Inst->isTerminator()) {
1592 // Use a different message for terminator misses.
1593 R << "FastISel missed terminator";
1594 // Don't abort for terminator unless the level is really high
1595 ShouldAbort = (EnableFastISelAbort > 2);
1596 } else {
1597 R << "FastISel missed";
1598 }
1599
1600 if (R.isEnabled() || EnableFastISelAbort) {
1601 std::string InstStrStorage;
1602 raw_string_ostream InstStr(InstStrStorage);
1603 InstStr << *Inst;
1604 R << ": " << InstStr.str();
1605 }
1606
1607 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1608
1609 NumFastIselFailures += NumFastIselRemaining;
1610 break;
1611 }
1612
1613 FastIS->recomputeInsertPt();
1614 }
1615
1616 if (SP.shouldEmitSDCheck(*LLVMBB)) {
1617 bool FunctionBasedInstrumentation =
1618 TLI->getSSPStackGuardCheck(*Fn.getParent());
1619 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1620 FunctionBasedInstrumentation);
1621 }
1622
1623 if (Begin != BI)
1624 ++NumDAGBlocks;
1625 else
1626 ++NumFastIselBlocks;
1627
1628 if (Begin != BI) {
1629 // Run SelectionDAG instruction selection on the remainder of the block
1630 // not handled by FastISel. If FastISel is not run, this is the entire
1631 // block.
1632 bool HadTailCall;
1633 SelectBasicBlock(Begin, BI, HadTailCall);
1634
1635 // But if FastISel was run, we already selected some of the block.
1636 // If we emitted a tail-call, we need to delete any previously emitted
1637 // instruction that follows it.
1638 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1639 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1640 }
1641
1642 if (FastIS)
1643 FastIS->finishBasicBlock();
1644 FinishBasicBlock();
1645 FuncInfo->PHINodesToUpdate.clear();
1646 ElidedArgCopyInstrs.clear();
1647 }
1648
1649 SP.copyToMachineFrameInfo(MF->getFrameInfo());
1650
1651 SwiftError->propagateVRegs();
1652
1653 delete FastIS;
1654 SDB->clearDanglingDebugInfo();
1655 SDB->SPDescriptor.resetPerFunctionState();
1656 }
1657
1658 void
FinishBasicBlock()1659 SelectionDAGISel::FinishBasicBlock() {
1660 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1661 << FuncInfo->PHINodesToUpdate.size() << "\n";
1662 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1663 ++i) dbgs()
1664 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1665 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1666
1667 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1668 // PHI nodes in successors.
1669 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1670 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1671 assert(PHI->isPHI() &&
1672 "This is not a machine PHI node that we are updating!");
1673 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1674 continue;
1675 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1676 }
1677
1678 // Handle stack protector.
1679 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1680 // The target provides a guard check function. There is no need to
1681 // generate error handling code or to split current basic block.
1682 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1683
1684 // Add load and check to the basicblock.
1685 FuncInfo->MBB = ParentMBB;
1686 FuncInfo->InsertPt =
1687 findSplitPointForStackProtector(ParentMBB, *TII);
1688 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1689 CurDAG->setRoot(SDB->getRoot());
1690 SDB->clear();
1691 CodeGenAndEmitDAG();
1692
1693 // Clear the Per-BB State.
1694 SDB->SPDescriptor.resetPerBBState();
1695 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1696 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1697 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1698
1699 // Find the split point to split the parent mbb. At the same time copy all
1700 // physical registers used in the tail of parent mbb into virtual registers
1701 // before the split point and back into physical registers after the split
1702 // point. This prevents us needing to deal with Live-ins and many other
1703 // register allocation issues caused by us splitting the parent mbb. The
1704 // register allocator will clean up said virtual copies later on.
1705 MachineBasicBlock::iterator SplitPoint =
1706 findSplitPointForStackProtector(ParentMBB, *TII);
1707
1708 // Splice the terminator of ParentMBB into SuccessMBB.
1709 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1710 SplitPoint,
1711 ParentMBB->end());
1712
1713 // Add compare/jump on neq/jump to the parent BB.
1714 FuncInfo->MBB = ParentMBB;
1715 FuncInfo->InsertPt = ParentMBB->end();
1716 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1717 CurDAG->setRoot(SDB->getRoot());
1718 SDB->clear();
1719 CodeGenAndEmitDAG();
1720
1721 // CodeGen Failure MBB if we have not codegened it yet.
1722 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1723 if (FailureMBB->empty()) {
1724 FuncInfo->MBB = FailureMBB;
1725 FuncInfo->InsertPt = FailureMBB->end();
1726 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1727 CurDAG->setRoot(SDB->getRoot());
1728 SDB->clear();
1729 CodeGenAndEmitDAG();
1730 }
1731
1732 // Clear the Per-BB State.
1733 SDB->SPDescriptor.resetPerBBState();
1734 }
1735
1736 // Lower each BitTestBlock.
1737 for (auto &BTB : SDB->SL->BitTestCases) {
1738 // Lower header first, if it wasn't already lowered
1739 if (!BTB.Emitted) {
1740 // Set the current basic block to the mbb we wish to insert the code into
1741 FuncInfo->MBB = BTB.Parent;
1742 FuncInfo->InsertPt = FuncInfo->MBB->end();
1743 // Emit the code
1744 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1745 CurDAG->setRoot(SDB->getRoot());
1746 SDB->clear();
1747 CodeGenAndEmitDAG();
1748 }
1749
1750 BranchProbability UnhandledProb = BTB.Prob;
1751 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1752 UnhandledProb -= BTB.Cases[j].ExtraProb;
1753 // Set the current basic block to the mbb we wish to insert the code into
1754 FuncInfo->MBB = BTB.Cases[j].ThisBB;
1755 FuncInfo->InsertPt = FuncInfo->MBB->end();
1756 // Emit the code
1757
1758 // If all cases cover a contiguous range, it is not necessary to jump to
1759 // the default block after the last bit test fails. This is because the
1760 // range check during bit test header creation has guaranteed that every
1761 // case here doesn't go outside the range. In this case, there is no need
1762 // to perform the last bit test, as it will always be true. Instead, make
1763 // the second-to-last bit-test fall through to the target of the last bit
1764 // test, and delete the last bit test.
1765
1766 MachineBasicBlock *NextMBB;
1767 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1768 // Second-to-last bit-test with contiguous range or omitted range
1769 // check: fall through to the target of the final bit test.
1770 NextMBB = BTB.Cases[j + 1].TargetBB;
1771 } else if (j + 1 == ej) {
1772 // For the last bit test, fall through to Default.
1773 NextMBB = BTB.Default;
1774 } else {
1775 // Otherwise, fall through to the next bit test.
1776 NextMBB = BTB.Cases[j + 1].ThisBB;
1777 }
1778
1779 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1780 FuncInfo->MBB);
1781
1782 CurDAG->setRoot(SDB->getRoot());
1783 SDB->clear();
1784 CodeGenAndEmitDAG();
1785
1786 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
1787 // Since we're not going to use the final bit test, remove it.
1788 BTB.Cases.pop_back();
1789 break;
1790 }
1791 }
1792
1793 // Update PHI Nodes
1794 for (const std::pair<MachineInstr *, unsigned> &P :
1795 FuncInfo->PHINodesToUpdate) {
1796 MachineInstrBuilder PHI(*MF, P.first);
1797 MachineBasicBlock *PHIBB = PHI->getParent();
1798 assert(PHI->isPHI() &&
1799 "This is not a machine PHI node that we are updating!");
1800 // This is "default" BB. We have two jumps to it. From "header" BB and
1801 // from last "case" BB, unless the latter was skipped.
1802 if (PHIBB == BTB.Default) {
1803 PHI.addReg(P.second).addMBB(BTB.Parent);
1804 if (!BTB.ContiguousRange) {
1805 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
1806 }
1807 }
1808 // One of "cases" BB.
1809 for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
1810 MachineBasicBlock* cBB = BT.ThisBB;
1811 if (cBB->isSuccessor(PHIBB))
1812 PHI.addReg(P.second).addMBB(cBB);
1813 }
1814 }
1815 }
1816 SDB->SL->BitTestCases.clear();
1817
1818 // If the JumpTable record is filled in, then we need to emit a jump table.
1819 // Updating the PHI nodes is tricky in this case, since we need to determine
1820 // whether the PHI is a successor of the range check MBB or the jump table MBB
1821 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1822 // Lower header first, if it wasn't already lowered
1823 if (!SDB->SL->JTCases[i].first.Emitted) {
1824 // Set the current basic block to the mbb we wish to insert the code into
1825 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1826 FuncInfo->InsertPt = FuncInfo->MBB->end();
1827 // Emit the code
1828 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1829 SDB->SL->JTCases[i].first, FuncInfo->MBB);
1830 CurDAG->setRoot(SDB->getRoot());
1831 SDB->clear();
1832 CodeGenAndEmitDAG();
1833 }
1834
1835 // Set the current basic block to the mbb we wish to insert the code into
1836 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1837 FuncInfo->InsertPt = FuncInfo->MBB->end();
1838 // Emit the code
1839 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1840 CurDAG->setRoot(SDB->getRoot());
1841 SDB->clear();
1842 CodeGenAndEmitDAG();
1843
1844 // Update PHI Nodes
1845 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1846 pi != pe; ++pi) {
1847 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1848 MachineBasicBlock *PHIBB = PHI->getParent();
1849 assert(PHI->isPHI() &&
1850 "This is not a machine PHI node that we are updating!");
1851 // "default" BB. We can go there only from header BB.
1852 if (PHIBB == SDB->SL->JTCases[i].second.Default)
1853 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1854 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1855 // JT BB. Just iterate over successors here
1856 if (FuncInfo->MBB->isSuccessor(PHIBB))
1857 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1858 }
1859 }
1860 SDB->SL->JTCases.clear();
1861
1862 // If we generated any switch lowering information, build and codegen any
1863 // additional DAGs necessary.
1864 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1865 // Set the current basic block to the mbb we wish to insert the code into
1866 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1867 FuncInfo->InsertPt = FuncInfo->MBB->end();
1868
1869 // Determine the unique successors.
1870 SmallVector<MachineBasicBlock *, 2> Succs;
1871 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1872 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1873 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1874
1875 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1876 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1877 CurDAG->setRoot(SDB->getRoot());
1878 SDB->clear();
1879 CodeGenAndEmitDAG();
1880
1881 // Remember the last block, now that any splitting is done, for use in
1882 // populating PHI nodes in successors.
1883 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1884
1885 // Handle any PHI nodes in successors of this chunk, as if we were coming
1886 // from the original BB before switch expansion. Note that PHI nodes can
1887 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1888 // handle them the right number of times.
1889 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1890 FuncInfo->MBB = Succs[i];
1891 FuncInfo->InsertPt = FuncInfo->MBB->end();
1892 // FuncInfo->MBB may have been removed from the CFG if a branch was
1893 // constant folded.
1894 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1895 for (MachineBasicBlock::iterator
1896 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1897 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1898 MachineInstrBuilder PHI(*MF, MBBI);
1899 // This value for this PHI node is recorded in PHINodesToUpdate.
1900 for (unsigned pn = 0; ; ++pn) {
1901 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1902 "Didn't find PHI entry!");
1903 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1904 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1905 break;
1906 }
1907 }
1908 }
1909 }
1910 }
1911 }
1912 SDB->SL->SwitchCases.clear();
1913 }
1914
1915 /// Create the scheduler. If a specific scheduler was specified
1916 /// via the SchedulerRegistry, use it, otherwise select the
1917 /// one preferred by the target.
1918 ///
CreateScheduler()1919 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1920 return ISHeuristic(this, OptLevel);
1921 }
1922
1923 //===----------------------------------------------------------------------===//
1924 // Helper functions used by the generated instruction selector.
1925 //===----------------------------------------------------------------------===//
1926 // Calls to these methods are generated by tblgen.
1927
1928 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1929 /// the dag combiner simplified the 255, we still want to match. RHS is the
1930 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1931 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1932 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1933 int64_t DesiredMaskS) const {
1934 const APInt &ActualMask = RHS->getAPIntValue();
1935 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1936
1937 // If the actual mask exactly matches, success!
1938 if (ActualMask == DesiredMask)
1939 return true;
1940
1941 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1942 if (!ActualMask.isSubsetOf(DesiredMask))
1943 return false;
1944
1945 // Otherwise, the DAG Combiner may have proven that the value coming in is
1946 // either already zero or is not demanded. Check for known zero input bits.
1947 APInt NeededMask = DesiredMask & ~ActualMask;
1948 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1949 return true;
1950
1951 // TODO: check to see if missing bits are just not demanded.
1952
1953 // Otherwise, this pattern doesn't match.
1954 return false;
1955 }
1956
1957 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1958 /// the dag combiner simplified the 255, we still want to match. RHS is the
1959 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1960 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1961 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1962 int64_t DesiredMaskS) const {
1963 const APInt &ActualMask = RHS->getAPIntValue();
1964 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1965
1966 // If the actual mask exactly matches, success!
1967 if (ActualMask == DesiredMask)
1968 return true;
1969
1970 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1971 if (!ActualMask.isSubsetOf(DesiredMask))
1972 return false;
1973
1974 // Otherwise, the DAG Combiner may have proven that the value coming in is
1975 // either already zero or is not demanded. Check for known zero input bits.
1976 APInt NeededMask = DesiredMask & ~ActualMask;
1977 KnownBits Known = CurDAG->computeKnownBits(LHS);
1978
1979 // If all the missing bits in the or are already known to be set, match!
1980 if (NeededMask.isSubsetOf(Known.One))
1981 return true;
1982
1983 // TODO: check to see if missing bits are just not demanded.
1984
1985 // Otherwise, this pattern doesn't match.
1986 return false;
1987 }
1988
1989 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1990 /// by tblgen. Others should not call it.
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops,const SDLoc & DL)1991 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
1992 const SDLoc &DL) {
1993 std::vector<SDValue> InOps;
1994 std::swap(InOps, Ops);
1995
1996 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1997 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1998 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1999 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2000
2001 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2002 if (InOps[e-1].getValueType() == MVT::Glue)
2003 --e; // Don't process a glue operand if it is here.
2004
2005 while (i != e) {
2006 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2007 if (!InlineAsm::isMemKind(Flags) && !InlineAsm::isFuncKind(Flags)) {
2008 // Just skip over this operand, copying the operands verbatim.
2009 Ops.insert(Ops.end(), InOps.begin()+i,
2010 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2011 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2012 } else {
2013 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2014 "Memory operand with multiple values?");
2015
2016 unsigned TiedToOperand;
2017 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2018 // We need the constraint ID from the operand this is tied to.
2019 unsigned CurOp = InlineAsm::Op_FirstOperand;
2020 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2021 for (; TiedToOperand; --TiedToOperand) {
2022 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2023 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2024 }
2025 }
2026
2027 // Otherwise, this is a memory operand. Ask the target to select it.
2028 std::vector<SDValue> SelOps;
2029 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2030 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2031 report_fatal_error("Could not match memory address. Inline asm"
2032 " failure!");
2033
2034 // Add this to the output node.
2035 unsigned NewFlags =
2036 InlineAsm::isMemKind(Flags)
2037 ? InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size())
2038 : InlineAsm::getFlagWord(InlineAsm::Kind_Func, SelOps.size());
2039 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2040 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2041 llvm::append_range(Ops, SelOps);
2042 i += 2;
2043 }
2044 }
2045
2046 // Add the glue input back if present.
2047 if (e != InOps.size())
2048 Ops.push_back(InOps.back());
2049 }
2050
2051 /// findGlueUse - Return use of MVT::Glue value produced by the specified
2052 /// SDNode.
2053 ///
findGlueUse(SDNode * N)2054 static SDNode *findGlueUse(SDNode *N) {
2055 unsigned FlagResNo = N->getNumValues()-1;
2056 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2057 SDUse &Use = I.getUse();
2058 if (Use.getResNo() == FlagResNo)
2059 return Use.getUser();
2060 }
2061 return nullptr;
2062 }
2063
2064 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2065 /// beyond "ImmedUse". We may ignore chains as they are checked separately.
findNonImmUse(SDNode * Root,SDNode * Def,SDNode * ImmedUse,bool IgnoreChains)2066 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2067 bool IgnoreChains) {
2068 SmallPtrSet<const SDNode *, 16> Visited;
2069 SmallVector<const SDNode *, 16> WorkList;
2070 // Only check if we have non-immediate uses of Def.
2071 if (ImmedUse->isOnlyUserOf(Def))
2072 return false;
2073
2074 // We don't care about paths to Def that go through ImmedUse so mark it
2075 // visited and mark non-def operands as used.
2076 Visited.insert(ImmedUse);
2077 for (const SDValue &Op : ImmedUse->op_values()) {
2078 SDNode *N = Op.getNode();
2079 // Ignore chain deps (they are validated by
2080 // HandleMergeInputChains) and immediate uses
2081 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2082 continue;
2083 if (!Visited.insert(N).second)
2084 continue;
2085 WorkList.push_back(N);
2086 }
2087
2088 // Initialize worklist to operands of Root.
2089 if (Root != ImmedUse) {
2090 for (const SDValue &Op : Root->op_values()) {
2091 SDNode *N = Op.getNode();
2092 // Ignore chains (they are validated by HandleMergeInputChains)
2093 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2094 continue;
2095 if (!Visited.insert(N).second)
2096 continue;
2097 WorkList.push_back(N);
2098 }
2099 }
2100
2101 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2102 }
2103
2104 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
2105 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const2106 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2107 SDNode *Root) const {
2108 if (OptLevel == CodeGenOpt::None) return false;
2109 return N.hasOneUse();
2110 }
2111
2112 /// IsLegalToFold - Returns true if the specific operand node N of
2113 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)2114 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2115 CodeGenOpt::Level OptLevel,
2116 bool IgnoreChains) {
2117 if (OptLevel == CodeGenOpt::None) return false;
2118
2119 // If Root use can somehow reach N through a path that that doesn't contain
2120 // U then folding N would create a cycle. e.g. In the following
2121 // diagram, Root can reach N through X. If N is folded into Root, then
2122 // X is both a predecessor and a successor of U.
2123 //
2124 // [N*] //
2125 // ^ ^ //
2126 // / \ //
2127 // [U*] [X]? //
2128 // ^ ^ //
2129 // \ / //
2130 // \ / //
2131 // [Root*] //
2132 //
2133 // * indicates nodes to be folded together.
2134 //
2135 // If Root produces glue, then it gets (even more) interesting. Since it
2136 // will be "glued" together with its glue use in the scheduler, we need to
2137 // check if it might reach N.
2138 //
2139 // [N*] //
2140 // ^ ^ //
2141 // / \ //
2142 // [U*] [X]? //
2143 // ^ ^ //
2144 // \ \ //
2145 // \ | //
2146 // [Root*] | //
2147 // ^ | //
2148 // f | //
2149 // | / //
2150 // [Y] / //
2151 // ^ / //
2152 // f / //
2153 // | / //
2154 // [GU] //
2155 //
2156 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2157 // (call it Fold), then X is a predecessor of GU and a successor of
2158 // Fold. But since Fold and GU are glued together, this will create
2159 // a cycle in the scheduling graph.
2160
2161 // If the node has glue, walk down the graph to the "lowest" node in the
2162 // glueged set.
2163 EVT VT = Root->getValueType(Root->getNumValues()-1);
2164 while (VT == MVT::Glue) {
2165 SDNode *GU = findGlueUse(Root);
2166 if (!GU)
2167 break;
2168 Root = GU;
2169 VT = Root->getValueType(Root->getNumValues()-1);
2170
2171 // If our query node has a glue result with a use, we've walked up it. If
2172 // the user (which has already been selected) has a chain or indirectly uses
2173 // the chain, HandleMergeInputChains will not consider it. Because of
2174 // this, we cannot ignore chains in this predicate.
2175 IgnoreChains = false;
2176 }
2177
2178 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2179 }
2180
Select_INLINEASM(SDNode * N)2181 void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2182 SDLoc DL(N);
2183
2184 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2185 SelectInlineAsmMemoryOperands(Ops, DL);
2186
2187 const EVT VTs[] = {MVT::Other, MVT::Glue};
2188 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2189 New->setNodeId(-1);
2190 ReplaceUses(N, New.getNode());
2191 CurDAG->RemoveDeadNode(N);
2192 }
2193
Select_READ_REGISTER(SDNode * Op)2194 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2195 SDLoc dl(Op);
2196 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2197 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2198
2199 EVT VT = Op->getValueType(0);
2200 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2201 Register Reg =
2202 TLI->getRegisterByName(RegStr->getString().data(), Ty,
2203 CurDAG->getMachineFunction());
2204 SDValue New = CurDAG->getCopyFromReg(
2205 Op->getOperand(0), dl, Reg, Op->getValueType(0));
2206 New->setNodeId(-1);
2207 ReplaceUses(Op, New.getNode());
2208 CurDAG->RemoveDeadNode(Op);
2209 }
2210
Select_WRITE_REGISTER(SDNode * Op)2211 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2212 SDLoc dl(Op);
2213 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2214 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2215
2216 EVT VT = Op->getOperand(2).getValueType();
2217 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2218
2219 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2220 CurDAG->getMachineFunction());
2221 SDValue New = CurDAG->getCopyToReg(
2222 Op->getOperand(0), dl, Reg, Op->getOperand(2));
2223 New->setNodeId(-1);
2224 ReplaceUses(Op, New.getNode());
2225 CurDAG->RemoveDeadNode(Op);
2226 }
2227
Select_UNDEF(SDNode * N)2228 void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2229 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2230 }
2231
Select_FREEZE(SDNode * N)2232 void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2233 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2234 // If FREEZE instruction is added later, the code below must be changed as
2235 // well.
2236 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2237 N->getOperand(0));
2238 }
2239
Select_ARITH_FENCE(SDNode * N)2240 void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2241 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2242 N->getOperand(0));
2243 }
2244
Select_MEMBARRIER(SDNode * N)2245 void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) {
2246 CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0),
2247 N->getOperand(0));
2248 }
2249
pushStackMapLiveVariable(SmallVectorImpl<SDValue> & Ops,SDValue OpVal,SDLoc DL)2250 void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2251 SDValue OpVal, SDLoc DL) {
2252 SDNode *OpNode = OpVal.getNode();
2253
2254 // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2255 // nodes at DAG-construction time.
2256 assert(OpNode->getOpcode() != ISD::FrameIndex);
2257
2258 if (OpNode->getOpcode() == ISD::Constant) {
2259 Ops.push_back(
2260 CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2261 Ops.push_back(
2262 CurDAG->getTargetConstant(cast<ConstantSDNode>(OpNode)->getZExtValue(),
2263 DL, OpVal.getValueType()));
2264 } else {
2265 Ops.push_back(OpVal);
2266 }
2267 }
2268
Select_STACKMAP(SDNode * N)2269 void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2270 SmallVector<SDValue, 32> Ops;
2271 auto *It = N->op_begin();
2272 SDLoc DL(N);
2273
2274 // Stash the chain and glue operands so we can move them to the end.
2275 SDValue Chain = *It++;
2276 SDValue InFlag = *It++;
2277
2278 // <id> operand.
2279 SDValue ID = *It++;
2280 assert(ID.getValueType() == MVT::i64);
2281 Ops.push_back(ID);
2282
2283 // <numShadowBytes> operand.
2284 SDValue Shad = *It++;
2285 assert(Shad.getValueType() == MVT::i32);
2286 Ops.push_back(Shad);
2287
2288 // Live variable operands.
2289 for (; It != N->op_end(); It++)
2290 pushStackMapLiveVariable(Ops, *It, DL);
2291
2292 Ops.push_back(Chain);
2293 Ops.push_back(InFlag);
2294
2295 SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2296 CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2297 }
2298
Select_PATCHPOINT(SDNode * N)2299 void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2300 SmallVector<SDValue, 32> Ops;
2301 auto *It = N->op_begin();
2302 SDLoc DL(N);
2303
2304 // Cache arguments that will be moved to the end in the target node.
2305 SDValue Chain = *It++;
2306 std::optional<SDValue> Glue;
2307 if (It->getValueType() == MVT::Glue)
2308 Glue = *It++;
2309 SDValue RegMask = *It++;
2310
2311 // <id> operand.
2312 SDValue ID = *It++;
2313 assert(ID.getValueType() == MVT::i64);
2314 Ops.push_back(ID);
2315
2316 // <numShadowBytes> operand.
2317 SDValue Shad = *It++;
2318 assert(Shad.getValueType() == MVT::i32);
2319 Ops.push_back(Shad);
2320
2321 // Add the callee.
2322 Ops.push_back(*It++);
2323
2324 // Add <numArgs>.
2325 SDValue NumArgs = *It++;
2326 assert(NumArgs.getValueType() == MVT::i32);
2327 Ops.push_back(NumArgs);
2328
2329 // Calling convention.
2330 Ops.push_back(*It++);
2331
2332 // Push the args for the call.
2333 for (uint64_t I = cast<ConstantSDNode>(NumArgs)->getZExtValue(); I != 0; I--)
2334 Ops.push_back(*It++);
2335
2336 // Now push the live variables.
2337 for (; It != N->op_end(); It++)
2338 pushStackMapLiveVariable(Ops, *It, DL);
2339
2340 // Finally, the regmask, chain and (if present) glue are moved to the end.
2341 Ops.push_back(RegMask);
2342 Ops.push_back(Chain);
2343 if (Glue.has_value())
2344 Ops.push_back(*Glue);
2345
2346 SDVTList NodeTys = N->getVTList();
2347 CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2348 }
2349
2350 /// GetVBR - decode a vbr encoding whose top bit is set.
2351 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2352 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2353 assert(Val >= 128 && "Not a VBR");
2354 Val &= 127; // Remove first vbr bit.
2355
2356 unsigned Shift = 7;
2357 uint64_t NextBits;
2358 do {
2359 NextBits = MatcherTable[Idx++];
2360 Val |= (NextBits&127) << Shift;
2361 Shift += 7;
2362 } while (NextBits & 128);
2363
2364 return Val;
2365 }
2366
2367 /// When a match is complete, this method updates uses of interior chain results
2368 /// to use the new results.
UpdateChains(SDNode * NodeToMatch,SDValue InputChain,SmallVectorImpl<SDNode * > & ChainNodesMatched,bool isMorphNodeTo)2369 void SelectionDAGISel::UpdateChains(
2370 SDNode *NodeToMatch, SDValue InputChain,
2371 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2372 SmallVector<SDNode*, 4> NowDeadNodes;
2373
2374 // Now that all the normal results are replaced, we replace the chain and
2375 // glue results if present.
2376 if (!ChainNodesMatched.empty()) {
2377 assert(InputChain.getNode() &&
2378 "Matched input chains but didn't produce a chain");
2379 // Loop over all of the nodes we matched that produced a chain result.
2380 // Replace all the chain results with the final chain we ended up with.
2381 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2382 SDNode *ChainNode = ChainNodesMatched[i];
2383 // If ChainNode is null, it's because we replaced it on a previous
2384 // iteration and we cleared it out of the map. Just skip it.
2385 if (!ChainNode)
2386 continue;
2387
2388 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2389 "Deleted node left in chain");
2390
2391 // Don't replace the results of the root node if we're doing a
2392 // MorphNodeTo.
2393 if (ChainNode == NodeToMatch && isMorphNodeTo)
2394 continue;
2395
2396 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2397 if (ChainVal.getValueType() == MVT::Glue)
2398 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2399 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2400 SelectionDAG::DAGNodeDeletedListener NDL(
2401 *CurDAG, [&](SDNode *N, SDNode *E) {
2402 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2403 static_cast<SDNode *>(nullptr));
2404 });
2405 if (ChainNode->getOpcode() != ISD::TokenFactor)
2406 ReplaceUses(ChainVal, InputChain);
2407
2408 // If the node became dead and we haven't already seen it, delete it.
2409 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2410 !llvm::is_contained(NowDeadNodes, ChainNode))
2411 NowDeadNodes.push_back(ChainNode);
2412 }
2413 }
2414
2415 if (!NowDeadNodes.empty())
2416 CurDAG->RemoveDeadNodes(NowDeadNodes);
2417
2418 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2419 }
2420
2421 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2422 /// operation for when the pattern matched at least one node with a chains. The
2423 /// input vector contains a list of all of the chained nodes that we match. We
2424 /// must determine if this is a valid thing to cover (i.e. matching it won't
2425 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2426 /// be used as the input node chain for the generated nodes.
2427 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2428 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2429 SelectionDAG *CurDAG) {
2430
2431 SmallPtrSet<const SDNode *, 16> Visited;
2432 SmallVector<const SDNode *, 8> Worklist;
2433 SmallVector<SDValue, 3> InputChains;
2434 unsigned int Max = 8192;
2435
2436 // Quick exit on trivial merge.
2437 if (ChainNodesMatched.size() == 1)
2438 return ChainNodesMatched[0]->getOperand(0);
2439
2440 // Add chains that aren't already added (internal). Peek through
2441 // token factors.
2442 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2443 if (V.getValueType() != MVT::Other)
2444 return;
2445 if (V->getOpcode() == ISD::EntryToken)
2446 return;
2447 if (!Visited.insert(V.getNode()).second)
2448 return;
2449 if (V->getOpcode() == ISD::TokenFactor) {
2450 for (const SDValue &Op : V->op_values())
2451 AddChains(Op);
2452 } else
2453 InputChains.push_back(V);
2454 };
2455
2456 for (auto *N : ChainNodesMatched) {
2457 Worklist.push_back(N);
2458 Visited.insert(N);
2459 }
2460
2461 while (!Worklist.empty())
2462 AddChains(Worklist.pop_back_val()->getOperand(0));
2463
2464 // Skip the search if there are no chain dependencies.
2465 if (InputChains.size() == 0)
2466 return CurDAG->getEntryNode();
2467
2468 // If one of these chains is a successor of input, we must have a
2469 // node that is both the predecessor and successor of the
2470 // to-be-merged nodes. Fail.
2471 Visited.clear();
2472 for (SDValue V : InputChains)
2473 Worklist.push_back(V.getNode());
2474
2475 for (auto *N : ChainNodesMatched)
2476 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2477 return SDValue();
2478
2479 // Return merged chain.
2480 if (InputChains.size() == 1)
2481 return InputChains[0];
2482 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2483 MVT::Other, InputChains);
2484 }
2485
2486 /// MorphNode - Handle morphing a node in place for the selector.
2487 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2488 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2489 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2490 // It is possible we're using MorphNodeTo to replace a node with no
2491 // normal results with one that has a normal result (or we could be
2492 // adding a chain) and the input could have glue and chains as well.
2493 // In this case we need to shift the operands down.
2494 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2495 // than the old isel though.
2496 int OldGlueResultNo = -1, OldChainResultNo = -1;
2497
2498 unsigned NTMNumResults = Node->getNumValues();
2499 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2500 OldGlueResultNo = NTMNumResults-1;
2501 if (NTMNumResults != 1 &&
2502 Node->getValueType(NTMNumResults-2) == MVT::Other)
2503 OldChainResultNo = NTMNumResults-2;
2504 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2505 OldChainResultNo = NTMNumResults-1;
2506
2507 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2508 // that this deletes operands of the old node that become dead.
2509 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2510
2511 // MorphNodeTo can operate in two ways: if an existing node with the
2512 // specified operands exists, it can just return it. Otherwise, it
2513 // updates the node in place to have the requested operands.
2514 if (Res == Node) {
2515 // If we updated the node in place, reset the node ID. To the isel,
2516 // this should be just like a newly allocated machine node.
2517 Res->setNodeId(-1);
2518 }
2519
2520 unsigned ResNumResults = Res->getNumValues();
2521 // Move the glue if needed.
2522 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2523 (unsigned)OldGlueResultNo != ResNumResults-1)
2524 ReplaceUses(SDValue(Node, OldGlueResultNo),
2525 SDValue(Res, ResNumResults - 1));
2526
2527 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2528 --ResNumResults;
2529
2530 // Move the chain reference if needed.
2531 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2532 (unsigned)OldChainResultNo != ResNumResults-1)
2533 ReplaceUses(SDValue(Node, OldChainResultNo),
2534 SDValue(Res, ResNumResults - 1));
2535
2536 // Otherwise, no replacement happened because the node already exists. Replace
2537 // Uses of the old node with the new one.
2538 if (Res != Node) {
2539 ReplaceNode(Node, Res);
2540 } else {
2541 EnforceNodeIdInvariant(Res);
2542 }
2543
2544 return Res;
2545 }
2546
2547 /// CheckSame - Implements OP_CheckSame.
2548 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2549 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2550 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2551 // Accept if it is exactly the same as a previously recorded node.
2552 unsigned RecNo = MatcherTable[MatcherIndex++];
2553 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2554 return N == RecordedNodes[RecNo].first;
2555 }
2556
2557 /// CheckChildSame - Implements OP_CheckChildXSame.
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2558 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame(
2559 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2560 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2561 unsigned ChildNo) {
2562 if (ChildNo >= N.getNumOperands())
2563 return false; // Match fails if out of range child #.
2564 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2565 RecordedNodes);
2566 }
2567
2568 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2569 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2570 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2571 const SelectionDAGISel &SDISel) {
2572 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2573 }
2574
2575 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2576 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2577 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2578 const SelectionDAGISel &SDISel, SDNode *N) {
2579 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2580 }
2581
2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2583 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2584 SDNode *N) {
2585 uint16_t Opc = MatcherTable[MatcherIndex++];
2586 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2587 return N->getOpcode() == Opc;
2588 }
2589
2590 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2591 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2592 const TargetLowering *TLI, const DataLayout &DL) {
2593 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2594 if (N.getValueType() == VT) return true;
2595
2596 // Handle the case when VT is iPTR.
2597 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2598 }
2599
2600 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL,unsigned ChildNo)2601 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2602 SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2603 unsigned ChildNo) {
2604 if (ChildNo >= N.getNumOperands())
2605 return false; // Match fails if out of range child #.
2606 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2607 DL);
2608 }
2609
2610 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2611 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2612 SDValue N) {
2613 return cast<CondCodeSDNode>(N)->get() ==
2614 (ISD::CondCode)MatcherTable[MatcherIndex++];
2615 }
2616
2617 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChild2CondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2618 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2619 SDValue N) {
2620 if (2 >= N.getNumOperands())
2621 return false;
2622 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2623 }
2624
2625 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,const DataLayout & DL)2626 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2627 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2628 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2629 if (cast<VTSDNode>(N)->getVT() == VT)
2630 return true;
2631
2632 // Handle the case when VT is iPTR.
2633 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2634 }
2635
2636 // Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
2637 // shifted left by 1.
decodeSignRotatedValue(uint64_t V)2638 static uint64_t decodeSignRotatedValue(uint64_t V) {
2639 if ((V & 1) == 0)
2640 return V >> 1;
2641 if (V != 1)
2642 return -(V >> 1);
2643 // There is no such thing as -0 with integers. "-0" really means MININT.
2644 return 1ULL << 63;
2645 }
2646
2647 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2648 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2649 SDValue N) {
2650 int64_t Val = MatcherTable[MatcherIndex++];
2651 if (Val & 128)
2652 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2653
2654 Val = decodeSignRotatedValue(Val);
2655
2656 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2657 return C && C->getSExtValue() == Val;
2658 }
2659
2660 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2661 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2662 SDValue N, unsigned ChildNo) {
2663 if (ChildNo >= N.getNumOperands())
2664 return false; // Match fails if out of range child #.
2665 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2666 }
2667
2668 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2669 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2670 SDValue N, const SelectionDAGISel &SDISel) {
2671 int64_t Val = MatcherTable[MatcherIndex++];
2672 if (Val & 128)
2673 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2674
2675 if (N->getOpcode() != ISD::AND) return false;
2676
2677 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2678 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2679 }
2680
2681 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2682 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2683 const SelectionDAGISel &SDISel) {
2684 int64_t Val = MatcherTable[MatcherIndex++];
2685 if (Val & 128)
2686 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2687
2688 if (N->getOpcode() != ISD::OR) return false;
2689
2690 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2691 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2692 }
2693
2694 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2695 /// scope, evaluate the current node. If the current predicate is known to
2696 /// fail, set Result=true and return anything. If the current predicate is
2697 /// known to pass, set Result=false and return the MatcherIndex to continue
2698 /// with. If the current predicate is unknown, set Result=false and return the
2699 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2700 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2701 unsigned Index, SDValue N,
2702 bool &Result,
2703 const SelectionDAGISel &SDISel,
2704 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2705 switch (Table[Index++]) {
2706 default:
2707 Result = false;
2708 return Index-1; // Could not evaluate this predicate.
2709 case SelectionDAGISel::OPC_CheckSame:
2710 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2711 return Index;
2712 case SelectionDAGISel::OPC_CheckChild0Same:
2713 case SelectionDAGISel::OPC_CheckChild1Same:
2714 case SelectionDAGISel::OPC_CheckChild2Same:
2715 case SelectionDAGISel::OPC_CheckChild3Same:
2716 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2717 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2718 return Index;
2719 case SelectionDAGISel::OPC_CheckPatternPredicate:
2720 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2721 return Index;
2722 case SelectionDAGISel::OPC_CheckPredicate:
2723 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2724 return Index;
2725 case SelectionDAGISel::OPC_CheckOpcode:
2726 Result = !::CheckOpcode(Table, Index, N.getNode());
2727 return Index;
2728 case SelectionDAGISel::OPC_CheckType:
2729 Result = !::CheckType(Table, Index, N, SDISel.TLI,
2730 SDISel.CurDAG->getDataLayout());
2731 return Index;
2732 case SelectionDAGISel::OPC_CheckTypeRes: {
2733 unsigned Res = Table[Index++];
2734 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2735 SDISel.CurDAG->getDataLayout());
2736 return Index;
2737 }
2738 case SelectionDAGISel::OPC_CheckChild0Type:
2739 case SelectionDAGISel::OPC_CheckChild1Type:
2740 case SelectionDAGISel::OPC_CheckChild2Type:
2741 case SelectionDAGISel::OPC_CheckChild3Type:
2742 case SelectionDAGISel::OPC_CheckChild4Type:
2743 case SelectionDAGISel::OPC_CheckChild5Type:
2744 case SelectionDAGISel::OPC_CheckChild6Type:
2745 case SelectionDAGISel::OPC_CheckChild7Type:
2746 Result = !::CheckChildType(
2747 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2748 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2749 return Index;
2750 case SelectionDAGISel::OPC_CheckCondCode:
2751 Result = !::CheckCondCode(Table, Index, N);
2752 return Index;
2753 case SelectionDAGISel::OPC_CheckChild2CondCode:
2754 Result = !::CheckChild2CondCode(Table, Index, N);
2755 return Index;
2756 case SelectionDAGISel::OPC_CheckValueType:
2757 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2758 SDISel.CurDAG->getDataLayout());
2759 return Index;
2760 case SelectionDAGISel::OPC_CheckInteger:
2761 Result = !::CheckInteger(Table, Index, N);
2762 return Index;
2763 case SelectionDAGISel::OPC_CheckChild0Integer:
2764 case SelectionDAGISel::OPC_CheckChild1Integer:
2765 case SelectionDAGISel::OPC_CheckChild2Integer:
2766 case SelectionDAGISel::OPC_CheckChild3Integer:
2767 case SelectionDAGISel::OPC_CheckChild4Integer:
2768 Result = !::CheckChildInteger(Table, Index, N,
2769 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2770 return Index;
2771 case SelectionDAGISel::OPC_CheckAndImm:
2772 Result = !::CheckAndImm(Table, Index, N, SDISel);
2773 return Index;
2774 case SelectionDAGISel::OPC_CheckOrImm:
2775 Result = !::CheckOrImm(Table, Index, N, SDISel);
2776 return Index;
2777 }
2778 }
2779
2780 namespace {
2781
2782 struct MatchScope {
2783 /// FailIndex - If this match fails, this is the index to continue with.
2784 unsigned FailIndex;
2785
2786 /// NodeStack - The node stack when the scope was formed.
2787 SmallVector<SDValue, 4> NodeStack;
2788
2789 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2790 unsigned NumRecordedNodes;
2791
2792 /// NumMatchedMemRefs - The number of matched memref entries.
2793 unsigned NumMatchedMemRefs;
2794
2795 /// InputChain/InputGlue - The current chain/glue
2796 SDValue InputChain, InputGlue;
2797
2798 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2799 bool HasChainNodesMatched;
2800 };
2801
2802 /// \A DAG update listener to keep the matching state
2803 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2804 /// change the DAG while matching. X86 addressing mode matcher is an example
2805 /// for this.
2806 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2807 {
2808 SDNode **NodeToMatch;
2809 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2810 SmallVectorImpl<MatchScope> &MatchScopes;
2811
2812 public:
MatchStateUpdater(SelectionDAG & DAG,SDNode ** NodeToMatch,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2813 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2814 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2815 SmallVectorImpl<MatchScope> &MS)
2816 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2817 RecordedNodes(RN), MatchScopes(MS) {}
2818
NodeDeleted(SDNode * N,SDNode * E)2819 void NodeDeleted(SDNode *N, SDNode *E) override {
2820 // Some early-returns here to avoid the search if we deleted the node or
2821 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2822 // do, so it's unnecessary to update matching state at that point).
2823 // Neither of these can occur currently because we only install this
2824 // update listener during matching a complex patterns.
2825 if (!E || E->isMachineOpcode())
2826 return;
2827 // Check if NodeToMatch was updated.
2828 if (N == *NodeToMatch)
2829 *NodeToMatch = E;
2830 // Performing linear search here does not matter because we almost never
2831 // run this code. You'd have to have a CSE during complex pattern
2832 // matching.
2833 for (auto &I : RecordedNodes)
2834 if (I.first.getNode() == N)
2835 I.first.setNode(E);
2836
2837 for (auto &I : MatchScopes)
2838 for (auto &J : I.NodeStack)
2839 if (J.getNode() == N)
2840 J.setNode(E);
2841 }
2842 };
2843
2844 } // end anonymous namespace
2845
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2846 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2847 const unsigned char *MatcherTable,
2848 unsigned TableSize) {
2849 // FIXME: Should these even be selected? Handle these cases in the caller?
2850 switch (NodeToMatch->getOpcode()) {
2851 default:
2852 break;
2853 case ISD::EntryToken: // These nodes remain the same.
2854 case ISD::BasicBlock:
2855 case ISD::Register:
2856 case ISD::RegisterMask:
2857 case ISD::HANDLENODE:
2858 case ISD::MDNODE_SDNODE:
2859 case ISD::TargetConstant:
2860 case ISD::TargetConstantFP:
2861 case ISD::TargetConstantPool:
2862 case ISD::TargetFrameIndex:
2863 case ISD::TargetExternalSymbol:
2864 case ISD::MCSymbol:
2865 case ISD::TargetBlockAddress:
2866 case ISD::TargetJumpTable:
2867 case ISD::TargetGlobalTLSAddress:
2868 case ISD::TargetGlobalAddress:
2869 case ISD::TokenFactor:
2870 case ISD::CopyFromReg:
2871 case ISD::CopyToReg:
2872 case ISD::EH_LABEL:
2873 case ISD::ANNOTATION_LABEL:
2874 case ISD::LIFETIME_START:
2875 case ISD::LIFETIME_END:
2876 case ISD::PSEUDO_PROBE:
2877 NodeToMatch->setNodeId(-1); // Mark selected.
2878 return;
2879 case ISD::AssertSext:
2880 case ISD::AssertZext:
2881 case ISD::AssertAlign:
2882 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2883 CurDAG->RemoveDeadNode(NodeToMatch);
2884 return;
2885 case ISD::INLINEASM:
2886 case ISD::INLINEASM_BR:
2887 Select_INLINEASM(NodeToMatch);
2888 return;
2889 case ISD::READ_REGISTER:
2890 Select_READ_REGISTER(NodeToMatch);
2891 return;
2892 case ISD::WRITE_REGISTER:
2893 Select_WRITE_REGISTER(NodeToMatch);
2894 return;
2895 case ISD::UNDEF:
2896 Select_UNDEF(NodeToMatch);
2897 return;
2898 case ISD::FREEZE:
2899 Select_FREEZE(NodeToMatch);
2900 return;
2901 case ISD::ARITH_FENCE:
2902 Select_ARITH_FENCE(NodeToMatch);
2903 return;
2904 case ISD::MEMBARRIER:
2905 Select_MEMBARRIER(NodeToMatch);
2906 return;
2907 case ISD::STACKMAP:
2908 Select_STACKMAP(NodeToMatch);
2909 return;
2910 case ISD::PATCHPOINT:
2911 Select_PATCHPOINT(NodeToMatch);
2912 return;
2913 }
2914
2915 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2916
2917 // Set up the node stack with NodeToMatch as the only node on the stack.
2918 SmallVector<SDValue, 8> NodeStack;
2919 SDValue N = SDValue(NodeToMatch, 0);
2920 NodeStack.push_back(N);
2921
2922 // MatchScopes - Scopes used when matching, if a match failure happens, this
2923 // indicates where to continue checking.
2924 SmallVector<MatchScope, 8> MatchScopes;
2925
2926 // RecordedNodes - This is the set of nodes that have been recorded by the
2927 // state machine. The second value is the parent of the node, or null if the
2928 // root is recorded.
2929 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2930
2931 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2932 // pattern.
2933 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2934
2935 // These are the current input chain and glue for use when generating nodes.
2936 // Various Emit operations change these. For example, emitting a copytoreg
2937 // uses and updates these.
2938 SDValue InputChain, InputGlue;
2939
2940 // ChainNodesMatched - If a pattern matches nodes that have input/output
2941 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2942 // which ones they are. The result is captured into this list so that we can
2943 // update the chain results when the pattern is complete.
2944 SmallVector<SDNode*, 3> ChainNodesMatched;
2945
2946 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2947
2948 // Determine where to start the interpreter. Normally we start at opcode #0,
2949 // but if the state machine starts with an OPC_SwitchOpcode, then we
2950 // accelerate the first lookup (which is guaranteed to be hot) with the
2951 // OpcodeOffset table.
2952 unsigned MatcherIndex = 0;
2953
2954 if (!OpcodeOffset.empty()) {
2955 // Already computed the OpcodeOffset table, just index into it.
2956 if (N.getOpcode() < OpcodeOffset.size())
2957 MatcherIndex = OpcodeOffset[N.getOpcode()];
2958 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2959
2960 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2961 // Otherwise, the table isn't computed, but the state machine does start
2962 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2963 // is the first time we're selecting an instruction.
2964 unsigned Idx = 1;
2965 while (true) {
2966 // Get the size of this case.
2967 unsigned CaseSize = MatcherTable[Idx++];
2968 if (CaseSize & 128)
2969 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2970 if (CaseSize == 0) break;
2971
2972 // Get the opcode, add the index to the table.
2973 uint16_t Opc = MatcherTable[Idx++];
2974 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2975 if (Opc >= OpcodeOffset.size())
2976 OpcodeOffset.resize((Opc+1)*2);
2977 OpcodeOffset[Opc] = Idx;
2978 Idx += CaseSize;
2979 }
2980
2981 // Okay, do the lookup for the first opcode.
2982 if (N.getOpcode() < OpcodeOffset.size())
2983 MatcherIndex = OpcodeOffset[N.getOpcode()];
2984 }
2985
2986 while (true) {
2987 assert(MatcherIndex < TableSize && "Invalid index");
2988 #ifndef NDEBUG
2989 unsigned CurrentOpcodeIndex = MatcherIndex;
2990 #endif
2991 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2992 switch (Opcode) {
2993 case OPC_Scope: {
2994 // Okay, the semantics of this operation are that we should push a scope
2995 // then evaluate the first child. However, pushing a scope only to have
2996 // the first check fail (which then pops it) is inefficient. If we can
2997 // determine immediately that the first check (or first several) will
2998 // immediately fail, don't even bother pushing a scope for them.
2999 unsigned FailIndex;
3000
3001 while (true) {
3002 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3003 if (NumToSkip & 128)
3004 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3005 // Found the end of the scope with no match.
3006 if (NumToSkip == 0) {
3007 FailIndex = 0;
3008 break;
3009 }
3010
3011 FailIndex = MatcherIndex+NumToSkip;
3012
3013 unsigned MatcherIndexOfPredicate = MatcherIndex;
3014 (void)MatcherIndexOfPredicate; // silence warning.
3015
3016 // If we can't evaluate this predicate without pushing a scope (e.g. if
3017 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3018 // push the scope and evaluate the full predicate chain.
3019 bool Result;
3020 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3021 Result, *this, RecordedNodes);
3022 if (!Result)
3023 break;
3024
3025 LLVM_DEBUG(
3026 dbgs() << " Skipped scope entry (due to false predicate) at "
3027 << "index " << MatcherIndexOfPredicate << ", continuing at "
3028 << FailIndex << "\n");
3029 ++NumDAGIselRetries;
3030
3031 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3032 // move to the next case.
3033 MatcherIndex = FailIndex;
3034 }
3035
3036 // If the whole scope failed to match, bail.
3037 if (FailIndex == 0) break;
3038
3039 // Push a MatchScope which indicates where to go if the first child fails
3040 // to match.
3041 MatchScope NewEntry;
3042 NewEntry.FailIndex = FailIndex;
3043 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3044 NewEntry.NumRecordedNodes = RecordedNodes.size();
3045 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3046 NewEntry.InputChain = InputChain;
3047 NewEntry.InputGlue = InputGlue;
3048 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3049 MatchScopes.push_back(NewEntry);
3050 continue;
3051 }
3052 case OPC_RecordNode: {
3053 // Remember this node, it may end up being an operand in the pattern.
3054 SDNode *Parent = nullptr;
3055 if (NodeStack.size() > 1)
3056 Parent = NodeStack[NodeStack.size()-2].getNode();
3057 RecordedNodes.push_back(std::make_pair(N, Parent));
3058 continue;
3059 }
3060
3061 case OPC_RecordChild0: case OPC_RecordChild1:
3062 case OPC_RecordChild2: case OPC_RecordChild3:
3063 case OPC_RecordChild4: case OPC_RecordChild5:
3064 case OPC_RecordChild6: case OPC_RecordChild7: {
3065 unsigned ChildNo = Opcode-OPC_RecordChild0;
3066 if (ChildNo >= N.getNumOperands())
3067 break; // Match fails if out of range child #.
3068
3069 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3070 N.getNode()));
3071 continue;
3072 }
3073 case OPC_RecordMemRef:
3074 if (auto *MN = dyn_cast<MemSDNode>(N))
3075 MatchedMemRefs.push_back(MN->getMemOperand());
3076 else {
3077 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3078 dbgs() << '\n');
3079 }
3080
3081 continue;
3082
3083 case OPC_CaptureGlueInput:
3084 // If the current node has an input glue, capture it in InputGlue.
3085 if (N->getNumOperands() != 0 &&
3086 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3087 InputGlue = N->getOperand(N->getNumOperands()-1);
3088 continue;
3089
3090 case OPC_MoveChild: {
3091 unsigned ChildNo = MatcherTable[MatcherIndex++];
3092 if (ChildNo >= N.getNumOperands())
3093 break; // Match fails if out of range child #.
3094 N = N.getOperand(ChildNo);
3095 NodeStack.push_back(N);
3096 continue;
3097 }
3098
3099 case OPC_MoveChild0: case OPC_MoveChild1:
3100 case OPC_MoveChild2: case OPC_MoveChild3:
3101 case OPC_MoveChild4: case OPC_MoveChild5:
3102 case OPC_MoveChild6: case OPC_MoveChild7: {
3103 unsigned ChildNo = Opcode-OPC_MoveChild0;
3104 if (ChildNo >= N.getNumOperands())
3105 break; // Match fails if out of range child #.
3106 N = N.getOperand(ChildNo);
3107 NodeStack.push_back(N);
3108 continue;
3109 }
3110
3111 case OPC_MoveParent:
3112 // Pop the current node off the NodeStack.
3113 NodeStack.pop_back();
3114 assert(!NodeStack.empty() && "Node stack imbalance!");
3115 N = NodeStack.back();
3116 continue;
3117
3118 case OPC_CheckSame:
3119 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3120 continue;
3121
3122 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3123 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3124 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3125 Opcode-OPC_CheckChild0Same))
3126 break;
3127 continue;
3128
3129 case OPC_CheckPatternPredicate:
3130 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3131 continue;
3132 case OPC_CheckPredicate:
3133 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3134 N.getNode()))
3135 break;
3136 continue;
3137 case OPC_CheckPredicateWithOperands: {
3138 unsigned OpNum = MatcherTable[MatcherIndex++];
3139 SmallVector<SDValue, 8> Operands;
3140
3141 for (unsigned i = 0; i < OpNum; ++i)
3142 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3143
3144 unsigned PredNo = MatcherTable[MatcherIndex++];
3145 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3146 break;
3147 continue;
3148 }
3149 case OPC_CheckComplexPat: {
3150 unsigned CPNum = MatcherTable[MatcherIndex++];
3151 unsigned RecNo = MatcherTable[MatcherIndex++];
3152 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3153
3154 // If target can modify DAG during matching, keep the matching state
3155 // consistent.
3156 std::unique_ptr<MatchStateUpdater> MSU;
3157 if (ComplexPatternFuncMutatesDAG())
3158 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3159 MatchScopes));
3160
3161 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3162 RecordedNodes[RecNo].first, CPNum,
3163 RecordedNodes))
3164 break;
3165 continue;
3166 }
3167 case OPC_CheckOpcode:
3168 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3169 continue;
3170
3171 case OPC_CheckType:
3172 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3173 CurDAG->getDataLayout()))
3174 break;
3175 continue;
3176
3177 case OPC_CheckTypeRes: {
3178 unsigned Res = MatcherTable[MatcherIndex++];
3179 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3180 CurDAG->getDataLayout()))
3181 break;
3182 continue;
3183 }
3184
3185 case OPC_SwitchOpcode: {
3186 unsigned CurNodeOpcode = N.getOpcode();
3187 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3188 unsigned CaseSize;
3189 while (true) {
3190 // Get the size of this case.
3191 CaseSize = MatcherTable[MatcherIndex++];
3192 if (CaseSize & 128)
3193 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3194 if (CaseSize == 0) break;
3195
3196 uint16_t Opc = MatcherTable[MatcherIndex++];
3197 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3198
3199 // If the opcode matches, then we will execute this case.
3200 if (CurNodeOpcode == Opc)
3201 break;
3202
3203 // Otherwise, skip over this case.
3204 MatcherIndex += CaseSize;
3205 }
3206
3207 // If no cases matched, bail out.
3208 if (CaseSize == 0) break;
3209
3210 // Otherwise, execute the case we found.
3211 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3212 << MatcherIndex << "\n");
3213 continue;
3214 }
3215
3216 case OPC_SwitchType: {
3217 MVT CurNodeVT = N.getSimpleValueType();
3218 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3219 unsigned CaseSize;
3220 while (true) {
3221 // Get the size of this case.
3222 CaseSize = MatcherTable[MatcherIndex++];
3223 if (CaseSize & 128)
3224 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3225 if (CaseSize == 0) break;
3226
3227 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3228 if (CaseVT == MVT::iPTR)
3229 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3230
3231 // If the VT matches, then we will execute this case.
3232 if (CurNodeVT == CaseVT)
3233 break;
3234
3235 // Otherwise, skip over this case.
3236 MatcherIndex += CaseSize;
3237 }
3238
3239 // If no cases matched, bail out.
3240 if (CaseSize == 0) break;
3241
3242 // Otherwise, execute the case we found.
3243 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3244 << "] from " << SwitchStart << " to " << MatcherIndex
3245 << '\n');
3246 continue;
3247 }
3248 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3249 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3250 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3251 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3252 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3253 CurDAG->getDataLayout(),
3254 Opcode - OPC_CheckChild0Type))
3255 break;
3256 continue;
3257 case OPC_CheckCondCode:
3258 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3259 continue;
3260 case OPC_CheckChild2CondCode:
3261 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3262 continue;
3263 case OPC_CheckValueType:
3264 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3265 CurDAG->getDataLayout()))
3266 break;
3267 continue;
3268 case OPC_CheckInteger:
3269 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3270 continue;
3271 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3272 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3273 case OPC_CheckChild4Integer:
3274 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3275 Opcode-OPC_CheckChild0Integer)) break;
3276 continue;
3277 case OPC_CheckAndImm:
3278 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3279 continue;
3280 case OPC_CheckOrImm:
3281 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3282 continue;
3283 case OPC_CheckImmAllOnesV:
3284 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3285 break;
3286 continue;
3287 case OPC_CheckImmAllZerosV:
3288 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3289 break;
3290 continue;
3291
3292 case OPC_CheckFoldableChainNode: {
3293 assert(NodeStack.size() != 1 && "No parent node");
3294 // Verify that all intermediate nodes between the root and this one have
3295 // a single use (ignoring chains, which are handled in UpdateChains).
3296 bool HasMultipleUses = false;
3297 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3298 unsigned NNonChainUses = 0;
3299 SDNode *NS = NodeStack[i].getNode();
3300 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3301 if (UI.getUse().getValueType() != MVT::Other)
3302 if (++NNonChainUses > 1) {
3303 HasMultipleUses = true;
3304 break;
3305 }
3306 if (HasMultipleUses) break;
3307 }
3308 if (HasMultipleUses) break;
3309
3310 // Check to see that the target thinks this is profitable to fold and that
3311 // we can fold it without inducing cycles in the graph.
3312 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3313 NodeToMatch) ||
3314 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3315 NodeToMatch, OptLevel,
3316 true/*We validate our own chains*/))
3317 break;
3318
3319 continue;
3320 }
3321 case OPC_EmitInteger:
3322 case OPC_EmitStringInteger: {
3323 MVT::SimpleValueType VT =
3324 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3325 int64_t Val = MatcherTable[MatcherIndex++];
3326 if (Val & 128)
3327 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3328 if (Opcode == OPC_EmitInteger)
3329 Val = decodeSignRotatedValue(Val);
3330 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3331 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3332 VT), nullptr));
3333 continue;
3334 }
3335 case OPC_EmitRegister: {
3336 MVT::SimpleValueType VT =
3337 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3338 unsigned RegNo = MatcherTable[MatcherIndex++];
3339 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3340 CurDAG->getRegister(RegNo, VT), nullptr));
3341 continue;
3342 }
3343 case OPC_EmitRegister2: {
3344 // For targets w/ more than 256 register names, the register enum
3345 // values are stored in two bytes in the matcher table (just like
3346 // opcodes).
3347 MVT::SimpleValueType VT =
3348 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3349 unsigned RegNo = MatcherTable[MatcherIndex++];
3350 RegNo |= MatcherTable[MatcherIndex++] << 8;
3351 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3352 CurDAG->getRegister(RegNo, VT), nullptr));
3353 continue;
3354 }
3355
3356 case OPC_EmitConvertToTarget: {
3357 // Convert from IMM/FPIMM to target version.
3358 unsigned RecNo = MatcherTable[MatcherIndex++];
3359 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3360 SDValue Imm = RecordedNodes[RecNo].first;
3361
3362 if (Imm->getOpcode() == ISD::Constant) {
3363 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3364 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3365 Imm.getValueType());
3366 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3367 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3368 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3369 Imm.getValueType());
3370 }
3371
3372 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3373 continue;
3374 }
3375
3376 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3377 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3378 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3379 // These are space-optimized forms of OPC_EmitMergeInputChains.
3380 assert(!InputChain.getNode() &&
3381 "EmitMergeInputChains should be the first chain producing node");
3382 assert(ChainNodesMatched.empty() &&
3383 "Should only have one EmitMergeInputChains per match");
3384
3385 // Read all of the chained nodes.
3386 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3387 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3388 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3389
3390 // If the chained node is not the root, we can't fold it if it has
3391 // multiple uses.
3392 // FIXME: What if other value results of the node have uses not matched
3393 // by this pattern?
3394 if (ChainNodesMatched.back() != NodeToMatch &&
3395 !RecordedNodes[RecNo].first.hasOneUse()) {
3396 ChainNodesMatched.clear();
3397 break;
3398 }
3399
3400 // Merge the input chains if they are not intra-pattern references.
3401 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3402
3403 if (!InputChain.getNode())
3404 break; // Failed to merge.
3405 continue;
3406 }
3407
3408 case OPC_EmitMergeInputChains: {
3409 assert(!InputChain.getNode() &&
3410 "EmitMergeInputChains should be the first chain producing node");
3411 // This node gets a list of nodes we matched in the input that have
3412 // chains. We want to token factor all of the input chains to these nodes
3413 // together. However, if any of the input chains is actually one of the
3414 // nodes matched in this pattern, then we have an intra-match reference.
3415 // Ignore these because the newly token factored chain should not refer to
3416 // the old nodes.
3417 unsigned NumChains = MatcherTable[MatcherIndex++];
3418 assert(NumChains != 0 && "Can't TF zero chains");
3419
3420 assert(ChainNodesMatched.empty() &&
3421 "Should only have one EmitMergeInputChains per match");
3422
3423 // Read all of the chained nodes.
3424 for (unsigned i = 0; i != NumChains; ++i) {
3425 unsigned RecNo = MatcherTable[MatcherIndex++];
3426 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3427 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3428
3429 // If the chained node is not the root, we can't fold it if it has
3430 // multiple uses.
3431 // FIXME: What if other value results of the node have uses not matched
3432 // by this pattern?
3433 if (ChainNodesMatched.back() != NodeToMatch &&
3434 !RecordedNodes[RecNo].first.hasOneUse()) {
3435 ChainNodesMatched.clear();
3436 break;
3437 }
3438 }
3439
3440 // If the inner loop broke out, the match fails.
3441 if (ChainNodesMatched.empty())
3442 break;
3443
3444 // Merge the input chains if they are not intra-pattern references.
3445 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3446
3447 if (!InputChain.getNode())
3448 break; // Failed to merge.
3449
3450 continue;
3451 }
3452
3453 case OPC_EmitCopyToReg:
3454 case OPC_EmitCopyToReg2: {
3455 unsigned RecNo = MatcherTable[MatcherIndex++];
3456 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3457 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3458 if (Opcode == OPC_EmitCopyToReg2)
3459 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3460
3461 if (!InputChain.getNode())
3462 InputChain = CurDAG->getEntryNode();
3463
3464 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3465 DestPhysReg, RecordedNodes[RecNo].first,
3466 InputGlue);
3467
3468 InputGlue = InputChain.getValue(1);
3469 continue;
3470 }
3471
3472 case OPC_EmitNodeXForm: {
3473 unsigned XFormNo = MatcherTable[MatcherIndex++];
3474 unsigned RecNo = MatcherTable[MatcherIndex++];
3475 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3476 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3477 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3478 continue;
3479 }
3480 case OPC_Coverage: {
3481 // This is emitted right before MorphNode/EmitNode.
3482 // So it should be safe to assume that this node has been selected
3483 unsigned index = MatcherTable[MatcherIndex++];
3484 index |= (MatcherTable[MatcherIndex++] << 8);
3485 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3486 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3487 continue;
3488 }
3489
3490 case OPC_EmitNode: case OPC_MorphNodeTo:
3491 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
3492 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3493 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3494 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3495 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3496 // Get the result VT list.
3497 unsigned NumVTs;
3498 // If this is one of the compressed forms, get the number of VTs based
3499 // on the Opcode. Otherwise read the next byte from the table.
3500 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3501 NumVTs = Opcode - OPC_MorphNodeTo0;
3502 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3503 NumVTs = Opcode - OPC_EmitNode0;
3504 else
3505 NumVTs = MatcherTable[MatcherIndex++];
3506 SmallVector<EVT, 4> VTs;
3507 for (unsigned i = 0; i != NumVTs; ++i) {
3508 MVT::SimpleValueType VT =
3509 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3510 if (VT == MVT::iPTR)
3511 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3512 VTs.push_back(VT);
3513 }
3514
3515 if (EmitNodeInfo & OPFL_Chain)
3516 VTs.push_back(MVT::Other);
3517 if (EmitNodeInfo & OPFL_GlueOutput)
3518 VTs.push_back(MVT::Glue);
3519
3520 // This is hot code, so optimize the two most common cases of 1 and 2
3521 // results.
3522 SDVTList VTList;
3523 if (VTs.size() == 1)
3524 VTList = CurDAG->getVTList(VTs[0]);
3525 else if (VTs.size() == 2)
3526 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3527 else
3528 VTList = CurDAG->getVTList(VTs);
3529
3530 // Get the operand list.
3531 unsigned NumOps = MatcherTable[MatcherIndex++];
3532 SmallVector<SDValue, 8> Ops;
3533 for (unsigned i = 0; i != NumOps; ++i) {
3534 unsigned RecNo = MatcherTable[MatcherIndex++];
3535 if (RecNo & 128)
3536 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3537
3538 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3539 Ops.push_back(RecordedNodes[RecNo].first);
3540 }
3541
3542 // If there are variadic operands to add, handle them now.
3543 if (EmitNodeInfo & OPFL_VariadicInfo) {
3544 // Determine the start index to copy from.
3545 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3546 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3547 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3548 "Invalid variadic node");
3549 // Copy all of the variadic operands, not including a potential glue
3550 // input.
3551 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3552 i != e; ++i) {
3553 SDValue V = NodeToMatch->getOperand(i);
3554 if (V.getValueType() == MVT::Glue) break;
3555 Ops.push_back(V);
3556 }
3557 }
3558
3559 // If this has chain/glue inputs, add them.
3560 if (EmitNodeInfo & OPFL_Chain)
3561 Ops.push_back(InputChain);
3562 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3563 Ops.push_back(InputGlue);
3564
3565 // Check whether any matched node could raise an FP exception. Since all
3566 // such nodes must have a chain, it suffices to check ChainNodesMatched.
3567 // We need to perform this check before potentially modifying one of the
3568 // nodes via MorphNode.
3569 bool MayRaiseFPException =
3570 llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
3571 return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
3572 });
3573
3574 // Create the node.
3575 MachineSDNode *Res = nullptr;
3576 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3577 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3578 if (!IsMorphNodeTo) {
3579 // If this is a normal EmitNode command, just create the new node and
3580 // add the results to the RecordedNodes list.
3581 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3582 VTList, Ops);
3583
3584 // Add all the non-glue/non-chain results to the RecordedNodes list.
3585 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3586 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3587 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3588 nullptr));
3589 }
3590 } else {
3591 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3592 "NodeToMatch was removed partway through selection");
3593 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3594 SDNode *E) {
3595 CurDAG->salvageDebugInfo(*N);
3596 auto &Chain = ChainNodesMatched;
3597 assert((!E || !is_contained(Chain, N)) &&
3598 "Chain node replaced during MorphNode");
3599 llvm::erase_value(Chain, N);
3600 });
3601 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3602 Ops, EmitNodeInfo));
3603 }
3604
3605 // Set the NoFPExcept flag when no original matched node could
3606 // raise an FP exception, but the new node potentially might.
3607 if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3608 SDNodeFlags Flags = Res->getFlags();
3609 Flags.setNoFPExcept(true);
3610 Res->setFlags(Flags);
3611 }
3612
3613 // If the node had chain/glue results, update our notion of the current
3614 // chain and glue.
3615 if (EmitNodeInfo & OPFL_GlueOutput) {
3616 InputGlue = SDValue(Res, VTs.size()-1);
3617 if (EmitNodeInfo & OPFL_Chain)
3618 InputChain = SDValue(Res, VTs.size()-2);
3619 } else if (EmitNodeInfo & OPFL_Chain)
3620 InputChain = SDValue(Res, VTs.size()-1);
3621
3622 // If the OPFL_MemRefs glue is set on this node, slap all of the
3623 // accumulated memrefs onto it.
3624 //
3625 // FIXME: This is vastly incorrect for patterns with multiple outputs
3626 // instructions that access memory and for ComplexPatterns that match
3627 // loads.
3628 if (EmitNodeInfo & OPFL_MemRefs) {
3629 // Only attach load or store memory operands if the generated
3630 // instruction may load or store.
3631 const MCInstrDesc &MCID = TII->get(TargetOpc);
3632 bool mayLoad = MCID.mayLoad();
3633 bool mayStore = MCID.mayStore();
3634
3635 // We expect to have relatively few of these so just filter them into a
3636 // temporary buffer so that we can easily add them to the instruction.
3637 SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3638 for (MachineMemOperand *MMO : MatchedMemRefs) {
3639 if (MMO->isLoad()) {
3640 if (mayLoad)
3641 FilteredMemRefs.push_back(MMO);
3642 } else if (MMO->isStore()) {
3643 if (mayStore)
3644 FilteredMemRefs.push_back(MMO);
3645 } else {
3646 FilteredMemRefs.push_back(MMO);
3647 }
3648 }
3649
3650 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3651 }
3652
3653 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3654 << " Dropping mem operands\n";
3655 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
3656 << " node: ";
3657 Res->dump(CurDAG););
3658
3659 // If this was a MorphNodeTo then we're completely done!
3660 if (IsMorphNodeTo) {
3661 // Update chain uses.
3662 UpdateChains(Res, InputChain, ChainNodesMatched, true);
3663 return;
3664 }
3665 continue;
3666 }
3667
3668 case OPC_CompleteMatch: {
3669 // The match has been completed, and any new nodes (if any) have been
3670 // created. Patch up references to the matched dag to use the newly
3671 // created nodes.
3672 unsigned NumResults = MatcherTable[MatcherIndex++];
3673
3674 for (unsigned i = 0; i != NumResults; ++i) {
3675 unsigned ResSlot = MatcherTable[MatcherIndex++];
3676 if (ResSlot & 128)
3677 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3678
3679 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3680 SDValue Res = RecordedNodes[ResSlot].first;
3681
3682 assert(i < NodeToMatch->getNumValues() &&
3683 NodeToMatch->getValueType(i) != MVT::Other &&
3684 NodeToMatch->getValueType(i) != MVT::Glue &&
3685 "Invalid number of results to complete!");
3686 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3687 NodeToMatch->getValueType(i) == MVT::iPTR ||
3688 Res.getValueType() == MVT::iPTR ||
3689 NodeToMatch->getValueType(i).getSizeInBits() ==
3690 Res.getValueSizeInBits()) &&
3691 "invalid replacement");
3692 ReplaceUses(SDValue(NodeToMatch, i), Res);
3693 }
3694
3695 // Update chain uses.
3696 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3697
3698 // If the root node defines glue, we need to update it to the glue result.
3699 // TODO: This never happens in our tests and I think it can be removed /
3700 // replaced with an assert, but if we do it this the way the change is
3701 // NFC.
3702 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3703 MVT::Glue &&
3704 InputGlue.getNode())
3705 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3706 InputGlue);
3707
3708 assert(NodeToMatch->use_empty() &&
3709 "Didn't replace all uses of the node?");
3710 CurDAG->RemoveDeadNode(NodeToMatch);
3711
3712 return;
3713 }
3714 }
3715
3716 // If the code reached this point, then the match failed. See if there is
3717 // another child to try in the current 'Scope', otherwise pop it until we
3718 // find a case to check.
3719 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
3720 << "\n");
3721 ++NumDAGIselRetries;
3722 while (true) {
3723 if (MatchScopes.empty()) {
3724 CannotYetSelect(NodeToMatch);
3725 return;
3726 }
3727
3728 // Restore the interpreter state back to the point where the scope was
3729 // formed.
3730 MatchScope &LastScope = MatchScopes.back();
3731 RecordedNodes.resize(LastScope.NumRecordedNodes);
3732 NodeStack.clear();
3733 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3734 N = NodeStack.back();
3735
3736 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3737 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3738 MatcherIndex = LastScope.FailIndex;
3739
3740 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3741
3742 InputChain = LastScope.InputChain;
3743 InputGlue = LastScope.InputGlue;
3744 if (!LastScope.HasChainNodesMatched)
3745 ChainNodesMatched.clear();
3746
3747 // Check to see what the offset is at the new MatcherIndex. If it is zero
3748 // we have reached the end of this scope, otherwise we have another child
3749 // in the current scope to try.
3750 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3751 if (NumToSkip & 128)
3752 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3753
3754 // If we have another child in this scope to match, update FailIndex and
3755 // try it.
3756 if (NumToSkip != 0) {
3757 LastScope.FailIndex = MatcherIndex+NumToSkip;
3758 break;
3759 }
3760
3761 // End of this scope, pop it and try the next child in the containing
3762 // scope.
3763 MatchScopes.pop_back();
3764 }
3765 }
3766 }
3767
3768 /// Return whether the node may raise an FP exception.
mayRaiseFPException(SDNode * N) const3769 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3770 // For machine opcodes, consult the MCID flag.
3771 if (N->isMachineOpcode()) {
3772 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3773 return MCID.mayRaiseFPException();
3774 }
3775
3776 // For ISD opcodes, only StrictFP opcodes may raise an FP
3777 // exception.
3778 if (N->isTargetOpcode())
3779 return N->isTargetStrictFPOpcode();
3780 return N->isStrictFPOpcode();
3781 }
3782
isOrEquivalentToAdd(const SDNode * N) const3783 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3784 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3785 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3786 if (!C)
3787 return false;
3788
3789 // Detect when "or" is used to add an offset to a stack object.
3790 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3791 MachineFrameInfo &MFI = MF->getFrameInfo();
3792 Align A = MFI.getObjectAlign(FN->getIndex());
3793 int32_t Off = C->getSExtValue();
3794 // If the alleged offset fits in the zero bits guaranteed by
3795 // the alignment, then this or is really an add.
3796 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3797 }
3798 return false;
3799 }
3800
CannotYetSelect(SDNode * N)3801 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3802 std::string msg;
3803 raw_string_ostream Msg(msg);
3804 Msg << "Cannot select: ";
3805
3806 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3807 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3808 N->getOpcode() != ISD::INTRINSIC_VOID) {
3809 N->printrFull(Msg, CurDAG);
3810 Msg << "\nIn function: " << MF->getName();
3811 } else {
3812 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3813 unsigned iid =
3814 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3815 if (iid < Intrinsic::num_intrinsics)
3816 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
3817 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3818 Msg << "target intrinsic %" << TII->getName(iid);
3819 else
3820 Msg << "unknown intrinsic #" << iid;
3821 }
3822 report_fatal_error(Twine(Msg.str()));
3823 }
3824