1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTFwd.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/AttrKinds.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/NoSanitizeList.h"
38 #include "clang/Basic/OperatorKinds.h"
39 #include "clang/Basic/PartialDiagnostic.h"
40 #include "clang/Basic/ProfileList.h"
41 #include "clang/Basic/SourceLocation.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/Basic/TargetCXXABI.h"
44 #include "clang/Basic/XRayLists.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/IntrusiveRefCntPtr.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/None.h"
53 #include "llvm/ADT/Optional.h"
54 #include "llvm/ADT/PointerIntPair.h"
55 #include "llvm/ADT/PointerUnion.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringMap.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/TinyPtrVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Support/AlignOf.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/TypeSize.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <iterator>
71 #include <memory>
72 #include <string>
73 #include <type_traits>
74 #include <utility>
75 #include <vector>
76 
77 namespace llvm {
78 
79 class APFixedPoint;
80 class FixedPointSemantics;
81 struct fltSemantics;
82 template <typename T, unsigned N> class SmallPtrSet;
83 
84 } // namespace llvm
85 
86 namespace clang {
87 
88 class APValue;
89 class ASTMutationListener;
90 class ASTRecordLayout;
91 class AtomicExpr;
92 class BlockExpr;
93 class BuiltinTemplateDecl;
94 class CharUnits;
95 class ConceptDecl;
96 class CXXABI;
97 class CXXConstructorDecl;
98 class CXXMethodDecl;
99 class CXXRecordDecl;
100 class DiagnosticsEngine;
101 class ParentMapContext;
102 class DynTypedNode;
103 class DynTypedNodeList;
104 class Expr;
105 class GlobalDecl;
106 class MangleContext;
107 class MangleNumberingContext;
108 class MaterializeTemporaryExpr;
109 class MemberSpecializationInfo;
110 class Module;
111 struct MSGuidDeclParts;
112 class ObjCCategoryDecl;
113 class ObjCCategoryImplDecl;
114 class ObjCContainerDecl;
115 class ObjCImplDecl;
116 class ObjCImplementationDecl;
117 class ObjCInterfaceDecl;
118 class ObjCIvarDecl;
119 class ObjCMethodDecl;
120 class ObjCPropertyDecl;
121 class ObjCPropertyImplDecl;
122 class ObjCProtocolDecl;
123 class ObjCTypeParamDecl;
124 class OMPTraitInfo;
125 struct ParsedTargetAttr;
126 class Preprocessor;
127 class Stmt;
128 class StoredDeclsMap;
129 class TargetAttr;
130 class TargetInfo;
131 class TemplateDecl;
132 class TemplateParameterList;
133 class TemplateTemplateParmDecl;
134 class TemplateTypeParmDecl;
135 class UnresolvedSetIterator;
136 class UsingShadowDecl;
137 class VarTemplateDecl;
138 class VTableContextBase;
139 struct BlockVarCopyInit;
140 
141 namespace Builtin {
142 
143 class Context;
144 
145 } // namespace Builtin
146 
147 enum BuiltinTemplateKind : int;
148 enum OpenCLTypeKind : uint8_t;
149 
150 namespace comments {
151 
152 class FullComment;
153 
154 } // namespace comments
155 
156 namespace interp {
157 
158 class Context;
159 
160 } // namespace interp
161 
162 namespace serialization {
163 template <class> class AbstractTypeReader;
164 } // namespace serialization
165 
166 struct TypeInfo {
167   uint64_t Width = 0;
168   unsigned Align = 0;
169   bool AlignIsRequired : 1;
170 
TypeInfoTypeInfo171   TypeInfo() : AlignIsRequired(false) {}
TypeInfoTypeInfo172   TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
173       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
174 };
175 
176 struct TypeInfoChars {
177   CharUnits Width;
178   CharUnits Align;
179   bool AlignIsRequired : 1;
180 
TypeInfoCharsTypeInfoChars181   TypeInfoChars() : AlignIsRequired(false) {}
TypeInfoCharsTypeInfoChars182   TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
183       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
184 };
185 
186 /// Holds long-lived AST nodes (such as types and decls) that can be
187 /// referred to throughout the semantic analysis of a file.
188 class ASTContext : public RefCountedBase<ASTContext> {
189   friend class NestedNameSpecifier;
190 
191   mutable SmallVector<Type *, 0> Types;
192   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
193   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
194   mutable llvm::FoldingSet<PointerType> PointerTypes;
195   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
196   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
197   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
198   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
199   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
200   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
201       ConstantArrayTypes;
202   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
203   mutable std::vector<VariableArrayType*> VariableArrayTypes;
204   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
205   mutable llvm::FoldingSet<DependentSizedExtVectorType>
206     DependentSizedExtVectorTypes;
207   mutable llvm::FoldingSet<DependentAddressSpaceType>
208       DependentAddressSpaceTypes;
209   mutable llvm::FoldingSet<VectorType> VectorTypes;
210   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
211   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
212   mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
213   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
214   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
215     FunctionProtoTypes;
216   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
217   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
218   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
219   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
220   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
221     SubstTemplateTypeParmTypes;
222   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
223     SubstTemplateTypeParmPackTypes;
224   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
225     TemplateSpecializationTypes;
226   mutable llvm::FoldingSet<ParenType> ParenTypes;
227   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
228   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
229   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
230                                      ASTContext&>
231     DependentTemplateSpecializationTypes;
232   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
233   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
234   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
235   mutable llvm::FoldingSet<DependentUnaryTransformType>
236     DependentUnaryTransformTypes;
237   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
238   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
239     DeducedTemplateSpecializationTypes;
240   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
241   llvm::FoldingSet<AttributedType> AttributedTypes;
242   mutable llvm::FoldingSet<PipeType> PipeTypes;
243   mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
244   mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
245 
246   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
247   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
248   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
249     SubstTemplateTemplateParms;
250   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
251                                      ASTContext&>
252     SubstTemplateTemplateParmPacks;
253 
254   /// The set of nested name specifiers.
255   ///
256   /// This set is managed by the NestedNameSpecifier class.
257   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
258   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
259 
260   /// A cache mapping from RecordDecls to ASTRecordLayouts.
261   ///
262   /// This is lazily created.  This is intentionally not serialized.
263   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
264     ASTRecordLayouts;
265   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
266     ObjCLayouts;
267 
268   /// A cache from types to size and alignment information.
269   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
270   mutable TypeInfoMap MemoizedTypeInfo;
271 
272   /// A cache from types to unadjusted alignment information. Only ARM and
273   /// AArch64 targets need this information, keeping it separate prevents
274   /// imposing overhead on TypeInfo size.
275   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
276   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
277 
278   /// A cache mapping from CXXRecordDecls to key functions.
279   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
280 
281   /// Mapping from ObjCContainers to their ObjCImplementations.
282   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
283 
284   /// Mapping from ObjCMethod to its duplicate declaration in the same
285   /// interface.
286   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
287 
288   /// Mapping from __block VarDecls to BlockVarCopyInit.
289   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
290 
291   /// Mapping from GUIDs to the corresponding MSGuidDecl.
292   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
293 
294   /// Mapping from APValues to the corresponding TemplateParamObjects.
295   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
296 
297   /// A cache mapping a string value to a StringLiteral object with the same
298   /// value.
299   ///
300   /// This is lazily created.  This is intentionally not serialized.
301   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
302 
303   /// MD5 hash of CUID. It is calculated when first used and cached by this
304   /// data member.
305   mutable std::string CUIDHash;
306 
307   /// Representation of a "canonical" template template parameter that
308   /// is used in canonical template names.
309   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
310     TemplateTemplateParmDecl *Parm;
311 
312   public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)313     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
314         : Parm(Parm) {}
315 
getParam()316     TemplateTemplateParmDecl *getParam() const { return Parm; }
317 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C)318     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
319       Profile(ID, C, Parm);
320     }
321 
322     static void Profile(llvm::FoldingSetNodeID &ID,
323                         const ASTContext &C,
324                         TemplateTemplateParmDecl *Parm);
325   };
326   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
327                                      const ASTContext&>
328     CanonTemplateTemplateParms;
329 
330   TemplateTemplateParmDecl *
331     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
332 
333   /// The typedef for the __int128_t type.
334   mutable TypedefDecl *Int128Decl = nullptr;
335 
336   /// The typedef for the __uint128_t type.
337   mutable TypedefDecl *UInt128Decl = nullptr;
338 
339   /// The typedef for the target specific predefined
340   /// __builtin_va_list type.
341   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
342 
343   /// The typedef for the predefined \c __builtin_ms_va_list type.
344   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
345 
346   /// The typedef for the predefined \c id type.
347   mutable TypedefDecl *ObjCIdDecl = nullptr;
348 
349   /// The typedef for the predefined \c SEL type.
350   mutable TypedefDecl *ObjCSelDecl = nullptr;
351 
352   /// The typedef for the predefined \c Class type.
353   mutable TypedefDecl *ObjCClassDecl = nullptr;
354 
355   /// The typedef for the predefined \c Protocol class in Objective-C.
356   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
357 
358   /// The typedef for the predefined 'BOOL' type.
359   mutable TypedefDecl *BOOLDecl = nullptr;
360 
361   // Typedefs which may be provided defining the structure of Objective-C
362   // pseudo-builtins
363   QualType ObjCIdRedefinitionType;
364   QualType ObjCClassRedefinitionType;
365   QualType ObjCSelRedefinitionType;
366 
367   /// The identifier 'bool'.
368   mutable IdentifierInfo *BoolName = nullptr;
369 
370   /// The identifier 'NSObject'.
371   mutable IdentifierInfo *NSObjectName = nullptr;
372 
373   /// The identifier 'NSCopying'.
374   IdentifierInfo *NSCopyingName = nullptr;
375 
376   /// The identifier '__make_integer_seq'.
377   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
378 
379   /// The identifier '__type_pack_element'.
380   mutable IdentifierInfo *TypePackElementName = nullptr;
381 
382   QualType ObjCConstantStringType;
383   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
384   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
385 
386   mutable QualType ObjCSuperType;
387 
388   QualType ObjCNSStringType;
389 
390   /// The typedef declaration for the Objective-C "instancetype" type.
391   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
392 
393   /// The type for the C FILE type.
394   TypeDecl *FILEDecl = nullptr;
395 
396   /// The type for the C jmp_buf type.
397   TypeDecl *jmp_bufDecl = nullptr;
398 
399   /// The type for the C sigjmp_buf type.
400   TypeDecl *sigjmp_bufDecl = nullptr;
401 
402   /// The type for the C ucontext_t type.
403   TypeDecl *ucontext_tDecl = nullptr;
404 
405   /// Type for the Block descriptor for Blocks CodeGen.
406   ///
407   /// Since this is only used for generation of debug info, it is not
408   /// serialized.
409   mutable RecordDecl *BlockDescriptorType = nullptr;
410 
411   /// Type for the Block descriptor for Blocks CodeGen.
412   ///
413   /// Since this is only used for generation of debug info, it is not
414   /// serialized.
415   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
416 
417   /// Declaration for the CUDA cudaConfigureCall function.
418   FunctionDecl *cudaConfigureCallDecl = nullptr;
419 
420   /// Keeps track of all declaration attributes.
421   ///
422   /// Since so few decls have attrs, we keep them in a hash map instead of
423   /// wasting space in the Decl class.
424   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
425 
426   /// A mapping from non-redeclarable declarations in modules that were
427   /// merged with other declarations to the canonical declaration that they were
428   /// merged into.
429   llvm::DenseMap<Decl*, Decl*> MergedDecls;
430 
431   /// A mapping from a defining declaration to a list of modules (other
432   /// than the owning module of the declaration) that contain merged
433   /// definitions of that entity.
434   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
435 
436   /// Initializers for a module, in order. Each Decl will be either
437   /// something that has a semantic effect on startup (such as a variable with
438   /// a non-constant initializer), or an ImportDecl (which recursively triggers
439   /// initialization of another module).
440   struct PerModuleInitializers {
441     llvm::SmallVector<Decl*, 4> Initializers;
442     llvm::SmallVector<uint32_t, 4> LazyInitializers;
443 
444     void resolve(ASTContext &Ctx);
445   };
446   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
447 
this_()448   ASTContext &this_() { return *this; }
449 
450 public:
451   /// A type synonym for the TemplateOrInstantiation mapping.
452   using TemplateOrSpecializationInfo =
453       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
454 
455 private:
456   friend class ASTDeclReader;
457   friend class ASTReader;
458   friend class ASTWriter;
459   template <class> friend class serialization::AbstractTypeReader;
460   friend class CXXRecordDecl;
461 
462   /// A mapping to contain the template or declaration that
463   /// a variable declaration describes or was instantiated from,
464   /// respectively.
465   ///
466   /// For non-templates, this value will be NULL. For variable
467   /// declarations that describe a variable template, this will be a
468   /// pointer to a VarTemplateDecl. For static data members
469   /// of class template specializations, this will be the
470   /// MemberSpecializationInfo referring to the member variable that was
471   /// instantiated or specialized. Thus, the mapping will keep track of
472   /// the static data member templates from which static data members of
473   /// class template specializations were instantiated.
474   ///
475   /// Given the following example:
476   ///
477   /// \code
478   /// template<typename T>
479   /// struct X {
480   ///   static T value;
481   /// };
482   ///
483   /// template<typename T>
484   ///   T X<T>::value = T(17);
485   ///
486   /// int *x = &X<int>::value;
487   /// \endcode
488   ///
489   /// This mapping will contain an entry that maps from the VarDecl for
490   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
491   /// class template X) and will be marked TSK_ImplicitInstantiation.
492   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
493   TemplateOrInstantiation;
494 
495   /// Keeps track of the declaration from which a using declaration was
496   /// created during instantiation.
497   ///
498   /// The source and target declarations are always a UsingDecl, an
499   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
500   ///
501   /// For example:
502   /// \code
503   /// template<typename T>
504   /// struct A {
505   ///   void f();
506   /// };
507   ///
508   /// template<typename T>
509   /// struct B : A<T> {
510   ///   using A<T>::f;
511   /// };
512   ///
513   /// template struct B<int>;
514   /// \endcode
515   ///
516   /// This mapping will contain an entry that maps from the UsingDecl in
517   /// B<int> to the UnresolvedUsingDecl in B<T>.
518   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
519 
520   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
521     InstantiatedFromUsingShadowDecl;
522 
523   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
524 
525   /// Mapping that stores the methods overridden by a given C++
526   /// member function.
527   ///
528   /// Since most C++ member functions aren't virtual and therefore
529   /// don't override anything, we store the overridden functions in
530   /// this map on the side rather than within the CXXMethodDecl structure.
531   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
532   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
533 
534   /// Mapping from each declaration context to its corresponding
535   /// mangling numbering context (used for constructs like lambdas which
536   /// need to be consistently numbered for the mangler).
537   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
538       MangleNumberingContexts;
539   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
540       ExtraMangleNumberingContexts;
541 
542   /// Side-table of mangling numbers for declarations which rarely
543   /// need them (like static local vars).
544   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
545   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
546   /// Mapping the associated device lambda mangling number if present.
547   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
548       DeviceLambdaManglingNumbers;
549 
550   /// Mapping that stores parameterIndex values for ParmVarDecls when
551   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
552   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
553   ParameterIndexTable ParamIndices;
554 
555   ImportDecl *FirstLocalImport = nullptr;
556   ImportDecl *LastLocalImport = nullptr;
557 
558   TranslationUnitDecl *TUDecl;
559   mutable ExternCContextDecl *ExternCContext = nullptr;
560   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
561   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
562 
563   /// The associated SourceManager object.
564   SourceManager &SourceMgr;
565 
566   /// The language options used to create the AST associated with
567   ///  this ASTContext object.
568   LangOptions &LangOpts;
569 
570   /// NoSanitizeList object that is used by sanitizers to decide which
571   /// entities should not be instrumented.
572   std::unique_ptr<NoSanitizeList> NoSanitizeL;
573 
574   /// Function filtering mechanism to determine whether a given function
575   /// should be imbued with the XRay "always" or "never" attributes.
576   std::unique_ptr<XRayFunctionFilter> XRayFilter;
577 
578   /// ProfileList object that is used by the profile instrumentation
579   /// to decide which entities should be instrumented.
580   std::unique_ptr<ProfileList> ProfList;
581 
582   /// The allocator used to create AST objects.
583   ///
584   /// AST objects are never destructed; rather, all memory associated with the
585   /// AST objects will be released when the ASTContext itself is destroyed.
586   mutable llvm::BumpPtrAllocator BumpAlloc;
587 
588   /// Allocator for partial diagnostics.
589   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
590 
591   /// The current C++ ABI.
592   std::unique_ptr<CXXABI> ABI;
593   CXXABI *createCXXABI(const TargetInfo &T);
594 
595   /// The logical -> physical address space map.
596   const LangASMap *AddrSpaceMap = nullptr;
597 
598   /// Address space map mangling must be used with language specific
599   /// address spaces (e.g. OpenCL/CUDA)
600   bool AddrSpaceMapMangling;
601 
602   const TargetInfo *Target = nullptr;
603   const TargetInfo *AuxTarget = nullptr;
604   clang::PrintingPolicy PrintingPolicy;
605   std::unique_ptr<interp::Context> InterpContext;
606   std::unique_ptr<ParentMapContext> ParentMapCtx;
607 
608   /// Keeps track of the deallocated DeclListNodes for future reuse.
609   DeclListNode *ListNodeFreeList = nullptr;
610 
611 public:
612   IdentifierTable &Idents;
613   SelectorTable &Selectors;
614   Builtin::Context &BuiltinInfo;
615   mutable DeclarationNameTable DeclarationNames;
616   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
617   ASTMutationListener *Listener = nullptr;
618 
619   /// Returns the clang bytecode interpreter context.
620   interp::Context &getInterpContext();
621 
622   /// Returns the dynamic AST node parent map context.
623   ParentMapContext &getParentMapContext();
624 
625   // A traversal scope limits the parts of the AST visible to certain analyses.
626   // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
627   // getParents() will only observe reachable parent edges.
628   //
629   // The scope is defined by a set of "top-level" declarations.
630   // Initially, it is the entire TU: {getTranslationUnitDecl()}.
631   // Changing the scope clears the parent cache, which is expensive to rebuild.
getTraversalScope()632   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
633   void setTraversalScope(const std::vector<Decl *> &);
634 
635   /// Forwards to get node parents from the ParentMapContext. New callers should
636   /// use ParentMapContext::getParents() directly.
637   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
638 
getPrintingPolicy()639   const clang::PrintingPolicy &getPrintingPolicy() const {
640     return PrintingPolicy;
641   }
642 
setPrintingPolicy(const clang::PrintingPolicy & Policy)643   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
644     PrintingPolicy = Policy;
645   }
646 
getSourceManager()647   SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()648   const SourceManager& getSourceManager() const { return SourceMgr; }
649 
getAllocator()650   llvm::BumpPtrAllocator &getAllocator() const {
651     return BumpAlloc;
652   }
653 
654   void *Allocate(size_t Size, unsigned Align = 8) const {
655     return BumpAlloc.Allocate(Size, Align);
656   }
657   template <typename T> T *Allocate(size_t Num = 1) const {
658     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
659   }
Deallocate(void * Ptr)660   void Deallocate(void *Ptr) const {}
661 
662   /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
663   /// pool.
AllocateDeclListNode(clang::NamedDecl * ND)664   DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
665     if (DeclListNode *Alloc = ListNodeFreeList) {
666       ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
667       Alloc->D = ND;
668       Alloc->Rest = nullptr;
669       return Alloc;
670     }
671     return new (*this) DeclListNode(ND);
672   }
673   /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
674   /// pool.
DeallocateDeclListNode(DeclListNode * N)675   void DeallocateDeclListNode(DeclListNode *N) {
676     N->Rest = ListNodeFreeList;
677     ListNodeFreeList = N;
678   }
679 
680   /// Return the total amount of physical memory allocated for representing
681   /// AST nodes and type information.
getASTAllocatedMemory()682   size_t getASTAllocatedMemory() const {
683     return BumpAlloc.getTotalMemory();
684   }
685 
686   /// Return the total memory used for various side tables.
687   size_t getSideTableAllocatedMemory() const;
688 
getDiagAllocator()689   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
690     return DiagAllocator;
691   }
692 
getTargetInfo()693   const TargetInfo &getTargetInfo() const { return *Target; }
getAuxTargetInfo()694   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
695 
696   /// getIntTypeForBitwidth -
697   /// sets integer QualTy according to specified details:
698   /// bitwidth, signed/unsigned.
699   /// Returns empty type if there is no appropriate target types.
700   QualType getIntTypeForBitwidth(unsigned DestWidth,
701                                  unsigned Signed) const;
702 
703   /// getRealTypeForBitwidth -
704   /// sets floating point QualTy according to specified bitwidth.
705   /// Returns empty type if there is no appropriate target types.
706   QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
707 
708   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
709 
getLangOpts()710   const LangOptions& getLangOpts() const { return LangOpts; }
711 
712   // If this condition is false, typo correction must be performed eagerly
713   // rather than delayed in many places, as it makes use of dependent types.
714   // the condition is false for clang's C-only codepath, as it doesn't support
715   // dependent types yet.
isDependenceAllowed()716   bool isDependenceAllowed() const {
717     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
718   }
719 
getNoSanitizeList()720   const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
721 
getXRayFilter()722   const XRayFunctionFilter &getXRayFilter() const {
723     return *XRayFilter;
724   }
725 
getProfileList()726   const ProfileList &getProfileList() const { return *ProfList; }
727 
728   DiagnosticsEngine &getDiagnostics() const;
729 
getFullLoc(SourceLocation Loc)730   FullSourceLoc getFullLoc(SourceLocation Loc) const {
731     return FullSourceLoc(Loc,SourceMgr);
732   }
733 
734   /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
735   /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
736   /// the default ABI set by the target.
737   TargetCXXABI::Kind getCXXABIKind() const;
738 
739   /// All comments in this translation unit.
740   RawCommentList Comments;
741 
742   /// True if comments are already loaded from ExternalASTSource.
743   mutable bool CommentsLoaded = false;
744 
745   /// Mapping from declaration to directly attached comment.
746   ///
747   /// Raw comments are owned by Comments list.  This mapping is populated
748   /// lazily.
749   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
750 
751   /// Mapping from canonical declaration to the first redeclaration in chain
752   /// that has a comment attached.
753   ///
754   /// Raw comments are owned by Comments list.  This mapping is populated
755   /// lazily.
756   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
757 
758   /// Keeps track of redeclaration chains that don't have any comment attached.
759   /// Mapping from canonical declaration to redeclaration chain that has no
760   /// comments attached to any redeclaration. Specifically it's mapping to
761   /// the last redeclaration we've checked.
762   ///
763   /// Shall not contain declarations that have comments attached to any
764   /// redeclaration in their chain.
765   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
766 
767   /// Mapping from declarations to parsed comments attached to any
768   /// redeclaration.
769   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
770 
771   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
772   /// and removes the redeclaration chain from the set of commentless chains.
773   ///
774   /// Don't do anything if a comment has already been attached to \p OriginalD
775   /// or its redeclaration chain.
776   void cacheRawCommentForDecl(const Decl &OriginalD,
777                               const RawComment &Comment) const;
778 
779   /// \returns searches \p CommentsInFile for doc comment for \p D.
780   ///
781   /// \p RepresentativeLocForDecl is used as a location for searching doc
782   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
783   /// same file where \p RepresentativeLocForDecl is.
784   RawComment *getRawCommentForDeclNoCacheImpl(
785       const Decl *D, const SourceLocation RepresentativeLocForDecl,
786       const std::map<unsigned, RawComment *> &CommentsInFile) const;
787 
788   /// Return the documentation comment attached to a given declaration,
789   /// without looking into cache.
790   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
791 
792 public:
793   void addComment(const RawComment &RC);
794 
795   /// Return the documentation comment attached to a given declaration.
796   /// Returns nullptr if no comment is attached.
797   ///
798   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
799   /// had the comment, if the comment we found comes from a redeclaration.
800   const RawComment *
801   getRawCommentForAnyRedecl(const Decl *D,
802                             const Decl **OriginalDecl = nullptr) const;
803 
804   /// Searches existing comments for doc comments that should be attached to \p
805   /// Decls. If any doc comment is found, it is parsed.
806   ///
807   /// Requirement: All \p Decls are in the same file.
808   ///
809   /// If the last comment in the file is already attached we assume
810   /// there are not comments left to be attached to \p Decls.
811   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
812                                        const Preprocessor *PP);
813 
814   /// Return parsed documentation comment attached to a given declaration.
815   /// Returns nullptr if no comment is attached.
816   ///
817   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
818   /// preprocessor is not available.
819   comments::FullComment *getCommentForDecl(const Decl *D,
820                                            const Preprocessor *PP) const;
821 
822   /// Return parsed documentation comment attached to a given declaration.
823   /// Returns nullptr if no comment is attached. Does not look at any
824   /// redeclarations of the declaration.
825   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
826 
827   comments::FullComment *cloneFullComment(comments::FullComment *FC,
828                                          const Decl *D) const;
829 
830 private:
831   mutable comments::CommandTraits CommentCommandTraits;
832 
833   /// Iterator that visits import declarations.
834   class import_iterator {
835     ImportDecl *Import = nullptr;
836 
837   public:
838     using value_type = ImportDecl *;
839     using reference = ImportDecl *;
840     using pointer = ImportDecl *;
841     using difference_type = int;
842     using iterator_category = std::forward_iterator_tag;
843 
844     import_iterator() = default;
import_iterator(ImportDecl * Import)845     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
846 
847     reference operator*() const { return Import; }
848     pointer operator->() const { return Import; }
849 
850     import_iterator &operator++() {
851       Import = ASTContext::getNextLocalImport(Import);
852       return *this;
853     }
854 
855     import_iterator operator++(int) {
856       import_iterator Other(*this);
857       ++(*this);
858       return Other;
859     }
860 
861     friend bool operator==(import_iterator X, import_iterator Y) {
862       return X.Import == Y.Import;
863     }
864 
865     friend bool operator!=(import_iterator X, import_iterator Y) {
866       return X.Import != Y.Import;
867     }
868   };
869 
870 public:
getCommentCommandTraits()871   comments::CommandTraits &getCommentCommandTraits() const {
872     return CommentCommandTraits;
873   }
874 
875   /// Retrieve the attributes for the given declaration.
876   AttrVec& getDeclAttrs(const Decl *D);
877 
878   /// Erase the attributes corresponding to the given declaration.
879   void eraseDeclAttrs(const Decl *D);
880 
881   /// If this variable is an instantiated static data member of a
882   /// class template specialization, returns the templated static data member
883   /// from which it was instantiated.
884   // FIXME: Remove ?
885   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
886                                                            const VarDecl *Var);
887 
888   TemplateOrSpecializationInfo
889   getTemplateOrSpecializationInfo(const VarDecl *Var);
890 
891   /// Note that the static data member \p Inst is an instantiation of
892   /// the static data member template \p Tmpl of a class template.
893   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
894                                            TemplateSpecializationKind TSK,
895                         SourceLocation PointOfInstantiation = SourceLocation());
896 
897   void setTemplateOrSpecializationInfo(VarDecl *Inst,
898                                        TemplateOrSpecializationInfo TSI);
899 
900   /// If the given using decl \p Inst is an instantiation of a
901   /// (possibly unresolved) using decl from a template instantiation,
902   /// return it.
903   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
904 
905   /// Remember that the using decl \p Inst is an instantiation
906   /// of the using decl \p Pattern of a class template.
907   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
908 
909   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
910                                           UsingShadowDecl *Pattern);
911   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
912 
913   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
914 
915   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
916 
917   // Access to the set of methods overridden by the given C++ method.
918   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
919   overridden_cxx_method_iterator
920   overridden_methods_begin(const CXXMethodDecl *Method) const;
921 
922   overridden_cxx_method_iterator
923   overridden_methods_end(const CXXMethodDecl *Method) const;
924 
925   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
926 
927   using overridden_method_range =
928       llvm::iterator_range<overridden_cxx_method_iterator>;
929 
930   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
931 
932   /// Note that the given C++ \p Method overrides the given \p
933   /// Overridden method.
934   void addOverriddenMethod(const CXXMethodDecl *Method,
935                            const CXXMethodDecl *Overridden);
936 
937   /// Return C++ or ObjC overridden methods for the given \p Method.
938   ///
939   /// An ObjC method is considered to override any method in the class's
940   /// base classes, its protocols, or its categories' protocols, that has
941   /// the same selector and is of the same kind (class or instance).
942   /// A method in an implementation is not considered as overriding the same
943   /// method in the interface or its categories.
944   void getOverriddenMethods(
945                         const NamedDecl *Method,
946                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
947 
948   /// Notify the AST context that a new import declaration has been
949   /// parsed or implicitly created within this translation unit.
950   void addedLocalImportDecl(ImportDecl *Import);
951 
getNextLocalImport(ImportDecl * Import)952   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
953     return Import->getNextLocalImport();
954   }
955 
956   using import_range = llvm::iterator_range<import_iterator>;
957 
local_imports()958   import_range local_imports() const {
959     return import_range(import_iterator(FirstLocalImport), import_iterator());
960   }
961 
getPrimaryMergedDecl(Decl * D)962   Decl *getPrimaryMergedDecl(Decl *D) {
963     Decl *Result = MergedDecls.lookup(D);
964     return Result ? Result : D;
965   }
setPrimaryMergedDecl(Decl * D,Decl * Primary)966   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
967     MergedDecls[D] = Primary;
968   }
969 
970   /// Note that the definition \p ND has been merged into module \p M,
971   /// and should be visible whenever \p M is visible.
972   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
973                                  bool NotifyListeners = true);
974 
975   /// Clean up the merged definition list. Call this if you might have
976   /// added duplicates into the list.
977   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
978 
979   /// Get the additional modules in which the definition \p Def has
980   /// been merged.
981   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
982 
983   /// Add a declaration to the list of declarations that are initialized
984   /// for a module. This will typically be a global variable (with internal
985   /// linkage) that runs module initializers, such as the iostream initializer,
986   /// or an ImportDecl nominating another module that has initializers.
987   void addModuleInitializer(Module *M, Decl *Init);
988 
989   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
990 
991   /// Get the initializations to perform when importing a module, if any.
992   ArrayRef<Decl*> getModuleInitializers(Module *M);
993 
getTranslationUnitDecl()994   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
995 
996   ExternCContextDecl *getExternCContextDecl() const;
997   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
998   BuiltinTemplateDecl *getTypePackElementDecl() const;
999 
1000   // Builtin Types.
1001   CanQualType VoidTy;
1002   CanQualType BoolTy;
1003   CanQualType CharTy;
1004   CanQualType WCharTy;  // [C++ 3.9.1p5].
1005   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1006   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
1007   CanQualType Char8Ty;  // [C++20 proposal]
1008   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1009   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1010   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1011   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1012   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1013   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
1014   CanQualType ShortAccumTy, AccumTy,
1015       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1016   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1017   CanQualType ShortFractTy, FractTy, LongFractTy;
1018   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1019   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1020   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1021       SatUnsignedLongAccumTy;
1022   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1023   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1024       SatUnsignedLongFractTy;
1025   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1026   CanQualType BFloat16Ty;
1027   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1028   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1029   CanQualType Float128ComplexTy;
1030   CanQualType VoidPtrTy, NullPtrTy;
1031   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1032   CanQualType BuiltinFnTy;
1033   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1034   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1035   CanQualType ObjCBuiltinBoolTy;
1036 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1037   CanQualType SingletonId;
1038 #include "clang/Basic/OpenCLImageTypes.def"
1039   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1040   CanQualType OCLQueueTy, OCLReserveIDTy;
1041   CanQualType IncompleteMatrixIdxTy;
1042   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1043 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1044   CanQualType Id##Ty;
1045 #include "clang/Basic/OpenCLExtensionTypes.def"
1046 #define SVE_TYPE(Name, Id, SingletonId) \
1047   CanQualType SingletonId;
1048 #include "clang/Basic/AArch64SVEACLETypes.def"
1049 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1050   CanQualType Id##Ty;
1051 #include "clang/Basic/PPCTypes.def"
1052 #define RVV_TYPE(Name, Id, SingletonId) \
1053   CanQualType SingletonId;
1054 #include "clang/Basic/RISCVVTypes.def"
1055 
1056   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1057   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1058   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1059 
1060   // Decl used to help define __builtin_va_list for some targets.
1061   // The decl is built when constructing 'BuiltinVaListDecl'.
1062   mutable Decl *VaListTagDecl = nullptr;
1063 
1064   // Implicitly-declared type 'struct _GUID'.
1065   mutable TagDecl *MSGuidTagDecl = nullptr;
1066 
1067   /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1068   llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1069 
1070   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1071              SelectorTable &sels, Builtin::Context &builtins);
1072   ASTContext(const ASTContext &) = delete;
1073   ASTContext &operator=(const ASTContext &) = delete;
1074   ~ASTContext();
1075 
1076   /// Attach an external AST source to the AST context.
1077   ///
1078   /// The external AST source provides the ability to load parts of
1079   /// the abstract syntax tree as needed from some external storage,
1080   /// e.g., a precompiled header.
1081   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1082 
1083   /// Retrieve a pointer to the external AST source associated
1084   /// with this AST context, if any.
getExternalSource()1085   ExternalASTSource *getExternalSource() const {
1086     return ExternalSource.get();
1087   }
1088 
1089   /// Attach an AST mutation listener to the AST context.
1090   ///
1091   /// The AST mutation listener provides the ability to track modifications to
1092   /// the abstract syntax tree entities committed after they were initially
1093   /// created.
setASTMutationListener(ASTMutationListener * Listener)1094   void setASTMutationListener(ASTMutationListener *Listener) {
1095     this->Listener = Listener;
1096   }
1097 
1098   /// Retrieve a pointer to the AST mutation listener associated
1099   /// with this AST context, if any.
getASTMutationListener()1100   ASTMutationListener *getASTMutationListener() const { return Listener; }
1101 
1102   void PrintStats() const;
getTypes()1103   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1104 
1105   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1106                                                 const IdentifierInfo *II) const;
1107 
1108   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1109   /// declaration.
1110   RecordDecl *buildImplicitRecord(StringRef Name,
1111                                   RecordDecl::TagKind TK = TTK_Struct) const;
1112 
1113   /// Create a new implicit TU-level typedef declaration.
1114   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1115 
1116   /// Retrieve the declaration for the 128-bit signed integer type.
1117   TypedefDecl *getInt128Decl() const;
1118 
1119   /// Retrieve the declaration for the 128-bit unsigned integer type.
1120   TypedefDecl *getUInt128Decl() const;
1121 
1122   //===--------------------------------------------------------------------===//
1123   //                           Type Constructors
1124   //===--------------------------------------------------------------------===//
1125 
1126 private:
1127   /// Return a type with extended qualifiers.
1128   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1129 
1130   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1131 
1132   QualType getPipeType(QualType T, bool ReadOnly) const;
1133 
1134 public:
1135   /// Return the uniqued reference to the type for an address space
1136   /// qualified type with the specified type and address space.
1137   ///
1138   /// The resulting type has a union of the qualifiers from T and the address
1139   /// space. If T already has an address space specifier, it is silently
1140   /// replaced.
1141   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1142 
1143   /// Remove any existing address space on the type and returns the type
1144   /// with qualifiers intact (or that's the idea anyway)
1145   ///
1146   /// The return type should be T with all prior qualifiers minus the address
1147   /// space.
1148   QualType removeAddrSpaceQualType(QualType T) const;
1149 
1150   /// Apply Objective-C protocol qualifiers to the given type.
1151   /// \param allowOnPointerType specifies if we can apply protocol
1152   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1153   /// constructing the canonical type of a Objective-C type parameter.
1154   QualType applyObjCProtocolQualifiers(QualType type,
1155       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1156       bool allowOnPointerType = false) const;
1157 
1158   /// Return the uniqued reference to the type for an Objective-C
1159   /// gc-qualified type.
1160   ///
1161   /// The resulting type has a union of the qualifiers from T and the gc
1162   /// attribute.
1163   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1164 
1165   /// Remove the existing address space on the type if it is a pointer size
1166   /// address space and return the type with qualifiers intact.
1167   QualType removePtrSizeAddrSpace(QualType T) const;
1168 
1169   /// Return the uniqued reference to the type for a \c restrict
1170   /// qualified type.
1171   ///
1172   /// The resulting type has a union of the qualifiers from \p T and
1173   /// \c restrict.
getRestrictType(QualType T)1174   QualType getRestrictType(QualType T) const {
1175     return T.withFastQualifiers(Qualifiers::Restrict);
1176   }
1177 
1178   /// Return the uniqued reference to the type for a \c volatile
1179   /// qualified type.
1180   ///
1181   /// The resulting type has a union of the qualifiers from \p T and
1182   /// \c volatile.
getVolatileType(QualType T)1183   QualType getVolatileType(QualType T) const {
1184     return T.withFastQualifiers(Qualifiers::Volatile);
1185   }
1186 
1187   /// Return the uniqued reference to the type for a \c const
1188   /// qualified type.
1189   ///
1190   /// The resulting type has a union of the qualifiers from \p T and \c const.
1191   ///
1192   /// It can be reasonably expected that this will always be equivalent to
1193   /// calling T.withConst().
getConstType(QualType T)1194   QualType getConstType(QualType T) const { return T.withConst(); }
1195 
1196   /// Change the ExtInfo on a function type.
1197   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1198                                          FunctionType::ExtInfo EInfo);
1199 
1200   /// Adjust the given function result type.
1201   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1202 
1203   /// Change the result type of a function type once it is deduced.
1204   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1205 
1206   /// Get a function type and produce the equivalent function type with the
1207   /// specified exception specification. Type sugar that can be present on a
1208   /// declaration of a function with an exception specification is permitted
1209   /// and preserved. Other type sugar (for instance, typedefs) is not.
1210   QualType getFunctionTypeWithExceptionSpec(
1211       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1212 
1213   /// Determine whether two function types are the same, ignoring
1214   /// exception specifications in cases where they're part of the type.
1215   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1216 
1217   /// Change the exception specification on a function once it is
1218   /// delay-parsed, instantiated, or computed.
1219   void adjustExceptionSpec(FunctionDecl *FD,
1220                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1221                            bool AsWritten = false);
1222 
1223   /// Get a function type and produce the equivalent function type where
1224   /// pointer size address spaces in the return type and parameter tyeps are
1225   /// replaced with the default address space.
1226   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1227 
1228   /// Determine whether two function types are the same, ignoring pointer sizes
1229   /// in the return type and parameter types.
1230   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1231 
1232   /// Return the uniqued reference to the type for a complex
1233   /// number with the specified element type.
1234   QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)1235   CanQualType getComplexType(CanQualType T) const {
1236     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1237   }
1238 
1239   /// Return the uniqued reference to the type for a pointer to
1240   /// the specified type.
1241   QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)1242   CanQualType getPointerType(CanQualType T) const {
1243     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1244   }
1245 
1246   /// Return the uniqued reference to a type adjusted from the original
1247   /// type to a new type.
1248   QualType getAdjustedType(QualType Orig, QualType New) const;
getAdjustedType(CanQualType Orig,CanQualType New)1249   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1250     return CanQualType::CreateUnsafe(
1251         getAdjustedType((QualType)Orig, (QualType)New));
1252   }
1253 
1254   /// Return the uniqued reference to the decayed version of the given
1255   /// type.  Can only be called on array and function types which decay to
1256   /// pointer types.
1257   QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)1258   CanQualType getDecayedType(CanQualType T) const {
1259     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1260   }
1261 
1262   /// Return the uniqued reference to the atomic type for the specified
1263   /// type.
1264   QualType getAtomicType(QualType T) const;
1265 
1266   /// Return the uniqued reference to the type for a block of the
1267   /// specified type.
1268   QualType getBlockPointerType(QualType T) const;
1269 
1270   /// Gets the struct used to keep track of the descriptor for pointer to
1271   /// blocks.
1272   QualType getBlockDescriptorType() const;
1273 
1274   /// Return a read_only pipe type for the specified type.
1275   QualType getReadPipeType(QualType T) const;
1276 
1277   /// Return a write_only pipe type for the specified type.
1278   QualType getWritePipeType(QualType T) const;
1279 
1280   /// Return an extended integer type with the specified signedness and bit
1281   /// count.
1282   QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1283 
1284   /// Return a dependent extended integer type with the specified signedness and
1285   /// bit count.
1286   QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1287 
1288   /// Gets the struct used to keep track of the extended descriptor for
1289   /// pointer to blocks.
1290   QualType getBlockDescriptorExtendedType() const;
1291 
1292   /// Map an AST Type to an OpenCLTypeKind enum value.
1293   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1294 
1295   /// Get address space for OpenCL type.
1296   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1297 
setcudaConfigureCallDecl(FunctionDecl * FD)1298   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1299     cudaConfigureCallDecl = FD;
1300   }
1301 
getcudaConfigureCallDecl()1302   FunctionDecl *getcudaConfigureCallDecl() {
1303     return cudaConfigureCallDecl;
1304   }
1305 
1306   /// Returns true iff we need copy/dispose helpers for the given type.
1307   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1308 
1309   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1310   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1311   /// byref variable has extended lifetime.
1312   bool getByrefLifetime(QualType Ty,
1313                         Qualifiers::ObjCLifetime &Lifetime,
1314                         bool &HasByrefExtendedLayout) const;
1315 
1316   /// Return the uniqued reference to the type for an lvalue reference
1317   /// to the specified type.
1318   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1319     const;
1320 
1321   /// Return the uniqued reference to the type for an rvalue reference
1322   /// to the specified type.
1323   QualType getRValueReferenceType(QualType T) const;
1324 
1325   /// Return the uniqued reference to the type for a member pointer to
1326   /// the specified type in the specified class.
1327   ///
1328   /// The class \p Cls is a \c Type because it could be a dependent name.
1329   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1330 
1331   /// Return a non-unique reference to the type for a variable array of
1332   /// the specified element type.
1333   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1334                                 ArrayType::ArraySizeModifier ASM,
1335                                 unsigned IndexTypeQuals,
1336                                 SourceRange Brackets) const;
1337 
1338   /// Return a non-unique reference to the type for a dependently-sized
1339   /// array of the specified element type.
1340   ///
1341   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1342   /// point.
1343   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1344                                       ArrayType::ArraySizeModifier ASM,
1345                                       unsigned IndexTypeQuals,
1346                                       SourceRange Brackets) const;
1347 
1348   /// Return a unique reference to the type for an incomplete array of
1349   /// the specified element type.
1350   QualType getIncompleteArrayType(QualType EltTy,
1351                                   ArrayType::ArraySizeModifier ASM,
1352                                   unsigned IndexTypeQuals) const;
1353 
1354   /// Return the unique reference to the type for a constant array of
1355   /// the specified element type.
1356   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1357                                 const Expr *SizeExpr,
1358                                 ArrayType::ArraySizeModifier ASM,
1359                                 unsigned IndexTypeQuals) const;
1360 
1361   /// Return a type for a constant array for a string literal of the
1362   /// specified element type and length.
1363   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1364 
1365   /// Returns a vla type where known sizes are replaced with [*].
1366   QualType getVariableArrayDecayedType(QualType Ty) const;
1367 
1368   // Convenience struct to return information about a builtin vector type.
1369   struct BuiltinVectorTypeInfo {
1370     QualType ElementType;
1371     llvm::ElementCount EC;
1372     unsigned NumVectors;
BuiltinVectorTypeInfoBuiltinVectorTypeInfo1373     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1374                           unsigned NumVectors)
1375         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1376   };
1377 
1378   /// Returns the element type, element count and number of vectors
1379   /// (in case of tuple) for a builtin vector type.
1380   BuiltinVectorTypeInfo
1381   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1382 
1383   /// Return the unique reference to a scalable vector type of the specified
1384   /// element type and scalable number of elements.
1385   ///
1386   /// \pre \p EltTy must be a built-in type.
1387   QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1388 
1389   /// Return the unique reference to a vector type of the specified
1390   /// element type and size.
1391   ///
1392   /// \pre \p VectorType must be a built-in type.
1393   QualType getVectorType(QualType VectorType, unsigned NumElts,
1394                          VectorType::VectorKind VecKind) const;
1395   /// Return the unique reference to the type for a dependently sized vector of
1396   /// the specified element type.
1397   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1398                                   SourceLocation AttrLoc,
1399                                   VectorType::VectorKind VecKind) const;
1400 
1401   /// Return the unique reference to an extended vector type
1402   /// of the specified element type and size.
1403   ///
1404   /// \pre \p VectorType must be a built-in type.
1405   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1406 
1407   /// \pre Return a non-unique reference to the type for a dependently-sized
1408   /// vector of the specified element type.
1409   ///
1410   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1411   /// point.
1412   QualType getDependentSizedExtVectorType(QualType VectorType,
1413                                           Expr *SizeExpr,
1414                                           SourceLocation AttrLoc) const;
1415 
1416   /// Return the unique reference to the matrix type of the specified element
1417   /// type and size
1418   ///
1419   /// \pre \p ElementType must be a valid matrix element type (see
1420   /// MatrixType::isValidElementType).
1421   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1422                                  unsigned NumColumns) const;
1423 
1424   /// Return the unique reference to the matrix type of the specified element
1425   /// type and size
1426   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1427                                        Expr *ColumnExpr,
1428                                        SourceLocation AttrLoc) const;
1429 
1430   QualType getDependentAddressSpaceType(QualType PointeeType,
1431                                         Expr *AddrSpaceExpr,
1432                                         SourceLocation AttrLoc) const;
1433 
1434   /// Return a K&R style C function type like 'int()'.
1435   QualType getFunctionNoProtoType(QualType ResultTy,
1436                                   const FunctionType::ExtInfo &Info) const;
1437 
getFunctionNoProtoType(QualType ResultTy)1438   QualType getFunctionNoProtoType(QualType ResultTy) const {
1439     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1440   }
1441 
1442   /// Return a normal function type with a typed argument list.
getFunctionType(QualType ResultTy,ArrayRef<QualType> Args,const FunctionProtoType::ExtProtoInfo & EPI)1443   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1444                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1445     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1446   }
1447 
1448   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1449 
1450 private:
1451   /// Return a normal function type with a typed argument list.
1452   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1453                                    const FunctionProtoType::ExtProtoInfo &EPI,
1454                                    bool OnlyWantCanonical) const;
1455 
1456 public:
1457   /// Return the unique reference to the type for the specified type
1458   /// declaration.
1459   QualType getTypeDeclType(const TypeDecl *Decl,
1460                            const TypeDecl *PrevDecl = nullptr) const {
1461     assert(Decl && "Passed null for Decl param");
1462     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1463 
1464     if (PrevDecl) {
1465       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1466       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1467       return QualType(PrevDecl->TypeForDecl, 0);
1468     }
1469 
1470     return getTypeDeclTypeSlow(Decl);
1471   }
1472 
1473   /// Return the unique reference to the type for the specified
1474   /// typedef-name decl.
1475   QualType getTypedefType(const TypedefNameDecl *Decl,
1476                           QualType Underlying = QualType()) const;
1477 
1478   QualType getRecordType(const RecordDecl *Decl) const;
1479 
1480   QualType getEnumType(const EnumDecl *Decl) const;
1481 
1482   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1483 
1484   QualType getAttributedType(attr::Kind attrKind,
1485                              QualType modifiedType,
1486                              QualType equivalentType);
1487 
1488   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1489                                         QualType Replacement) const;
1490   QualType getSubstTemplateTypeParmPackType(
1491                                           const TemplateTypeParmType *Replaced,
1492                                             const TemplateArgument &ArgPack);
1493 
1494   QualType
1495   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1496                           bool ParameterPack,
1497                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1498 
1499   QualType getTemplateSpecializationType(TemplateName T,
1500                                          ArrayRef<TemplateArgument> Args,
1501                                          QualType Canon = QualType()) const;
1502 
1503   QualType
1504   getCanonicalTemplateSpecializationType(TemplateName T,
1505                                          ArrayRef<TemplateArgument> Args) const;
1506 
1507   QualType getTemplateSpecializationType(TemplateName T,
1508                                          const TemplateArgumentListInfo &Args,
1509                                          QualType Canon = QualType()) const;
1510 
1511   TypeSourceInfo *
1512   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1513                                     const TemplateArgumentListInfo &Args,
1514                                     QualType Canon = QualType()) const;
1515 
1516   QualType getParenType(QualType NamedType) const;
1517 
1518   QualType getMacroQualifiedType(QualType UnderlyingTy,
1519                                  const IdentifierInfo *MacroII) const;
1520 
1521   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1522                              NestedNameSpecifier *NNS, QualType NamedType,
1523                              TagDecl *OwnedTagDecl = nullptr) const;
1524   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1525                                 NestedNameSpecifier *NNS,
1526                                 const IdentifierInfo *Name,
1527                                 QualType Canon = QualType()) const;
1528 
1529   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1530                                                   NestedNameSpecifier *NNS,
1531                                                   const IdentifierInfo *Name,
1532                                     const TemplateArgumentListInfo &Args) const;
1533   QualType getDependentTemplateSpecializationType(
1534       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1535       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1536 
1537   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1538 
1539   /// Get a template argument list with one argument per template parameter
1540   /// in a template parameter list, such as for the injected class name of
1541   /// a class template.
1542   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1543                                SmallVectorImpl<TemplateArgument> &Args);
1544 
1545   /// Form a pack expansion type with the given pattern.
1546   /// \param NumExpansions The number of expansions for the pack, if known.
1547   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1548   ///        contain an unexpanded pack. This only makes sense if the pack
1549   ///        expansion is used in a context where the arity is inferred from
1550   ///        elsewhere, such as if the pattern contains a placeholder type or
1551   ///        if this is the canonical type of another pack expansion type.
1552   QualType getPackExpansionType(QualType Pattern,
1553                                 Optional<unsigned> NumExpansions,
1554                                 bool ExpectPackInType = true);
1555 
1556   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1557                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1558 
1559   /// Legacy interface: cannot provide type arguments or __kindof.
1560   QualType getObjCObjectType(QualType Base,
1561                              ObjCProtocolDecl * const *Protocols,
1562                              unsigned NumProtocols) const;
1563 
1564   QualType getObjCObjectType(QualType Base,
1565                              ArrayRef<QualType> typeArgs,
1566                              ArrayRef<ObjCProtocolDecl *> protocols,
1567                              bool isKindOf) const;
1568 
1569   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1570                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1571   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1572                                     ObjCTypeParamDecl *New) const;
1573 
1574   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1575 
1576   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1577   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1578   /// of protocols.
1579   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1580                                             ObjCInterfaceDecl *IDecl);
1581 
1582   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1583   QualType getObjCObjectPointerType(QualType OIT) const;
1584 
1585   /// GCC extension.
1586   QualType getTypeOfExprType(Expr *e) const;
1587   QualType getTypeOfType(QualType t) const;
1588 
1589   /// C++11 decltype.
1590   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1591 
1592   /// Unary type transforms
1593   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1594                                  UnaryTransformType::UTTKind UKind) const;
1595 
1596   /// C++11 deduced auto type.
1597   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1598                        bool IsDependent, bool IsPack = false,
1599                        ConceptDecl *TypeConstraintConcept = nullptr,
1600                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1601 
1602   /// C++11 deduction pattern for 'auto' type.
1603   QualType getAutoDeductType() const;
1604 
1605   /// C++11 deduction pattern for 'auto &&' type.
1606   QualType getAutoRRefDeductType() const;
1607 
1608   /// C++17 deduced class template specialization type.
1609   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1610                                                 QualType DeducedType,
1611                                                 bool IsDependent) const;
1612 
1613   /// Return the unique reference to the type for the specified TagDecl
1614   /// (struct/union/class/enum) decl.
1615   QualType getTagDeclType(const TagDecl *Decl) const;
1616 
1617   /// Return the unique type for "size_t" (C99 7.17), defined in
1618   /// <stddef.h>.
1619   ///
1620   /// The sizeof operator requires this (C99 6.5.3.4p4).
1621   CanQualType getSizeType() const;
1622 
1623   /// Return the unique signed counterpart of
1624   /// the integer type corresponding to size_t.
1625   CanQualType getSignedSizeType() const;
1626 
1627   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1628   /// <stdint.h>.
1629   CanQualType getIntMaxType() const;
1630 
1631   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1632   /// <stdint.h>.
1633   CanQualType getUIntMaxType() const;
1634 
1635   /// Return the unique wchar_t type available in C++ (and available as
1636   /// __wchar_t as a Microsoft extension).
getWCharType()1637   QualType getWCharType() const { return WCharTy; }
1638 
1639   /// Return the type of wide characters. In C++, this returns the
1640   /// unique wchar_t type. In C99, this returns a type compatible with the type
1641   /// defined in <stddef.h> as defined by the target.
getWideCharType()1642   QualType getWideCharType() const { return WideCharTy; }
1643 
1644   /// Return the type of "signed wchar_t".
1645   ///
1646   /// Used when in C++, as a GCC extension.
1647   QualType getSignedWCharType() const;
1648 
1649   /// Return the type of "unsigned wchar_t".
1650   ///
1651   /// Used when in C++, as a GCC extension.
1652   QualType getUnsignedWCharType() const;
1653 
1654   /// In C99, this returns a type compatible with the type
1655   /// defined in <stddef.h> as defined by the target.
getWIntType()1656   QualType getWIntType() const { return WIntTy; }
1657 
1658   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1659   /// as defined by the target.
1660   QualType getIntPtrType() const;
1661 
1662   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1663   /// as defined by the target.
1664   QualType getUIntPtrType() const;
1665 
1666   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1667   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1668   QualType getPointerDiffType() const;
1669 
1670   /// Return the unique unsigned counterpart of "ptrdiff_t"
1671   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1672   /// in the definition of %tu format specifier.
1673   QualType getUnsignedPointerDiffType() const;
1674 
1675   /// Return the unique type for "pid_t" defined in
1676   /// <sys/types.h>. We need this to compute the correct type for vfork().
1677   QualType getProcessIDType() const;
1678 
1679   /// Return the C structure type used to represent constant CFStrings.
1680   QualType getCFConstantStringType() const;
1681 
1682   /// Returns the C struct type for objc_super
1683   QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1684   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1685 
1686   /// Get the structure type used to representation CFStrings, or NULL
1687   /// if it hasn't yet been built.
getRawCFConstantStringType()1688   QualType getRawCFConstantStringType() const {
1689     if (CFConstantStringTypeDecl)
1690       return getTypedefType(CFConstantStringTypeDecl);
1691     return QualType();
1692   }
1693   void setCFConstantStringType(QualType T);
1694   TypedefDecl *getCFConstantStringDecl() const;
1695   RecordDecl *getCFConstantStringTagDecl() const;
1696 
1697   // This setter/getter represents the ObjC type for an NSConstantString.
1698   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1699   QualType getObjCConstantStringInterface() const {
1700     return ObjCConstantStringType;
1701   }
1702 
getObjCNSStringType()1703   QualType getObjCNSStringType() const {
1704     return ObjCNSStringType;
1705   }
1706 
setObjCNSStringType(QualType T)1707   void setObjCNSStringType(QualType T) {
1708     ObjCNSStringType = T;
1709   }
1710 
1711   /// Retrieve the type that \c id has been defined to, which may be
1712   /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1713   QualType getObjCIdRedefinitionType() const {
1714     if (ObjCIdRedefinitionType.isNull())
1715       return getObjCIdType();
1716     return ObjCIdRedefinitionType;
1717   }
1718 
1719   /// Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1720   void setObjCIdRedefinitionType(QualType RedefType) {
1721     ObjCIdRedefinitionType = RedefType;
1722   }
1723 
1724   /// Retrieve the type that \c Class has been defined to, which may be
1725   /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1726   QualType getObjCClassRedefinitionType() const {
1727     if (ObjCClassRedefinitionType.isNull())
1728       return getObjCClassType();
1729     return ObjCClassRedefinitionType;
1730   }
1731 
1732   /// Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1733   void setObjCClassRedefinitionType(QualType RedefType) {
1734     ObjCClassRedefinitionType = RedefType;
1735   }
1736 
1737   /// Retrieve the type that 'SEL' has been defined to, which may be
1738   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1739   QualType getObjCSelRedefinitionType() const {
1740     if (ObjCSelRedefinitionType.isNull())
1741       return getObjCSelType();
1742     return ObjCSelRedefinitionType;
1743   }
1744 
1745   /// Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1746   void setObjCSelRedefinitionType(QualType RedefType) {
1747     ObjCSelRedefinitionType = RedefType;
1748   }
1749 
1750   /// Retrieve the identifier 'NSObject'.
getNSObjectName()1751   IdentifierInfo *getNSObjectName() const {
1752     if (!NSObjectName) {
1753       NSObjectName = &Idents.get("NSObject");
1754     }
1755 
1756     return NSObjectName;
1757   }
1758 
1759   /// Retrieve the identifier 'NSCopying'.
getNSCopyingName()1760   IdentifierInfo *getNSCopyingName() {
1761     if (!NSCopyingName) {
1762       NSCopyingName = &Idents.get("NSCopying");
1763     }
1764 
1765     return NSCopyingName;
1766   }
1767 
1768   CanQualType getNSUIntegerType() const;
1769 
1770   CanQualType getNSIntegerType() const;
1771 
1772   /// Retrieve the identifier 'bool'.
getBoolName()1773   IdentifierInfo *getBoolName() const {
1774     if (!BoolName)
1775       BoolName = &Idents.get("bool");
1776     return BoolName;
1777   }
1778 
getMakeIntegerSeqName()1779   IdentifierInfo *getMakeIntegerSeqName() const {
1780     if (!MakeIntegerSeqName)
1781       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1782     return MakeIntegerSeqName;
1783   }
1784 
getTypePackElementName()1785   IdentifierInfo *getTypePackElementName() const {
1786     if (!TypePackElementName)
1787       TypePackElementName = &Idents.get("__type_pack_element");
1788     return TypePackElementName;
1789   }
1790 
1791   /// Retrieve the Objective-C "instancetype" type, if already known;
1792   /// otherwise, returns a NULL type;
getObjCInstanceType()1793   QualType getObjCInstanceType() {
1794     return getTypeDeclType(getObjCInstanceTypeDecl());
1795   }
1796 
1797   /// Retrieve the typedef declaration corresponding to the Objective-C
1798   /// "instancetype" type.
1799   TypedefDecl *getObjCInstanceTypeDecl();
1800 
1801   /// Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1802   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1803 
1804   /// Retrieve the C FILE type.
getFILEType()1805   QualType getFILEType() const {
1806     if (FILEDecl)
1807       return getTypeDeclType(FILEDecl);
1808     return QualType();
1809   }
1810 
1811   /// Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1812   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1813     this->jmp_bufDecl = jmp_bufDecl;
1814   }
1815 
1816   /// Retrieve the C jmp_buf type.
getjmp_bufType()1817   QualType getjmp_bufType() const {
1818     if (jmp_bufDecl)
1819       return getTypeDeclType(jmp_bufDecl);
1820     return QualType();
1821   }
1822 
1823   /// Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1824   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1825     this->sigjmp_bufDecl = sigjmp_bufDecl;
1826   }
1827 
1828   /// Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1829   QualType getsigjmp_bufType() const {
1830     if (sigjmp_bufDecl)
1831       return getTypeDeclType(sigjmp_bufDecl);
1832     return QualType();
1833   }
1834 
1835   /// Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1836   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1837     this->ucontext_tDecl = ucontext_tDecl;
1838   }
1839 
1840   /// Retrieve the C ucontext_t type.
getucontext_tType()1841   QualType getucontext_tType() const {
1842     if (ucontext_tDecl)
1843       return getTypeDeclType(ucontext_tDecl);
1844     return QualType();
1845   }
1846 
1847   /// The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1848   QualType getLogicalOperationType() const {
1849     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1850   }
1851 
1852   /// Emit the Objective-CC type encoding for the given type \p T into
1853   /// \p S.
1854   ///
1855   /// If \p Field is specified then record field names are also encoded.
1856   void getObjCEncodingForType(QualType T, std::string &S,
1857                               const FieldDecl *Field=nullptr,
1858                               QualType *NotEncodedT=nullptr) const;
1859 
1860   /// Emit the Objective-C property type encoding for the given
1861   /// type \p T into \p S.
1862   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1863 
1864   void getLegacyIntegralTypeEncoding(QualType &t) const;
1865 
1866   /// Put the string version of the type qualifiers \p QT into \p S.
1867   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1868                                        std::string &S) const;
1869 
1870   /// Emit the encoded type for the function \p Decl into \p S.
1871   ///
1872   /// This is in the same format as Objective-C method encodings.
1873   ///
1874   /// \returns true if an error occurred (e.g., because one of the parameter
1875   /// types is incomplete), false otherwise.
1876   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1877 
1878   /// Emit the encoded type for the method declaration \p Decl into
1879   /// \p S.
1880   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1881                                            bool Extended = false) const;
1882 
1883   /// Return the encoded type for this block declaration.
1884   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1885 
1886   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1887   /// this method declaration. If non-NULL, Container must be either
1888   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1889   /// only be NULL when getting encodings for protocol properties.
1890   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1891                                              const Decl *Container) const;
1892 
1893   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1894                                       ObjCProtocolDecl *rProto) const;
1895 
1896   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1897                                                   const ObjCPropertyDecl *PD,
1898                                                   const Decl *Container) const;
1899 
1900   /// Return the size of type \p T for Objective-C encoding purpose,
1901   /// in characters.
1902   CharUnits getObjCEncodingTypeSize(QualType T) const;
1903 
1904   /// Retrieve the typedef corresponding to the predefined \c id type
1905   /// in Objective-C.
1906   TypedefDecl *getObjCIdDecl() const;
1907 
1908   /// Represents the Objective-CC \c id type.
1909   ///
1910   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1911   /// pointer type, a pointer to a struct.
getObjCIdType()1912   QualType getObjCIdType() const {
1913     return getTypeDeclType(getObjCIdDecl());
1914   }
1915 
1916   /// Retrieve the typedef corresponding to the predefined 'SEL' type
1917   /// in Objective-C.
1918   TypedefDecl *getObjCSelDecl() const;
1919 
1920   /// Retrieve the type that corresponds to the predefined Objective-C
1921   /// 'SEL' type.
getObjCSelType()1922   QualType getObjCSelType() const {
1923     return getTypeDeclType(getObjCSelDecl());
1924   }
1925 
1926   /// Retrieve the typedef declaration corresponding to the predefined
1927   /// Objective-C 'Class' type.
1928   TypedefDecl *getObjCClassDecl() const;
1929 
1930   /// Represents the Objective-C \c Class type.
1931   ///
1932   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1933   /// pointer type, a pointer to a struct.
getObjCClassType()1934   QualType getObjCClassType() const {
1935     return getTypeDeclType(getObjCClassDecl());
1936   }
1937 
1938   /// Retrieve the Objective-C class declaration corresponding to
1939   /// the predefined \c Protocol class.
1940   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1941 
1942   /// Retrieve declaration of 'BOOL' typedef
getBOOLDecl()1943   TypedefDecl *getBOOLDecl() const {
1944     return BOOLDecl;
1945   }
1946 
1947   /// Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)1948   void setBOOLDecl(TypedefDecl *TD) {
1949     BOOLDecl = TD;
1950   }
1951 
1952   /// type of 'BOOL' type.
getBOOLType()1953   QualType getBOOLType() const {
1954     return getTypeDeclType(getBOOLDecl());
1955   }
1956 
1957   /// Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()1958   QualType getObjCProtoType() const {
1959     return getObjCInterfaceType(getObjCProtocolDecl());
1960   }
1961 
1962   /// Retrieve the C type declaration corresponding to the predefined
1963   /// \c __builtin_va_list type.
1964   TypedefDecl *getBuiltinVaListDecl() const;
1965 
1966   /// Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()1967   QualType getBuiltinVaListType() const {
1968     return getTypeDeclType(getBuiltinVaListDecl());
1969   }
1970 
1971   /// Retrieve the C type declaration corresponding to the predefined
1972   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1973   /// for some targets.
1974   Decl *getVaListTagDecl() const;
1975 
1976   /// Retrieve the C type declaration corresponding to the predefined
1977   /// \c __builtin_ms_va_list type.
1978   TypedefDecl *getBuiltinMSVaListDecl() const;
1979 
1980   /// Retrieve the type of the \c __builtin_ms_va_list type.
getBuiltinMSVaListType()1981   QualType getBuiltinMSVaListType() const {
1982     return getTypeDeclType(getBuiltinMSVaListDecl());
1983   }
1984 
1985   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
getMSGuidTagDecl()1986   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
1987 
1988   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
getMSGuidType()1989   QualType getMSGuidType() const {
1990     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
1991     return getTagDeclType(MSGuidTagDecl);
1992   }
1993 
1994   /// Return whether a declaration to a builtin is allowed to be
1995   /// overloaded/redeclared.
1996   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1997 
1998   /// Return a type with additional \c const, \c volatile, or
1999   /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)2000   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2001     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2002   }
2003 
2004   /// Un-split a SplitQualType.
getQualifiedType(SplitQualType split)2005   QualType getQualifiedType(SplitQualType split) const {
2006     return getQualifiedType(split.Ty, split.Quals);
2007   }
2008 
2009   /// Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)2010   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2011     if (!Qs.hasNonFastQualifiers())
2012       return T.withFastQualifiers(Qs.getFastQualifiers());
2013     QualifierCollector Qc(Qs);
2014     const Type *Ptr = Qc.strip(T);
2015     return getExtQualType(Ptr, Qc);
2016   }
2017 
2018   /// Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)2019   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2020     if (!Qs.hasNonFastQualifiers())
2021       return QualType(T, Qs.getFastQualifiers());
2022     return getExtQualType(T, Qs);
2023   }
2024 
2025   /// Return a type with the given lifetime qualifier.
2026   ///
2027   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)2028   QualType getLifetimeQualifiedType(QualType type,
2029                                     Qualifiers::ObjCLifetime lifetime) {
2030     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2031     assert(lifetime != Qualifiers::OCL_None);
2032 
2033     Qualifiers qs;
2034     qs.addObjCLifetime(lifetime);
2035     return getQualifiedType(type, qs);
2036   }
2037 
2038   /// getUnqualifiedObjCPointerType - Returns version of
2039   /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)2040   QualType getUnqualifiedObjCPointerType(QualType type) const {
2041     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2042         !type.getQualifiers().hasObjCLifetime())
2043       return type;
2044     Qualifiers Qs = type.getQualifiers();
2045     Qs.removeObjCLifetime();
2046     return getQualifiedType(type.getUnqualifiedType(), Qs);
2047   }
2048 
2049   unsigned char getFixedPointScale(QualType Ty) const;
2050   unsigned char getFixedPointIBits(QualType Ty) const;
2051   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2052   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2053   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2054 
2055   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2056                                          SourceLocation NameLoc) const;
2057 
2058   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2059                                          UnresolvedSetIterator End) const;
2060   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2061 
2062   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2063                                         bool TemplateKeyword,
2064                                         TemplateDecl *Template) const;
2065 
2066   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2067                                         const IdentifierInfo *Name) const;
2068   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2069                                         OverloadedOperatorKind Operator) const;
2070   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2071                                             TemplateName replacement) const;
2072   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2073                                         const TemplateArgument &ArgPack) const;
2074 
2075   enum GetBuiltinTypeError {
2076     /// No error
2077     GE_None,
2078 
2079     /// Missing a type
2080     GE_Missing_type,
2081 
2082     /// Missing a type from <stdio.h>
2083     GE_Missing_stdio,
2084 
2085     /// Missing a type from <setjmp.h>
2086     GE_Missing_setjmp,
2087 
2088     /// Missing a type from <ucontext.h>
2089     GE_Missing_ucontext
2090   };
2091 
2092   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2093                          ASTContext::GetBuiltinTypeError &Error,
2094                          bool &RequireICE, bool AllowTypeModifiers) const;
2095 
2096   /// Return the type for the specified builtin.
2097   ///
2098   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2099   /// arguments to the builtin that are required to be integer constant
2100   /// expressions.
2101   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2102                           unsigned *IntegerConstantArgs = nullptr) const;
2103 
2104   /// Types and expressions required to build C++2a three-way comparisons
2105   /// using operator<=>, including the values return by builtin <=> operators.
2106   ComparisonCategories CompCategories;
2107 
2108 private:
2109   CanQualType getFromTargetType(unsigned Type) const;
2110   TypeInfo getTypeInfoImpl(const Type *T) const;
2111 
2112   //===--------------------------------------------------------------------===//
2113   //                         Type Predicates.
2114   //===--------------------------------------------------------------------===//
2115 
2116 public:
2117   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2118   /// collection attributes.
2119   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2120 
2121   /// Return true if the given vector types are of the same unqualified
2122   /// type or if they are equivalent to the same GCC vector type.
2123   ///
2124   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2125   /// types.
2126   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2127 
2128   /// Return true if the given types are an SVE builtin and a VectorType that
2129   /// is a fixed-length representation of the SVE builtin for a specific
2130   /// vector-length.
2131   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2132 
2133   /// Return true if the given vector types are lax-compatible SVE vector types,
2134   /// false otherwise.
2135   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2136 
2137   /// Return true if the type has been explicitly qualified with ObjC ownership.
2138   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2139   /// some cases the compiler treats these differently.
2140   bool hasDirectOwnershipQualifier(QualType Ty) const;
2141 
2142   /// Return true if this is an \c NSObject object with its \c NSObject
2143   /// attribute set.
isObjCNSObjectType(QualType Ty)2144   static bool isObjCNSObjectType(QualType Ty) {
2145     return Ty->isObjCNSObjectType();
2146   }
2147 
2148   //===--------------------------------------------------------------------===//
2149   //                         Type Sizing and Analysis
2150   //===--------------------------------------------------------------------===//
2151 
2152   /// Return the APFloat 'semantics' for the specified scalar floating
2153   /// point type.
2154   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2155 
2156   /// Get the size and alignment of the specified complete type in bits.
2157   TypeInfo getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)2158   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2159 
2160   /// Get default simd alignment of the specified complete type in bits.
2161   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2162 
2163   /// Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)2164   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
getTypeSize(const Type * T)2165   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2166 
2167   /// Return the size of the character type, in bits.
getCharWidth()2168   uint64_t getCharWidth() const {
2169     return getTypeSize(CharTy);
2170   }
2171 
2172   /// Convert a size in bits to a size in characters.
2173   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2174 
2175   /// Convert a size in characters to a size in bits.
2176   int64_t toBits(CharUnits CharSize) const;
2177 
2178   /// Return the size of the specified (complete) type \p T, in
2179   /// characters.
2180   CharUnits getTypeSizeInChars(QualType T) const;
2181   CharUnits getTypeSizeInChars(const Type *T) const;
2182 
getTypeSizeInCharsIfKnown(QualType Ty)2183   Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2184     if (Ty->isIncompleteType() || Ty->isDependentType())
2185       return None;
2186     return getTypeSizeInChars(Ty);
2187   }
2188 
getTypeSizeInCharsIfKnown(const Type * Ty)2189   Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2190     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2191   }
2192 
2193   /// Return the ABI-specified alignment of a (complete) type \p T, in
2194   /// bits.
getTypeAlign(QualType T)2195   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
getTypeAlign(const Type * T)2196   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2197 
2198   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2199   /// before alignment adjustments, in bits.
2200   ///
2201   /// This alignment is curently used only by ARM and AArch64 when passing
2202   /// arguments of a composite type.
getTypeUnadjustedAlign(QualType T)2203   unsigned getTypeUnadjustedAlign(QualType T) const {
2204     return getTypeUnadjustedAlign(T.getTypePtr());
2205   }
2206   unsigned getTypeUnadjustedAlign(const Type *T) const;
2207 
2208   /// Return the alignment of a type, in bits, or 0 if
2209   /// the type is incomplete and we cannot determine the alignment (for
2210   /// example, from alignment attributes). The returned alignment is the
2211   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2212   /// ABI alignment.
2213   unsigned getTypeAlignIfKnown(QualType T,
2214                                bool NeedsPreferredAlignment = false) const;
2215 
2216   /// Return the ABI-specified alignment of a (complete) type \p T, in
2217   /// characters.
2218   CharUnits getTypeAlignInChars(QualType T) const;
2219   CharUnits getTypeAlignInChars(const Type *T) const;
2220 
2221   /// Return the PreferredAlignment of a (complete) type \p T, in
2222   /// characters.
getPreferredTypeAlignInChars(QualType T)2223   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2224     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2225   }
2226 
2227   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2228   /// in characters, before alignment adjustments. This method does not work on
2229   /// incomplete types.
2230   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2231   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2232 
2233   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2234   // type is a record, its data size is returned.
2235   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2236 
2237   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2238   TypeInfoChars getTypeInfoInChars(QualType T) const;
2239 
2240   /// Determine if the alignment the type has was required using an
2241   /// alignment attribute.
2242   bool isAlignmentRequired(const Type *T) const;
2243   bool isAlignmentRequired(QualType T) const;
2244 
2245   /// Return the "preferred" alignment of the specified type \p T for
2246   /// the current target, in bits.
2247   ///
2248   /// This can be different than the ABI alignment in cases where it is
2249   /// beneficial for performance or backwards compatibility preserving to
2250   /// overalign a data type. (Note: despite the name, the preferred alignment
2251   /// is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(QualType T)2252   unsigned getPreferredTypeAlign(QualType T) const {
2253     return getPreferredTypeAlign(T.getTypePtr());
2254   }
2255   unsigned getPreferredTypeAlign(const Type *T) const;
2256 
2257   /// Return the default alignment for __attribute__((aligned)) on
2258   /// this target, to be used if no alignment value is specified.
2259   unsigned getTargetDefaultAlignForAttributeAligned() const;
2260 
2261   /// Return the alignment in bits that should be given to a
2262   /// global variable with type \p T.
2263   unsigned getAlignOfGlobalVar(QualType T) const;
2264 
2265   /// Return the alignment in characters that should be given to a
2266   /// global variable with type \p T.
2267   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2268 
2269   /// Return a conservative estimate of the alignment of the specified
2270   /// decl \p D.
2271   ///
2272   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2273   /// alignment.
2274   ///
2275   /// If \p ForAlignof, references are treated like their underlying type
2276   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2277   /// it computes the value expected by CodeGen: references are treated like
2278   /// pointers and large arrays get extra alignment.
2279   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2280 
2281   /// Return the alignment (in bytes) of the thrown exception object. This is
2282   /// only meaningful for targets that allocate C++ exceptions in a system
2283   /// runtime, such as those using the Itanium C++ ABI.
2284   CharUnits getExnObjectAlignment() const;
2285 
2286   /// Get or compute information about the layout of the specified
2287   /// record (struct/union/class) \p D, which indicates its size and field
2288   /// position information.
2289   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2290 
2291   /// Get or compute information about the layout of the specified
2292   /// Objective-C interface.
2293   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2294     const;
2295 
2296   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2297                         bool Simple = false) const;
2298 
2299   /// Get or compute information about the layout of the specified
2300   /// Objective-C implementation.
2301   ///
2302   /// This may differ from the interface if synthesized ivars are present.
2303   const ASTRecordLayout &
2304   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2305 
2306   /// Get our current best idea for the key function of the
2307   /// given record decl, or nullptr if there isn't one.
2308   ///
2309   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2310   ///   ...the first non-pure virtual function that is not inline at the
2311   ///   point of class definition.
2312   ///
2313   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2314   /// virtual functions that are defined 'inline', which means that
2315   /// the result of this computation can change.
2316   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2317 
2318   /// Observe that the given method cannot be a key function.
2319   /// Checks the key-function cache for the method's class and clears it
2320   /// if matches the given declaration.
2321   ///
2322   /// This is used in ABIs where out-of-line definitions marked
2323   /// inline are not considered to be key functions.
2324   ///
2325   /// \param method should be the declaration from the class definition
2326   void setNonKeyFunction(const CXXMethodDecl *method);
2327 
2328   /// Loading virtual member pointers using the virtual inheritance model
2329   /// always results in an adjustment using the vbtable even if the index is
2330   /// zero.
2331   ///
2332   /// This is usually OK because the first slot in the vbtable points
2333   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2334   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2335   /// points to the start of the nv-base which introduced the vbptr and *not*
2336   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2337   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2338 
2339   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2340   uint64_t getFieldOffset(const ValueDecl *FD) const;
2341 
2342   /// Get the offset of an ObjCIvarDecl in bits.
2343   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2344                                 const ObjCImplementationDecl *ID,
2345                                 const ObjCIvarDecl *Ivar) const;
2346 
2347   /// Find the 'this' offset for the member path in a pointer-to-member
2348   /// APValue.
2349   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2350 
2351   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2352 
2353   VTableContextBase *getVTableContext();
2354 
2355   /// If \p T is null pointer, assume the target in ASTContext.
2356   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2357 
2358   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2359                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2360 
2361   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2362   void CollectInheritedProtocols(const Decl *CDecl,
2363                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2364 
2365   /// Return true if the specified type has unique object representations
2366   /// according to (C++17 [meta.unary.prop]p9)
2367   bool hasUniqueObjectRepresentations(QualType Ty) const;
2368 
2369   //===--------------------------------------------------------------------===//
2370   //                            Type Operators
2371   //===--------------------------------------------------------------------===//
2372 
2373   /// Return the canonical (structural) type corresponding to the
2374   /// specified potentially non-canonical type \p T.
2375   ///
2376   /// The non-canonical version of a type may have many "decorated" versions of
2377   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2378   /// returned type is guaranteed to be free of any of these, allowing two
2379   /// canonical types to be compared for exact equality with a simple pointer
2380   /// comparison.
getCanonicalType(QualType T)2381   CanQualType getCanonicalType(QualType T) const {
2382     return CanQualType::CreateUnsafe(T.getCanonicalType());
2383   }
2384 
getCanonicalType(const Type * T)2385   const Type *getCanonicalType(const Type *T) const {
2386     return T->getCanonicalTypeInternal().getTypePtr();
2387   }
2388 
2389   /// Return the canonical parameter type corresponding to the specific
2390   /// potentially non-canonical one.
2391   ///
2392   /// Qualifiers are stripped off, functions are turned into function
2393   /// pointers, and arrays decay one level into pointers.
2394   CanQualType getCanonicalParamType(QualType T) const;
2395 
2396   /// Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)2397   bool hasSameType(QualType T1, QualType T2) const {
2398     return getCanonicalType(T1) == getCanonicalType(T2);
2399   }
hasSameType(const Type * T1,const Type * T2)2400   bool hasSameType(const Type *T1, const Type *T2) const {
2401     return getCanonicalType(T1) == getCanonicalType(T2);
2402   }
2403 
2404   /// Return this type as a completely-unqualified array type,
2405   /// capturing the qualifiers in \p Quals.
2406   ///
2407   /// This will remove the minimal amount of sugaring from the types, similar
2408   /// to the behavior of QualType::getUnqualifiedType().
2409   ///
2410   /// \param T is the qualified type, which may be an ArrayType
2411   ///
2412   /// \param Quals will receive the full set of qualifiers that were
2413   /// applied to the array.
2414   ///
2415   /// \returns if this is an array type, the completely unqualified array type
2416   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2417   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2418 
2419   /// Determine whether the given types are equivalent after
2420   /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)2421   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2422     return getCanonicalType(T1).getTypePtr() ==
2423            getCanonicalType(T2).getTypePtr();
2424   }
2425 
hasSameNullabilityTypeQualifier(QualType SubT,QualType SuperT,bool IsParam)2426   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2427                                        bool IsParam) const {
2428     auto SubTnullability = SubT->getNullability(*this);
2429     auto SuperTnullability = SuperT->getNullability(*this);
2430     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2431       // Neither has nullability; return true
2432       if (!SubTnullability)
2433         return true;
2434       // Both have nullability qualifier.
2435       if (*SubTnullability == *SuperTnullability ||
2436           *SubTnullability == NullabilityKind::Unspecified ||
2437           *SuperTnullability == NullabilityKind::Unspecified)
2438         return true;
2439 
2440       if (IsParam) {
2441         // Ok for the superclass method parameter to be "nonnull" and the subclass
2442         // method parameter to be "nullable"
2443         return (*SuperTnullability == NullabilityKind::NonNull &&
2444                 *SubTnullability == NullabilityKind::Nullable);
2445       }
2446       // For the return type, it's okay for the superclass method to specify
2447       // "nullable" and the subclass method specify "nonnull"
2448       return (*SuperTnullability == NullabilityKind::Nullable &&
2449               *SubTnullability == NullabilityKind::NonNull);
2450     }
2451     return true;
2452   }
2453 
2454   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2455                            const ObjCMethodDecl *MethodImp);
2456 
2457   bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2458   void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2459 
2460   /// Determine if two types are similar, according to the C++ rules. That is,
2461   /// determine if they are the same other than qualifiers on the initial
2462   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2463   /// pointer) types and their element types.
2464   ///
2465   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2466   /// those qualifiers are also ignored in the 'similarity' check.
2467   bool hasSimilarType(QualType T1, QualType T2);
2468 
2469   /// Determine if two types are similar, ignoring only CVR qualifiers.
2470   bool hasCvrSimilarType(QualType T1, QualType T2);
2471 
2472   /// Retrieves the "canonical" nested name specifier for a
2473   /// given nested name specifier.
2474   ///
2475   /// The canonical nested name specifier is a nested name specifier
2476   /// that uniquely identifies a type or namespace within the type
2477   /// system. For example, given:
2478   ///
2479   /// \code
2480   /// namespace N {
2481   ///   struct S {
2482   ///     template<typename T> struct X { typename T* type; };
2483   ///   };
2484   /// }
2485   ///
2486   /// template<typename T> struct Y {
2487   ///   typename N::S::X<T>::type member;
2488   /// };
2489   /// \endcode
2490   ///
2491   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2492   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2493   /// by declarations in the type system and the canonical type for
2494   /// the template type parameter 'T' is template-param-0-0.
2495   NestedNameSpecifier *
2496   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2497 
2498   /// Retrieves the default calling convention for the current target.
2499   CallingConv getDefaultCallingConvention(bool IsVariadic,
2500                                           bool IsCXXMethod,
2501                                           bool IsBuiltin = false) const;
2502 
2503   /// Retrieves the "canonical" template name that refers to a
2504   /// given template.
2505   ///
2506   /// The canonical template name is the simplest expression that can
2507   /// be used to refer to a given template. For most templates, this
2508   /// expression is just the template declaration itself. For example,
2509   /// the template std::vector can be referred to via a variety of
2510   /// names---std::vector, \::std::vector, vector (if vector is in
2511   /// scope), etc.---but all of these names map down to the same
2512   /// TemplateDecl, which is used to form the canonical template name.
2513   ///
2514   /// Dependent template names are more interesting. Here, the
2515   /// template name could be something like T::template apply or
2516   /// std::allocator<T>::template rebind, where the nested name
2517   /// specifier itself is dependent. In this case, the canonical
2518   /// template name uses the shortest form of the dependent
2519   /// nested-name-specifier, which itself contains all canonical
2520   /// types, values, and templates.
2521   TemplateName getCanonicalTemplateName(TemplateName Name) const;
2522 
2523   /// Determine whether the given template names refer to the same
2524   /// template.
2525   bool hasSameTemplateName(TemplateName X, TemplateName Y);
2526 
2527   /// Retrieve the "canonical" template argument.
2528   ///
2529   /// The canonical template argument is the simplest template argument
2530   /// (which may be a type, value, expression, or declaration) that
2531   /// expresses the value of the argument.
2532   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2533     const;
2534 
2535   /// Type Query functions.  If the type is an instance of the specified class,
2536   /// return the Type pointer for the underlying maximally pretty type.  This
2537   /// is a member of ASTContext because this may need to do some amount of
2538   /// canonicalization, e.g. to move type qualifiers into the element type.
2539   const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)2540   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2541     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2542   }
getAsVariableArrayType(QualType T)2543   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2544     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2545   }
getAsIncompleteArrayType(QualType T)2546   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2547     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2548   }
getAsDependentSizedArrayType(QualType T)2549   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2550     const {
2551     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2552   }
2553 
2554   /// Return the innermost element type of an array type.
2555   ///
2556   /// For example, will return "int" for int[m][n]
2557   QualType getBaseElementType(const ArrayType *VAT) const;
2558 
2559   /// Return the innermost element type of a type (which needn't
2560   /// actually be an array type).
2561   QualType getBaseElementType(QualType QT) const;
2562 
2563   /// Return number of constant array elements.
2564   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2565 
2566   /// Perform adjustment on the parameter type of a function.
2567   ///
2568   /// This routine adjusts the given parameter type @p T to the actual
2569   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2570   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2571   QualType getAdjustedParameterType(QualType T) const;
2572 
2573   /// Retrieve the parameter type as adjusted for use in the signature
2574   /// of a function, decaying array and function types and removing top-level
2575   /// cv-qualifiers.
2576   QualType getSignatureParameterType(QualType T) const;
2577 
2578   QualType getExceptionObjectType(QualType T) const;
2579 
2580   /// Return the properly qualified result of decaying the specified
2581   /// array type to a pointer.
2582   ///
2583   /// This operation is non-trivial when handling typedefs etc.  The canonical
2584   /// type of \p T must be an array type, this returns a pointer to a properly
2585   /// qualified element of the array.
2586   ///
2587   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2588   QualType getArrayDecayedType(QualType T) const;
2589 
2590   /// Return the type that \p PromotableType will promote to: C99
2591   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2592   QualType getPromotedIntegerType(QualType PromotableType) const;
2593 
2594   /// Recurses in pointer/array types until it finds an Objective-C
2595   /// retainable type and returns its ownership.
2596   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2597 
2598   /// Whether this is a promotable bitfield reference according
2599   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2600   ///
2601   /// \returns the type this bit-field will promote to, or NULL if no
2602   /// promotion occurs.
2603   QualType isPromotableBitField(Expr *E) const;
2604 
2605   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2606   ///
2607   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2608   /// \p LHS < \p RHS, return -1.
2609   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2610 
2611   /// Compare the rank of the two specified floating point types,
2612   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2613   ///
2614   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2615   /// \p LHS < \p RHS, return -1.
2616   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2617 
2618   /// Compare the rank of two floating point types as above, but compare equal
2619   /// if both types have the same floating-point semantics on the target (i.e.
2620   /// long double and double on AArch64 will return 0).
2621   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2622 
2623   /// Return a real floating point or a complex type (based on
2624   /// \p typeDomain/\p typeSize).
2625   ///
2626   /// \param typeDomain a real floating point or complex type.
2627   /// \param typeSize a real floating point or complex type.
2628   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2629                                              QualType typeDomain) const;
2630 
getTargetAddressSpace(QualType T)2631   unsigned getTargetAddressSpace(QualType T) const {
2632     return getTargetAddressSpace(T.getQualifiers());
2633   }
2634 
getTargetAddressSpace(Qualifiers Q)2635   unsigned getTargetAddressSpace(Qualifiers Q) const {
2636     return getTargetAddressSpace(Q.getAddressSpace());
2637   }
2638 
2639   unsigned getTargetAddressSpace(LangAS AS) const;
2640 
2641   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2642 
2643   /// Get target-dependent integer value for null pointer which is used for
2644   /// constant folding.
2645   uint64_t getTargetNullPointerValue(QualType QT) const;
2646 
addressSpaceMapManglingFor(LangAS AS)2647   bool addressSpaceMapManglingFor(LangAS AS) const {
2648     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2649   }
2650 
2651 private:
2652   // Helper for integer ordering
2653   unsigned getIntegerRank(const Type *T) const;
2654 
2655 public:
2656   //===--------------------------------------------------------------------===//
2657   //                    Type Compatibility Predicates
2658   //===--------------------------------------------------------------------===//
2659 
2660   /// Compatibility predicates used to check assignment expressions.
2661   bool typesAreCompatible(QualType T1, QualType T2,
2662                           bool CompareUnqualified = false); // C99 6.2.7p1
2663 
2664   bool propertyTypesAreCompatible(QualType, QualType);
2665   bool typesAreBlockPointerCompatible(QualType, QualType);
2666 
isObjCIdType(QualType T)2667   bool isObjCIdType(QualType T) const {
2668     return T == getObjCIdType();
2669   }
2670 
isObjCClassType(QualType T)2671   bool isObjCClassType(QualType T) const {
2672     return T == getObjCClassType();
2673   }
2674 
isObjCSelType(QualType T)2675   bool isObjCSelType(QualType T) const {
2676     return T == getObjCSelType();
2677   }
2678 
2679   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2680                                          const ObjCObjectPointerType *RHS,
2681                                          bool ForCompare);
2682 
2683   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2684                                             const ObjCObjectPointerType *RHS);
2685 
2686   // Check the safety of assignment from LHS to RHS
2687   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2688                                const ObjCObjectPointerType *RHSOPT);
2689   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2690                                const ObjCObjectType *RHS);
2691   bool canAssignObjCInterfacesInBlockPointer(
2692                                           const ObjCObjectPointerType *LHSOPT,
2693                                           const ObjCObjectPointerType *RHSOPT,
2694                                           bool BlockReturnType);
2695   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2696   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2697                                    const ObjCObjectPointerType *RHSOPT);
2698   bool canBindObjCObjectType(QualType To, QualType From);
2699 
2700   // Functions for calculating composite types
2701   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2702                       bool Unqualified = false, bool BlockReturnType = false);
2703   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2704                               bool Unqualified = false, bool AllowCXX = false);
2705   QualType mergeFunctionParameterTypes(QualType, QualType,
2706                                        bool OfBlockPointer = false,
2707                                        bool Unqualified = false);
2708   QualType mergeTransparentUnionType(QualType, QualType,
2709                                      bool OfBlockPointer=false,
2710                                      bool Unqualified = false);
2711 
2712   QualType mergeObjCGCQualifiers(QualType, QualType);
2713 
2714   /// This function merges the ExtParameterInfo lists of two functions. It
2715   /// returns true if the lists are compatible. The merged list is returned in
2716   /// NewParamInfos.
2717   ///
2718   /// \param FirstFnType The type of the first function.
2719   ///
2720   /// \param SecondFnType The type of the second function.
2721   ///
2722   /// \param CanUseFirst This flag is set to true if the first function's
2723   /// ExtParameterInfo list can be used as the composite list of
2724   /// ExtParameterInfo.
2725   ///
2726   /// \param CanUseSecond This flag is set to true if the second function's
2727   /// ExtParameterInfo list can be used as the composite list of
2728   /// ExtParameterInfo.
2729   ///
2730   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2731   /// empty if none of the flags are set.
2732   ///
2733   bool mergeExtParameterInfo(
2734       const FunctionProtoType *FirstFnType,
2735       const FunctionProtoType *SecondFnType,
2736       bool &CanUseFirst, bool &CanUseSecond,
2737       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2738 
2739   void ResetObjCLayout(const ObjCContainerDecl *CD);
2740 
2741   //===--------------------------------------------------------------------===//
2742   //                    Integer Predicates
2743   //===--------------------------------------------------------------------===//
2744 
2745   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2746   // of bits in an integer type excluding any padding bits.
2747   unsigned getIntWidth(QualType T) const;
2748 
2749   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2750   // unsigned integer type.  This method takes a signed type, and returns the
2751   // corresponding unsigned integer type.
2752   // With the introduction of fixed point types in ISO N1169, this method also
2753   // accepts fixed point types and returns the corresponding unsigned type for
2754   // a given fixed point type.
2755   QualType getCorrespondingUnsignedType(QualType T) const;
2756 
2757   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2758   // unsigned integer type.  This method takes an unsigned type, and returns the
2759   // corresponding signed integer type.
2760   // With the introduction of fixed point types in ISO N1169, this method also
2761   // accepts fixed point types and returns the corresponding signed type for
2762   // a given fixed point type.
2763   QualType getCorrespondingSignedType(QualType T) const;
2764 
2765   // Per ISO N1169, this method accepts fixed point types and returns the
2766   // corresponding saturated type for a given fixed point type.
2767   QualType getCorrespondingSaturatedType(QualType Ty) const;
2768 
2769   // This method accepts fixed point types and returns the corresponding signed
2770   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2771   // fixed point types because there are unsigned integer types like bool and
2772   // char8_t that don't have signed equivalents.
2773   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2774 
2775   //===--------------------------------------------------------------------===//
2776   //                    Integer Values
2777   //===--------------------------------------------------------------------===//
2778 
2779   /// Make an APSInt of the appropriate width and signedness for the
2780   /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2781   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2782     // If Type is a signed integer type larger than 64 bits, we need to be sure
2783     // to sign extend Res appropriately.
2784     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2785     Res = Value;
2786     unsigned Width = getIntWidth(Type);
2787     if (Width != Res.getBitWidth())
2788       return Res.extOrTrunc(Width);
2789     return Res;
2790   }
2791 
2792   bool isSentinelNullExpr(const Expr *E);
2793 
2794   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2795   /// none exists.
2796   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2797 
2798   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2799   /// none exists.
2800   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2801 
2802   /// Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()2803   bool AnyObjCImplementation() {
2804     return !ObjCImpls.empty();
2805   }
2806 
2807   /// Set the implementation of ObjCInterfaceDecl.
2808   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2809                              ObjCImplementationDecl *ImplD);
2810 
2811   /// Set the implementation of ObjCCategoryDecl.
2812   void setObjCImplementation(ObjCCategoryDecl *CatD,
2813                              ObjCCategoryImplDecl *ImplD);
2814 
2815   /// Get the duplicate declaration of a ObjCMethod in the same
2816   /// interface, or null if none exists.
2817   const ObjCMethodDecl *
2818   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2819 
2820   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2821                                   const ObjCMethodDecl *Redecl);
2822 
2823   /// Returns the Objective-C interface that \p ND belongs to if it is
2824   /// an Objective-C method/property/ivar etc. that is part of an interface,
2825   /// otherwise returns null.
2826   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2827 
2828   /// Set the copy initialization expression of a block var decl. \p CanThrow
2829   /// indicates whether the copy expression can throw or not.
2830   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2831 
2832   /// Get the copy initialization expression of the VarDecl \p VD, or
2833   /// nullptr if none exists.
2834   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2835 
2836   /// Allocate an uninitialized TypeSourceInfo.
2837   ///
2838   /// The caller should initialize the memory held by TypeSourceInfo using
2839   /// the TypeLoc wrappers.
2840   ///
2841   /// \param T the type that will be the basis for type source info. This type
2842   /// should refer to how the declarator was written in source code, not to
2843   /// what type semantic analysis resolved the declarator to.
2844   ///
2845   /// \param Size the size of the type info to create, or 0 if the size
2846   /// should be calculated based on the type.
2847   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2848 
2849   /// Allocate a TypeSourceInfo where all locations have been
2850   /// initialized to a given location, which defaults to the empty
2851   /// location.
2852   TypeSourceInfo *
2853   getTrivialTypeSourceInfo(QualType T,
2854                            SourceLocation Loc = SourceLocation()) const;
2855 
2856   /// Add a deallocation callback that will be invoked when the
2857   /// ASTContext is destroyed.
2858   ///
2859   /// \param Callback A callback function that will be invoked on destruction.
2860   ///
2861   /// \param Data Pointer data that will be provided to the callback function
2862   /// when it is called.
2863   void AddDeallocation(void (*Callback)(void *), void *Data) const;
2864 
2865   /// If T isn't trivially destructible, calls AddDeallocation to register it
2866   /// for destruction.
addDestruction(T * Ptr)2867   template <typename T> void addDestruction(T *Ptr) const {
2868     if (!std::is_trivially_destructible<T>::value) {
2869       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2870       AddDeallocation(DestroyPtr, Ptr);
2871     }
2872   }
2873 
2874   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2875   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2876 
2877   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2878   /// lazily, only when used; this is only relevant for function or file scoped
2879   /// var definitions.
2880   ///
2881   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2882   /// it is not used.
2883   bool DeclMustBeEmitted(const Decl *D);
2884 
2885   /// Visits all versions of a multiversioned function with the passed
2886   /// predicate.
2887   void forEachMultiversionedFunctionVersion(
2888       const FunctionDecl *FD,
2889       llvm::function_ref<void(FunctionDecl *)> Pred) const;
2890 
2891   const CXXConstructorDecl *
2892   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2893 
2894   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2895                                             CXXConstructorDecl *CD);
2896 
2897   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2898 
2899   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2900 
2901   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2902 
2903   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2904 
2905   void setManglingNumber(const NamedDecl *ND, unsigned Number);
2906   unsigned getManglingNumber(const NamedDecl *ND) const;
2907 
2908   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2909   unsigned getStaticLocalNumber(const VarDecl *VD) const;
2910 
2911   /// Retrieve the context for computing mangling numbers in the given
2912   /// DeclContext.
2913   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2914   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2915   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2916                                                    const Decl *D);
2917 
2918   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2919 
2920   /// Used by ParmVarDecl to store on the side the
2921   /// index of the parameter when it exceeds the size of the normal bitfield.
2922   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2923 
2924   /// Used by ParmVarDecl to retrieve on the side the
2925   /// index of the parameter when it exceeds the size of the normal bitfield.
2926   unsigned getParameterIndex(const ParmVarDecl *D) const;
2927 
2928   /// Return a string representing the human readable name for the specified
2929   /// function declaration or file name. Used by SourceLocExpr and
2930   /// PredefinedExpr to cache evaluated results.
2931   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2932 
2933   /// Return a declaration for the global GUID object representing the given
2934   /// GUID value.
2935   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2936 
2937   /// Return the template parameter object of the given type with the given
2938   /// value.
2939   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2940                                                       const APValue &V) const;
2941 
2942   /// Parses the target attributes passed in, and returns only the ones that are
2943   /// valid feature names.
2944   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2945 
2946   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2947                              const FunctionDecl *) const;
2948   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2949                              GlobalDecl GD) const;
2950 
2951   //===--------------------------------------------------------------------===//
2952   //                    Statistics
2953   //===--------------------------------------------------------------------===//
2954 
2955   /// The number of implicitly-declared default constructors.
2956   unsigned NumImplicitDefaultConstructors = 0;
2957 
2958   /// The number of implicitly-declared default constructors for
2959   /// which declarations were built.
2960   unsigned NumImplicitDefaultConstructorsDeclared = 0;
2961 
2962   /// The number of implicitly-declared copy constructors.
2963   unsigned NumImplicitCopyConstructors = 0;
2964 
2965   /// The number of implicitly-declared copy constructors for
2966   /// which declarations were built.
2967   unsigned NumImplicitCopyConstructorsDeclared = 0;
2968 
2969   /// The number of implicitly-declared move constructors.
2970   unsigned NumImplicitMoveConstructors = 0;
2971 
2972   /// The number of implicitly-declared move constructors for
2973   /// which declarations were built.
2974   unsigned NumImplicitMoveConstructorsDeclared = 0;
2975 
2976   /// The number of implicitly-declared copy assignment operators.
2977   unsigned NumImplicitCopyAssignmentOperators = 0;
2978 
2979   /// The number of implicitly-declared copy assignment operators for
2980   /// which declarations were built.
2981   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2982 
2983   /// The number of implicitly-declared move assignment operators.
2984   unsigned NumImplicitMoveAssignmentOperators = 0;
2985 
2986   /// The number of implicitly-declared move assignment operators for
2987   /// which declarations were built.
2988   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2989 
2990   /// The number of implicitly-declared destructors.
2991   unsigned NumImplicitDestructors = 0;
2992 
2993   /// The number of implicitly-declared destructors for which
2994   /// declarations were built.
2995   unsigned NumImplicitDestructorsDeclared = 0;
2996 
2997 public:
2998   /// Initialize built-in types.
2999   ///
3000   /// This routine may only be invoked once for a given ASTContext object.
3001   /// It is normally invoked after ASTContext construction.
3002   ///
3003   /// \param Target The target
3004   void InitBuiltinTypes(const TargetInfo &Target,
3005                         const TargetInfo *AuxTarget = nullptr);
3006 
3007 private:
3008   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3009 
3010   class ObjCEncOptions {
3011     unsigned Bits;
3012 
ObjCEncOptions(unsigned Bits)3013     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3014 
3015   public:
ObjCEncOptions()3016     ObjCEncOptions() : Bits(0) {}
ObjCEncOptions(const ObjCEncOptions & RHS)3017     ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3018 
3019 #define OPT_LIST(V)                                                            \
3020   V(ExpandPointedToStructures, 0)                                              \
3021   V(ExpandStructures, 1)                                                       \
3022   V(IsOutermostType, 2)                                                        \
3023   V(EncodingProperty, 3)                                                       \
3024   V(IsStructField, 4)                                                          \
3025   V(EncodeBlockParameters, 5)                                                  \
3026   V(EncodeClassNames, 6)                                                       \
3027 
3028 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3029 OPT_LIST(V)
3030 #undef V
3031 
3032 #define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)3033 OPT_LIST(V)
3034 #undef V
3035 
3036 #undef OPT_LIST
3037 
3038     LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3039       return Bits & Mask.Bits;
3040     }
3041 
forComponentType()3042     LLVM_NODISCARD ObjCEncOptions forComponentType() const {
3043       ObjCEncOptions Mask = ObjCEncOptions()
3044                                 .setIsOutermostType()
3045                                 .setIsStructField();
3046       return Bits & ~Mask.Bits;
3047     }
3048   };
3049 
3050   // Return the Objective-C type encoding for a given type.
3051   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3052                                   ObjCEncOptions Options,
3053                                   const FieldDecl *Field,
3054                                   QualType *NotEncodedT = nullptr) const;
3055 
3056   // Adds the encoding of the structure's members.
3057   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3058                                        const FieldDecl *Field,
3059                                        bool includeVBases = true,
3060                                        QualType *NotEncodedT=nullptr) const;
3061 
3062 public:
3063   // Adds the encoding of a method parameter or return type.
3064   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3065                                          QualType T, std::string& S,
3066                                          bool Extended) const;
3067 
3068   /// Returns true if this is an inline-initialized static data member
3069   /// which is treated as a definition for MSVC compatibility.
3070   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3071 
3072   enum class InlineVariableDefinitionKind {
3073     /// Not an inline variable.
3074     None,
3075 
3076     /// Weak definition of inline variable.
3077     Weak,
3078 
3079     /// Weak for now, might become strong later in this TU.
3080     WeakUnknown,
3081 
3082     /// Strong definition.
3083     Strong
3084   };
3085 
3086   /// Determine whether a definition of this inline variable should
3087   /// be treated as a weak or strong definition. For compatibility with
3088   /// C++14 and before, for a constexpr static data member, if there is an
3089   /// out-of-line declaration of the member, we may promote it from weak to
3090   /// strong.
3091   InlineVariableDefinitionKind
3092   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3093 
3094 private:
3095   friend class DeclarationNameTable;
3096   friend class DeclContext;
3097 
3098   const ASTRecordLayout &
3099   getObjCLayout(const ObjCInterfaceDecl *D,
3100                 const ObjCImplementationDecl *Impl) const;
3101 
3102   /// A set of deallocations that should be performed when the
3103   /// ASTContext is destroyed.
3104   // FIXME: We really should have a better mechanism in the ASTContext to
3105   // manage running destructors for types which do variable sized allocation
3106   // within the AST. In some places we thread the AST bump pointer allocator
3107   // into the datastructures which avoids this mess during deallocation but is
3108   // wasteful of memory, and here we require a lot of error prone book keeping
3109   // in order to track and run destructors while we're tearing things down.
3110   using DeallocationFunctionsAndArguments =
3111       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3112   mutable DeallocationFunctionsAndArguments Deallocations;
3113 
3114   // FIXME: This currently contains the set of StoredDeclMaps used
3115   // by DeclContext objects.  This probably should not be in ASTContext,
3116   // but we include it here so that ASTContext can quickly deallocate them.
3117   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3118 
3119   std::vector<Decl *> TraversalScope;
3120 
3121   std::unique_ptr<VTableContextBase> VTContext;
3122 
3123   void ReleaseDeclContextMaps();
3124 
3125 public:
3126   enum PragmaSectionFlag : unsigned {
3127     PSF_None = 0,
3128     PSF_Read = 0x1,
3129     PSF_Write = 0x2,
3130     PSF_Execute = 0x4,
3131     PSF_Implicit = 0x8,
3132     PSF_ZeroInit = 0x10,
3133     PSF_Invalid = 0x80000000U,
3134   };
3135 
3136   struct SectionInfo {
3137     NamedDecl *Decl;
3138     SourceLocation PragmaSectionLocation;
3139     int SectionFlags;
3140 
3141     SectionInfo() = default;
SectionInfoSectionInfo3142     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3143                 int SectionFlags)
3144         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3145           SectionFlags(SectionFlags) {}
3146   };
3147 
3148   llvm::StringMap<SectionInfo> SectionInfos;
3149 
3150   /// Return a new OMPTraitInfo object owned by this context.
3151   OMPTraitInfo &getNewOMPTraitInfo();
3152 
3153   /// Whether a C++ static variable may be externalized.
3154   bool mayExternalizeStaticVar(const Decl *D) const;
3155 
3156   /// Whether a C++ static variable should be externalized.
3157   bool shouldExternalizeStaticVar(const Decl *D) const;
3158 
3159   StringRef getCUIDHash() const;
3160 
3161 private:
3162   /// All OMPTraitInfo objects live in this collection, one per
3163   /// `pragma omp [begin] declare variant` directive.
3164   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3165 };
3166 
3167 /// Insertion operator for diagnostics.
3168 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3169                                       const ASTContext::SectionInfo &Section);
3170 
3171 /// Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)3172 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3173   IdentifierInfo* II = &Ctx.Idents.get(name);
3174   return Ctx.Selectors.getSelector(0, &II);
3175 }
3176 
3177 /// Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)3178 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3179   IdentifierInfo* II = &Ctx.Idents.get(name);
3180   return Ctx.Selectors.getSelector(1, &II);
3181 }
3182 
3183 } // namespace clang
3184 
3185 // operator new and delete aren't allowed inside namespaces.
3186 
3187 /// Placement new for using the ASTContext's allocator.
3188 ///
3189 /// This placement form of operator new uses the ASTContext's allocator for
3190 /// obtaining memory.
3191 ///
3192 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3193 /// Any changes here need to also be made there.
3194 ///
3195 /// We intentionally avoid using a nothrow specification here so that the calls
3196 /// to this operator will not perform a null check on the result -- the
3197 /// underlying allocator never returns null pointers.
3198 ///
3199 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3200 /// @code
3201 /// // Default alignment (8)
3202 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3203 /// // Specific alignment
3204 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3205 /// @endcode
3206 /// Memory allocated through this placement new operator does not need to be
3207 /// explicitly freed, as ASTContext will free all of this memory when it gets
3208 /// destroyed. Please note that you cannot use delete on the pointer.
3209 ///
3210 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3211 /// @param C The ASTContext that provides the allocator.
3212 /// @param Alignment The alignment of the allocated memory (if the underlying
3213 ///                  allocator supports it).
3214 /// @return The allocated memory. Could be nullptr.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)3215 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3216                           size_t Alignment /* = 8 */) {
3217   return C.Allocate(Bytes, Alignment);
3218 }
3219 
3220 /// Placement delete companion to the new above.
3221 ///
3222 /// This operator is just a companion to the new above. There is no way of
3223 /// invoking it directly; see the new operator for more details. This operator
3224 /// is called implicitly by the compiler if a placement new expression using
3225 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)3226 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3227   C.Deallocate(Ptr);
3228 }
3229 
3230 /// This placement form of operator new[] uses the ASTContext's allocator for
3231 /// obtaining memory.
3232 ///
3233 /// We intentionally avoid using a nothrow specification here so that the calls
3234 /// to this operator will not perform a null check on the result -- the
3235 /// underlying allocator never returns null pointers.
3236 ///
3237 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3238 /// @code
3239 /// // Default alignment (8)
3240 /// char *data = new (Context) char[10];
3241 /// // Specific alignment
3242 /// char *data = new (Context, 4) char[10];
3243 /// @endcode
3244 /// Memory allocated through this placement new[] operator does not need to be
3245 /// explicitly freed, as ASTContext will free all of this memory when it gets
3246 /// destroyed. Please note that you cannot use delete on the pointer.
3247 ///
3248 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3249 /// @param C The ASTContext that provides the allocator.
3250 /// @param Alignment The alignment of the allocated memory (if the underlying
3251 ///                  allocator supports it).
3252 /// @return The allocated memory. Could be nullptr.
3253 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3254                             size_t Alignment /* = 8 */) {
3255   return C.Allocate(Bytes, Alignment);
3256 }
3257 
3258 /// Placement delete[] companion to the new[] above.
3259 ///
3260 /// This operator is just a companion to the new[] above. There is no way of
3261 /// invoking it directly; see the new[] operator for more details. This operator
3262 /// is called implicitly by the compiler if a placement new[] expression using
3263 /// the ASTContext throws in the object constructor.
3264 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3265   C.Deallocate(Ptr);
3266 }
3267 
3268 /// Create the representation of a LazyGenerationalUpdatePtr.
3269 template <typename Owner, typename T,
3270           void (clang::ExternalASTSource::*Update)(Owner)>
3271 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
makeValue(const clang::ASTContext & Ctx,T Value)3272     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3273         const clang::ASTContext &Ctx, T Value) {
3274   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3275   // include ASTContext.h. We explicitly instantiate it for all relevant types
3276   // in ASTContext.cpp.
3277   if (auto *Source = Ctx.getExternalSource())
3278     return new (Ctx) LazyData(Source, Value);
3279   return Value;
3280 }
3281 
3282 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3283