1 /*-------------------------------------------------------------------------
2  *
3  * nodeHash.c
4  *	  Routines to hash relations for hashjoin
5  *
6  * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
7  * Portions Copyright (c) 1994, Regents of the University of California
8  *
9  *
10  * IDENTIFICATION
11  *	  src/backend/executor/nodeHash.c
12  *
13  * See note on parallelism in nodeHashjoin.c.
14  *
15  *-------------------------------------------------------------------------
16  */
17 /*
18  * INTERFACE ROUTINES
19  *		MultiExecHash	- generate an in-memory hash table of the relation
20  *		ExecInitHash	- initialize node and subnodes
21  *		ExecEndHash		- shutdown node and subnodes
22  */
23 
24 #include "postgres.h"
25 
26 #include <math.h>
27 #include <limits.h>
28 
29 #include "access/htup_details.h"
30 #include "access/parallel.h"
31 #include "catalog/pg_statistic.h"
32 #include "commands/tablespace.h"
33 #include "executor/execdebug.h"
34 #include "executor/hashjoin.h"
35 #include "executor/nodeHash.h"
36 #include "executor/nodeHashjoin.h"
37 #include "miscadmin.h"
38 #include "pgstat.h"
39 #include "port/atomics.h"
40 #include "port/pg_bitutils.h"
41 #include "utils/dynahash.h"
42 #include "utils/guc.h"
43 #include "utils/lsyscache.h"
44 #include "utils/memutils.h"
45 #include "utils/syscache.h"
46 
47 static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
48 static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
49 static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
50 static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
51 static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
52 								  int mcvsToUse);
53 static void ExecHashSkewTableInsert(HashJoinTable hashtable,
54 									TupleTableSlot *slot,
55 									uint32 hashvalue,
56 									int bucketNumber);
57 static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
58 
59 static void *dense_alloc(HashJoinTable hashtable, Size size);
60 static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
61 												size_t size,
62 												dsa_pointer *shared);
63 static void MultiExecPrivateHash(HashState *node);
64 static void MultiExecParallelHash(HashState *node);
65 static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table,
66 													   int bucketno);
67 static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table,
68 													  HashJoinTuple tuple);
69 static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
70 											 HashJoinTuple tuple,
71 											 dsa_pointer tuple_shared);
72 static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
73 static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
74 static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
75 static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
76 static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table,
77 													 dsa_pointer *shared);
78 static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
79 										  int batchno,
80 										  size_t size);
81 static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
82 static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
83 
84 
85 /* ----------------------------------------------------------------
86  *		ExecHash
87  *
88  *		stub for pro forma compliance
89  * ----------------------------------------------------------------
90  */
91 static TupleTableSlot *
92 ExecHash(PlanState *pstate)
93 {
94 	elog(ERROR, "Hash node does not support ExecProcNode call convention");
95 	return NULL;
96 }
97 
98 /* ----------------------------------------------------------------
99  *		MultiExecHash
100  *
101  *		build hash table for hashjoin, doing partitioning if more
102  *		than one batch is required.
103  * ----------------------------------------------------------------
104  */
105 Node *
106 MultiExecHash(HashState *node)
107 {
108 	/* must provide our own instrumentation support */
109 	if (node->ps.instrument)
110 		InstrStartNode(node->ps.instrument);
111 
112 	if (node->parallel_state != NULL)
113 		MultiExecParallelHash(node);
114 	else
115 		MultiExecPrivateHash(node);
116 
117 	/* must provide our own instrumentation support */
118 	if (node->ps.instrument)
119 		InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
120 
121 	/*
122 	 * We do not return the hash table directly because it's not a subtype of
123 	 * Node, and so would violate the MultiExecProcNode API.  Instead, our
124 	 * parent Hashjoin node is expected to know how to fish it out of our node
125 	 * state.  Ugly but not really worth cleaning up, since Hashjoin knows
126 	 * quite a bit more about Hash besides that.
127 	 */
128 	return NULL;
129 }
130 
131 /* ----------------------------------------------------------------
132  *		MultiExecPrivateHash
133  *
134  *		parallel-oblivious version, building a backend-private
135  *		hash table and (if necessary) batch files.
136  * ----------------------------------------------------------------
137  */
138 static void
139 MultiExecPrivateHash(HashState *node)
140 {
141 	PlanState  *outerNode;
142 	List	   *hashkeys;
143 	HashJoinTable hashtable;
144 	TupleTableSlot *slot;
145 	ExprContext *econtext;
146 	uint32		hashvalue;
147 
148 	/*
149 	 * get state info from node
150 	 */
151 	outerNode = outerPlanState(node);
152 	hashtable = node->hashtable;
153 
154 	/*
155 	 * set expression context
156 	 */
157 	hashkeys = node->hashkeys;
158 	econtext = node->ps.ps_ExprContext;
159 
160 	/*
161 	 * Get all tuples from the node below the Hash node and insert into the
162 	 * hash table (or temp files).
163 	 */
164 	for (;;)
165 	{
166 		slot = ExecProcNode(outerNode);
167 		if (TupIsNull(slot))
168 			break;
169 		/* We have to compute the hash value */
170 		econtext->ecxt_outertuple = slot;
171 		if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
172 								 false, hashtable->keepNulls,
173 								 &hashvalue))
174 		{
175 			int			bucketNumber;
176 
177 			bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
178 			if (bucketNumber != INVALID_SKEW_BUCKET_NO)
179 			{
180 				/* It's a skew tuple, so put it into that hash table */
181 				ExecHashSkewTableInsert(hashtable, slot, hashvalue,
182 										bucketNumber);
183 				hashtable->skewTuples += 1;
184 			}
185 			else
186 			{
187 				/* Not subject to skew optimization, so insert normally */
188 				ExecHashTableInsert(hashtable, slot, hashvalue);
189 			}
190 			hashtable->totalTuples += 1;
191 		}
192 	}
193 
194 	/* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
195 	if (hashtable->nbuckets != hashtable->nbuckets_optimal)
196 		ExecHashIncreaseNumBuckets(hashtable);
197 
198 	/* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
199 	hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
200 	if (hashtable->spaceUsed > hashtable->spacePeak)
201 		hashtable->spacePeak = hashtable->spaceUsed;
202 
203 	hashtable->partialTuples = hashtable->totalTuples;
204 }
205 
206 /* ----------------------------------------------------------------
207  *		MultiExecParallelHash
208  *
209  *		parallel-aware version, building a shared hash table and
210  *		(if necessary) batch files using the combined effort of
211  *		a set of co-operating backends.
212  * ----------------------------------------------------------------
213  */
214 static void
215 MultiExecParallelHash(HashState *node)
216 {
217 	ParallelHashJoinState *pstate;
218 	PlanState  *outerNode;
219 	List	   *hashkeys;
220 	HashJoinTable hashtable;
221 	TupleTableSlot *slot;
222 	ExprContext *econtext;
223 	uint32		hashvalue;
224 	Barrier    *build_barrier;
225 	int			i;
226 
227 	/*
228 	 * get state info from node
229 	 */
230 	outerNode = outerPlanState(node);
231 	hashtable = node->hashtable;
232 
233 	/*
234 	 * set expression context
235 	 */
236 	hashkeys = node->hashkeys;
237 	econtext = node->ps.ps_ExprContext;
238 
239 	/*
240 	 * Synchronize the parallel hash table build.  At this stage we know that
241 	 * the shared hash table has been or is being set up by
242 	 * ExecHashTableCreate(), but we don't know if our peers have returned
243 	 * from there or are here in MultiExecParallelHash(), and if so how far
244 	 * through they are.  To find out, we check the build_barrier phase then
245 	 * and jump to the right step in the build algorithm.
246 	 */
247 	pstate = hashtable->parallel_state;
248 	build_barrier = &pstate->build_barrier;
249 	Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
250 	switch (BarrierPhase(build_barrier))
251 	{
252 		case PHJ_BUILD_ALLOCATING:
253 
254 			/*
map_uris(LV2_URID_Map * urid_map,LfoCommon * lfo_common)255 			 * Either I just allocated the initial hash table in
256 			 * ExecHashTableCreate(), or someone else is doing that.  Either
257 			 * way, wait for everyone to arrive here so we can proceed.
258 			 */
259 			BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
260 			/* Fall through. */
261 
262 		case PHJ_BUILD_HASHING_INNER:
263 
264 			/*
265 			 * It's time to begin hashing, or if we just arrived here then
266 			 * hashing is already underway, so join in that effort.  While
267 			 * hashing we have to be prepared to help increase the number of
268 			 * batches or buckets at any time, and if we arrived here when
269 			 * that was already underway we'll have to help complete that work
270 			 * immediately so that it's safe to access batches and buckets
271 			 * below.
272 			 */
273 			if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
274 				PHJ_GROW_BATCHES_ELECTING)
275 				ExecParallelHashIncreaseNumBatches(hashtable);
276 			if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
277 				PHJ_GROW_BUCKETS_ELECTING)
278 				ExecParallelHashIncreaseNumBuckets(hashtable);
279 			ExecParallelHashEnsureBatchAccessors(hashtable);
280 			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
281 			for (;;)
282 			{
283 				slot = ExecProcNode(outerNode);
284 				if (TupIsNull(slot))
285 					break;
286 				econtext->ecxt_outertuple = slot;
287 				if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
288 										 false, hashtable->keepNulls,
289 										 &hashvalue))
290 					ExecParallelHashTableInsert(hashtable, slot, hashvalue);
291 				hashtable->partialTuples++;
update_position_from_atom_obj(LfoCommon * lfo_common,const LV2_Atom_Object * obj)292 			}
293 
294 			/*
295 			 * Make sure that any tuples we wrote to disk are visible to
296 			 * others before anyone tries to load them.
297 			 */
298 			for (i = 0; i < hashtable->nbatch; ++i)
299 				sts_end_write(hashtable->batches[i].inner_tuples);
300 
301 			/*
302 			 * Update shared counters.  We need an accurate total tuple count
303 			 * to control the empty table optimization.
304 			 */
305 			ExecParallelHashMergeCounters(hashtable);
306 
307 			BarrierDetach(&pstate->grow_buckets_barrier);
308 			BarrierDetach(&pstate->grow_batches_barrier);
309 
310 			/*
311 			 * Wait for everyone to finish building and flushing files and
312 			 * counters.
313 			 */
314 			if (BarrierArriveAndWait(build_barrier,
315 									 WAIT_EVENT_HASH_BUILD_HASH_INNER))
316 			{
317 				/*
318 				 * Elect one backend to disable any further growth.  Batches
319 				 * are now fixed.  While building them we made sure they'd fit
320 				 * in our memory budget when we load them back in later (or we
321 				 * tried to do that and gave up because we detected extreme
322 				 * skew).
323 				 */
324 				pstate->growth = PHJ_GROWTH_DISABLED;
325 			}
326 	}
327 
328 	/*
329 	 * We're not yet attached to a batch.  We all agree on the dimensions and
330 	 * number of inner tuples (for the empty table optimization).
331 	 */
332 	hashtable->curbatch = -1;
333 	hashtable->nbuckets = pstate->nbuckets;
334 	hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
335 	hashtable->totalTuples = pstate->total_tuples;
336 	ExecParallelHashEnsureBatchAccessors(hashtable);
337 
338 	/*
339 	 * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
340 	 * case, which will bring the build phase to PHJ_BUILD_DONE (if it isn't
341 	 * there already).
342 	 */
343 	Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
344 		   BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
get_custom_val_at_x(const float prev_node_pos,const float prev_node_val,const float prev_node_curve,const float next_node_pos,const float next_node_val,const float next_node_curve,float x,float x_size)345 }
346 
347 /* ----------------------------------------------------------------
348  *		ExecInitHash
349  *
350  *		Init routine for Hash node
351  * ----------------------------------------------------------------
352  */
353 HashState *
354 ExecInitHash(Hash *node, EState *estate, int eflags)
355 {
356 	HashState  *hashstate;
357 
358 	/* check for unsupported flags */
359 	Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
360 
361 	/*
362 	 * create state structure
363 	 */
364 	hashstate = makeNode(HashState);
365 	hashstate->ps.plan = (Plan *) node;
366 	hashstate->ps.state = estate;
367 	hashstate->ps.ExecProcNode = ExecHash;
368 	hashstate->hashtable = NULL;
369 	hashstate->hashkeys = NIL;	/* will be set by parent HashJoin */
370 
371 	/*
372 	 * Miscellaneous initialization
373 	 *
374 	 * create expression context for node
375 	 */
376 	ExecAssignExprContext(estate, &hashstate->ps);
377 
378 	/*
379 	 * initialize child nodes
380 	 */
381 	outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
382 
383 	/*
384 	 * initialize our result slot and type. No need to build projection
385 	 * because this node doesn't do projections.
386 	 */
387 	ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
388 	hashstate->ps.ps_ProjInfo = NULL;
389 
390 	/*
391 	 * initialize child expressions
392 	 */
393 	Assert(node->plan.qual == NIL);
394 	hashstate->hashkeys =
395 		ExecInitExprList(node->hashkeys, (PlanState *) hashstate);
396 
397 	return hashstate;
398 }
399 
400 /* ---------------------------------------------------------------
401  *		ExecEndHash
402  *
403  *		clean up routine for Hash node
404  * ----------------------------------------------------------------
405  */
406 void
407 ExecEndHash(HashState *node)
408 {
409 	PlanState  *outerPlan;
410 
411 	/*
412 	 * free exprcontext
413 	 */
414 	ExecFreeExprContext(&node->ps);
415 
416 	/*
417 	 * shut down the subplan
418 	 */
419 	outerPlan = outerPlanState(node);
420 	ExecEndNode(outerPlan);
421 }
422 
423 
424 /* ----------------------------------------------------------------
425  *		ExecHashTableCreate
426  *
427  *		create an empty hashtable data structure for hashjoin.
428  * ----------------------------------------------------------------
429  */
430 HashJoinTable
431 ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
432 {
433 	Hash	   *node;
434 	HashJoinTable hashtable;
435 	Plan	   *outerNode;
436 	size_t		space_allowed;
437 	int			nbuckets;
438 	int			nbatch;
439 	double		rows;
440 	int			num_skew_mcvs;
441 	int			log2_nbuckets;
442 	int			nkeys;
443 	int			i;
444 	ListCell   *ho;
445 	ListCell   *hc;
446 	MemoryContext oldcxt;
447 
448 	/*
449 	 * Get information about the size of the relation to be hashed (it's the
450 	 * "outer" subtree of this node, but the inner relation of the hashjoin).
451 	 * Compute the appropriate size of the hash table.
452 	 */
453 	node = (Hash *) state->ps.plan;
454 	outerNode = outerPlan(node);
455 
456 	/*
457 	 * If this is shared hash table with a partial plan, then we can't use
458 	 * outerNode->plan_rows to estimate its size.  We need an estimate of the
459 	 * total number of rows across all copies of the partial plan.
460 	 */
461 	rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
462 
463 	ExecChooseHashTableSize(rows, outerNode->plan_width,
464 							OidIsValid(node->skewTable),
465 							state->parallel_state != NULL,
466 							state->parallel_state != NULL ?
467 							state->parallel_state->nparticipants - 1 : 0,
468 							&space_allowed,
469 							&nbuckets, &nbatch, &num_skew_mcvs);
470 
471 	/* nbuckets must be a power of 2 */
472 	log2_nbuckets = my_log2(nbuckets);
473 	Assert(nbuckets == (1 << log2_nbuckets));
474 
475 	/*
476 	 * Initialize the hash table control block.
477 	 *
478 	 * The hashtable control block is just palloc'd from the executor's
479 	 * per-query memory context.  Everything else should be kept inside the
480 	 * subsidiary hashCxt or batchCxt.
481 	 */
482 	hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
483 	hashtable->nbuckets = nbuckets;
484 	hashtable->nbuckets_original = nbuckets;
485 	hashtable->nbuckets_optimal = nbuckets;
486 	hashtable->log2_nbuckets = log2_nbuckets;
487 	hashtable->log2_nbuckets_optimal = log2_nbuckets;
488 	hashtable->buckets.unshared = NULL;
489 	hashtable->keepNulls = keepNulls;
490 	hashtable->skewEnabled = false;
491 	hashtable->skewBucket = NULL;
492 	hashtable->skewBucketLen = 0;
493 	hashtable->nSkewBuckets = 0;
494 	hashtable->skewBucketNums = NULL;
495 	hashtable->nbatch = nbatch;
496 	hashtable->curbatch = 0;
497 	hashtable->nbatch_original = nbatch;
498 	hashtable->nbatch_outstart = nbatch;
499 	hashtable->growEnabled = true;
500 	hashtable->totalTuples = 0;
501 	hashtable->partialTuples = 0;
502 	hashtable->skewTuples = 0;
503 	hashtable->innerBatchFile = NULL;
504 	hashtable->outerBatchFile = NULL;
505 	hashtable->spaceUsed = 0;
506 	hashtable->spacePeak = 0;
507 	hashtable->spaceAllowed = space_allowed;
508 	hashtable->spaceUsedSkew = 0;
509 	hashtable->spaceAllowedSkew =
510 		hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
511 	hashtable->chunks = NULL;
512 	hashtable->current_chunk = NULL;
513 	hashtable->parallel_state = state->parallel_state;
514 	hashtable->area = state->ps.state->es_query_dsa;
515 	hashtable->batches = NULL;
516 
517 #ifdef HJDEBUG
518 	printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
519 		   hashtable, nbatch, nbuckets);
520 #endif
521 
522 	/*
523 	 * Create temporary memory contexts in which to keep the hashtable working
524 	 * storage.  See notes in executor/hashjoin.h.
525 	 */
526 	hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
527 											   "HashTableContext",
528 											   ALLOCSET_DEFAULT_SIZES);
529 
530 	hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
531 												"HashBatchContext",
532 												ALLOCSET_DEFAULT_SIZES);
533 
534 	/* Allocate data that will live for the life of the hashjoin */
535 
536 	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
537 
538 	/*
539 	 * Get info about the hash functions to be used for each hash key. Also
540 	 * remember whether the join operators are strict.
541 	 */
542 	nkeys = list_length(hashOperators);
543 	hashtable->outer_hashfunctions =
544 		(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
545 	hashtable->inner_hashfunctions =
546 		(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
547 	hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
548 	hashtable->collations = (Oid *) palloc(nkeys * sizeof(Oid));
549 	i = 0;
550 	forboth(ho, hashOperators, hc, hashCollations)
551 	{
552 		Oid			hashop = lfirst_oid(ho);
553 		Oid			left_hashfn;
554 		Oid			right_hashfn;
555 
556 		if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
557 			elog(ERROR, "could not find hash function for hash operator %u",
558 				 hashop);
559 		fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
560 		fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
561 		hashtable->hashStrict[i] = op_strict(hashop);
562 		hashtable->collations[i] = lfirst_oid(hc);
563 		i++;
564 	}
565 
566 	if (nbatch > 1 && hashtable->parallel_state == NULL)
567 	{
568 		/*
569 		 * allocate and initialize the file arrays in hashCxt (not needed for
570 		 * parallel case which uses shared tuplestores instead of raw files)
571 		 */
572 		hashtable->innerBatchFile = (BufFile **)
573 			palloc0(nbatch * sizeof(BufFile *));
574 		hashtable->outerBatchFile = (BufFile **)
575 			palloc0(nbatch * sizeof(BufFile *));
576 		/* The files will not be opened until needed... */
577 		/* ... but make sure we have temp tablespaces established for them */
578 		PrepareTempTablespaces();
579 	}
580 
581 	MemoryContextSwitchTo(oldcxt);
582 
583 	if (hashtable->parallel_state)
584 	{
585 		ParallelHashJoinState *pstate = hashtable->parallel_state;
586 		Barrier    *build_barrier;
587 
588 		/*
589 		 * Attach to the build barrier.  The corresponding detach operation is
590 		 * in ExecHashTableDetach.  Note that we won't attach to the
591 		 * batch_barrier for batch 0 yet.  We'll attach later and start it out
592 		 * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
593 		 * and then loaded while hashing (the standard hybrid hash join
594 		 * algorithm), and we'll coordinate that using build_barrier.
595 		 */
596 		build_barrier = &pstate->build_barrier;
597 		BarrierAttach(build_barrier);
598 
599 		/*
600 		 * So far we have no idea whether there are any other participants,
601 		 * and if so, what phase they are working on.  The only thing we care
602 		 * about at this point is whether someone has already created the
603 		 * SharedHashJoinBatch objects and the hash table for batch 0.  One
604 		 * backend will be elected to do that now if necessary.
605 		 */
606 		if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
607 			BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
608 		{
609 			pstate->nbatch = nbatch;
610 			pstate->space_allowed = space_allowed;
611 			pstate->growth = PHJ_GROWTH_OK;
612 
613 			/* Set up the shared state for coordinating batches. */
614 			ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
615 
616 			/*
617 			 * Allocate batch 0's hash table up front so we can load it
618 			 * directly while hashing.
619 			 */
620 			pstate->nbuckets = nbuckets;
621 			ExecParallelHashTableAlloc(hashtable, 0);
622 		}
623 
624 		/*
625 		 * The next Parallel Hash synchronization point is in
626 		 * MultiExecParallelHash(), which will progress it all the way to
627 		 * PHJ_BUILD_DONE.  The caller must not return control from this
628 		 * executor node between now and then.
629 		 */
630 	}
631 	else
632 	{
633 		/*
634 		 * Prepare context for the first-scan space allocations; allocate the
635 		 * hashbucket array therein, and set each bucket "empty".
636 		 */
637 		MemoryContextSwitchTo(hashtable->batchCxt);
638 
639 		hashtable->buckets.unshared = (HashJoinTuple *)
640 			palloc0(nbuckets * sizeof(HashJoinTuple));
641 
642 		/*
643 		 * Set up for skew optimization, if possible and there's a need for
644 		 * more than one batch.  (In a one-batch join, there's no point in
645 		 * it.)
646 		 */
647 		if (nbatch > 1)
648 			ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
649 
650 		MemoryContextSwitchTo(oldcxt);
651 	}
652 
653 	return hashtable;
654 }
655 
656 
657 /*
658  * Compute appropriate size for hashtable given the estimated size of the
659  * relation to be hashed (number of rows and average row width).
660  *
661  * This is exported so that the planner's costsize.c can use it.
662  */
663 
664 /* Target bucket loading (tuples per bucket) */
665 #define NTUP_PER_BUCKET			1
666 
667 void
668 ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
669 						bool try_combined_hash_mem,
670 						int parallel_workers,
671 						size_t *space_allowed,
672 						int *numbuckets,
673 						int *numbatches,
674 						int *num_skew_mcvs)
675 {
676 	int			tupsize;
677 	double		inner_rel_bytes;
678 	size_t		hash_table_bytes;
679 	size_t		bucket_bytes;
680 	size_t		max_pointers;
681 	int			nbatch = 1;
682 	int			nbuckets;
683 	double		dbuckets;
684 
685 	/* Force a plausible relation size if no info */
686 	if (ntuples <= 0.0)
687 		ntuples = 1000.0;
688 
689 	/*
690 	 * Estimate tupsize based on footprint of tuple in hashtable... note this
691 	 * does not allow for any palloc overhead.  The manipulations of spaceUsed
692 	 * don't count palloc overhead either.
693 	 */
694 	tupsize = HJTUPLE_OVERHEAD +
695 		MAXALIGN(SizeofMinimalTupleHeader) +
696 		MAXALIGN(tupwidth);
697 	inner_rel_bytes = ntuples * tupsize;
698 
699 	/*
700 	 * Compute in-memory hashtable size limit from GUCs.
701 	 */
702 	hash_table_bytes = get_hash_memory_limit();
703 
704 	/*
705 	 * Parallel Hash tries to use the combined hash_mem of all workers to
706 	 * avoid the need to batch.  If that won't work, it falls back to hash_mem
707 	 * per worker and tries to process batches in parallel.
708 	 */
709 	if (try_combined_hash_mem)
710 	{
711 		/* Careful, this could overflow size_t */
712 		double		newlimit;
713 
714 		newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
715 		newlimit = Min(newlimit, (double) SIZE_MAX);
716 		hash_table_bytes = (size_t) newlimit;
717 	}
718 
719 	*space_allowed = hash_table_bytes;
720 
721 	/*
722 	 * If skew optimization is possible, estimate the number of skew buckets
723 	 * that will fit in the memory allowed, and decrement the assumed space
724 	 * available for the main hash table accordingly.
725 	 *
726 	 * We make the optimistic assumption that each skew bucket will contain
727 	 * one inner-relation tuple.  If that turns out to be low, we will recover
728 	 * at runtime by reducing the number of skew buckets.
729 	 *
730 	 * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
731 	 * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
732 	 * will round up to the next power of 2 and then multiply by 4 to reduce
733 	 * collisions.
734 	 */
735 	if (useskew)
736 	{
737 		size_t		bytes_per_mcv;
738 		size_t		skew_mcvs;
739 
740 		/*----------
741 		 * Compute number of MCVs we could hold in hash_table_bytes
742 		 *
743 		 * Divisor is:
744 		 * size of a hash tuple +
745 		 * worst-case size of skewBucket[] per MCV +
746 		 * size of skewBucketNums[] entry +
747 		 * size of skew bucket struct itself
748 		 *----------
749 		 */
750 		bytes_per_mcv = tupsize +
751 			(8 * sizeof(HashSkewBucket *)) +
752 			sizeof(int) +
753 			SKEW_BUCKET_OVERHEAD;
754 		skew_mcvs = hash_table_bytes / bytes_per_mcv;
755 
756 		/*
757 		 * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
758 		 * not to worry about size_t overflow in the multiplication)
759 		 */
760 		skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
761 
762 		/* Now clamp to integer range */
763 		skew_mcvs = Min(skew_mcvs, INT_MAX);
764 
765 		*num_skew_mcvs = (int) skew_mcvs;
766 
767 		/* Reduce hash_table_bytes by the amount needed for the skew table */
768 		if (skew_mcvs > 0)
769 			hash_table_bytes -= skew_mcvs * bytes_per_mcv;
770 	}
771 	else
772 		*num_skew_mcvs = 0;
773 
774 	/*
775 	 * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
776 	 * memory is filled, assuming a single batch; but limit the value so that
777 	 * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
778 	 * nor MaxAllocSize.
779 	 *
780 	 * Note that both nbuckets and nbatch must be powers of 2 to make
781 	 * ExecHashGetBucketAndBatch fast.
782 	 */
783 	max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
784 	max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
785 	/* If max_pointers isn't a power of 2, must round it down to one */
786 	max_pointers = pg_prevpower2_size_t(max_pointers);
787 
788 	/* Also ensure we avoid integer overflow in nbatch and nbuckets */
789 	/* (this step is redundant given the current value of MaxAllocSize) */
790 	max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
791 
792 	dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
793 	dbuckets = Min(dbuckets, max_pointers);
794 	nbuckets = (int) dbuckets;
795 	/* don't let nbuckets be really small, though ... */
796 	nbuckets = Max(nbuckets, 1024);
797 	/* ... and force it to be a power of 2. */
798 	nbuckets = pg_nextpower2_32(nbuckets);
799 
800 	/*
801 	 * If there's not enough space to store the projected number of tuples and
802 	 * the required bucket headers, we will need multiple batches.
803 	 */
804 	bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
805 	if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
806 	{
807 		/* We'll need multiple batches */
808 		size_t		sbuckets;
809 		double		dbatch;
810 		int			minbatch;
811 		size_t		bucket_size;
812 
813 		/*
814 		 * If Parallel Hash with combined hash_mem would still need multiple
815 		 * batches, we'll have to fall back to regular hash_mem budget.
816 		 */
817 		if (try_combined_hash_mem)
818 		{
819 			ExecChooseHashTableSize(ntuples, tupwidth, useskew,
820 									false, parallel_workers,
821 									space_allowed,
822 									numbuckets,
823 									numbatches,
824 									num_skew_mcvs);
825 			return;
826 		}
827 
828 		/*
829 		 * Estimate the number of buckets we'll want to have when hash_mem is
830 		 * entirely full.  Each bucket will contain a bucket pointer plus
831 		 * NTUP_PER_BUCKET tuples, whose projected size already includes
832 		 * overhead for the hash code, pointer to the next tuple, etc.
833 		 */
834 		bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
835 		sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
836 		sbuckets = Min(sbuckets, max_pointers);
837 		nbuckets = (int) sbuckets;
838 		nbuckets = pg_nextpower2_32(nbuckets);
839 		bucket_bytes = nbuckets * sizeof(HashJoinTuple);
840 
841 		/*
842 		 * Buckets are simple pointers to hashjoin tuples, while tupsize
843 		 * includes the pointer, hash code, and MinimalTupleData.  So buckets
844 		 * should never really exceed 25% of hash_mem (even for
845 		 * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
846 		 * 2^N bytes, where we might get more because of doubling. So let's
847 		 * look for 50% here.
848 		 */
849 		Assert(bucket_bytes <= hash_table_bytes / 2);
850 
851 		/* Calculate required number of batches. */
852 		dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
853 		dbatch = Min(dbatch, max_pointers);
854 		minbatch = (int) dbatch;
855 		nbatch = pg_nextpower2_32(Max(2, minbatch));
856 	}
857 
858 	Assert(nbuckets > 0);
859 	Assert(nbatch > 0);
860 
861 	*numbuckets = nbuckets;
862 	*numbatches = nbatch;
863 }
864 
865 
866 /* ----------------------------------------------------------------
867  *		ExecHashTableDestroy
868  *
869  *		destroy a hash table
870  * ----------------------------------------------------------------
871  */
872 void
873 ExecHashTableDestroy(HashJoinTable hashtable)
874 {
875 	int			i;
876 
877 	/*
878 	 * Make sure all the temp files are closed.  We skip batch 0, since it
879 	 * can't have any temp files (and the arrays might not even exist if
880 	 * nbatch is only 1).  Parallel hash joins don't use these files.
881 	 */
882 	if (hashtable->innerBatchFile != NULL)
883 	{
884 		for (i = 1; i < hashtable->nbatch; i++)
885 		{
886 			if (hashtable->innerBatchFile[i])
887 				BufFileClose(hashtable->innerBatchFile[i]);
888 			if (hashtable->outerBatchFile[i])
889 				BufFileClose(hashtable->outerBatchFile[i]);
890 		}
891 	}
892 
893 	/* Release working memory (batchCxt is a child, so it goes away too) */
894 	MemoryContextDelete(hashtable->hashCxt);
895 
896 	/* And drop the control block */
897 	pfree(hashtable);
898 }
899 
900 /*
901  * ExecHashIncreaseNumBatches
902  *		increase the original number of batches in order to reduce
903  *		current memory consumption
904  */
905 static void
906 ExecHashIncreaseNumBatches(HashJoinTable hashtable)
907 {
908 	int			oldnbatch = hashtable->nbatch;
909 	int			curbatch = hashtable->curbatch;
910 	int			nbatch;
911 	MemoryContext oldcxt;
912 	long		ninmemory;
913 	long		nfreed;
914 	HashMemoryChunk oldchunks;
915 
916 	/* do nothing if we've decided to shut off growth */
917 	if (!hashtable->growEnabled)
918 		return;
919 
920 	/* safety check to avoid overflow */
921 	if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
922 		return;
923 
924 	nbatch = oldnbatch * 2;
925 	Assert(nbatch > 1);
926 
927 #ifdef HJDEBUG
928 	printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
929 		   hashtable, nbatch, hashtable->spaceUsed);
930 #endif
931 
932 	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
933 
934 	if (hashtable->innerBatchFile == NULL)
935 	{
936 		/* we had no file arrays before */
937 		hashtable->innerBatchFile = (BufFile **)
938 			palloc0(nbatch * sizeof(BufFile *));
939 		hashtable->outerBatchFile = (BufFile **)
940 			palloc0(nbatch * sizeof(BufFile *));
941 		/* time to establish the temp tablespaces, too */
942 		PrepareTempTablespaces();
943 	}
944 	else
945 	{
946 		/* enlarge arrays and zero out added entries */
947 		hashtable->innerBatchFile = (BufFile **)
948 			repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
949 		hashtable->outerBatchFile = (BufFile **)
950 			repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
951 		MemSet(hashtable->innerBatchFile + oldnbatch, 0,
952 			   (nbatch - oldnbatch) * sizeof(BufFile *));
953 		MemSet(hashtable->outerBatchFile + oldnbatch, 0,
954 			   (nbatch - oldnbatch) * sizeof(BufFile *));
955 	}
956 
957 	MemoryContextSwitchTo(oldcxt);
958 
959 	hashtable->nbatch = nbatch;
960 
961 	/*
962 	 * Scan through the existing hash table entries and dump out any that are
963 	 * no longer of the current batch.
964 	 */
965 	ninmemory = nfreed = 0;
966 
967 	/* If know we need to resize nbuckets, we can do it while rebatching. */
968 	if (hashtable->nbuckets_optimal != hashtable->nbuckets)
969 	{
970 		/* we never decrease the number of buckets */
971 		Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
972 
973 		hashtable->nbuckets = hashtable->nbuckets_optimal;
974 		hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
975 
976 		hashtable->buckets.unshared =
977 			repalloc(hashtable->buckets.unshared,
978 					 sizeof(HashJoinTuple) * hashtable->nbuckets);
979 	}
980 
981 	/*
982 	 * We will scan through the chunks directly, so that we can reset the
983 	 * buckets now and not have to keep track which tuples in the buckets have
984 	 * already been processed. We will free the old chunks as we go.
985 	 */
986 	memset(hashtable->buckets.unshared, 0,
987 		   sizeof(HashJoinTuple) * hashtable->nbuckets);
988 	oldchunks = hashtable->chunks;
989 	hashtable->chunks = NULL;
990 
991 	/* so, let's scan through the old chunks, and all tuples in each chunk */
992 	while (oldchunks != NULL)
993 	{
994 		HashMemoryChunk nextchunk = oldchunks->next.unshared;
995 
996 		/* position within the buffer (up to oldchunks->used) */
997 		size_t		idx = 0;
998 
999 		/* process all tuples stored in this chunk (and then free it) */
1000 		while (idx < oldchunks->used)
1001 		{
1002 			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
1003 			MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1004 			int			hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
1005 			int			bucketno;
1006 			int			batchno;
1007 
1008 			ninmemory++;
1009 			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1010 									  &bucketno, &batchno);
1011 
1012 			if (batchno == curbatch)
1013 			{
1014 				/* keep tuple in memory - copy it into the new chunk */
1015 				HashJoinTuple copyTuple;
1016 
1017 				copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1018 				memcpy(copyTuple, hashTuple, hashTupleSize);
1019 
1020 				/* and add it back to the appropriate bucket */
1021 				copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1022 				hashtable->buckets.unshared[bucketno] = copyTuple;
1023 			}
1024 			else
1025 			{
1026 				/* dump it out */
1027 				Assert(batchno > curbatch);
1028 				ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
1029 									  hashTuple->hashvalue,
1030 									  &hashtable->innerBatchFile[batchno]);
1031 
1032 				hashtable->spaceUsed -= hashTupleSize;
1033 				nfreed++;
1034 			}
1035 
1036 			/* next tuple in this chunk */
1037 			idx += MAXALIGN(hashTupleSize);
1038 
1039 			/* allow this loop to be cancellable */
1040 			CHECK_FOR_INTERRUPTS();
1041 		}
1042 
1043 		/* we're done with this chunk - free it and proceed to the next one */
1044 		pfree(oldchunks);
1045 		oldchunks = nextchunk;
1046 	}
1047 
1048 #ifdef HJDEBUG
1049 	printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1050 		   hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1051 #endif
1052 
1053 	/*
1054 	 * If we dumped out either all or none of the tuples in the table, disable
1055 	 * further expansion of nbatch.  This situation implies that we have
1056 	 * enough tuples of identical hashvalues to overflow spaceAllowed.
1057 	 * Increasing nbatch will not fix it since there's no way to subdivide the
1058 	 * group any more finely. We have to just gut it out and hope the server
1059 	 * has enough RAM.
1060 	 */
1061 	if (nfreed == 0 || nfreed == ninmemory)
1062 	{
1063 		hashtable->growEnabled = false;
1064 #ifdef HJDEBUG
1065 		printf("Hashjoin %p: disabling further increase of nbatch\n",
1066 			   hashtable);
1067 #endif
1068 	}
1069 }
1070 
1071 /*
1072  * ExecParallelHashIncreaseNumBatches
1073  *		Every participant attached to grow_batches_barrier must run this
1074  *		function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1075  */
1076 static void
1077 ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
1078 {
1079 	ParallelHashJoinState *pstate = hashtable->parallel_state;
1080 	int			i;
1081 
1082 	Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1083 
1084 	/*
1085 	 * It's unlikely, but we need to be prepared for new participants to show
1086 	 * up while we're in the middle of this operation so we need to switch on
1087 	 * barrier phase here.
1088 	 */
1089 	switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
1090 	{
1091 		case PHJ_GROW_BATCHES_ELECTING:
1092 
1093 			/*
1094 			 * Elect one participant to prepare to grow the number of batches.
1095 			 * This involves reallocating or resetting the buckets of batch 0
1096 			 * in preparation for all participants to begin repartitioning the
1097 			 * tuples.
1098 			 */
1099 			if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1100 									 WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
1101 			{
1102 				dsa_pointer_atomic *buckets;
1103 				ParallelHashJoinBatch *old_batch0;
1104 				int			new_nbatch;
1105 				int			i;
1106 
1107 				/* Move the old batch out of the way. */
1108 				old_batch0 = hashtable->batches[0].shared;
1109 				pstate->old_batches = pstate->batches;
1110 				pstate->old_nbatch = hashtable->nbatch;
1111 				pstate->batches = InvalidDsaPointer;
1112 
1113 				/* Free this backend's old accessors. */
1114 				ExecParallelHashCloseBatchAccessors(hashtable);
1115 
1116 				/* Figure out how many batches to use. */
1117 				if (hashtable->nbatch == 1)
1118 				{
1119 					/*
1120 					 * We are going from single-batch to multi-batch.  We need
1121 					 * to switch from one large combined memory budget to the
1122 					 * regular hash_mem budget.
1123 					 */
1124 					pstate->space_allowed = get_hash_memory_limit();
1125 
1126 					/*
1127 					 * The combined hash_mem of all participants wasn't
1128 					 * enough. Therefore one batch per participant would be
1129 					 * approximately equivalent and would probably also be
1130 					 * insufficient.  So try two batches per participant,
1131 					 * rounded up to a power of two.
1132 					 */
1133 					new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
1134 				}
1135 				else
1136 				{
1137 					/*
1138 					 * We were already multi-batched.  Try doubling the number
1139 					 * of batches.
1140 					 */
1141 					new_nbatch = hashtable->nbatch * 2;
1142 				}
1143 
1144 				/* Allocate new larger generation of batches. */
1145 				Assert(hashtable->nbatch == pstate->nbatch);
1146 				ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1147 				Assert(hashtable->nbatch == pstate->nbatch);
1148 
1149 				/* Replace or recycle batch 0's bucket array. */
1150 				if (pstate->old_nbatch == 1)
1151 				{
1152 					double		dtuples;
1153 					double		dbuckets;
1154 					int			new_nbuckets;
1155 
1156 					/*
1157 					 * We probably also need a smaller bucket array.  How many
1158 					 * tuples do we expect per batch, assuming we have only
1159 					 * half of them so far?  Normally we don't need to change
1160 					 * the bucket array's size, because the size of each batch
1161 					 * stays the same as we add more batches, but in this
1162 					 * special case we move from a large batch to many smaller
1163 					 * batches and it would be wasteful to keep the large
1164 					 * array.
1165 					 */
1166 					dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1167 					dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1168 					dbuckets = Min(dbuckets,
1169 								   MaxAllocSize / sizeof(dsa_pointer_atomic));
1170 					new_nbuckets = (int) dbuckets;
1171 					new_nbuckets = Max(new_nbuckets, 1024);
1172 					new_nbuckets = pg_nextpower2_32(new_nbuckets);
1173 					dsa_free(hashtable->area, old_batch0->buckets);
1174 					hashtable->batches[0].shared->buckets =
1175 						dsa_allocate(hashtable->area,
1176 									 sizeof(dsa_pointer_atomic) * new_nbuckets);
1177 					buckets = (dsa_pointer_atomic *)
1178 						dsa_get_address(hashtable->area,
1179 										hashtable->batches[0].shared->buckets);
1180 					for (i = 0; i < new_nbuckets; ++i)
1181 						dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1182 					pstate->nbuckets = new_nbuckets;
1183 				}
1184 				else
1185 				{
1186 					/* Recycle the existing bucket array. */
1187 					hashtable->batches[0].shared->buckets = old_batch0->buckets;
1188 					buckets = (dsa_pointer_atomic *)
1189 						dsa_get_address(hashtable->area, old_batch0->buckets);
1190 					for (i = 0; i < hashtable->nbuckets; ++i)
1191 						dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
1192 				}
1193 
1194 				/* Move all chunks to the work queue for parallel processing. */
1195 				pstate->chunk_work_queue = old_batch0->chunks;
1196 
1197 				/* Disable further growth temporarily while we're growing. */
1198 				pstate->growth = PHJ_GROWTH_DISABLED;
1199 			}
1200 			else
1201 			{
1202 				/* All other participants just flush their tuples to disk. */
1203 				ExecParallelHashCloseBatchAccessors(hashtable);
1204 			}
1205 			/* Fall through. */
1206 
1207 		case PHJ_GROW_BATCHES_ALLOCATING:
1208 			/* Wait for the above to be finished. */
1209 			BarrierArriveAndWait(&pstate->grow_batches_barrier,
1210 								 WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATE);
1211 			/* Fall through. */
1212 
1213 		case PHJ_GROW_BATCHES_REPARTITIONING:
1214 			/* Make sure that we have the current dimensions and buckets. */
1215 			ExecParallelHashEnsureBatchAccessors(hashtable);
1216 			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1217 			/* Then partition, flush counters. */
1218 			ExecParallelHashRepartitionFirst(hashtable);
1219 			ExecParallelHashRepartitionRest(hashtable);
1220 			ExecParallelHashMergeCounters(hashtable);
1221 			/* Wait for the above to be finished. */
1222 			BarrierArriveAndWait(&pstate->grow_batches_barrier,
1223 								 WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
1224 			/* Fall through. */
1225 
1226 		case PHJ_GROW_BATCHES_DECIDING:
1227 
1228 			/*
1229 			 * Elect one participant to clean up and decide whether further
1230 			 * repartitioning is needed, or should be disabled because it's
1231 			 * not helping.
1232 			 */
1233 			if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1234 									 WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
1235 			{
1236 				bool		space_exhausted = false;
1237 				bool		extreme_skew_detected = false;
1238 
1239 				/* Make sure that we have the current dimensions and buckets. */
1240 				ExecParallelHashEnsureBatchAccessors(hashtable);
1241 				ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1242 
1243 				/* Are any of the new generation of batches exhausted? */
1244 				for (i = 0; i < hashtable->nbatch; ++i)
1245 				{
1246 					ParallelHashJoinBatch *batch = hashtable->batches[i].shared;
1247 
1248 					if (batch->space_exhausted ||
1249 						batch->estimated_size > pstate->space_allowed)
1250 					{
1251 						int			parent;
1252 
1253 						space_exhausted = true;
1254 
1255 						/*
1256 						 * Did this batch receive ALL of the tuples from its
1257 						 * parent batch?  That would indicate that further
1258 						 * repartitioning isn't going to help (the hash values
1259 						 * are probably all the same).
1260 						 */
1261 						parent = i % pstate->old_nbatch;
1262 						if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1263 							extreme_skew_detected = true;
1264 					}
1265 				}
1266 
1267 				/* Don't keep growing if it's not helping or we'd overflow. */
1268 				if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1269 					pstate->growth = PHJ_GROWTH_DISABLED;
1270 				else if (space_exhausted)
1271 					pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
1272 				else
1273 					pstate->growth = PHJ_GROWTH_OK;
1274 
1275 				/* Free the old batches in shared memory. */
1276 				dsa_free(hashtable->area, pstate->old_batches);
1277 				pstate->old_batches = InvalidDsaPointer;
1278 			}
1279 			/* Fall through. */
1280 
1281 		case PHJ_GROW_BATCHES_FINISHING:
1282 			/* Wait for the above to complete. */
1283 			BarrierArriveAndWait(&pstate->grow_batches_barrier,
1284 								 WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
1285 	}
1286 }
1287 
1288 /*
1289  * Repartition the tuples currently loaded into memory for inner batch 0
1290  * because the number of batches has been increased.  Some tuples are retained
1291  * in memory and some are written out to a later batch.
1292  */
1293 static void
1294 ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
1295 {
1296 	dsa_pointer chunk_shared;
1297 	HashMemoryChunk chunk;
1298 
1299 	Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1300 
1301 	while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1302 	{
1303 		size_t		idx = 0;
1304 
1305 		/* Repartition all tuples in this chunk. */
1306 		while (idx < chunk->used)
1307 		{
1308 			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1309 			MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1310 			HashJoinTuple copyTuple;
1311 			dsa_pointer shared;
1312 			int			bucketno;
1313 			int			batchno;
1314 
1315 			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1316 									  &bucketno, &batchno);
1317 
1318 			Assert(batchno < hashtable->nbatch);
1319 			if (batchno == 0)
1320 			{
1321 				/* It still belongs in batch 0.  Copy to a new chunk. */
1322 				copyTuple =
1323 					ExecParallelHashTupleAlloc(hashtable,
1324 											   HJTUPLE_OVERHEAD + tuple->t_len,
1325 											   &shared);
1326 				copyTuple->hashvalue = hashTuple->hashvalue;
1327 				memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1328 				ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1329 										  copyTuple, shared);
1330 			}
1331 			else
1332 			{
1333 				size_t		tuple_size =
1334 				MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1335 
1336 				/* It belongs in a later batch. */
1337 				hashtable->batches[batchno].estimated_size += tuple_size;
1338 				sts_puttuple(hashtable->batches[batchno].inner_tuples,
1339 							 &hashTuple->hashvalue, tuple);
1340 			}
1341 
1342 			/* Count this tuple. */
1343 			++hashtable->batches[0].old_ntuples;
1344 			++hashtable->batches[batchno].ntuples;
1345 
1346 			idx += MAXALIGN(HJTUPLE_OVERHEAD +
1347 							HJTUPLE_MINTUPLE(hashTuple)->t_len);
1348 		}
1349 
1350 		/* Free this chunk. */
1351 		dsa_free(hashtable->area, chunk_shared);
1352 
1353 		CHECK_FOR_INTERRUPTS();
1354 	}
1355 }
1356 
1357 /*
1358  * Help repartition inner batches 1..n.
1359  */
1360 static void
1361 ExecParallelHashRepartitionRest(HashJoinTable hashtable)
1362 {
1363 	ParallelHashJoinState *pstate = hashtable->parallel_state;
1364 	int			old_nbatch = pstate->old_nbatch;
1365 	SharedTuplestoreAccessor **old_inner_tuples;
1366 	ParallelHashJoinBatch *old_batches;
1367 	int			i;
1368 
1369 	/* Get our hands on the previous generation of batches. */
1370 	old_batches = (ParallelHashJoinBatch *)
1371 		dsa_get_address(hashtable->area, pstate->old_batches);
1372 	old_inner_tuples = palloc0(sizeof(SharedTuplestoreAccessor *) * old_nbatch);
1373 	for (i = 1; i < old_nbatch; ++i)
1374 	{
1375 		ParallelHashJoinBatch *shared =
1376 		NthParallelHashJoinBatch(old_batches, i);
1377 
1378 		old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1379 										 ParallelWorkerNumber + 1,
1380 										 &pstate->fileset);
1381 	}
1382 
1383 	/* Join in the effort to repartition them. */
1384 	for (i = 1; i < old_nbatch; ++i)
1385 	{
1386 		MinimalTuple tuple;
1387 		uint32		hashvalue;
1388 
1389 		/* Scan one partition from the previous generation. */
1390 		sts_begin_parallel_scan(old_inner_tuples[i]);
1391 		while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1392 		{
1393 			size_t		tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1394 			int			bucketno;
1395 			int			batchno;
1396 
1397 			/* Decide which partition it goes to in the new generation. */
1398 			ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1399 									  &batchno);
1400 
1401 			hashtable->batches[batchno].estimated_size += tuple_size;
1402 			++hashtable->batches[batchno].ntuples;
1403 			++hashtable->batches[i].old_ntuples;
1404 
1405 			/* Store the tuple its new batch. */
1406 			sts_puttuple(hashtable->batches[batchno].inner_tuples,
1407 						 &hashvalue, tuple);
1408 
1409 			CHECK_FOR_INTERRUPTS();
1410 		}
1411 		sts_end_parallel_scan(old_inner_tuples[i]);
1412 	}
1413 
1414 	pfree(old_inner_tuples);
1415 }
1416 
1417 /*
1418  * Transfer the backend-local per-batch counters to the shared totals.
1419  */
1420 static void
1421 ExecParallelHashMergeCounters(HashJoinTable hashtable)
1422 {
1423 	ParallelHashJoinState *pstate = hashtable->parallel_state;
1424 	int			i;
1425 
1426 	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1427 	pstate->total_tuples = 0;
1428 	for (i = 0; i < hashtable->nbatch; ++i)
1429 	{
1430 		ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1431 
1432 		batch->shared->size += batch->size;
1433 		batch->shared->estimated_size += batch->estimated_size;
1434 		batch->shared->ntuples += batch->ntuples;
1435 		batch->shared->old_ntuples += batch->old_ntuples;
1436 		batch->size = 0;
1437 		batch->estimated_size = 0;
1438 		batch->ntuples = 0;
1439 		batch->old_ntuples = 0;
1440 		pstate->total_tuples += batch->shared->ntuples;
1441 	}
1442 	LWLockRelease(&pstate->lock);
1443 }
1444 
1445 /*
1446  * ExecHashIncreaseNumBuckets
1447  *		increase the original number of buckets in order to reduce
1448  *		number of tuples per bucket
1449  */
1450 static void
1451 ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
1452 {
1453 	HashMemoryChunk chunk;
1454 
1455 	/* do nothing if not an increase (it's called increase for a reason) */
1456 	if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1457 		return;
1458 
1459 #ifdef HJDEBUG
1460 	printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1461 		   hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1462 #endif
1463 
1464 	hashtable->nbuckets = hashtable->nbuckets_optimal;
1465 	hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1466 
1467 	Assert(hashtable->nbuckets > 1);
1468 	Assert(hashtable->nbuckets <= (INT_MAX / 2));
1469 	Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1470 
1471 	/*
1472 	 * Just reallocate the proper number of buckets - we don't need to walk
1473 	 * through them - we can walk the dense-allocated chunks (just like in
1474 	 * ExecHashIncreaseNumBatches, but without all the copying into new
1475 	 * chunks)
1476 	 */
1477 	hashtable->buckets.unshared =
1478 		(HashJoinTuple *) repalloc(hashtable->buckets.unshared,
1479 								   hashtable->nbuckets * sizeof(HashJoinTuple));
1480 
1481 	memset(hashtable->buckets.unshared, 0,
1482 		   hashtable->nbuckets * sizeof(HashJoinTuple));
1483 
1484 	/* scan through all tuples in all chunks to rebuild the hash table */
1485 	for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1486 	{
1487 		/* process all tuples stored in this chunk */
1488 		size_t		idx = 0;
1489 
1490 		while (idx < chunk->used)
1491 		{
1492 			HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1493 			int			bucketno;
1494 			int			batchno;
1495 
1496 			ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1497 									  &bucketno, &batchno);
1498 
1499 			/* add the tuple to the proper bucket */
1500 			hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1501 			hashtable->buckets.unshared[bucketno] = hashTuple;
1502 
1503 			/* advance index past the tuple */
1504 			idx += MAXALIGN(HJTUPLE_OVERHEAD +
1505 							HJTUPLE_MINTUPLE(hashTuple)->t_len);
1506 		}
1507 
1508 		/* allow this loop to be cancellable */
1509 		CHECK_FOR_INTERRUPTS();
1510 	}
1511 }
1512 
1513 static void
1514 ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
1515 {
1516 	ParallelHashJoinState *pstate = hashtable->parallel_state;
1517 	int			i;
1518 	HashMemoryChunk chunk;
1519 	dsa_pointer chunk_s;
1520 
1521 	Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1522 
1523 	/*
1524 	 * It's unlikely, but we need to be prepared for new participants to show
1525 	 * up while we're in the middle of this operation so we need to switch on
1526 	 * barrier phase here.
1527 	 */
1528 	switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
1529 	{
1530 		case PHJ_GROW_BUCKETS_ELECTING:
1531 			/* Elect one participant to prepare to increase nbuckets. */
1532 			if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1533 									 WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
1534 			{
1535 				size_t		size;
1536 				dsa_pointer_atomic *buckets;
1537 
1538 				/* Double the size of the bucket array. */
1539 				pstate->nbuckets *= 2;
1540 				size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1541 				hashtable->batches[0].shared->size += size / 2;
1542 				dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1543 				hashtable->batches[0].shared->buckets =
1544 					dsa_allocate(hashtable->area, size);
1545 				buckets = (dsa_pointer_atomic *)
1546 					dsa_get_address(hashtable->area,
1547 									hashtable->batches[0].shared->buckets);
1548 				for (i = 0; i < pstate->nbuckets; ++i)
1549 					dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1550 
1551 				/* Put the chunk list onto the work queue. */
1552 				pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1553 
1554 				/* Clear the flag. */
1555 				pstate->growth = PHJ_GROWTH_OK;
1556 			}
1557 			/* Fall through. */
1558 
1559 		case PHJ_GROW_BUCKETS_ALLOCATING:
1560 			/* Wait for the above to complete. */
1561 			BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1562 								 WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATE);
1563 			/* Fall through. */
1564 
1565 		case PHJ_GROW_BUCKETS_REINSERTING:
1566 			/* Reinsert all tuples into the hash table. */
1567 			ExecParallelHashEnsureBatchAccessors(hashtable);
1568 			ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1569 			while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1570 			{
1571 				size_t		idx = 0;
1572 
1573 				while (idx < chunk->used)
1574 				{
1575 					HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1576 					dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1577 					int			bucketno;
1578 					int			batchno;
1579 
1580 					ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1581 											  &bucketno, &batchno);
1582 					Assert(batchno == 0);
1583 
1584 					/* add the tuple to the proper bucket */
1585 					ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1586 											  hashTuple, shared);
1587 
1588 					/* advance index past the tuple */
1589 					idx += MAXALIGN(HJTUPLE_OVERHEAD +
1590 									HJTUPLE_MINTUPLE(hashTuple)->t_len);
1591 				}
1592 
1593 				/* allow this loop to be cancellable */
1594 				CHECK_FOR_INTERRUPTS();
1595 			}
1596 			BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1597 								 WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
1598 	}
1599 }
1600 
1601 /*
1602  * ExecHashTableInsert
1603  *		insert a tuple into the hash table depending on the hash value
1604  *		it may just go to a temp file for later batches
1605  *
1606  * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1607  * tuple; the minimal case in particular is certain to happen while reloading
1608  * tuples from batch files.  We could save some cycles in the regular-tuple
1609  * case by not forcing the slot contents into minimal form; not clear if it's
1610  * worth the messiness required.
1611  */
1612 void
1613 ExecHashTableInsert(HashJoinTable hashtable,
1614 					TupleTableSlot *slot,
1615 					uint32 hashvalue)
1616 {
1617 	bool		shouldFree;
1618 	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1619 	int			bucketno;
1620 	int			batchno;
1621 
1622 	ExecHashGetBucketAndBatch(hashtable, hashvalue,
1623 							  &bucketno, &batchno);
1624 
1625 	/*
1626 	 * decide whether to put the tuple in the hash table or a temp file
1627 	 */
1628 	if (batchno == hashtable->curbatch)
1629 	{
1630 		/*
1631 		 * put the tuple in hash table
1632 		 */
1633 		HashJoinTuple hashTuple;
1634 		int			hashTupleSize;
1635 		double		ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1636 
1637 		/* Create the HashJoinTuple */
1638 		hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1639 		hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1640 
1641 		hashTuple->hashvalue = hashvalue;
1642 		memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1643 
1644 		/*
1645 		 * We always reset the tuple-matched flag on insertion.  This is okay
1646 		 * even when reloading a tuple from a batch file, since the tuple
1647 		 * could not possibly have been matched to an outer tuple before it
1648 		 * went into the batch file.
1649 		 */
1650 		HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1651 
1652 		/* Push it onto the front of the bucket's list */
1653 		hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1654 		hashtable->buckets.unshared[bucketno] = hashTuple;
1655 
1656 		/*
1657 		 * Increase the (optimal) number of buckets if we just exceeded the
1658 		 * NTUP_PER_BUCKET threshold, but only when there's still a single
1659 		 * batch.
1660 		 */
1661 		if (hashtable->nbatch == 1 &&
1662 			ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1663 		{
1664 			/* Guard against integer overflow and alloc size overflow */
1665 			if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1666 				hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1667 			{
1668 				hashtable->nbuckets_optimal *= 2;
1669 				hashtable->log2_nbuckets_optimal += 1;
1670 			}
1671 		}
1672 
1673 		/* Account for space used, and back off if we've used too much */
1674 		hashtable->spaceUsed += hashTupleSize;
1675 		if (hashtable->spaceUsed > hashtable->spacePeak)
1676 			hashtable->spacePeak = hashtable->spaceUsed;
1677 		if (hashtable->spaceUsed +
1678 			hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1679 			> hashtable->spaceAllowed)
1680 			ExecHashIncreaseNumBatches(hashtable);
1681 	}
1682 	else
1683 	{
1684 		/*
1685 		 * put the tuple into a temp file for later batches
1686 		 */
1687 		Assert(batchno > hashtable->curbatch);
1688 		ExecHashJoinSaveTuple(tuple,
1689 							  hashvalue,
1690 							  &hashtable->innerBatchFile[batchno]);
1691 	}
1692 
1693 	if (shouldFree)
1694 		heap_free_minimal_tuple(tuple);
1695 }
1696 
1697 /*
1698  * ExecParallelHashTableInsert
1699  *		insert a tuple into a shared hash table or shared batch tuplestore
1700  */
1701 void
1702 ExecParallelHashTableInsert(HashJoinTable hashtable,
1703 							TupleTableSlot *slot,
1704 							uint32 hashvalue)
1705 {
1706 	bool		shouldFree;
1707 	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1708 	dsa_pointer shared;
1709 	int			bucketno;
1710 	int			batchno;
1711 
1712 retry:
1713 	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1714 
1715 	if (batchno == 0)
1716 	{
1717 		HashJoinTuple hashTuple;
1718 
1719 		/* Try to load it into memory. */
1720 		Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
1721 			   PHJ_BUILD_HASHING_INNER);
1722 		hashTuple = ExecParallelHashTupleAlloc(hashtable,
1723 											   HJTUPLE_OVERHEAD + tuple->t_len,
1724 											   &shared);
1725 		if (hashTuple == NULL)
1726 			goto retry;
1727 
1728 		/* Store the hash value in the HashJoinTuple header. */
1729 		hashTuple->hashvalue = hashvalue;
1730 		memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1731 
1732 		/* Push it onto the front of the bucket's list */
1733 		ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1734 								  hashTuple, shared);
1735 	}
1736 	else
1737 	{
1738 		size_t		tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1739 
1740 		Assert(batchno > 0);
1741 
1742 		/* Try to preallocate space in the batch if necessary. */
1743 		if (hashtable->batches[batchno].preallocated < tuple_size)
1744 		{
1745 			if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1746 				goto retry;
1747 		}
1748 
1749 		Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1750 		hashtable->batches[batchno].preallocated -= tuple_size;
1751 		sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1752 					 tuple);
1753 	}
1754 	++hashtable->batches[batchno].ntuples;
1755 
1756 	if (shouldFree)
1757 		heap_free_minimal_tuple(tuple);
1758 }
1759 
1760 /*
1761  * Insert a tuple into the current hash table.  Unlike
1762  * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1763  * to other batches or to run out of memory, and should only be called with
1764  * tuples that belong in the current batch once growth has been disabled.
1765  */
1766 void
1767 ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
1768 										TupleTableSlot *slot,
1769 										uint32 hashvalue)
1770 {
1771 	bool		shouldFree;
1772 	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1773 	HashJoinTuple hashTuple;
1774 	dsa_pointer shared;
1775 	int			batchno;
1776 	int			bucketno;
1777 
1778 	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1779 	Assert(batchno == hashtable->curbatch);
1780 	hashTuple = ExecParallelHashTupleAlloc(hashtable,
1781 										   HJTUPLE_OVERHEAD + tuple->t_len,
1782 										   &shared);
1783 	hashTuple->hashvalue = hashvalue;
1784 	memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1785 	HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1786 	ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1787 							  hashTuple, shared);
1788 
1789 	if (shouldFree)
1790 		heap_free_minimal_tuple(tuple);
1791 }
1792 
1793 /*
1794  * ExecHashGetHashValue
1795  *		Compute the hash value for a tuple
1796  *
1797  * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
1798  * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
1799  * is false (meaning it's the HashJoin's inner node, Hash), econtext,
1800  * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
1801  * being suitable for tuples from the node below the Hash. Conversely, if
1802  * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
1803  * be appropriate for tuples from HashJoin's outer node.
1804  *
1805  * A true result means the tuple's hash value has been successfully computed
1806  * and stored at *hashvalue.  A false result means the tuple cannot match
1807  * because it contains a null attribute, and hence it should be discarded
1808  * immediately.  (If keep_nulls is true then false is never returned.)
1809  */
1810 bool
1811 ExecHashGetHashValue(HashJoinTable hashtable,
1812 					 ExprContext *econtext,
1813 					 List *hashkeys,
1814 					 bool outer_tuple,
1815 					 bool keep_nulls,
1816 					 uint32 *hashvalue)
1817 {
1818 	uint32		hashkey = 0;
1819 	FmgrInfo   *hashfunctions;
1820 	ListCell   *hk;
1821 	int			i = 0;
1822 	MemoryContext oldContext;
1823 
1824 	/*
1825 	 * We reset the eval context each time to reclaim any memory leaked in the
1826 	 * hashkey expressions.
1827 	 */
1828 	ResetExprContext(econtext);
1829 
1830 	oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
1831 
1832 	if (outer_tuple)
1833 		hashfunctions = hashtable->outer_hashfunctions;
1834 	else
1835 		hashfunctions = hashtable->inner_hashfunctions;
1836 
1837 	foreach(hk, hashkeys)
1838 	{
1839 		ExprState  *keyexpr = (ExprState *) lfirst(hk);
1840 		Datum		keyval;
1841 		bool		isNull;
1842 
1843 		/* rotate hashkey left 1 bit at each step */
1844 		hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
1845 
1846 		/*
1847 		 * Get the join attribute value of the tuple
1848 		 */
1849 		keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
1850 
1851 		/*
1852 		 * If the attribute is NULL, and the join operator is strict, then
1853 		 * this tuple cannot pass the join qual so we can reject it
1854 		 * immediately (unless we're scanning the outside of an outer join, in
1855 		 * which case we must not reject it).  Otherwise we act like the
1856 		 * hashcode of NULL is zero (this will support operators that act like
1857 		 * IS NOT DISTINCT, though not any more-random behavior).  We treat
1858 		 * the hash support function as strict even if the operator is not.
1859 		 *
1860 		 * Note: currently, all hashjoinable operators must be strict since
1861 		 * the hash index AM assumes that.  However, it takes so little extra
1862 		 * code here to allow non-strict that we may as well do it.
1863 		 */
1864 		if (isNull)
1865 		{
1866 			if (hashtable->hashStrict[i] && !keep_nulls)
1867 			{
1868 				MemoryContextSwitchTo(oldContext);
1869 				return false;	/* cannot match */
1870 			}
1871 			/* else, leave hashkey unmodified, equivalent to hashcode 0 */
1872 		}
1873 		else
1874 		{
1875 			/* Compute the hash function */
1876 			uint32		hkey;
1877 
1878 			hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
1879 			hashkey ^= hkey;
1880 		}
1881 
1882 		i++;
1883 	}
1884 
1885 	MemoryContextSwitchTo(oldContext);
1886 
1887 	*hashvalue = hashkey;
1888 	return true;
1889 }
1890 
1891 /*
1892  * ExecHashGetBucketAndBatch
1893  *		Determine the bucket number and batch number for a hash value
1894  *
1895  * Note: on-the-fly increases of nbatch must not change the bucket number
1896  * for a given hash code (since we don't move tuples to different hash
1897  * chains), and must only cause the batch number to remain the same or
1898  * increase.  Our algorithm is
1899  *		bucketno = hashvalue MOD nbuckets
1900  *		batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
1901  * where nbuckets and nbatch are both expected to be powers of 2, so we can
1902  * do the computations by shifting and masking.  (This assumes that all hash
1903  * functions are good about randomizing all their output bits, else we are
1904  * likely to have very skewed bucket or batch occupancy.)
1905  *
1906  * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1907  * bucket count growth.  Once we start batching, the value is fixed and does
1908  * not change over the course of the join (making it possible to compute batch
1909  * number the way we do here).
1910  *
1911  * nbatch is always a power of 2; we increase it only by doubling it.  This
1912  * effectively adds one more bit to the top of the batchno.  In very large
1913  * joins, we might run out of bits to add, so we do this by rotating the hash
1914  * value.  This causes batchno to steal bits from bucketno when the number of
1915  * virtual buckets exceeds 2^32.  It's better to have longer bucket chains
1916  * than to lose the ability to divide batches.
1917  */
1918 void
1919 ExecHashGetBucketAndBatch(HashJoinTable hashtable,
1920 						  uint32 hashvalue,
1921 						  int *bucketno,
1922 						  int *batchno)
1923 {
1924 	uint32		nbuckets = (uint32) hashtable->nbuckets;
1925 	uint32		nbatch = (uint32) hashtable->nbatch;
1926 
1927 	if (nbatch > 1)
1928 	{
1929 		*bucketno = hashvalue & (nbuckets - 1);
1930 		*batchno = pg_rotate_right32(hashvalue,
1931 									 hashtable->log2_nbuckets) & (nbatch - 1);
1932 	}
1933 	else
1934 	{
1935 		*bucketno = hashvalue & (nbuckets - 1);
1936 		*batchno = 0;
1937 	}
1938 }
1939 
1940 /*
1941  * ExecScanHashBucket
1942  *		scan a hash bucket for matches to the current outer tuple
1943  *
1944  * The current outer tuple must be stored in econtext->ecxt_outertuple.
1945  *
1946  * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1947  * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1948  * for the latter.
1949  */
1950 bool
1951 ExecScanHashBucket(HashJoinState *hjstate,
1952 				   ExprContext *econtext)
1953 {
1954 	ExprState  *hjclauses = hjstate->hashclauses;
1955 	HashJoinTable hashtable = hjstate->hj_HashTable;
1956 	HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1957 	uint32		hashvalue = hjstate->hj_CurHashValue;
1958 
1959 	/*
1960 	 * hj_CurTuple is the address of the tuple last returned from the current
1961 	 * bucket, or NULL if it's time to start scanning a new bucket.
1962 	 *
1963 	 * If the tuple hashed to a skew bucket then scan the skew bucket
1964 	 * otherwise scan the standard hashtable bucket.
1965 	 */
1966 	if (hashTuple != NULL)
1967 		hashTuple = hashTuple->next.unshared;
1968 	else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1969 		hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1970 	else
1971 		hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1972 
1973 	while (hashTuple != NULL)
1974 	{
1975 		if (hashTuple->hashvalue == hashvalue)
1976 		{
1977 			TupleTableSlot *inntuple;
1978 
1979 			/* insert hashtable's tuple into exec slot so ExecQual sees it */
1980 			inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1981 											 hjstate->hj_HashTupleSlot,
1982 											 false);	/* do not pfree */
1983 			econtext->ecxt_innertuple = inntuple;
1984 
1985 			if (ExecQualAndReset(hjclauses, econtext))
1986 			{
1987 				hjstate->hj_CurTuple = hashTuple;
1988 				return true;
1989 			}
1990 		}
1991 
1992 		hashTuple = hashTuple->next.unshared;
1993 	}
1994 
1995 	/*
1996 	 * no match
1997 	 */
1998 	return false;
1999 }
2000 
2001 /*
2002  * ExecParallelScanHashBucket
2003  *		scan a hash bucket for matches to the current outer tuple
2004  *
2005  * The current outer tuple must be stored in econtext->ecxt_outertuple.
2006  *
2007  * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2008  * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2009  * for the latter.
2010  */
2011 bool
2012 ExecParallelScanHashBucket(HashJoinState *hjstate,
2013 						   ExprContext *econtext)
2014 {
2015 	ExprState  *hjclauses = hjstate->hashclauses;
2016 	HashJoinTable hashtable = hjstate->hj_HashTable;
2017 	HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2018 	uint32		hashvalue = hjstate->hj_CurHashValue;
2019 
2020 	/*
2021 	 * hj_CurTuple is the address of the tuple last returned from the current
2022 	 * bucket, or NULL if it's time to start scanning a new bucket.
2023 	 */
2024 	if (hashTuple != NULL)
2025 		hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2026 	else
2027 		hashTuple = ExecParallelHashFirstTuple(hashtable,
2028 											   hjstate->hj_CurBucketNo);
2029 
2030 	while (hashTuple != NULL)
2031 	{
2032 		if (hashTuple->hashvalue == hashvalue)
2033 		{
2034 			TupleTableSlot *inntuple;
2035 
2036 			/* insert hashtable's tuple into exec slot so ExecQual sees it */
2037 			inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2038 											 hjstate->hj_HashTupleSlot,
2039 											 false);	/* do not pfree */
2040 			econtext->ecxt_innertuple = inntuple;
2041 
2042 			if (ExecQualAndReset(hjclauses, econtext))
2043 			{
2044 				hjstate->hj_CurTuple = hashTuple;
2045 				return true;
2046 			}
2047 		}
2048 
2049 		hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2050 	}
2051 
2052 	/*
2053 	 * no match
2054 	 */
2055 	return false;
2056 }
2057 
2058 /*
2059  * ExecPrepHashTableForUnmatched
2060  *		set up for a series of ExecScanHashTableForUnmatched calls
2061  */
2062 void
2063 ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
2064 {
2065 	/*----------
2066 	 * During this scan we use the HashJoinState fields as follows:
2067 	 *
2068 	 * hj_CurBucketNo: next regular bucket to scan
2069 	 * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
2070 	 * hj_CurTuple: last tuple returned, or NULL to start next bucket
2071 	 *----------
2072 	 */
2073 	hjstate->hj_CurBucketNo = 0;
2074 	hjstate->hj_CurSkewBucketNo = 0;
2075 	hjstate->hj_CurTuple = NULL;
2076 }
2077 
2078 /*
2079  * ExecScanHashTableForUnmatched
2080  *		scan the hash table for unmatched inner tuples
2081  *
2082  * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2083  * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2084  * for the latter.
2085  */
2086 bool
2087 ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
2088 {
2089 	HashJoinTable hashtable = hjstate->hj_HashTable;
2090 	HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2091 
2092 	for (;;)
2093 	{
2094 		/*
2095 		 * hj_CurTuple is the address of the tuple last returned from the
2096 		 * current bucket, or NULL if it's time to start scanning a new
2097 		 * bucket.
2098 		 */
2099 		if (hashTuple != NULL)
2100 			hashTuple = hashTuple->next.unshared;
2101 		else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2102 		{
2103 			hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2104 			hjstate->hj_CurBucketNo++;
2105 		}
2106 		else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2107 		{
2108 			int			j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2109 
2110 			hashTuple = hashtable->skewBucket[j]->tuples;
2111 			hjstate->hj_CurSkewBucketNo++;
2112 		}
2113 		else
2114 			break;				/* finished all buckets */
2115 
2116 		while (hashTuple != NULL)
2117 		{
2118 			if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2119 			{
2120 				TupleTableSlot *inntuple;
2121 
2122 				/* insert hashtable's tuple into exec slot */
2123 				inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2124 												 hjstate->hj_HashTupleSlot,
2125 												 false);	/* do not pfree */
2126 				econtext->ecxt_innertuple = inntuple;
2127 
2128 				/*
2129 				 * Reset temp memory each time; although this function doesn't
2130 				 * do any qual eval, the caller will, so let's keep it
2131 				 * parallel to ExecScanHashBucket.
2132 				 */
2133 				ResetExprContext(econtext);
2134 
2135 				hjstate->hj_CurTuple = hashTuple;
2136 				return true;
2137 			}
2138 
2139 			hashTuple = hashTuple->next.unshared;
2140 		}
2141 
2142 		/* allow this loop to be cancellable */
2143 		CHECK_FOR_INTERRUPTS();
2144 	}
2145 
2146 	/*
2147 	 * no more unmatched tuples
2148 	 */
2149 	return false;
2150 }
2151 
2152 /*
2153  * ExecHashTableReset
2154  *
2155  *		reset hash table header for new batch
2156  */
2157 void
2158 ExecHashTableReset(HashJoinTable hashtable)
2159 {
2160 	MemoryContext oldcxt;
2161 	int			nbuckets = hashtable->nbuckets;
2162 
2163 	/*
2164 	 * Release all the hash buckets and tuples acquired in the prior pass, and
2165 	 * reinitialize the context for a new pass.
2166 	 */
2167 	MemoryContextReset(hashtable->batchCxt);
2168 	oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2169 
2170 	/* Reallocate and reinitialize the hash bucket headers. */
2171 	hashtable->buckets.unshared = (HashJoinTuple *)
2172 		palloc0(nbuckets * sizeof(HashJoinTuple));
2173 
2174 	hashtable->spaceUsed = 0;
2175 
2176 	MemoryContextSwitchTo(oldcxt);
2177 
2178 	/* Forget the chunks (the memory was freed by the context reset above). */
2179 	hashtable->chunks = NULL;
2180 }
2181 
2182 /*
2183  * ExecHashTableResetMatchFlags
2184  *		Clear all the HeapTupleHeaderHasMatch flags in the table
2185  */
2186 void
2187 ExecHashTableResetMatchFlags(HashJoinTable hashtable)
2188 {
2189 	HashJoinTuple tuple;
2190 	int			i;
2191 
2192 	/* Reset all flags in the main table ... */
2193 	for (i = 0; i < hashtable->nbuckets; i++)
2194 	{
2195 		for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2196 			 tuple = tuple->next.unshared)
2197 			HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2198 	}
2199 
2200 	/* ... and the same for the skew buckets, if any */
2201 	for (i = 0; i < hashtable->nSkewBuckets; i++)
2202 	{
2203 		int			j = hashtable->skewBucketNums[i];
2204 		HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2205 
2206 		for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2207 			HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2208 	}
2209 }
2210 
2211 
2212 void
2213 ExecReScanHash(HashState *node)
2214 {
2215 	/*
2216 	 * if chgParam of subnode is not null then plan will be re-scanned by
2217 	 * first ExecProcNode.
2218 	 */
2219 	if (node->ps.lefttree->chgParam == NULL)
2220 		ExecReScan(node->ps.lefttree);
2221 }
2222 
2223 
2224 /*
2225  * ExecHashBuildSkewHash
2226  *
2227  *		Set up for skew optimization if we can identify the most common values
2228  *		(MCVs) of the outer relation's join key.  We make a skew hash bucket
2229  *		for the hash value of each MCV, up to the number of slots allowed
2230  *		based on available memory.
2231  */
2232 static void
2233 ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
2234 {
2235 	HeapTupleData *statsTuple;
2236 	AttStatsSlot sslot;
2237 
2238 	/* Do nothing if planner didn't identify the outer relation's join key */
2239 	if (!OidIsValid(node->skewTable))
2240 		return;
2241 	/* Also, do nothing if we don't have room for at least one skew bucket */
2242 	if (mcvsToUse <= 0)
2243 		return;
2244 
2245 	/*
2246 	 * Try to find the MCV statistics for the outer relation's join key.
2247 	 */
2248 	statsTuple = SearchSysCache3(STATRELATTINH,
2249 								 ObjectIdGetDatum(node->skewTable),
2250 								 Int16GetDatum(node->skewColumn),
2251 								 BoolGetDatum(node->skewInherit));
2252 	if (!HeapTupleIsValid(statsTuple))
2253 		return;
2254 
2255 	if (get_attstatsslot(&sslot, statsTuple,
2256 						 STATISTIC_KIND_MCV, InvalidOid,
2257 						 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
2258 	{
2259 		double		frac;
2260 		int			nbuckets;
2261 		FmgrInfo   *hashfunctions;
2262 		int			i;
2263 
2264 		if (mcvsToUse > sslot.nvalues)
2265 			mcvsToUse = sslot.nvalues;
2266 
2267 		/*
2268 		 * Calculate the expected fraction of outer relation that will
2269 		 * participate in the skew optimization.  If this isn't at least
2270 		 * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2271 		 */
2272 		frac = 0;
2273 		for (i = 0; i < mcvsToUse; i++)
2274 			frac += sslot.numbers[i];
2275 		if (frac < SKEW_MIN_OUTER_FRACTION)
2276 		{
2277 			free_attstatsslot(&sslot);
2278 			ReleaseSysCache(statsTuple);
2279 			return;
2280 		}
2281 
2282 		/*
2283 		 * Okay, set up the skew hashtable.
2284 		 *
2285 		 * skewBucket[] is an open addressing hashtable with a power of 2 size
2286 		 * that is greater than the number of MCV values.  (This ensures there
2287 		 * will be at least one null entry, so searches will always
2288 		 * terminate.)
2289 		 *
2290 		 * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2291 		 * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2292 		 * since we limit pg_statistic entries to much less than that.
2293 		 */
2294 		nbuckets = pg_nextpower2_32(mcvsToUse + 1);
2295 		/* use two more bits just to help avoid collisions */
2296 		nbuckets <<= 2;
2297 
2298 		hashtable->skewEnabled = true;
2299 		hashtable->skewBucketLen = nbuckets;
2300 
2301 		/*
2302 		 * We allocate the bucket memory in the hashtable's batch context. It
2303 		 * is only needed during the first batch, and this ensures it will be
2304 		 * automatically removed once the first batch is done.
2305 		 */
2306 		hashtable->skewBucket = (HashSkewBucket **)
2307 			MemoryContextAllocZero(hashtable->batchCxt,
2308 								   nbuckets * sizeof(HashSkewBucket *));
2309 		hashtable->skewBucketNums = (int *)
2310 			MemoryContextAllocZero(hashtable->batchCxt,
2311 								   mcvsToUse * sizeof(int));
2312 
2313 		hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2314 			+ mcvsToUse * sizeof(int);
2315 		hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2316 			+ mcvsToUse * sizeof(int);
2317 		if (hashtable->spaceUsed > hashtable->spacePeak)
2318 			hashtable->spacePeak = hashtable->spaceUsed;
2319 
2320 		/*
2321 		 * Create a skew bucket for each MCV hash value.
2322 		 *
2323 		 * Note: it is very important that we create the buckets in order of
2324 		 * decreasing MCV frequency.  If we have to remove some buckets, they
2325 		 * must be removed in reverse order of creation (see notes in
2326 		 * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2327 		 * be removed first.
2328 		 */
2329 		hashfunctions = hashtable->outer_hashfunctions;
2330 
2331 		for (i = 0; i < mcvsToUse; i++)
2332 		{
2333 			uint32		hashvalue;
2334 			int			bucket;
2335 
2336 			hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
2337 														 hashtable->collations[0],
2338 														 sslot.values[i]));
2339 
2340 			/*
2341 			 * While we have not hit a hole in the hashtable and have not hit
2342 			 * the desired bucket, we have collided with some previous hash
2343 			 * value, so try the next bucket location.  NB: this code must
2344 			 * match ExecHashGetSkewBucket.
2345 			 */
2346 			bucket = hashvalue & (nbuckets - 1);
2347 			while (hashtable->skewBucket[bucket] != NULL &&
2348 				   hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2349 				bucket = (bucket + 1) & (nbuckets - 1);
2350 
2351 			/*
2352 			 * If we found an existing bucket with the same hashvalue, leave
2353 			 * it alone.  It's okay for two MCVs to share a hashvalue.
2354 			 */
2355 			if (hashtable->skewBucket[bucket] != NULL)
2356 				continue;
2357 
2358 			/* Okay, create a new skew bucket for this hashvalue. */
2359 			hashtable->skewBucket[bucket] = (HashSkewBucket *)
2360 				MemoryContextAlloc(hashtable->batchCxt,
2361 								   sizeof(HashSkewBucket));
2362 			hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2363 			hashtable->skewBucket[bucket]->tuples = NULL;
2364 			hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2365 			hashtable->nSkewBuckets++;
2366 			hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2367 			hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2368 			if (hashtable->spaceUsed > hashtable->spacePeak)
2369 				hashtable->spacePeak = hashtable->spaceUsed;
2370 		}
2371 
2372 		free_attstatsslot(&sslot);
2373 	}
2374 
2375 	ReleaseSysCache(statsTuple);
2376 }
2377 
2378 /*
2379  * ExecHashGetSkewBucket
2380  *
2381  *		Returns the index of the skew bucket for this hashvalue,
2382  *		or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2383  *		associated with any active skew bucket.
2384  */
2385 int
2386 ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
2387 {
2388 	int			bucket;
2389 
2390 	/*
2391 	 * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2392 	 * particular, this happens after the initial batch is done).
2393 	 */
2394 	if (!hashtable->skewEnabled)
2395 		return INVALID_SKEW_BUCKET_NO;
2396 
2397 	/*
2398 	 * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2399 	 */
2400 	bucket = hashvalue & (hashtable->skewBucketLen - 1);
2401 
2402 	/*
2403 	 * While we have not hit a hole in the hashtable and have not hit the
2404 	 * desired bucket, we have collided with some other hash value, so try the
2405 	 * next bucket location.
2406 	 */
2407 	while (hashtable->skewBucket[bucket] != NULL &&
2408 		   hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2409 		bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2410 
2411 	/*
2412 	 * Found the desired bucket?
2413 	 */
2414 	if (hashtable->skewBucket[bucket] != NULL)
2415 		return bucket;
2416 
2417 	/*
2418 	 * There must not be any hashtable entry for this hash value.
2419 	 */
2420 	return INVALID_SKEW_BUCKET_NO;
2421 }
2422 
2423 /*
2424  * ExecHashSkewTableInsert
2425  *
2426  *		Insert a tuple into the skew hashtable.
2427  *
2428  * This should generally match up with the current-batch case in
2429  * ExecHashTableInsert.
2430  */
2431 static void
2432 ExecHashSkewTableInsert(HashJoinTable hashtable,
2433 						TupleTableSlot *slot,
2434 						uint32 hashvalue,
2435 						int bucketNumber)
2436 {
2437 	bool		shouldFree;
2438 	MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2439 	HashJoinTuple hashTuple;
2440 	int			hashTupleSize;
2441 
2442 	/* Create the HashJoinTuple */
2443 	hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2444 	hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2445 												   hashTupleSize);
2446 	hashTuple->hashvalue = hashvalue;
2447 	memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2448 	HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
2449 
2450 	/* Push it onto the front of the skew bucket's list */
2451 	hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2452 	hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2453 	Assert(hashTuple != hashTuple->next.unshared);
2454 
2455 	/* Account for space used, and back off if we've used too much */
2456 	hashtable->spaceUsed += hashTupleSize;
2457 	hashtable->spaceUsedSkew += hashTupleSize;
2458 	if (hashtable->spaceUsed > hashtable->spacePeak)
2459 		hashtable->spacePeak = hashtable->spaceUsed;
2460 	while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2461 		ExecHashRemoveNextSkewBucket(hashtable);
2462 
2463 	/* Check we are not over the total spaceAllowed, either */
2464 	if (hashtable->spaceUsed > hashtable->spaceAllowed)
2465 		ExecHashIncreaseNumBatches(hashtable);
2466 
2467 	if (shouldFree)
2468 		heap_free_minimal_tuple(tuple);
2469 }
2470 
2471 /*
2472  *		ExecHashRemoveNextSkewBucket
2473  *
2474  *		Remove the least valuable skew bucket by pushing its tuples into
2475  *		the main hash table.
2476  */
2477 static void
2478 ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
2479 {
2480 	int			bucketToRemove;
2481 	HashSkewBucket *bucket;
2482 	uint32		hashvalue;
2483 	int			bucketno;
2484 	int			batchno;
2485 	HashJoinTuple hashTuple;
2486 
2487 	/* Locate the bucket to remove */
2488 	bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2489 	bucket = hashtable->skewBucket[bucketToRemove];
2490 
2491 	/*
2492 	 * Calculate which bucket and batch the tuples belong to in the main
2493 	 * hashtable.  They all have the same hash value, so it's the same for all
2494 	 * of them.  Also note that it's not possible for nbatch to increase while
2495 	 * we are processing the tuples.
2496 	 */
2497 	hashvalue = bucket->hashvalue;
2498 	ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2499 
2500 	/* Process all tuples in the bucket */
2501 	hashTuple = bucket->tuples;
2502 	while (hashTuple != NULL)
2503 	{
2504 		HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2505 		MinimalTuple tuple;
2506 		Size		tupleSize;
2507 
2508 		/*
2509 		 * This code must agree with ExecHashTableInsert.  We do not use
2510 		 * ExecHashTableInsert directly as ExecHashTableInsert expects a
2511 		 * TupleTableSlot while we already have HashJoinTuples.
2512 		 */
2513 		tuple = HJTUPLE_MINTUPLE(hashTuple);
2514 		tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2515 
2516 		/* Decide whether to put the tuple in the hash table or a temp file */
2517 		if (batchno == hashtable->curbatch)
2518 		{
2519 			/* Move the tuple to the main hash table */
2520 			HashJoinTuple copyTuple;
2521 
2522 			/*
2523 			 * We must copy the tuple into the dense storage, else it will not
2524 			 * be found by, eg, ExecHashIncreaseNumBatches.
2525 			 */
2526 			copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2527 			memcpy(copyTuple, hashTuple, tupleSize);
2528 			pfree(hashTuple);
2529 
2530 			copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2531 			hashtable->buckets.unshared[bucketno] = copyTuple;
2532 
2533 			/* We have reduced skew space, but overall space doesn't change */
2534 			hashtable->spaceUsedSkew -= tupleSize;
2535 		}
2536 		else
2537 		{
2538 			/* Put the tuple into a temp file for later batches */
2539 			Assert(batchno > hashtable->curbatch);
2540 			ExecHashJoinSaveTuple(tuple, hashvalue,
2541 								  &hashtable->innerBatchFile[batchno]);
2542 			pfree(hashTuple);
2543 			hashtable->spaceUsed -= tupleSize;
2544 			hashtable->spaceUsedSkew -= tupleSize;
2545 		}
2546 
2547 		hashTuple = nextHashTuple;
2548 
2549 		/* allow this loop to be cancellable */
2550 		CHECK_FOR_INTERRUPTS();
2551 	}
2552 
2553 	/*
2554 	 * Free the bucket struct itself and reset the hashtable entry to NULL.
2555 	 *
2556 	 * NOTE: this is not nearly as simple as it looks on the surface, because
2557 	 * of the possibility of collisions in the hashtable.  Suppose that hash
2558 	 * values A and B collide at a particular hashtable entry, and that A was
2559 	 * entered first so B gets shifted to a different table entry.  If we were
2560 	 * to remove A first then ExecHashGetSkewBucket would mistakenly start
2561 	 * reporting that B is not in the hashtable, because it would hit the NULL
2562 	 * before finding B.  However, we always remove entries in the reverse
2563 	 * order of creation, so this failure cannot happen.
2564 	 */
2565 	hashtable->skewBucket[bucketToRemove] = NULL;
2566 	hashtable->nSkewBuckets--;
2567 	pfree(bucket);
2568 	hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2569 	hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2570 
2571 	/*
2572 	 * If we have removed all skew buckets then give up on skew optimization.
2573 	 * Release the arrays since they aren't useful any more.
2574 	 */
2575 	if (hashtable->nSkewBuckets == 0)
2576 	{
2577 		hashtable->skewEnabled = false;
2578 		pfree(hashtable->skewBucket);
2579 		pfree(hashtable->skewBucketNums);
2580 		hashtable->skewBucket = NULL;
2581 		hashtable->skewBucketNums = NULL;
2582 		hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2583 		hashtable->spaceUsedSkew = 0;
2584 	}
2585 }
2586 
2587 /*
2588  * Reserve space in the DSM segment for instrumentation data.
2589  */
2590 void
2591 ExecHashEstimate(HashState *node, ParallelContext *pcxt)
2592 {
2593 	size_t		size;
2594 
2595 	/* don't need this if not instrumenting or no workers */
2596 	if (!node->ps.instrument || pcxt->nworkers == 0)
2597 		return;
2598 
2599 	size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2600 	size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2601 	shm_toc_estimate_chunk(&pcxt->estimator, size);
2602 	shm_toc_estimate_keys(&pcxt->estimator, 1);
2603 }
2604 
2605 /*
2606  * Set up a space in the DSM for all workers to record instrumentation data
2607  * about their hash table.
2608  */
2609 void
2610 ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
2611 {
2612 	size_t		size;
2613 
2614 	/* don't need this if not instrumenting or no workers */
2615 	if (!node->ps.instrument || pcxt->nworkers == 0)
2616 		return;
2617 
2618 	size = offsetof(SharedHashInfo, hinstrument) +
2619 		pcxt->nworkers * sizeof(HashInstrumentation);
2620 	node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
2621 
2622 	/* Each per-worker area must start out as zeroes. */
2623 	memset(node->shared_info, 0, size);
2624 
2625 	node->shared_info->num_workers = pcxt->nworkers;
2626 	shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2627 				   node->shared_info);
2628 }
2629 
2630 /*
2631  * Locate the DSM space for hash table instrumentation data that we'll write
2632  * to at shutdown time.
2633  */
2634 void
2635 ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
2636 {
2637 	SharedHashInfo *shared_info;
2638 
2639 	/* don't need this if not instrumenting */
2640 	if (!node->ps.instrument)
2641 		return;
2642 
2643 	/*
2644 	 * Find our entry in the shared area, and set up a pointer to it so that
2645 	 * we'll accumulate stats there when shutting down or rebuilding the hash
2646 	 * table.
2647 	 */
2648 	shared_info = (SharedHashInfo *)
2649 		shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2650 	node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2651 }
2652 
2653 /*
2654  * Collect EXPLAIN stats if needed, saving them into DSM memory if
2655  * ExecHashInitializeWorker was called, or local storage if not.  In the
2656  * parallel case, this must be done in ExecShutdownHash() rather than
2657  * ExecEndHash() because the latter runs after we've detached from the DSM
2658  * segment.
2659  */
2660 void
2661 ExecShutdownHash(HashState *node)
2662 {
2663 	/* Allocate save space if EXPLAIN'ing and we didn't do so already */
2664 	if (node->ps.instrument && !node->hinstrument)
2665 		node->hinstrument = (HashInstrumentation *)
2666 			palloc0(sizeof(HashInstrumentation));
2667 	/* Now accumulate data for the current (final) hash table */
2668 	if (node->hinstrument && node->hashtable)
2669 		ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
2670 }
2671 
2672 /*
2673  * Retrieve instrumentation data from workers before the DSM segment is
2674  * detached, so that EXPLAIN can access it.
2675  */
2676 void
2677 ExecHashRetrieveInstrumentation(HashState *node)
2678 {
2679 	SharedHashInfo *shared_info = node->shared_info;
2680 	size_t		size;
2681 
2682 	if (shared_info == NULL)
2683 		return;
2684 
2685 	/* Replace node->shared_info with a copy in backend-local memory. */
2686 	size = offsetof(SharedHashInfo, hinstrument) +
2687 		shared_info->num_workers * sizeof(HashInstrumentation);
2688 	node->shared_info = palloc(size);
2689 	memcpy(node->shared_info, shared_info, size);
2690 }
2691 
2692 /*
2693  * Accumulate instrumentation data from 'hashtable' into an
2694  * initially-zeroed HashInstrumentation struct.
2695  *
2696  * This is used to merge information across successive hash table instances
2697  * within a single plan node.  We take the maximum values of each interesting
2698  * number.  The largest nbuckets and largest nbatch values might have occurred
2699  * in different instances, so there's some risk of confusion from reporting
2700  * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
2701  * issue if we don't report the largest values.  Similarly, we want to report
2702  * the largest spacePeak regardless of whether it happened in the same
2703  * instance as the largest nbuckets or nbatch.  All the instances should have
2704  * the same nbuckets_original and nbatch_original; but there's little value
2705  * in depending on that here, so handle them the same way.
2706  */
2707 void
2708 ExecHashAccumInstrumentation(HashInstrumentation *instrument,
2709 							 HashJoinTable hashtable)
2710 {
2711 	instrument->nbuckets = Max(instrument->nbuckets,
2712 							   hashtable->nbuckets);
2713 	instrument->nbuckets_original = Max(instrument->nbuckets_original,
2714 										hashtable->nbuckets_original);
2715 	instrument->nbatch = Max(instrument->nbatch,
2716 							 hashtable->nbatch);
2717 	instrument->nbatch_original = Max(instrument->nbatch_original,
2718 									  hashtable->nbatch_original);
2719 	instrument->space_peak = Max(instrument->space_peak,
2720 								 hashtable->spacePeak);
2721 }
2722 
2723 /*
2724  * Allocate 'size' bytes from the currently active HashMemoryChunk
2725  */
2726 static void *
2727 dense_alloc(HashJoinTable hashtable, Size size)
2728 {
2729 	HashMemoryChunk newChunk;
2730 	char	   *ptr;
2731 
2732 	/* just in case the size is not already aligned properly */
2733 	size = MAXALIGN(size);
2734 
2735 	/*
2736 	 * If tuple size is larger than threshold, allocate a separate chunk.
2737 	 */
2738 	if (size > HASH_CHUNK_THRESHOLD)
2739 	{
2740 		/* allocate new chunk and put it at the beginning of the list */
2741 		newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2742 														HASH_CHUNK_HEADER_SIZE + size);
2743 		newChunk->maxlen = size;
2744 		newChunk->used = size;
2745 		newChunk->ntuples = 1;
2746 
2747 		/*
2748 		 * Add this chunk to the list after the first existing chunk, so that
2749 		 * we don't lose the remaining space in the "current" chunk.
2750 		 */
2751 		if (hashtable->chunks != NULL)
2752 		{
2753 			newChunk->next = hashtable->chunks->next;
2754 			hashtable->chunks->next.unshared = newChunk;
2755 		}
2756 		else
2757 		{
2758 			newChunk->next.unshared = hashtable->chunks;
2759 			hashtable->chunks = newChunk;
2760 		}
2761 
2762 		return HASH_CHUNK_DATA(newChunk);
2763 	}
2764 
2765 	/*
2766 	 * See if we have enough space for it in the current chunk (if any). If
2767 	 * not, allocate a fresh chunk.
2768 	 */
2769 	if ((hashtable->chunks == NULL) ||
2770 		(hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2771 	{
2772 		/* allocate new chunk and put it at the beginning of the list */
2773 		newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2774 														HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
2775 
2776 		newChunk->maxlen = HASH_CHUNK_SIZE;
2777 		newChunk->used = size;
2778 		newChunk->ntuples = 1;
2779 
2780 		newChunk->next.unshared = hashtable->chunks;
2781 		hashtable->chunks = newChunk;
2782 
2783 		return HASH_CHUNK_DATA(newChunk);
2784 	}
2785 
2786 	/* There is enough space in the current chunk, let's add the tuple */
2787 	ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2788 	hashtable->chunks->used += size;
2789 	hashtable->chunks->ntuples += 1;
2790 
2791 	/* return pointer to the start of the tuple memory */
2792 	return ptr;
2793 }
2794 
2795 /*
2796  * Allocate space for a tuple in shared dense storage.  This is equivalent to
2797  * dense_alloc but for Parallel Hash using shared memory.
2798  *
2799  * While loading a tuple into shared memory, we might run out of memory and
2800  * decide to repartition, or determine that the load factor is too high and
2801  * decide to expand the bucket array, or discover that another participant has
2802  * commanded us to help do that.  Return NULL if number of buckets or batches
2803  * has changed, indicating that the caller must retry (considering the
2804  * possibility that the tuple no longer belongs in the same batch).
2805  */
2806 static HashJoinTuple
2807 ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
2808 						   dsa_pointer *shared)
2809 {
2810 	ParallelHashJoinState *pstate = hashtable->parallel_state;
2811 	dsa_pointer chunk_shared;
2812 	HashMemoryChunk chunk;
2813 	Size		chunk_size;
2814 	HashJoinTuple result;
2815 	int			curbatch = hashtable->curbatch;
2816 
2817 	size = MAXALIGN(size);
2818 
2819 	/*
2820 	 * Fast path: if there is enough space in this backend's current chunk,
2821 	 * then we can allocate without any locking.
2822 	 */
2823 	chunk = hashtable->current_chunk;
2824 	if (chunk != NULL &&
2825 		size <= HASH_CHUNK_THRESHOLD &&
2826 		chunk->maxlen - chunk->used >= size)
2827 	{
2828 
2829 		chunk_shared = hashtable->current_chunk_shared;
2830 		Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2831 		*shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2832 		result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2833 		chunk->used += size;
2834 
2835 		Assert(chunk->used <= chunk->maxlen);
2836 		Assert(result == dsa_get_address(hashtable->area, *shared));
2837 
2838 		return result;
2839 	}
2840 
2841 	/* Slow path: try to allocate a new chunk. */
2842 	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2843 
2844 	/*
2845 	 * Check if we need to help increase the number of buckets or batches.
2846 	 */
2847 	if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2848 		pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2849 	{
2850 		ParallelHashGrowth growth = pstate->growth;
2851 
2852 		hashtable->current_chunk = NULL;
2853 		LWLockRelease(&pstate->lock);
2854 
2855 		/* Another participant has commanded us to help grow. */
2856 		if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2857 			ExecParallelHashIncreaseNumBatches(hashtable);
2858 		else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2859 			ExecParallelHashIncreaseNumBuckets(hashtable);
2860 
2861 		/* The caller must retry. */
2862 		return NULL;
2863 	}
2864 
2865 	/* Oversized tuples get their own chunk. */
2866 	if (size > HASH_CHUNK_THRESHOLD)
2867 		chunk_size = size + HASH_CHUNK_HEADER_SIZE;
2868 	else
2869 		chunk_size = HASH_CHUNK_SIZE;
2870 
2871 	/* Check if it's time to grow batches or buckets. */
2872 	if (pstate->growth != PHJ_GROWTH_DISABLED)
2873 	{
2874 		Assert(curbatch == 0);
2875 		Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
2876 
2877 		/*
2878 		 * Check if our space limit would be exceeded.  To avoid choking on
2879 		 * very large tuples or very low hash_mem setting, we'll always allow
2880 		 * each backend to allocate at least one chunk.
2881 		 */
2882 		if (hashtable->batches[0].at_least_one_chunk &&
2883 			hashtable->batches[0].shared->size +
2884 			chunk_size > pstate->space_allowed)
2885 		{
2886 			pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
2887 			hashtable->batches[0].shared->space_exhausted = true;
2888 			LWLockRelease(&pstate->lock);
2889 
2890 			return NULL;
2891 		}
2892 
2893 		/* Check if our load factor limit would be exceeded. */
2894 		if (hashtable->nbatch == 1)
2895 		{
2896 			hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
2897 			hashtable->batches[0].ntuples = 0;
2898 			/* Guard against integer overflow and alloc size overflow */
2899 			if (hashtable->batches[0].shared->ntuples + 1 >
2900 				hashtable->nbuckets * NTUP_PER_BUCKET &&
2901 				hashtable->nbuckets < (INT_MAX / 2) &&
2902 				hashtable->nbuckets * 2 <=
2903 				MaxAllocSize / sizeof(dsa_pointer_atomic))
2904 			{
2905 				pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
2906 				LWLockRelease(&pstate->lock);
2907 
2908 				return NULL;
2909 			}
2910 		}
2911 	}
2912 
2913 	/* We are cleared to allocate a new chunk. */
2914 	chunk_shared = dsa_allocate(hashtable->area, chunk_size);
2915 	hashtable->batches[curbatch].shared->size += chunk_size;
2916 	hashtable->batches[curbatch].at_least_one_chunk = true;
2917 
2918 	/* Set up the chunk. */
2919 	chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
2920 	*shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
2921 	chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
2922 	chunk->used = size;
2923 
2924 	/*
2925 	 * Push it onto the list of chunks, so that it can be found if we need to
2926 	 * increase the number of buckets or batches (batch 0 only) and later for
2927 	 * freeing the memory (all batches).
2928 	 */
2929 	chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
2930 	hashtable->batches[curbatch].shared->chunks = chunk_shared;
2931 
2932 	if (size <= HASH_CHUNK_THRESHOLD)
2933 	{
2934 		/*
2935 		 * Make this the current chunk so that we can use the fast path to
2936 		 * fill the rest of it up in future calls.
2937 		 */
2938 		hashtable->current_chunk = chunk;
2939 		hashtable->current_chunk_shared = chunk_shared;
2940 	}
2941 	LWLockRelease(&pstate->lock);
2942 
2943 	Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
2944 	result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
2945 
2946 	return result;
2947 }
2948 
2949 /*
2950  * One backend needs to set up the shared batch state including tuplestores.
2951  * Other backends will ensure they have correctly configured accessors by
2952  * called ExecParallelHashEnsureBatchAccessors().
2953  */
2954 static void
2955 ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
2956 {
2957 	ParallelHashJoinState *pstate = hashtable->parallel_state;
2958 	ParallelHashJoinBatch *batches;
2959 	MemoryContext oldcxt;
2960 	int			i;
2961 
2962 	Assert(hashtable->batches == NULL);
2963 
2964 	/* Allocate space. */
2965 	pstate->batches =
2966 		dsa_allocate0(hashtable->area,
2967 					  EstimateParallelHashJoinBatch(hashtable) * nbatch);
2968 	pstate->nbatch = nbatch;
2969 	batches = dsa_get_address(hashtable->area, pstate->batches);
2970 
2971 	/* Use hash join memory context. */
2972 	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
2973 
2974 	/* Allocate this backend's accessor array. */
2975 	hashtable->nbatch = nbatch;
2976 	hashtable->batches = (ParallelHashJoinBatchAccessor *)
2977 		palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
2978 
2979 	/* Set up the shared state, tuplestores and backend-local accessors. */
2980 	for (i = 0; i < hashtable->nbatch; ++i)
2981 	{
2982 		ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
2983 		ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
2984 		char		name[MAXPGPATH];
2985 
2986 		/*
2987 		 * All members of shared were zero-initialized.  We just need to set
2988 		 * up the Barrier.
2989 		 */
2990 		BarrierInit(&shared->batch_barrier, 0);
2991 		if (i == 0)
2992 		{
2993 			/* Batch 0 doesn't need to be loaded. */
2994 			BarrierAttach(&shared->batch_barrier);
2995 			while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING)
2996 				BarrierArriveAndWait(&shared->batch_barrier, 0);
2997 			BarrierDetach(&shared->batch_barrier);
2998 		}
2999 
3000 		/* Initialize accessor state.  All members were zero-initialized. */
3001 		accessor->shared = shared;
3002 
3003 		/* Initialize the shared tuplestores. */
3004 		snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
3005 		accessor->inner_tuples =
3006 			sts_initialize(ParallelHashJoinBatchInner(shared),
3007 						   pstate->nparticipants,
3008 						   ParallelWorkerNumber + 1,
3009 						   sizeof(uint32),
3010 						   SHARED_TUPLESTORE_SINGLE_PASS,
3011 						   &pstate->fileset,
3012 						   name);
3013 		snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
3014 		accessor->outer_tuples =
3015 			sts_initialize(ParallelHashJoinBatchOuter(shared,
3016 													  pstate->nparticipants),
3017 						   pstate->nparticipants,
3018 						   ParallelWorkerNumber + 1,
3019 						   sizeof(uint32),
3020 						   SHARED_TUPLESTORE_SINGLE_PASS,
3021 						   &pstate->fileset,
3022 						   name);
3023 	}
3024 
3025 	MemoryContextSwitchTo(oldcxt);
3026 }
3027 
3028 /*
3029  * Free the current set of ParallelHashJoinBatchAccessor objects.
3030  */
3031 static void
3032 ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
3033 {
3034 	int			i;
3035 
3036 	for (i = 0; i < hashtable->nbatch; ++i)
3037 	{
3038 		/* Make sure no files are left open. */
3039 		sts_end_write(hashtable->batches[i].inner_tuples);
3040 		sts_end_write(hashtable->batches[i].outer_tuples);
3041 		sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3042 		sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3043 	}
3044 	pfree(hashtable->batches);
3045 	hashtable->batches = NULL;
3046 }
3047 
3048 /*
3049  * Make sure this backend has up-to-date accessors for the current set of
3050  * batches.
3051  */
3052 static void
3053 ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
3054 {
3055 	ParallelHashJoinState *pstate = hashtable->parallel_state;
3056 	ParallelHashJoinBatch *batches;
3057 	MemoryContext oldcxt;
3058 	int			i;
3059 
3060 	if (hashtable->batches != NULL)
3061 	{
3062 		if (hashtable->nbatch == pstate->nbatch)
3063 			return;
3064 		ExecParallelHashCloseBatchAccessors(hashtable);
3065 	}
3066 
3067 	/*
3068 	 * It's possible for a backend to start up very late so that the whole
3069 	 * join is finished and the shm state for tracking batches has already
3070 	 * been freed by ExecHashTableDetach().  In that case we'll just leave
3071 	 * hashtable->batches as NULL so that ExecParallelHashJoinNewBatch() gives
3072 	 * up early.
3073 	 */
3074 	if (!DsaPointerIsValid(pstate->batches))
3075 		return;
3076 
3077 	/* Use hash join memory context. */
3078 	oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
3079 
3080 	/* Allocate this backend's accessor array. */
3081 	hashtable->nbatch = pstate->nbatch;
3082 	hashtable->batches = (ParallelHashJoinBatchAccessor *)
3083 		palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
3084 
3085 	/* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3086 	batches = (ParallelHashJoinBatch *)
3087 		dsa_get_address(hashtable->area, pstate->batches);
3088 
3089 	/* Set up the accessor array and attach to the tuplestores. */
3090 	for (i = 0; i < hashtable->nbatch; ++i)
3091 	{
3092 		ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3093 		ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3094 
3095 		accessor->shared = shared;
3096 		accessor->preallocated = 0;
3097 		accessor->done = false;
3098 		accessor->inner_tuples =
3099 			sts_attach(ParallelHashJoinBatchInner(shared),
3100 					   ParallelWorkerNumber + 1,
3101 					   &pstate->fileset);
3102 		accessor->outer_tuples =
3103 			sts_attach(ParallelHashJoinBatchOuter(shared,
3104 												  pstate->nparticipants),
3105 					   ParallelWorkerNumber + 1,
3106 					   &pstate->fileset);
3107 	}
3108 
3109 	MemoryContextSwitchTo(oldcxt);
3110 }
3111 
3112 /*
3113  * Allocate an empty shared memory hash table for a given batch.
3114  */
3115 void
3116 ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
3117 {
3118 	ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3119 	dsa_pointer_atomic *buckets;
3120 	int			nbuckets = hashtable->parallel_state->nbuckets;
3121 	int			i;
3122 
3123 	batch->buckets =
3124 		dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3125 	buckets = (dsa_pointer_atomic *)
3126 		dsa_get_address(hashtable->area, batch->buckets);
3127 	for (i = 0; i < nbuckets; ++i)
3128 		dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
3129 }
3130 
3131 /*
3132  * If we are currently attached to a shared hash join batch, detach.  If we
3133  * are last to detach, clean up.
3134  */
3135 void
3136 ExecHashTableDetachBatch(HashJoinTable hashtable)
3137 {
3138 	if (hashtable->parallel_state != NULL &&
3139 		hashtable->curbatch >= 0)
3140 	{
3141 		int			curbatch = hashtable->curbatch;
3142 		ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3143 
3144 		/* Make sure any temporary files are closed. */
3145 		sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3146 		sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3147 
3148 		/* Detach from the batch we were last working on. */
3149 		if (BarrierArriveAndDetach(&batch->batch_barrier))
3150 		{
3151 			/*
3152 			 * Technically we shouldn't access the barrier because we're no
3153 			 * longer attached, but since there is no way it's moving after
3154 			 * this point it seems safe to make the following assertion.
3155 			 */
3156 			Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);
3157 
3158 			/* Free shared chunks and buckets. */
3159 			while (DsaPointerIsValid(batch->chunks))
3160 			{
3161 				HashMemoryChunk chunk =
3162 				dsa_get_address(hashtable->area, batch->chunks);
3163 				dsa_pointer next = chunk->next.shared;
3164 
3165 				dsa_free(hashtable->area, batch->chunks);
3166 				batch->chunks = next;
3167 			}
3168 			if (DsaPointerIsValid(batch->buckets))
3169 			{
3170 				dsa_free(hashtable->area, batch->buckets);
3171 				batch->buckets = InvalidDsaPointer;
3172 			}
3173 		}
3174 
3175 		/*
3176 		 * Track the largest batch we've been attached to.  Though each
3177 		 * backend might see a different subset of batches, explain.c will
3178 		 * scan the results from all backends to find the largest value.
3179 		 */
3180 		hashtable->spacePeak =
3181 			Max(hashtable->spacePeak,
3182 				batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3183 
3184 		/* Remember that we are not attached to a batch. */
3185 		hashtable->curbatch = -1;
3186 	}
3187 }
3188 
3189 /*
3190  * Detach from all shared resources.  If we are last to detach, clean up.
3191  */
3192 void
3193 ExecHashTableDetach(HashJoinTable hashtable)
3194 {
3195 	if (hashtable->parallel_state)
3196 	{
3197 		ParallelHashJoinState *pstate = hashtable->parallel_state;
3198 		int			i;
3199 
3200 		/* Make sure any temporary files are closed. */
3201 		if (hashtable->batches)
3202 		{
3203 			for (i = 0; i < hashtable->nbatch; ++i)
3204 			{
3205 				sts_end_write(hashtable->batches[i].inner_tuples);
3206 				sts_end_write(hashtable->batches[i].outer_tuples);
3207 				sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3208 				sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3209 			}
3210 		}
3211 
3212 		/* If we're last to detach, clean up shared memory. */
3213 		if (BarrierDetach(&pstate->build_barrier))
3214 		{
3215 			if (DsaPointerIsValid(pstate->batches))
3216 			{
3217 				dsa_free(hashtable->area, pstate->batches);
3218 				pstate->batches = InvalidDsaPointer;
3219 			}
3220 		}
3221 
3222 		hashtable->parallel_state = NULL;
3223 	}
3224 }
3225 
3226 /*
3227  * Get the first tuple in a given bucket identified by number.
3228  */
3229 static inline HashJoinTuple
3230 ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
3231 {
3232 	HashJoinTuple tuple;
3233 	dsa_pointer p;
3234 
3235 	Assert(hashtable->parallel_state);
3236 	p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3237 	tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3238 
3239 	return tuple;
3240 }
3241 
3242 /*
3243  * Get the next tuple in the same bucket as 'tuple'.
3244  */
3245 static inline HashJoinTuple
3246 ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
3247 {
3248 	HashJoinTuple next;
3249 
3250 	Assert(hashtable->parallel_state);
3251 	next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3252 
3253 	return next;
3254 }
3255 
3256 /*
3257  * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3258  */
3259 static inline void
3260 ExecParallelHashPushTuple(dsa_pointer_atomic *head,
3261 						  HashJoinTuple tuple,
3262 						  dsa_pointer tuple_shared)
3263 {
3264 	for (;;)
3265 	{
3266 		tuple->next.shared = dsa_pointer_atomic_read(head);
3267 		if (dsa_pointer_atomic_compare_exchange(head,
3268 												&tuple->next.shared,
3269 												tuple_shared))
3270 			break;
3271 	}
3272 }
3273 
3274 /*
3275  * Prepare to work on a given batch.
3276  */
3277 void
3278 ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
3279 {
3280 	Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3281 
3282 	hashtable->curbatch = batchno;
3283 	hashtable->buckets.shared = (dsa_pointer_atomic *)
3284 		dsa_get_address(hashtable->area,
3285 						hashtable->batches[batchno].shared->buckets);
3286 	hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3287 	hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3288 	hashtable->current_chunk = NULL;
3289 	hashtable->current_chunk_shared = InvalidDsaPointer;
3290 	hashtable->batches[batchno].at_least_one_chunk = false;
3291 }
3292 
3293 /*
3294  * Take the next available chunk from the queue of chunks being worked on in
3295  * parallel.  Return NULL if there are none left.  Otherwise return a pointer
3296  * to the chunk, and set *shared to the DSA pointer to the chunk.
3297  */
3298 static HashMemoryChunk
3299 ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
3300 {
3301 	ParallelHashJoinState *pstate = hashtable->parallel_state;
3302 	HashMemoryChunk chunk;
3303 
3304 	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3305 	if (DsaPointerIsValid(pstate->chunk_work_queue))
3306 	{
3307 		*shared = pstate->chunk_work_queue;
3308 		chunk = (HashMemoryChunk)
3309 			dsa_get_address(hashtable->area, *shared);
3310 		pstate->chunk_work_queue = chunk->next.shared;
3311 	}
3312 	else
3313 		chunk = NULL;
3314 	LWLockRelease(&pstate->lock);
3315 
3316 	return chunk;
3317 }
3318 
3319 /*
3320  * Increase the space preallocated in this backend for a given inner batch by
3321  * at least a given amount.  This allows us to track whether a given batch
3322  * would fit in memory when loaded back in.  Also increase the number of
3323  * batches or buckets if required.
3324  *
3325  * This maintains a running estimation of how much space will be taken when we
3326  * load the batch back into memory by simulating the way chunks will be handed
3327  * out to workers.  It's not perfectly accurate because the tuples will be
3328  * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3329  * it should be pretty close.  It tends to overestimate by a fraction of a
3330  * chunk per worker since all workers gang up to preallocate during hashing,
3331  * but workers tend to reload batches alone if there are enough to go around,
3332  * leaving fewer partially filled chunks.  This effect is bounded by
3333  * nparticipants.
3334  *
3335  * Return false if the number of batches or buckets has changed, and the
3336  * caller should reconsider which batch a given tuple now belongs in and call
3337  * again.
3338  */
3339 static bool
3340 ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3341 {
3342 	ParallelHashJoinState *pstate = hashtable->parallel_state;
3343 	ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3344 	size_t		want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
3345 
3346 	Assert(batchno > 0);
3347 	Assert(batchno < hashtable->nbatch);
3348 	Assert(size == MAXALIGN(size));
3349 
3350 	LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3351 
3352 	/* Has another participant commanded us to help grow? */
3353 	if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3354 		pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3355 	{
3356 		ParallelHashGrowth growth = pstate->growth;
3357 
3358 		LWLockRelease(&pstate->lock);
3359 		if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3360 			ExecParallelHashIncreaseNumBatches(hashtable);
3361 		else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3362 			ExecParallelHashIncreaseNumBuckets(hashtable);
3363 
3364 		return false;
3365 	}
3366 
3367 	if (pstate->growth != PHJ_GROWTH_DISABLED &&
3368 		batch->at_least_one_chunk &&
3369 		(batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
3370 		 > pstate->space_allowed))
3371 	{
3372 		/*
3373 		 * We have determined that this batch would exceed the space budget if
3374 		 * loaded into memory.  Command all participants to help repartition.
3375 		 */
3376 		batch->shared->space_exhausted = true;
3377 		pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3378 		LWLockRelease(&pstate->lock);
3379 
3380 		return false;
3381 	}
3382 
3383 	batch->at_least_one_chunk = true;
3384 	batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
3385 	batch->preallocated = want;
3386 	LWLockRelease(&pstate->lock);
3387 
3388 	return true;
3389 }
3390 
3391 /*
3392  * Calculate the limit on how much memory can be used by Hash and similar
3393  * plan types.  This is work_mem times hash_mem_multiplier, and is
3394  * expressed in bytes.
3395  *
3396  * Exported for use by the planner, as well as other hash-like executor
3397  * nodes.  This is a rather random place for this, but there is no better
3398  * place.
3399  */
3400 size_t
3401 get_hash_memory_limit(void)
3402 {
3403 	double		mem_limit;
3404 
3405 	/* Do initial calculation in double arithmetic */
3406 	mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
3407 
3408 	/* Clamp in case it doesn't fit in size_t */
3409 	mem_limit = Min(mem_limit, (double) SIZE_MAX);
3410 
3411 	return (size_t) mem_limit;
3412 }
3413 
3414 /*
3415  * Convert the hash memory limit to an integer number of kilobytes,
3416  * that is something comparable to work_mem.  Like work_mem, we clamp
3417  * the result to ensure that multiplying it by 1024 fits in a long int.
3418  *
3419  * This is deprecated since it may understate the actual memory limit.
3420  * It is unused in core and will eventually be removed.
3421  */
3422 int
3423 get_hash_mem(void)
3424 {
3425 	size_t		mem_limit = get_hash_memory_limit();
3426 
3427 	/* Remove the kilobyte factor */
3428 	mem_limit /= 1024;
3429 
3430 	/* Clamp to MAX_KILOBYTES, like work_mem */
3431 	mem_limit = Min(mem_limit, (size_t) MAX_KILOBYTES);
3432 
3433 	return (int) mem_limit;
3434 }
3435