xref: /freebsd/libexec/rtld-elf/rtld.c (revision 1cd90a2c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "rtld.h"
62 #include "libmap.h"
63 #include "rtld_paths.h"
64 #include "rtld_tls.h"
65 #include "rtld_printf.h"
66 #include "rtld_malloc.h"
67 #include "rtld_utrace.h"
68 #include "notes.h"
69 #include "rtld_libc.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 
76 /* Variables that cannot be static: */
77 extern struct r_debug r_debug; /* For GDB */
78 extern int _thread_autoinit_dummy_decl;
79 extern void (*__cleanup)(void);
80 
81 struct dlerror_save {
82 	int seen;
83 	char *msg;
84 };
85 
86 /*
87  * Function declarations.
88  */
89 static const char *basename(const char *);
90 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
91     const Elf_Dyn **, const Elf_Dyn **);
92 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
93     const Elf_Dyn *);
94 static bool digest_dynamic(Obj_Entry *, int);
95 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
96 static void distribute_static_tls(Objlist *, RtldLockState *);
97 static Obj_Entry *dlcheck(void *);
98 static int dlclose_locked(void *, RtldLockState *);
99 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
100     int lo_flags, int mode, RtldLockState *lockstate);
101 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
102 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
103 static bool donelist_check(DoneList *, const Obj_Entry *);
104 static void dump_auxv(Elf_Auxinfo **aux_info);
105 static void errmsg_restore(struct dlerror_save *);
106 static struct dlerror_save *errmsg_save(void);
107 static void *fill_search_info(const char *, size_t, void *);
108 static char *find_library(const char *, const Obj_Entry *, int *);
109 static const char *gethints(bool);
110 static void hold_object(Obj_Entry *);
111 static void unhold_object(Obj_Entry *);
112 static void init_dag(Obj_Entry *);
113 static void init_marker(Obj_Entry *);
114 static void init_pagesizes(Elf_Auxinfo **aux_info);
115 static void init_rtld(caddr_t, Elf_Auxinfo **);
116 static void initlist_add_neededs(Needed_Entry *, Objlist *);
117 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
118 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
119 static void linkmap_add(Obj_Entry *);
120 static void linkmap_delete(Obj_Entry *);
121 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
122 static void unload_filtees(Obj_Entry *, RtldLockState *);
123 static int load_needed_objects(Obj_Entry *, int);
124 static int load_preload_objects(const char *, bool);
125 static int load_kpreload(const void *addr);
126 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
127 static void map_stacks_exec(RtldLockState *);
128 static int obj_disable_relro(Obj_Entry *);
129 static int obj_enforce_relro(Obj_Entry *);
130 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
131 static void objlist_call_init(Objlist *, RtldLockState *);
132 static void objlist_clear(Objlist *);
133 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
134 static void objlist_init(Objlist *);
135 static void objlist_push_head(Objlist *, Obj_Entry *);
136 static void objlist_push_tail(Objlist *, Obj_Entry *);
137 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
138 static void objlist_remove(Objlist *, Obj_Entry *);
139 static int open_binary_fd(const char *argv0, bool search_in_path,
140     const char **binpath_res);
141 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
142     const char **argv0, bool *dir_ignore);
143 static int parse_integer(const char *);
144 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
145 static void print_usage(const char *argv0);
146 static void release_object(Obj_Entry *);
147 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
148     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
149 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
150     int flags, RtldLockState *lockstate);
151 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
152     RtldLockState *);
153 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
154 static int rtld_dirname(const char *, char *);
155 static int rtld_dirname_abs(const char *, char *);
156 static void *rtld_dlopen(const char *name, int fd, int mode);
157 static void rtld_exit(void);
158 static void rtld_nop_exit(void);
159 static char *search_library_path(const char *, const char *, const char *,
160     int *);
161 static char *search_library_pathfds(const char *, const char *, int *);
162 static const void **get_program_var_addr(const char *, RtldLockState *);
163 static void set_program_var(const char *, const void *);
164 static int symlook_default(SymLook *, const Obj_Entry *refobj);
165 static int symlook_global(SymLook *, DoneList *);
166 static void symlook_init_from_req(SymLook *, const SymLook *);
167 static int symlook_list(SymLook *, const Objlist *, DoneList *);
168 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
169 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
170 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
171 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
172 static void trace_loaded_objects(Obj_Entry *, bool);
173 static void unlink_object(Obj_Entry *);
174 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
175 static void unref_dag(Obj_Entry *);
176 static void ref_dag(Obj_Entry *);
177 static char *origin_subst_one(Obj_Entry *, char *, const char *,
178     const char *, bool);
179 static char *origin_subst(Obj_Entry *, const char *);
180 static bool obj_resolve_origin(Obj_Entry *obj);
181 static void preinit_main(void);
182 static int  rtld_verify_versions(const Objlist *);
183 static int  rtld_verify_object_versions(Obj_Entry *);
184 static void object_add_name(Obj_Entry *, const char *);
185 static int  object_match_name(const Obj_Entry *, const char *);
186 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
187 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
188     struct dl_phdr_info *phdr_info);
189 static uint32_t gnu_hash(const char *);
190 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
191     const unsigned long);
192 
193 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
194 void _r_debug_postinit(struct link_map *) __noinline __exported;
195 
196 int __sys_openat(int, const char *, int, ...);
197 
198 /*
199  * Data declarations.
200  */
201 struct r_debug r_debug __exported;	/* for GDB; */
202 static bool libmap_disable;	/* Disable libmap */
203 static bool ld_loadfltr;	/* Immediate filters processing */
204 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
205 static bool trust;		/* False for setuid and setgid programs */
206 static bool dangerous_ld_env;	/* True if environment variables have been
207 				   used to affect the libraries loaded */
208 bool ld_bind_not;		/* Disable PLT update */
209 static const char *ld_bind_now;	/* Environment variable for immediate binding */
210 static const char *ld_debug;	/* Environment variable for debugging */
211 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
212 				       weak definition */
213 static const char *ld_library_path;/* Environment variable for search path */
214 static const char *ld_library_dirs;/* Environment variable for library descriptors */
215 static const char *ld_preload;	/* Environment variable for libraries to
216 				   load first */
217 static const char *ld_preload_fds;/* Environment variable for libraries represented by
218 				   descriptors */
219 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
220 static const char *ld_tracing;	/* Called from ldd to print libs */
221 static const char *ld_utrace;	/* Use utrace() to log events. */
222 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
223 static Obj_Entry *obj_main;	/* The main program shared object */
224 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
225 static unsigned int obj_count;	/* Number of objects in obj_list */
226 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
227 size_t ld_static_tls_extra =	/* Static TLS extra space (bytes) */
228   RTLD_STATIC_TLS_EXTRA;
229 
230 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
231   STAILQ_HEAD_INITIALIZER(list_global);
232 static Objlist list_main =	/* Objects loaded at program startup */
233   STAILQ_HEAD_INITIALIZER(list_main);
234 static Objlist list_fini =	/* Objects needing fini() calls */
235   STAILQ_HEAD_INITIALIZER(list_fini);
236 
237 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
238 
239 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
240 
241 extern Elf_Dyn _DYNAMIC;
242 #pragma weak _DYNAMIC
243 
244 int dlclose(void *) __exported;
245 char *dlerror(void) __exported;
246 void *dlopen(const char *, int) __exported;
247 void *fdlopen(int, int) __exported;
248 void *dlsym(void *, const char *) __exported;
249 dlfunc_t dlfunc(void *, const char *) __exported;
250 void *dlvsym(void *, const char *, const char *) __exported;
251 int dladdr(const void *, Dl_info *) __exported;
252 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
253     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
254 int dlinfo(void *, int , void *) __exported;
255 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
256 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
257 int _rtld_get_stack_prot(void) __exported;
258 int _rtld_is_dlopened(void *) __exported;
259 void _rtld_error(const char *, ...) __exported;
260 
261 /* Only here to fix -Wmissing-prototypes warnings */
262 int __getosreldate(void);
263 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
264 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
265 
266 int npagesizes;
267 static int osreldate;
268 size_t *pagesizes;
269 size_t page_size;
270 
271 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
272 static int max_stack_flags;
273 
274 /*
275  * Global declarations normally provided by crt1.  The dynamic linker is
276  * not built with crt1, so we have to provide them ourselves.
277  */
278 char *__progname;
279 char **environ;
280 
281 /*
282  * Used to pass argc, argv to init functions.
283  */
284 int main_argc;
285 char **main_argv;
286 
287 /*
288  * Globals to control TLS allocation.
289  */
290 size_t tls_last_offset;		/* Static TLS offset of last module */
291 size_t tls_last_size;		/* Static TLS size of last module */
292 size_t tls_static_space;	/* Static TLS space allocated */
293 static size_t tls_static_max_align;
294 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
295 int tls_max_index = 1;		/* Largest module index allocated */
296 
297 static bool ld_library_path_rpath = false;
298 bool ld_fast_sigblock = false;
299 
300 /*
301  * Globals for path names, and such
302  */
303 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
304 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
305 const char *ld_path_rtld = _PATH_RTLD;
306 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
307 const char *ld_env_prefix = LD_;
308 
309 static void (*rtld_exit_ptr)(void);
310 
311 /*
312  * Fill in a DoneList with an allocation large enough to hold all of
313  * the currently-loaded objects.  Keep this as a macro since it calls
314  * alloca and we want that to occur within the scope of the caller.
315  */
316 #define donelist_init(dlp)					\
317     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
318     assert((dlp)->objs != NULL),				\
319     (dlp)->num_alloc = obj_count,				\
320     (dlp)->num_used = 0)
321 
322 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
323 	if (ld_utrace != NULL)					\
324 		ld_utrace_log(e, h, mb, ms, r, n);		\
325 } while (0)
326 
327 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)328 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
329     int refcnt, const char *name)
330 {
331 	struct utrace_rtld ut;
332 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
333 
334 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
335 	ut.event = event;
336 	ut.handle = handle;
337 	ut.mapbase = mapbase;
338 	ut.mapsize = mapsize;
339 	ut.refcnt = refcnt;
340 	bzero(ut.name, sizeof(ut.name));
341 	if (name)
342 		strlcpy(ut.name, name, sizeof(ut.name));
343 	utrace(&ut, sizeof(ut));
344 }
345 
346 enum {
347 	LD_BIND_NOW = 0,
348 	LD_PRELOAD,
349 	LD_LIBMAP,
350 	LD_LIBRARY_PATH,
351 	LD_LIBRARY_PATH_FDS,
352 	LD_LIBMAP_DISABLE,
353 	LD_BIND_NOT,
354 	LD_DEBUG,
355 	LD_ELF_HINTS_PATH,
356 	LD_LOADFLTR,
357 	LD_LIBRARY_PATH_RPATH,
358 	LD_PRELOAD_FDS,
359 	LD_DYNAMIC_WEAK,
360 	LD_TRACE_LOADED_OBJECTS,
361 	LD_UTRACE,
362 	LD_DUMP_REL_PRE,
363 	LD_DUMP_REL_POST,
364 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
365 	LD_TRACE_LOADED_OBJECTS_FMT1,
366 	LD_TRACE_LOADED_OBJECTS_FMT2,
367 	LD_TRACE_LOADED_OBJECTS_ALL,
368 	LD_SHOW_AUXV,
369 	LD_STATIC_TLS_EXTRA,
370 };
371 
372 struct ld_env_var_desc {
373 	const char * const n;
374 	const char *val;
375 	const bool unsecure;
376 };
377 #define LD_ENV_DESC(var, unsec) \
378     [LD_##var] = { .n = #var, .unsecure = unsec }
379 
380 static struct ld_env_var_desc ld_env_vars[] = {
381 	LD_ENV_DESC(BIND_NOW, false),
382 	LD_ENV_DESC(PRELOAD, true),
383 	LD_ENV_DESC(LIBMAP, true),
384 	LD_ENV_DESC(LIBRARY_PATH, true),
385 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
386 	LD_ENV_DESC(LIBMAP_DISABLE, true),
387 	LD_ENV_DESC(BIND_NOT, true),
388 	LD_ENV_DESC(DEBUG, true),
389 	LD_ENV_DESC(ELF_HINTS_PATH, true),
390 	LD_ENV_DESC(LOADFLTR, true),
391 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
392 	LD_ENV_DESC(PRELOAD_FDS, true),
393 	LD_ENV_DESC(DYNAMIC_WEAK, true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
395 	LD_ENV_DESC(UTRACE, false),
396 	LD_ENV_DESC(DUMP_REL_PRE, false),
397 	LD_ENV_DESC(DUMP_REL_POST, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
399 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
400 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
401 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
402 	LD_ENV_DESC(SHOW_AUXV, false),
403 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
404 };
405 
406 static const char *
ld_get_env_var(int idx)407 ld_get_env_var(int idx)
408 {
409 	return (ld_env_vars[idx].val);
410 }
411 
412 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)413 rtld_get_env_val(char **env, const char *name, size_t name_len)
414 {
415 	char **m, *n, *v;
416 
417 	for (m = env; *m != NULL; m++) {
418 		n = *m;
419 		v = strchr(n, '=');
420 		if (v == NULL) {
421 			/* corrupt environment? */
422 			continue;
423 		}
424 		if (v - n == (ptrdiff_t)name_len &&
425 		    strncmp(name, n, name_len) == 0)
426 			return (v + 1);
427 	}
428 	return (NULL);
429 }
430 
431 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)432 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
433 {
434 	struct ld_env_var_desc *lvd;
435 	size_t prefix_len, nlen;
436 	char **m, *n, *v;
437 	int i;
438 
439 	prefix_len = strlen(env_prefix);
440 	for (m = env; *m != NULL; m++) {
441 		n = *m;
442 		if (strncmp(env_prefix, n, prefix_len) != 0) {
443 			/* Not a rtld environment variable. */
444 			continue;
445 		}
446 		n += prefix_len;
447 		v = strchr(n, '=');
448 		if (v == NULL) {
449 			/* corrupt environment? */
450 			continue;
451 		}
452 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
453 			lvd = &ld_env_vars[i];
454 			if (lvd->val != NULL) {
455 				/* Saw higher-priority variable name already. */
456 				continue;
457 			}
458 			nlen = strlen(lvd->n);
459 			if (v - n == (ptrdiff_t)nlen &&
460 			    strncmp(lvd->n, n, nlen) == 0) {
461 				lvd->val = v + 1;
462 				break;
463 			}
464 		}
465 	}
466 }
467 
468 static void
rtld_init_env_vars(char ** env)469 rtld_init_env_vars(char **env)
470 {
471 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
472 }
473 
474 static void
set_ld_elf_hints_path(void)475 set_ld_elf_hints_path(void)
476 {
477 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
478 		ld_elf_hints_path = ld_elf_hints_default;
479 }
480 
481 uintptr_t
rtld_round_page(uintptr_t x)482 rtld_round_page(uintptr_t x)
483 {
484 	return (roundup2(x, page_size));
485 }
486 
487 uintptr_t
rtld_trunc_page(uintptr_t x)488 rtld_trunc_page(uintptr_t x)
489 {
490 	return (rounddown2(x, page_size));
491 }
492 
493 /*
494  * Main entry point for dynamic linking.  The first argument is the
495  * stack pointer.  The stack is expected to be laid out as described
496  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
497  * Specifically, the stack pointer points to a word containing
498  * ARGC.  Following that in the stack is a null-terminated sequence
499  * of pointers to argument strings.  Then comes a null-terminated
500  * sequence of pointers to environment strings.  Finally, there is a
501  * sequence of "auxiliary vector" entries.
502  *
503  * The second argument points to a place to store the dynamic linker's
504  * exit procedure pointer and the third to a place to store the main
505  * program's object.
506  *
507  * The return value is the main program's entry point.
508  */
509 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)510 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
511 {
512     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
513     Objlist_Entry *entry;
514     Obj_Entry *last_interposer, *obj, *preload_tail;
515     const Elf_Phdr *phdr;
516     Objlist initlist;
517     RtldLockState lockstate;
518     struct stat st;
519     Elf_Addr *argcp;
520     char **argv, **env, **envp, *kexecpath;
521     const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
522     struct ld_env_var_desc *lvd;
523     caddr_t imgentry;
524     char buf[MAXPATHLEN];
525     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
526     size_t sz;
527 #ifdef __powerpc__
528     int old_auxv_format = 1;
529 #endif
530     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
531 
532     /*
533      * On entry, the dynamic linker itself has not been relocated yet.
534      * Be very careful not to reference any global data until after
535      * init_rtld has returned.  It is OK to reference file-scope statics
536      * and string constants, and to call static and global functions.
537      */
538 
539     /* Find the auxiliary vector on the stack. */
540     argcp = sp;
541     argc = *sp++;
542     argv = (char **) sp;
543     sp += argc + 1;	/* Skip over arguments and NULL terminator */
544     env = (char **) sp;
545     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
546 	;
547     aux = (Elf_Auxinfo *) sp;
548 
549     /* Digest the auxiliary vector. */
550     for (i = 0;  i < AT_COUNT;  i++)
551 	aux_info[i] = NULL;
552     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
553 	if (auxp->a_type < AT_COUNT)
554 	    aux_info[auxp->a_type] = auxp;
555 #ifdef __powerpc__
556 	if (auxp->a_type == 23) /* AT_STACKPROT */
557 	    old_auxv_format = 0;
558 #endif
559     }
560 
561 #ifdef __powerpc__
562     if (old_auxv_format) {
563 	/* Remap from old-style auxv numbers. */
564 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
565 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
566 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
567 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
568 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
569 	aux_info[13] = NULL;		/* AT_GID */
570 
571 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
572 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
573 	aux_info[16] = aux_info[14];	/* AT_CANARY */
574 	aux_info[14] = NULL;		/* AT_EGID */
575     }
576 #endif
577 
578     /* Initialize and relocate ourselves. */
579     assert(aux_info[AT_BASE] != NULL);
580     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
581 
582     dlerror_dflt_init();
583 
584     __progname = obj_rtld.path;
585     argv0 = argv[0] != NULL ? argv[0] : "(null)";
586     environ = env;
587     main_argc = argc;
588     main_argv = argv;
589 
590     if (aux_info[AT_BSDFLAGS] != NULL &&
591 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
592 	    ld_fast_sigblock = true;
593 
594     trust = !issetugid();
595     direct_exec = false;
596 
597     md_abi_variant_hook(aux_info);
598     rtld_init_env_vars(env);
599 
600     fd = -1;
601     if (aux_info[AT_EXECFD] != NULL) {
602 	fd = aux_info[AT_EXECFD]->a_un.a_val;
603     } else {
604 	assert(aux_info[AT_PHDR] != NULL);
605 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
606 	if (phdr == obj_rtld.phdr) {
607 	    if (!trust) {
608 		_rtld_error("Tainted process refusing to run binary %s",
609 		    argv0);
610 		rtld_die();
611 	    }
612 	    direct_exec = true;
613 
614 	    dbg("opening main program in direct exec mode");
615 	    if (argc >= 2) {
616 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
617 		  &argv0, &dir_ignore);
618 		explicit_fd = (fd != -1);
619 		binpath = NULL;
620 		if (!explicit_fd)
621 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
622 		if (fstat(fd, &st) == -1) {
623 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
624 		      explicit_fd ? "user-provided descriptor" : argv0,
625 		      rtld_strerror(errno));
626 		    rtld_die();
627 		}
628 
629 		/*
630 		 * Rough emulation of the permission checks done by
631 		 * execve(2), only Unix DACs are checked, ACLs are
632 		 * ignored.  Preserve the semantic of disabling owner
633 		 * to execute if owner x bit is cleared, even if
634 		 * others x bit is enabled.
635 		 * mmap(2) does not allow to mmap with PROT_EXEC if
636 		 * binary' file comes from noexec mount.  We cannot
637 		 * set a text reference on the binary.
638 		 */
639 		dir_enable = false;
640 		if (st.st_uid == geteuid()) {
641 		    if ((st.st_mode & S_IXUSR) != 0)
642 			dir_enable = true;
643 		} else if (st.st_gid == getegid()) {
644 		    if ((st.st_mode & S_IXGRP) != 0)
645 			dir_enable = true;
646 		} else if ((st.st_mode & S_IXOTH) != 0) {
647 		    dir_enable = true;
648 		}
649 		if (!dir_enable && !dir_ignore) {
650 		    _rtld_error("No execute permission for binary %s",
651 		        argv0);
652 		    rtld_die();
653 		}
654 
655 		/*
656 		 * For direct exec mode, argv[0] is the interpreter
657 		 * name, we must remove it and shift arguments left
658 		 * before invoking binary main.  Since stack layout
659 		 * places environment pointers and aux vectors right
660 		 * after the terminating NULL, we must shift
661 		 * environment and aux as well.
662 		 */
663 		main_argc = argc - rtld_argc;
664 		for (i = 0; i <= main_argc; i++)
665 		    argv[i] = argv[i + rtld_argc];
666 		*argcp -= rtld_argc;
667 		environ = env = envp = argv + main_argc + 1;
668 		dbg("move env from %p to %p", envp + rtld_argc, envp);
669 		do {
670 		    *envp = *(envp + rtld_argc);
671 		}  while (*envp++ != NULL);
672 		aux = auxp = (Elf_Auxinfo *)envp;
673 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
674 		dbg("move aux from %p to %p", auxpf, aux);
675 		/* XXXKIB insert place for AT_EXECPATH if not present */
676 		for (;; auxp++, auxpf++) {
677 		    *auxp = *auxpf;
678 		    if (auxp->a_type == AT_NULL)
679 			    break;
680 		}
681 		/* Since the auxiliary vector has moved, redigest it. */
682 		for (i = 0;  i < AT_COUNT;  i++)
683 		    aux_info[i] = NULL;
684 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
685 		    if (auxp->a_type < AT_COUNT)
686 			aux_info[auxp->a_type] = auxp;
687 		}
688 
689 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
690 		if (binpath == NULL) {
691 		    aux_info[AT_EXECPATH] = NULL;
692 		} else {
693 		    if (aux_info[AT_EXECPATH] == NULL) {
694 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
695 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
696 		    }
697 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
698 		      binpath);
699 		}
700 	    } else {
701 		_rtld_error("No binary");
702 		rtld_die();
703 	    }
704 	}
705     }
706 
707     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
708 
709     /*
710      * If the process is tainted, then we un-set the dangerous environment
711      * variables.  The process will be marked as tainted until setuid(2)
712      * is called.  If any child process calls setuid(2) we do not want any
713      * future processes to honor the potentially un-safe variables.
714      */
715     if (!trust) {
716 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
717 		    lvd = &ld_env_vars[i];
718 		    if (lvd->unsecure)
719 			    lvd->val = NULL;
720 	    }
721     }
722 
723     ld_debug = ld_get_env_var(LD_DEBUG);
724     if (ld_bind_now == NULL)
725 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
726     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
727     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
728     libmap_override = ld_get_env_var(LD_LIBMAP);
729     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
730     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
731     ld_preload = ld_get_env_var(LD_PRELOAD);
732     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
733     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
734     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
735     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
736     if (library_path_rpath != NULL) {
737 	    if (library_path_rpath[0] == 'y' ||
738 		library_path_rpath[0] == 'Y' ||
739 		library_path_rpath[0] == '1')
740 		    ld_library_path_rpath = true;
741 	    else
742 		    ld_library_path_rpath = false;
743     }
744     static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
745     if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
746 	sz = parse_integer(static_tls_extra);
747 	if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
748 	    ld_static_tls_extra = sz;
749     }
750     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
751 	ld_library_path != NULL || ld_preload != NULL ||
752 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
753 	static_tls_extra != NULL;
754     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
755     ld_utrace = ld_get_env_var(LD_UTRACE);
756 
757     set_ld_elf_hints_path();
758     if (ld_debug != NULL && *ld_debug != '\0')
759 	debug = 1;
760     dbg("%s is initialized, base address = %p", __progname,
761 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
762     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
763     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
764 
765     dbg("initializing thread locks");
766     lockdflt_init();
767 
768     /*
769      * Load the main program, or process its program header if it is
770      * already loaded.
771      */
772     if (fd != -1) {	/* Load the main program. */
773 	dbg("loading main program");
774 	obj_main = map_object(fd, argv0, NULL);
775 	close(fd);
776 	if (obj_main == NULL)
777 	    rtld_die();
778 	max_stack_flags = obj_main->stack_flags;
779     } else {				/* Main program already loaded. */
780 	dbg("processing main program's program header");
781 	assert(aux_info[AT_PHDR] != NULL);
782 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
783 	assert(aux_info[AT_PHNUM] != NULL);
784 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
785 	assert(aux_info[AT_PHENT] != NULL);
786 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
787 	assert(aux_info[AT_ENTRY] != NULL);
788 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
789 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
790 	    rtld_die();
791     }
792 
793     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
794 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
795 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
796 	    if (kexecpath[0] == '/')
797 		    obj_main->path = kexecpath;
798 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
799 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
800 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
801 		    obj_main->path = xstrdup(argv0);
802 	    else
803 		    obj_main->path = xstrdup(buf);
804     } else {
805 	    dbg("No AT_EXECPATH or direct exec");
806 	    obj_main->path = xstrdup(argv0);
807     }
808     dbg("obj_main path %s", obj_main->path);
809     obj_main->mainprog = true;
810 
811     if (aux_info[AT_STACKPROT] != NULL &&
812       aux_info[AT_STACKPROT]->a_un.a_val != 0)
813 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
814 
815 #ifndef COMPAT_libcompat
816     /*
817      * Get the actual dynamic linker pathname from the executable if
818      * possible.  (It should always be possible.)  That ensures that
819      * gdb will find the right dynamic linker even if a non-standard
820      * one is being used.
821      */
822     if (obj_main->interp != NULL &&
823       strcmp(obj_main->interp, obj_rtld.path) != 0) {
824 	free(obj_rtld.path);
825 	obj_rtld.path = xstrdup(obj_main->interp);
826         __progname = obj_rtld.path;
827     }
828 #endif
829 
830     if (!digest_dynamic(obj_main, 0))
831 	rtld_die();
832     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
833 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
834 	obj_main->dynsymcount);
835 
836     linkmap_add(obj_main);
837     linkmap_add(&obj_rtld);
838 
839     /* Link the main program into the list of objects. */
840     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
841     obj_count++;
842     obj_loads++;
843 
844     /* Initialize a fake symbol for resolving undefined weak references. */
845     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
846     sym_zero.st_shndx = SHN_UNDEF;
847     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
848 
849     if (!libmap_disable)
850         libmap_disable = (bool)lm_init(libmap_override);
851 
852     if (aux_info[AT_KPRELOAD] != NULL &&
853       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
854 	dbg("loading kernel vdso");
855 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
856 	    rtld_die();
857     }
858 
859     dbg("loading LD_PRELOAD_FDS libraries");
860     if (load_preload_objects(ld_preload_fds, true) == -1)
861 	rtld_die();
862 
863     dbg("loading LD_PRELOAD libraries");
864     if (load_preload_objects(ld_preload, false) == -1)
865 	rtld_die();
866     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
867 
868     dbg("loading needed objects");
869     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
870       0) == -1)
871 	rtld_die();
872 
873     /* Make a list of all objects loaded at startup. */
874     last_interposer = obj_main;
875     TAILQ_FOREACH(obj, &obj_list, next) {
876 	if (obj->marker)
877 	    continue;
878 	if (obj->z_interpose && obj != obj_main) {
879 	    objlist_put_after(&list_main, last_interposer, obj);
880 	    last_interposer = obj;
881 	} else {
882 	    objlist_push_tail(&list_main, obj);
883 	}
884     	obj->refcount++;
885     }
886 
887     dbg("checking for required versions");
888     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
889 	rtld_die();
890 
891     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
892        dump_auxv(aux_info);
893 
894     if (ld_tracing) {		/* We're done */
895 	trace_loaded_objects(obj_main, true);
896 	exit(0);
897     }
898 
899     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
900        dump_relocations(obj_main);
901        exit (0);
902     }
903 
904     /*
905      * Processing tls relocations requires having the tls offsets
906      * initialized.  Prepare offsets before starting initial
907      * relocation processing.
908      */
909     dbg("initializing initial thread local storage offsets");
910     STAILQ_FOREACH(entry, &list_main, link) {
911 	/*
912 	 * Allocate all the initial objects out of the static TLS
913 	 * block even if they didn't ask for it.
914 	 */
915 	allocate_tls_offset(entry->obj);
916     }
917 
918     if (relocate_objects(obj_main,
919       ld_bind_now != NULL && *ld_bind_now != '\0',
920       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
921 	rtld_die();
922 
923     dbg("doing copy relocations");
924     if (do_copy_relocations(obj_main) == -1)
925 	rtld_die();
926 
927     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
928        dump_relocations(obj_main);
929        exit (0);
930     }
931 
932     ifunc_init(aux);
933 
934     /*
935      * Setup TLS for main thread.  This must be done after the
936      * relocations are processed, since tls initialization section
937      * might be the subject for relocations.
938      */
939     dbg("initializing initial thread local storage");
940     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
941 
942     dbg("initializing key program variables");
943     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
944     set_program_var("environ", env);
945     set_program_var("__elf_aux_vector", aux);
946 
947     /* Make a list of init functions to call. */
948     objlist_init(&initlist);
949     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
950       preload_tail, &initlist);
951 
952     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
953 
954     map_stacks_exec(NULL);
955 
956     if (!obj_main->crt_no_init) {
957 	/*
958 	 * Make sure we don't call the main program's init and fini
959 	 * functions for binaries linked with old crt1 which calls
960 	 * _init itself.
961 	 */
962 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
963 	obj_main->preinit_array = obj_main->init_array =
964 	    obj_main->fini_array = (Elf_Addr)NULL;
965     }
966 
967     if (direct_exec) {
968 	/* Set osrel for direct-execed binary */
969 	mib[0] = CTL_KERN;
970 	mib[1] = KERN_PROC;
971 	mib[2] = KERN_PROC_OSREL;
972 	mib[3] = getpid();
973 	osrel = obj_main->osrel;
974 	sz = sizeof(old_osrel);
975 	dbg("setting osrel to %d", osrel);
976 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
977     }
978 
979     wlock_acquire(rtld_bind_lock, &lockstate);
980 
981     dbg("resolving ifuncs");
982     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
983       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
984 	rtld_die();
985 
986     rtld_exit_ptr = rtld_exit;
987     if (obj_main->crt_no_init)
988 	preinit_main();
989     objlist_call_init(&initlist, &lockstate);
990     _r_debug_postinit(&obj_main->linkmap);
991     objlist_clear(&initlist);
992     dbg("loading filtees");
993     TAILQ_FOREACH(obj, &obj_list, next) {
994 	if (obj->marker)
995 	    continue;
996 	if (ld_loadfltr || obj->z_loadfltr)
997 	    load_filtees(obj, 0, &lockstate);
998     }
999 
1000     dbg("enforcing main obj relro");
1001     if (obj_enforce_relro(obj_main) == -1)
1002 	rtld_die();
1003 
1004     lock_release(rtld_bind_lock, &lockstate);
1005 
1006     dbg("transferring control to program entry point = %p", obj_main->entry);
1007 
1008     /* Return the exit procedure and the program entry point. */
1009     *exit_proc = rtld_exit_ptr;
1010     *objp = obj_main;
1011     return ((func_ptr_type)obj_main->entry);
1012 }
1013 
1014 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1015 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1016 {
1017 	void *ptr;
1018 	Elf_Addr target;
1019 
1020 	ptr = (void *)make_function_pointer(def, obj);
1021 	target = call_ifunc_resolver(ptr);
1022 	return ((void *)target);
1023 }
1024 
1025 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1026 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1027 {
1028     const Elf_Rel *rel;
1029     const Elf_Sym *def;
1030     const Obj_Entry *defobj;
1031     Elf_Addr *where;
1032     Elf_Addr target;
1033     RtldLockState lockstate;
1034 
1035     rlock_acquire(rtld_bind_lock, &lockstate);
1036     if (sigsetjmp(lockstate.env, 0) != 0)
1037 	    lock_upgrade(rtld_bind_lock, &lockstate);
1038     if (obj->pltrel)
1039 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1040     else
1041 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1042 
1043     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1044     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1045 	NULL, &lockstate);
1046     if (def == NULL)
1047 	rtld_die();
1048     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
1049 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1050     else
1051 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
1052 
1053     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
1054       defobj->strtab + def->st_name,
1055       obj->path == NULL ? NULL : basename(obj->path),
1056       (void *)target,
1057       defobj->path == NULL ? NULL : basename(defobj->path));
1058 
1059     /*
1060      * Write the new contents for the jmpslot. Note that depending on
1061      * architecture, the value which we need to return back to the
1062      * lazy binding trampoline may or may not be the target
1063      * address. The value returned from reloc_jmpslot() is the value
1064      * that the trampoline needs.
1065      */
1066     target = reloc_jmpslot(where, target, defobj, obj, rel);
1067     lock_release(rtld_bind_lock, &lockstate);
1068     return (target);
1069 }
1070 
1071 /*
1072  * Error reporting function.  Use it like printf.  If formats the message
1073  * into a buffer, and sets things up so that the next call to dlerror()
1074  * will return the message.
1075  */
1076 void
_rtld_error(const char * fmt,...)1077 _rtld_error(const char *fmt, ...)
1078 {
1079 	va_list ap;
1080 
1081 	va_start(ap, fmt);
1082 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
1083 	    fmt, ap);
1084 	va_end(ap);
1085 	*lockinfo.dlerror_seen() = 0;
1086 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1087 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1088 }
1089 
1090 /*
1091  * Return a dynamically-allocated copy of the current error message, if any.
1092  */
1093 static struct dlerror_save *
errmsg_save(void)1094 errmsg_save(void)
1095 {
1096 	struct dlerror_save *res;
1097 
1098 	res = xmalloc(sizeof(*res));
1099 	res->seen = *lockinfo.dlerror_seen();
1100 	if (res->seen == 0)
1101 		res->msg = xstrdup(lockinfo.dlerror_loc());
1102 	return (res);
1103 }
1104 
1105 /*
1106  * Restore the current error message from a copy which was previously saved
1107  * by errmsg_save().  The copy is freed.
1108  */
1109 static void
errmsg_restore(struct dlerror_save * saved_msg)1110 errmsg_restore(struct dlerror_save *saved_msg)
1111 {
1112 	if (saved_msg == NULL || saved_msg->seen == 1) {
1113 		*lockinfo.dlerror_seen() = 1;
1114 	} else {
1115 		*lockinfo.dlerror_seen() = 0;
1116 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1117 		    lockinfo.dlerror_loc_sz);
1118 		free(saved_msg->msg);
1119 	}
1120 	free(saved_msg);
1121 }
1122 
1123 static const char *
basename(const char * name)1124 basename(const char *name)
1125 {
1126 	const char *p;
1127 
1128 	p = strrchr(name, '/');
1129 	return (p != NULL ? p + 1 : name);
1130 }
1131 
1132 static struct utsname uts;
1133 
1134 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1135 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
1136     const char *subst, bool may_free)
1137 {
1138 	char *p, *p1, *res, *resp;
1139 	int subst_len, kw_len, subst_count, old_len, new_len;
1140 
1141 	kw_len = strlen(kw);
1142 
1143 	/*
1144 	 * First, count the number of the keyword occurrences, to
1145 	 * preallocate the final string.
1146 	 */
1147 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1148 		p1 = strstr(p, kw);
1149 		if (p1 == NULL)
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If the keyword is not found, just return.
1155 	 *
1156 	 * Return non-substituted string if resolution failed.  We
1157 	 * cannot do anything more reasonable, the failure mode of the
1158 	 * caller is unresolved library anyway.
1159 	 */
1160 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1161 		return (may_free ? real : xstrdup(real));
1162 	if (obj != NULL)
1163 		subst = obj->origin_path;
1164 
1165 	/*
1166 	 * There is indeed something to substitute.  Calculate the
1167 	 * length of the resulting string, and allocate it.
1168 	 */
1169 	subst_len = strlen(subst);
1170 	old_len = strlen(real);
1171 	new_len = old_len + (subst_len - kw_len) * subst_count;
1172 	res = xmalloc(new_len + 1);
1173 
1174 	/*
1175 	 * Now, execute the substitution loop.
1176 	 */
1177 	for (p = real, resp = res, *resp = '\0';;) {
1178 		p1 = strstr(p, kw);
1179 		if (p1 != NULL) {
1180 			/* Copy the prefix before keyword. */
1181 			memcpy(resp, p, p1 - p);
1182 			resp += p1 - p;
1183 			/* Keyword replacement. */
1184 			memcpy(resp, subst, subst_len);
1185 			resp += subst_len;
1186 			*resp = '\0';
1187 			p = p1 + kw_len;
1188 		} else
1189 			break;
1190 	}
1191 
1192 	/* Copy to the end of string and finish. */
1193 	strcat(resp, p);
1194 	if (may_free)
1195 		free(real);
1196 	return (res);
1197 }
1198 
1199 static const struct {
1200 	const char *kw;
1201 	bool pass_obj;
1202 	const char *subst;
1203 } tokens[] = {
1204 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1205 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1206 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1207 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1208 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1209 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1210 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1211 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1212 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1213 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1214 };
1215 
1216 static char *
origin_subst(Obj_Entry * obj,const char * real)1217 origin_subst(Obj_Entry *obj, const char *real)
1218 {
1219 	char *res;
1220 	int i;
1221 
1222 	if (obj == NULL || !trust)
1223 		return (xstrdup(real));
1224 	if (uts.sysname[0] == '\0') {
1225 		if (uname(&uts) != 0) {
1226 			_rtld_error("utsname failed: %d", errno);
1227 			return (NULL);
1228 		}
1229 	}
1230 
1231 	/* __DECONST is safe here since without may_free real is unchanged */
1232 	res = __DECONST(char *, real);
1233 	for (i = 0; i < (int)nitems(tokens); i++) {
1234 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
1235 		    res, tokens[i].kw, tokens[i].subst, i != 0);
1236 	}
1237 	return (res);
1238 }
1239 
1240 void
rtld_die(void)1241 rtld_die(void)
1242 {
1243     const char *msg = dlerror();
1244 
1245     if (msg == NULL)
1246 	msg = "Fatal error";
1247     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1248     rtld_fdputstr(STDERR_FILENO, msg);
1249     rtld_fdputchar(STDERR_FILENO, '\n');
1250     _exit(1);
1251 }
1252 
1253 /*
1254  * Process a shared object's DYNAMIC section, and save the important
1255  * information in its Obj_Entry structure.
1256  */
1257 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1258 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1259     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1260 {
1261     const Elf_Dyn *dynp;
1262     Needed_Entry **needed_tail = &obj->needed;
1263     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1264     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1265     const Elf_Hashelt *hashtab;
1266     const Elf32_Word *hashval;
1267     Elf32_Word bkt, nmaskwords;
1268     int bloom_size32;
1269     int plttype = DT_REL;
1270 
1271     *dyn_rpath = NULL;
1272     *dyn_soname = NULL;
1273     *dyn_runpath = NULL;
1274 
1275     obj->bind_now = false;
1276     dynp = obj->dynamic;
1277     if (dynp == NULL)
1278 	return;
1279     for (;  dynp->d_tag != DT_NULL;  dynp++) {
1280 	switch (dynp->d_tag) {
1281 
1282 	case DT_REL:
1283 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
1284 	    break;
1285 
1286 	case DT_RELSZ:
1287 	    obj->relsize = dynp->d_un.d_val;
1288 	    break;
1289 
1290 	case DT_RELENT:
1291 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1292 	    break;
1293 
1294 	case DT_JMPREL:
1295 	    obj->pltrel = (const Elf_Rel *)
1296 	      (obj->relocbase + dynp->d_un.d_ptr);
1297 	    break;
1298 
1299 	case DT_PLTRELSZ:
1300 	    obj->pltrelsize = dynp->d_un.d_val;
1301 	    break;
1302 
1303 	case DT_RELA:
1304 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
1305 	    break;
1306 
1307 	case DT_RELASZ:
1308 	    obj->relasize = dynp->d_un.d_val;
1309 	    break;
1310 
1311 	case DT_RELAENT:
1312 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1313 	    break;
1314 
1315 	case DT_RELR:
1316 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
1317 	    break;
1318 
1319 	case DT_RELRSZ:
1320 	    obj->relrsize = dynp->d_un.d_val;
1321 	    break;
1322 
1323 	case DT_RELRENT:
1324 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1325 	    break;
1326 
1327 	case DT_PLTREL:
1328 	    plttype = dynp->d_un.d_val;
1329 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1330 	    break;
1331 
1332 	case DT_SYMTAB:
1333 	    obj->symtab = (const Elf_Sym *)
1334 	      (obj->relocbase + dynp->d_un.d_ptr);
1335 	    break;
1336 
1337 	case DT_SYMENT:
1338 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1339 	    break;
1340 
1341 	case DT_STRTAB:
1342 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
1343 	    break;
1344 
1345 	case DT_STRSZ:
1346 	    obj->strsize = dynp->d_un.d_val;
1347 	    break;
1348 
1349 	case DT_VERNEED:
1350 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1351 		dynp->d_un.d_val);
1352 	    break;
1353 
1354 	case DT_VERNEEDNUM:
1355 	    obj->verneednum = dynp->d_un.d_val;
1356 	    break;
1357 
1358 	case DT_VERDEF:
1359 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1360 		dynp->d_un.d_val);
1361 	    break;
1362 
1363 	case DT_VERDEFNUM:
1364 	    obj->verdefnum = dynp->d_un.d_val;
1365 	    break;
1366 
1367 	case DT_VERSYM:
1368 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1369 		dynp->d_un.d_val);
1370 	    break;
1371 
1372 	case DT_HASH:
1373 	    {
1374 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1375 		    dynp->d_un.d_ptr);
1376 		obj->nbuckets = hashtab[0];
1377 		obj->nchains = hashtab[1];
1378 		obj->buckets = hashtab + 2;
1379 		obj->chains = obj->buckets + obj->nbuckets;
1380 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1381 		  obj->buckets != NULL;
1382 	    }
1383 	    break;
1384 
1385 	case DT_GNU_HASH:
1386 	    {
1387 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1388 		    dynp->d_un.d_ptr);
1389 		obj->nbuckets_gnu = hashtab[0];
1390 		obj->symndx_gnu = hashtab[1];
1391 		nmaskwords = hashtab[2];
1392 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1393 		obj->maskwords_bm_gnu = nmaskwords - 1;
1394 		obj->shift2_gnu = hashtab[3];
1395 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1396 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1397 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1398 		  obj->symndx_gnu;
1399 		/* Number of bitmask words is required to be power of 2 */
1400 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
1401 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1402 	    }
1403 	    break;
1404 
1405 	case DT_NEEDED:
1406 	    if (!obj->rtld) {
1407 		Needed_Entry *nep = NEW(Needed_Entry);
1408 		nep->name = dynp->d_un.d_val;
1409 		nep->obj = NULL;
1410 		nep->next = NULL;
1411 
1412 		*needed_tail = nep;
1413 		needed_tail = &nep->next;
1414 	    }
1415 	    break;
1416 
1417 	case DT_FILTER:
1418 	    if (!obj->rtld) {
1419 		Needed_Entry *nep = NEW(Needed_Entry);
1420 		nep->name = dynp->d_un.d_val;
1421 		nep->obj = NULL;
1422 		nep->next = NULL;
1423 
1424 		*needed_filtees_tail = nep;
1425 		needed_filtees_tail = &nep->next;
1426 
1427 		if (obj->linkmap.l_refname == NULL)
1428 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
1429 	    }
1430 	    break;
1431 
1432 	case DT_AUXILIARY:
1433 	    if (!obj->rtld) {
1434 		Needed_Entry *nep = NEW(Needed_Entry);
1435 		nep->name = dynp->d_un.d_val;
1436 		nep->obj = NULL;
1437 		nep->next = NULL;
1438 
1439 		*needed_aux_filtees_tail = nep;
1440 		needed_aux_filtees_tail = &nep->next;
1441 	    }
1442 	    break;
1443 
1444 	case DT_PLTGOT:
1445 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
1446 	    break;
1447 
1448 	case DT_TEXTREL:
1449 	    obj->textrel = true;
1450 	    break;
1451 
1452 	case DT_SYMBOLIC:
1453 	    obj->symbolic = true;
1454 	    break;
1455 
1456 	case DT_RPATH:
1457 	    /*
1458 	     * We have to wait until later to process this, because we
1459 	     * might not have gotten the address of the string table yet.
1460 	     */
1461 	    *dyn_rpath = dynp;
1462 	    break;
1463 
1464 	case DT_SONAME:
1465 	    *dyn_soname = dynp;
1466 	    break;
1467 
1468 	case DT_RUNPATH:
1469 	    *dyn_runpath = dynp;
1470 	    break;
1471 
1472 	case DT_INIT:
1473 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1474 	    break;
1475 
1476 	case DT_PREINIT_ARRAY:
1477 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1478 	    break;
1479 
1480 	case DT_PREINIT_ARRAYSZ:
1481 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1482 	    break;
1483 
1484 	case DT_INIT_ARRAY:
1485 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1486 	    break;
1487 
1488 	case DT_INIT_ARRAYSZ:
1489 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1490 	    break;
1491 
1492 	case DT_FINI:
1493 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1494 	    break;
1495 
1496 	case DT_FINI_ARRAY:
1497 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1498 	    break;
1499 
1500 	case DT_FINI_ARRAYSZ:
1501 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1502 	    break;
1503 
1504 	case DT_DEBUG:
1505 	    if (!early)
1506 		dbg("Filling in DT_DEBUG entry");
1507 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
1508 	    break;
1509 
1510 	case DT_FLAGS:
1511 		if (dynp->d_un.d_val & DF_ORIGIN)
1512 		    obj->z_origin = true;
1513 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1514 		    obj->symbolic = true;
1515 		if (dynp->d_un.d_val & DF_TEXTREL)
1516 		    obj->textrel = true;
1517 		if (dynp->d_un.d_val & DF_BIND_NOW)
1518 		    obj->bind_now = true;
1519 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1520 		    obj->static_tls = true;
1521 	    break;
1522 
1523 	case DT_FLAGS_1:
1524 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1525 		    obj->z_noopen = true;
1526 		if (dynp->d_un.d_val & DF_1_ORIGIN)
1527 		    obj->z_origin = true;
1528 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1529 		    obj->z_global = true;
1530 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1531 		    obj->bind_now = true;
1532 		if (dynp->d_un.d_val & DF_1_NODELETE)
1533 		    obj->z_nodelete = true;
1534 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1535 		    obj->z_loadfltr = true;
1536 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1537 		    obj->z_interpose = true;
1538 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1539 		    obj->z_nodeflib = true;
1540 		if (dynp->d_un.d_val & DF_1_PIE)
1541 		    obj->z_pie = true;
1542 	    break;
1543 
1544 	default:
1545 	    if (arch_digest_dynamic(obj, dynp))
1546 		break;
1547 
1548 	    if (!early) {
1549 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1550 		    (long)dynp->d_tag);
1551 	    }
1552 	    break;
1553 	}
1554     }
1555 
1556     obj->traced = false;
1557 
1558     if (plttype == DT_RELA) {
1559 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1560 	obj->pltrel = NULL;
1561 	obj->pltrelasize = obj->pltrelsize;
1562 	obj->pltrelsize = 0;
1563     }
1564 
1565     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1566     if (obj->valid_hash_sysv)
1567 	obj->dynsymcount = obj->nchains;
1568     else if (obj->valid_hash_gnu) {
1569 	obj->dynsymcount = 0;
1570 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1571 	    if (obj->buckets_gnu[bkt] == 0)
1572 		continue;
1573 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1574 	    do
1575 		obj->dynsymcount++;
1576 	    while ((*hashval++ & 1u) == 0);
1577 	}
1578 	obj->dynsymcount += obj->symndx_gnu;
1579     }
1580 
1581     if (obj->linkmap.l_refname != NULL)
1582 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
1583 	  linkmap.l_refname;
1584 }
1585 
1586 static bool
obj_resolve_origin(Obj_Entry * obj)1587 obj_resolve_origin(Obj_Entry *obj)
1588 {
1589 
1590 	if (obj->origin_path != NULL)
1591 		return (true);
1592 	obj->origin_path = xmalloc(PATH_MAX);
1593 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1594 }
1595 
1596 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1597 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1598     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1599 {
1600 
1601 	if (obj->z_origin && !obj_resolve_origin(obj))
1602 		return (false);
1603 
1604 	if (dyn_runpath != NULL) {
1605 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
1606 		obj->runpath = origin_subst(obj, obj->runpath);
1607 	} else if (dyn_rpath != NULL) {
1608 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1609 		obj->rpath = origin_subst(obj, obj->rpath);
1610 	}
1611 	if (dyn_soname != NULL)
1612 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1613 	return (true);
1614 }
1615 
1616 static bool
digest_dynamic(Obj_Entry * obj,int early)1617 digest_dynamic(Obj_Entry *obj, int early)
1618 {
1619 	const Elf_Dyn *dyn_rpath;
1620 	const Elf_Dyn *dyn_soname;
1621 	const Elf_Dyn *dyn_runpath;
1622 
1623 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1624 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1625 }
1626 
1627 /*
1628  * Process a shared object's program header.  This is used only for the
1629  * main program, when the kernel has already loaded the main program
1630  * into memory before calling the dynamic linker.  It creates and
1631  * returns an Obj_Entry structure.
1632  */
1633 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1634 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1635 {
1636     Obj_Entry *obj;
1637     const Elf_Phdr *phlimit = phdr + phnum;
1638     const Elf_Phdr *ph;
1639     Elf_Addr note_start, note_end;
1640     int nsegs = 0;
1641 
1642     obj = obj_new();
1643     for (ph = phdr;  ph < phlimit;  ph++) {
1644 	if (ph->p_type != PT_PHDR)
1645 	    continue;
1646 
1647 	obj->phdr = phdr;
1648 	obj->phsize = ph->p_memsz;
1649 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1650 	break;
1651     }
1652 
1653     obj->stack_flags = PF_X | PF_R | PF_W;
1654 
1655     for (ph = phdr;  ph < phlimit;  ph++) {
1656 	switch (ph->p_type) {
1657 
1658 	case PT_INTERP:
1659 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1660 	    break;
1661 
1662 	case PT_LOAD:
1663 	    if (nsegs == 0) {	/* First load segment */
1664 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1665 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1666 	    } else {		/* Last load segment */
1667 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
1668 		  obj->vaddrbase;
1669 	    }
1670 	    nsegs++;
1671 	    break;
1672 
1673 	case PT_DYNAMIC:
1674 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1675 	    break;
1676 
1677 	case PT_TLS:
1678 	    obj->tlsindex = 1;
1679 	    obj->tlssize = ph->p_memsz;
1680 	    obj->tlsalign = ph->p_align;
1681 	    obj->tlsinitsize = ph->p_filesz;
1682 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1683 	    obj->tlspoffset = ph->p_offset;
1684 	    break;
1685 
1686 	case PT_GNU_STACK:
1687 	    obj->stack_flags = ph->p_flags;
1688 	    break;
1689 
1690 	case PT_GNU_RELRO:
1691 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
1692 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
1693 	      rtld_trunc_page(ph->p_vaddr);
1694 	    break;
1695 
1696 	case PT_NOTE:
1697 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1698 	    note_end = note_start + ph->p_filesz;
1699 	    digest_notes(obj, note_start, note_end);
1700 	    break;
1701 	}
1702     }
1703     if (nsegs < 1) {
1704 	_rtld_error("%s: too few PT_LOAD segments", path);
1705 	return (NULL);
1706     }
1707 
1708     obj->entry = entry;
1709     return (obj);
1710 }
1711 
1712 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1713 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1714 {
1715 	const Elf_Note *note;
1716 	const char *note_name;
1717 	uintptr_t p;
1718 
1719 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1720 	    note = (const Elf_Note *)((const char *)(note + 1) +
1721 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1722 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1723 		if (arch_digest_note(obj, note))
1724 			continue;
1725 
1726 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1727 		    note->n_descsz != sizeof(int32_t))
1728 			continue;
1729 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1730 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1731 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1732 			continue;
1733 		note_name = (const char *)(note + 1);
1734 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1735 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1736 			continue;
1737 		switch (note->n_type) {
1738 		case NT_FREEBSD_ABI_TAG:
1739 			/* FreeBSD osrel note */
1740 			p = (uintptr_t)(note + 1);
1741 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1742 			obj->osrel = *(const int32_t *)(p);
1743 			dbg("note osrel %d", obj->osrel);
1744 			break;
1745 		case NT_FREEBSD_FEATURE_CTL:
1746 			/* FreeBSD ABI feature control note */
1747 			p = (uintptr_t)(note + 1);
1748 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1749 			obj->fctl0 = *(const uint32_t *)(p);
1750 			dbg("note fctl0 %#x", obj->fctl0);
1751 			break;
1752 		case NT_FREEBSD_NOINIT_TAG:
1753 			/* FreeBSD 'crt does not call init' note */
1754 			obj->crt_no_init = true;
1755 			dbg("note crt_no_init");
1756 			break;
1757 		}
1758 	}
1759 }
1760 
1761 static Obj_Entry *
dlcheck(void * handle)1762 dlcheck(void *handle)
1763 {
1764     Obj_Entry *obj;
1765 
1766     TAILQ_FOREACH(obj, &obj_list, next) {
1767 	if (obj == (Obj_Entry *) handle)
1768 	    break;
1769     }
1770 
1771     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1772 	_rtld_error("Invalid shared object handle %p", handle);
1773 	return (NULL);
1774     }
1775     return (obj);
1776 }
1777 
1778 /*
1779  * If the given object is already in the donelist, return true.  Otherwise
1780  * add the object to the list and return false.
1781  */
1782 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1783 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1784 {
1785     unsigned int i;
1786 
1787     for (i = 0;  i < dlp->num_used;  i++)
1788 	if (dlp->objs[i] == obj)
1789 	    return (true);
1790     /*
1791      * Our donelist allocation should always be sufficient.  But if
1792      * our threads locking isn't working properly, more shared objects
1793      * could have been loaded since we allocated the list.  That should
1794      * never happen, but we'll handle it properly just in case it does.
1795      */
1796     if (dlp->num_used < dlp->num_alloc)
1797 	dlp->objs[dlp->num_used++] = obj;
1798     return (false);
1799 }
1800 
1801 /*
1802  * SysV hash function for symbol table lookup.  It is a slightly optimized
1803  * version of the hash specified by the System V ABI.
1804  */
1805 Elf32_Word
elf_hash(const char * name)1806 elf_hash(const char *name)
1807 {
1808 	const unsigned char *p = (const unsigned char *)name;
1809 	Elf32_Word h = 0;
1810 
1811 	while (*p != '\0') {
1812 		h = (h << 4) + *p++;
1813 		h ^= (h >> 24) & 0xf0;
1814 	}
1815 	return (h & 0x0fffffff);
1816 }
1817 
1818 /*
1819  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1820  * unsigned in case it's implemented with a wider type.
1821  */
1822 static uint32_t
gnu_hash(const char * s)1823 gnu_hash(const char *s)
1824 {
1825 	uint32_t h;
1826 	unsigned char c;
1827 
1828 	h = 5381;
1829 	for (c = *s; c != '\0'; c = *++s)
1830 		h = h * 33 + c;
1831 	return (h & 0xffffffff);
1832 }
1833 
1834 
1835 /*
1836  * Find the library with the given name, and return its full pathname.
1837  * The returned string is dynamically allocated.  Generates an error
1838  * message and returns NULL if the library cannot be found.
1839  *
1840  * If the second argument is non-NULL, then it refers to an already-
1841  * loaded shared object, whose library search path will be searched.
1842  *
1843  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1844  * descriptor (which is close-on-exec) will be passed out via the third
1845  * argument.
1846  *
1847  * The search order is:
1848  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1849  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1850  *   LD_LIBRARY_PATH
1851  *   DT_RUNPATH in the referencing file
1852  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1853  *	 from list)
1854  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1855  *
1856  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1857  */
1858 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1859 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1860 {
1861 	char *pathname, *refobj_path;
1862 	const char *name;
1863 	bool nodeflib, objgiven;
1864 
1865 	objgiven = refobj != NULL;
1866 
1867 	if (libmap_disable || !objgiven ||
1868 	    (name = lm_find(refobj->path, xname)) == NULL)
1869 		name = xname;
1870 
1871 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
1872 		if (name[0] != '/' && !trust) {
1873 			_rtld_error("Absolute pathname required "
1874 			    "for shared object \"%s\"", name);
1875 			return (NULL);
1876 		}
1877 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1878 		    __DECONST(char *, name)));
1879 	}
1880 
1881 	dbg(" Searching for \"%s\"", name);
1882 	refobj_path = objgiven ? refobj->path : NULL;
1883 
1884 	/*
1885 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1886 	 * back to pre-conforming behaviour if user requested so with
1887 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1888 	 * nodeflib.
1889 	 */
1890 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1891 		pathname = search_library_path(name, ld_library_path,
1892 		    refobj_path, fdp);
1893 		if (pathname != NULL)
1894 			return (pathname);
1895 		if (refobj != NULL) {
1896 			pathname = search_library_path(name, refobj->rpath,
1897 			    refobj_path, fdp);
1898 			if (pathname != NULL)
1899 				return (pathname);
1900 		}
1901 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1902 		if (pathname != NULL)
1903 			return (pathname);
1904 		pathname = search_library_path(name, gethints(false),
1905 		    refobj_path, fdp);
1906 		if (pathname != NULL)
1907 			return (pathname);
1908 		pathname = search_library_path(name, ld_standard_library_path,
1909 		    refobj_path, fdp);
1910 		if (pathname != NULL)
1911 			return (pathname);
1912 	} else {
1913 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1914 		if (objgiven) {
1915 			pathname = search_library_path(name, refobj->rpath,
1916 			    refobj->path, fdp);
1917 			if (pathname != NULL)
1918 				return (pathname);
1919 		}
1920 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1921 			pathname = search_library_path(name, obj_main->rpath,
1922 			    refobj_path, fdp);
1923 			if (pathname != NULL)
1924 				return (pathname);
1925 		}
1926 		pathname = search_library_path(name, ld_library_path,
1927 		    refobj_path, fdp);
1928 		if (pathname != NULL)
1929 			return (pathname);
1930 		if (objgiven) {
1931 			pathname = search_library_path(name, refobj->runpath,
1932 			    refobj_path, fdp);
1933 			if (pathname != NULL)
1934 				return (pathname);
1935 		}
1936 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1937 		if (pathname != NULL)
1938 			return (pathname);
1939 		pathname = search_library_path(name, gethints(nodeflib),
1940 		    refobj_path, fdp);
1941 		if (pathname != NULL)
1942 			return (pathname);
1943 		if (objgiven && !nodeflib) {
1944 			pathname = search_library_path(name,
1945 			    ld_standard_library_path, refobj_path, fdp);
1946 			if (pathname != NULL)
1947 				return (pathname);
1948 		}
1949 	}
1950 
1951 	if (objgiven && refobj->path != NULL) {
1952 		_rtld_error("Shared object \"%s\" not found, "
1953 		    "required by \"%s\"", name, basename(refobj->path));
1954 	} else {
1955 		_rtld_error("Shared object \"%s\" not found", name);
1956 	}
1957 	return (NULL);
1958 }
1959 
1960 /*
1961  * Given a symbol number in a referencing object, find the corresponding
1962  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1963  * no definition was found.  Returns a pointer to the Obj_Entry of the
1964  * defining object via the reference parameter DEFOBJ_OUT.
1965  */
1966 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)1967 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1968     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1969     RtldLockState *lockstate)
1970 {
1971     const Elf_Sym *ref;
1972     const Elf_Sym *def;
1973     const Obj_Entry *defobj;
1974     const Ver_Entry *ve;
1975     SymLook req;
1976     const char *name;
1977     int res;
1978 
1979     /*
1980      * If we have already found this symbol, get the information from
1981      * the cache.
1982      */
1983     if (symnum >= refobj->dynsymcount)
1984 	return (NULL);	/* Bad object */
1985     if (cache != NULL && cache[symnum].sym != NULL) {
1986 	*defobj_out = cache[symnum].obj;
1987 	return (cache[symnum].sym);
1988     }
1989 
1990     ref = refobj->symtab + symnum;
1991     name = refobj->strtab + ref->st_name;
1992     def = NULL;
1993     defobj = NULL;
1994     ve = NULL;
1995 
1996     /*
1997      * We don't have to do a full scale lookup if the symbol is local.
1998      * We know it will bind to the instance in this load module; to
1999      * which we already have a pointer (ie ref). By not doing a lookup,
2000      * we not only improve performance, but it also avoids unresolvable
2001      * symbols when local symbols are not in the hash table. This has
2002      * been seen with the ia64 toolchain.
2003      */
2004     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2005 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2006 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
2007 		symnum);
2008 	}
2009 	symlook_init(&req, name);
2010 	req.flags = flags;
2011 	ve = req.ventry = fetch_ventry(refobj, symnum);
2012 	req.lockstate = lockstate;
2013 	res = symlook_default(&req, refobj);
2014 	if (res == 0) {
2015 	    def = req.sym_out;
2016 	    defobj = req.defobj_out;
2017 	}
2018     } else {
2019 	def = ref;
2020 	defobj = refobj;
2021     }
2022 
2023     /*
2024      * If we found no definition and the reference is weak, treat the
2025      * symbol as having the value zero.
2026      */
2027     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2028 	def = &sym_zero;
2029 	defobj = obj_main;
2030     }
2031 
2032     if (def != NULL) {
2033 	*defobj_out = defobj;
2034 	/* Record the information in the cache to avoid subsequent lookups. */
2035 	if (cache != NULL) {
2036 	    cache[symnum].sym = def;
2037 	    cache[symnum].obj = defobj;
2038 	}
2039     } else {
2040 	if (refobj != &obj_rtld)
2041 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
2042 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
2043     }
2044     return (def);
2045 }
2046 
2047 /* Convert between native byte order and forced little resp. big endian. */
2048 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2049 
2050 /*
2051  * Return the search path from the ldconfig hints file, reading it if
2052  * necessary.  If nostdlib is true, then the default search paths are
2053  * not added to result.
2054  *
2055  * Returns NULL if there are problems with the hints file,
2056  * or if the search path there is empty.
2057  */
2058 static const char *
gethints(bool nostdlib)2059 gethints(bool nostdlib)
2060 {
2061 	static char *filtered_path;
2062 	static const char *hints;
2063 	static struct elfhints_hdr hdr;
2064 	struct fill_search_info_args sargs, hargs;
2065 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2066 	struct dl_serpath *SLPpath, *hintpath;
2067 	char *p;
2068 	struct stat hint_stat;
2069 	unsigned int SLPndx, hintndx, fndx, fcount;
2070 	int fd;
2071 	size_t flen;
2072 	uint32_t dl;
2073 	uint32_t magic;		/* Magic number */
2074 	uint32_t version;	/* File version (1) */
2075 	uint32_t strtab;	/* Offset of string table in file */
2076 	uint32_t dirlist;	/* Offset of directory list in string table */
2077 	uint32_t dirlistlen;	/* strlen(dirlist) */
2078 	bool is_le;		/* Does the hints file use little endian */
2079 	bool skip;
2080 
2081 	/* First call, read the hints file */
2082 	if (hints == NULL) {
2083 		/* Keep from trying again in case the hints file is bad. */
2084 		hints = "";
2085 
2086 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) {
2087 			dbg("failed to open hints file \"%s\"", ld_elf_hints_path);
2088 			return (NULL);
2089 		}
2090 
2091 		/*
2092 		 * Check of hdr.dirlistlen value against type limit
2093 		 * intends to pacify static analyzers.  Further
2094 		 * paranoia leads to checks that dirlist is fully
2095 		 * contained in the file range.
2096 		 */
2097 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2098 			dbg("failed to read %lu bytes from hints file \"%s\"",
2099 			    (u_long)sizeof hdr, ld_elf_hints_path);
2100 cleanup1:
2101 			close(fd);
2102 			hdr.dirlistlen = 0;
2103 			return (NULL);
2104 		}
2105 		dbg("host byte-order: %s-endian", le32toh(1) == 1 ? "little" : "big");
2106 		dbg("hints file byte-order: %s-endian",
2107 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2108 		is_le = /*htole32(1) == 1 || */ hdr.magic == htole32(ELFHINTS_MAGIC);
2109 		magic = COND_SWAP(hdr.magic);
2110 		version = COND_SWAP(hdr.version);
2111 		strtab = COND_SWAP(hdr.strtab);
2112 		dirlist = COND_SWAP(hdr.dirlist);
2113 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2114 		if (magic != ELFHINTS_MAGIC) {
2115 			dbg("invalid magic number %#08x (expected: %#08x)",
2116 			    magic, ELFHINTS_MAGIC);
2117 			goto cleanup1;
2118 		}
2119 		if (version != 1) {
2120 			dbg("hints file version %d (expected: 1)", version);
2121 			goto cleanup1;
2122 		}
2123 		if (dirlistlen > UINT_MAX / 2) {
2124 			dbg("directory list is to long: %d > %d",
2125 			    dirlistlen, UINT_MAX / 2);
2126 			goto cleanup1;
2127 		}
2128 		if (fstat(fd, &hint_stat) == -1) {
2129 			dbg("failed to find length of hints file \"%s\"",
2130 			    ld_elf_hints_path);
2131 			goto cleanup1;
2132 		}
2133 		dl = strtab;
2134 		if (dl + dirlist < dl) {
2135 			dbg("invalid string table position %d", dl);
2136 			goto cleanup1;
2137 		}
2138 		dl += dirlist;
2139 		if (dl + dirlistlen < dl) {
2140 			dbg("invalid directory list offset %d", dirlist);
2141 			goto cleanup1;
2142 		}
2143 		dl += dirlistlen;
2144 		if (dl > hint_stat.st_size) {
2145 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2146 			    ld_elf_hints_path, dl, (uintmax_t)hint_stat.st_size);
2147 			goto cleanup1;
2148 		}
2149 		p = xmalloc(dirlistlen + 1);
2150 		if (pread(fd, p, dirlistlen + 1,
2151 		    strtab + dirlist) != (ssize_t)dirlistlen + 1 ||
2152 		    p[dirlistlen] != '\0') {
2153 			free(p);
2154 			dbg("failed to read %d bytes starting at %d from hints file \"%s\"",
2155 			    dirlistlen + 1, strtab + dirlist, ld_elf_hints_path);
2156 			goto cleanup1;
2157 		}
2158 		hints = p;
2159 		close(fd);
2160 	}
2161 
2162 	/*
2163 	 * If caller agreed to receive list which includes the default
2164 	 * paths, we are done. Otherwise, if we still did not
2165 	 * calculated filtered result, do it now.
2166 	 */
2167 	if (!nostdlib)
2168 		return (hints[0] != '\0' ? hints : NULL);
2169 	if (filtered_path != NULL)
2170 		goto filt_ret;
2171 
2172 	/*
2173 	 * Obtain the list of all configured search paths, and the
2174 	 * list of the default paths.
2175 	 *
2176 	 * First estimate the size of the results.
2177 	 */
2178 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2179 	smeta.dls_cnt = 0;
2180 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2181 	hmeta.dls_cnt = 0;
2182 
2183 	sargs.request = RTLD_DI_SERINFOSIZE;
2184 	sargs.serinfo = &smeta;
2185 	hargs.request = RTLD_DI_SERINFOSIZE;
2186 	hargs.serinfo = &hmeta;
2187 
2188 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2189 	    &sargs);
2190 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2191 
2192 	SLPinfo = xmalloc(smeta.dls_size);
2193 	hintinfo = xmalloc(hmeta.dls_size);
2194 
2195 	/*
2196 	 * Next fetch both sets of paths.
2197 	 */
2198 	sargs.request = RTLD_DI_SERINFO;
2199 	sargs.serinfo = SLPinfo;
2200 	sargs.serpath = &SLPinfo->dls_serpath[0];
2201 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2202 
2203 	hargs.request = RTLD_DI_SERINFO;
2204 	hargs.serinfo = hintinfo;
2205 	hargs.serpath = &hintinfo->dls_serpath[0];
2206 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2207 
2208 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2209 	    &sargs);
2210 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2211 
2212 	/*
2213 	 * Now calculate the difference between two sets, by excluding
2214 	 * standard paths from the full set.
2215 	 */
2216 	fndx = 0;
2217 	fcount = 0;
2218 	filtered_path = xmalloc(dirlistlen + 1);
2219 	hintpath = &hintinfo->dls_serpath[0];
2220 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2221 		skip = false;
2222 		SLPpath = &SLPinfo->dls_serpath[0];
2223 		/*
2224 		 * Check each standard path against current.
2225 		 */
2226 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2227 			/* matched, skip the path */
2228 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2229 				skip = true;
2230 				break;
2231 			}
2232 		}
2233 		if (skip)
2234 			continue;
2235 		/*
2236 		 * Not matched against any standard path, add the path
2237 		 * to result. Separate consequtive paths with ':'.
2238 		 */
2239 		if (fcount > 0) {
2240 			filtered_path[fndx] = ':';
2241 			fndx++;
2242 		}
2243 		fcount++;
2244 		flen = strlen(hintpath->dls_name);
2245 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
2246 		fndx += flen;
2247 	}
2248 	filtered_path[fndx] = '\0';
2249 
2250 	free(SLPinfo);
2251 	free(hintinfo);
2252 
2253 filt_ret:
2254 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2255 }
2256 
2257 static void
init_dag(Obj_Entry * root)2258 init_dag(Obj_Entry *root)
2259 {
2260     const Needed_Entry *needed;
2261     const Objlist_Entry *elm;
2262     DoneList donelist;
2263 
2264     if (root->dag_inited)
2265 	return;
2266     donelist_init(&donelist);
2267 
2268     /* Root object belongs to own DAG. */
2269     objlist_push_tail(&root->dldags, root);
2270     objlist_push_tail(&root->dagmembers, root);
2271     donelist_check(&donelist, root);
2272 
2273     /*
2274      * Add dependencies of root object to DAG in breadth order
2275      * by exploiting the fact that each new object get added
2276      * to the tail of the dagmembers list.
2277      */
2278     STAILQ_FOREACH(elm, &root->dagmembers, link) {
2279 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
2280 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
2281 		continue;
2282 	    objlist_push_tail(&needed->obj->dldags, root);
2283 	    objlist_push_tail(&root->dagmembers, needed->obj);
2284 	}
2285     }
2286     root->dag_inited = true;
2287 }
2288 
2289 static void
init_marker(Obj_Entry * marker)2290 init_marker(Obj_Entry *marker)
2291 {
2292 
2293 	bzero(marker, sizeof(*marker));
2294 	marker->marker = true;
2295 }
2296 
2297 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2298 globallist_curr(const Obj_Entry *obj)
2299 {
2300 
2301 	for (;;) {
2302 		if (obj == NULL)
2303 			return (NULL);
2304 		if (!obj->marker)
2305 			return (__DECONST(Obj_Entry *, obj));
2306 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2307 	}
2308 }
2309 
2310 Obj_Entry *
globallist_next(const Obj_Entry * obj)2311 globallist_next(const Obj_Entry *obj)
2312 {
2313 
2314 	for (;;) {
2315 		obj = TAILQ_NEXT(obj, next);
2316 		if (obj == NULL)
2317 			return (NULL);
2318 		if (!obj->marker)
2319 			return (__DECONST(Obj_Entry *, obj));
2320 	}
2321 }
2322 
2323 /* Prevent the object from being unmapped while the bind lock is dropped. */
2324 static void
hold_object(Obj_Entry * obj)2325 hold_object(Obj_Entry *obj)
2326 {
2327 
2328 	obj->holdcount++;
2329 }
2330 
2331 static void
unhold_object(Obj_Entry * obj)2332 unhold_object(Obj_Entry *obj)
2333 {
2334 
2335 	assert(obj->holdcount > 0);
2336 	if (--obj->holdcount == 0 && obj->unholdfree)
2337 		release_object(obj);
2338 }
2339 
2340 static void
process_z(Obj_Entry * root)2341 process_z(Obj_Entry *root)
2342 {
2343 	const Objlist_Entry *elm;
2344 	Obj_Entry *obj;
2345 
2346 	/*
2347 	 * Walk over object DAG and process every dependent object
2348 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2349 	 * to grow their own DAG.
2350 	 *
2351 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2352 	 * symlook_global() to work.
2353 	 *
2354 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2355 	 */
2356 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2357 		obj = elm->obj;
2358 		if (obj == NULL)
2359 			continue;
2360 		if (obj->z_nodelete && !obj->ref_nodel) {
2361 			dbg("obj %s -z nodelete", obj->path);
2362 			init_dag(obj);
2363 			ref_dag(obj);
2364 			obj->ref_nodel = true;
2365 		}
2366 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2367 			dbg("obj %s -z global", obj->path);
2368 			objlist_push_tail(&list_global, obj);
2369 			init_dag(obj);
2370 		}
2371 	}
2372 }
2373 
2374 static void
parse_rtld_phdr(Obj_Entry * obj)2375 parse_rtld_phdr(Obj_Entry *obj)
2376 {
2377 	const Elf_Phdr *ph;
2378 	Elf_Addr note_start, note_end;
2379 
2380 	obj->stack_flags = PF_X | PF_R | PF_W;
2381 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
2382 	    obj->phsize; ph++) {
2383 		switch (ph->p_type) {
2384 		case PT_GNU_STACK:
2385 			obj->stack_flags = ph->p_flags;
2386 			break;
2387 		case PT_GNU_RELRO:
2388 			obj->relro_page = obj->relocbase +
2389 			    rtld_trunc_page(ph->p_vaddr);
2390 			obj->relro_size = rtld_round_page(ph->p_memsz);
2391 			break;
2392 		case PT_NOTE:
2393 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2394 			note_end = note_start + ph->p_filesz;
2395 			digest_notes(obj, note_start, note_end);
2396 			break;
2397 		}
2398 	}
2399 }
2400 
2401 /*
2402  * Initialize the dynamic linker.  The argument is the address at which
2403  * the dynamic linker has been mapped into memory.  The primary task of
2404  * this function is to relocate the dynamic linker.
2405  */
2406 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2407 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2408 {
2409     Obj_Entry objtmp;	/* Temporary rtld object */
2410     const Elf_Ehdr *ehdr;
2411     const Elf_Dyn *dyn_rpath;
2412     const Elf_Dyn *dyn_soname;
2413     const Elf_Dyn *dyn_runpath;
2414 
2415 #ifdef RTLD_INIT_PAGESIZES_EARLY
2416     /* The page size is required by the dynamic memory allocator. */
2417     init_pagesizes(aux_info);
2418 #endif
2419 
2420     /*
2421      * Conjure up an Obj_Entry structure for the dynamic linker.
2422      *
2423      * The "path" member can't be initialized yet because string constants
2424      * cannot yet be accessed. Below we will set it correctly.
2425      */
2426     memset(&objtmp, 0, sizeof(objtmp));
2427     objtmp.path = NULL;
2428     objtmp.rtld = true;
2429     objtmp.mapbase = mapbase;
2430 #ifdef PIC
2431     objtmp.relocbase = mapbase;
2432 #endif
2433 
2434     objtmp.dynamic = rtld_dynamic(&objtmp);
2435     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2436     assert(objtmp.needed == NULL);
2437     assert(!objtmp.textrel);
2438     /*
2439      * Temporarily put the dynamic linker entry into the object list, so
2440      * that symbols can be found.
2441      */
2442     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2443 
2444     ehdr = (Elf_Ehdr *)mapbase;
2445     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2446     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2447 
2448     /* Initialize the object list. */
2449     TAILQ_INIT(&obj_list);
2450 
2451     /* Now that non-local variables can be accesses, copy out obj_rtld. */
2452     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2453 
2454 #ifndef RTLD_INIT_PAGESIZES_EARLY
2455     /* The page size is required by the dynamic memory allocator. */
2456     init_pagesizes(aux_info);
2457 #endif
2458 
2459     if (aux_info[AT_OSRELDATE] != NULL)
2460 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2461 
2462     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2463 
2464     /* Replace the path with a dynamically allocated copy. */
2465     obj_rtld.path = xstrdup(ld_path_rtld);
2466 
2467     parse_rtld_phdr(&obj_rtld);
2468     if (obj_enforce_relro(&obj_rtld) == -1)
2469 	rtld_die();
2470 
2471     r_debug.r_version = R_DEBUG_VERSION;
2472     r_debug.r_brk = r_debug_state;
2473     r_debug.r_state = RT_CONSISTENT;
2474     r_debug.r_ldbase = obj_rtld.relocbase;
2475 }
2476 
2477 /*
2478  * Retrieve the array of supported page sizes.  The kernel provides the page
2479  * sizes in increasing order.
2480  */
2481 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2482 init_pagesizes(Elf_Auxinfo **aux_info)
2483 {
2484 	static size_t psa[MAXPAGESIZES];
2485 	int mib[2];
2486 	size_t len, size;
2487 
2488 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
2489 	    NULL) {
2490 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2491 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2492 	} else {
2493 		len = 2;
2494 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2495 			size = sizeof(psa);
2496 		else {
2497 			/* As a fallback, retrieve the base page size. */
2498 			size = sizeof(psa[0]);
2499 			if (aux_info[AT_PAGESZ] != NULL) {
2500 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2501 				goto psa_filled;
2502 			} else {
2503 				mib[0] = CTL_HW;
2504 				mib[1] = HW_PAGESIZE;
2505 				len = 2;
2506 			}
2507 		}
2508 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2509 			_rtld_error("sysctl for hw.pagesize(s) failed");
2510 			rtld_die();
2511 		}
2512 psa_filled:
2513 		pagesizes = psa;
2514 	}
2515 	npagesizes = size / sizeof(pagesizes[0]);
2516 	/* Discard any invalid entries at the end of the array. */
2517 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2518 		npagesizes--;
2519 
2520 	page_size = pagesizes[0];
2521 }
2522 
2523 /*
2524  * Add the init functions from a needed object list (and its recursive
2525  * needed objects) to "list".  This is not used directly; it is a helper
2526  * function for initlist_add_objects().  The write lock must be held
2527  * when this function is called.
2528  */
2529 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list)2530 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
2531 {
2532     /* Recursively process the successor needed objects. */
2533     if (needed->next != NULL)
2534 	initlist_add_neededs(needed->next, list);
2535 
2536     /* Process the current needed object. */
2537     if (needed->obj != NULL)
2538 	initlist_add_objects(needed->obj, needed->obj, list);
2539 }
2540 
2541 /*
2542  * Scan all of the DAGs rooted in the range of objects from "obj" to
2543  * "tail" and add their init functions to "list".  This recurses over
2544  * the DAGs and ensure the proper init ordering such that each object's
2545  * needed libraries are initialized before the object itself.  At the
2546  * same time, this function adds the objects to the global finalization
2547  * list "list_fini" in the opposite order.  The write lock must be
2548  * held when this function is called.
2549  */
2550 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2551 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2552 {
2553     Obj_Entry *nobj;
2554 
2555     if (obj->init_scanned || obj->init_done)
2556 	return;
2557     obj->init_scanned = true;
2558 
2559     /* Recursively process the successor objects. */
2560     nobj = globallist_next(obj);
2561     if (nobj != NULL && obj != tail)
2562 	initlist_add_objects(nobj, tail, list);
2563 
2564     /* Recursively process the needed objects. */
2565     if (obj->needed != NULL)
2566 	initlist_add_neededs(obj->needed, list);
2567     if (obj->needed_filtees != NULL)
2568 	initlist_add_neededs(obj->needed_filtees, list);
2569     if (obj->needed_aux_filtees != NULL)
2570 	initlist_add_neededs(obj->needed_aux_filtees, list);
2571 
2572     /* Add the object to the init list. */
2573     objlist_push_tail(list, obj);
2574 
2575     /* Add the object to the global fini list in the reverse order. */
2576     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
2577       && !obj->on_fini_list) {
2578 	objlist_push_head(&list_fini, obj);
2579 	obj->on_fini_list = true;
2580     }
2581 }
2582 
2583 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2584 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2585 {
2586     Needed_Entry *needed, *needed1;
2587 
2588     for (needed = n; needed != NULL; needed = needed->next) {
2589 	if (needed->obj != NULL) {
2590 	    dlclose_locked(needed->obj, lockstate);
2591 	    needed->obj = NULL;
2592 	}
2593     }
2594     for (needed = n; needed != NULL; needed = needed1) {
2595 	needed1 = needed->next;
2596 	free(needed);
2597     }
2598 }
2599 
2600 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2601 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2602 {
2603 
2604 	free_needed_filtees(obj->needed_filtees, lockstate);
2605 	obj->needed_filtees = NULL;
2606 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2607 	obj->needed_aux_filtees = NULL;
2608 	obj->filtees_loaded = false;
2609 }
2610 
2611 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2612 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2613     RtldLockState *lockstate)
2614 {
2615 
2616     for (; needed != NULL; needed = needed->next) {
2617 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2618 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2619 	  RTLD_LOCAL, lockstate);
2620     }
2621 }
2622 
2623 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2624 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2625 {
2626 	if (obj->filtees_loaded || obj->filtees_loading)
2627 		return;
2628 	lock_restart_for_upgrade(lockstate);
2629 	obj->filtees_loading = true;
2630 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2631 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2632 	obj->filtees_loaded = true;
2633 	obj->filtees_loading = false;
2634 }
2635 
2636 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2637 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2638 {
2639     Obj_Entry *obj1;
2640 
2641     for (; needed != NULL; needed = needed->next) {
2642 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2643 	  flags & ~RTLD_LO_NOLOAD);
2644 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2645 	    return (-1);
2646     }
2647     return (0);
2648 }
2649 
2650 /*
2651  * Given a shared object, traverse its list of needed objects, and load
2652  * each of them.  Returns 0 on success.  Generates an error message and
2653  * returns -1 on failure.
2654  */
2655 static int
load_needed_objects(Obj_Entry * first,int flags)2656 load_needed_objects(Obj_Entry *first, int flags)
2657 {
2658     Obj_Entry *obj;
2659 
2660     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2661 	if (obj->marker)
2662 	    continue;
2663 	if (process_needed(obj, obj->needed, flags) == -1)
2664 	    return (-1);
2665     }
2666     return (0);
2667 }
2668 
2669 static int
load_preload_objects(const char * penv,bool isfd)2670 load_preload_objects(const char *penv, bool isfd)
2671 {
2672 	Obj_Entry *obj;
2673 	const char *name;
2674 	size_t len;
2675 	char savech, *p, *psave;
2676 	int fd;
2677 	static const char delim[] = " \t:;";
2678 
2679 	if (penv == NULL)
2680 		return (0);
2681 
2682 	p = psave = xstrdup(penv);
2683 	p += strspn(p, delim);
2684 	while (*p != '\0') {
2685 		len = strcspn(p, delim);
2686 
2687 		savech = p[len];
2688 		p[len] = '\0';
2689 		if (isfd) {
2690 			name = NULL;
2691 			fd = parse_integer(p);
2692 			if (fd == -1) {
2693 				free(psave);
2694 				return (-1);
2695 			}
2696 		} else {
2697 			name = p;
2698 			fd = -1;
2699 		}
2700 
2701 		obj = load_object(name, fd, NULL, 0);
2702 		if (obj == NULL) {
2703 			free(psave);
2704 			return (-1);	/* XXX - cleanup */
2705 		}
2706 		obj->z_interpose = true;
2707 		p[len] = savech;
2708 		p += len;
2709 		p += strspn(p, delim);
2710 	}
2711 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2712 
2713 	free(psave);
2714 	return (0);
2715 }
2716 
2717 static const char *
printable_path(const char * path)2718 printable_path(const char *path)
2719 {
2720 
2721 	return (path == NULL ? "<unknown>" : path);
2722 }
2723 
2724 /*
2725  * Load a shared object into memory, if it is not already loaded.  The
2726  * object may be specified by name or by user-supplied file descriptor
2727  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2728  * duplicate is.
2729  *
2730  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2731  * on failure.
2732  */
2733 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2734 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2735 {
2736     Obj_Entry *obj;
2737     int fd;
2738     struct stat sb;
2739     char *path;
2740 
2741     fd = -1;
2742     if (name != NULL) {
2743 	TAILQ_FOREACH(obj, &obj_list, next) {
2744 	    if (obj->marker || obj->doomed)
2745 		continue;
2746 	    if (object_match_name(obj, name))
2747 		return (obj);
2748 	}
2749 
2750 	path = find_library(name, refobj, &fd);
2751 	if (path == NULL)
2752 	    return (NULL);
2753     } else
2754 	path = NULL;
2755 
2756     if (fd >= 0) {
2757 	/*
2758 	 * search_library_pathfds() opens a fresh file descriptor for the
2759 	 * library, so there is no need to dup().
2760 	 */
2761     } else if (fd_u == -1) {
2762 	/*
2763 	 * If we didn't find a match by pathname, or the name is not
2764 	 * supplied, open the file and check again by device and inode.
2765 	 * This avoids false mismatches caused by multiple links or ".."
2766 	 * in pathnames.
2767 	 *
2768 	 * To avoid a race, we open the file and use fstat() rather than
2769 	 * using stat().
2770 	 */
2771 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2772 	    _rtld_error("Cannot open \"%s\"", path);
2773 	    free(path);
2774 	    return (NULL);
2775 	}
2776     } else {
2777 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2778 	if (fd == -1) {
2779 	    _rtld_error("Cannot dup fd");
2780 	    free(path);
2781 	    return (NULL);
2782 	}
2783     }
2784     if (fstat(fd, &sb) == -1) {
2785 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2786 	close(fd);
2787 	free(path);
2788 	return (NULL);
2789     }
2790     TAILQ_FOREACH(obj, &obj_list, next) {
2791 	if (obj->marker || obj->doomed)
2792 	    continue;
2793 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2794 	    break;
2795     }
2796     if (obj != NULL) {
2797 	if (name != NULL)
2798 	    object_add_name(obj, name);
2799 	free(path);
2800 	close(fd);
2801 	return (obj);
2802     }
2803     if (flags & RTLD_LO_NOLOAD) {
2804 	free(path);
2805 	close(fd);
2806 	return (NULL);
2807     }
2808 
2809     /* First use of this object, so we must map it in */
2810     obj = do_load_object(fd, name, path, &sb, flags);
2811     if (obj == NULL)
2812 	free(path);
2813     close(fd);
2814 
2815     return (obj);
2816 }
2817 
2818 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2819 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2820   int flags)
2821 {
2822     Obj_Entry *obj;
2823     struct statfs fs;
2824 
2825     /*
2826      * First, make sure that environment variables haven't been
2827      * used to circumvent the noexec flag on a filesystem.
2828      * We ignore fstatfs(2) failures, since fd might reference
2829      * not a file, e.g. shmfd.
2830      */
2831     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2832 	(fs.f_flags & MNT_NOEXEC) != 0) {
2833 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2834 	    return (NULL);
2835     }
2836 
2837     dbg("loading \"%s\"", printable_path(path));
2838     obj = map_object(fd, printable_path(path), sbp);
2839     if (obj == NULL)
2840         return (NULL);
2841 
2842     /*
2843      * If DT_SONAME is present in the object, digest_dynamic2 already
2844      * added it to the object names.
2845      */
2846     if (name != NULL)
2847 	object_add_name(obj, name);
2848     obj->path = path;
2849     if (!digest_dynamic(obj, 0))
2850 	goto errp;
2851     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2852 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2853     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2854 	dbg("refusing to load PIE executable \"%s\"", obj->path);
2855 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2856 	goto errp;
2857     }
2858     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2859       RTLD_LO_DLOPEN) {
2860 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2861 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2862 	goto errp;
2863     }
2864 
2865     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2866     TAILQ_INSERT_TAIL(&obj_list, obj, next);
2867     obj_count++;
2868     obj_loads++;
2869     linkmap_add(obj);	/* for GDB & dlinfo() */
2870     max_stack_flags |= obj->stack_flags;
2871 
2872     dbg("  %p .. %p: %s", obj->mapbase,
2873          obj->mapbase + obj->mapsize - 1, obj->path);
2874     if (obj->textrel)
2875 	dbg("  WARNING: %s has impure text", obj->path);
2876     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2877 	obj->path);
2878 
2879     return (obj);
2880 
2881 errp:
2882     munmap(obj->mapbase, obj->mapsize);
2883     obj_free(obj);
2884     return (NULL);
2885 }
2886 
2887 static int
load_kpreload(const void * addr)2888 load_kpreload(const void *addr)
2889 {
2890 	Obj_Entry *obj;
2891 	const Elf_Ehdr *ehdr;
2892 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2893 	static const char kname[] = "[vdso]";
2894 
2895 	ehdr = addr;
2896 	if (!check_elf_headers(ehdr, "kpreload"))
2897 		return (-1);
2898 	obj = obj_new();
2899 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2900 	obj->phdr = phdr;
2901 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
2902 	phlimit = phdr + ehdr->e_phnum;
2903 	seg0 = segn = NULL;
2904 
2905 	for (; phdr < phlimit; phdr++) {
2906 		switch (phdr->p_type) {
2907 		case PT_DYNAMIC:
2908 			phdyn = phdr;
2909 			break;
2910 		case PT_GNU_STACK:
2911 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
2912 			obj->stack_flags = phdr->p_flags;
2913 			break;
2914 		case PT_LOAD:
2915 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
2916 				seg0 = phdr;
2917 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
2918 			    phdr->p_vaddr + phdr->p_memsz)
2919 				segn = phdr;
2920 			break;
2921 		}
2922 	}
2923 
2924 	obj->mapbase = __DECONST(caddr_t, addr);
2925 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
2926 	obj->vaddrbase = 0;
2927 	obj->relocbase = obj->mapbase;
2928 
2929 	object_add_name(obj, kname);
2930 	obj->path = xstrdup(kname);
2931 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
2932 
2933 	if (!digest_dynamic(obj, 0)) {
2934 		obj_free(obj);
2935 		return (-1);
2936 	}
2937 
2938 	/*
2939 	 * We assume that kernel-preloaded object does not need
2940 	 * relocation.  It is currently written into read-only page,
2941 	 * handling relocations would mean we need to allocate at
2942 	 * least one additional page per AS.
2943 	 */
2944 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
2945 	    obj->path, obj->mapbase, obj->phdr, seg0,
2946 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
2947 
2948 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2949 	obj_count++;
2950 	obj_loads++;
2951 	linkmap_add(obj);	/* for GDB & dlinfo() */
2952 	max_stack_flags |= obj->stack_flags;
2953 
2954 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
2955 	return (0);
2956 }
2957 
2958 Obj_Entry *
obj_from_addr(const void * addr)2959 obj_from_addr(const void *addr)
2960 {
2961     Obj_Entry *obj;
2962 
2963     TAILQ_FOREACH(obj, &obj_list, next) {
2964 	if (obj->marker)
2965 	    continue;
2966 	if (addr < (void *) obj->mapbase)
2967 	    continue;
2968 	if (addr < (void *)(obj->mapbase + obj->mapsize))
2969 	    return obj;
2970     }
2971     return (NULL);
2972 }
2973 
2974 static void
preinit_main(void)2975 preinit_main(void)
2976 {
2977     Elf_Addr *preinit_addr;
2978     int index;
2979 
2980     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2981     if (preinit_addr == NULL)
2982 	return;
2983 
2984     for (index = 0; index < obj_main->preinit_array_num; index++) {
2985 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2986 	    dbg("calling preinit function for %s at %p", obj_main->path,
2987 	      (void *)preinit_addr[index]);
2988 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2989 	      0, 0, obj_main->path);
2990 	    call_init_pointer(obj_main, preinit_addr[index]);
2991 	}
2992     }
2993 }
2994 
2995 /*
2996  * Call the finalization functions for each of the objects in "list"
2997  * belonging to the DAG of "root" and referenced once. If NULL "root"
2998  * is specified, every finalization function will be called regardless
2999  * of the reference count and the list elements won't be freed. All of
3000  * the objects are expected to have non-NULL fini functions.
3001  */
3002 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3003 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3004 {
3005     Objlist_Entry *elm;
3006     struct dlerror_save *saved_msg;
3007     Elf_Addr *fini_addr;
3008     int index;
3009 
3010     assert(root == NULL || root->refcount == 1);
3011 
3012     if (root != NULL)
3013 	root->doomed = true;
3014 
3015     /*
3016      * Preserve the current error message since a fini function might
3017      * call into the dynamic linker and overwrite it.
3018      */
3019     saved_msg = errmsg_save();
3020     do {
3021 	STAILQ_FOREACH(elm, list, link) {
3022 	    if (root != NULL && (elm->obj->refcount != 1 ||
3023 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
3024 		continue;
3025 	    /* Remove object from fini list to prevent recursive invocation. */
3026 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3027 	    /* Ensure that new references cannot be acquired. */
3028 	    elm->obj->doomed = true;
3029 
3030 	    hold_object(elm->obj);
3031 	    lock_release(rtld_bind_lock, lockstate);
3032 	    /*
3033 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
3034 	     * When this happens, DT_FINI_ARRAY is processed first.
3035 	     */
3036 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
3037 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3038 		for (index = elm->obj->fini_array_num - 1; index >= 0;
3039 		  index--) {
3040 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
3041 			dbg("calling fini function for %s at %p",
3042 			    elm->obj->path, (void *)fini_addr[index]);
3043 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3044 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
3045 			call_initfini_pointer(elm->obj, fini_addr[index]);
3046 		    }
3047 		}
3048 	    }
3049 	    if (elm->obj->fini != (Elf_Addr)NULL) {
3050 		dbg("calling fini function for %s at %p", elm->obj->path,
3051 		    (void *)elm->obj->fini);
3052 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
3053 		    0, 0, elm->obj->path);
3054 		call_initfini_pointer(elm->obj, elm->obj->fini);
3055 	    }
3056 	    wlock_acquire(rtld_bind_lock, lockstate);
3057 	    unhold_object(elm->obj);
3058 	    /* No need to free anything if process is going down. */
3059 	    if (root != NULL)
3060 	    	free(elm);
3061 	    /*
3062 	     * We must restart the list traversal after every fini call
3063 	     * because a dlclose() call from the fini function or from
3064 	     * another thread might have modified the reference counts.
3065 	     */
3066 	    break;
3067 	}
3068     } while (elm != NULL);
3069     errmsg_restore(saved_msg);
3070 }
3071 
3072 /*
3073  * Call the initialization functions for each of the objects in
3074  * "list".  All of the objects are expected to have non-NULL init
3075  * functions.
3076  */
3077 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3078 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3079 {
3080     Objlist_Entry *elm;
3081     Obj_Entry *obj;
3082     struct dlerror_save *saved_msg;
3083     Elf_Addr *init_addr;
3084     void (*reg)(void (*)(void));
3085     int index;
3086 
3087     /*
3088      * Clean init_scanned flag so that objects can be rechecked and
3089      * possibly initialized earlier if any of vectors called below
3090      * cause the change by using dlopen.
3091      */
3092     TAILQ_FOREACH(obj, &obj_list, next) {
3093 	if (obj->marker)
3094 	    continue;
3095 	obj->init_scanned = false;
3096     }
3097 
3098     /*
3099      * Preserve the current error message since an init function might
3100      * call into the dynamic linker and overwrite it.
3101      */
3102     saved_msg = errmsg_save();
3103     STAILQ_FOREACH(elm, list, link) {
3104 	if (elm->obj->init_done) /* Initialized early. */
3105 	    continue;
3106 	/*
3107 	 * Race: other thread might try to use this object before current
3108 	 * one completes the initialization. Not much can be done here
3109 	 * without better locking.
3110 	 */
3111 	elm->obj->init_done = true;
3112 	hold_object(elm->obj);
3113 	reg = NULL;
3114 	if (elm->obj == obj_main && obj_main->crt_no_init) {
3115 		reg = (void (*)(void (*)(void)))get_program_var_addr(
3116 		    "__libc_atexit", lockstate);
3117 	}
3118 	lock_release(rtld_bind_lock, lockstate);
3119 	if (reg != NULL) {
3120 		reg(rtld_exit);
3121 		rtld_exit_ptr = rtld_nop_exit;
3122 	}
3123 
3124         /*
3125          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3126          * When this happens, DT_INIT is processed first.
3127          */
3128 	if (elm->obj->init != (Elf_Addr)NULL) {
3129 	    dbg("calling init function for %s at %p", elm->obj->path,
3130 	        (void *)elm->obj->init);
3131 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
3132 	        0, 0, elm->obj->path);
3133 	    call_init_pointer(elm->obj, elm->obj->init);
3134 	}
3135 	init_addr = (Elf_Addr *)elm->obj->init_array;
3136 	if (init_addr != NULL) {
3137 	    for (index = 0; index < elm->obj->init_array_num; index++) {
3138 		if (init_addr[index] != 0 && init_addr[index] != 1) {
3139 		    dbg("calling init function for %s at %p", elm->obj->path,
3140 			(void *)init_addr[index]);
3141 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3142 			(void *)init_addr[index], 0, 0, elm->obj->path);
3143 		    call_init_pointer(elm->obj, init_addr[index]);
3144 		}
3145 	    }
3146 	}
3147 	wlock_acquire(rtld_bind_lock, lockstate);
3148 	unhold_object(elm->obj);
3149     }
3150     errmsg_restore(saved_msg);
3151 }
3152 
3153 static void
objlist_clear(Objlist * list)3154 objlist_clear(Objlist *list)
3155 {
3156     Objlist_Entry *elm;
3157 
3158     while (!STAILQ_EMPTY(list)) {
3159 	elm = STAILQ_FIRST(list);
3160 	STAILQ_REMOVE_HEAD(list, link);
3161 	free(elm);
3162     }
3163 }
3164 
3165 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3166 objlist_find(Objlist *list, const Obj_Entry *obj)
3167 {
3168     Objlist_Entry *elm;
3169 
3170     STAILQ_FOREACH(elm, list, link)
3171 	if (elm->obj == obj)
3172 	    return elm;
3173     return (NULL);
3174 }
3175 
3176 static void
objlist_init(Objlist * list)3177 objlist_init(Objlist *list)
3178 {
3179     STAILQ_INIT(list);
3180 }
3181 
3182 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3183 objlist_push_head(Objlist *list, Obj_Entry *obj)
3184 {
3185     Objlist_Entry *elm;
3186 
3187     elm = NEW(Objlist_Entry);
3188     elm->obj = obj;
3189     STAILQ_INSERT_HEAD(list, elm, link);
3190 }
3191 
3192 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3193 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3194 {
3195     Objlist_Entry *elm;
3196 
3197     elm = NEW(Objlist_Entry);
3198     elm->obj = obj;
3199     STAILQ_INSERT_TAIL(list, elm, link);
3200 }
3201 
3202 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3203 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3204 {
3205 	Objlist_Entry *elm, *listelm;
3206 
3207 	STAILQ_FOREACH(listelm, list, link) {
3208 		if (listelm->obj == listobj)
3209 			break;
3210 	}
3211 	elm = NEW(Objlist_Entry);
3212 	elm->obj = obj;
3213 	if (listelm != NULL)
3214 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3215 	else
3216 		STAILQ_INSERT_TAIL(list, elm, link);
3217 }
3218 
3219 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3220 objlist_remove(Objlist *list, Obj_Entry *obj)
3221 {
3222     Objlist_Entry *elm;
3223 
3224     if ((elm = objlist_find(list, obj)) != NULL) {
3225 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3226 	free(elm);
3227     }
3228 }
3229 
3230 /*
3231  * Relocate dag rooted in the specified object.
3232  * Returns 0 on success, or -1 on failure.
3233  */
3234 
3235 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3236 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3237     int flags, RtldLockState *lockstate)
3238 {
3239 	Objlist_Entry *elm;
3240 	int error;
3241 
3242 	error = 0;
3243 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3244 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3245 		    lockstate);
3246 		if (error == -1)
3247 			break;
3248 	}
3249 	return (error);
3250 }
3251 
3252 /*
3253  * Prepare for, or clean after, relocating an object marked with
3254  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3255  * segments are remapped read-write.  After relocations are done, the
3256  * segment's permissions are returned back to the modes specified in
3257  * the phdrs.  If any relocation happened, or always for wired
3258  * program, COW is triggered.
3259  */
3260 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3261 reloc_textrel_prot(Obj_Entry *obj, bool before)
3262 {
3263 	const Elf_Phdr *ph;
3264 	void *base;
3265 	size_t l, sz;
3266 	int prot;
3267 
3268 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
3269 	    l--, ph++) {
3270 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3271 			continue;
3272 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3273 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3274 		    rtld_trunc_page(ph->p_vaddr);
3275 		prot = before ? (PROT_READ | PROT_WRITE) :
3276 		    convert_prot(ph->p_flags);
3277 		if (mprotect(base, sz, prot) == -1) {
3278 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3279 			    obj->path, before ? "en" : "dis",
3280 			    rtld_strerror(errno));
3281 			return (-1);
3282 		}
3283 	}
3284 	return (0);
3285 }
3286 
3287 /* Process RELR relative relocations. */
3288 static void
reloc_relr(Obj_Entry * obj)3289 reloc_relr(Obj_Entry *obj)
3290 {
3291 	const Elf_Relr *relr, *relrlim;
3292 	Elf_Addr *where;
3293 
3294 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3295 	for (relr = obj->relr; relr < relrlim; relr++) {
3296 	    Elf_Relr entry = *relr;
3297 
3298 	    if ((entry & 1) == 0) {
3299 		where = (Elf_Addr *)(obj->relocbase + entry);
3300 		*where++ += (Elf_Addr)obj->relocbase;
3301 	    } else {
3302 		for (long i = 0; (entry >>= 1) != 0; i++)
3303 		    if ((entry & 1) != 0)
3304 			where[i] += (Elf_Addr)obj->relocbase;
3305 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3306 	    }
3307 	}
3308 }
3309 
3310 /*
3311  * Relocate single object.
3312  * Returns 0 on success, or -1 on failure.
3313  */
3314 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3315 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
3316     int flags, RtldLockState *lockstate)
3317 {
3318 
3319 	if (obj->relocated)
3320 		return (0);
3321 	obj->relocated = true;
3322 	if (obj != rtldobj)
3323 		dbg("relocating \"%s\"", obj->path);
3324 
3325 	if (obj->symtab == NULL || obj->strtab == NULL ||
3326 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3327 		dbg("object %s has no run-time symbol table", obj->path);
3328 
3329 	/* There are relocations to the write-protected text segment. */
3330 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3331 		return (-1);
3332 
3333 	/* Process the non-PLT non-IFUNC relocations. */
3334 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3335 		return (-1);
3336 	reloc_relr(obj);
3337 
3338 	/* Re-protected the text segment. */
3339 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3340 		return (-1);
3341 
3342 	/* Set the special PLT or GOT entries. */
3343 	init_pltgot(obj);
3344 
3345 	/* Process the PLT relocations. */
3346 	if (reloc_plt(obj, flags, lockstate) == -1)
3347 		return (-1);
3348 	/* Relocate the jump slots if we are doing immediate binding. */
3349 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
3350 	    lockstate) == -1)
3351 		return (-1);
3352 
3353 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
3354 		return (-1);
3355 
3356 	/*
3357 	 * Set up the magic number and version in the Obj_Entry.  These
3358 	 * were checked in the crt1.o from the original ElfKit, so we
3359 	 * set them for backward compatibility.
3360 	 */
3361 	obj->magic = RTLD_MAGIC;
3362 	obj->version = RTLD_VERSION;
3363 
3364 	return (0);
3365 }
3366 
3367 /*
3368  * Relocate newly-loaded shared objects.  The argument is a pointer to
3369  * the Obj_Entry for the first such object.  All objects from the first
3370  * to the end of the list of objects are relocated.  Returns 0 on success,
3371  * or -1 on failure.
3372  */
3373 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3374 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
3375     int flags, RtldLockState *lockstate)
3376 {
3377 	Obj_Entry *obj;
3378 	int error;
3379 
3380 	for (error = 0, obj = first;  obj != NULL;
3381 	    obj = TAILQ_NEXT(obj, next)) {
3382 		if (obj->marker)
3383 			continue;
3384 		error = relocate_object(obj, bind_now, rtldobj, flags,
3385 		    lockstate);
3386 		if (error == -1)
3387 			break;
3388 	}
3389 	return (error);
3390 }
3391 
3392 /*
3393  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3394  * referencing STT_GNU_IFUNC symbols is postponed till the other
3395  * relocations are done.  The indirect functions specified as
3396  * ifunc are allowed to call other symbols, so we need to have
3397  * objects relocated before asking for resolution from indirects.
3398  *
3399  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3400  * instead of the usual lazy handling of PLT slots.  It is
3401  * consistent with how GNU does it.
3402  */
3403 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3404 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3405     RtldLockState *lockstate)
3406 {
3407 
3408 	if (obj->ifuncs_resolved)
3409 		return (0);
3410 	obj->ifuncs_resolved = true;
3411 	if (!obj->irelative && !obj->irelative_nonplt &&
3412 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3413 	    !obj->non_plt_gnu_ifunc)
3414 		return (0);
3415 	if (obj_disable_relro(obj) == -1 ||
3416 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3417 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
3418 	    lockstate) == -1) ||
3419 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3420 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3421 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
3422 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
3423 	    obj_enforce_relro(obj) == -1)
3424 		return (-1);
3425 	return (0);
3426 }
3427 
3428 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3429 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3430     RtldLockState *lockstate)
3431 {
3432 	Objlist_Entry *elm;
3433 	Obj_Entry *obj;
3434 
3435 	STAILQ_FOREACH(elm, list, link) {
3436 		obj = elm->obj;
3437 		if (obj->marker)
3438 			continue;
3439 		if (resolve_object_ifunc(obj, bind_now, flags,
3440 		    lockstate) == -1)
3441 			return (-1);
3442 	}
3443 	return (0);
3444 }
3445 
3446 /*
3447  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3448  * before the process exits.
3449  */
3450 static void
rtld_exit(void)3451 rtld_exit(void)
3452 {
3453     RtldLockState lockstate;
3454 
3455     wlock_acquire(rtld_bind_lock, &lockstate);
3456     dbg("rtld_exit()");
3457     objlist_call_fini(&list_fini, NULL, &lockstate);
3458     /* No need to remove the items from the list, since we are exiting. */
3459     if (!libmap_disable)
3460         lm_fini();
3461     lock_release(rtld_bind_lock, &lockstate);
3462 }
3463 
3464 static void
rtld_nop_exit(void)3465 rtld_nop_exit(void)
3466 {
3467 }
3468 
3469 /*
3470  * Iterate over a search path, translate each element, and invoke the
3471  * callback on the result.
3472  */
3473 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3474 path_enumerate(const char *path, path_enum_proc callback,
3475     const char *refobj_path, void *arg)
3476 {
3477     const char *trans;
3478     if (path == NULL)
3479 	return (NULL);
3480 
3481     path += strspn(path, ":;");
3482     while (*path != '\0') {
3483 	size_t len;
3484 	char  *res;
3485 
3486 	len = strcspn(path, ":;");
3487 	trans = lm_findn(refobj_path, path, len);
3488 	if (trans)
3489 	    res = callback(trans, strlen(trans), arg);
3490 	else
3491 	    res = callback(path, len, arg);
3492 
3493 	if (res != NULL)
3494 	    return (res);
3495 
3496 	path += len;
3497 	path += strspn(path, ":;");
3498     }
3499 
3500     return (NULL);
3501 }
3502 
3503 struct try_library_args {
3504     const char	*name;
3505     size_t	 namelen;
3506     char	*buffer;
3507     size_t	 buflen;
3508     int		 fd;
3509 };
3510 
3511 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3512 try_library_path(const char *dir, size_t dirlen, void *param)
3513 {
3514     struct try_library_args *arg;
3515     int fd;
3516 
3517     arg = param;
3518     if (*dir == '/' || trust) {
3519 	char *pathname;
3520 
3521 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3522 		return (NULL);
3523 
3524 	pathname = arg->buffer;
3525 	strncpy(pathname, dir, dirlen);
3526 	pathname[dirlen] = '/';
3527 	strcpy(pathname + dirlen + 1, arg->name);
3528 
3529 	dbg("  Trying \"%s\"", pathname);
3530 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3531 	if (fd >= 0) {
3532 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
3533 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3534 	    strcpy(pathname, arg->buffer);
3535 	    arg->fd = fd;
3536 	    return (pathname);
3537 	} else {
3538 	    dbg("  Failed to open \"%s\": %s",
3539 		pathname, rtld_strerror(errno));
3540 	}
3541     }
3542     return (NULL);
3543 }
3544 
3545 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3546 search_library_path(const char *name, const char *path,
3547     const char *refobj_path, int *fdp)
3548 {
3549     char *p;
3550     struct try_library_args arg;
3551 
3552     if (path == NULL)
3553 	return (NULL);
3554 
3555     arg.name = name;
3556     arg.namelen = strlen(name);
3557     arg.buffer = xmalloc(PATH_MAX);
3558     arg.buflen = PATH_MAX;
3559     arg.fd = -1;
3560 
3561     p = path_enumerate(path, try_library_path, refobj_path, &arg);
3562     *fdp = arg.fd;
3563 
3564     free(arg.buffer);
3565 
3566     return (p);
3567 }
3568 
3569 
3570 /*
3571  * Finds the library with the given name using the directory descriptors
3572  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3573  *
3574  * Returns a freshly-opened close-on-exec file descriptor for the library,
3575  * or -1 if the library cannot be found.
3576  */
3577 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3578 search_library_pathfds(const char *name, const char *path, int *fdp)
3579 {
3580 	char *envcopy, *fdstr, *found, *last_token;
3581 	size_t len;
3582 	int dirfd, fd;
3583 
3584 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3585 
3586 	/* Don't load from user-specified libdirs into setuid binaries. */
3587 	if (!trust)
3588 		return (NULL);
3589 
3590 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3591 	if (path == NULL)
3592 		return (NULL);
3593 
3594 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3595 	if (name[0] == '/') {
3596 		dbg("Absolute path (%s) passed to %s", name, __func__);
3597 		return (NULL);
3598 	}
3599 
3600 	/*
3601 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3602 	 * copy of the path, as strtok_r rewrites separator tokens
3603 	 * with '\0'.
3604 	 */
3605 	found = NULL;
3606 	envcopy = xstrdup(path);
3607 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3608 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3609 		dirfd = parse_integer(fdstr);
3610 		if (dirfd < 0) {
3611 			_rtld_error("failed to parse directory FD: '%s'",
3612 				fdstr);
3613 			break;
3614 		}
3615 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3616 		if (fd >= 0) {
3617 			*fdp = fd;
3618 			len = strlen(fdstr) + strlen(name) + 3;
3619 			found = xmalloc(len);
3620 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
3621 				_rtld_error("error generating '%d/%s'",
3622 				    dirfd, name);
3623 				rtld_die();
3624 			}
3625 			dbg("open('%s') => %d", found, fd);
3626 			break;
3627 		}
3628 	}
3629 	free(envcopy);
3630 
3631 	return (found);
3632 }
3633 
3634 
3635 int
dlclose(void * handle)3636 dlclose(void *handle)
3637 {
3638 	RtldLockState lockstate;
3639 	int error;
3640 
3641 	wlock_acquire(rtld_bind_lock, &lockstate);
3642 	error = dlclose_locked(handle, &lockstate);
3643 	lock_release(rtld_bind_lock, &lockstate);
3644 	return (error);
3645 }
3646 
3647 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3648 dlclose_locked(void *handle, RtldLockState *lockstate)
3649 {
3650     Obj_Entry *root;
3651 
3652     root = dlcheck(handle);
3653     if (root == NULL)
3654 	return (-1);
3655     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3656 	root->path);
3657 
3658     /* Unreference the object and its dependencies. */
3659     root->dl_refcount--;
3660 
3661     if (root->refcount == 1) {
3662 	/*
3663 	 * The object will be no longer referenced, so we must unload it.
3664 	 * First, call the fini functions.
3665 	 */
3666 	objlist_call_fini(&list_fini, root, lockstate);
3667 
3668 	unref_dag(root);
3669 
3670 	/* Finish cleaning up the newly-unreferenced objects. */
3671 	GDB_STATE(RT_DELETE,&root->linkmap);
3672 	unload_object(root, lockstate);
3673 	GDB_STATE(RT_CONSISTENT,NULL);
3674     } else
3675 	unref_dag(root);
3676 
3677     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3678     return (0);
3679 }
3680 
3681 char *
dlerror(void)3682 dlerror(void)
3683 {
3684 	if (*(lockinfo.dlerror_seen()) != 0)
3685 		return (NULL);
3686 	*lockinfo.dlerror_seen() = 1;
3687 	return (lockinfo.dlerror_loc());
3688 }
3689 
3690 /*
3691  * This function is deprecated and has no effect.
3692  */
3693 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3694 dllockinit(void *context,
3695     void *(*_lock_create)(void *context) __unused,
3696     void (*_rlock_acquire)(void *lock) __unused,
3697     void (*_wlock_acquire)(void *lock)  __unused,
3698     void (*_lock_release)(void *lock) __unused,
3699     void (*_lock_destroy)(void *lock) __unused,
3700     void (*context_destroy)(void *context))
3701 {
3702     static void *cur_context;
3703     static void (*cur_context_destroy)(void *);
3704 
3705     /* Just destroy the context from the previous call, if necessary. */
3706     if (cur_context_destroy != NULL)
3707 	cur_context_destroy(cur_context);
3708     cur_context = context;
3709     cur_context_destroy = context_destroy;
3710 }
3711 
3712 void *
dlopen(const char * name,int mode)3713 dlopen(const char *name, int mode)
3714 {
3715 
3716 	return (rtld_dlopen(name, -1, mode));
3717 }
3718 
3719 void *
fdlopen(int fd,int mode)3720 fdlopen(int fd, int mode)
3721 {
3722 
3723 	return (rtld_dlopen(NULL, fd, mode));
3724 }
3725 
3726 static void *
rtld_dlopen(const char * name,int fd,int mode)3727 rtld_dlopen(const char *name, int fd, int mode)
3728 {
3729     RtldLockState lockstate;
3730     int lo_flags;
3731 
3732     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3733     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3734     if (ld_tracing != NULL) {
3735 	rlock_acquire(rtld_bind_lock, &lockstate);
3736 	if (sigsetjmp(lockstate.env, 0) != 0)
3737 	    lock_upgrade(rtld_bind_lock, &lockstate);
3738 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
3739 	lock_release(rtld_bind_lock, &lockstate);
3740     }
3741     lo_flags = RTLD_LO_DLOPEN;
3742     if (mode & RTLD_NODELETE)
3743 	    lo_flags |= RTLD_LO_NODELETE;
3744     if (mode & RTLD_NOLOAD)
3745 	    lo_flags |= RTLD_LO_NOLOAD;
3746     if (mode & RTLD_DEEPBIND)
3747 	    lo_flags |= RTLD_LO_DEEPBIND;
3748     if (ld_tracing != NULL)
3749 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3750 
3751     return (dlopen_object(name, fd, obj_main, lo_flags,
3752       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3753 }
3754 
3755 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3756 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3757 {
3758 
3759 	obj->dl_refcount--;
3760 	unref_dag(obj);
3761 	if (obj->refcount == 0)
3762 		unload_object(obj, lockstate);
3763 }
3764 
3765 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3766 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3767     int mode, RtldLockState *lockstate)
3768 {
3769     Obj_Entry *obj;
3770     Objlist initlist;
3771     RtldLockState mlockstate;
3772     int result;
3773 
3774     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3775       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
3776       refobj->path, lo_flags, mode);
3777     objlist_init(&initlist);
3778 
3779     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3780 	wlock_acquire(rtld_bind_lock, &mlockstate);
3781 	lockstate = &mlockstate;
3782     }
3783     GDB_STATE(RT_ADD,NULL);
3784 
3785     obj = NULL;
3786     if (name == NULL && fd == -1) {
3787 	obj = obj_main;
3788 	obj->refcount++;
3789     } else {
3790 	obj = load_object(name, fd, refobj, lo_flags);
3791     }
3792 
3793     if (obj) {
3794 	obj->dl_refcount++;
3795 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3796 	    objlist_push_tail(&list_global, obj);
3797 
3798 	if (!obj->init_done) {
3799 	    /* We loaded something new and have to init something. */
3800 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3801 		obj->deepbind = true;
3802 	    result = 0;
3803 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
3804 	      obj->static_tls && !allocate_tls_offset(obj)) {
3805 		_rtld_error("%s: No space available "
3806 		  "for static Thread Local Storage", obj->path);
3807 		result = -1;
3808 	    }
3809 	    if (result != -1)
3810 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
3811 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3812 	    init_dag(obj);
3813 	    ref_dag(obj);
3814 	    if (result != -1)
3815 		result = rtld_verify_versions(&obj->dagmembers);
3816 	    if (result != -1 && ld_tracing)
3817 		goto trace;
3818 	    if (result == -1 || relocate_object_dag(obj,
3819 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3820 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3821 	      lockstate) == -1) {
3822 		dlopen_cleanup(obj, lockstate);
3823 		obj = NULL;
3824 	    } else if (lo_flags & RTLD_LO_EARLY) {
3825 		/*
3826 		 * Do not call the init functions for early loaded
3827 		 * filtees.  The image is still not initialized enough
3828 		 * for them to work.
3829 		 *
3830 		 * Our object is found by the global object list and
3831 		 * will be ordered among all init calls done right
3832 		 * before transferring control to main.
3833 		 */
3834 	    } else {
3835 		/* Make list of init functions to call. */
3836 		initlist_add_objects(obj, obj, &initlist);
3837 	    }
3838 	    /*
3839 	     * Process all no_delete or global objects here, given
3840 	     * them own DAGs to prevent their dependencies from being
3841 	     * unloaded.  This has to be done after we have loaded all
3842 	     * of the dependencies, so that we do not miss any.
3843 	     */
3844 	    if (obj != NULL)
3845 		process_z(obj);
3846 	} else {
3847 	    /*
3848 	     * Bump the reference counts for objects on this DAG.  If
3849 	     * this is the first dlopen() call for the object that was
3850 	     * already loaded as a dependency, initialize the dag
3851 	     * starting at it.
3852 	     */
3853 	    init_dag(obj);
3854 	    ref_dag(obj);
3855 
3856 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3857 		goto trace;
3858 	}
3859 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3860 	  obj->z_nodelete) && !obj->ref_nodel) {
3861 	    dbg("obj %s nodelete", obj->path);
3862 	    ref_dag(obj);
3863 	    obj->z_nodelete = obj->ref_nodel = true;
3864 	}
3865     }
3866 
3867     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3868 	name);
3869     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3870 
3871     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3872 	map_stacks_exec(lockstate);
3873 	if (obj != NULL)
3874 	    distribute_static_tls(&initlist, lockstate);
3875     }
3876 
3877     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3878       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3879       lockstate) == -1) {
3880 	objlist_clear(&initlist);
3881 	dlopen_cleanup(obj, lockstate);
3882 	if (lockstate == &mlockstate)
3883 	    lock_release(rtld_bind_lock, lockstate);
3884 	return (NULL);
3885     }
3886 
3887     if (!(lo_flags & RTLD_LO_EARLY)) {
3888 	/* Call the init functions. */
3889 	objlist_call_init(&initlist, lockstate);
3890     }
3891     objlist_clear(&initlist);
3892     if (lockstate == &mlockstate)
3893 	lock_release(rtld_bind_lock, lockstate);
3894     return (obj);
3895 trace:
3896     trace_loaded_objects(obj, false);
3897     if (lockstate == &mlockstate)
3898 	lock_release(rtld_bind_lock, lockstate);
3899     exit(0);
3900 }
3901 
3902 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)3903 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3904     int flags)
3905 {
3906     DoneList donelist;
3907     const Obj_Entry *obj, *defobj;
3908     const Elf_Sym *def;
3909     SymLook req;
3910     RtldLockState lockstate;
3911     tls_index ti;
3912     void *sym;
3913     int res;
3914 
3915     def = NULL;
3916     defobj = NULL;
3917     symlook_init(&req, name);
3918     req.ventry = ve;
3919     req.flags = flags | SYMLOOK_IN_PLT;
3920     req.lockstate = &lockstate;
3921 
3922     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
3923     rlock_acquire(rtld_bind_lock, &lockstate);
3924     if (sigsetjmp(lockstate.env, 0) != 0)
3925 	    lock_upgrade(rtld_bind_lock, &lockstate);
3926     if (handle == NULL || handle == RTLD_NEXT ||
3927 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3928 
3929 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3930 	    _rtld_error("Cannot determine caller's shared object");
3931 	    lock_release(rtld_bind_lock, &lockstate);
3932 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3933 	    return (NULL);
3934 	}
3935 	if (handle == NULL) {	/* Just the caller's shared object. */
3936 	    res = symlook_obj(&req, obj);
3937 	    if (res == 0) {
3938 		def = req.sym_out;
3939 		defobj = req.defobj_out;
3940 	    }
3941 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3942 		   handle == RTLD_SELF) { /* ... caller included */
3943 	    if (handle == RTLD_NEXT)
3944 		obj = globallist_next(obj);
3945 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3946 		if (obj->marker)
3947 		    continue;
3948 		res = symlook_obj(&req, obj);
3949 		if (res == 0) {
3950 		    if (def == NULL || (ld_dynamic_weak &&
3951                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
3952 			def = req.sym_out;
3953 			defobj = req.defobj_out;
3954 			if (!ld_dynamic_weak ||
3955 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
3956 			    break;
3957 		    }
3958 		}
3959 	    }
3960 	    /*
3961 	     * Search the dynamic linker itself, and possibly resolve the
3962 	     * symbol from there.  This is how the application links to
3963 	     * dynamic linker services such as dlopen.
3964 	     * Note that we ignore ld_dynamic_weak == false case,
3965 	     * always overriding weak symbols by rtld definitions.
3966 	     */
3967 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3968 		res = symlook_obj(&req, &obj_rtld);
3969 		if (res == 0) {
3970 		    def = req.sym_out;
3971 		    defobj = req.defobj_out;
3972 		}
3973 	    }
3974 	} else {
3975 	    assert(handle == RTLD_DEFAULT);
3976 	    res = symlook_default(&req, obj);
3977 	    if (res == 0) {
3978 		defobj = req.defobj_out;
3979 		def = req.sym_out;
3980 	    }
3981 	}
3982     } else {
3983 	if ((obj = dlcheck(handle)) == NULL) {
3984 	    lock_release(rtld_bind_lock, &lockstate);
3985 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
3986 	    return (NULL);
3987 	}
3988 
3989 	donelist_init(&donelist);
3990 	if (obj->mainprog) {
3991             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3992 	    res = symlook_global(&req, &donelist);
3993 	    if (res == 0) {
3994 		def = req.sym_out;
3995 		defobj = req.defobj_out;
3996 	    }
3997 	    /*
3998 	     * Search the dynamic linker itself, and possibly resolve the
3999 	     * symbol from there.  This is how the application links to
4000 	     * dynamic linker services such as dlopen.
4001 	     */
4002 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
4003 		res = symlook_obj(&req, &obj_rtld);
4004 		if (res == 0) {
4005 		    def = req.sym_out;
4006 		    defobj = req.defobj_out;
4007 		}
4008 	    }
4009 	}
4010 	else {
4011 	    /* Search the whole DAG rooted at the given object. */
4012 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
4013 	    if (res == 0) {
4014 		def = req.sym_out;
4015 		defobj = req.defobj_out;
4016 	    }
4017 	}
4018     }
4019 
4020     if (def != NULL) {
4021 	lock_release(rtld_bind_lock, &lockstate);
4022 
4023 	/*
4024 	 * The value required by the caller is derived from the value
4025 	 * of the symbol. this is simply the relocated value of the
4026 	 * symbol.
4027 	 */
4028 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4029 	    sym = make_function_pointer(def, defobj);
4030 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4031 	    sym = rtld_resolve_ifunc(defobj, def);
4032 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4033 	    ti.ti_module = defobj->tlsindex;
4034 	    ti.ti_offset = def->st_value;
4035 	    sym = __tls_get_addr(&ti);
4036 	} else
4037 	    sym = defobj->relocbase + def->st_value;
4038 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4039 	return (sym);
4040     }
4041 
4042     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4043       ve != NULL ? ve->name : "");
4044     lock_release(rtld_bind_lock, &lockstate);
4045     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4046     return (NULL);
4047 }
4048 
4049 void *
dlsym(void * handle,const char * name)4050 dlsym(void *handle, const char *name)
4051 {
4052 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4053 	    SYMLOOK_DLSYM));
4054 }
4055 
4056 dlfunc_t
dlfunc(void * handle,const char * name)4057 dlfunc(void *handle, const char *name)
4058 {
4059 	union {
4060 		void *d;
4061 		dlfunc_t f;
4062 	} rv;
4063 
4064 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4065 	    SYMLOOK_DLSYM);
4066 	return (rv.f);
4067 }
4068 
4069 void *
dlvsym(void * handle,const char * name,const char * version)4070 dlvsym(void *handle, const char *name, const char *version)
4071 {
4072 	Ver_Entry ventry;
4073 
4074 	ventry.name = version;
4075 	ventry.file = NULL;
4076 	ventry.hash = elf_hash(version);
4077 	ventry.flags= 0;
4078 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4079 	    SYMLOOK_DLSYM));
4080 }
4081 
4082 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4083 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4084 {
4085     const Obj_Entry *obj;
4086     RtldLockState lockstate;
4087 
4088     rlock_acquire(rtld_bind_lock, &lockstate);
4089     obj = obj_from_addr(addr);
4090     if (obj == NULL) {
4091         _rtld_error("No shared object contains address");
4092 	lock_release(rtld_bind_lock, &lockstate);
4093         return (0);
4094     }
4095     rtld_fill_dl_phdr_info(obj, phdr_info);
4096     lock_release(rtld_bind_lock, &lockstate);
4097     return (1);
4098 }
4099 
4100 int
dladdr(const void * addr,Dl_info * info)4101 dladdr(const void *addr, Dl_info *info)
4102 {
4103     const Obj_Entry *obj;
4104     const Elf_Sym *def;
4105     void *symbol_addr;
4106     unsigned long symoffset;
4107     RtldLockState lockstate;
4108 
4109     rlock_acquire(rtld_bind_lock, &lockstate);
4110     obj = obj_from_addr(addr);
4111     if (obj == NULL) {
4112         _rtld_error("No shared object contains address");
4113 	lock_release(rtld_bind_lock, &lockstate);
4114         return (0);
4115     }
4116     info->dli_fname = obj->path;
4117     info->dli_fbase = obj->mapbase;
4118     info->dli_saddr = (void *)0;
4119     info->dli_sname = NULL;
4120 
4121     /*
4122      * Walk the symbol list looking for the symbol whose address is
4123      * closest to the address sent in.
4124      */
4125     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4126         def = obj->symtab + symoffset;
4127 
4128         /*
4129          * For skip the symbol if st_shndx is either SHN_UNDEF or
4130          * SHN_COMMON.
4131          */
4132         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4133             continue;
4134 
4135         /*
4136          * If the symbol is greater than the specified address, or if it
4137          * is further away from addr than the current nearest symbol,
4138          * then reject it.
4139          */
4140         symbol_addr = obj->relocbase + def->st_value;
4141         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4142             continue;
4143 
4144         /* Update our idea of the nearest symbol. */
4145         info->dli_sname = obj->strtab + def->st_name;
4146         info->dli_saddr = symbol_addr;
4147 
4148         /* Exact match? */
4149         if (info->dli_saddr == addr)
4150             break;
4151     }
4152     lock_release(rtld_bind_lock, &lockstate);
4153     return (1);
4154 }
4155 
4156 int
dlinfo(void * handle,int request,void * p)4157 dlinfo(void *handle, int request, void *p)
4158 {
4159     const Obj_Entry *obj;
4160     RtldLockState lockstate;
4161     int error;
4162 
4163     rlock_acquire(rtld_bind_lock, &lockstate);
4164 
4165     if (handle == NULL || handle == RTLD_SELF) {
4166 	void *retaddr;
4167 
4168 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
4169 	if ((obj = obj_from_addr(retaddr)) == NULL)
4170 	    _rtld_error("Cannot determine caller's shared object");
4171     } else
4172 	obj = dlcheck(handle);
4173 
4174     if (obj == NULL) {
4175 	lock_release(rtld_bind_lock, &lockstate);
4176 	return (-1);
4177     }
4178 
4179     error = 0;
4180     switch (request) {
4181     case RTLD_DI_LINKMAP:
4182 	*((struct link_map const **)p) = &obj->linkmap;
4183 	break;
4184     case RTLD_DI_ORIGIN:
4185 	error = rtld_dirname(obj->path, p);
4186 	break;
4187 
4188     case RTLD_DI_SERINFOSIZE:
4189     case RTLD_DI_SERINFO:
4190 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
4191 	break;
4192 
4193     default:
4194 	_rtld_error("Invalid request %d passed to dlinfo()", request);
4195 	error = -1;
4196     }
4197 
4198     lock_release(rtld_bind_lock, &lockstate);
4199 
4200     return (error);
4201 }
4202 
4203 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4204 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4205 {
4206 	uintptr_t **dtvp;
4207 
4208 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4209 	phdr_info->dlpi_name = obj->path;
4210 	phdr_info->dlpi_phdr = obj->phdr;
4211 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4212 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4213 	dtvp = &_tcb_get()->tcb_dtv;
4214 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
4215 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
4216 	phdr_info->dlpi_adds = obj_loads;
4217 	phdr_info->dlpi_subs = obj_loads - obj_count;
4218 }
4219 
4220 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4221 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4222 {
4223 	struct dl_phdr_info phdr_info;
4224 	Obj_Entry *obj, marker;
4225 	RtldLockState bind_lockstate, phdr_lockstate;
4226 	int error;
4227 
4228 	init_marker(&marker);
4229 	error = 0;
4230 
4231 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4232 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4233 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4234 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4235 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4236 		hold_object(obj);
4237 		lock_release(rtld_bind_lock, &bind_lockstate);
4238 
4239 		error = callback(&phdr_info, sizeof phdr_info, param);
4240 
4241 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4242 		unhold_object(obj);
4243 		obj = globallist_next(&marker);
4244 		TAILQ_REMOVE(&obj_list, &marker, next);
4245 		if (error != 0) {
4246 			lock_release(rtld_bind_lock, &bind_lockstate);
4247 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4248 			return (error);
4249 		}
4250 	}
4251 
4252 	if (error == 0) {
4253 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4254 		lock_release(rtld_bind_lock, &bind_lockstate);
4255 		error = callback(&phdr_info, sizeof(phdr_info), param);
4256 	}
4257 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4258 	return (error);
4259 }
4260 
4261 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4262 fill_search_info(const char *dir, size_t dirlen, void *param)
4263 {
4264     struct fill_search_info_args *arg;
4265 
4266     arg = param;
4267 
4268     if (arg->request == RTLD_DI_SERINFOSIZE) {
4269 	arg->serinfo->dls_cnt ++;
4270 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
4271     } else {
4272 	struct dl_serpath *s_entry;
4273 
4274 	s_entry = arg->serpath;
4275 	s_entry->dls_name  = arg->strspace;
4276 	s_entry->dls_flags = arg->flags;
4277 
4278 	strncpy(arg->strspace, dir, dirlen);
4279 	arg->strspace[dirlen] = '\0';
4280 
4281 	arg->strspace += dirlen + 1;
4282 	arg->serpath++;
4283     }
4284 
4285     return (NULL);
4286 }
4287 
4288 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4289 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4290 {
4291     struct dl_serinfo _info;
4292     struct fill_search_info_args args;
4293 
4294     args.request = RTLD_DI_SERINFOSIZE;
4295     args.serinfo = &_info;
4296 
4297     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4298     _info.dls_cnt  = 0;
4299 
4300     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4301     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4302     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4303     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
4304     if (!obj->z_nodeflib)
4305       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
4306 
4307 
4308     if (request == RTLD_DI_SERINFOSIZE) {
4309 	info->dls_size = _info.dls_size;
4310 	info->dls_cnt = _info.dls_cnt;
4311 	return (0);
4312     }
4313 
4314     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
4315 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
4316 	return (-1);
4317     }
4318 
4319     args.request  = RTLD_DI_SERINFO;
4320     args.serinfo  = info;
4321     args.serpath  = &info->dls_serpath[0];
4322     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4323 
4324     args.flags = LA_SER_RUNPATH;
4325     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4326 	return (-1);
4327 
4328     args.flags = LA_SER_LIBPATH;
4329     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
4330 	return (-1);
4331 
4332     args.flags = LA_SER_RUNPATH;
4333     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4334 	return (-1);
4335 
4336     args.flags = LA_SER_CONFIG;
4337     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
4338       != NULL)
4339 	return (-1);
4340 
4341     args.flags = LA_SER_DEFAULT;
4342     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
4343       fill_search_info, NULL, &args) != NULL)
4344 	return (-1);
4345     return (0);
4346 }
4347 
4348 static int
rtld_dirname(const char * path,char * bname)4349 rtld_dirname(const char *path, char *bname)
4350 {
4351     const char *endp;
4352 
4353     /* Empty or NULL string gets treated as "." */
4354     if (path == NULL || *path == '\0') {
4355 	bname[0] = '.';
4356 	bname[1] = '\0';
4357 	return (0);
4358     }
4359 
4360     /* Strip trailing slashes */
4361     endp = path + strlen(path) - 1;
4362     while (endp > path && *endp == '/')
4363 	endp--;
4364 
4365     /* Find the start of the dir */
4366     while (endp > path && *endp != '/')
4367 	endp--;
4368 
4369     /* Either the dir is "/" or there are no slashes */
4370     if (endp == path) {
4371 	bname[0] = *endp == '/' ? '/' : '.';
4372 	bname[1] = '\0';
4373 	return (0);
4374     } else {
4375 	do {
4376 	    endp--;
4377 	} while (endp > path && *endp == '/');
4378     }
4379 
4380     if (endp - path + 2 > PATH_MAX)
4381     {
4382 	_rtld_error("Filename is too long: %s", path);
4383 	return(-1);
4384     }
4385 
4386     strncpy(bname, path, endp - path + 1);
4387     bname[endp - path + 1] = '\0';
4388     return (0);
4389 }
4390 
4391 static int
rtld_dirname_abs(const char * path,char * base)4392 rtld_dirname_abs(const char *path, char *base)
4393 {
4394 	char *last;
4395 
4396 	if (realpath(path, base) == NULL) {
4397 		_rtld_error("realpath \"%s\" failed (%s)", path,
4398 		    rtld_strerror(errno));
4399 		return (-1);
4400 	}
4401 	dbg("%s -> %s", path, base);
4402 	last = strrchr(base, '/');
4403 	if (last == NULL) {
4404 		_rtld_error("non-abs result from realpath \"%s\"", path);
4405 		return (-1);
4406 	}
4407 	if (last != base)
4408 		*last = '\0';
4409 	return (0);
4410 }
4411 
4412 static void
linkmap_add(Obj_Entry * obj)4413 linkmap_add(Obj_Entry *obj)
4414 {
4415 	struct link_map *l, *prev;
4416 
4417 	l = &obj->linkmap;
4418 	l->l_name = obj->path;
4419 	l->l_base = obj->mapbase;
4420 	l->l_ld = obj->dynamic;
4421 	l->l_addr = obj->relocbase;
4422 
4423 	if (r_debug.r_map == NULL) {
4424 		r_debug.r_map = l;
4425 		return;
4426 	}
4427 
4428 	/*
4429 	 * Scan to the end of the list, but not past the entry for the
4430 	 * dynamic linker, which we want to keep at the very end.
4431 	 */
4432 	for (prev = r_debug.r_map;
4433 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4434 	     prev = prev->l_next)
4435 		;
4436 
4437 	/* Link in the new entry. */
4438 	l->l_prev = prev;
4439 	l->l_next = prev->l_next;
4440 	if (l->l_next != NULL)
4441 		l->l_next->l_prev = l;
4442 	prev->l_next = l;
4443 }
4444 
4445 static void
linkmap_delete(Obj_Entry * obj)4446 linkmap_delete(Obj_Entry *obj)
4447 {
4448 	struct link_map *l;
4449 
4450 	l = &obj->linkmap;
4451 	if (l->l_prev == NULL) {
4452 		if ((r_debug.r_map = l->l_next) != NULL)
4453 			l->l_next->l_prev = NULL;
4454 		return;
4455 	}
4456 
4457 	if ((l->l_prev->l_next = l->l_next) != NULL)
4458 		l->l_next->l_prev = l->l_prev;
4459 }
4460 
4461 /*
4462  * Function for the debugger to set a breakpoint on to gain control.
4463  *
4464  * The two parameters allow the debugger to easily find and determine
4465  * what the runtime loader is doing and to whom it is doing it.
4466  *
4467  * When the loadhook trap is hit (r_debug_state, set at program
4468  * initialization), the arguments can be found on the stack:
4469  *
4470  *  +8   struct link_map *m
4471  *  +4   struct r_debug  *rd
4472  *  +0   RetAddr
4473  */
4474 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4475 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
4476 {
4477     /*
4478      * The following is a hack to force the compiler to emit calls to
4479      * this function, even when optimizing.  If the function is empty,
4480      * the compiler is not obliged to emit any code for calls to it,
4481      * even when marked __noinline.  However, gdb depends on those
4482      * calls being made.
4483      */
4484     __compiler_membar();
4485 }
4486 
4487 /*
4488  * A function called after init routines have completed. This can be used to
4489  * break before a program's entry routine is called, and can be used when
4490  * main is not available in the symbol table.
4491  */
4492 void
_r_debug_postinit(struct link_map * m __unused)4493 _r_debug_postinit(struct link_map *m __unused)
4494 {
4495 
4496 	/* See r_debug_state(). */
4497 	__compiler_membar();
4498 }
4499 
4500 static void
release_object(Obj_Entry * obj)4501 release_object(Obj_Entry *obj)
4502 {
4503 
4504 	if (obj->holdcount > 0) {
4505 		obj->unholdfree = true;
4506 		return;
4507 	}
4508 	munmap(obj->mapbase, obj->mapsize);
4509 	linkmap_delete(obj);
4510 	obj_free(obj);
4511 }
4512 
4513 /*
4514  * Get address of the pointer variable in the main program.
4515  * Prefer non-weak symbol over the weak one.
4516  */
4517 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4518 get_program_var_addr(const char *name, RtldLockState *lockstate)
4519 {
4520     SymLook req;
4521     DoneList donelist;
4522 
4523     symlook_init(&req, name);
4524     req.lockstate = lockstate;
4525     donelist_init(&donelist);
4526     if (symlook_global(&req, &donelist) != 0)
4527 	return (NULL);
4528     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4529 	return ((const void **)make_function_pointer(req.sym_out,
4530 	  req.defobj_out));
4531     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4532 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
4533     else
4534 	return ((const void **)(req.defobj_out->relocbase +
4535 	  req.sym_out->st_value));
4536 }
4537 
4538 /*
4539  * Set a pointer variable in the main program to the given value.  This
4540  * is used to set key variables such as "environ" before any of the
4541  * init functions are called.
4542  */
4543 static void
set_program_var(const char * name,const void * value)4544 set_program_var(const char *name, const void *value)
4545 {
4546     const void **addr;
4547 
4548     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4549 	dbg("\"%s\": *%p <-- %p", name, addr, value);
4550 	*addr = value;
4551     }
4552 }
4553 
4554 /*
4555  * Search the global objects, including dependencies and main object,
4556  * for the given symbol.
4557  */
4558 static int
symlook_global(SymLook * req,DoneList * donelist)4559 symlook_global(SymLook *req, DoneList *donelist)
4560 {
4561     SymLook req1;
4562     const Objlist_Entry *elm;
4563     int res;
4564 
4565     symlook_init_from_req(&req1, req);
4566 
4567     /* Search all objects loaded at program start up. */
4568     if (req->defobj_out == NULL || (ld_dynamic_weak &&
4569       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4570 	res = symlook_list(&req1, &list_main, donelist);
4571 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4572 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4573 	    req->sym_out = req1.sym_out;
4574 	    req->defobj_out = req1.defobj_out;
4575 	    assert(req->defobj_out != NULL);
4576 	}
4577     }
4578 
4579     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4580     STAILQ_FOREACH(elm, &list_global, link) {
4581 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4582           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4583 	    break;
4584 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4585 	if (res == 0 && (req->defobj_out == NULL ||
4586 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4587 	    req->sym_out = req1.sym_out;
4588 	    req->defobj_out = req1.defobj_out;
4589 	    assert(req->defobj_out != NULL);
4590 	}
4591     }
4592 
4593     return (req->sym_out != NULL ? 0 : ESRCH);
4594 }
4595 
4596 /*
4597  * Given a symbol name in a referencing object, find the corresponding
4598  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4599  * no definition was found.  Returns a pointer to the Obj_Entry of the
4600  * defining object via the reference parameter DEFOBJ_OUT.
4601  */
4602 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4603 symlook_default(SymLook *req, const Obj_Entry *refobj)
4604 {
4605     DoneList donelist;
4606     const Objlist_Entry *elm;
4607     SymLook req1;
4608     int res;
4609 
4610     donelist_init(&donelist);
4611     symlook_init_from_req(&req1, req);
4612 
4613     /*
4614      * Look first in the referencing object if linked symbolically,
4615      * and similarly handle protected symbols.
4616      */
4617     res = symlook_obj(&req1, refobj);
4618     if (res == 0 && (refobj->symbolic ||
4619       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
4620 	req->sym_out = req1.sym_out;
4621 	req->defobj_out = req1.defobj_out;
4622 	assert(req->defobj_out != NULL);
4623     }
4624     if (refobj->symbolic || req->defobj_out != NULL)
4625 	donelist_check(&donelist, refobj);
4626 
4627     if (!refobj->deepbind)
4628         symlook_global(req, &donelist);
4629 
4630     /* Search all dlopened DAGs containing the referencing object. */
4631     STAILQ_FOREACH(elm, &refobj->dldags, link) {
4632 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
4633           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4634 	    break;
4635 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4636 	if (res == 0 && (req->sym_out == NULL ||
4637 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4638 	    req->sym_out = req1.sym_out;
4639 	    req->defobj_out = req1.defobj_out;
4640 	    assert(req->defobj_out != NULL);
4641 	}
4642     }
4643 
4644     if (refobj->deepbind)
4645         symlook_global(req, &donelist);
4646 
4647     /*
4648      * Search the dynamic linker itself, and possibly resolve the
4649      * symbol from there.  This is how the application links to
4650      * dynamic linker services such as dlopen.
4651      */
4652     if (req->sym_out == NULL ||
4653       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4654 	res = symlook_obj(&req1, &obj_rtld);
4655 	if (res == 0) {
4656 	    req->sym_out = req1.sym_out;
4657 	    req->defobj_out = req1.defobj_out;
4658 	    assert(req->defobj_out != NULL);
4659 	}
4660     }
4661 
4662     return (req->sym_out != NULL ? 0 : ESRCH);
4663 }
4664 
4665 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4666 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4667 {
4668     const Elf_Sym *def;
4669     const Obj_Entry *defobj;
4670     const Objlist_Entry *elm;
4671     SymLook req1;
4672     int res;
4673 
4674     def = NULL;
4675     defobj = NULL;
4676     STAILQ_FOREACH(elm, objlist, link) {
4677 	if (donelist_check(dlp, elm->obj))
4678 	    continue;
4679 	symlook_init_from_req(&req1, req);
4680 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4681 	    if (def == NULL || (ld_dynamic_weak &&
4682               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4683 		def = req1.sym_out;
4684 		defobj = req1.defobj_out;
4685 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4686 		    break;
4687 	    }
4688 	}
4689     }
4690     if (def != NULL) {
4691 	req->sym_out = def;
4692 	req->defobj_out = defobj;
4693 	return (0);
4694     }
4695     return (ESRCH);
4696 }
4697 
4698 /*
4699  * Search the chain of DAGS cointed to by the given Needed_Entry
4700  * for a symbol of the given name.  Each DAG is scanned completely
4701  * before advancing to the next one.  Returns a pointer to the symbol,
4702  * or NULL if no definition was found.
4703  */
4704 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4705 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4706 {
4707     const Elf_Sym *def;
4708     const Needed_Entry *n;
4709     const Obj_Entry *defobj;
4710     SymLook req1;
4711     int res;
4712 
4713     def = NULL;
4714     defobj = NULL;
4715     symlook_init_from_req(&req1, req);
4716     for (n = needed; n != NULL; n = n->next) {
4717 	if (n->obj == NULL ||
4718 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
4719 	    continue;
4720 	if (def == NULL || (ld_dynamic_weak &&
4721           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4722 	    def = req1.sym_out;
4723 	    defobj = req1.defobj_out;
4724 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
4725 		break;
4726 	}
4727     }
4728     if (def != NULL) {
4729 	req->sym_out = def;
4730 	req->defobj_out = defobj;
4731 	return (0);
4732     }
4733     return (ESRCH);
4734 }
4735 
4736 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4737 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4738     Needed_Entry *needed)
4739 {
4740 	DoneList donelist;
4741 	int flags;
4742 
4743 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4744 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4745 	donelist_init(&donelist);
4746 	symlook_init_from_req(req1, req);
4747 	return (symlook_needed(req1, needed, &donelist));
4748 }
4749 
4750 /*
4751  * Search the symbol table of a single shared object for a symbol of
4752  * the given name and version, if requested.  Returns a pointer to the
4753  * symbol, or NULL if no definition was found.  If the object is
4754  * filter, return filtered symbol from filtee.
4755  *
4756  * The symbol's hash value is passed in for efficiency reasons; that
4757  * eliminates many recomputations of the hash value.
4758  */
4759 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4760 symlook_obj(SymLook *req, const Obj_Entry *obj)
4761 {
4762     SymLook req1;
4763     int res, mres;
4764 
4765     /*
4766      * If there is at least one valid hash at this point, we prefer to
4767      * use the faster GNU version if available.
4768      */
4769     if (obj->valid_hash_gnu)
4770 	mres = symlook_obj1_gnu(req, obj);
4771     else if (obj->valid_hash_sysv)
4772 	mres = symlook_obj1_sysv(req, obj);
4773     else
4774 	return (EINVAL);
4775 
4776     if (mres == 0) {
4777 	if (obj->needed_filtees != NULL) {
4778 	    res = symlook_obj_load_filtees(req, &req1, obj,
4779 		obj->needed_filtees);
4780 	    if (res == 0) {
4781 		req->sym_out = req1.sym_out;
4782 		req->defobj_out = req1.defobj_out;
4783 	    }
4784 	    return (res);
4785 	}
4786 	if (obj->needed_aux_filtees != NULL) {
4787 	    res = symlook_obj_load_filtees(req, &req1, obj,
4788 		obj->needed_aux_filtees);
4789 	    if (res == 0) {
4790 		req->sym_out = req1.sym_out;
4791 		req->defobj_out = req1.defobj_out;
4792 		return (res);
4793 	    }
4794 	}
4795     }
4796     return (mres);
4797 }
4798 
4799 /* Symbol match routine common to both hash functions */
4800 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4801 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4802     const unsigned long symnum)
4803 {
4804 	Elf_Versym verndx;
4805 	const Elf_Sym *symp;
4806 	const char *strp;
4807 
4808 	symp = obj->symtab + symnum;
4809 	strp = obj->strtab + symp->st_name;
4810 
4811 	switch (ELF_ST_TYPE(symp->st_info)) {
4812 	case STT_FUNC:
4813 	case STT_NOTYPE:
4814 	case STT_OBJECT:
4815 	case STT_COMMON:
4816 	case STT_GNU_IFUNC:
4817 		if (symp->st_value == 0)
4818 			return (false);
4819 		/* fallthrough */
4820 	case STT_TLS:
4821 		if (symp->st_shndx != SHN_UNDEF)
4822 			break;
4823 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4824 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4825 			break;
4826 		/* fallthrough */
4827 	default:
4828 		return (false);
4829 	}
4830 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4831 		return (false);
4832 
4833 	if (req->ventry == NULL) {
4834 		if (obj->versyms != NULL) {
4835 			verndx = VER_NDX(obj->versyms[symnum]);
4836 			if (verndx > obj->vernum) {
4837 				_rtld_error(
4838 				    "%s: symbol %s references wrong version %d",
4839 				    obj->path, obj->strtab + symnum, verndx);
4840 				return (false);
4841 			}
4842 			/*
4843 			 * If we are not called from dlsym (i.e. this
4844 			 * is a normal relocation from unversioned
4845 			 * binary), accept the symbol immediately if
4846 			 * it happens to have first version after this
4847 			 * shared object became versioned.  Otherwise,
4848 			 * if symbol is versioned and not hidden,
4849 			 * remember it. If it is the only symbol with
4850 			 * this name exported by the shared object, it
4851 			 * will be returned as a match by the calling
4852 			 * function. If symbol is global (verndx < 2)
4853 			 * accept it unconditionally.
4854 			 */
4855 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4856 			    verndx == VER_NDX_GIVEN) {
4857 				result->sym_out = symp;
4858 				return (true);
4859 			}
4860 			else if (verndx >= VER_NDX_GIVEN) {
4861 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4862 				    == 0) {
4863 					if (result->vsymp == NULL)
4864 						result->vsymp = symp;
4865 					result->vcount++;
4866 				}
4867 				return (false);
4868 			}
4869 		}
4870 		result->sym_out = symp;
4871 		return (true);
4872 	}
4873 	if (obj->versyms == NULL) {
4874 		if (object_match_name(obj, req->ventry->name)) {
4875 			_rtld_error("%s: object %s should provide version %s "
4876 			    "for symbol %s", obj_rtld.path, obj->path,
4877 			    req->ventry->name, obj->strtab + symnum);
4878 			return (false);
4879 		}
4880 	} else {
4881 		verndx = VER_NDX(obj->versyms[symnum]);
4882 		if (verndx > obj->vernum) {
4883 			_rtld_error("%s: symbol %s references wrong version %d",
4884 			    obj->path, obj->strtab + symnum, verndx);
4885 			return (false);
4886 		}
4887 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4888 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4889 			/*
4890 			 * Version does not match. Look if this is a
4891 			 * global symbol and if it is not hidden. If
4892 			 * global symbol (verndx < 2) is available,
4893 			 * use it. Do not return symbol if we are
4894 			 * called by dlvsym, because dlvsym looks for
4895 			 * a specific version and default one is not
4896 			 * what dlvsym wants.
4897 			 */
4898 			if ((req->flags & SYMLOOK_DLSYM) ||
4899 			    (verndx >= VER_NDX_GIVEN) ||
4900 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4901 				return (false);
4902 		}
4903 	}
4904 	result->sym_out = symp;
4905 	return (true);
4906 }
4907 
4908 /*
4909  * Search for symbol using SysV hash function.
4910  * obj->buckets is known not to be NULL at this point; the test for this was
4911  * performed with the obj->valid_hash_sysv assignment.
4912  */
4913 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)4914 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4915 {
4916 	unsigned long symnum;
4917 	Sym_Match_Result matchres;
4918 
4919 	matchres.sym_out = NULL;
4920 	matchres.vsymp = NULL;
4921 	matchres.vcount = 0;
4922 
4923 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4924 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4925 		if (symnum >= obj->nchains)
4926 			return (ESRCH);	/* Bad object */
4927 
4928 		if (matched_symbol(req, obj, &matchres, symnum)) {
4929 			req->sym_out = matchres.sym_out;
4930 			req->defobj_out = obj;
4931 			return (0);
4932 		}
4933 	}
4934 	if (matchres.vcount == 1) {
4935 		req->sym_out = matchres.vsymp;
4936 		req->defobj_out = obj;
4937 		return (0);
4938 	}
4939 	return (ESRCH);
4940 }
4941 
4942 /* Search for symbol using GNU hash function */
4943 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)4944 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4945 {
4946 	Elf_Addr bloom_word;
4947 	const Elf32_Word *hashval;
4948 	Elf32_Word bucket;
4949 	Sym_Match_Result matchres;
4950 	unsigned int h1, h2;
4951 	unsigned long symnum;
4952 
4953 	matchres.sym_out = NULL;
4954 	matchres.vsymp = NULL;
4955 	matchres.vcount = 0;
4956 
4957 	/* Pick right bitmask word from Bloom filter array */
4958 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4959 	    obj->maskwords_bm_gnu];
4960 
4961 	/* Calculate modulus word size of gnu hash and its derivative */
4962 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4963 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4964 
4965 	/* Filter out the "definitely not in set" queries */
4966 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4967 		return (ESRCH);
4968 
4969 	/* Locate hash chain and corresponding value element*/
4970 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4971 	if (bucket == 0)
4972 		return (ESRCH);
4973 	hashval = &obj->chain_zero_gnu[bucket];
4974 	do {
4975 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4976 			symnum = hashval - obj->chain_zero_gnu;
4977 			if (matched_symbol(req, obj, &matchres, symnum)) {
4978 				req->sym_out = matchres.sym_out;
4979 				req->defobj_out = obj;
4980 				return (0);
4981 			}
4982 		}
4983 	} while ((*hashval++ & 1) == 0);
4984 	if (matchres.vcount == 1) {
4985 		req->sym_out = matchres.vsymp;
4986 		req->defobj_out = obj;
4987 		return (0);
4988 	}
4989 	return (ESRCH);
4990 }
4991 
4992 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)4993 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
4994 {
4995 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
4996 	if (*main_local == NULL)
4997 		*main_local = "";
4998 
4999 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5000 	if (*fmt1 == NULL)
5001 		*fmt1 = "\t%o => %p (%x)\n";
5002 
5003 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5004 	if (*fmt2 == NULL)
5005 		*fmt2 = "\t%o (%x)\n";
5006 }
5007 
5008 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5009 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5010     const char *main_local, const char *fmt1, const char *fmt2)
5011 {
5012 	const char *fmt;
5013 	int c;
5014 
5015 	if (fmt1 == NULL)
5016 		fmt = fmt2;
5017 	else
5018 		/* XXX bogus */
5019 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5020 
5021 	while ((c = *fmt++) != '\0') {
5022 		switch (c) {
5023 		default:
5024 			rtld_putchar(c);
5025 			continue;
5026 		case '\\':
5027 			switch (c = *fmt) {
5028 			case '\0':
5029 				continue;
5030 			case 'n':
5031 				rtld_putchar('\n');
5032 				break;
5033 			case 't':
5034 				rtld_putchar('\t');
5035 				break;
5036 			}
5037 			break;
5038 		case '%':
5039 			switch (c = *fmt) {
5040 			case '\0':
5041 				continue;
5042 			case '%':
5043 			default:
5044 				rtld_putchar(c);
5045 				break;
5046 			case 'A':
5047 				rtld_putstr(main_local);
5048 				break;
5049 			case 'a':
5050 				rtld_putstr(obj_main->path);
5051 				break;
5052 			case 'o':
5053 				rtld_putstr(name);
5054 				break;
5055 			case 'p':
5056 				rtld_putstr(path);
5057 				break;
5058 			case 'x':
5059 				rtld_printf("%p", obj != NULL ?
5060 				    obj->mapbase : NULL);
5061 				break;
5062 			}
5063 			break;
5064 		}
5065 		++fmt;
5066 	}
5067 }
5068 
5069 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5070 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5071 {
5072 	const char *fmt1, *fmt2, *main_local;
5073 	const char *name, *path;
5074 	bool first_spurious, list_containers;
5075 
5076 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5077 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5078 
5079 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5080 		Needed_Entry *needed;
5081 
5082 		if (obj->marker)
5083 			continue;
5084 		if (list_containers && obj->needed != NULL)
5085 			rtld_printf("%s:\n", obj->path);
5086 		for (needed = obj->needed; needed; needed = needed->next) {
5087 			if (needed->obj != NULL) {
5088 				if (needed->obj->traced && !list_containers)
5089 					continue;
5090 				needed->obj->traced = true;
5091 				path = needed->obj->path;
5092 			} else
5093 				path = "not found";
5094 
5095 			name = obj->strtab + needed->name;
5096 			trace_print_obj(needed->obj, name, path, main_local,
5097 			    fmt1, fmt2);
5098 		}
5099 	}
5100 
5101 	if (show_preload) {
5102 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5103 			fmt2 = "\t%p (%x)\n";
5104 		first_spurious = true;
5105 
5106 		TAILQ_FOREACH(obj, &obj_list, next) {
5107 			if (obj->marker || obj == obj_main || obj->traced)
5108 				continue;
5109 
5110 			if (list_containers && first_spurious) {
5111 				rtld_printf("[preloaded]\n");
5112 				first_spurious = false;
5113 			}
5114 
5115 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5116 			name = fname == NULL ? "<unknown>" : fname->name;
5117 			trace_print_obj(obj, name, obj->path, main_local,
5118 			    NULL, fmt2);
5119 		}
5120 	}
5121 }
5122 
5123 /*
5124  * Unload a dlopened object and its dependencies from memory and from
5125  * our data structures.  It is assumed that the DAG rooted in the
5126  * object has already been unreferenced, and that the object has a
5127  * reference count of 0.
5128  */
5129 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5130 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5131 {
5132 	Obj_Entry marker, *obj, *next;
5133 
5134 	assert(root->refcount == 0);
5135 
5136 	/*
5137 	 * Pass over the DAG removing unreferenced objects from
5138 	 * appropriate lists.
5139 	 */
5140 	unlink_object(root);
5141 
5142 	/* Unmap all objects that are no longer referenced. */
5143 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5144 		next = TAILQ_NEXT(obj, next);
5145 		if (obj->marker || obj->refcount != 0)
5146 			continue;
5147 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
5148 		    obj->mapsize, 0, obj->path);
5149 		dbg("unloading \"%s\"", obj->path);
5150 		/*
5151 		 * Unlink the object now to prevent new references from
5152 		 * being acquired while the bind lock is dropped in
5153 		 * recursive dlclose() invocations.
5154 		 */
5155 		TAILQ_REMOVE(&obj_list, obj, next);
5156 		obj_count--;
5157 
5158 		if (obj->filtees_loaded) {
5159 			if (next != NULL) {
5160 				init_marker(&marker);
5161 				TAILQ_INSERT_BEFORE(next, &marker, next);
5162 				unload_filtees(obj, lockstate);
5163 				next = TAILQ_NEXT(&marker, next);
5164 				TAILQ_REMOVE(&obj_list, &marker, next);
5165 			} else
5166 				unload_filtees(obj, lockstate);
5167 		}
5168 		release_object(obj);
5169 	}
5170 }
5171 
5172 static void
unlink_object(Obj_Entry * root)5173 unlink_object(Obj_Entry *root)
5174 {
5175     Objlist_Entry *elm;
5176 
5177     if (root->refcount == 0) {
5178 	/* Remove the object from the RTLD_GLOBAL list. */
5179 	objlist_remove(&list_global, root);
5180 
5181     	/* Remove the object from all objects' DAG lists. */
5182     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
5183 	    objlist_remove(&elm->obj->dldags, root);
5184 	    if (elm->obj != root)
5185 		unlink_object(elm->obj);
5186 	}
5187     }
5188 }
5189 
5190 static void
ref_dag(Obj_Entry * root)5191 ref_dag(Obj_Entry *root)
5192 {
5193     Objlist_Entry *elm;
5194 
5195     assert(root->dag_inited);
5196     STAILQ_FOREACH(elm, &root->dagmembers, link)
5197 	elm->obj->refcount++;
5198 }
5199 
5200 static void
unref_dag(Obj_Entry * root)5201 unref_dag(Obj_Entry *root)
5202 {
5203     Objlist_Entry *elm;
5204 
5205     assert(root->dag_inited);
5206     STAILQ_FOREACH(elm, &root->dagmembers, link)
5207 	elm->obj->refcount--;
5208 }
5209 
5210 /*
5211  * Common code for MD __tls_get_addr().
5212  */
5213 static void *
tls_get_addr_slow(Elf_Addr ** dtvp,int index,size_t offset,bool locked)5214 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
5215 {
5216 	Elf_Addr *newdtv, *dtv;
5217 	RtldLockState lockstate;
5218 	int to_copy;
5219 
5220 	dtv = *dtvp;
5221 	/* Check dtv generation in case new modules have arrived */
5222 	if (dtv[0] != tls_dtv_generation) {
5223 		if (!locked)
5224 			wlock_acquire(rtld_bind_lock, &lockstate);
5225 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5226 		to_copy = dtv[1];
5227 		if (to_copy > tls_max_index)
5228 			to_copy = tls_max_index;
5229 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
5230 		newdtv[0] = tls_dtv_generation;
5231 		newdtv[1] = tls_max_index;
5232 		free(dtv);
5233 		if (!locked)
5234 			lock_release(rtld_bind_lock, &lockstate);
5235 		dtv = *dtvp = newdtv;
5236 	}
5237 
5238 	/* Dynamically allocate module TLS if necessary */
5239 	if (dtv[index + 1] == 0) {
5240 		/* Signal safe, wlock will block out signals. */
5241 		if (!locked)
5242 			wlock_acquire(rtld_bind_lock, &lockstate);
5243 		if (!dtv[index + 1])
5244 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
5245 		if (!locked)
5246 			lock_release(rtld_bind_lock, &lockstate);
5247 	}
5248 	return ((void *)(dtv[index + 1] + offset));
5249 }
5250 
5251 void *
tls_get_addr_common(uintptr_t ** dtvp,int index,size_t offset)5252 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
5253 {
5254 	uintptr_t *dtv;
5255 
5256 	dtv = *dtvp;
5257 	/* Check dtv generation in case new modules have arrived */
5258 	if (__predict_true(dtv[0] == tls_dtv_generation &&
5259 	    dtv[index + 1] != 0))
5260 		return ((void *)(dtv[index + 1] + offset));
5261 	return (tls_get_addr_slow(dtvp, index, offset, false));
5262 }
5263 
5264 #ifdef TLS_VARIANT_I
5265 
5266 /*
5267  * Return pointer to allocated TLS block
5268  */
5269 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5270 get_tls_block_ptr(void *tcb, size_t tcbsize)
5271 {
5272     size_t extra_size, post_size, pre_size, tls_block_size;
5273     size_t tls_init_align;
5274 
5275     tls_init_align = MAX(obj_main->tlsalign, 1);
5276 
5277     /* Compute fragments sizes. */
5278     extra_size = tcbsize - TLS_TCB_SIZE;
5279     post_size = calculate_tls_post_size(tls_init_align);
5280     tls_block_size = tcbsize + post_size;
5281     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5282 
5283     return ((char *)tcb - pre_size - extra_size);
5284 }
5285 
5286 /*
5287  * Allocate Static TLS using the Variant I method.
5288  *
5289  * For details on the layout, see lib/libc/gen/tls.c.
5290  *
5291  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5292  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5293  *     offsets, whereas libc's tls_static_space is just the executable's static
5294  *     TLS segment.
5295  */
5296 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5297 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5298 {
5299     Obj_Entry *obj;
5300     char *tls_block;
5301     Elf_Addr *dtv, **tcb;
5302     Elf_Addr addr;
5303     Elf_Addr i;
5304     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5305     size_t tls_init_align, tls_init_offset;
5306 
5307     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5308 	return (oldtcb);
5309 
5310     assert(tcbsize >= TLS_TCB_SIZE);
5311     maxalign = MAX(tcbalign, tls_static_max_align);
5312     tls_init_align = MAX(obj_main->tlsalign, 1);
5313 
5314     /* Compute fragmets sizes. */
5315     extra_size = tcbsize - TLS_TCB_SIZE;
5316     post_size = calculate_tls_post_size(tls_init_align);
5317     tls_block_size = tcbsize + post_size;
5318     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5319     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
5320 
5321     /* Allocate whole TLS block */
5322     tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5323     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
5324 
5325     if (oldtcb != NULL) {
5326 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5327 	    tls_static_space);
5328 	free(get_tls_block_ptr(oldtcb, tcbsize));
5329 
5330 	/* Adjust the DTV. */
5331 	dtv = tcb[0];
5332 	for (i = 0; i < dtv[1]; i++) {
5333 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
5334 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
5335 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
5336 	    }
5337 	}
5338     } else {
5339 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5340 	tcb[0] = dtv;
5341 	dtv[0] = tls_dtv_generation;
5342 	dtv[1] = tls_max_index;
5343 
5344 	for (obj = globallist_curr(objs); obj != NULL;
5345 	  obj = globallist_next(obj)) {
5346 	    if (obj->tlsoffset == 0)
5347 		continue;
5348 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5349 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
5350 	    if (tls_init_offset > 0)
5351 		memset((void *)addr, 0, tls_init_offset);
5352 	    if (obj->tlsinitsize > 0) {
5353 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
5354 		    obj->tlsinitsize);
5355 	    }
5356 	    if (obj->tlssize > obj->tlsinitsize) {
5357 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
5358 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
5359 	    }
5360 	    dtv[obj->tlsindex + 1] = addr;
5361 	}
5362     }
5363 
5364     return (tcb);
5365 }
5366 
5367 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5368 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5369 {
5370     Elf_Addr *dtv;
5371     Elf_Addr tlsstart, tlsend;
5372     size_t post_size;
5373     size_t dtvsize, i, tls_init_align __unused;
5374 
5375     assert(tcbsize >= TLS_TCB_SIZE);
5376     tls_init_align = MAX(obj_main->tlsalign, 1);
5377 
5378     /* Compute fragments sizes. */
5379     post_size = calculate_tls_post_size(tls_init_align);
5380 
5381     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
5382     tlsend = (Elf_Addr)tcb + tls_static_space;
5383 
5384     dtv = *(Elf_Addr **)tcb;
5385     dtvsize = dtv[1];
5386     for (i = 0; i < dtvsize; i++) {
5387 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
5388 	    free((void*)dtv[i+2]);
5389 	}
5390     }
5391     free(dtv);
5392     free(get_tls_block_ptr(tcb, tcbsize));
5393 }
5394 
5395 #endif	/* TLS_VARIANT_I */
5396 
5397 #ifdef TLS_VARIANT_II
5398 
5399 /*
5400  * Allocate Static TLS using the Variant II method.
5401  */
5402 void *
allocate_tls(Obj_Entry * objs,void * oldtls,size_t tcbsize,size_t tcbalign)5403 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
5404 {
5405     Obj_Entry *obj;
5406     size_t size, ralign;
5407     char *tls;
5408     Elf_Addr *dtv, *olddtv;
5409     Elf_Addr segbase, oldsegbase, addr;
5410     size_t i;
5411 
5412     ralign = tcbalign;
5413     if (tls_static_max_align > ralign)
5414 	    ralign = tls_static_max_align;
5415     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5416 
5417     assert(tcbsize >= 2*sizeof(Elf_Addr));
5418     tls = xmalloc_aligned(size, ralign, 0 /* XXX */);
5419     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
5420 
5421     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
5422     ((Elf_Addr *)segbase)[0] = segbase;
5423     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
5424 
5425     dtv[0] = tls_dtv_generation;
5426     dtv[1] = tls_max_index;
5427 
5428     if (oldtls) {
5429 	/*
5430 	 * Copy the static TLS block over whole.
5431 	 */
5432 	oldsegbase = (Elf_Addr) oldtls;
5433 	memcpy((void *)(segbase - tls_static_space),
5434 	   (const void *)(oldsegbase - tls_static_space),
5435 	   tls_static_space);
5436 
5437 	/*
5438 	 * If any dynamic TLS blocks have been created tls_get_addr(),
5439 	 * move them over.
5440 	 */
5441 	olddtv = ((Elf_Addr **)oldsegbase)[1];
5442 	for (i = 0; i < olddtv[1]; i++) {
5443 	    if (olddtv[i + 2] < oldsegbase - size ||
5444 		olddtv[i + 2] > oldsegbase) {
5445 		    dtv[i + 2] = olddtv[i + 2];
5446 		    olddtv[i + 2] = 0;
5447 	    }
5448 	}
5449 
5450 	/*
5451 	 * We assume that this block was the one we created with
5452 	 * allocate_initial_tls().
5453 	 */
5454 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
5455     } else {
5456 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5457 		if (obj->marker || obj->tlsoffset == 0)
5458 			continue;
5459 		addr = segbase - obj->tlsoffset;
5460 		memset((void *)(addr + obj->tlsinitsize),
5461 		    0, obj->tlssize - obj->tlsinitsize);
5462 		if (obj->tlsinit) {
5463 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
5464 			obj->static_tls_copied = true;
5465 		}
5466 		dtv[obj->tlsindex + 1] = addr;
5467 	}
5468     }
5469 
5470     return ((void *)segbase);
5471 }
5472 
5473 void
free_tls(void * tls,size_t tcbsize __unused,size_t tcbalign)5474 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
5475 {
5476     Elf_Addr* dtv;
5477     size_t size, ralign;
5478     int dtvsize, i;
5479     Elf_Addr tlsstart, tlsend;
5480 
5481     /*
5482      * Figure out the size of the initial TLS block so that we can
5483      * find stuff which ___tls_get_addr() allocated dynamically.
5484      */
5485     ralign = tcbalign;
5486     if (tls_static_max_align > ralign)
5487 	    ralign = tls_static_max_align;
5488     size = roundup(tls_static_space, ralign);
5489 
5490     dtv = ((Elf_Addr **)tls)[1];
5491     dtvsize = dtv[1];
5492     tlsend = (Elf_Addr)tls;
5493     tlsstart = tlsend - size;
5494     for (i = 0; i < dtvsize; i++) {
5495 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
5496 	        dtv[i + 2] > tlsend)) {
5497 		    free((void *)dtv[i + 2]);
5498 	}
5499     }
5500 
5501     free((void *)tlsstart);
5502     free((void *)dtv);
5503 }
5504 
5505 #endif	/* TLS_VARIANT_II */
5506 
5507 /*
5508  * Allocate TLS block for module with given index.
5509  */
5510 void *
allocate_module_tls(int index)5511 allocate_module_tls(int index)
5512 {
5513 	Obj_Entry *obj;
5514 	char *p;
5515 
5516 	TAILQ_FOREACH(obj, &obj_list, next) {
5517 		if (obj->marker)
5518 			continue;
5519 		if (obj->tlsindex == index)
5520 			break;
5521 	}
5522 	if (obj == NULL) {
5523 		_rtld_error("Can't find module with TLS index %d", index);
5524 		rtld_die();
5525 	}
5526 
5527 	if (obj->tls_static) {
5528 #ifdef TLS_VARIANT_I
5529 		p = (char *)_tcb_get() + obj->tlsoffset + TLS_TCB_SIZE;
5530 #else
5531 		p = (char *)_tcb_get() - obj->tlsoffset;
5532 #endif
5533 		return (p);
5534 	}
5535 
5536 	obj->tls_dynamic = true;
5537 
5538 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5539 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5540 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5541 	return (p);
5542 }
5543 
5544 bool
allocate_tls_offset(Obj_Entry * obj)5545 allocate_tls_offset(Obj_Entry *obj)
5546 {
5547     size_t off;
5548 
5549     if (obj->tls_dynamic)
5550 	return (false);
5551 
5552     if (obj->tls_static)
5553 	return (true);
5554 
5555     if (obj->tlssize == 0) {
5556 	obj->tls_static = true;
5557 	return (true);
5558     }
5559 
5560     if (tls_last_offset == 0)
5561 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
5562 	  obj->tlspoffset);
5563     else
5564 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
5565 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
5566 
5567     obj->tlsoffset = off;
5568 #ifdef TLS_VARIANT_I
5569     off += obj->tlssize;
5570 #endif
5571 
5572     /*
5573      * If we have already fixed the size of the static TLS block, we
5574      * must stay within that size. When allocating the static TLS, we
5575      * leave a small amount of space spare to be used for dynamically
5576      * loading modules which use static TLS.
5577      */
5578     if (tls_static_space != 0) {
5579 	if (off > tls_static_space)
5580 	    return (false);
5581     } else if (obj->tlsalign > tls_static_max_align) {
5582 	    tls_static_max_align = obj->tlsalign;
5583     }
5584 
5585     tls_last_offset = off;
5586     tls_last_size = obj->tlssize;
5587     obj->tls_static = true;
5588 
5589     return (true);
5590 }
5591 
5592 void
free_tls_offset(Obj_Entry * obj)5593 free_tls_offset(Obj_Entry *obj)
5594 {
5595 
5596     /*
5597      * If we were the last thing to allocate out of the static TLS
5598      * block, we give our space back to the 'allocator'. This is a
5599      * simplistic workaround to allow libGL.so.1 to be loaded and
5600      * unloaded multiple times.
5601      */
5602     size_t off = obj->tlsoffset;
5603 #ifdef TLS_VARIANT_I
5604     off += obj->tlssize;
5605 #endif
5606     if (off == tls_last_offset) {
5607 	tls_last_offset -= obj->tlssize;
5608 	tls_last_size = 0;
5609     }
5610 }
5611 
5612 void *
_rtld_allocate_tls(void * oldtls,size_t tcbsize,size_t tcbalign)5613 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
5614 {
5615     void *ret;
5616     RtldLockState lockstate;
5617 
5618     wlock_acquire(rtld_bind_lock, &lockstate);
5619     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
5620       tcbsize, tcbalign);
5621     lock_release(rtld_bind_lock, &lockstate);
5622     return (ret);
5623 }
5624 
5625 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5626 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5627 {
5628     RtldLockState lockstate;
5629 
5630     wlock_acquire(rtld_bind_lock, &lockstate);
5631     free_tls(tcb, tcbsize, tcbalign);
5632     lock_release(rtld_bind_lock, &lockstate);
5633 }
5634 
5635 static void
object_add_name(Obj_Entry * obj,const char * name)5636 object_add_name(Obj_Entry *obj, const char *name)
5637 {
5638     Name_Entry *entry;
5639     size_t len;
5640 
5641     len = strlen(name);
5642     entry = malloc(sizeof(Name_Entry) + len);
5643 
5644     if (entry != NULL) {
5645 	strcpy(entry->name, name);
5646 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
5647     }
5648 }
5649 
5650 static int
object_match_name(const Obj_Entry * obj,const char * name)5651 object_match_name(const Obj_Entry *obj, const char *name)
5652 {
5653     Name_Entry *entry;
5654 
5655     STAILQ_FOREACH(entry, &obj->names, link) {
5656 	if (strcmp(name, entry->name) == 0)
5657 	    return (1);
5658     }
5659     return (0);
5660 }
5661 
5662 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5663 locate_dependency(const Obj_Entry *obj, const char *name)
5664 {
5665     const Objlist_Entry *entry;
5666     const Needed_Entry *needed;
5667 
5668     STAILQ_FOREACH(entry, &list_main, link) {
5669 	if (object_match_name(entry->obj, name))
5670 	    return (entry->obj);
5671     }
5672 
5673     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
5674 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
5675 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
5676 	    /*
5677 	     * If there is DT_NEEDED for the name we are looking for,
5678 	     * we are all set.  Note that object might not be found if
5679 	     * dependency was not loaded yet, so the function can
5680 	     * return NULL here.  This is expected and handled
5681 	     * properly by the caller.
5682 	     */
5683 	    return (needed->obj);
5684 	}
5685     }
5686     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5687 	obj->path, name);
5688     rtld_die();
5689 }
5690 
5691 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5692 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5693     const Elf_Vernaux *vna)
5694 {
5695     const Elf_Verdef *vd;
5696     const char *vername;
5697 
5698     vername = refobj->strtab + vna->vna_name;
5699     vd = depobj->verdef;
5700     if (vd == NULL) {
5701 	_rtld_error("%s: version %s required by %s not defined",
5702 	    depobj->path, vername, refobj->path);
5703 	return (-1);
5704     }
5705     for (;;) {
5706 	if (vd->vd_version != VER_DEF_CURRENT) {
5707 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5708 		depobj->path, vd->vd_version);
5709 	    return (-1);
5710 	}
5711 	if (vna->vna_hash == vd->vd_hash) {
5712 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
5713 		((const char *)vd + vd->vd_aux);
5714 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
5715 		return (0);
5716 	}
5717 	if (vd->vd_next == 0)
5718 	    break;
5719 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5720     }
5721     if (vna->vna_flags & VER_FLG_WEAK)
5722 	return (0);
5723     _rtld_error("%s: version %s required by %s not found",
5724 	depobj->path, vername, refobj->path);
5725     return (-1);
5726 }
5727 
5728 static int
rtld_verify_object_versions(Obj_Entry * obj)5729 rtld_verify_object_versions(Obj_Entry *obj)
5730 {
5731     const Elf_Verneed *vn;
5732     const Elf_Verdef  *vd;
5733     const Elf_Verdaux *vda;
5734     const Elf_Vernaux *vna;
5735     const Obj_Entry *depobj;
5736     int maxvernum, vernum;
5737 
5738     if (obj->ver_checked)
5739 	return (0);
5740     obj->ver_checked = true;
5741 
5742     maxvernum = 0;
5743     /*
5744      * Walk over defined and required version records and figure out
5745      * max index used by any of them. Do very basic sanity checking
5746      * while there.
5747      */
5748     vn = obj->verneed;
5749     while (vn != NULL) {
5750 	if (vn->vn_version != VER_NEED_CURRENT) {
5751 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
5752 		obj->path, vn->vn_version);
5753 	    return (-1);
5754 	}
5755 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5756 	for (;;) {
5757 	    vernum = VER_NEED_IDX(vna->vna_other);
5758 	    if (vernum > maxvernum)
5759 		maxvernum = vernum;
5760 	    if (vna->vna_next == 0)
5761 		 break;
5762 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5763 	}
5764 	if (vn->vn_next == 0)
5765 	    break;
5766 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5767     }
5768 
5769     vd = obj->verdef;
5770     while (vd != NULL) {
5771 	if (vd->vd_version != VER_DEF_CURRENT) {
5772 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
5773 		obj->path, vd->vd_version);
5774 	    return (-1);
5775 	}
5776 	vernum = VER_DEF_IDX(vd->vd_ndx);
5777 	if (vernum > maxvernum)
5778 		maxvernum = vernum;
5779 	if (vd->vd_next == 0)
5780 	    break;
5781 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5782     }
5783 
5784     if (maxvernum == 0)
5785 	return (0);
5786 
5787     /*
5788      * Store version information in array indexable by version index.
5789      * Verify that object version requirements are satisfied along the
5790      * way.
5791      */
5792     obj->vernum = maxvernum + 1;
5793     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
5794 
5795     vd = obj->verdef;
5796     while (vd != NULL) {
5797 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
5798 	    vernum = VER_DEF_IDX(vd->vd_ndx);
5799 	    assert(vernum <= maxvernum);
5800 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
5801 	    obj->vertab[vernum].hash = vd->vd_hash;
5802 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
5803 	    obj->vertab[vernum].file = NULL;
5804 	    obj->vertab[vernum].flags = 0;
5805 	}
5806 	if (vd->vd_next == 0)
5807 	    break;
5808 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5809     }
5810 
5811     vn = obj->verneed;
5812     while (vn != NULL) {
5813 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
5814 	if (depobj == NULL)
5815 	    return (-1);
5816 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5817 	for (;;) {
5818 	    if (check_object_provided_version(obj, depobj, vna))
5819 		return (-1);
5820 	    vernum = VER_NEED_IDX(vna->vna_other);
5821 	    assert(vernum <= maxvernum);
5822 	    obj->vertab[vernum].hash = vna->vna_hash;
5823 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
5824 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
5825 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
5826 		VER_INFO_HIDDEN : 0;
5827 	    if (vna->vna_next == 0)
5828 		 break;
5829 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
5830 	}
5831 	if (vn->vn_next == 0)
5832 	    break;
5833 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
5834     }
5835     return (0);
5836 }
5837 
5838 static int
rtld_verify_versions(const Objlist * objlist)5839 rtld_verify_versions(const Objlist *objlist)
5840 {
5841     Objlist_Entry *entry;
5842     int rc;
5843 
5844     rc = 0;
5845     STAILQ_FOREACH(entry, objlist, link) {
5846 	/*
5847 	 * Skip dummy objects or objects that have their version requirements
5848 	 * already checked.
5849 	 */
5850 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
5851 	    continue;
5852 	if (rtld_verify_object_versions(entry->obj) == -1) {
5853 	    rc = -1;
5854 	    if (ld_tracing == NULL)
5855 		break;
5856 	}
5857     }
5858     if (rc == 0 || ld_tracing != NULL)
5859     	rc = rtld_verify_object_versions(&obj_rtld);
5860     return (rc);
5861 }
5862 
5863 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)5864 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
5865 {
5866     Elf_Versym vernum;
5867 
5868     if (obj->vertab) {
5869 	vernum = VER_NDX(obj->versyms[symnum]);
5870 	if (vernum >= obj->vernum) {
5871 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
5872 		obj->path, obj->strtab + symnum, vernum);
5873 	} else if (obj->vertab[vernum].hash != 0) {
5874 	    return (&obj->vertab[vernum]);
5875 	}
5876     }
5877     return (NULL);
5878 }
5879 
5880 int
_rtld_get_stack_prot(void)5881 _rtld_get_stack_prot(void)
5882 {
5883 
5884 	return (stack_prot);
5885 }
5886 
5887 int
_rtld_is_dlopened(void * arg)5888 _rtld_is_dlopened(void *arg)
5889 {
5890 	Obj_Entry *obj;
5891 	RtldLockState lockstate;
5892 	int res;
5893 
5894 	rlock_acquire(rtld_bind_lock, &lockstate);
5895 	obj = dlcheck(arg);
5896 	if (obj == NULL)
5897 		obj = obj_from_addr(arg);
5898 	if (obj == NULL) {
5899 		_rtld_error("No shared object contains address");
5900 		lock_release(rtld_bind_lock, &lockstate);
5901 		return (-1);
5902 	}
5903 	res = obj->dlopened ? 1 : 0;
5904 	lock_release(rtld_bind_lock, &lockstate);
5905 	return (res);
5906 }
5907 
5908 static int
obj_remap_relro(Obj_Entry * obj,int prot)5909 obj_remap_relro(Obj_Entry *obj, int prot)
5910 {
5911 
5912 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
5913 	    prot) == -1) {
5914 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
5915 		    obj->path, prot, rtld_strerror(errno));
5916 		return (-1);
5917 	}
5918 	return (0);
5919 }
5920 
5921 static int
obj_disable_relro(Obj_Entry * obj)5922 obj_disable_relro(Obj_Entry *obj)
5923 {
5924 
5925 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
5926 }
5927 
5928 static int
obj_enforce_relro(Obj_Entry * obj)5929 obj_enforce_relro(Obj_Entry *obj)
5930 {
5931 
5932 	return (obj_remap_relro(obj, PROT_READ));
5933 }
5934 
5935 static void
map_stacks_exec(RtldLockState * lockstate)5936 map_stacks_exec(RtldLockState *lockstate)
5937 {
5938 	void (*thr_map_stacks_exec)(void);
5939 
5940 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
5941 		return;
5942 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
5943 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
5944 	if (thr_map_stacks_exec != NULL) {
5945 		stack_prot |= PROT_EXEC;
5946 		thr_map_stacks_exec();
5947 	}
5948 }
5949 
5950 static void
distribute_static_tls(Objlist * list,RtldLockState * lockstate)5951 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
5952 {
5953 	Objlist_Entry *elm;
5954 	Obj_Entry *obj;
5955 	void (*distrib)(size_t, void *, size_t, size_t);
5956 
5957 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
5958 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
5959 	if (distrib == NULL)
5960 		return;
5961 	STAILQ_FOREACH(elm, list, link) {
5962 		obj = elm->obj;
5963 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
5964 			continue;
5965 		lock_release(rtld_bind_lock, lockstate);
5966 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
5967 		    obj->tlssize);
5968 		wlock_acquire(rtld_bind_lock, lockstate);
5969 		obj->static_tls_copied = true;
5970 	}
5971 }
5972 
5973 void
symlook_init(SymLook * dst,const char * name)5974 symlook_init(SymLook *dst, const char *name)
5975 {
5976 
5977 	bzero(dst, sizeof(*dst));
5978 	dst->name = name;
5979 	dst->hash = elf_hash(name);
5980 	dst->hash_gnu = gnu_hash(name);
5981 }
5982 
5983 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)5984 symlook_init_from_req(SymLook *dst, const SymLook *src)
5985 {
5986 
5987 	dst->name = src->name;
5988 	dst->hash = src->hash;
5989 	dst->hash_gnu = src->hash_gnu;
5990 	dst->ventry = src->ventry;
5991 	dst->flags = src->flags;
5992 	dst->defobj_out = NULL;
5993 	dst->sym_out = NULL;
5994 	dst->lockstate = src->lockstate;
5995 }
5996 
5997 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)5998 open_binary_fd(const char *argv0, bool search_in_path,
5999     const char **binpath_res)
6000 {
6001 	char *binpath, *pathenv, *pe, *res1;
6002 	const char *res;
6003 	int fd;
6004 
6005 	binpath = NULL;
6006 	res = NULL;
6007 	if (search_in_path && strchr(argv0, '/') == NULL) {
6008 		binpath = xmalloc(PATH_MAX);
6009 		pathenv = getenv("PATH");
6010 		if (pathenv == NULL) {
6011 			_rtld_error("-p and no PATH environment variable");
6012 			rtld_die();
6013 		}
6014 		pathenv = strdup(pathenv);
6015 		if (pathenv == NULL) {
6016 			_rtld_error("Cannot allocate memory");
6017 			rtld_die();
6018 		}
6019 		fd = -1;
6020 		errno = ENOENT;
6021 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6022 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6023 				continue;
6024 			if (binpath[0] != '\0' &&
6025 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6026 				continue;
6027 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6028 				continue;
6029 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6030 			if (fd != -1 || errno != ENOENT) {
6031 				res = binpath;
6032 				break;
6033 			}
6034 		}
6035 		free(pathenv);
6036 	} else {
6037 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6038 		res = argv0;
6039 	}
6040 
6041 	if (fd == -1) {
6042 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6043 		rtld_die();
6044 	}
6045 	if (res != NULL && res[0] != '/') {
6046 		res1 = xmalloc(PATH_MAX);
6047 		if (realpath(res, res1) != NULL) {
6048 			if (res != argv0)
6049 				free(__DECONST(char *, res));
6050 			res = res1;
6051 		} else {
6052 			free(res1);
6053 		}
6054 	}
6055 	*binpath_res = res;
6056 	return (fd);
6057 }
6058 
6059 /*
6060  * Parse a set of command-line arguments.
6061  */
6062 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6063 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
6064     const char **argv0, bool *dir_ignore)
6065 {
6066 	const char *arg;
6067 	char machine[64];
6068 	size_t sz;
6069 	int arglen, fd, i, j, mib[2];
6070 	char opt;
6071 	bool seen_b, seen_f;
6072 
6073 	dbg("Parsing command-line arguments");
6074 	*use_pathp = false;
6075 	*fdp = -1;
6076 	*dir_ignore = false;
6077 	seen_b = seen_f = false;
6078 
6079 	for (i = 1; i < argc; i++ ) {
6080 		arg = argv[i];
6081 		dbg("argv[%d]: '%s'", i, arg);
6082 
6083 		/*
6084 		 * rtld arguments end with an explicit "--" or with the first
6085 		 * non-prefixed argument.
6086 		 */
6087 		if (strcmp(arg, "--") == 0) {
6088 			i++;
6089 			break;
6090 		}
6091 		if (arg[0] != '-')
6092 			break;
6093 
6094 		/*
6095 		 * All other arguments are single-character options that can
6096 		 * be combined, so we need to search through `arg` for them.
6097 		 */
6098 		arglen = strlen(arg);
6099 		for (j = 1; j < arglen; j++) {
6100 			opt = arg[j];
6101 			if (opt == 'h') {
6102 				print_usage(argv[0]);
6103 				_exit(0);
6104 			} else if (opt == 'b') {
6105 				if (seen_f) {
6106 					_rtld_error("Both -b and -f specified");
6107 					rtld_die();
6108 				}
6109 				if (j != arglen - 1) {
6110 					_rtld_error("Invalid options: %s", arg);
6111 					rtld_die();
6112 				}
6113 				i++;
6114 				*argv0 = argv[i];
6115 				seen_b = true;
6116 				break;
6117 			} else if (opt == 'd') {
6118 				*dir_ignore = true;
6119 			} else if (opt == 'f') {
6120 				if (seen_b) {
6121 					_rtld_error("Both -b and -f specified");
6122 					rtld_die();
6123 				}
6124 
6125 				/*
6126 				 * -f XX can be used to specify a
6127 				 * descriptor for the binary named at
6128 				 * the command line (i.e., the later
6129 				 * argument will specify the process
6130 				 * name but the descriptor is what
6131 				 * will actually be executed).
6132 				 *
6133 				 * -f must be the last option in the
6134 				 * group, e.g., -abcf <fd>.
6135 				 */
6136 				if (j != arglen - 1) {
6137 					_rtld_error("Invalid options: %s", arg);
6138 					rtld_die();
6139 				}
6140 				i++;
6141 				fd = parse_integer(argv[i]);
6142 				if (fd == -1) {
6143 					_rtld_error(
6144 					    "Invalid file descriptor: '%s'",
6145 					    argv[i]);
6146 					rtld_die();
6147 				}
6148 				*fdp = fd;
6149 				seen_f = true;
6150 				break;
6151 			} else if (opt == 'o') {
6152 				struct ld_env_var_desc *l;
6153 				char *n, *v;
6154 				u_int ll;
6155 
6156 				if (j != arglen - 1) {
6157 					_rtld_error("Invalid options: %s", arg);
6158 					rtld_die();
6159 				}
6160 				i++;
6161 				n = argv[i];
6162 				v = strchr(n, '=');
6163 				if (v == NULL) {
6164 					_rtld_error("No '=' in -o parameter");
6165 					rtld_die();
6166 				}
6167 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6168 					l = &ld_env_vars[ll];
6169 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6170 					    strncmp(n, l->n, v - n) == 0) {
6171 						l->val = v + 1;
6172 						break;
6173 					}
6174 				}
6175 				if (ll == nitems(ld_env_vars)) {
6176 					_rtld_error("Unknown LD_ option %s",
6177 					    n);
6178 					rtld_die();
6179 				}
6180 			} else if (opt == 'p') {
6181 				*use_pathp = true;
6182 			} else if (opt == 'u') {
6183 				u_int ll;
6184 
6185 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6186 					ld_env_vars[ll].val = NULL;
6187 			} else if (opt == 'v') {
6188 				machine[0] = '\0';
6189 				mib[0] = CTL_HW;
6190 				mib[1] = HW_MACHINE;
6191 				sz = sizeof(machine);
6192 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6193 				ld_elf_hints_path = ld_get_env_var(
6194 				    LD_ELF_HINTS_PATH);
6195 				set_ld_elf_hints_path();
6196 				rtld_printf(
6197 				    "FreeBSD ld-elf.so.1 %s\n"
6198 				    "FreeBSD_version %d\n"
6199 				    "Default lib path %s\n"
6200 				    "Hints lib path %s\n"
6201 				    "Env prefix %s\n"
6202 				    "Default hint file %s\n"
6203 				    "Hint file %s\n"
6204 				    "libmap file %s\n"
6205 				    "Optional static TLS size %zd bytes\n",
6206 				    machine,
6207 				    __FreeBSD_version, ld_standard_library_path,
6208 				    gethints(false),
6209 				    ld_env_prefix, ld_elf_hints_default,
6210 				    ld_elf_hints_path,
6211 				    ld_path_libmap_conf,
6212 				    ld_static_tls_extra);
6213 				_exit(0);
6214 			} else {
6215 				_rtld_error("Invalid argument: '%s'", arg);
6216 				print_usage(argv[0]);
6217 				rtld_die();
6218 			}
6219 		}
6220 	}
6221 
6222 	if (!seen_b)
6223 		*argv0 = argv[i];
6224 	return (i);
6225 }
6226 
6227 /*
6228  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6229  */
6230 static int
parse_integer(const char * str)6231 parse_integer(const char *str)
6232 {
6233 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
6234 	const char *orig;
6235 	int n;
6236 	char c;
6237 
6238 	orig = str;
6239 	n = 0;
6240 	for (c = *str; c != '\0'; c = *++str) {
6241 		if (c < '0' || c > '9')
6242 			return (-1);
6243 
6244 		n *= RADIX;
6245 		n += c - '0';
6246 	}
6247 
6248 	/* Make sure we actually parsed something. */
6249 	if (str == orig)
6250 		return (-1);
6251 	return (n);
6252 }
6253 
6254 static void
print_usage(const char * argv0)6255 print_usage(const char *argv0)
6256 {
6257 
6258 	rtld_printf(
6259 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6260 	    "\n"
6261 	    "Options:\n"
6262 	    "  -h        Display this help message\n"
6263 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6264 	    "  -d        Ignore lack of exec permissions for the binary\n"
6265 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6266 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6267 	    "  -p        Search in PATH for named binary\n"
6268 	    "  -u        Ignore LD_ environment variables\n"
6269 	    "  -v        Display identification information\n"
6270 	    "  --        End of RTLD options\n"
6271 	    "  <binary>  Name of process to execute\n"
6272 	    "  <args>    Arguments to the executed process\n", argv0);
6273 }
6274 
6275 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6276 static const struct auxfmt {
6277 	const char *name;
6278 	const char *fmt;
6279 } auxfmts[] = {
6280 	AUXFMT(AT_NULL, NULL),
6281 	AUXFMT(AT_IGNORE, NULL),
6282 	AUXFMT(AT_EXECFD, "%ld"),
6283 	AUXFMT(AT_PHDR, "%p"),
6284 	AUXFMT(AT_PHENT, "%lu"),
6285 	AUXFMT(AT_PHNUM, "%lu"),
6286 	AUXFMT(AT_PAGESZ, "%lu"),
6287 	AUXFMT(AT_BASE, "%#lx"),
6288 	AUXFMT(AT_FLAGS, "%#lx"),
6289 	AUXFMT(AT_ENTRY, "%p"),
6290 	AUXFMT(AT_NOTELF, NULL),
6291 	AUXFMT(AT_UID, "%ld"),
6292 	AUXFMT(AT_EUID, "%ld"),
6293 	AUXFMT(AT_GID, "%ld"),
6294 	AUXFMT(AT_EGID, "%ld"),
6295 	AUXFMT(AT_EXECPATH, "%s"),
6296 	AUXFMT(AT_CANARY, "%p"),
6297 	AUXFMT(AT_CANARYLEN, "%lu"),
6298 	AUXFMT(AT_OSRELDATE, "%lu"),
6299 	AUXFMT(AT_NCPUS, "%lu"),
6300 	AUXFMT(AT_PAGESIZES, "%p"),
6301 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6302 	AUXFMT(AT_TIMEKEEP, "%p"),
6303 	AUXFMT(AT_STACKPROT, "%#lx"),
6304 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6305 	AUXFMT(AT_HWCAP, "%#lx"),
6306 	AUXFMT(AT_HWCAP2, "%#lx"),
6307 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6308 	AUXFMT(AT_ARGC, "%lu"),
6309 	AUXFMT(AT_ARGV, "%p"),
6310 	AUXFMT(AT_ENVC, "%p"),
6311 	AUXFMT(AT_ENVV, "%p"),
6312 	AUXFMT(AT_PS_STRINGS, "%p"),
6313 	AUXFMT(AT_FXRNG, "%p"),
6314 	AUXFMT(AT_KPRELOAD, "%p"),
6315 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6316 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6317 };
6318 
6319 static bool
is_ptr_fmt(const char * fmt)6320 is_ptr_fmt(const char *fmt)
6321 {
6322 	char last;
6323 
6324 	last = fmt[strlen(fmt) - 1];
6325 	return (last == 'p' || last == 's');
6326 }
6327 
6328 static void
dump_auxv(Elf_Auxinfo ** aux_info)6329 dump_auxv(Elf_Auxinfo **aux_info)
6330 {
6331 	Elf_Auxinfo *auxp;
6332 	const struct auxfmt *fmt;
6333 	int i;
6334 
6335 	for (i = 0; i < AT_COUNT; i++) {
6336 		auxp = aux_info[i];
6337 		if (auxp == NULL)
6338 			continue;
6339 		fmt = &auxfmts[i];
6340 		if (fmt->fmt == NULL)
6341 			continue;
6342 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6343 		if (is_ptr_fmt(fmt->fmt)) {
6344 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6345 			    auxp->a_un.a_ptr);
6346 		} else {
6347 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6348 			    auxp->a_un.a_val);
6349 		}
6350 		rtld_fdprintf(STDOUT_FILENO, "\n");
6351 	}
6352 }
6353 
6354 /*
6355  * Overrides for libc_pic-provided functions.
6356  */
6357 
6358 int
__getosreldate(void)6359 __getosreldate(void)
6360 {
6361 	size_t len;
6362 	int oid[2];
6363 	int error, osrel;
6364 
6365 	if (osreldate != 0)
6366 		return (osreldate);
6367 
6368 	oid[0] = CTL_KERN;
6369 	oid[1] = KERN_OSRELDATE;
6370 	osrel = 0;
6371 	len = sizeof(osrel);
6372 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6373 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6374 		osreldate = osrel;
6375 	return (osreldate);
6376 }
6377 const char *
rtld_strerror(int errnum)6378 rtld_strerror(int errnum)
6379 {
6380 
6381 	if (errnum < 0 || errnum >= sys_nerr)
6382 		return ("Unknown error");
6383 	return (sys_errlist[errnum]);
6384 }
6385 
6386 char *
getenv(const char * name)6387 getenv(const char *name)
6388 {
6389 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6390 	    strlen(name))));
6391 }
6392 
6393 /* malloc */
6394 void *
malloc(size_t nbytes)6395 malloc(size_t nbytes)
6396 {
6397 
6398 	return (__crt_malloc(nbytes));
6399 }
6400 
6401 void *
calloc(size_t num,size_t size)6402 calloc(size_t num, size_t size)
6403 {
6404 
6405 	return (__crt_calloc(num, size));
6406 }
6407 
6408 void
free(void * cp)6409 free(void *cp)
6410 {
6411 
6412 	__crt_free(cp);
6413 }
6414 
6415 void *
realloc(void * cp,size_t nbytes)6416 realloc(void *cp, size_t nbytes)
6417 {
6418 
6419 	return (__crt_realloc(cp, nbytes));
6420 }
6421 
6422 extern int _rtld_version__FreeBSD_version __exported;
6423 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6424 
6425 extern char _rtld_version_laddr_offset __exported;
6426 char _rtld_version_laddr_offset;
6427 
6428 extern char _rtld_version_dlpi_tls_data __exported;
6429 char _rtld_version_dlpi_tls_data;
6430