1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopPeel.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/SizeOpts.h"
60 #include "llvm/Transforms/Utils/UnrollLoop.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <limits>
65 #include <optional>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "loop-unroll"
73
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is sometimes preferred to reduce"
78 " compile time."));
79
80 static cl::opt<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden,
82 cl::desc("The cost threshold for loop unrolling"));
83
84 static cl::opt<unsigned>
85 UnrollOptSizeThreshold(
86 "unroll-optsize-threshold", cl::init(0), cl::Hidden,
87 cl::desc("The cost threshold for loop unrolling when optimizing for "
88 "size"));
89
90 static cl::opt<unsigned> UnrollPartialThreshold(
91 "unroll-partial-threshold", cl::Hidden,
92 cl::desc("The cost threshold for partial loop unrolling"));
93
94 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
95 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
97 "to the threshold when aggressively unrolling a loop due to the "
98 "dynamic cost savings. If completely unrolling a loop will reduce "
99 "the total runtime from X to Y, we boost the loop unroll "
100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
101 "X/Y). This limit avoids excessive code bloat."));
102
103 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
104 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
105 cl::desc("Don't allow loop unrolling to simulate more than this number of"
106 "iterations when checking full unroll profitability"));
107
108 static cl::opt<unsigned> UnrollCount(
109 "unroll-count", cl::Hidden,
110 cl::desc("Use this unroll count for all loops including those with "
111 "unroll_count pragma values, for testing purposes"));
112
113 static cl::opt<unsigned> UnrollMaxCount(
114 "unroll-max-count", cl::Hidden,
115 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
116 "testing purposes"));
117
118 static cl::opt<unsigned> UnrollFullMaxCount(
119 "unroll-full-max-count", cl::Hidden,
120 cl::desc(
121 "Set the max unroll count for full unrolling, for testing purposes"));
122
123 static cl::opt<bool>
124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
125 cl::desc("Allows loops to be partially unrolled until "
126 "-unroll-threshold loop size is reached."));
127
128 static cl::opt<bool> UnrollAllowRemainder(
129 "unroll-allow-remainder", cl::Hidden,
130 cl::desc("Allow generation of a loop remainder (extra iterations) "
131 "when unrolling a loop."));
132
133 static cl::opt<bool>
134 UnrollRuntime("unroll-runtime", cl::Hidden,
135 cl::desc("Unroll loops with run-time trip counts"));
136
137 static cl::opt<unsigned> UnrollMaxUpperBound(
138 "unroll-max-upperbound", cl::init(8), cl::Hidden,
139 cl::desc(
140 "The max of trip count upper bound that is considered in unrolling"));
141
142 static cl::opt<unsigned> PragmaUnrollThreshold(
143 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
144 cl::desc("Unrolled size limit for loops with an unroll(full) or "
145 "unroll_count pragma."));
146
147 static cl::opt<unsigned> FlatLoopTripCountThreshold(
148 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
149 cl::desc("If the runtime tripcount for the loop is lower than the "
150 "threshold, the loop is considered as flat and will be less "
151 "aggressively unrolled."));
152
153 static cl::opt<bool> UnrollUnrollRemainder(
154 "unroll-remainder", cl::Hidden,
155 cl::desc("Allow the loop remainder to be unrolled."));
156
157 // This option isn't ever intended to be enabled, it serves to allow
158 // experiments to check the assumptions about when this kind of revisit is
159 // necessary.
160 static cl::opt<bool> UnrollRevisitChildLoops(
161 "unroll-revisit-child-loops", cl::Hidden,
162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
163 "This shouldn't typically be needed as child loops (or their "
164 "clones) were already visited."));
165
166 static cl::opt<unsigned> UnrollThresholdAggressive(
167 "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
169 "optimizations"));
170 static cl::opt<unsigned>
171 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
172 cl::Hidden,
173 cl::desc("Default threshold (max size of unrolled "
174 "loop), used in all but O3 optimizations"));
175
176 /// A magic value for use with the Threshold parameter to indicate
177 /// that the loop unroll should be performed regardless of how much
178 /// code expansion would result.
179 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
180
181 /// Gather the various unrolling parameters based on the defaults, compiler
182 /// flags, TTI overrides and user specified parameters.
gatherUnrollingPreferences(Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,OptimizationRemarkEmitter & ORE,int OptLevel,std::optional<unsigned> UserThreshold,std::optional<unsigned> UserCount,std::optional<bool> UserAllowPartial,std::optional<bool> UserRuntime,std::optional<bool> UserUpperBound,std::optional<unsigned> UserFullUnrollMaxCount)183 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
184 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
185 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
186 OptimizationRemarkEmitter &ORE, int OptLevel,
187 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
188 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
189 std::optional<bool> UserUpperBound,
190 std::optional<unsigned> UserFullUnrollMaxCount) {
191 TargetTransformInfo::UnrollingPreferences UP;
192
193 // Set up the defaults
194 UP.Threshold =
195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196 UP.MaxPercentThresholdBoost = 400;
197 UP.OptSizeThreshold = UnrollOptSizeThreshold;
198 UP.PartialThreshold = 150;
199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200 UP.Count = 0;
201 UP.DefaultUnrollRuntimeCount = 8;
202 UP.MaxCount = std::numeric_limits<unsigned>::max();
203 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
204 UP.BEInsns = 2;
205 UP.Partial = false;
206 UP.Runtime = false;
207 UP.AllowRemainder = true;
208 UP.UnrollRemainder = false;
209 UP.AllowExpensiveTripCount = false;
210 UP.Force = false;
211 UP.UpperBound = false;
212 UP.UnrollAndJam = false;
213 UP.UnrollAndJamInnerLoopThreshold = 60;
214 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
215
216 // Override with any target specific settings
217 TTI.getUnrollingPreferences(L, SE, UP, &ORE);
218
219 // Apply size attributes
220 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
221 // Let unroll hints / pragmas take precedence over PGSO.
222 (hasUnrollTransformation(L) != TM_ForcedByUser &&
223 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
224 PGSOQueryType::IRPass));
225 if (OptForSize) {
226 UP.Threshold = UP.OptSizeThreshold;
227 UP.PartialThreshold = UP.PartialOptSizeThreshold;
228 UP.MaxPercentThresholdBoost = 100;
229 }
230
231 // Apply any user values specified by cl::opt
232 if (UnrollThreshold.getNumOccurrences() > 0)
233 UP.Threshold = UnrollThreshold;
234 if (UnrollPartialThreshold.getNumOccurrences() > 0)
235 UP.PartialThreshold = UnrollPartialThreshold;
236 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
237 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
238 if (UnrollMaxCount.getNumOccurrences() > 0)
239 UP.MaxCount = UnrollMaxCount;
240 if (UnrollFullMaxCount.getNumOccurrences() > 0)
241 UP.FullUnrollMaxCount = UnrollFullMaxCount;
242 if (UnrollAllowPartial.getNumOccurrences() > 0)
243 UP.Partial = UnrollAllowPartial;
244 if (UnrollAllowRemainder.getNumOccurrences() > 0)
245 UP.AllowRemainder = UnrollAllowRemainder;
246 if (UnrollRuntime.getNumOccurrences() > 0)
247 UP.Runtime = UnrollRuntime;
248 if (UnrollMaxUpperBound == 0)
249 UP.UpperBound = false;
250 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
251 UP.UnrollRemainder = UnrollUnrollRemainder;
252 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
253 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
254
255 // Apply user values provided by argument
256 if (UserThreshold) {
257 UP.Threshold = *UserThreshold;
258 UP.PartialThreshold = *UserThreshold;
259 }
260 if (UserCount)
261 UP.Count = *UserCount;
262 if (UserAllowPartial)
263 UP.Partial = *UserAllowPartial;
264 if (UserRuntime)
265 UP.Runtime = *UserRuntime;
266 if (UserUpperBound)
267 UP.UpperBound = *UserUpperBound;
268 if (UserFullUnrollMaxCount)
269 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
270
271 return UP;
272 }
273
274 namespace {
275
276 /// A struct to densely store the state of an instruction after unrolling at
277 /// each iteration.
278 ///
279 /// This is designed to work like a tuple of <Instruction *, int> for the
280 /// purposes of hashing and lookup, but to be able to associate two boolean
281 /// states with each key.
282 struct UnrolledInstState {
283 Instruction *I;
284 int Iteration : 30;
285 unsigned IsFree : 1;
286 unsigned IsCounted : 1;
287 };
288
289 /// Hashing and equality testing for a set of the instruction states.
290 struct UnrolledInstStateKeyInfo {
291 using PtrInfo = DenseMapInfo<Instruction *>;
292 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
293
getEmptyKey__anon6a07f46d0111::UnrolledInstStateKeyInfo294 static inline UnrolledInstState getEmptyKey() {
295 return {PtrInfo::getEmptyKey(), 0, 0, 0};
296 }
297
getTombstoneKey__anon6a07f46d0111::UnrolledInstStateKeyInfo298 static inline UnrolledInstState getTombstoneKey() {
299 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
300 }
301
getHashValue__anon6a07f46d0111::UnrolledInstStateKeyInfo302 static inline unsigned getHashValue(const UnrolledInstState &S) {
303 return PairInfo::getHashValue({S.I, S.Iteration});
304 }
305
isEqual__anon6a07f46d0111::UnrolledInstStateKeyInfo306 static inline bool isEqual(const UnrolledInstState &LHS,
307 const UnrolledInstState &RHS) {
308 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
309 }
310 };
311
312 struct EstimatedUnrollCost {
313 /// The estimated cost after unrolling.
314 unsigned UnrolledCost;
315
316 /// The estimated dynamic cost of executing the instructions in the
317 /// rolled form.
318 unsigned RolledDynamicCost;
319 };
320
321 struct PragmaInfo {
PragmaInfo__anon6a07f46d0111::PragmaInfo322 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
323 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
324 PragmaEnableUnroll(PEU) {}
325 const bool UserUnrollCount;
326 const bool PragmaFullUnroll;
327 const unsigned PragmaCount;
328 const bool PragmaEnableUnroll;
329 };
330
331 } // end anonymous namespace
332
333 /// Figure out if the loop is worth full unrolling.
334 ///
335 /// Complete loop unrolling can make some loads constant, and we need to know
336 /// if that would expose any further optimization opportunities. This routine
337 /// estimates this optimization. It computes cost of unrolled loop
338 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
339 /// dynamic cost we mean that we won't count costs of blocks that are known not
340 /// to be executed (i.e. if we have a branch in the loop and we know that at the
341 /// given iteration its condition would be resolved to true, we won't add up the
342 /// cost of the 'false'-block).
343 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
344 /// the analysis failed (no benefits expected from the unrolling, or the loop is
345 /// too big to analyze), the returned value is std::nullopt.
analyzeLoopUnrollCost(const Loop * L,unsigned TripCount,DominatorTree & DT,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,const TargetTransformInfo & TTI,unsigned MaxUnrolledLoopSize,unsigned MaxIterationsCountToAnalyze)346 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
347 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
348 const SmallPtrSetImpl<const Value *> &EphValues,
349 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
350 unsigned MaxIterationsCountToAnalyze) {
351 // We want to be able to scale offsets by the trip count and add more offsets
352 // to them without checking for overflows, and we already don't want to
353 // analyze *massive* trip counts, so we force the max to be reasonably small.
354 assert(MaxIterationsCountToAnalyze <
355 (unsigned)(std::numeric_limits<int>::max() / 2) &&
356 "The unroll iterations max is too large!");
357
358 // Only analyze inner loops. We can't properly estimate cost of nested loops
359 // and we won't visit inner loops again anyway.
360 if (!L->isInnermost())
361 return std::nullopt;
362
363 // Don't simulate loops with a big or unknown tripcount
364 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
365 return std::nullopt;
366
367 SmallSetVector<BasicBlock *, 16> BBWorklist;
368 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
369 DenseMap<Value *, Value *> SimplifiedValues;
370 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
371
372 // The estimated cost of the unrolled form of the loop. We try to estimate
373 // this by simplifying as much as we can while computing the estimate.
374 InstructionCost UnrolledCost = 0;
375
376 // We also track the estimated dynamic (that is, actually executed) cost in
377 // the rolled form. This helps identify cases when the savings from unrolling
378 // aren't just exposing dead control flows, but actual reduced dynamic
379 // instructions due to the simplifications which we expect to occur after
380 // unrolling.
381 InstructionCost RolledDynamicCost = 0;
382
383 // We track the simplification of each instruction in each iteration. We use
384 // this to recursively merge costs into the unrolled cost on-demand so that
385 // we don't count the cost of any dead code. This is essentially a map from
386 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
387 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
388
389 // A small worklist used to accumulate cost of instructions from each
390 // observable and reached root in the loop.
391 SmallVector<Instruction *, 16> CostWorklist;
392
393 // PHI-used worklist used between iterations while accumulating cost.
394 SmallVector<Instruction *, 4> PHIUsedList;
395
396 // Helper function to accumulate cost for instructions in the loop.
397 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
398 assert(Iteration >= 0 && "Cannot have a negative iteration!");
399 assert(CostWorklist.empty() && "Must start with an empty cost list");
400 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
401 CostWorklist.push_back(&RootI);
402 TargetTransformInfo::TargetCostKind CostKind =
403 RootI.getFunction()->hasMinSize() ?
404 TargetTransformInfo::TCK_CodeSize :
405 TargetTransformInfo::TCK_SizeAndLatency;
406 for (;; --Iteration) {
407 do {
408 Instruction *I = CostWorklist.pop_back_val();
409
410 // InstCostMap only uses I and Iteration as a key, the other two values
411 // don't matter here.
412 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
413 if (CostIter == InstCostMap.end())
414 // If an input to a PHI node comes from a dead path through the loop
415 // we may have no cost data for it here. What that actually means is
416 // that it is free.
417 continue;
418 auto &Cost = *CostIter;
419 if (Cost.IsCounted)
420 // Already counted this instruction.
421 continue;
422
423 // Mark that we are counting the cost of this instruction now.
424 Cost.IsCounted = true;
425
426 // If this is a PHI node in the loop header, just add it to the PHI set.
427 if (auto *PhiI = dyn_cast<PHINode>(I))
428 if (PhiI->getParent() == L->getHeader()) {
429 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
430 "inherently simplify during unrolling.");
431 if (Iteration == 0)
432 continue;
433
434 // Push the incoming value from the backedge into the PHI used list
435 // if it is an in-loop instruction. We'll use this to populate the
436 // cost worklist for the next iteration (as we count backwards).
437 if (auto *OpI = dyn_cast<Instruction>(
438 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
439 if (L->contains(OpI))
440 PHIUsedList.push_back(OpI);
441 continue;
442 }
443
444 // First accumulate the cost of this instruction.
445 if (!Cost.IsFree) {
446 UnrolledCost += TTI.getInstructionCost(I, CostKind);
447 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
448 << Iteration << "): ");
449 LLVM_DEBUG(I->dump());
450 }
451
452 // We must count the cost of every operand which is not free,
453 // recursively. If we reach a loop PHI node, simply add it to the set
454 // to be considered on the next iteration (backwards!).
455 for (Value *Op : I->operands()) {
456 // Check whether this operand is free due to being a constant or
457 // outside the loop.
458 auto *OpI = dyn_cast<Instruction>(Op);
459 if (!OpI || !L->contains(OpI))
460 continue;
461
462 // Otherwise accumulate its cost.
463 CostWorklist.push_back(OpI);
464 }
465 } while (!CostWorklist.empty());
466
467 if (PHIUsedList.empty())
468 // We've exhausted the search.
469 break;
470
471 assert(Iteration > 0 &&
472 "Cannot track PHI-used values past the first iteration!");
473 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
474 PHIUsedList.clear();
475 }
476 };
477
478 // Ensure that we don't violate the loop structure invariants relied on by
479 // this analysis.
480 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
481 assert(L->isLCSSAForm(DT) &&
482 "Must have loops in LCSSA form to track live-out values.");
483
484 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
485
486 TargetTransformInfo::TargetCostKind CostKind =
487 L->getHeader()->getParent()->hasMinSize() ?
488 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
489 // Simulate execution of each iteration of the loop counting instructions,
490 // which would be simplified.
491 // Since the same load will take different values on different iterations,
492 // we literally have to go through all loop's iterations.
493 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
494 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
495
496 // Prepare for the iteration by collecting any simplified entry or backedge
497 // inputs.
498 for (Instruction &I : *L->getHeader()) {
499 auto *PHI = dyn_cast<PHINode>(&I);
500 if (!PHI)
501 break;
502
503 // The loop header PHI nodes must have exactly two input: one from the
504 // loop preheader and one from the loop latch.
505 assert(
506 PHI->getNumIncomingValues() == 2 &&
507 "Must have an incoming value only for the preheader and the latch.");
508
509 Value *V = PHI->getIncomingValueForBlock(
510 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
511 if (Iteration != 0 && SimplifiedValues.count(V))
512 V = SimplifiedValues.lookup(V);
513 SimplifiedInputValues.push_back({PHI, V});
514 }
515
516 // Now clear and re-populate the map for the next iteration.
517 SimplifiedValues.clear();
518 while (!SimplifiedInputValues.empty())
519 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
520
521 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
522
523 BBWorklist.clear();
524 BBWorklist.insert(L->getHeader());
525 // Note that we *must not* cache the size, this loop grows the worklist.
526 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
527 BasicBlock *BB = BBWorklist[Idx];
528
529 // Visit all instructions in the given basic block and try to simplify
530 // it. We don't change the actual IR, just count optimization
531 // opportunities.
532 for (Instruction &I : *BB) {
533 // These won't get into the final code - don't even try calculating the
534 // cost for them.
535 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
536 continue;
537
538 // Track this instruction's expected baseline cost when executing the
539 // rolled loop form.
540 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
541
542 // Visit the instruction to analyze its loop cost after unrolling,
543 // and if the visitor returns true, mark the instruction as free after
544 // unrolling and continue.
545 bool IsFree = Analyzer.visit(I);
546 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
547 (unsigned)IsFree,
548 /*IsCounted*/ false}).second;
549 (void)Inserted;
550 assert(Inserted && "Cannot have a state for an unvisited instruction!");
551
552 if (IsFree)
553 continue;
554
555 // Can't properly model a cost of a call.
556 // FIXME: With a proper cost model we should be able to do it.
557 if (auto *CI = dyn_cast<CallInst>(&I)) {
558 const Function *Callee = CI->getCalledFunction();
559 if (!Callee || TTI.isLoweredToCall(Callee)) {
560 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
561 return std::nullopt;
562 }
563 }
564
565 // If the instruction might have a side-effect recursively account for
566 // the cost of it and all the instructions leading up to it.
567 if (I.mayHaveSideEffects())
568 AddCostRecursively(I, Iteration);
569
570 // If unrolled body turns out to be too big, bail out.
571 if (UnrolledCost > MaxUnrolledLoopSize) {
572 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
573 << " UnrolledCost: " << UnrolledCost
574 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
575 << "\n");
576 return std::nullopt;
577 }
578 }
579
580 Instruction *TI = BB->getTerminator();
581
582 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
583 if (SimplifiedValues.count(V))
584 V = SimplifiedValues.lookup(V);
585 return dyn_cast<Constant>(V);
586 };
587
588 // Add in the live successors by first checking whether we have terminator
589 // that may be simplified based on the values simplified by this call.
590 BasicBlock *KnownSucc = nullptr;
591 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
592 if (BI->isConditional()) {
593 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
594 // Just take the first successor if condition is undef
595 if (isa<UndefValue>(SimpleCond))
596 KnownSucc = BI->getSuccessor(0);
597 else if (ConstantInt *SimpleCondVal =
598 dyn_cast<ConstantInt>(SimpleCond))
599 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
600 }
601 }
602 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
603 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
604 // Just take the first successor if condition is undef
605 if (isa<UndefValue>(SimpleCond))
606 KnownSucc = SI->getSuccessor(0);
607 else if (ConstantInt *SimpleCondVal =
608 dyn_cast<ConstantInt>(SimpleCond))
609 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
610 }
611 }
612 if (KnownSucc) {
613 if (L->contains(KnownSucc))
614 BBWorklist.insert(KnownSucc);
615 else
616 ExitWorklist.insert({BB, KnownSucc});
617 continue;
618 }
619
620 // Add BB's successors to the worklist.
621 for (BasicBlock *Succ : successors(BB))
622 if (L->contains(Succ))
623 BBWorklist.insert(Succ);
624 else
625 ExitWorklist.insert({BB, Succ});
626 AddCostRecursively(*TI, Iteration);
627 }
628
629 // If we found no optimization opportunities on the first iteration, we
630 // won't find them on later ones too.
631 if (UnrolledCost == RolledDynamicCost) {
632 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
633 << " UnrolledCost: " << UnrolledCost << "\n");
634 return std::nullopt;
635 }
636 }
637
638 while (!ExitWorklist.empty()) {
639 BasicBlock *ExitingBB, *ExitBB;
640 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
641
642 for (Instruction &I : *ExitBB) {
643 auto *PN = dyn_cast<PHINode>(&I);
644 if (!PN)
645 break;
646
647 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
648 if (auto *OpI = dyn_cast<Instruction>(Op))
649 if (L->contains(OpI))
650 AddCostRecursively(*OpI, TripCount - 1);
651 }
652 }
653
654 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
655 "All instructions must have a valid cost, whether the "
656 "loop is rolled or unrolled.");
657
658 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
659 << "UnrolledCost: " << UnrolledCost << ", "
660 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
661 return {{unsigned(*UnrolledCost.getValue()),
662 unsigned(*RolledDynamicCost.getValue())}};
663 }
664
665 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,bool & Convergent,const TargetTransformInfo & TTI,const SmallPtrSetImpl<const Value * > & EphValues,unsigned BEInsns)666 InstructionCost llvm::ApproximateLoopSize(
667 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent,
668 const TargetTransformInfo &TTI,
669 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
670 CodeMetrics Metrics;
671 for (BasicBlock *BB : L->blocks())
672 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
673 NumCalls = Metrics.NumInlineCandidates;
674 NotDuplicatable = Metrics.notDuplicatable;
675 Convergent = Metrics.convergent;
676
677 InstructionCost LoopSize = Metrics.NumInsts;
678
679 // Don't allow an estimate of size zero. This would allows unrolling of loops
680 // with huge iteration counts, which is a compile time problem even if it's
681 // not a problem for code quality. Also, the code using this size may assume
682 // that each loop has at least three instructions (likely a conditional
683 // branch, a comparison feeding that branch, and some kind of loop increment
684 // feeding that comparison instruction).
685 if (LoopSize.isValid() && LoopSize < BEInsns + 1)
686 // This is an open coded max() on InstructionCost
687 LoopSize = BEInsns + 1;
688
689 return LoopSize;
690 }
691
692 // Returns the loop hint metadata node with the given name (for example,
693 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
694 // returned.
getUnrollMetadataForLoop(const Loop * L,StringRef Name)695 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
696 if (MDNode *LoopID = L->getLoopID())
697 return GetUnrollMetadata(LoopID, Name);
698 return nullptr;
699 }
700
701 // Returns true if the loop has an unroll(full) pragma.
hasUnrollFullPragma(const Loop * L)702 static bool hasUnrollFullPragma(const Loop *L) {
703 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
704 }
705
706 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
707 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
hasUnrollEnablePragma(const Loop * L)708 static bool hasUnrollEnablePragma(const Loop *L) {
709 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
710 }
711
712 // Returns true if the loop has an runtime unroll(disable) pragma.
hasRuntimeUnrollDisablePragma(const Loop * L)713 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
714 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
715 }
716
717 // If loop has an unroll_count pragma return the (necessarily
718 // positive) value from the pragma. Otherwise return 0.
unrollCountPragmaValue(const Loop * L)719 static unsigned unrollCountPragmaValue(const Loop *L) {
720 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
721 if (MD) {
722 assert(MD->getNumOperands() == 2 &&
723 "Unroll count hint metadata should have two operands.");
724 unsigned Count =
725 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
726 assert(Count >= 1 && "Unroll count must be positive.");
727 return Count;
728 }
729 return 0;
730 }
731
732 // Computes the boosting factor for complete unrolling.
733 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
734 // be beneficial to fully unroll the loop even if unrolledcost is large. We
735 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
736 // the unroll threshold.
getFullUnrollBoostingFactor(const EstimatedUnrollCost & Cost,unsigned MaxPercentThresholdBoost)737 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
738 unsigned MaxPercentThresholdBoost) {
739 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
740 return 100;
741 else if (Cost.UnrolledCost != 0)
742 // The boosting factor is RolledDynamicCost / UnrolledCost
743 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
744 MaxPercentThresholdBoost);
745 else
746 return MaxPercentThresholdBoost;
747 }
748
749 // Produce an estimate of the unrolled cost of the specified loop. This
750 // is used to a) produce a cost estimate for partial unrolling and b) to
751 // cheaply estimate cost for full unrolling when we don't want to symbolically
752 // evaluate all iterations.
753 class UnrollCostEstimator {
754 const unsigned LoopSize;
755
756 public:
UnrollCostEstimator(Loop & L,unsigned LoopSize)757 UnrollCostEstimator(Loop &L, unsigned LoopSize) : LoopSize(LoopSize) {}
758
759 // Returns loop size estimation for unrolled loop, given the unrolling
760 // configuration specified by UP.
761 uint64_t
getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences & UP,const unsigned CountOverwrite=0) const762 getUnrolledLoopSize(const TargetTransformInfo::UnrollingPreferences &UP,
763 const unsigned CountOverwrite = 0) const {
764 assert(LoopSize >= UP.BEInsns &&
765 "LoopSize should not be less than BEInsns!");
766 if (CountOverwrite)
767 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * CountOverwrite +
768 UP.BEInsns;
769 else
770 return static_cast<uint64_t>(LoopSize - UP.BEInsns) * UP.Count +
771 UP.BEInsns;
772 }
773 };
774
775 static std::optional<unsigned>
shouldPragmaUnroll(Loop * L,const PragmaInfo & PInfo,const unsigned TripMultiple,const unsigned TripCount,const UnrollCostEstimator UCE,const TargetTransformInfo::UnrollingPreferences & UP)776 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
777 const unsigned TripMultiple, const unsigned TripCount,
778 const UnrollCostEstimator UCE,
779 const TargetTransformInfo::UnrollingPreferences &UP) {
780
781 // Using unroll pragma
782 // 1st priority is unroll count set by "unroll-count" option.
783
784 if (PInfo.UserUnrollCount) {
785 if (UP.AllowRemainder &&
786 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
787 return (unsigned)UnrollCount;
788 }
789
790 // 2nd priority is unroll count set by pragma.
791 if (PInfo.PragmaCount > 0) {
792 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
793 return PInfo.PragmaCount;
794 }
795
796 if (PInfo.PragmaFullUnroll && TripCount != 0)
797 return TripCount;
798
799 // if didn't return until here, should continue to other priorties
800 return std::nullopt;
801 }
802
shouldFullUnroll(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,const unsigned FullUnrollTripCount,const UnrollCostEstimator UCE,const TargetTransformInfo::UnrollingPreferences & UP)803 static std::optional<unsigned> shouldFullUnroll(
804 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
805 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
806 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
807 const TargetTransformInfo::UnrollingPreferences &UP) {
808 assert(FullUnrollTripCount && "should be non-zero!");
809
810 if (FullUnrollTripCount > UP.FullUnrollMaxCount)
811 return std::nullopt;
812
813 // When computing the unrolled size, note that BEInsns are not replicated
814 // like the rest of the loop body.
815 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
816 return FullUnrollTripCount;
817
818 // The loop isn't that small, but we still can fully unroll it if that
819 // helps to remove a significant number of instructions.
820 // To check that, run additional analysis on the loop.
821 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
822 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
823 UP.Threshold * UP.MaxPercentThresholdBoost / 100,
824 UP.MaxIterationsCountToAnalyze)) {
825 unsigned Boost =
826 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
827 if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
828 return FullUnrollTripCount;
829 }
830 return std::nullopt;
831 }
832
833 static std::optional<unsigned>
shouldPartialUnroll(const unsigned LoopSize,const unsigned TripCount,const UnrollCostEstimator UCE,const TargetTransformInfo::UnrollingPreferences & UP)834 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
835 const UnrollCostEstimator UCE,
836 const TargetTransformInfo::UnrollingPreferences &UP) {
837
838 if (!TripCount)
839 return std::nullopt;
840
841 if (!UP.Partial) {
842 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
843 << "-unroll-allow-partial not given\n");
844 return 0;
845 }
846 unsigned count = UP.Count;
847 if (count == 0)
848 count = TripCount;
849 if (UP.PartialThreshold != NoThreshold) {
850 // Reduce unroll count to be modulo of TripCount for partial unrolling.
851 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
852 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
853 (LoopSize - UP.BEInsns);
854 if (count > UP.MaxCount)
855 count = UP.MaxCount;
856 while (count != 0 && TripCount % count != 0)
857 count--;
858 if (UP.AllowRemainder && count <= 1) {
859 // If there is no Count that is modulo of TripCount, set Count to
860 // largest power-of-two factor that satisfies the threshold limit.
861 // As we'll create fixup loop, do the type of unrolling only if
862 // remainder loop is allowed.
863 count = UP.DefaultUnrollRuntimeCount;
864 while (count != 0 &&
865 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
866 count >>= 1;
867 }
868 if (count < 2) {
869 count = 0;
870 }
871 } else {
872 count = TripCount;
873 }
874 if (count > UP.MaxCount)
875 count = UP.MaxCount;
876
877 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
878
879 return count;
880 }
881 // Returns true if unroll count was set explicitly.
882 // Calculates unroll count and writes it to UP.Count.
883 // Unless IgnoreUser is true, will also use metadata and command-line options
884 // that are specific to to the LoopUnroll pass (which, for instance, are
885 // irrelevant for the LoopUnrollAndJam pass).
886 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
887 // many LoopUnroll-specific options. The shared functionality should be
888 // refactored into it own function.
computeUnrollCount(Loop * L,const TargetTransformInfo & TTI,DominatorTree & DT,LoopInfo * LI,AssumptionCache * AC,ScalarEvolution & SE,const SmallPtrSetImpl<const Value * > & EphValues,OptimizationRemarkEmitter * ORE,unsigned TripCount,unsigned MaxTripCount,bool MaxOrZero,unsigned TripMultiple,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,TargetTransformInfo::PeelingPreferences & PP,bool & UseUpperBound)889 bool llvm::computeUnrollCount(
890 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
891 AssumptionCache *AC,
892 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
893 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
894 bool MaxOrZero, unsigned TripMultiple, unsigned LoopSize,
895 TargetTransformInfo::UnrollingPreferences &UP,
896 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
897
898 UnrollCostEstimator UCE(*L, LoopSize);
899
900 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
901 const bool PragmaFullUnroll = hasUnrollFullPragma(L);
902 const unsigned PragmaCount = unrollCountPragmaValue(L);
903 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
904
905 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
906 PragmaEnableUnroll || UserUnrollCount;
907
908 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
909 PragmaEnableUnroll);
910 // Use an explicit peel count that has been specified for testing. In this
911 // case it's not permitted to also specify an explicit unroll count.
912 if (PP.PeelCount) {
913 if (UnrollCount.getNumOccurrences() > 0) {
914 report_fatal_error("Cannot specify both explicit peel count and "
915 "explicit unroll count", /*GenCrashDiag=*/false);
916 }
917 UP.Count = 1;
918 UP.Runtime = false;
919 return true;
920 }
921 // Check for explicit Count.
922 // 1st priority is unroll count set by "unroll-count" option.
923 // 2nd priority is unroll count set by pragma.
924 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
925 UCE, UP)) {
926 UP.Count = *UnrollFactor;
927
928 if (UserUnrollCount || (PragmaCount > 0)) {
929 UP.AllowExpensiveTripCount = true;
930 UP.Force = true;
931 }
932 UP.Runtime |= (PragmaCount > 0);
933 return ExplicitUnroll;
934 } else {
935 if (ExplicitUnroll && TripCount != 0) {
936 // If the loop has an unrolling pragma, we want to be more aggressive with
937 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
938 // value which is larger than the default limits.
939 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
940 UP.PartialThreshold =
941 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
942 }
943 }
944
945 // 3rd priority is exact full unrolling. This will eliminate all copies
946 // of some exit test.
947 UP.Count = 0;
948 if (TripCount) {
949 UP.Count = TripCount;
950 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
951 TripCount, UCE, UP)) {
952 UP.Count = *UnrollFactor;
953 UseUpperBound = false;
954 return ExplicitUnroll;
955 }
956 }
957
958 // 4th priority is bounded unrolling.
959 // We can unroll by the upper bound amount if it's generally allowed or if
960 // we know that the loop is executed either the upper bound or zero times.
961 // (MaxOrZero unrolling keeps only the first loop test, so the number of
962 // loop tests remains the same compared to the non-unrolled version, whereas
963 // the generic upper bound unrolling keeps all but the last loop test so the
964 // number of loop tests goes up which may end up being worse on targets with
965 // constrained branch predictor resources so is controlled by an option.)
966 // In addition we only unroll small upper bounds.
967 // Note that the cost of bounded unrolling is always strictly greater than
968 // cost of exact full unrolling. As such, if we have an exact count and
969 // found it unprofitable, we'll never chose to bounded unroll.
970 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
971 MaxTripCount <= UnrollMaxUpperBound) {
972 UP.Count = MaxTripCount;
973 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
974 MaxTripCount, UCE, UP)) {
975 UP.Count = *UnrollFactor;
976 UseUpperBound = true;
977 return ExplicitUnroll;
978 }
979 }
980
981 // 5th priority is loop peeling.
982 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
983 if (PP.PeelCount) {
984 UP.Runtime = false;
985 UP.Count = 1;
986 return ExplicitUnroll;
987 }
988
989 // Before starting partial unrolling, set up.partial to true,
990 // if user explicitly asked for unrolling
991 if (TripCount)
992 UP.Partial |= ExplicitUnroll;
993
994 // 6th priority is partial unrolling.
995 // Try partial unroll only when TripCount could be statically calculated.
996 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
997 UP.Count = *UnrollFactor;
998
999 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
1000 UP.Count != TripCount)
1001 ORE->emit([&]() {
1002 return OptimizationRemarkMissed(DEBUG_TYPE,
1003 "FullUnrollAsDirectedTooLarge",
1004 L->getStartLoc(), L->getHeader())
1005 << "Unable to fully unroll loop as directed by unroll pragma "
1006 "because "
1007 "unrolled size is too large.";
1008 });
1009
1010 if (UP.PartialThreshold != NoThreshold) {
1011 if (UP.Count == 0) {
1012 if (PragmaEnableUnroll)
1013 ORE->emit([&]() {
1014 return OptimizationRemarkMissed(DEBUG_TYPE,
1015 "UnrollAsDirectedTooLarge",
1016 L->getStartLoc(), L->getHeader())
1017 << "Unable to unroll loop as directed by unroll(enable) "
1018 "pragma "
1019 "because unrolled size is too large.";
1020 });
1021 }
1022 }
1023 return ExplicitUnroll;
1024 }
1025 assert(TripCount == 0 &&
1026 "All cases when TripCount is constant should be covered here.");
1027 if (PragmaFullUnroll)
1028 ORE->emit([&]() {
1029 return OptimizationRemarkMissed(
1030 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1031 L->getStartLoc(), L->getHeader())
1032 << "Unable to fully unroll loop as directed by unroll(full) "
1033 "pragma "
1034 "because loop has a runtime trip count.";
1035 });
1036
1037 // 7th priority is runtime unrolling.
1038 // Don't unroll a runtime trip count loop when it is disabled.
1039 if (hasRuntimeUnrollDisablePragma(L)) {
1040 UP.Count = 0;
1041 return false;
1042 }
1043
1044 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1045 if (MaxTripCount && !UP.Force && MaxTripCount < UnrollMaxUpperBound) {
1046 UP.Count = 0;
1047 return false;
1048 }
1049
1050 // Check if the runtime trip count is too small when profile is available.
1051 if (L->getHeader()->getParent()->hasProfileData()) {
1052 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1053 if (*ProfileTripCount < FlatLoopTripCountThreshold)
1054 return false;
1055 else
1056 UP.AllowExpensiveTripCount = true;
1057 }
1058 }
1059 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1060 if (!UP.Runtime) {
1061 LLVM_DEBUG(
1062 dbgs() << " will not try to unroll loop with runtime trip count "
1063 << "-unroll-runtime not given\n");
1064 UP.Count = 0;
1065 return false;
1066 }
1067 if (UP.Count == 0)
1068 UP.Count = UP.DefaultUnrollRuntimeCount;
1069
1070 // Reduce unroll count to be the largest power-of-two factor of
1071 // the original count which satisfies the threshold limit.
1072 while (UP.Count != 0 &&
1073 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1074 UP.Count >>= 1;
1075
1076 #ifndef NDEBUG
1077 unsigned OrigCount = UP.Count;
1078 #endif
1079
1080 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1081 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1082 UP.Count >>= 1;
1083 LLVM_DEBUG(
1084 dbgs() << "Remainder loop is restricted (that could architecture "
1085 "specific or because the loop contains a convergent "
1086 "instruction), so unroll count must divide the trip "
1087 "multiple, "
1088 << TripMultiple << ". Reducing unroll count from " << OrigCount
1089 << " to " << UP.Count << ".\n");
1090
1091 using namespace ore;
1092
1093 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1094 ORE->emit([&]() {
1095 return OptimizationRemarkMissed(DEBUG_TYPE,
1096 "DifferentUnrollCountFromDirected",
1097 L->getStartLoc(), L->getHeader())
1098 << "Unable to unroll loop the number of times directed by "
1099 "unroll_count pragma because remainder loop is restricted "
1100 "(that could architecture specific or because the loop "
1101 "contains a convergent instruction) and so must have an "
1102 "unroll "
1103 "count that divides the loop trip multiple of "
1104 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1105 << NV("UnrollCount", UP.Count) << " time(s).";
1106 });
1107 }
1108
1109 if (UP.Count > UP.MaxCount)
1110 UP.Count = UP.MaxCount;
1111
1112 if (MaxTripCount && UP.Count > MaxTripCount)
1113 UP.Count = MaxTripCount;
1114
1115 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1116 << "\n");
1117 if (UP.Count < 2)
1118 UP.Count = 0;
1119 return ExplicitUnroll;
1120 }
1121
1122 static LoopUnrollResult
tryToUnrollLoop(Loop * L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution & SE,const TargetTransformInfo & TTI,AssumptionCache & AC,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,bool PreserveLCSSA,int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV,std::optional<unsigned> ProvidedCount,std::optional<unsigned> ProvidedThreshold,std::optional<bool> ProvidedAllowPartial,std::optional<bool> ProvidedRuntime,std::optional<bool> ProvidedUpperBound,std::optional<bool> ProvidedAllowPeeling,std::optional<bool> ProvidedAllowProfileBasedPeeling,std::optional<unsigned> ProvidedFullUnrollMaxCount)1123 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1124 const TargetTransformInfo &TTI, AssumptionCache &AC,
1125 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1126 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1127 bool OnlyWhenForced, bool ForgetAllSCEV,
1128 std::optional<unsigned> ProvidedCount,
1129 std::optional<unsigned> ProvidedThreshold,
1130 std::optional<bool> ProvidedAllowPartial,
1131 std::optional<bool> ProvidedRuntime,
1132 std::optional<bool> ProvidedUpperBound,
1133 std::optional<bool> ProvidedAllowPeeling,
1134 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1135 std::optional<unsigned> ProvidedFullUnrollMaxCount) {
1136 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1137 << L->getHeader()->getParent()->getName() << "] Loop %"
1138 << L->getHeader()->getName() << "\n");
1139 TransformationMode TM = hasUnrollTransformation(L);
1140 if (TM & TM_Disable)
1141 return LoopUnrollResult::Unmodified;
1142
1143 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1144 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1145 // automatic unrolling from interfering with the user requested
1146 // transformation.
1147 Loop *ParentL = L->getParentLoop();
1148 if (ParentL != nullptr &&
1149 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1150 hasUnrollTransformation(L) != TM_ForcedByUser) {
1151 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1152 << " llvm.loop.unroll_and_jam.\n");
1153 return LoopUnrollResult::Unmodified;
1154 }
1155
1156 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1157 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1158 // unrolling from interfering with the user requested transformation.
1159 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1160 hasUnrollTransformation(L) != TM_ForcedByUser) {
1161 LLVM_DEBUG(
1162 dbgs()
1163 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1164 return LoopUnrollResult::Unmodified;
1165 }
1166
1167 if (!L->isLoopSimplifyForm()) {
1168 LLVM_DEBUG(
1169 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1170 return LoopUnrollResult::Unmodified;
1171 }
1172
1173 // When automatic unrolling is disabled, do not unroll unless overridden for
1174 // this loop.
1175 if (OnlyWhenForced && !(TM & TM_Enable))
1176 return LoopUnrollResult::Unmodified;
1177
1178 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1179 unsigned NumInlineCandidates;
1180 bool NotDuplicatable;
1181 bool Convergent;
1182 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1183 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1184 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1185 ProvidedFullUnrollMaxCount);
1186 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1187 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1188
1189 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1190 // as threshold later on.
1191 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1192 !OptForSize)
1193 return LoopUnrollResult::Unmodified;
1194
1195 SmallPtrSet<const Value *, 32> EphValues;
1196 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1197
1198 InstructionCost LoopSizeIC =
1199 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
1200 TTI, EphValues, UP.BEInsns);
1201 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSizeIC << "\n");
1202
1203 if (!LoopSizeIC.isValid()) {
1204 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions"
1205 << " with invalid cost.\n");
1206 return LoopUnrollResult::Unmodified;
1207 }
1208 unsigned LoopSize = *LoopSizeIC.getValue();
1209
1210 if (NotDuplicatable) {
1211 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
1212 << " instructions.\n");
1213 return LoopUnrollResult::Unmodified;
1214 }
1215
1216 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1217 // later), to (fully) unroll loops, if it does not increase code size.
1218 if (OptForSize)
1219 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1220
1221 if (NumInlineCandidates != 0) {
1222 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1223 return LoopUnrollResult::Unmodified;
1224 }
1225
1226 // Find the smallest exact trip count for any exit. This is an upper bound
1227 // on the loop trip count, but an exit at an earlier iteration is still
1228 // possible. An unroll by the smallest exact trip count guarantees that all
1229 // branches relating to at least one exit can be eliminated. This is unlike
1230 // the max trip count, which only guarantees that the backedge can be broken.
1231 unsigned TripCount = 0;
1232 unsigned TripMultiple = 1;
1233 SmallVector<BasicBlock *, 8> ExitingBlocks;
1234 L->getExitingBlocks(ExitingBlocks);
1235 for (BasicBlock *ExitingBlock : ExitingBlocks)
1236 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1237 if (!TripCount || TC < TripCount)
1238 TripCount = TripMultiple = TC;
1239
1240 if (!TripCount) {
1241 // If no exact trip count is known, determine the trip multiple of either
1242 // the loop latch or the single exiting block.
1243 // TODO: Relax for multiple exits.
1244 BasicBlock *ExitingBlock = L->getLoopLatch();
1245 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1246 ExitingBlock = L->getExitingBlock();
1247 if (ExitingBlock)
1248 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1249 }
1250
1251 // If the loop contains a convergent operation, the prelude we'd add
1252 // to do the first few instructions before we hit the unrolled loop
1253 // is unsafe -- it adds a control-flow dependency to the convergent
1254 // operation. Therefore restrict remainder loop (try unrolling without).
1255 //
1256 // TODO: This is quite conservative. In practice, convergent_op()
1257 // is likely to be called unconditionally in the loop. In this
1258 // case, the program would be ill-formed (on most architectures)
1259 // unless n were the same on all threads in a thread group.
1260 // Assuming n is the same on all threads, any kind of unrolling is
1261 // safe. But currently llvm's notion of convergence isn't powerful
1262 // enough to express this.
1263 if (Convergent)
1264 UP.AllowRemainder = false;
1265
1266 // Try to find the trip count upper bound if we cannot find the exact trip
1267 // count.
1268 unsigned MaxTripCount = 0;
1269 bool MaxOrZero = false;
1270 if (!TripCount) {
1271 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1272 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1273 }
1274
1275 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1276 // fully unroll the loop.
1277 bool UseUpperBound = false;
1278 bool IsCountSetExplicitly = computeUnrollCount(
1279 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero,
1280 TripMultiple, LoopSize, UP, PP, UseUpperBound);
1281 if (!UP.Count)
1282 return LoopUnrollResult::Unmodified;
1283
1284 if (PP.PeelCount) {
1285 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1286 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1287 << " with iteration count " << PP.PeelCount << "!\n");
1288 ORE.emit([&]() {
1289 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1290 L->getHeader())
1291 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1292 << " iterations";
1293 });
1294
1295 ValueToValueMapTy VMap;
1296 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) {
1297 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1298 // If the loop was peeled, we already "used up" the profile information
1299 // we had, so we don't want to unroll or peel again.
1300 if (PP.PeelProfiledIterations)
1301 L->setLoopAlreadyUnrolled();
1302 return LoopUnrollResult::PartiallyUnrolled;
1303 }
1304 return LoopUnrollResult::Unmodified;
1305 }
1306
1307 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1308 // However, we only want to actually perform it if we don't know the trip
1309 // count and the unroll count doesn't divide the known trip multiple.
1310 // TODO: This decision should probably be pushed up into
1311 // computeUnrollCount().
1312 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1313
1314 // Save loop properties before it is transformed.
1315 MDNode *OrigLoopID = L->getLoopID();
1316
1317 // Unroll the loop.
1318 Loop *RemainderLoop = nullptr;
1319 LoopUnrollResult UnrollResult = UnrollLoop(
1320 L,
1321 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1322 UP.UnrollRemainder, ForgetAllSCEV},
1323 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1324 if (UnrollResult == LoopUnrollResult::Unmodified)
1325 return LoopUnrollResult::Unmodified;
1326
1327 if (RemainderLoop) {
1328 std::optional<MDNode *> RemainderLoopID =
1329 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1330 LLVMLoopUnrollFollowupRemainder});
1331 if (RemainderLoopID)
1332 RemainderLoop->setLoopID(*RemainderLoopID);
1333 }
1334
1335 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1336 std::optional<MDNode *> NewLoopID =
1337 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1338 LLVMLoopUnrollFollowupUnrolled});
1339 if (NewLoopID) {
1340 L->setLoopID(*NewLoopID);
1341
1342 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1343 // explicitly.
1344 return UnrollResult;
1345 }
1346 }
1347
1348 // If loop has an unroll count pragma or unrolled by explicitly set count
1349 // mark loop as unrolled to prevent unrolling beyond that requested.
1350 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1351 L->setLoopAlreadyUnrolled();
1352
1353 return UnrollResult;
1354 }
1355
1356 namespace {
1357
1358 class LoopUnroll : public LoopPass {
1359 public:
1360 static char ID; // Pass ID, replacement for typeid
1361
1362 int OptLevel;
1363
1364 /// If false, use a cost model to determine whether unrolling of a loop is
1365 /// profitable. If true, only loops that explicitly request unrolling via
1366 /// metadata are considered. All other loops are skipped.
1367 bool OnlyWhenForced;
1368
1369 /// If false, when SCEV is invalidated, only forget everything in the
1370 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1371 /// Otherwise, forgetAllLoops and rebuild when needed next.
1372 bool ForgetAllSCEV;
1373
1374 std::optional<unsigned> ProvidedCount;
1375 std::optional<unsigned> ProvidedThreshold;
1376 std::optional<bool> ProvidedAllowPartial;
1377 std::optional<bool> ProvidedRuntime;
1378 std::optional<bool> ProvidedUpperBound;
1379 std::optional<bool> ProvidedAllowPeeling;
1380 std::optional<bool> ProvidedAllowProfileBasedPeeling;
1381 std::optional<unsigned> ProvidedFullUnrollMaxCount;
1382
LoopUnroll(int OptLevel=2,bool OnlyWhenForced=false,bool ForgetAllSCEV=false,std::optional<unsigned> Threshold=std::nullopt,std::optional<unsigned> Count=std::nullopt,std::optional<bool> AllowPartial=std::nullopt,std::optional<bool> Runtime=std::nullopt,std::optional<bool> UpperBound=std::nullopt,std::optional<bool> AllowPeeling=std::nullopt,std::optional<bool> AllowProfileBasedPeeling=std::nullopt,std::optional<unsigned> ProvidedFullUnrollMaxCount=std::nullopt)1383 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1384 bool ForgetAllSCEV = false,
1385 std::optional<unsigned> Threshold = std::nullopt,
1386 std::optional<unsigned> Count = std::nullopt,
1387 std::optional<bool> AllowPartial = std::nullopt,
1388 std::optional<bool> Runtime = std::nullopt,
1389 std::optional<bool> UpperBound = std::nullopt,
1390 std::optional<bool> AllowPeeling = std::nullopt,
1391 std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1392 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1393 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1394 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1395 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1396 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1397 ProvidedAllowPeeling(AllowPeeling),
1398 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1399 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1400 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1401 }
1402
runOnLoop(Loop * L,LPPassManager & LPM)1403 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1404 if (skipLoop(L))
1405 return false;
1406
1407 Function &F = *L->getHeader()->getParent();
1408
1409 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1410 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1411 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1412 const TargetTransformInfo &TTI =
1413 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1414 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1415 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1416 // pass. Function analyses need to be preserved across loop transformations
1417 // but ORE cannot be preserved (see comment before the pass definition).
1418 OptimizationRemarkEmitter ORE(&F);
1419 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1420
1421 LoopUnrollResult Result = tryToUnrollLoop(
1422 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1423 OnlyWhenForced, ForgetAllSCEV, ProvidedCount, ProvidedThreshold,
1424 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1425 ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling,
1426 ProvidedFullUnrollMaxCount);
1427
1428 if (Result == LoopUnrollResult::FullyUnrolled)
1429 LPM.markLoopAsDeleted(*L);
1430
1431 return Result != LoopUnrollResult::Unmodified;
1432 }
1433
1434 /// This transformation requires natural loop information & requires that
1435 /// loop preheaders be inserted into the CFG...
getAnalysisUsage(AnalysisUsage & AU) const1436 void getAnalysisUsage(AnalysisUsage &AU) const override {
1437 AU.addRequired<AssumptionCacheTracker>();
1438 AU.addRequired<TargetTransformInfoWrapperPass>();
1439 // FIXME: Loop passes are required to preserve domtree, and for now we just
1440 // recreate dom info if anything gets unrolled.
1441 getLoopAnalysisUsage(AU);
1442 }
1443 };
1444
1445 } // end anonymous namespace
1446
1447 char LoopUnroll::ID = 0;
1448
1449 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1450 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1451 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1452 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1453 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1454
1455 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1456 bool ForgetAllSCEV, int Threshold, int Count,
1457 int AllowPartial, int Runtime, int UpperBound,
1458 int AllowPeeling) {
1459 // TODO: It would make more sense for this function to take the optionals
1460 // directly, but that's dangerous since it would silently break out of tree
1461 // callers.
1462 return new LoopUnroll(
1463 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1464 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1465 Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1466 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1467 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1468 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1469 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1470 }
1471
createSimpleLoopUnrollPass(int OptLevel,bool OnlyWhenForced,bool ForgetAllSCEV)1472 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1473 bool ForgetAllSCEV) {
1474 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1,
1475 0, 0, 0, 1);
1476 }
1477
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & Updater)1478 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1479 LoopStandardAnalysisResults &AR,
1480 LPMUpdater &Updater) {
1481 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1482 // pass. Function analyses need to be preserved across loop transformations
1483 // but ORE cannot be preserved (see comment before the pass definition).
1484 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1485
1486 // Keep track of the previous loop structure so we can identify new loops
1487 // created by unrolling.
1488 Loop *ParentL = L.getParentLoop();
1489 SmallPtrSet<Loop *, 4> OldLoops;
1490 if (ParentL)
1491 OldLoops.insert(ParentL->begin(), ParentL->end());
1492 else
1493 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1494
1495 std::string LoopName = std::string(L.getName());
1496
1497 bool Changed =
1498 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1499 /*BFI*/ nullptr, /*PSI*/ nullptr,
1500 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced,
1501 ForgetSCEV, /*Count*/ std::nullopt,
1502 /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1503 /*Runtime*/ false, /*UpperBound*/ false,
1504 /*AllowPeeling*/ true,
1505 /*AllowProfileBasedPeeling*/ false,
1506 /*FullUnrollMaxCount*/ std::nullopt) !=
1507 LoopUnrollResult::Unmodified;
1508 if (!Changed)
1509 return PreservedAnalyses::all();
1510
1511 // The parent must not be damaged by unrolling!
1512 #ifndef NDEBUG
1513 if (ParentL)
1514 ParentL->verifyLoop();
1515 #endif
1516
1517 // Unrolling can do several things to introduce new loops into a loop nest:
1518 // - Full unrolling clones child loops within the current loop but then
1519 // removes the current loop making all of the children appear to be new
1520 // sibling loops.
1521 //
1522 // When a new loop appears as a sibling loop after fully unrolling,
1523 // its nesting structure has fundamentally changed and we want to revisit
1524 // it to reflect that.
1525 //
1526 // When unrolling has removed the current loop, we need to tell the
1527 // infrastructure that it is gone.
1528 //
1529 // Finally, we support a debugging/testing mode where we revisit child loops
1530 // as well. These are not expected to require further optimizations as either
1531 // they or the loop they were cloned from have been directly visited already.
1532 // But the debugging mode allows us to check this assumption.
1533 bool IsCurrentLoopValid = false;
1534 SmallVector<Loop *, 4> SibLoops;
1535 if (ParentL)
1536 SibLoops.append(ParentL->begin(), ParentL->end());
1537 else
1538 SibLoops.append(AR.LI.begin(), AR.LI.end());
1539 erase_if(SibLoops, [&](Loop *SibLoop) {
1540 if (SibLoop == &L) {
1541 IsCurrentLoopValid = true;
1542 return true;
1543 }
1544
1545 // Otherwise erase the loop from the list if it was in the old loops.
1546 return OldLoops.contains(SibLoop);
1547 });
1548 Updater.addSiblingLoops(SibLoops);
1549
1550 if (!IsCurrentLoopValid) {
1551 Updater.markLoopAsDeleted(L, LoopName);
1552 } else {
1553 // We can only walk child loops if the current loop remained valid.
1554 if (UnrollRevisitChildLoops) {
1555 // Walk *all* of the child loops.
1556 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1557 Updater.addChildLoops(ChildLoops);
1558 }
1559 }
1560
1561 return getLoopPassPreservedAnalyses();
1562 }
1563
run(Function & F,FunctionAnalysisManager & AM)1564 PreservedAnalyses LoopUnrollPass::run(Function &F,
1565 FunctionAnalysisManager &AM) {
1566 auto &LI = AM.getResult<LoopAnalysis>(F);
1567 // There are no loops in the function. Return before computing other expensive
1568 // analyses.
1569 if (LI.empty())
1570 return PreservedAnalyses::all();
1571 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1572 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1573 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1574 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1575 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1576
1577 LoopAnalysisManager *LAM = nullptr;
1578 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1579 LAM = &LAMProxy->getManager();
1580
1581 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1582 ProfileSummaryInfo *PSI =
1583 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1584 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1585 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1586
1587 bool Changed = false;
1588
1589 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1590 // Since simplification may add new inner loops, it has to run before the
1591 // legality and profitability checks. This means running the loop unroller
1592 // will simplify all loops, regardless of whether anything end up being
1593 // unrolled.
1594 for (const auto &L : LI) {
1595 Changed |=
1596 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1597 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1598 }
1599
1600 // Add the loop nests in the reverse order of LoopInfo. See method
1601 // declaration.
1602 SmallPriorityWorklist<Loop *, 4> Worklist;
1603 appendLoopsToWorklist(LI, Worklist);
1604
1605 while (!Worklist.empty()) {
1606 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1607 // from back to front so that we work forward across the CFG, which
1608 // for unrolling is only needed to get optimization remarks emitted in
1609 // a forward order.
1610 Loop &L = *Worklist.pop_back_val();
1611 #ifndef NDEBUG
1612 Loop *ParentL = L.getParentLoop();
1613 #endif
1614
1615 // Check if the profile summary indicates that the profiled application
1616 // has a huge working set size, in which case we disable peeling to avoid
1617 // bloating it further.
1618 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1619 if (PSI && PSI->hasHugeWorkingSetSize())
1620 LocalAllowPeeling = false;
1621 std::string LoopName = std::string(L.getName());
1622 // The API here is quite complex to call and we allow to select some
1623 // flavors of unrolling during construction time (by setting UnrollOpts).
1624 LoopUnrollResult Result = tryToUnrollLoop(
1625 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1626 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced,
1627 UnrollOpts.ForgetSCEV, /*Count*/ std::nullopt,
1628 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1629 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1630 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1631 Changed |= Result != LoopUnrollResult::Unmodified;
1632
1633 // The parent must not be damaged by unrolling!
1634 #ifndef NDEBUG
1635 if (Result != LoopUnrollResult::Unmodified && ParentL)
1636 ParentL->verifyLoop();
1637 #endif
1638
1639 // Clear any cached analysis results for L if we removed it completely.
1640 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1641 LAM->clear(L, LoopName);
1642 }
1643
1644 if (!Changed)
1645 return PreservedAnalyses::all();
1646
1647 return getLoopPassPreservedAnalyses();
1648 }
1649
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)1650 void LoopUnrollPass::printPipeline(
1651 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1652 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1653 OS, MapClassName2PassName);
1654 OS << "<";
1655 if (UnrollOpts.AllowPartial != std::nullopt)
1656 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1657 if (UnrollOpts.AllowPeeling != std::nullopt)
1658 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1659 if (UnrollOpts.AllowRuntime != std::nullopt)
1660 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1661 if (UnrollOpts.AllowUpperBound != std::nullopt)
1662 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1663 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1664 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1665 << "profile-peeling;";
1666 if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1667 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ";";
1668 OS << "O" << UnrollOpts.OptLevel;
1669 OS << ">";
1670 }
1671