1 //===- FunctionComparator.h - Function Comparator -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the FunctionComparator and GlobalNumberState classes
10 // which are used by the MergeFunctions pass for comparing functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/FunctionComparator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "functioncomparator"
52
cmpNumbers(uint64_t L,uint64_t R) const53 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
54 if (L < R)
55 return -1;
56 if (L > R)
57 return 1;
58 return 0;
59 }
60
cmpAligns(Align L,Align R) const61 int FunctionComparator::cmpAligns(Align L, Align R) const {
62 if (L.value() < R.value())
63 return -1;
64 if (L.value() > R.value())
65 return 1;
66 return 0;
67 }
68
cmpOrderings(AtomicOrdering L,AtomicOrdering R) const69 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
70 if ((int)L < (int)R)
71 return -1;
72 if ((int)L > (int)R)
73 return 1;
74 return 0;
75 }
76
cmpAPInts(const APInt & L,const APInt & R) const77 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
78 if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
79 return Res;
80 if (L.ugt(R))
81 return 1;
82 if (R.ugt(L))
83 return -1;
84 return 0;
85 }
86
cmpAPFloats(const APFloat & L,const APFloat & R) const87 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
88 // Floats are ordered first by semantics (i.e. float, double, half, etc.),
89 // then by value interpreted as a bitstring (aka APInt).
90 const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
91 if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
92 APFloat::semanticsPrecision(SR)))
93 return Res;
94 if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
95 APFloat::semanticsMaxExponent(SR)))
96 return Res;
97 if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
98 APFloat::semanticsMinExponent(SR)))
99 return Res;
100 if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
101 APFloat::semanticsSizeInBits(SR)))
102 return Res;
103 return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
104 }
105
cmpMem(StringRef L,StringRef R) const106 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
107 // Prevent heavy comparison, compare sizes first.
108 if (int Res = cmpNumbers(L.size(), R.size()))
109 return Res;
110
111 // Compare strings lexicographically only when it is necessary: only when
112 // strings are equal in size.
113 return std::clamp(L.compare(R), -1, 1);
114 }
115
cmpAttrs(const AttributeList L,const AttributeList R) const116 int FunctionComparator::cmpAttrs(const AttributeList L,
117 const AttributeList R) const {
118 if (int Res = cmpNumbers(L.getNumAttrSets(), R.getNumAttrSets()))
119 return Res;
120
121 for (unsigned i : L.indexes()) {
122 AttributeSet LAS = L.getAttributes(i);
123 AttributeSet RAS = R.getAttributes(i);
124 AttributeSet::iterator LI = LAS.begin(), LE = LAS.end();
125 AttributeSet::iterator RI = RAS.begin(), RE = RAS.end();
126 for (; LI != LE && RI != RE; ++LI, ++RI) {
127 Attribute LA = *LI;
128 Attribute RA = *RI;
129 if (LA.isTypeAttribute() && RA.isTypeAttribute()) {
130 if (LA.getKindAsEnum() != RA.getKindAsEnum())
131 return cmpNumbers(LA.getKindAsEnum(), RA.getKindAsEnum());
132
133 Type *TyL = LA.getValueAsType();
134 Type *TyR = RA.getValueAsType();
135 if (TyL && TyR) {
136 if (int Res = cmpTypes(TyL, TyR))
137 return Res;
138 continue;
139 }
140
141 // Two pointers, at least one null, so the comparison result is
142 // independent of the value of a real pointer.
143 if (int Res = cmpNumbers((uint64_t)TyL, (uint64_t)TyR))
144 return Res;
145 continue;
146 }
147 if (LA < RA)
148 return -1;
149 if (RA < LA)
150 return 1;
151 }
152 if (LI != LE)
153 return 1;
154 if (RI != RE)
155 return -1;
156 }
157 return 0;
158 }
159
cmpRangeMetadata(const MDNode * L,const MDNode * R) const160 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
161 const MDNode *R) const {
162 if (L == R)
163 return 0;
164 if (!L)
165 return -1;
166 if (!R)
167 return 1;
168 // Range metadata is a sequence of numbers. Make sure they are the same
169 // sequence.
170 // TODO: Note that as this is metadata, it is possible to drop and/or merge
171 // this data when considering functions to merge. Thus this comparison would
172 // return 0 (i.e. equivalent), but merging would become more complicated
173 // because the ranges would need to be unioned. It is not likely that
174 // functions differ ONLY in this metadata if they are actually the same
175 // function semantically.
176 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
177 return Res;
178 for (size_t I = 0; I < L->getNumOperands(); ++I) {
179 ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
180 ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
181 if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
182 return Res;
183 }
184 return 0;
185 }
186
cmpOperandBundlesSchema(const CallBase & LCS,const CallBase & RCS) const187 int FunctionComparator::cmpOperandBundlesSchema(const CallBase &LCS,
188 const CallBase &RCS) const {
189 assert(LCS.getOpcode() == RCS.getOpcode() && "Can't compare otherwise!");
190
191 if (int Res =
192 cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
193 return Res;
194
195 for (unsigned I = 0, E = LCS.getNumOperandBundles(); I != E; ++I) {
196 auto OBL = LCS.getOperandBundleAt(I);
197 auto OBR = RCS.getOperandBundleAt(I);
198
199 if (int Res = OBL.getTagName().compare(OBR.getTagName()))
200 return Res;
201
202 if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
203 return Res;
204 }
205
206 return 0;
207 }
208
209 /// Constants comparison:
210 /// 1. Check whether type of L constant could be losslessly bitcasted to R
211 /// type.
212 /// 2. Compare constant contents.
213 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R) const214 int FunctionComparator::cmpConstants(const Constant *L,
215 const Constant *R) const {
216 Type *TyL = L->getType();
217 Type *TyR = R->getType();
218
219 // Check whether types are bitcastable. This part is just re-factored
220 // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
221 // we also pack into result which type is "less" for us.
222 int TypesRes = cmpTypes(TyL, TyR);
223 if (TypesRes != 0) {
224 // Types are different, but check whether we can bitcast them.
225 if (!TyL->isFirstClassType()) {
226 if (TyR->isFirstClassType())
227 return -1;
228 // Neither TyL nor TyR are values of first class type. Return the result
229 // of comparing the types
230 return TypesRes;
231 }
232 if (!TyR->isFirstClassType()) {
233 if (TyL->isFirstClassType())
234 return 1;
235 return TypesRes;
236 }
237
238 // Vector -> Vector conversions are always lossless if the two vector types
239 // have the same size, otherwise not.
240 unsigned TyLWidth = 0;
241 unsigned TyRWidth = 0;
242
243 if (auto *VecTyL = dyn_cast<VectorType>(TyL))
244 TyLWidth = VecTyL->getPrimitiveSizeInBits().getFixedValue();
245 if (auto *VecTyR = dyn_cast<VectorType>(TyR))
246 TyRWidth = VecTyR->getPrimitiveSizeInBits().getFixedValue();
247
248 if (TyLWidth != TyRWidth)
249 return cmpNumbers(TyLWidth, TyRWidth);
250
251 // Zero bit-width means neither TyL nor TyR are vectors.
252 if (!TyLWidth) {
253 PointerType *PTyL = dyn_cast<PointerType>(TyL);
254 PointerType *PTyR = dyn_cast<PointerType>(TyR);
255 if (PTyL && PTyR) {
256 unsigned AddrSpaceL = PTyL->getAddressSpace();
257 unsigned AddrSpaceR = PTyR->getAddressSpace();
258 if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
259 return Res;
260 }
261 if (PTyL)
262 return 1;
263 if (PTyR)
264 return -1;
265
266 // TyL and TyR aren't vectors, nor pointers. We don't know how to
267 // bitcast them.
268 return TypesRes;
269 }
270 }
271
272 // OK, types are bitcastable, now check constant contents.
273
274 if (L->isNullValue() && R->isNullValue())
275 return TypesRes;
276 if (L->isNullValue() && !R->isNullValue())
277 return 1;
278 if (!L->isNullValue() && R->isNullValue())
279 return -1;
280
281 auto GlobalValueL = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(L));
282 auto GlobalValueR = const_cast<GlobalValue *>(dyn_cast<GlobalValue>(R));
283 if (GlobalValueL && GlobalValueR) {
284 return cmpGlobalValues(GlobalValueL, GlobalValueR);
285 }
286
287 if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
288 return Res;
289
290 if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
291 const auto *SeqR = cast<ConstantDataSequential>(R);
292 // This handles ConstantDataArray and ConstantDataVector. Note that we
293 // compare the two raw data arrays, which might differ depending on the host
294 // endianness. This isn't a problem though, because the endiness of a module
295 // will affect the order of the constants, but this order is the same
296 // for a given input module and host platform.
297 return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
298 }
299
300 switch (L->getValueID()) {
301 case Value::UndefValueVal:
302 case Value::PoisonValueVal:
303 case Value::ConstantTokenNoneVal:
304 return TypesRes;
305 case Value::ConstantIntVal: {
306 const APInt &LInt = cast<ConstantInt>(L)->getValue();
307 const APInt &RInt = cast<ConstantInt>(R)->getValue();
308 return cmpAPInts(LInt, RInt);
309 }
310 case Value::ConstantFPVal: {
311 const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
312 const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
313 return cmpAPFloats(LAPF, RAPF);
314 }
315 case Value::ConstantArrayVal: {
316 const ConstantArray *LA = cast<ConstantArray>(L);
317 const ConstantArray *RA = cast<ConstantArray>(R);
318 uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
319 uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
320 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
321 return Res;
322 for (uint64_t i = 0; i < NumElementsL; ++i) {
323 if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
324 cast<Constant>(RA->getOperand(i))))
325 return Res;
326 }
327 return 0;
328 }
329 case Value::ConstantStructVal: {
330 const ConstantStruct *LS = cast<ConstantStruct>(L);
331 const ConstantStruct *RS = cast<ConstantStruct>(R);
332 unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
333 unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
334 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
335 return Res;
336 for (unsigned i = 0; i != NumElementsL; ++i) {
337 if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
338 cast<Constant>(RS->getOperand(i))))
339 return Res;
340 }
341 return 0;
342 }
343 case Value::ConstantVectorVal: {
344 const ConstantVector *LV = cast<ConstantVector>(L);
345 const ConstantVector *RV = cast<ConstantVector>(R);
346 unsigned NumElementsL = cast<FixedVectorType>(TyL)->getNumElements();
347 unsigned NumElementsR = cast<FixedVectorType>(TyR)->getNumElements();
348 if (int Res = cmpNumbers(NumElementsL, NumElementsR))
349 return Res;
350 for (uint64_t i = 0; i < NumElementsL; ++i) {
351 if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
352 cast<Constant>(RV->getOperand(i))))
353 return Res;
354 }
355 return 0;
356 }
357 case Value::ConstantExprVal: {
358 const ConstantExpr *LE = cast<ConstantExpr>(L);
359 const ConstantExpr *RE = cast<ConstantExpr>(R);
360 unsigned NumOperandsL = LE->getNumOperands();
361 unsigned NumOperandsR = RE->getNumOperands();
362 if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
363 return Res;
364 for (unsigned i = 0; i < NumOperandsL; ++i) {
365 if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
366 cast<Constant>(RE->getOperand(i))))
367 return Res;
368 }
369 return 0;
370 }
371 case Value::BlockAddressVal: {
372 const BlockAddress *LBA = cast<BlockAddress>(L);
373 const BlockAddress *RBA = cast<BlockAddress>(R);
374 if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
375 return Res;
376 if (LBA->getFunction() == RBA->getFunction()) {
377 // They are BBs in the same function. Order by which comes first in the
378 // BB order of the function. This order is deterministic.
379 Function *F = LBA->getFunction();
380 BasicBlock *LBB = LBA->getBasicBlock();
381 BasicBlock *RBB = RBA->getBasicBlock();
382 if (LBB == RBB)
383 return 0;
384 for (BasicBlock &BB : *F) {
385 if (&BB == LBB) {
386 assert(&BB != RBB);
387 return -1;
388 }
389 if (&BB == RBB)
390 return 1;
391 }
392 llvm_unreachable("Basic Block Address does not point to a basic block in "
393 "its function.");
394 return -1;
395 } else {
396 // cmpValues said the functions are the same. So because they aren't
397 // literally the same pointer, they must respectively be the left and
398 // right functions.
399 assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
400 // cmpValues will tell us if these are equivalent BasicBlocks, in the
401 // context of their respective functions.
402 return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
403 }
404 }
405 case Value::DSOLocalEquivalentVal: {
406 // dso_local_equivalent is functionally equivalent to whatever it points to.
407 // This means the behavior of the IR should be the exact same as if the
408 // function was referenced directly rather than through a
409 // dso_local_equivalent.
410 const auto *LEquiv = cast<DSOLocalEquivalent>(L);
411 const auto *REquiv = cast<DSOLocalEquivalent>(R);
412 return cmpGlobalValues(LEquiv->getGlobalValue(), REquiv->getGlobalValue());
413 }
414 default: // Unknown constant, abort.
415 LLVM_DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
416 llvm_unreachable("Constant ValueID not recognized.");
417 return -1;
418 }
419 }
420
cmpGlobalValues(GlobalValue * L,GlobalValue * R) const421 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
422 uint64_t LNumber = GlobalNumbers->getNumber(L);
423 uint64_t RNumber = GlobalNumbers->getNumber(R);
424 return cmpNumbers(LNumber, RNumber);
425 }
426
427 /// cmpType - compares two types,
428 /// defines total ordering among the types set.
429 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const430 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
431 PointerType *PTyL = dyn_cast<PointerType>(TyL);
432 PointerType *PTyR = dyn_cast<PointerType>(TyR);
433
434 const DataLayout &DL = FnL->getParent()->getDataLayout();
435 if (PTyL && PTyL->getAddressSpace() == 0)
436 TyL = DL.getIntPtrType(TyL);
437 if (PTyR && PTyR->getAddressSpace() == 0)
438 TyR = DL.getIntPtrType(TyR);
439
440 if (TyL == TyR)
441 return 0;
442
443 if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
444 return Res;
445
446 switch (TyL->getTypeID()) {
447 default:
448 llvm_unreachable("Unknown type!");
449 case Type::IntegerTyID:
450 return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
451 cast<IntegerType>(TyR)->getBitWidth());
452 // TyL == TyR would have returned true earlier, because types are uniqued.
453 case Type::VoidTyID:
454 case Type::FloatTyID:
455 case Type::DoubleTyID:
456 case Type::X86_FP80TyID:
457 case Type::FP128TyID:
458 case Type::PPC_FP128TyID:
459 case Type::LabelTyID:
460 case Type::MetadataTyID:
461 case Type::TokenTyID:
462 return 0;
463
464 case Type::PointerTyID:
465 assert(PTyL && PTyR && "Both types must be pointers here.");
466 return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
467
468 case Type::StructTyID: {
469 StructType *STyL = cast<StructType>(TyL);
470 StructType *STyR = cast<StructType>(TyR);
471 if (STyL->getNumElements() != STyR->getNumElements())
472 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
473
474 if (STyL->isPacked() != STyR->isPacked())
475 return cmpNumbers(STyL->isPacked(), STyR->isPacked());
476
477 for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
478 if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
479 return Res;
480 }
481 return 0;
482 }
483
484 case Type::FunctionTyID: {
485 FunctionType *FTyL = cast<FunctionType>(TyL);
486 FunctionType *FTyR = cast<FunctionType>(TyR);
487 if (FTyL->getNumParams() != FTyR->getNumParams())
488 return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
489
490 if (FTyL->isVarArg() != FTyR->isVarArg())
491 return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
492
493 if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
494 return Res;
495
496 for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
497 if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
498 return Res;
499 }
500 return 0;
501 }
502
503 case Type::ArrayTyID: {
504 auto *STyL = cast<ArrayType>(TyL);
505 auto *STyR = cast<ArrayType>(TyR);
506 if (STyL->getNumElements() != STyR->getNumElements())
507 return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
508 return cmpTypes(STyL->getElementType(), STyR->getElementType());
509 }
510 case Type::FixedVectorTyID:
511 case Type::ScalableVectorTyID: {
512 auto *STyL = cast<VectorType>(TyL);
513 auto *STyR = cast<VectorType>(TyR);
514 if (STyL->getElementCount().isScalable() !=
515 STyR->getElementCount().isScalable())
516 return cmpNumbers(STyL->getElementCount().isScalable(),
517 STyR->getElementCount().isScalable());
518 if (STyL->getElementCount() != STyR->getElementCount())
519 return cmpNumbers(STyL->getElementCount().getKnownMinValue(),
520 STyR->getElementCount().getKnownMinValue());
521 return cmpTypes(STyL->getElementType(), STyR->getElementType());
522 }
523 }
524 }
525
526 // Determine whether the two operations are the same except that pointer-to-A
527 // and pointer-to-B are equivalent. This should be kept in sync with
528 // Instruction::isSameOperationAs.
529 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R,bool & needToCmpOperands) const530 int FunctionComparator::cmpOperations(const Instruction *L,
531 const Instruction *R,
532 bool &needToCmpOperands) const {
533 needToCmpOperands = true;
534 if (int Res = cmpValues(L, R))
535 return Res;
536
537 // Differences from Instruction::isSameOperationAs:
538 // * replace type comparison with calls to cmpTypes.
539 // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
540 // * because of the above, we don't test for the tail bit on calls later on.
541 if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
542 return Res;
543
544 if (const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(L)) {
545 needToCmpOperands = false;
546 const GetElementPtrInst *GEPR = cast<GetElementPtrInst>(R);
547 if (int Res =
548 cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
549 return Res;
550 return cmpGEPs(GEPL, GEPR);
551 }
552
553 if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
554 return Res;
555
556 if (int Res = cmpTypes(L->getType(), R->getType()))
557 return Res;
558
559 if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
560 R->getRawSubclassOptionalData()))
561 return Res;
562
563 // We have two instructions of identical opcode and #operands. Check to see
564 // if all operands are the same type
565 for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
566 if (int Res =
567 cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
568 return Res;
569 }
570
571 // Check special state that is a part of some instructions.
572 if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
573 if (int Res = cmpTypes(AI->getAllocatedType(),
574 cast<AllocaInst>(R)->getAllocatedType()))
575 return Res;
576 return cmpAligns(AI->getAlign(), cast<AllocaInst>(R)->getAlign());
577 }
578 if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
579 if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
580 return Res;
581 if (int Res = cmpAligns(LI->getAlign(), cast<LoadInst>(R)->getAlign()))
582 return Res;
583 if (int Res =
584 cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
585 return Res;
586 if (int Res = cmpNumbers(LI->getSyncScopeID(),
587 cast<LoadInst>(R)->getSyncScopeID()))
588 return Res;
589 return cmpRangeMetadata(
590 LI->getMetadata(LLVMContext::MD_range),
591 cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
592 }
593 if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
594 if (int Res =
595 cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
596 return Res;
597 if (int Res = cmpAligns(SI->getAlign(), cast<StoreInst>(R)->getAlign()))
598 return Res;
599 if (int Res =
600 cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
601 return Res;
602 return cmpNumbers(SI->getSyncScopeID(),
603 cast<StoreInst>(R)->getSyncScopeID());
604 }
605 if (const CmpInst *CI = dyn_cast<CmpInst>(L))
606 return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
607 if (auto *CBL = dyn_cast<CallBase>(L)) {
608 auto *CBR = cast<CallBase>(R);
609 if (int Res = cmpNumbers(CBL->getCallingConv(), CBR->getCallingConv()))
610 return Res;
611 if (int Res = cmpAttrs(CBL->getAttributes(), CBR->getAttributes()))
612 return Res;
613 if (int Res = cmpOperandBundlesSchema(*CBL, *CBR))
614 return Res;
615 if (const CallInst *CI = dyn_cast<CallInst>(L))
616 if (int Res = cmpNumbers(CI->getTailCallKind(),
617 cast<CallInst>(R)->getTailCallKind()))
618 return Res;
619 return cmpRangeMetadata(L->getMetadata(LLVMContext::MD_range),
620 R->getMetadata(LLVMContext::MD_range));
621 }
622 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
623 ArrayRef<unsigned> LIndices = IVI->getIndices();
624 ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
625 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
626 return Res;
627 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
628 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
629 return Res;
630 }
631 return 0;
632 }
633 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
634 ArrayRef<unsigned> LIndices = EVI->getIndices();
635 ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
636 if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
637 return Res;
638 for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
639 if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
640 return Res;
641 }
642 }
643 if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
644 if (int Res =
645 cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
646 return Res;
647 return cmpNumbers(FI->getSyncScopeID(),
648 cast<FenceInst>(R)->getSyncScopeID());
649 }
650 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
651 if (int Res = cmpNumbers(CXI->isVolatile(),
652 cast<AtomicCmpXchgInst>(R)->isVolatile()))
653 return Res;
654 if (int Res =
655 cmpNumbers(CXI->isWeak(), cast<AtomicCmpXchgInst>(R)->isWeak()))
656 return Res;
657 if (int Res =
658 cmpOrderings(CXI->getSuccessOrdering(),
659 cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
660 return Res;
661 if (int Res =
662 cmpOrderings(CXI->getFailureOrdering(),
663 cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
664 return Res;
665 return cmpNumbers(CXI->getSyncScopeID(),
666 cast<AtomicCmpXchgInst>(R)->getSyncScopeID());
667 }
668 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
669 if (int Res = cmpNumbers(RMWI->getOperation(),
670 cast<AtomicRMWInst>(R)->getOperation()))
671 return Res;
672 if (int Res = cmpNumbers(RMWI->isVolatile(),
673 cast<AtomicRMWInst>(R)->isVolatile()))
674 return Res;
675 if (int Res = cmpOrderings(RMWI->getOrdering(),
676 cast<AtomicRMWInst>(R)->getOrdering()))
677 return Res;
678 return cmpNumbers(RMWI->getSyncScopeID(),
679 cast<AtomicRMWInst>(R)->getSyncScopeID());
680 }
681 if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(L)) {
682 ArrayRef<int> LMask = SVI->getShuffleMask();
683 ArrayRef<int> RMask = cast<ShuffleVectorInst>(R)->getShuffleMask();
684 if (int Res = cmpNumbers(LMask.size(), RMask.size()))
685 return Res;
686 for (size_t i = 0, e = LMask.size(); i != e; ++i) {
687 if (int Res = cmpNumbers(LMask[i], RMask[i]))
688 return Res;
689 }
690 }
691 if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
692 const PHINode *PNR = cast<PHINode>(R);
693 // Ensure that in addition to the incoming values being identical
694 // (checked by the caller of this function), the incoming blocks
695 // are also identical.
696 for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
697 if (int Res =
698 cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
699 return Res;
700 }
701 }
702 return 0;
703 }
704
705 // Determine whether two GEP operations perform the same underlying arithmetic.
706 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR) const707 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
708 const GEPOperator *GEPR) const {
709 unsigned int ASL = GEPL->getPointerAddressSpace();
710 unsigned int ASR = GEPR->getPointerAddressSpace();
711
712 if (int Res = cmpNumbers(ASL, ASR))
713 return Res;
714
715 // When we have target data, we can reduce the GEP down to the value in bytes
716 // added to the address.
717 const DataLayout &DL = FnL->getParent()->getDataLayout();
718 unsigned BitWidth = DL.getPointerSizeInBits(ASL);
719 APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
720 if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
721 GEPR->accumulateConstantOffset(DL, OffsetR))
722 return cmpAPInts(OffsetL, OffsetR);
723 if (int Res =
724 cmpTypes(GEPL->getSourceElementType(), GEPR->getSourceElementType()))
725 return Res;
726
727 if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
728 return Res;
729
730 for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
731 if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
732 return Res;
733 }
734
735 return 0;
736 }
737
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const738 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
739 const InlineAsm *R) const {
740 // InlineAsm's are uniqued. If they are the same pointer, obviously they are
741 // the same, otherwise compare the fields.
742 if (L == R)
743 return 0;
744 if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
745 return Res;
746 if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
747 return Res;
748 if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
749 return Res;
750 if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
751 return Res;
752 if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
753 return Res;
754 if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
755 return Res;
756 assert(L->getFunctionType() != R->getFunctionType());
757 return 0;
758 }
759
760 /// Compare two values used by the two functions under pair-wise comparison. If
761 /// this is the first time the values are seen, they're added to the mapping so
762 /// that we will detect mismatches on next use.
763 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R) const764 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
765 // Catch self-reference case.
766 if (L == FnL) {
767 if (R == FnR)
768 return 0;
769 return -1;
770 }
771 if (R == FnR) {
772 if (L == FnL)
773 return 0;
774 return 1;
775 }
776
777 const Constant *ConstL = dyn_cast<Constant>(L);
778 const Constant *ConstR = dyn_cast<Constant>(R);
779 if (ConstL && ConstR) {
780 if (L == R)
781 return 0;
782 return cmpConstants(ConstL, ConstR);
783 }
784
785 if (ConstL)
786 return 1;
787 if (ConstR)
788 return -1;
789
790 const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
791 const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
792
793 if (InlineAsmL && InlineAsmR)
794 return cmpInlineAsm(InlineAsmL, InlineAsmR);
795 if (InlineAsmL)
796 return 1;
797 if (InlineAsmR)
798 return -1;
799
800 auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
801 RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
802
803 return cmpNumbers(LeftSN.first->second, RightSN.first->second);
804 }
805
806 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR) const807 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
808 const BasicBlock *BBR) const {
809 BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
810 BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
811
812 do {
813 bool needToCmpOperands = true;
814 if (int Res = cmpOperations(&*InstL, &*InstR, needToCmpOperands))
815 return Res;
816 if (needToCmpOperands) {
817 assert(InstL->getNumOperands() == InstR->getNumOperands());
818
819 for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
820 Value *OpL = InstL->getOperand(i);
821 Value *OpR = InstR->getOperand(i);
822 if (int Res = cmpValues(OpL, OpR))
823 return Res;
824 // cmpValues should ensure this is true.
825 assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
826 }
827 }
828
829 ++InstL;
830 ++InstR;
831 } while (InstL != InstLE && InstR != InstRE);
832
833 if (InstL != InstLE && InstR == InstRE)
834 return 1;
835 if (InstL == InstLE && InstR != InstRE)
836 return -1;
837 return 0;
838 }
839
compareSignature() const840 int FunctionComparator::compareSignature() const {
841 if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
842 return Res;
843
844 if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
845 return Res;
846
847 if (FnL->hasGC()) {
848 if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
849 return Res;
850 }
851
852 if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
853 return Res;
854
855 if (FnL->hasSection()) {
856 if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
857 return Res;
858 }
859
860 if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
861 return Res;
862
863 // TODO: if it's internal and only used in direct calls, we could handle this
864 // case too.
865 if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
866 return Res;
867
868 if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
869 return Res;
870
871 assert(FnL->arg_size() == FnR->arg_size() &&
872 "Identically typed functions have different numbers of args!");
873
874 // Visit the arguments so that they get enumerated in the order they're
875 // passed in.
876 for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
877 ArgRI = FnR->arg_begin(),
878 ArgLE = FnL->arg_end();
879 ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
880 if (cmpValues(&*ArgLI, &*ArgRI) != 0)
881 llvm_unreachable("Arguments repeat!");
882 }
883 return 0;
884 }
885
886 // Test whether the two functions have equivalent behaviour.
compare()887 int FunctionComparator::compare() {
888 beginCompare();
889
890 if (int Res = compareSignature())
891 return Res;
892
893 // We do a CFG-ordered walk since the actual ordering of the blocks in the
894 // linked list is immaterial. Our walk starts at the entry block for both
895 // functions, then takes each block from each terminator in order. As an
896 // artifact, this also means that unreachable blocks are ignored.
897 SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
898 SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
899
900 FnLBBs.push_back(&FnL->getEntryBlock());
901 FnRBBs.push_back(&FnR->getEntryBlock());
902
903 VisitedBBs.insert(FnLBBs[0]);
904 while (!FnLBBs.empty()) {
905 const BasicBlock *BBL = FnLBBs.pop_back_val();
906 const BasicBlock *BBR = FnRBBs.pop_back_val();
907
908 if (int Res = cmpValues(BBL, BBR))
909 return Res;
910
911 if (int Res = cmpBasicBlocks(BBL, BBR))
912 return Res;
913
914 const Instruction *TermL = BBL->getTerminator();
915 const Instruction *TermR = BBR->getTerminator();
916
917 assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
918 for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
919 if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
920 continue;
921
922 FnLBBs.push_back(TermL->getSuccessor(i));
923 FnRBBs.push_back(TermR->getSuccessor(i));
924 }
925 }
926 return 0;
927 }
928
929 namespace {
930
931 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
932 // hash of a sequence of 64bit ints, but the entire input does not need to be
933 // available at once. This interface is necessary for functionHash because it
934 // needs to accumulate the hash as the structure of the function is traversed
935 // without saving these values to an intermediate buffer. This form of hashing
936 // is not often needed, as usually the object to hash is just read from a
937 // buffer.
938 class HashAccumulator64 {
939 uint64_t Hash;
940
941 public:
942 // Initialize to random constant, so the state isn't zero.
HashAccumulator64()943 HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
944
add(uint64_t V)945 void add(uint64_t V) { Hash = hashing::detail::hash_16_bytes(Hash, V); }
946
947 // No finishing is required, because the entire hash value is used.
getHash()948 uint64_t getHash() { return Hash; }
949 };
950
951 } // end anonymous namespace
952
953 // A function hash is calculated by considering only the number of arguments and
954 // whether a function is varargs, the order of basic blocks (given by the
955 // successors of each basic block in depth first order), and the order of
956 // opcodes of each instruction within each of these basic blocks. This mirrors
957 // the strategy compare() uses to compare functions by walking the BBs in depth
958 // first order and comparing each instruction in sequence. Because this hash
959 // does not look at the operands, it is insensitive to things such as the
960 // target of calls and the constants used in the function, which makes it useful
961 // when possibly merging functions which are the same modulo constants and call
962 // targets.
functionHash(Function & F)963 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
964 HashAccumulator64 H;
965 H.add(F.isVarArg());
966 H.add(F.arg_size());
967
968 SmallVector<const BasicBlock *, 8> BBs;
969 SmallPtrSet<const BasicBlock *, 16> VisitedBBs;
970
971 // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
972 // accumulating the hash of the function "structure." (BB and opcode sequence)
973 BBs.push_back(&F.getEntryBlock());
974 VisitedBBs.insert(BBs[0]);
975 while (!BBs.empty()) {
976 const BasicBlock *BB = BBs.pop_back_val();
977 // This random value acts as a block header, as otherwise the partition of
978 // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
979 H.add(45798);
980 for (const auto &Inst : *BB) {
981 H.add(Inst.getOpcode());
982 }
983 const Instruction *Term = BB->getTerminator();
984 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
985 if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
986 continue;
987 BBs.push_back(Term->getSuccessor(i));
988 }
989 }
990 return H.getHash();
991 }
992