1 ///////////////////////////////////////////////////////////////////////
2 // File: tabfind.cpp
3 // Description: Subclass of BBGrid to find vertically aligned blobs.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2008, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
17 ///////////////////////////////////////////////////////////////////////
18
19 #ifdef HAVE_CONFIG_H
20 # include "config_auto.h"
21 #endif
22
23 #include "alignedblob.h"
24 #include "colpartitiongrid.h"
25 #include "detlinefit.h"
26 #include "host.h" // for NearlyEqual
27 #include "linefind.h"
28 #include "tabfind.h"
29
30 #include <algorithm>
31
32 namespace tesseract {
33
34 // Multiple of box size to search for initial gaps.
35 const int kTabRadiusFactor = 5;
36 // Min and Max multiple of height to search vertically when extrapolating.
37 const int kMinVerticalSearch = 3;
38 const int kMaxVerticalSearch = 12;
39 const int kMaxRaggedSearch = 25;
40 // Minimum number of lines in a column width to make it interesting.
41 const int kMinLinesInColumn = 10;
42 // Minimum width of a column to be interesting.
43 const int kMinColumnWidth = 200;
44 // Minimum fraction of total column lines for a column to be interesting.
45 const double kMinFractionalLinesInColumn = 0.125;
46 // Fraction of height used as alignment tolerance for aligned tabs.
47 const double kAlignedFraction = 0.03125;
48 // Maximum gutter width (in absolute inch) that we care about
49 const double kMaxGutterWidthAbsolute = 2.00;
50 // Multiplier of gridsize for min gutter width of TT_MAYBE_RAGGED blobs.
51 const int kRaggedGutterMultiple = 5;
52 // Min aspect ratio of tall objects to be considered a separator line.
53 // (These will be ignored in searching the gutter for obstructions.)
54 const double kLineFragmentAspectRatio = 10.0;
55 // Min number of points to accept after evaluation.
56 const int kMinEvaluatedTabs = 3;
57 // Up to 30 degrees is allowed for rotations of diacritic blobs.
58 // Keep this value slightly larger than kCosSmallAngle in blobbox.cpp
59 // so that the assert there never fails.
60 const double kCosMaxSkewAngle = 0.866025;
61
62 static BOOL_VAR(textord_tabfind_show_initialtabs, false, "Show tab candidates");
63 static BOOL_VAR(textord_tabfind_show_finaltabs, false, "Show tab vectors");
64
TabFind(int gridsize,const ICOORD & bleft,const ICOORD & tright,TabVector_LIST * vlines,int vertical_x,int vertical_y,int resolution)65 TabFind::TabFind(int gridsize, const ICOORD &bleft, const ICOORD &tright, TabVector_LIST *vlines,
66 int vertical_x, int vertical_y, int resolution)
67 : AlignedBlob(gridsize, bleft, tright)
68 , resolution_(resolution)
69 , image_origin_(0, tright.y() - 1)
70 , v_it_(&vectors_) {
71 width_cb_ = nullptr;
72 v_it_.add_list_after(vlines);
73 SetVerticalSkewAndParallelize(vertical_x, vertical_y);
74 using namespace std::placeholders; // for _1
75 width_cb_ = std::bind(&TabFind::CommonWidth, this, _1);
76 }
77
78 TabFind::~TabFind() = default;
79
80 ///////////////// PUBLIC functions (mostly used by TabVector). //////////////
81
82 // Insert a list of blobs into the given grid (not necessarily this).
83 // If take_ownership is true, then the blobs are removed from the source list.
84 // See InsertBlob for the other arguments.
85 // It would seem to make more sense to swap this and grid, but this way
86 // around allows grid to not be derived from TabFind, eg a ColPartitionGrid,
87 // while the grid that provides the tab stops(this) has to be derived from
88 // TabFind.
InsertBlobsToGrid(bool h_spread,bool v_spread,BLOBNBOX_LIST * blobs,BBGrid<BLOBNBOX,BLOBNBOX_CLIST,BLOBNBOX_C_IT> * grid)89 void TabFind::InsertBlobsToGrid(bool h_spread, bool v_spread, BLOBNBOX_LIST *blobs,
90 BBGrid<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> *grid) {
91 BLOBNBOX_IT blob_it(blobs);
92 int b_count = 0;
93 int reject_count = 0;
94 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
95 BLOBNBOX *blob = blob_it.data();
96 // if (InsertBlob(true, true, blob, grid)) {
97 if (InsertBlob(h_spread, v_spread, blob, grid)) {
98 ++b_count;
99 } else {
100 ++reject_count;
101 }
102 }
103 if (textord_debug_tabfind) {
104 tprintf("Inserted %d blobs into grid, %d rejected.\n", b_count, reject_count);
105 }
106 }
107
108 // Insert a single blob into the given grid (not necessarily this).
109 // If h_spread, then all cells covered horizontally by the box are
110 // used, otherwise, just the bottom-left. Similarly for v_spread.
111 // A side effect is that the left and right rule edges of the blob are
112 // set according to the tab vectors in this (not grid).
InsertBlob(bool h_spread,bool v_spread,BLOBNBOX * blob,BBGrid<BLOBNBOX,BLOBNBOX_CLIST,BLOBNBOX_C_IT> * grid)113 bool TabFind::InsertBlob(bool h_spread, bool v_spread, BLOBNBOX *blob,
114 BBGrid<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> *grid) {
115 TBOX box = blob->bounding_box();
116 blob->set_left_rule(LeftEdgeForBox(box, false, false));
117 blob->set_right_rule(RightEdgeForBox(box, false, false));
118 blob->set_left_crossing_rule(LeftEdgeForBox(box, true, false));
119 blob->set_right_crossing_rule(RightEdgeForBox(box, true, false));
120 if (blob->joined_to_prev()) {
121 return false;
122 }
123 grid->InsertBBox(h_spread, v_spread, blob);
124 return true;
125 }
126
127 // Calls SetBlobRuleEdges for all the blobs in the given block.
SetBlockRuleEdges(TO_BLOCK * block)128 void TabFind::SetBlockRuleEdges(TO_BLOCK *block) {
129 SetBlobRuleEdges(&block->blobs);
130 SetBlobRuleEdges(&block->small_blobs);
131 SetBlobRuleEdges(&block->noise_blobs);
132 SetBlobRuleEdges(&block->large_blobs);
133 }
134
135 // Sets the left and right rule and crossing_rules for the blobs in the given
136 // list by fiding the next outermost tabvectors for each blob.
SetBlobRuleEdges(BLOBNBOX_LIST * blobs)137 void TabFind::SetBlobRuleEdges(BLOBNBOX_LIST *blobs) {
138 BLOBNBOX_IT blob_it(blobs);
139 for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
140 BLOBNBOX *blob = blob_it.data();
141 TBOX box = blob->bounding_box();
142 blob->set_left_rule(LeftEdgeForBox(box, false, false));
143 blob->set_right_rule(RightEdgeForBox(box, false, false));
144 blob->set_left_crossing_rule(LeftEdgeForBox(box, true, false));
145 blob->set_right_crossing_rule(RightEdgeForBox(box, true, false));
146 }
147 }
148
149 // Returns the gutter width of the given TabVector between the given y limits.
150 // Also returns x-shift to be added to the vector to clear any intersecting
151 // blobs. The shift is deducted from the returned gutter.
152 // If ignore_unmergeables is true, then blobs of UnMergeableType are
153 // ignored as if they don't exist. (Used for text on image.)
154 // max_gutter_width is used as the maximum width worth searching for in case
155 // there is nothing near the TabVector.
GutterWidth(int bottom_y,int top_y,const TabVector & v,bool ignore_unmergeables,int max_gutter_width,int * required_shift)156 int TabFind::GutterWidth(int bottom_y, int top_y, const TabVector &v, bool ignore_unmergeables,
157 int max_gutter_width, int *required_shift) {
158 bool right_to_left = v.IsLeftTab();
159 int bottom_x = v.XAtY(bottom_y);
160 int top_x = v.XAtY(top_y);
161 int start_x = right_to_left ? std::max(top_x, bottom_x) : std::min(top_x, bottom_x);
162 BlobGridSearch sidesearch(this);
163 sidesearch.StartSideSearch(start_x, bottom_y, top_y);
164 int min_gap = max_gutter_width;
165 *required_shift = 0;
166 BLOBNBOX *blob = nullptr;
167 while ((blob = sidesearch.NextSideSearch(right_to_left)) != nullptr) {
168 const TBOX &box = blob->bounding_box();
169 if (box.bottom() >= top_y || box.top() <= bottom_y) {
170 continue; // Doesn't overlap enough.
171 }
172 if (box.height() >= gridsize() * 2 && box.height() > box.width() * kLineFragmentAspectRatio) {
173 // Skip likely separator line residue.
174 continue;
175 }
176 if (ignore_unmergeables && BLOBNBOX::UnMergeableType(blob->region_type())) {
177 continue; // Skip non-text if required.
178 }
179 int mid_y = (box.bottom() + box.top()) / 2;
180 // We use the x at the mid-y so that the required_shift guarantees
181 // to clear all the blobs on the tab-stop. If we use the min/max
182 // of x at top/bottom of the blob, then exactness would be required,
183 // which is not a good thing.
184 int tab_x = v.XAtY(mid_y);
185 int gap;
186 if (right_to_left) {
187 gap = tab_x - box.right();
188 if (gap < 0 && box.left() - tab_x < *required_shift) {
189 *required_shift = box.left() - tab_x;
190 }
191 } else {
192 gap = box.left() - tab_x;
193 if (gap < 0 && box.right() - tab_x > *required_shift) {
194 *required_shift = box.right() - tab_x;
195 }
196 }
197 if (gap > 0 && gap < min_gap) {
198 min_gap = gap;
199 }
200 }
201 // Result may be negative, in which case, this is a really bad tabstop.
202 return min_gap - abs(*required_shift);
203 }
204
205 // Find the gutter width and distance to inner neighbour for the given blob.
GutterWidthAndNeighbourGap(int tab_x,int mean_height,int max_gutter,bool left,BLOBNBOX * bbox,int * gutter_width,int * neighbour_gap)206 void TabFind::GutterWidthAndNeighbourGap(int tab_x, int mean_height, int max_gutter, bool left,
207 BLOBNBOX *bbox, int *gutter_width, int *neighbour_gap) {
208 const TBOX &box = bbox->bounding_box();
209 // The gutter and internal sides of the box.
210 int gutter_x = left ? box.left() : box.right();
211 int internal_x = left ? box.right() : box.left();
212 // On ragged edges, the gutter side of the box is away from the tabstop.
213 int tab_gap = left ? gutter_x - tab_x : tab_x - gutter_x;
214 *gutter_width = max_gutter;
215 // If the box is away from the tabstop, we need to increase
216 // the allowed gutter width.
217 if (tab_gap > 0) {
218 *gutter_width += tab_gap;
219 }
220 bool debug = WithinTestRegion(2, box.left(), box.bottom());
221 if (debug) {
222 tprintf("Looking in gutter\n");
223 }
224 // Find the nearest blob on the outside of the column.
225 BLOBNBOX *gutter_bbox = AdjacentBlob(bbox, left, bbox->flow() == BTFT_TEXT_ON_IMAGE, 0.0,
226 *gutter_width, box.top(), box.bottom());
227 if (gutter_bbox != nullptr) {
228 const TBOX &gutter_box = gutter_bbox->bounding_box();
229 *gutter_width = left ? tab_x - gutter_box.right() : gutter_box.left() - tab_x;
230 }
231 if (*gutter_width >= max_gutter) {
232 // If there is no box because a tab was in the way, get the tab coord.
233 TBOX gutter_box(box);
234 if (left) {
235 gutter_box.set_left(tab_x - max_gutter - 1);
236 gutter_box.set_right(tab_x - max_gutter);
237 int tab_gutter = RightEdgeForBox(gutter_box, true, false);
238 if (tab_gutter < tab_x - 1) {
239 *gutter_width = tab_x - tab_gutter;
240 }
241 } else {
242 gutter_box.set_left(tab_x + max_gutter);
243 gutter_box.set_right(tab_x + max_gutter + 1);
244 int tab_gutter = LeftEdgeForBox(gutter_box, true, false);
245 if (tab_gutter > tab_x + 1) {
246 *gutter_width = tab_gutter - tab_x;
247 }
248 }
249 }
250 if (*gutter_width > max_gutter) {
251 *gutter_width = max_gutter;
252 }
253 // Now look for a neighbour on the inside.
254 if (debug) {
255 tprintf("Looking for neighbour\n");
256 }
257 BLOBNBOX *neighbour = AdjacentBlob(bbox, !left, bbox->flow() == BTFT_TEXT_ON_IMAGE, 0.0,
258 *gutter_width, box.top(), box.bottom());
259 int neighbour_edge = left ? RightEdgeForBox(box, true, false) : LeftEdgeForBox(box, true, false);
260 if (neighbour != nullptr) {
261 const TBOX &n_box = neighbour->bounding_box();
262 if (debug) {
263 tprintf("Found neighbour:");
264 n_box.print();
265 }
266 if (left && n_box.left() < neighbour_edge) {
267 neighbour_edge = n_box.left();
268 } else if (!left && n_box.right() > neighbour_edge) {
269 neighbour_edge = n_box.right();
270 }
271 }
272 *neighbour_gap = left ? neighbour_edge - internal_x : internal_x - neighbour_edge;
273 }
274
275 // Return the x-coord that corresponds to the right edge for the given
276 // box. If there is a rule line to the right that vertically overlaps it,
277 // then return the x-coord of the rule line, otherwise return the right
278 // edge of the page. For details see RightTabForBox below.
RightEdgeForBox(const TBOX & box,bool crossing,bool extended)279 int TabFind::RightEdgeForBox(const TBOX &box, bool crossing, bool extended) {
280 TabVector *v = RightTabForBox(box, crossing, extended);
281 return v == nullptr ? tright_.x() : v->XAtY((box.top() + box.bottom()) / 2);
282 }
283 // As RightEdgeForBox, but finds the left Edge instead.
LeftEdgeForBox(const TBOX & box,bool crossing,bool extended)284 int TabFind::LeftEdgeForBox(const TBOX &box, bool crossing, bool extended) {
285 TabVector *v = LeftTabForBox(box, crossing, extended);
286 return v == nullptr ? bleft_.x() : v->XAtY((box.top() + box.bottom()) / 2);
287 }
288
289 // This comment documents how this function works.
290 // For its purpose and arguments, see the comment in tabfind.h.
291 // TabVectors are stored sorted by perpendicular distance of middle from
292 // the global mean vertical vector. Since the individual vectors can have
293 // differing directions, their XAtY for a given y is not necessarily in the
294 // right order. Therefore the search has to be run with a margin.
295 // The middle of a vector that passes through (x,y) cannot be higher than
296 // halfway from y to the top, or lower than halfway from y to the bottom
297 // of the coordinate range; therefore, the search margin is the range of
298 // sort keys between these halfway points. Any vector with a sort key greater
299 // than the upper margin must be to the right of x at y, and likewise any
300 // vector with a sort key less than the lower margin must pass to the left
301 // of x at y.
RightTabForBox(const TBOX & box,bool crossing,bool extended)302 TabVector *TabFind::RightTabForBox(const TBOX &box, bool crossing, bool extended) {
303 if (v_it_.empty()) {
304 return nullptr;
305 }
306 int top_y = box.top();
307 int bottom_y = box.bottom();
308 int mid_y = (top_y + bottom_y) / 2;
309 int right = crossing ? (box.left() + box.right()) / 2 : box.right();
310 int min_key, max_key;
311 SetupTabSearch(right, mid_y, &min_key, &max_key);
312 // Position the iterator at the first TabVector with sort_key >= min_key.
313 while (!v_it_.at_first() && v_it_.data()->sort_key() >= min_key) {
314 v_it_.backward();
315 }
316 while (!v_it_.at_last() && v_it_.data()->sort_key() < min_key) {
317 v_it_.forward();
318 }
319 // Find the leftmost tab vector that overlaps and has XAtY(mid_y) >= right.
320 TabVector *best_v = nullptr;
321 int best_x = -1;
322 int key_limit = -1;
323 do {
324 TabVector *v = v_it_.data();
325 int x = v->XAtY(mid_y);
326 if (x >= right && (v->VOverlap(top_y, bottom_y) > 0 ||
327 (extended && v->ExtendedOverlap(top_y, bottom_y) > 0))) {
328 if (best_v == nullptr || x < best_x) {
329 best_v = v;
330 best_x = x;
331 // We can guarantee that no better vector can be found if the
332 // sort key exceeds that of the best by max_key - min_key.
333 key_limit = v->sort_key() + max_key - min_key;
334 }
335 }
336 // Break when the search is done to avoid wrapping the iterator and
337 // thereby potentially slowing the next search.
338 if (v_it_.at_last() || (best_v != nullptr && v->sort_key() > key_limit)) {
339 break; // Prevent restarting list for next call.
340 }
341 v_it_.forward();
342 } while (!v_it_.at_first());
343 return best_v;
344 }
345
346 // As RightTabForBox, but finds the left TabVector instead.
LeftTabForBox(const TBOX & box,bool crossing,bool extended)347 TabVector *TabFind::LeftTabForBox(const TBOX &box, bool crossing, bool extended) {
348 if (v_it_.empty()) {
349 return nullptr;
350 }
351 int top_y = box.top();
352 int bottom_y = box.bottom();
353 int mid_y = (top_y + bottom_y) / 2;
354 int left = crossing ? (box.left() + box.right()) / 2 : box.left();
355 int min_key, max_key;
356 SetupTabSearch(left, mid_y, &min_key, &max_key);
357 // Position the iterator at the last TabVector with sort_key <= max_key.
358 while (!v_it_.at_last() && v_it_.data()->sort_key() <= max_key) {
359 v_it_.forward();
360 }
361 while (!v_it_.at_first() && v_it_.data()->sort_key() > max_key) {
362 v_it_.backward();
363 }
364 // Find the rightmost tab vector that overlaps and has XAtY(mid_y) <= left.
365 TabVector *best_v = nullptr;
366 int best_x = -1;
367 int key_limit = -1;
368 do {
369 TabVector *v = v_it_.data();
370 int x = v->XAtY(mid_y);
371 if (x <= left && (v->VOverlap(top_y, bottom_y) > 0 ||
372 (extended && v->ExtendedOverlap(top_y, bottom_y) > 0))) {
373 if (best_v == nullptr || x > best_x) {
374 best_v = v;
375 best_x = x;
376 // We can guarantee that no better vector can be found if the
377 // sort key is less than that of the best by max_key - min_key.
378 key_limit = v->sort_key() - (max_key - min_key);
379 }
380 }
381 // Break when the search is done to avoid wrapping the iterator and
382 // thereby potentially slowing the next search.
383 if (v_it_.at_first() || (best_v != nullptr && v->sort_key() < key_limit)) {
384 break; // Prevent restarting list for next call.
385 }
386 v_it_.backward();
387 } while (!v_it_.at_last());
388 return best_v;
389 }
390
391 // Return true if the given width is close to one of the common
392 // widths in column_widths_.
CommonWidth(int width)393 bool TabFind::CommonWidth(int width) {
394 width /= kColumnWidthFactor;
395 ICOORDELT_IT it(&column_widths_);
396 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
397 ICOORDELT *w = it.data();
398 if (w->x() - 1 <= width && width <= w->y() + 1) {
399 return true;
400 }
401 }
402 return false;
403 }
404
405 // Return true if the sizes are more than a
406 // factor of 2 different.
DifferentSizes(int size1,int size2)407 bool TabFind::DifferentSizes(int size1, int size2) {
408 return size1 > size2 * 2 || size2 > size1 * 2;
409 }
410
411 // Return true if the sizes are more than a
412 // factor of 5 different.
VeryDifferentSizes(int size1,int size2)413 bool TabFind::VeryDifferentSizes(int size1, int size2) {
414 return size1 > size2 * 5 || size2 > size1 * 5;
415 }
416
417 ///////////////// PROTECTED functions (used by ColumnFinder). //////////////
418
419 // Top-level function to find TabVectors in an input page block.
420 // Returns false if the detected skew angle is impossible.
421 // Applies the detected skew angle to deskew the tabs, blobs and part_grid.
FindTabVectors(TabVector_LIST * hlines,BLOBNBOX_LIST * image_blobs,TO_BLOCK * block,int min_gutter_width,double tabfind_aligned_gap_fraction,ColPartitionGrid * part_grid,FCOORD * deskew,FCOORD * reskew)422 bool TabFind::FindTabVectors(TabVector_LIST *hlines, BLOBNBOX_LIST *image_blobs, TO_BLOCK *block,
423 int min_gutter_width, double tabfind_aligned_gap_fraction,
424 ColPartitionGrid *part_grid, FCOORD *deskew, FCOORD *reskew) {
425 ScrollView *tab_win =
426 FindInitialTabVectors(image_blobs, min_gutter_width, tabfind_aligned_gap_fraction, block);
427 ComputeColumnWidths(tab_win, part_grid);
428 TabVector::MergeSimilarTabVectors(vertical_skew_, &vectors_, this);
429 SortVectors();
430 CleanupTabs();
431 if (!Deskew(hlines, image_blobs, block, deskew, reskew)) {
432 return false; // Skew angle is too large.
433 }
434 part_grid->Deskew(*deskew);
435 ApplyTabConstraints();
436 #ifndef GRAPHICS_DISABLED
437 if (textord_tabfind_show_finaltabs) {
438 tab_win = MakeWindow(640, 50, "FinalTabs");
439 DisplayBoxes(tab_win);
440 DisplayTabs("FinalTabs", tab_win);
441 tab_win = DisplayTabVectors(tab_win);
442 }
443 #endif // !GRAPHICS_DISABLED
444 return true;
445 }
446
447 // Top-level function to not find TabVectors in an input page block,
448 // but setup for single column mode.
DontFindTabVectors(BLOBNBOX_LIST * image_blobs,TO_BLOCK * block,FCOORD * deskew,FCOORD * reskew)449 void TabFind::DontFindTabVectors(BLOBNBOX_LIST *image_blobs, TO_BLOCK *block, FCOORD *deskew,
450 FCOORD *reskew) {
451 InsertBlobsToGrid(false, false, image_blobs, this);
452 InsertBlobsToGrid(true, false, &block->blobs, this);
453 deskew->set_x(1.0f);
454 deskew->set_y(0.0f);
455 reskew->set_x(1.0f);
456 reskew->set_y(0.0f);
457 }
458
459 // Cleans up the lists of blobs in the block ready for use by TabFind.
460 // Large blobs that look like text are moved to the main blobs list.
461 // Main blobs that are superseded by the image blobs are deleted.
TidyBlobs(TO_BLOCK * block)462 void TabFind::TidyBlobs(TO_BLOCK *block) {
463 BLOBNBOX_IT large_it = &block->large_blobs;
464 BLOBNBOX_IT blob_it = &block->blobs;
465 int b_count = 0;
466 for (large_it.mark_cycle_pt(); !large_it.cycled_list(); large_it.forward()) {
467 BLOBNBOX *large_blob = large_it.data();
468 if (large_blob->owner() != nullptr) {
469 blob_it.add_to_end(large_it.extract());
470 ++b_count;
471 }
472 }
473 if (textord_debug_tabfind) {
474 tprintf("Moved %d large blobs to normal list\n", b_count);
475 #ifndef GRAPHICS_DISABLED
476 ScrollView *rej_win = MakeWindow(500, 300, "Image blobs");
477 block->plot_graded_blobs(rej_win);
478 block->plot_noise_blobs(rej_win);
479 rej_win->Update();
480 #endif // !GRAPHICS_DISABLED
481 }
482 block->DeleteUnownedNoise();
483 }
484
485 // Helper function to setup search limits for *TabForBox.
SetupTabSearch(int x,int y,int * min_key,int * max_key)486 void TabFind::SetupTabSearch(int x, int y, int *min_key, int *max_key) {
487 int key1 = TabVector::SortKey(vertical_skew_, x, (y + tright_.y()) / 2);
488 int key2 = TabVector::SortKey(vertical_skew_, x, (y + bleft_.y()) / 2);
489 *min_key = std::min(key1, key2);
490 *max_key = std::max(key1, key2);
491 }
492
493 #ifndef GRAPHICS_DISABLED
494
DisplayTabVectors(ScrollView * tab_win)495 ScrollView *TabFind::DisplayTabVectors(ScrollView *tab_win) {
496 // For every vector, display it.
497 TabVector_IT it(&vectors_);
498 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
499 TabVector *vector = it.data();
500 vector->Display(tab_win);
501 }
502 tab_win->Update();
503 return tab_win;
504 }
505
506 #endif
507
508 // PRIVATE CODE.
509 //
510 // First part of FindTabVectors, which may be used twice if the text
511 // is mostly of vertical alignment.
FindInitialTabVectors(BLOBNBOX_LIST * image_blobs,int min_gutter_width,double tabfind_aligned_gap_fraction,TO_BLOCK * block)512 ScrollView *TabFind::FindInitialTabVectors(BLOBNBOX_LIST *image_blobs, int min_gutter_width,
513 double tabfind_aligned_gap_fraction, TO_BLOCK *block) {
514 #ifndef GRAPHICS_DISABLED
515 if (textord_tabfind_show_initialtabs) {
516 ScrollView *line_win = MakeWindow(0, 0, "VerticalLines");
517 line_win = DisplayTabVectors(line_win);
518 }
519 #endif
520 // Prepare the grid.
521 if (image_blobs != nullptr) {
522 InsertBlobsToGrid(true, false, image_blobs, this);
523 }
524 InsertBlobsToGrid(true, false, &block->blobs, this);
525 ScrollView *initial_win = FindTabBoxes(min_gutter_width, tabfind_aligned_gap_fraction);
526 FindAllTabVectors(min_gutter_width);
527
528 TabVector::MergeSimilarTabVectors(vertical_skew_, &vectors_, this);
529 SortVectors();
530 EvaluateTabs();
531 #ifndef GRAPHICS_DISABLED
532 if (textord_tabfind_show_initialtabs && initial_win != nullptr) {
533 initial_win = DisplayTabVectors(initial_win);
534 }
535 #endif
536 MarkVerticalText();
537 return initial_win;
538 }
539
540 #ifndef GRAPHICS_DISABLED
541
542 // Helper displays all the boxes in the given vector on the given window.
DisplayBoxVector(const std::vector<BLOBNBOX * > & boxes,ScrollView * win)543 static void DisplayBoxVector(const std::vector<BLOBNBOX *> &boxes, ScrollView *win) {
544 for (auto boxe : boxes) {
545 TBOX box = boxe->bounding_box();
546 int left_x = box.left();
547 int right_x = box.right();
548 int top_y = box.top();
549 int bottom_y = box.bottom();
550 ScrollView::Color box_color = boxe->BoxColor();
551 win->Pen(box_color);
552 win->Rectangle(left_x, bottom_y, right_x, top_y);
553 }
554 win->Update();
555 }
556
557 #endif // !GRAPHICS_DISABLED
558
559 // For each box in the grid, decide whether it is a candidate tab-stop,
560 // and if so add it to the left/right tab boxes.
FindTabBoxes(int min_gutter_width,double tabfind_aligned_gap_fraction)561 ScrollView *TabFind::FindTabBoxes(int min_gutter_width, double tabfind_aligned_gap_fraction) {
562 left_tab_boxes_.clear();
563 right_tab_boxes_.clear();
564 // For every bbox in the grid, determine whether it uses a tab on an edge.
565 GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> gsearch(this);
566 gsearch.StartFullSearch();
567 BLOBNBOX *bbox;
568 while ((bbox = gsearch.NextFullSearch()) != nullptr) {
569 if (TestBoxForTabs(bbox, min_gutter_width, tabfind_aligned_gap_fraction)) {
570 // If it is any kind of tab, insert it into the vectors.
571 if (bbox->left_tab_type() != TT_NONE) {
572 left_tab_boxes_.push_back(bbox);
573 }
574 if (bbox->right_tab_type() != TT_NONE) {
575 right_tab_boxes_.push_back(bbox);
576 }
577 }
578 }
579 // Sort left tabs by left and right by right to see the outermost one first
580 // on a ragged tab.
581 std::sort(left_tab_boxes_.begin(), left_tab_boxes_.end(), StdSortByBoxLeft<BLOBNBOX>);
582 std::sort(right_tab_boxes_.begin(), right_tab_boxes_.end(), StdSortRightToLeft<BLOBNBOX>);
583 ScrollView *tab_win = nullptr;
584 #ifndef GRAPHICS_DISABLED
585 if (textord_tabfind_show_initialtabs) {
586 tab_win = MakeWindow(0, 100, "InitialTabs");
587 tab_win->Pen(ScrollView::BLUE);
588 tab_win->Brush(ScrollView::NONE);
589 // Display the left and right tab boxes.
590 DisplayBoxVector(left_tab_boxes_, tab_win);
591 DisplayBoxVector(right_tab_boxes_, tab_win);
592 tab_win = DisplayTabs("Tabs", tab_win);
593 }
594 #endif // !GRAPHICS_DISABLED
595 return tab_win;
596 }
597
TestBoxForTabs(BLOBNBOX * bbox,int min_gutter_width,double tabfind_aligned_gap_fraction)598 bool TabFind::TestBoxForTabs(BLOBNBOX *bbox, int min_gutter_width,
599 double tabfind_aligned_gap_fraction) {
600 GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> radsearch(this);
601 TBOX box = bbox->bounding_box();
602 // If there are separator lines, get the column edges.
603 int left_column_edge = bbox->left_rule();
604 int right_column_edge = bbox->right_rule();
605 // The edges of the bounding box of the blob being processed.
606 int left_x = box.left();
607 int right_x = box.right();
608 int top_y = box.top();
609 int bottom_y = box.bottom();
610 int height = box.height();
611 bool debug = WithinTestRegion(3, left_x, top_y);
612 if (debug) {
613 tprintf("Column edges for blob at (%d,%d)->(%d,%d) are [%d, %d]\n", left_x, top_y, right_x,
614 bottom_y, left_column_edge, right_column_edge);
615 }
616 // Compute a search radius based on a multiple of the height.
617 int radius = (height * kTabRadiusFactor + gridsize_ - 1) / gridsize_;
618 radsearch.StartRadSearch((left_x + right_x) / 2, (top_y + bottom_y) / 2, radius);
619 // In Vertical Page mode, once we have an estimate of the vertical line
620 // spacing, the minimum amount of gutter space before a possible tab is
621 // increased under the assumption that column partition is always larger
622 // than line spacing.
623 int min_spacing = static_cast<int>(height * tabfind_aligned_gap_fraction);
624 if (min_gutter_width > min_spacing) {
625 min_spacing = min_gutter_width;
626 }
627 int min_ragged_gutter = kRaggedGutterMultiple * gridsize();
628 if (min_gutter_width > min_ragged_gutter) {
629 min_ragged_gutter = min_gutter_width;
630 }
631 int target_right = left_x - min_spacing;
632 int target_left = right_x + min_spacing;
633 // We will be evaluating whether the left edge could be a left tab, and
634 // whether the right edge could be a right tab.
635 // A box can be a tab if its bool is_(left/right)_tab remains true, meaning
636 // that no blobs have been found in the gutter during the radial search.
637 // A box can also be a tab if there are objects in the gutter only above
638 // or only below, and there are aligned objects on the opposite side, but
639 // not too many unaligned objects. The maybe_(left/right)_tab_up counts
640 // aligned objects above and negatively counts unaligned objects above,
641 // and is set to -INT32_MAX if a gutter object is found above.
642 // The other 3 maybe ints work similarly for the other sides.
643 // These conditions are very strict, to minimize false positives, and really
644 // only aligned tabs and outermost ragged tab blobs will qualify, so we
645 // also have maybe_ragged_left/right with less stringent rules.
646 // A blob that is maybe_ragged_left/right will be further qualified later,
647 // using the min_ragged_gutter.
648 bool is_left_tab = true;
649 bool is_right_tab = true;
650 bool maybe_ragged_left = true;
651 bool maybe_ragged_right = true;
652 int maybe_left_tab_up = 0;
653 int maybe_right_tab_up = 0;
654 int maybe_left_tab_down = 0;
655 int maybe_right_tab_down = 0;
656 if (bbox->leader_on_left()) {
657 is_left_tab = false;
658 maybe_ragged_left = false;
659 maybe_left_tab_up = -INT32_MAX;
660 maybe_left_tab_down = -INT32_MAX;
661 }
662 if (bbox->leader_on_right()) {
663 is_right_tab = false;
664 maybe_ragged_right = false;
665 maybe_right_tab_up = -INT32_MAX;
666 maybe_right_tab_down = -INT32_MAX;
667 }
668 int alignment_tolerance = static_cast<int>(resolution_ * kAlignedFraction);
669 BLOBNBOX *neighbour = nullptr;
670 while ((neighbour = radsearch.NextRadSearch()) != nullptr) {
671 if (neighbour == bbox) {
672 continue;
673 }
674 TBOX nbox = neighbour->bounding_box();
675 int n_left = nbox.left();
676 int n_right = nbox.right();
677 if (debug) {
678 tprintf("Neighbour at (%d,%d)->(%d,%d)\n", n_left, nbox.bottom(), n_right, nbox.top());
679 }
680 // If the neighbouring blob is the wrong side of a separator line, then it
681 // "doesn't exist" as far as we are concerned.
682 if (n_right > right_column_edge || n_left < left_column_edge ||
683 left_x < neighbour->left_rule() || right_x > neighbour->right_rule()) {
684 continue; // Separator line in the way.
685 }
686 int n_mid_x = (n_left + n_right) / 2;
687 int n_mid_y = (nbox.top() + nbox.bottom()) / 2;
688 if (n_mid_x <= left_x && n_right >= target_right) {
689 if (debug) {
690 tprintf("Not a left tab\n");
691 }
692 is_left_tab = false;
693 if (n_mid_y < top_y) {
694 maybe_left_tab_down = -INT32_MAX;
695 }
696 if (n_mid_y > bottom_y) {
697 maybe_left_tab_up = -INT32_MAX;
698 }
699 } else if (NearlyEqual(left_x, n_left, alignment_tolerance)) {
700 if (debug) {
701 tprintf("Maybe a left tab\n");
702 }
703 if (n_mid_y > top_y && maybe_left_tab_up > -INT32_MAX) {
704 ++maybe_left_tab_up;
705 }
706 if (n_mid_y < bottom_y && maybe_left_tab_down > -INT32_MAX) {
707 ++maybe_left_tab_down;
708 }
709 } else if (n_left < left_x && n_right >= left_x) {
710 // Overlaps but not aligned so negative points on a maybe.
711 if (debug) {
712 tprintf("Maybe Not a left tab\n");
713 }
714 if (n_mid_y > top_y && maybe_left_tab_up > -INT32_MAX) {
715 --maybe_left_tab_up;
716 }
717 if (n_mid_y < bottom_y && maybe_left_tab_down > -INT32_MAX) {
718 --maybe_left_tab_down;
719 }
720 }
721 if (n_left < left_x && nbox.y_overlap(box) && n_right >= target_right) {
722 maybe_ragged_left = false;
723 if (debug) {
724 tprintf("Not a ragged left\n");
725 }
726 }
727 if (n_mid_x >= right_x && n_left <= target_left) {
728 if (debug) {
729 tprintf("Not a right tab\n");
730 }
731 is_right_tab = false;
732 if (n_mid_y < top_y) {
733 maybe_right_tab_down = -INT32_MAX;
734 }
735 if (n_mid_y > bottom_y) {
736 maybe_right_tab_up = -INT32_MAX;
737 }
738 } else if (NearlyEqual(right_x, n_right, alignment_tolerance)) {
739 if (debug) {
740 tprintf("Maybe a right tab\n");
741 }
742 if (n_mid_y > top_y && maybe_right_tab_up > -INT32_MAX) {
743 ++maybe_right_tab_up;
744 }
745 if (n_mid_y < bottom_y && maybe_right_tab_down > -INT32_MAX) {
746 ++maybe_right_tab_down;
747 }
748 } else if (n_right > right_x && n_left <= right_x) {
749 // Overlaps but not aligned so negative points on a maybe.
750 if (debug) {
751 tprintf("Maybe Not a right tab\n");
752 }
753 if (n_mid_y > top_y && maybe_right_tab_up > -INT32_MAX) {
754 --maybe_right_tab_up;
755 }
756 if (n_mid_y < bottom_y && maybe_right_tab_down > -INT32_MAX) {
757 --maybe_right_tab_down;
758 }
759 }
760 if (n_right > right_x && nbox.y_overlap(box) && n_left <= target_left) {
761 maybe_ragged_right = false;
762 if (debug) {
763 tprintf("Not a ragged right\n");
764 }
765 }
766 if (maybe_left_tab_down == -INT32_MAX && maybe_left_tab_up == -INT32_MAX &&
767 maybe_right_tab_down == -INT32_MAX && maybe_right_tab_up == -INT32_MAX) {
768 break;
769 }
770 }
771 if (is_left_tab || maybe_left_tab_up > 1 || maybe_left_tab_down > 1) {
772 bbox->set_left_tab_type(TT_MAYBE_ALIGNED);
773 } else if (maybe_ragged_left && ConfirmRaggedLeft(bbox, min_ragged_gutter)) {
774 bbox->set_left_tab_type(TT_MAYBE_RAGGED);
775 } else {
776 bbox->set_left_tab_type(TT_NONE);
777 }
778 if (is_right_tab || maybe_right_tab_up > 1 || maybe_right_tab_down > 1) {
779 bbox->set_right_tab_type(TT_MAYBE_ALIGNED);
780 } else if (maybe_ragged_right && ConfirmRaggedRight(bbox, min_ragged_gutter)) {
781 bbox->set_right_tab_type(TT_MAYBE_RAGGED);
782 } else {
783 bbox->set_right_tab_type(TT_NONE);
784 }
785 if (debug) {
786 tprintf("Left result = %s, Right result=%s\n",
787 bbox->left_tab_type() == TT_MAYBE_ALIGNED
788 ? "Aligned"
789 : (bbox->left_tab_type() == TT_MAYBE_RAGGED ? "Ragged" : "None"),
790 bbox->right_tab_type() == TT_MAYBE_ALIGNED
791 ? "Aligned"
792 : (bbox->right_tab_type() == TT_MAYBE_RAGGED ? "Ragged" : "None"));
793 }
794 return bbox->left_tab_type() != TT_NONE || bbox->right_tab_type() != TT_NONE;
795 }
796
797 // Returns true if there is nothing in the rectangle of width min_gutter to
798 // the left of bbox.
ConfirmRaggedLeft(BLOBNBOX * bbox,int min_gutter)799 bool TabFind::ConfirmRaggedLeft(BLOBNBOX *bbox, int min_gutter) {
800 TBOX search_box(bbox->bounding_box());
801 search_box.set_right(search_box.left());
802 search_box.set_left(search_box.left() - min_gutter);
803 return NothingYOverlapsInBox(search_box, bbox->bounding_box());
804 }
805
806 // Returns true if there is nothing in the rectangle of width min_gutter to
807 // the right of bbox.
ConfirmRaggedRight(BLOBNBOX * bbox,int min_gutter)808 bool TabFind::ConfirmRaggedRight(BLOBNBOX *bbox, int min_gutter) {
809 TBOX search_box(bbox->bounding_box());
810 search_box.set_left(search_box.right());
811 search_box.set_right(search_box.right() + min_gutter);
812 return NothingYOverlapsInBox(search_box, bbox->bounding_box());
813 }
814
815 // Returns true if there is nothing in the given search_box that vertically
816 // overlaps target_box other than target_box itself.
NothingYOverlapsInBox(const TBOX & search_box,const TBOX & target_box)817 bool TabFind::NothingYOverlapsInBox(const TBOX &search_box, const TBOX &target_box) {
818 BlobGridSearch rsearch(this);
819 rsearch.StartRectSearch(search_box);
820 BLOBNBOX *blob;
821 while ((blob = rsearch.NextRectSearch()) != nullptr) {
822 const TBOX &box = blob->bounding_box();
823 if (box.y_overlap(target_box) && !(box == target_box)) {
824 return false;
825 }
826 }
827 return true;
828 }
829
FindAllTabVectors(int min_gutter_width)830 void TabFind::FindAllTabVectors(int min_gutter_width) {
831 // A list of vectors that will be created in estimating the skew.
832 TabVector_LIST dummy_vectors;
833 // An estimate of the vertical direction, revised as more lines are added.
834 int vertical_x = 0;
835 int vertical_y = 1;
836 // Find an estimate of the vertical direction by finding some tab vectors.
837 // Slowly up the search size until we get some vectors.
838 for (int search_size = kMinVerticalSearch; search_size < kMaxVerticalSearch;
839 search_size += kMinVerticalSearch) {
840 int vector_count = FindTabVectors(search_size, TA_LEFT_ALIGNED, min_gutter_width,
841 &dummy_vectors, &vertical_x, &vertical_y);
842 vector_count += FindTabVectors(search_size, TA_RIGHT_ALIGNED, min_gutter_width, &dummy_vectors,
843 &vertical_x, &vertical_y);
844 if (vector_count > 0) {
845 break;
846 }
847 }
848 // Get rid of the test vectors and reset the types of the tabs.
849 dummy_vectors.clear();
850 for (auto bbox : left_tab_boxes_) {
851 if (bbox->left_tab_type() == TT_CONFIRMED) {
852 bbox->set_left_tab_type(TT_MAYBE_ALIGNED);
853 }
854 }
855 for (auto bbox : right_tab_boxes_) {
856 if (bbox->right_tab_type() == TT_CONFIRMED) {
857 bbox->set_right_tab_type(TT_MAYBE_ALIGNED);
858 }
859 }
860 if (textord_debug_tabfind) {
861 tprintf("Beginning real tab search with vertical = %d,%d...\n", vertical_x, vertical_y);
862 }
863 // Now do the real thing ,but keep the vectors in the dummy_vectors list
864 // until they are all done, so we don't get the tab vectors confused with
865 // the rule line vectors.
866 FindTabVectors(kMaxVerticalSearch, TA_LEFT_ALIGNED, min_gutter_width, &dummy_vectors, &vertical_x,
867 &vertical_y);
868 FindTabVectors(kMaxVerticalSearch, TA_RIGHT_ALIGNED, min_gutter_width, &dummy_vectors,
869 &vertical_x, &vertical_y);
870 FindTabVectors(kMaxRaggedSearch, TA_LEFT_RAGGED, min_gutter_width, &dummy_vectors, &vertical_x,
871 &vertical_y);
872 FindTabVectors(kMaxRaggedSearch, TA_RIGHT_RAGGED, min_gutter_width, &dummy_vectors, &vertical_x,
873 &vertical_y);
874 // Now add the vectors to the vectors_ list.
875 TabVector_IT v_it(&vectors_);
876 v_it.add_list_after(&dummy_vectors);
877 // Now use the summed (mean) vertical vector as the direction for everything.
878 SetVerticalSkewAndParallelize(vertical_x, vertical_y);
879 }
880
881 // Helper for FindAllTabVectors finds the vectors of a particular type.
FindTabVectors(int search_size_multiple,TabAlignment alignment,int min_gutter_width,TabVector_LIST * vectors,int * vertical_x,int * vertical_y)882 int TabFind::FindTabVectors(int search_size_multiple, TabAlignment alignment, int min_gutter_width,
883 TabVector_LIST *vectors, int *vertical_x, int *vertical_y) {
884 TabVector_IT vector_it(vectors);
885 int vector_count = 0;
886 // Search the right or left tab boxes, looking for tab vectors.
887 bool right = alignment == TA_RIGHT_ALIGNED || alignment == TA_RIGHT_RAGGED;
888 const std::vector<BLOBNBOX *> &boxes = right ? right_tab_boxes_ : left_tab_boxes_;
889 for (auto bbox : boxes) {
890 if ((!right && bbox->left_tab_type() == TT_MAYBE_ALIGNED) ||
891 (right && bbox->right_tab_type() == TT_MAYBE_ALIGNED)) {
892 TabVector *vector = FindTabVector(search_size_multiple, min_gutter_width, alignment, bbox,
893 vertical_x, vertical_y);
894 if (vector != nullptr) {
895 ++vector_count;
896 vector_it.add_to_end(vector);
897 }
898 }
899 }
900 return vector_count;
901 }
902
903 // Finds a vector corresponding to a tabstop running through the
904 // given box of the given alignment type.
905 // search_size_multiple is a multiple of height used to control
906 // the size of the search.
907 // vertical_x and y are updated with an estimate of the real
908 // vertical direction. (skew finding.)
909 // Returns nullptr if no decent tabstop can be found.
FindTabVector(int search_size_multiple,int min_gutter_width,TabAlignment alignment,BLOBNBOX * bbox,int * vertical_x,int * vertical_y)910 TabVector *TabFind::FindTabVector(int search_size_multiple, int min_gutter_width,
911 TabAlignment alignment, BLOBNBOX *bbox, int *vertical_x,
912 int *vertical_y) {
913 int height = std::max(static_cast<int>(bbox->bounding_box().height()), gridsize());
914 AlignedBlobParams align_params(*vertical_x, *vertical_y, height, search_size_multiple,
915 min_gutter_width, resolution_, alignment);
916 // FindVerticalAlignment is in the parent (AlignedBlob) class.
917 return FindVerticalAlignment(align_params, bbox, vertical_x, vertical_y);
918 }
919
920 // Set the vertical_skew_ member from the given vector and refit
921 // all vectors parallel to the skew vector.
SetVerticalSkewAndParallelize(int vertical_x,int vertical_y)922 void TabFind::SetVerticalSkewAndParallelize(int vertical_x, int vertical_y) {
923 // Fit the vertical vector into an ICOORD, which is 16 bit.
924 vertical_skew_.set_with_shrink(vertical_x, vertical_y);
925 if (textord_debug_tabfind) {
926 tprintf("Vertical skew vector=(%d,%d)\n", vertical_skew_.x(), vertical_skew_.y());
927 }
928 v_it_.set_to_list(&vectors_);
929 for (v_it_.mark_cycle_pt(); !v_it_.cycled_list(); v_it_.forward()) {
930 TabVector *v = v_it_.data();
931 v->Fit(vertical_skew_, true);
932 }
933 // Now sort the vectors as their direction has potentially changed.
934 SortVectors();
935 }
936
937 // Sort all the current vectors using the given vertical direction vector.
SortVectors()938 void TabFind::SortVectors() {
939 vectors_.sort(TabVector::SortVectorsByKey);
940 v_it_.set_to_list(&vectors_);
941 }
942
943 // Evaluate all the current tab vectors.
EvaluateTabs()944 void TabFind::EvaluateTabs() {
945 TabVector_IT rule_it(&vectors_);
946 for (rule_it.mark_cycle_pt(); !rule_it.cycled_list(); rule_it.forward()) {
947 TabVector *tab = rule_it.data();
948 if (!tab->IsSeparator()) {
949 tab->Evaluate(vertical_skew_, this);
950 if (tab->BoxCount() < kMinEvaluatedTabs) {
951 if (textord_debug_tabfind > 2) {
952 tab->Print("Too few boxes");
953 }
954 delete rule_it.extract();
955 v_it_.set_to_list(&vectors_);
956 } else if (WithinTestRegion(3, tab->startpt().x(), tab->startpt().y())) {
957 tab->Print("Evaluated tab");
958 }
959 }
960 }
961 }
962
963 // Trace textlines from one side to the other of each tab vector, saving
964 // the most frequent column widths found in a list so that a given width
965 // can be tested for being a common width with a simple callback function.
ComputeColumnWidths(ScrollView * tab_win,ColPartitionGrid * part_grid)966 void TabFind::ComputeColumnWidths(ScrollView *tab_win, ColPartitionGrid *part_grid) {
967 #ifndef GRAPHICS_DISABLED
968 if (tab_win != nullptr) {
969 tab_win->Pen(ScrollView::WHITE);
970 }
971 #endif // !GRAPHICS_DISABLED
972 // Accumulate column sections into a STATS
973 int col_widths_size = (tright_.x() - bleft_.x()) / kColumnWidthFactor;
974 STATS col_widths(0, col_widths_size + 1);
975 ApplyPartitionsToColumnWidths(part_grid, &col_widths);
976 #ifndef GRAPHICS_DISABLED
977 if (tab_win != nullptr) {
978 tab_win->Update();
979 }
980 #endif // !GRAPHICS_DISABLED
981 if (textord_debug_tabfind > 1) {
982 col_widths.print();
983 }
984 // Now make a list of column widths.
985 MakeColumnWidths(col_widths_size, &col_widths);
986 // Turn the column width into a range.
987 ApplyPartitionsToColumnWidths(part_grid, nullptr);
988 }
989
990 // Finds column width and:
991 // if col_widths is not null (pass1):
992 // pair-up tab vectors with existing ColPartitions and accumulate widths.
993 // else (pass2):
994 // find the largest real partition width for each recorded column width,
995 // to be used as the minimum acceptable width.
ApplyPartitionsToColumnWidths(ColPartitionGrid * part_grid,STATS * col_widths)996 void TabFind::ApplyPartitionsToColumnWidths(ColPartitionGrid *part_grid, STATS *col_widths) {
997 // For every ColPartition in the part_grid, add partners to the tabvectors
998 // and accumulate the column widths.
999 ColPartitionGridSearch gsearch(part_grid);
1000 gsearch.StartFullSearch();
1001 ColPartition *part;
1002 while ((part = gsearch.NextFullSearch()) != nullptr) {
1003 BLOBNBOX_C_IT blob_it(part->boxes());
1004 if (blob_it.empty()) {
1005 continue;
1006 }
1007 BLOBNBOX *left_blob = blob_it.data();
1008 blob_it.move_to_last();
1009 BLOBNBOX *right_blob = blob_it.data();
1010 TabVector *left_vector = LeftTabForBox(left_blob->bounding_box(), true, false);
1011 if (left_vector == nullptr || left_vector->IsRightTab()) {
1012 continue;
1013 }
1014 TabVector *right_vector = RightTabForBox(right_blob->bounding_box(), true, false);
1015 if (right_vector == nullptr || right_vector->IsLeftTab()) {
1016 continue;
1017 }
1018
1019 int line_left = left_vector->XAtY(left_blob->bounding_box().bottom());
1020 int line_right = right_vector->XAtY(right_blob->bounding_box().bottom());
1021 // Add to STATS of measurements if the width is significant.
1022 int width = line_right - line_left;
1023 if (col_widths != nullptr) {
1024 AddPartnerVector(left_blob, right_blob, left_vector, right_vector);
1025 if (width >= kMinColumnWidth) {
1026 col_widths->add(width / kColumnWidthFactor, 1);
1027 }
1028 } else {
1029 width /= kColumnWidthFactor;
1030 ICOORDELT_IT it(&column_widths_);
1031 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1032 ICOORDELT *w = it.data();
1033 if (NearlyEqual<int>(width, w->y(), 1)) {
1034 int true_width = part->bounding_box().width() / kColumnWidthFactor;
1035 if (true_width <= w->y() && true_width > w->x()) {
1036 w->set_x(true_width);
1037 }
1038 break;
1039 }
1040 }
1041 }
1042 }
1043 }
1044
1045 // Helper makes the list of common column widths in column_widths_ from the
1046 // input col_widths. Destroys the content of col_widths by repeatedly
1047 // finding the mode and erasing the peak.
MakeColumnWidths(int col_widths_size,STATS * col_widths)1048 void TabFind::MakeColumnWidths(int col_widths_size, STATS *col_widths) {
1049 ICOORDELT_IT w_it(&column_widths_);
1050 int total_col_count = col_widths->get_total();
1051 while (col_widths->get_total() > 0) {
1052 int width = col_widths->mode();
1053 int col_count = col_widths->pile_count(width);
1054 col_widths->add(width, -col_count);
1055 // Get the entire peak.
1056 for (int left = width - 1; left > 0 && col_widths->pile_count(left) > 0; --left) {
1057 int new_count = col_widths->pile_count(left);
1058 col_count += new_count;
1059 col_widths->add(left, -new_count);
1060 }
1061 for (int right = width + 1; right < col_widths_size && col_widths->pile_count(right) > 0;
1062 ++right) {
1063 int new_count = col_widths->pile_count(right);
1064 col_count += new_count;
1065 col_widths->add(right, -new_count);
1066 }
1067 if (col_count > kMinLinesInColumn &&
1068 col_count > kMinFractionalLinesInColumn * total_col_count) {
1069 auto *w = new ICOORDELT(0, width);
1070 w_it.add_after_then_move(w);
1071 if (textord_debug_tabfind) {
1072 tprintf("Column of width %d has %d = %.2f%% lines\n", width * kColumnWidthFactor, col_count,
1073 100.0 * col_count / total_col_count);
1074 }
1075 }
1076 }
1077 }
1078
1079 // Mark blobs as being in a vertical text line where that is the case.
1080 // Returns true if the majority of the image is vertical text lines.
MarkVerticalText()1081 void TabFind::MarkVerticalText() {
1082 if (textord_debug_tabfind) {
1083 tprintf("Checking for vertical lines\n");
1084 }
1085 BlobGridSearch gsearch(this);
1086 gsearch.StartFullSearch();
1087 BLOBNBOX *blob = nullptr;
1088 while ((blob = gsearch.NextFullSearch()) != nullptr) {
1089 if (blob->region_type() < BRT_UNKNOWN) {
1090 continue;
1091 }
1092 if (blob->UniquelyVertical()) {
1093 blob->set_region_type(BRT_VERT_TEXT);
1094 }
1095 }
1096 }
1097
FindMedianGutterWidth(TabVector_LIST * lines)1098 int TabFind::FindMedianGutterWidth(TabVector_LIST *lines) {
1099 TabVector_IT it(lines);
1100 int prev_right = -1;
1101 int max_gap = static_cast<int>(kMaxGutterWidthAbsolute * resolution_);
1102 STATS gaps(0, max_gap);
1103 STATS heights(0, max_gap);
1104 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1105 TabVector *v = it.data();
1106 TabVector *partner = v->GetSinglePartner();
1107 if (!v->IsLeftTab() || v->IsSeparator() || !partner) {
1108 continue;
1109 }
1110 heights.add(partner->startpt().x() - v->startpt().x(), 1);
1111 if (prev_right > 0 && v->startpt().x() > prev_right) {
1112 gaps.add(v->startpt().x() - prev_right, 1);
1113 }
1114 prev_right = partner->startpt().x();
1115 }
1116 if (textord_debug_tabfind) {
1117 tprintf("TabGutter total %d median_gap %.2f median_hgt %.2f\n", gaps.get_total(),
1118 gaps.median(), heights.median());
1119 }
1120 if (gaps.get_total() < kMinLinesInColumn) {
1121 return 0;
1122 }
1123 return static_cast<int>(gaps.median());
1124 }
1125
1126 // Find the next adjacent (looking to the left or right) blob on this text
1127 // line, with the constraint that it must vertically significantly overlap
1128 // the [top_y, bottom_y] range.
1129 // If ignore_images is true, then blobs with aligned_text() < 0 are treated
1130 // as if they do not exist.
AdjacentBlob(const BLOBNBOX * bbox,bool look_left,bool ignore_images,double min_overlap_fraction,int gap_limit,int top_y,int bottom_y)1131 BLOBNBOX *TabFind::AdjacentBlob(const BLOBNBOX *bbox, bool look_left, bool ignore_images,
1132 double min_overlap_fraction, int gap_limit, int top_y,
1133 int bottom_y) {
1134 GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> sidesearch(this);
1135 const TBOX &box = bbox->bounding_box();
1136 int left = box.left();
1137 int right = box.right();
1138 int mid_x = (left + right) / 2;
1139 sidesearch.StartSideSearch(mid_x, bottom_y, top_y);
1140 int best_gap = 0;
1141 bool debug = WithinTestRegion(3, left, bottom_y);
1142 BLOBNBOX *result = nullptr;
1143 BLOBNBOX *neighbour = nullptr;
1144 while ((neighbour = sidesearch.NextSideSearch(look_left)) != nullptr) {
1145 if (debug) {
1146 tprintf("Adjacent blob: considering box:");
1147 neighbour->bounding_box().print();
1148 }
1149 if (neighbour == bbox || (ignore_images && neighbour->region_type() < BRT_UNKNOWN)) {
1150 continue;
1151 }
1152 const TBOX &nbox = neighbour->bounding_box();
1153 int n_top_y = nbox.top();
1154 int n_bottom_y = nbox.bottom();
1155 int v_overlap = std::min(n_top_y, top_y) - std::max(n_bottom_y, bottom_y);
1156 int height = top_y - bottom_y;
1157 int n_height = n_top_y - n_bottom_y;
1158 if (v_overlap > min_overlap_fraction * std::min(height, n_height) &&
1159 (min_overlap_fraction == 0.0 || !DifferentSizes(height, n_height))) {
1160 int n_left = nbox.left();
1161 int n_right = nbox.right();
1162 int h_gap = std::max(n_left, left) - std::min(n_right, right);
1163 int n_mid_x = (n_left + n_right) / 2;
1164 if (look_left == (n_mid_x < mid_x) && n_mid_x != mid_x) {
1165 if (h_gap > gap_limit) {
1166 // Hit a big gap before next tab so don't return anything.
1167 if (debug) {
1168 tprintf("Giving up due to big gap = %d vs %d\n", h_gap, gap_limit);
1169 }
1170 return result;
1171 }
1172 if (h_gap > 0 && (look_left ? neighbour->right_tab_type() : neighbour->left_tab_type()) >=
1173 TT_CONFIRMED) {
1174 // Hit a tab facing the wrong way. Stop in case we are crossing
1175 // the column boundary.
1176 if (debug) {
1177 tprintf("Collision with like tab of type %d at %d,%d\n",
1178 look_left ? neighbour->right_tab_type() : neighbour->left_tab_type(), n_left,
1179 nbox.bottom());
1180 }
1181 return result;
1182 }
1183 // This is a good fit to the line. Continue with this
1184 // neighbour as the bbox if the best gap.
1185 if (result == nullptr || h_gap < best_gap) {
1186 if (debug) {
1187 tprintf("Good result\n");
1188 }
1189 result = neighbour;
1190 best_gap = h_gap;
1191 } else {
1192 // The new one is worse, so we probably already have the best result.
1193 return result;
1194 }
1195 } else if (debug) {
1196 tprintf("Wrong way\n");
1197 }
1198 } else if (debug) {
1199 tprintf("Insufficient overlap\n");
1200 }
1201 }
1202 if (WithinTestRegion(3, left, box.top())) {
1203 tprintf("Giving up due to end of search\n");
1204 }
1205 return result; // Hit the edge and found nothing.
1206 }
1207
1208 // Add a bi-directional partner relationship between the left
1209 // and the right. If one (or both) of the vectors is a separator,
1210 // extend a nearby extendable vector or create a new one of the
1211 // correct type, using the given left or right blob as a guide.
AddPartnerVector(BLOBNBOX * left_blob,BLOBNBOX * right_blob,TabVector * left,TabVector * right)1212 void TabFind::AddPartnerVector(BLOBNBOX *left_blob, BLOBNBOX *right_blob, TabVector *left,
1213 TabVector *right) {
1214 const TBOX &left_box = left_blob->bounding_box();
1215 const TBOX &right_box = right_blob->bounding_box();
1216 if (left->IsSeparator()) {
1217 // Try to find a nearby left edge to extend.
1218 TabVector *v = LeftTabForBox(left_box, true, true);
1219 if (v != nullptr && v != left && v->IsLeftTab() &&
1220 v->XAtY(left_box.top()) > left->XAtY(left_box.top())) {
1221 left = v; // Found a good replacement.
1222 left->ExtendToBox(left_blob);
1223 } else {
1224 // Fake a vector.
1225 left = new TabVector(*left, TA_LEFT_RAGGED, vertical_skew_, left_blob);
1226 vectors_.add_sorted(TabVector::SortVectorsByKey, left);
1227 v_it_.move_to_first();
1228 }
1229 }
1230 if (right->IsSeparator()) {
1231 // Try to find a nearby left edge to extend.
1232 if (WithinTestRegion(3, right_box.right(), right_box.bottom())) {
1233 tprintf("Box edge (%d,%d-%d)", right_box.right(), right_box.bottom(), right_box.top());
1234 right->Print(" looking for improvement for");
1235 }
1236 TabVector *v = RightTabForBox(right_box, true, true);
1237 if (v != nullptr && v != right && v->IsRightTab() &&
1238 v->XAtY(right_box.top()) < right->XAtY(right_box.top())) {
1239 right = v; // Found a good replacement.
1240 right->ExtendToBox(right_blob);
1241 if (WithinTestRegion(3, right_box.right(), right_box.bottom())) {
1242 right->Print("Extended vector");
1243 }
1244 } else {
1245 // Fake a vector.
1246 right = new TabVector(*right, TA_RIGHT_RAGGED, vertical_skew_, right_blob);
1247 vectors_.add_sorted(TabVector::SortVectorsByKey, right);
1248 v_it_.move_to_first();
1249 if (WithinTestRegion(3, right_box.right(), right_box.bottom())) {
1250 right->Print("Created new vector");
1251 }
1252 }
1253 }
1254 left->AddPartner(right);
1255 right->AddPartner(left);
1256 }
1257
1258 // Remove separators and unused tabs from the main vectors_ list
1259 // to the dead_vectors_ list.
CleanupTabs()1260 void TabFind::CleanupTabs() {
1261 // TODO(rays) Before getting rid of separators and unused vectors, it
1262 // would be useful to try moving ragged vectors outwards to see if this
1263 // allows useful extension. Could be combined with checking ends of partners.
1264 TabVector_IT it(&vectors_);
1265 TabVector_IT dead_it(&dead_vectors_);
1266 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1267 TabVector *v = it.data();
1268 if (v->IsSeparator() || v->Partnerless()) {
1269 dead_it.add_after_then_move(it.extract());
1270 v_it_.set_to_list(&vectors_);
1271 } else {
1272 v->FitAndEvaluateIfNeeded(vertical_skew_, this);
1273 }
1274 }
1275 }
1276
1277 // Apply the given rotation to the given list of blobs.
RotateBlobList(const FCOORD & rotation,BLOBNBOX_LIST * blobs)1278 void TabFind::RotateBlobList(const FCOORD &rotation, BLOBNBOX_LIST *blobs) {
1279 BLOBNBOX_IT it(blobs);
1280 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1281 it.data()->rotate_box(rotation);
1282 }
1283 }
1284
1285 // Recreate the grid with deskewed BLOBNBOXes.
1286 // Returns false if the detected skew angle is impossible.
Deskew(TabVector_LIST * hlines,BLOBNBOX_LIST * image_blobs,TO_BLOCK * block,FCOORD * deskew,FCOORD * reskew)1287 bool TabFind::Deskew(TabVector_LIST *hlines, BLOBNBOX_LIST *image_blobs, TO_BLOCK *block,
1288 FCOORD *deskew, FCOORD *reskew) {
1289 ComputeDeskewVectors(deskew, reskew);
1290 if (deskew->x() < kCosMaxSkewAngle) {
1291 return false;
1292 }
1293 RotateBlobList(*deskew, image_blobs);
1294 RotateBlobList(*deskew, &block->blobs);
1295 RotateBlobList(*deskew, &block->small_blobs);
1296 RotateBlobList(*deskew, &block->noise_blobs);
1297
1298 // Rotate the horizontal vectors. The vertical vectors don't need
1299 // rotating as they can just be refitted.
1300 TabVector_IT h_it(hlines);
1301 for (h_it.mark_cycle_pt(); !h_it.cycled_list(); h_it.forward()) {
1302 TabVector *h = h_it.data();
1303 h->Rotate(*deskew);
1304 }
1305 TabVector_IT d_it(&dead_vectors_);
1306 for (d_it.mark_cycle_pt(); !d_it.cycled_list(); d_it.forward()) {
1307 TabVector *d = d_it.data();
1308 d->Rotate(*deskew);
1309 }
1310 SetVerticalSkewAndParallelize(0, 1);
1311 // Rebuild the grid to the new size.
1312 TBOX grid_box(bleft_, tright_);
1313 grid_box.rotate_large(*deskew);
1314 Init(gridsize(), grid_box.botleft(), grid_box.topright());
1315 InsertBlobsToGrid(false, false, image_blobs, this);
1316 InsertBlobsToGrid(true, false, &block->blobs, this);
1317 return true;
1318 }
1319
1320 // Flip the vertical and horizontal lines and rotate the grid ready
1321 // for working on the rotated image.
1322 // This also makes parameter adjustments for FindInitialTabVectors().
ResetForVerticalText(const FCOORD & rotate,const FCOORD & rerotate,TabVector_LIST * horizontal_lines,int * min_gutter_width)1323 void TabFind::ResetForVerticalText(const FCOORD &rotate, const FCOORD &rerotate,
1324 TabVector_LIST *horizontal_lines, int *min_gutter_width) {
1325 // Rotate the horizontal and vertical vectors and swap them over.
1326 // Only the separators are kept and rotated; other tabs are used
1327 // to estimate the gutter width then thrown away.
1328 TabVector_LIST ex_verticals;
1329 TabVector_IT ex_v_it(&ex_verticals);
1330 TabVector_LIST vlines;
1331 TabVector_IT v_it(&vlines);
1332 while (!v_it_.empty()) {
1333 TabVector *v = v_it_.extract();
1334 if (v->IsSeparator()) {
1335 v->Rotate(rotate);
1336 ex_v_it.add_after_then_move(v);
1337 } else {
1338 v_it.add_after_then_move(v);
1339 }
1340 v_it_.forward();
1341 }
1342
1343 // Adjust the min gutter width for better tabbox selection
1344 // in 2nd call to FindInitialTabVectors().
1345 int median_gutter = FindMedianGutterWidth(&vlines);
1346 if (median_gutter > *min_gutter_width) {
1347 *min_gutter_width = median_gutter;
1348 }
1349
1350 TabVector_IT h_it(horizontal_lines);
1351 for (h_it.mark_cycle_pt(); !h_it.cycled_list(); h_it.forward()) {
1352 TabVector *h = h_it.data();
1353 h->Rotate(rotate);
1354 }
1355 v_it_.add_list_after(horizontal_lines);
1356 v_it_.move_to_first();
1357 h_it.set_to_list(horizontal_lines);
1358 h_it.add_list_after(&ex_verticals);
1359
1360 // Rebuild the grid to the new size.
1361 TBOX grid_box(bleft(), tright());
1362 grid_box.rotate_large(rotate);
1363 Init(gridsize(), grid_box.botleft(), grid_box.topright());
1364 }
1365
1366 // Clear the grid and get rid of the tab vectors, but not separators,
1367 // ready to start again.
Reset()1368 void TabFind::Reset() {
1369 v_it_.move_to_first();
1370 for (v_it_.mark_cycle_pt(); !v_it_.cycled_list(); v_it_.forward()) {
1371 if (!v_it_.data()->IsSeparator()) {
1372 delete v_it_.extract();
1373 }
1374 }
1375 Clear();
1376 }
1377
1378 // Reflect the separator tab vectors and the grids in the y-axis.
1379 // Can only be called after Reset!
ReflectInYAxis()1380 void TabFind::ReflectInYAxis() {
1381 TabVector_LIST temp_list;
1382 TabVector_IT temp_it(&temp_list);
1383 v_it_.move_to_first();
1384 // The TabVector list only contains vertical lines, but they need to be
1385 // reflected and the list needs to be reversed, so they are still in
1386 // sort_key order.
1387 while (!v_it_.empty()) {
1388 TabVector *v = v_it_.extract();
1389 v_it_.forward();
1390 v->ReflectInYAxis();
1391 temp_it.add_before_then_move(v);
1392 }
1393 v_it_.add_list_after(&temp_list);
1394 v_it_.move_to_first();
1395 // Reset this grid with reflected bounding boxes.
1396 TBOX grid_box(bleft(), tright());
1397 int tmp = grid_box.left();
1398 grid_box.set_left(-grid_box.right());
1399 grid_box.set_right(-tmp);
1400 Init(gridsize(), grid_box.botleft(), grid_box.topright());
1401 }
1402
1403 // Compute the rotation required to deskew, and its inverse rotation.
ComputeDeskewVectors(FCOORD * deskew,FCOORD * reskew)1404 void TabFind::ComputeDeskewVectors(FCOORD *deskew, FCOORD *reskew) {
1405 double length = vertical_skew_ % vertical_skew_;
1406 length = sqrt(length);
1407 deskew->set_x(static_cast<float>(vertical_skew_.y() / length));
1408 deskew->set_y(static_cast<float>(vertical_skew_.x() / length));
1409 reskew->set_x(deskew->x());
1410 reskew->set_y(-deskew->y());
1411 }
1412
1413 // Compute and apply constraints to the end positions of TabVectors so
1414 // that where possible partners end at the same y coordinate.
ApplyTabConstraints()1415 void TabFind::ApplyTabConstraints() {
1416 TabVector_IT it(&vectors_);
1417 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1418 TabVector *v = it.data();
1419 v->SetupConstraints();
1420 }
1421 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1422 TabVector *v = it.data();
1423 // With the first and last partner, we want a common bottom and top,
1424 // respectively, and for each change of partner, we want a common
1425 // top of first with bottom of next.
1426 v->SetupPartnerConstraints();
1427 }
1428 // TODO(rays) The back-to-back pairs should really be done like the
1429 // front-to-front pairs, but there is no convenient way of producing the
1430 // list of partners like there is with the front-to-front.
1431 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1432 TabVector *v = it.data();
1433 if (!v->IsRightTab()) {
1434 continue;
1435 }
1436 // For each back-to-back pair of vectors, try for common top and bottom.
1437 TabVector_IT partner_it(it);
1438 for (partner_it.forward(); !partner_it.at_first(); partner_it.forward()) {
1439 TabVector *partner = partner_it.data();
1440 if (!partner->IsLeftTab() || !v->VOverlap(*partner)) {
1441 continue;
1442 }
1443 v->SetupPartnerConstraints(partner);
1444 }
1445 }
1446 // Now actually apply the constraints to get common start/end points.
1447 for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
1448 TabVector *v = it.data();
1449 if (!v->IsSeparator()) {
1450 v->ApplyConstraints();
1451 }
1452 }
1453 // TODO(rays) Where constraint application fails, it would be good to try
1454 // checking the ends to see if they really should be moved.
1455 }
1456
1457 } // namespace tesseract.
1458