1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44
45 using namespace llvm;
46
47 #define GET_INSTRINFO_CTOR_DTOR
48 #define GET_INSTRMAP_INFO
49 #include "SystemZGenInstrInfo.inc"
50
51 #define DEBUG_TYPE "systemz-II"
52
53 // Return a mask with Count low bits set.
allOnes(unsigned int Count)54 static uint64_t allOnes(unsigned int Count) {
55 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
56 }
57
58 // Pin the vtable to this file.
anchor()59 void SystemZInstrInfo::anchor() {}
60
SystemZInstrInfo(SystemZSubtarget & sti)61 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
62 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
63 RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
64 STI(sti) {}
65
66 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
67 // each having the opcode given by NewOpcode.
splitMove(MachineBasicBlock::iterator MI,unsigned NewOpcode) const68 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
69 unsigned NewOpcode) const {
70 MachineBasicBlock *MBB = MI->getParent();
71 MachineFunction &MF = *MBB->getParent();
72
73 // Get two load or store instructions. Use the original instruction for one
74 // of them (arbitrarily the second here) and create a clone for the other.
75 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
76 MBB->insert(MI, EarlierMI);
77
78 // Set up the two 64-bit registers and remember super reg and its flags.
79 MachineOperand &HighRegOp = EarlierMI->getOperand(0);
80 MachineOperand &LowRegOp = MI->getOperand(0);
81 Register Reg128 = LowRegOp.getReg();
82 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
83 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef());
84 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
85 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
86
87 if (MI->mayStore()) {
88 // Add implicit uses of the super register in case one of the subregs is
89 // undefined. We could track liveness and skip storing an undefined
90 // subreg, but this is hopefully rare (discovered with llvm-stress).
91 // If Reg128 was killed, set kill flag on MI.
92 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
93 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
94 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
95 }
96
97 // The address in the first (high) instruction is already correct.
98 // Adjust the offset in the second (low) instruction.
99 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
100 MachineOperand &LowOffsetOp = MI->getOperand(2);
101 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
102
103 // Clear the kill flags on the registers in the first instruction.
104 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
105 EarlierMI->getOperand(0).setIsKill(false);
106 EarlierMI->getOperand(1).setIsKill(false);
107 EarlierMI->getOperand(3).setIsKill(false);
108
109 // Set the opcodes.
110 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
111 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
112 assert(HighOpcode && LowOpcode && "Both offsets should be in range");
113
114 EarlierMI->setDesc(get(HighOpcode));
115 MI->setDesc(get(LowOpcode));
116 }
117
118 // Split ADJDYNALLOC instruction MI.
splitAdjDynAlloc(MachineBasicBlock::iterator MI) const119 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
120 MachineBasicBlock *MBB = MI->getParent();
121 MachineFunction &MF = *MBB->getParent();
122 MachineFrameInfo &MFFrame = MF.getFrameInfo();
123 MachineOperand &OffsetMO = MI->getOperand(2);
124 SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
125
126 uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
127 Regs->getCallFrameSize() +
128 Regs->getStackPointerBias() +
129 OffsetMO.getImm());
130 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
131 assert(NewOpcode && "No support for huge argument lists yet");
132 MI->setDesc(get(NewOpcode));
133 OffsetMO.setImm(Offset);
134 }
135
136 // MI is an RI-style pseudo instruction. Replace it with LowOpcode
137 // if the first operand is a low GR32 and HighOpcode if the first operand
138 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
139 // and HighOpcode takes an unsigned 32-bit operand. In those cases,
140 // MI has the same kind of operand as LowOpcode, so needs to be converted
141 // if HighOpcode is used.
expandRIPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode,bool ConvertHigh) const142 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
143 unsigned HighOpcode,
144 bool ConvertHigh) const {
145 Register Reg = MI.getOperand(0).getReg();
146 bool IsHigh = SystemZ::isHighReg(Reg);
147 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
148 if (IsHigh && ConvertHigh)
149 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
150 }
151
152 // MI is a three-operand RIE-style pseudo instruction. Replace it with
153 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
154 // followed by HighOpcode or LowOpcode, depending on whether the target
155 // is a high or low GR32.
expandRIEPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned LowOpcodeK,unsigned HighOpcode) const156 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
157 unsigned LowOpcodeK,
158 unsigned HighOpcode) const {
159 Register DestReg = MI.getOperand(0).getReg();
160 Register SrcReg = MI.getOperand(1).getReg();
161 bool DestIsHigh = SystemZ::isHighReg(DestReg);
162 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
163 if (!DestIsHigh && !SrcIsHigh)
164 MI.setDesc(get(LowOpcodeK));
165 else {
166 if (DestReg != SrcReg) {
167 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
168 SystemZ::LR, 32, MI.getOperand(1).isKill(),
169 MI.getOperand(1).isUndef());
170 MI.getOperand(1).setReg(DestReg);
171 }
172 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
173 MI.tieOperands(0, 1);
174 }
175 }
176
177 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode
178 // if the first operand is a low GR32 and HighOpcode if the first operand
179 // is a high GR32.
expandRXYPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const180 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
181 unsigned HighOpcode) const {
182 Register Reg = MI.getOperand(0).getReg();
183 unsigned Opcode = getOpcodeForOffset(
184 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
185 MI.getOperand(2).getImm());
186 MI.setDesc(get(Opcode));
187 }
188
189 // MI is a load-on-condition pseudo instruction with a single register
190 // (source or destination) operand. Replace it with LowOpcode if the
191 // register is a low GR32 and HighOpcode if the register is a high GR32.
expandLOCPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned HighOpcode) const192 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
193 unsigned HighOpcode) const {
194 Register Reg = MI.getOperand(0).getReg();
195 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
196 MI.setDesc(get(Opcode));
197 }
198
199 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
200 // of one GRX32 into another. Replace it with LowOpcode if both operands
201 // are low registers, otherwise use RISB[LH]G.
expandZExtPseudo(MachineInstr & MI,unsigned LowOpcode,unsigned Size) const202 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
203 unsigned Size) const {
204 MachineInstrBuilder MIB =
205 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
206 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
207 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
208
209 // Keep the remaining operands as-is.
210 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
211 MIB.add(MO);
212
213 MI.eraseFromParent();
214 }
215
expandLoadStackGuard(MachineInstr * MI) const216 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
217 MachineBasicBlock *MBB = MI->getParent();
218 MachineFunction &MF = *MBB->getParent();
219 const Register Reg64 = MI->getOperand(0).getReg();
220 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
221
222 // EAR can only load the low subregister so us a shift for %a0 to produce
223 // the GR containing %a0 and %a1.
224
225 // ear <reg>, %a0
226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
227 .addReg(SystemZ::A0)
228 .addReg(Reg64, RegState::ImplicitDefine);
229
230 // sllg <reg>, <reg>, 32
231 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
232 .addReg(Reg64)
233 .addReg(0)
234 .addImm(32);
235
236 // ear <reg>, %a1
237 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
238 .addReg(SystemZ::A1);
239
240 // lg <reg>, 40(<reg>)
241 MI->setDesc(get(SystemZ::LG));
242 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
243 }
244
245 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
246 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
247 // are low registers, otherwise use RISB[LH]G. Size is the number of bits
248 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
249 // KillSrc is true if this move is the last use of SrcReg.
250 MachineInstrBuilder
emitGRX32Move(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,unsigned LowLowOpcode,unsigned Size,bool KillSrc,bool UndefSrc) const251 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
252 MachineBasicBlock::iterator MBBI,
253 const DebugLoc &DL, unsigned DestReg,
254 unsigned SrcReg, unsigned LowLowOpcode,
255 unsigned Size, bool KillSrc,
256 bool UndefSrc) const {
257 unsigned Opcode;
258 bool DestIsHigh = SystemZ::isHighReg(DestReg);
259 bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
260 if (DestIsHigh && SrcIsHigh)
261 Opcode = SystemZ::RISBHH;
262 else if (DestIsHigh && !SrcIsHigh)
263 Opcode = SystemZ::RISBHL;
264 else if (!DestIsHigh && SrcIsHigh)
265 Opcode = SystemZ::RISBLH;
266 else {
267 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
269 }
270 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
271 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
272 .addReg(DestReg, RegState::Undef)
273 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
274 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
275 }
276
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const277 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
278 bool NewMI,
279 unsigned OpIdx1,
280 unsigned OpIdx2) const {
281 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
282 if (NewMI)
283 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
284 return MI;
285 };
286
287 switch (MI.getOpcode()) {
288 case SystemZ::SELRMux:
289 case SystemZ::SELFHR:
290 case SystemZ::SELR:
291 case SystemZ::SELGR:
292 case SystemZ::LOCRMux:
293 case SystemZ::LOCFHR:
294 case SystemZ::LOCR:
295 case SystemZ::LOCGR: {
296 auto &WorkingMI = cloneIfNew(MI);
297 // Invert condition.
298 unsigned CCValid = WorkingMI.getOperand(3).getImm();
299 unsigned CCMask = WorkingMI.getOperand(4).getImm();
300 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
301 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
302 OpIdx1, OpIdx2);
303 }
304 default:
305 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
306 }
307 }
308
309 // If MI is a simple load or store for a frame object, return the register
310 // it loads or stores and set FrameIndex to the index of the frame object.
311 // Return 0 otherwise.
312 //
313 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleMove(const MachineInstr & MI,int & FrameIndex,unsigned Flag)314 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
315 unsigned Flag) {
316 const MCInstrDesc &MCID = MI.getDesc();
317 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
318 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
319 FrameIndex = MI.getOperand(1).getIndex();
320 return MI.getOperand(0).getReg();
321 }
322 return 0;
323 }
324
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const325 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
326 int &FrameIndex) const {
327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
328 }
329
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const330 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
331 int &FrameIndex) const {
332 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
333 }
334
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex) const335 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
336 int &DestFrameIndex,
337 int &SrcFrameIndex) const {
338 // Check for MVC 0(Length,FI1),0(FI2)
339 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
340 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
341 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
342 MI.getOperand(4).getImm() != 0)
343 return false;
344
345 // Check that Length covers the full slots.
346 int64_t Length = MI.getOperand(2).getImm();
347 unsigned FI1 = MI.getOperand(0).getIndex();
348 unsigned FI2 = MI.getOperand(3).getIndex();
349 if (MFI.getObjectSize(FI1) != Length ||
350 MFI.getObjectSize(FI2) != Length)
351 return false;
352
353 DestFrameIndex = FI1;
354 SrcFrameIndex = FI2;
355 return true;
356 }
357
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const358 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
359 MachineBasicBlock *&TBB,
360 MachineBasicBlock *&FBB,
361 SmallVectorImpl<MachineOperand> &Cond,
362 bool AllowModify) const {
363 // Most of the code and comments here are boilerplate.
364
365 // Start from the bottom of the block and work up, examining the
366 // terminator instructions.
367 MachineBasicBlock::iterator I = MBB.end();
368 while (I != MBB.begin()) {
369 --I;
370 if (I->isDebugInstr())
371 continue;
372
373 // Working from the bottom, when we see a non-terminator instruction, we're
374 // done.
375 if (!isUnpredicatedTerminator(*I))
376 break;
377
378 // A terminator that isn't a branch can't easily be handled by this
379 // analysis.
380 if (!I->isBranch())
381 return true;
382
383 // Can't handle indirect branches.
384 SystemZII::Branch Branch(getBranchInfo(*I));
385 if (!Branch.hasMBBTarget())
386 return true;
387
388 // Punt on compound branches.
389 if (Branch.Type != SystemZII::BranchNormal)
390 return true;
391
392 if (Branch.CCMask == SystemZ::CCMASK_ANY) {
393 // Handle unconditional branches.
394 if (!AllowModify) {
395 TBB = Branch.getMBBTarget();
396 continue;
397 }
398
399 // If the block has any instructions after a JMP, delete them.
400 MBB.erase(std::next(I), MBB.end());
401
402 Cond.clear();
403 FBB = nullptr;
404
405 // Delete the JMP if it's equivalent to a fall-through.
406 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
407 TBB = nullptr;
408 I->eraseFromParent();
409 I = MBB.end();
410 continue;
411 }
412
413 // TBB is used to indicate the unconditinal destination.
414 TBB = Branch.getMBBTarget();
415 continue;
416 }
417
418 // Working from the bottom, handle the first conditional branch.
419 if (Cond.empty()) {
420 // FIXME: add X86-style branch swap
421 FBB = TBB;
422 TBB = Branch.getMBBTarget();
423 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
424 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
425 continue;
426 }
427
428 // Handle subsequent conditional branches.
429 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
430
431 // Only handle the case where all conditional branches branch to the same
432 // destination.
433 if (TBB != Branch.getMBBTarget())
434 return true;
435
436 // If the conditions are the same, we can leave them alone.
437 unsigned OldCCValid = Cond[0].getImm();
438 unsigned OldCCMask = Cond[1].getImm();
439 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
440 continue;
441
442 // FIXME: Try combining conditions like X86 does. Should be easy on Z!
443 return false;
444 }
445
446 return false;
447 }
448
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
450 int *BytesRemoved) const {
451 assert(!BytesRemoved && "code size not handled");
452
453 // Most of the code and comments here are boilerplate.
454 MachineBasicBlock::iterator I = MBB.end();
455 unsigned Count = 0;
456
457 while (I != MBB.begin()) {
458 --I;
459 if (I->isDebugInstr())
460 continue;
461 if (!I->isBranch())
462 break;
463 if (!getBranchInfo(*I).hasMBBTarget())
464 break;
465 // Remove the branch.
466 I->eraseFromParent();
467 I = MBB.end();
468 ++Count;
469 }
470
471 return Count;
472 }
473
474 bool SystemZInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
476 assert(Cond.size() == 2 && "Invalid condition");
477 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
478 return false;
479 }
480
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
482 MachineBasicBlock *TBB,
483 MachineBasicBlock *FBB,
484 ArrayRef<MachineOperand> Cond,
485 const DebugLoc &DL,
486 int *BytesAdded) const {
487 // In this function we output 32-bit branches, which should always
488 // have enough range. They can be shortened and relaxed by later code
489 // in the pipeline, if desired.
490
491 // Shouldn't be a fall through.
492 assert(TBB && "insertBranch must not be told to insert a fallthrough");
493 assert((Cond.size() == 2 || Cond.size() == 0) &&
494 "SystemZ branch conditions have one component!");
495 assert(!BytesAdded && "code size not handled");
496
497 if (Cond.empty()) {
498 // Unconditional branch?
499 assert(!FBB && "Unconditional branch with multiple successors!");
500 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
501 return 1;
502 }
503
504 // Conditional branch.
505 unsigned Count = 0;
506 unsigned CCValid = Cond[0].getImm();
507 unsigned CCMask = Cond[1].getImm();
508 BuildMI(&MBB, DL, get(SystemZ::BRC))
509 .addImm(CCValid).addImm(CCMask).addMBB(TBB);
510 ++Count;
511
512 if (FBB) {
513 // Two-way Conditional branch. Insert the second branch.
514 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
515 ++Count;
516 }
517 return Count;
518 }
519
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & Mask,int64_t & Value) const520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
521 Register &SrcReg2, int64_t &Mask,
522 int64_t &Value) const {
523 assert(MI.isCompare() && "Caller should have checked for a comparison");
524
525 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
526 MI.getOperand(1).isImm()) {
527 SrcReg = MI.getOperand(0).getReg();
528 SrcReg2 = 0;
529 Value = MI.getOperand(1).getImm();
530 Mask = ~0;
531 return true;
532 }
533
534 return false;
535 }
536
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Pred,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const537 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
538 ArrayRef<MachineOperand> Pred,
539 Register DstReg, Register TrueReg,
540 Register FalseReg, int &CondCycles,
541 int &TrueCycles,
542 int &FalseCycles) const {
543 // Not all subtargets have LOCR instructions.
544 if (!STI.hasLoadStoreOnCond())
545 return false;
546 if (Pred.size() != 2)
547 return false;
548
549 // Check register classes.
550 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
551 const TargetRegisterClass *RC =
552 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
553 if (!RC)
554 return false;
555
556 // We have LOCR instructions for 32 and 64 bit general purpose registers.
557 if ((STI.hasLoadStoreOnCond2() &&
558 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
559 SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
560 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
561 CondCycles = 2;
562 TrueCycles = 2;
563 FalseCycles = 2;
564 return true;
565 }
566
567 // Can't do anything else.
568 return false;
569 }
570
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Pred,Register TrueReg,Register FalseReg) const571 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
572 MachineBasicBlock::iterator I,
573 const DebugLoc &DL, Register DstReg,
574 ArrayRef<MachineOperand> Pred,
575 Register TrueReg,
576 Register FalseReg) const {
577 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
578 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
579
580 assert(Pred.size() == 2 && "Invalid condition");
581 unsigned CCValid = Pred[0].getImm();
582 unsigned CCMask = Pred[1].getImm();
583
584 unsigned Opc;
585 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
586 if (STI.hasMiscellaneousExtensions3())
587 Opc = SystemZ::SELRMux;
588 else if (STI.hasLoadStoreOnCond2())
589 Opc = SystemZ::LOCRMux;
590 else {
591 Opc = SystemZ::LOCR;
592 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
593 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
594 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
595 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
596 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
597 TrueReg = TReg;
598 FalseReg = FReg;
599 }
600 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
601 if (STI.hasMiscellaneousExtensions3())
602 Opc = SystemZ::SELGR;
603 else
604 Opc = SystemZ::LOCGR;
605 } else
606 llvm_unreachable("Invalid register class");
607
608 BuildMI(MBB, I, DL, get(Opc), DstReg)
609 .addReg(FalseReg).addReg(TrueReg)
610 .addImm(CCValid).addImm(CCMask);
611 }
612
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const613 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
614 Register Reg,
615 MachineRegisterInfo *MRI) const {
616 unsigned DefOpc = DefMI.getOpcode();
617 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
618 DefOpc != SystemZ::LGHI)
619 return false;
620 if (DefMI.getOperand(0).getReg() != Reg)
621 return false;
622 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
623
624 unsigned UseOpc = UseMI.getOpcode();
625 unsigned NewUseOpc;
626 unsigned UseIdx;
627 int CommuteIdx = -1;
628 bool TieOps = false;
629 switch (UseOpc) {
630 case SystemZ::SELRMux:
631 TieOps = true;
632 [[fallthrough]];
633 case SystemZ::LOCRMux:
634 if (!STI.hasLoadStoreOnCond2())
635 return false;
636 NewUseOpc = SystemZ::LOCHIMux;
637 if (UseMI.getOperand(2).getReg() == Reg)
638 UseIdx = 2;
639 else if (UseMI.getOperand(1).getReg() == Reg)
640 UseIdx = 2, CommuteIdx = 1;
641 else
642 return false;
643 break;
644 case SystemZ::SELGR:
645 TieOps = true;
646 [[fallthrough]];
647 case SystemZ::LOCGR:
648 if (!STI.hasLoadStoreOnCond2())
649 return false;
650 NewUseOpc = SystemZ::LOCGHI;
651 if (UseMI.getOperand(2).getReg() == Reg)
652 UseIdx = 2;
653 else if (UseMI.getOperand(1).getReg() == Reg)
654 UseIdx = 2, CommuteIdx = 1;
655 else
656 return false;
657 break;
658 default:
659 return false;
660 }
661
662 if (CommuteIdx != -1)
663 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
664 return false;
665
666 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
667 UseMI.setDesc(get(NewUseOpc));
668 if (TieOps)
669 UseMI.tieOperands(0, 1);
670 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
671 if (DeleteDef)
672 DefMI.eraseFromParent();
673
674 return true;
675 }
676
isPredicable(const MachineInstr & MI) const677 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
678 unsigned Opcode = MI.getOpcode();
679 if (Opcode == SystemZ::Return ||
680 Opcode == SystemZ::Return_XPLINK ||
681 Opcode == SystemZ::Trap ||
682 Opcode == SystemZ::CallJG ||
683 Opcode == SystemZ::CallBR)
684 return true;
685 return false;
686 }
687
688 bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const689 isProfitableToIfCvt(MachineBasicBlock &MBB,
690 unsigned NumCycles, unsigned ExtraPredCycles,
691 BranchProbability Probability) const {
692 // Avoid using conditional returns at the end of a loop (since then
693 // we'd need to emit an unconditional branch to the beginning anyway,
694 // making the loop body longer). This doesn't apply for low-probability
695 // loops (eg. compare-and-swap retry), so just decide based on branch
696 // probability instead of looping structure.
697 // However, since Compare and Trap instructions cost the same as a regular
698 // Compare instruction, we should allow the if conversion to convert this
699 // into a Conditional Compare regardless of the branch probability.
700 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
701 MBB.succ_empty() && Probability < BranchProbability(1, 8))
702 return false;
703 // For now only convert single instructions.
704 return NumCycles == 1;
705 }
706
707 bool SystemZInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumCyclesT,unsigned ExtraPredCyclesT,MachineBasicBlock & FMBB,unsigned NumCyclesF,unsigned ExtraPredCyclesF,BranchProbability Probability) const708 isProfitableToIfCvt(MachineBasicBlock &TMBB,
709 unsigned NumCyclesT, unsigned ExtraPredCyclesT,
710 MachineBasicBlock &FMBB,
711 unsigned NumCyclesF, unsigned ExtraPredCyclesF,
712 BranchProbability Probability) const {
713 // For now avoid converting mutually-exclusive cases.
714 return false;
715 }
716
717 bool SystemZInstrInfo::
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability) const718 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
719 BranchProbability Probability) const {
720 // For now only duplicate single instructions.
721 return NumCycles == 1;
722 }
723
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const724 bool SystemZInstrInfo::PredicateInstruction(
725 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
726 assert(Pred.size() == 2 && "Invalid condition");
727 unsigned CCValid = Pred[0].getImm();
728 unsigned CCMask = Pred[1].getImm();
729 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
730 unsigned Opcode = MI.getOpcode();
731 if (Opcode == SystemZ::Trap) {
732 MI.setDesc(get(SystemZ::CondTrap));
733 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
734 .addImm(CCValid).addImm(CCMask)
735 .addReg(SystemZ::CC, RegState::Implicit);
736 return true;
737 }
738 if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
739 MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
740 : SystemZ::CondReturn_XPLINK));
741 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
742 .addImm(CCValid)
743 .addImm(CCMask)
744 .addReg(SystemZ::CC, RegState::Implicit);
745 return true;
746 }
747 if (Opcode == SystemZ::CallJG) {
748 MachineOperand FirstOp = MI.getOperand(0);
749 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
750 MI.removeOperand(1);
751 MI.removeOperand(0);
752 MI.setDesc(get(SystemZ::CallBRCL));
753 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
754 .addImm(CCValid)
755 .addImm(CCMask)
756 .add(FirstOp)
757 .addRegMask(RegMask)
758 .addReg(SystemZ::CC, RegState::Implicit);
759 return true;
760 }
761 if (Opcode == SystemZ::CallBR) {
762 MachineOperand Target = MI.getOperand(0);
763 const uint32_t *RegMask = MI.getOperand(1).getRegMask();
764 MI.removeOperand(1);
765 MI.removeOperand(0);
766 MI.setDesc(get(SystemZ::CallBCR));
767 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
768 .addImm(CCValid).addImm(CCMask)
769 .add(Target)
770 .addRegMask(RegMask)
771 .addReg(SystemZ::CC, RegState::Implicit);
772 return true;
773 }
774 return false;
775 }
776
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const777 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
778 MachineBasicBlock::iterator MBBI,
779 const DebugLoc &DL, MCRegister DestReg,
780 MCRegister SrcReg, bool KillSrc) const {
781 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
782 // super register in case one of the subregs is undefined.
783 // This handles ADDR128 too.
784 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
785 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
786 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
787 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
788 .addReg(SrcReg, RegState::Implicit);
789 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
790 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
791 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
792 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
793 return;
794 }
795
796 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
797 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
798 false);
799 return;
800 }
801
802 // Move 128-bit floating-point values between VR128 and FP128.
803 if (SystemZ::VR128BitRegClass.contains(DestReg) &&
804 SystemZ::FP128BitRegClass.contains(SrcReg)) {
805 MCRegister SrcRegHi =
806 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
807 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
808 MCRegister SrcRegLo =
809 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
810 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811
812 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
813 .addReg(SrcRegHi, getKillRegState(KillSrc))
814 .addReg(SrcRegLo, getKillRegState(KillSrc));
815 return;
816 }
817 if (SystemZ::FP128BitRegClass.contains(DestReg) &&
818 SystemZ::VR128BitRegClass.contains(SrcReg)) {
819 MCRegister DestRegHi =
820 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
821 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
822 MCRegister DestRegLo =
823 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
824 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
825
826 if (DestRegHi != SrcReg)
827 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
828 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
829 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
830 return;
831 }
832
833 // Move CC value from a GR32.
834 if (DestReg == SystemZ::CC) {
835 unsigned Opcode =
836 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
837 BuildMI(MBB, MBBI, DL, get(Opcode))
838 .addReg(SrcReg, getKillRegState(KillSrc))
839 .addImm(3 << (SystemZ::IPM_CC - 16));
840 return;
841 }
842
843 // Everything else needs only one instruction.
844 unsigned Opcode;
845 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
846 Opcode = SystemZ::LGR;
847 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
848 // For z13 we prefer LDR over LER to avoid partial register dependencies.
849 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
850 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
851 Opcode = SystemZ::LDR;
852 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
853 Opcode = SystemZ::LXR;
854 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
855 Opcode = SystemZ::VLR32;
856 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
857 Opcode = SystemZ::VLR64;
858 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
859 Opcode = SystemZ::VLR;
860 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
861 Opcode = SystemZ::CPYA;
862 else
863 llvm_unreachable("Impossible reg-to-reg copy");
864
865 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
866 .addReg(SrcReg, getKillRegState(KillSrc));
867 }
868
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const869 void SystemZInstrInfo::storeRegToStackSlot(
870 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
871 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
872 const TargetRegisterInfo *TRI, Register VReg) const {
873 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
874
875 // Callers may expect a single instruction, so keep 128-bit moves
876 // together for now and lower them after register allocation.
877 unsigned LoadOpcode, StoreOpcode;
878 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
879 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
880 .addReg(SrcReg, getKillRegState(isKill)),
881 FrameIdx);
882 }
883
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const884 void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
885 MachineBasicBlock::iterator MBBI,
886 Register DestReg, int FrameIdx,
887 const TargetRegisterClass *RC,
888 const TargetRegisterInfo *TRI,
889 Register VReg) const {
890 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
891
892 // Callers may expect a single instruction, so keep 128-bit moves
893 // together for now and lower them after register allocation.
894 unsigned LoadOpcode, StoreOpcode;
895 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
896 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
897 FrameIdx);
898 }
899
900 // Return true if MI is a simple load or store with a 12-bit displacement
901 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
isSimpleBD12Move(const MachineInstr * MI,unsigned Flag)902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
903 const MCInstrDesc &MCID = MI->getDesc();
904 return ((MCID.TSFlags & Flag) &&
905 isUInt<12>(MI->getOperand(2).getImm()) &&
906 MI->getOperand(3).getReg() == 0);
907 }
908
909 namespace {
910
911 struct LogicOp {
912 LogicOp() = default;
LogicOp__anonef74a4fc0211::LogicOp913 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
914 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
915
operator bool__anonef74a4fc0211::LogicOp916 explicit operator bool() const { return RegSize; }
917
918 unsigned RegSize = 0;
919 unsigned ImmLSB = 0;
920 unsigned ImmSize = 0;
921 };
922
923 } // end anonymous namespace
924
interpretAndImmediate(unsigned Opcode)925 static LogicOp interpretAndImmediate(unsigned Opcode) {
926 switch (Opcode) {
927 case SystemZ::NILMux: return LogicOp(32, 0, 16);
928 case SystemZ::NIHMux: return LogicOp(32, 16, 16);
929 case SystemZ::NILL64: return LogicOp(64, 0, 16);
930 case SystemZ::NILH64: return LogicOp(64, 16, 16);
931 case SystemZ::NIHL64: return LogicOp(64, 32, 16);
932 case SystemZ::NIHH64: return LogicOp(64, 48, 16);
933 case SystemZ::NIFMux: return LogicOp(32, 0, 32);
934 case SystemZ::NILF64: return LogicOp(64, 0, 32);
935 case SystemZ::NIHF64: return LogicOp(64, 32, 32);
936 default: return LogicOp();
937 }
938 }
939
transferDeadCC(MachineInstr * OldMI,MachineInstr * NewMI)940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
941 if (OldMI->registerDefIsDead(SystemZ::CC)) {
942 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
943 if (CCDef != nullptr)
944 CCDef->setIsDead(true);
945 }
946 }
947
transferMIFlag(MachineInstr * OldMI,MachineInstr * NewMI,MachineInstr::MIFlag Flag)948 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
949 MachineInstr::MIFlag Flag) {
950 if (OldMI->getFlag(Flag))
951 NewMI->setFlag(Flag);
952 }
953
954 MachineInstr *
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS) const955 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
956 LiveIntervals *LIS) const {
957 MachineBasicBlock *MBB = MI.getParent();
958
959 // Try to convert an AND into an RISBG-type instruction.
960 // TODO: It might be beneficial to select RISBG and shorten to AND instead.
961 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
962 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
963 // AND IMMEDIATE leaves the other bits of the register unchanged.
964 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
965 unsigned Start, End;
966 if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
967 unsigned NewOpcode;
968 if (And.RegSize == 64) {
969 NewOpcode = SystemZ::RISBG;
970 // Prefer RISBGN if available, since it does not clobber CC.
971 if (STI.hasMiscellaneousExtensions())
972 NewOpcode = SystemZ::RISBGN;
973 } else {
974 NewOpcode = SystemZ::RISBMux;
975 Start &= 31;
976 End &= 31;
977 }
978 MachineOperand &Dest = MI.getOperand(0);
979 MachineOperand &Src = MI.getOperand(1);
980 MachineInstrBuilder MIB =
981 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
982 .add(Dest)
983 .addReg(0)
984 .addReg(Src.getReg(), getKillRegState(Src.isKill()),
985 Src.getSubReg())
986 .addImm(Start)
987 .addImm(End + 128)
988 .addImm(0);
989 if (LV) {
990 unsigned NumOps = MI.getNumOperands();
991 for (unsigned I = 1; I < NumOps; ++I) {
992 MachineOperand &Op = MI.getOperand(I);
993 if (Op.isReg() && Op.isKill())
994 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
995 }
996 }
997 if (LIS)
998 LIS->ReplaceMachineInstrInMaps(MI, *MIB);
999 transferDeadCC(&MI, MIB);
1000 return MIB;
1001 }
1002 }
1003 return nullptr;
1004 }
1005
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const1006 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1007 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1008 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1009 LiveIntervals *LIS, VirtRegMap *VRM) const {
1010 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1011 MachineRegisterInfo &MRI = MF.getRegInfo();
1012 const MachineFrameInfo &MFI = MF.getFrameInfo();
1013 unsigned Size = MFI.getObjectSize(FrameIndex);
1014 unsigned Opcode = MI.getOpcode();
1015
1016 // Check CC liveness if new instruction introduces a dead def of CC.
1017 MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1018 SlotIndex MISlot = SlotIndex();
1019 LiveRange *CCLiveRange = nullptr;
1020 bool CCLiveAtMI = true;
1021 if (LIS) {
1022 MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1023 CCLiveRange = &LIS->getRegUnit(*CCUnit);
1024 CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1025 }
1026 ++CCUnit;
1027 assert(!CCUnit.isValid() && "CC only has one reg unit.");
1028
1029 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1030 if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1031 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1032 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1033 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1034 MI.getDebugLoc(), get(SystemZ::AGSI))
1035 .addFrameIndex(FrameIndex)
1036 .addImm(0)
1037 .addImm(MI.getOperand(2).getImm());
1038 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1039 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1040 return BuiltMI;
1041 }
1042 return nullptr;
1043 }
1044
1045 // All other cases require a single operand.
1046 if (Ops.size() != 1)
1047 return nullptr;
1048
1049 unsigned OpNum = Ops[0];
1050 assert(Size * 8 ==
1051 TRI->getRegSizeInBits(*MF.getRegInfo()
1052 .getRegClass(MI.getOperand(OpNum).getReg())) &&
1053 "Invalid size combination");
1054
1055 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1056 isInt<8>(MI.getOperand(2).getImm())) {
1057 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1058 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1059 MachineInstr *BuiltMI =
1060 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1061 .addFrameIndex(FrameIndex)
1062 .addImm(0)
1063 .addImm(MI.getOperand(2).getImm());
1064 transferDeadCC(&MI, BuiltMI);
1065 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1066 return BuiltMI;
1067 }
1068
1069 if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1070 isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1071 (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1072 isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1073 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1074 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1075 MachineInstr *BuiltMI =
1076 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1077 .addFrameIndex(FrameIndex)
1078 .addImm(0)
1079 .addImm((int8_t)MI.getOperand(2).getImm());
1080 transferDeadCC(&MI, BuiltMI);
1081 return BuiltMI;
1082 }
1083
1084 if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1085 isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1086 (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1087 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1088 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1089 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1090 MachineInstr *BuiltMI =
1091 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1092 .addFrameIndex(FrameIndex)
1093 .addImm(0)
1094 .addImm((int8_t)-MI.getOperand(2).getImm());
1095 transferDeadCC(&MI, BuiltMI);
1096 return BuiltMI;
1097 }
1098
1099 unsigned MemImmOpc = 0;
1100 switch (Opcode) {
1101 case SystemZ::LHIMux:
1102 case SystemZ::LHI: MemImmOpc = SystemZ::MVHI; break;
1103 case SystemZ::LGHI: MemImmOpc = SystemZ::MVGHI; break;
1104 case SystemZ::CHIMux:
1105 case SystemZ::CHI: MemImmOpc = SystemZ::CHSI; break;
1106 case SystemZ::CGHI: MemImmOpc = SystemZ::CGHSI; break;
1107 case SystemZ::CLFIMux:
1108 case SystemZ::CLFI:
1109 if (isUInt<16>(MI.getOperand(1).getImm()))
1110 MemImmOpc = SystemZ::CLFHSI;
1111 break;
1112 case SystemZ::CLGFI:
1113 if (isUInt<16>(MI.getOperand(1).getImm()))
1114 MemImmOpc = SystemZ::CLGHSI;
1115 break;
1116 default: break;
1117 }
1118 if (MemImmOpc)
1119 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1120 get(MemImmOpc))
1121 .addFrameIndex(FrameIndex)
1122 .addImm(0)
1123 .addImm(MI.getOperand(1).getImm());
1124
1125 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1126 bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1127 bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1128 // If we're spilling the destination of an LDGR or LGDR, store the
1129 // source register instead.
1130 if (OpNum == 0) {
1131 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1132 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1133 get(StoreOpcode))
1134 .add(MI.getOperand(1))
1135 .addFrameIndex(FrameIndex)
1136 .addImm(0)
1137 .addReg(0);
1138 }
1139 // If we're spilling the source of an LDGR or LGDR, load the
1140 // destination register instead.
1141 if (OpNum == 1) {
1142 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1143 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1144 get(LoadOpcode))
1145 .add(MI.getOperand(0))
1146 .addFrameIndex(FrameIndex)
1147 .addImm(0)
1148 .addReg(0);
1149 }
1150 }
1151
1152 // Look for cases where the source of a simple store or the destination
1153 // of a simple load is being spilled. Try to use MVC instead.
1154 //
1155 // Although MVC is in practice a fast choice in these cases, it is still
1156 // logically a bytewise copy. This means that we cannot use it if the
1157 // load or store is volatile. We also wouldn't be able to use MVC if
1158 // the two memories partially overlap, but that case cannot occur here,
1159 // because we know that one of the memories is a full frame index.
1160 //
1161 // For performance reasons, we also want to avoid using MVC if the addresses
1162 // might be equal. We don't worry about that case here, because spill slot
1163 // coloring happens later, and because we have special code to remove
1164 // MVCs that turn out to be redundant.
1165 if (OpNum == 0 && MI.hasOneMemOperand()) {
1166 MachineMemOperand *MMO = *MI.memoperands_begin();
1167 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1168 // Handle conversion of loads.
1169 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1170 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1171 get(SystemZ::MVC))
1172 .addFrameIndex(FrameIndex)
1173 .addImm(0)
1174 .addImm(Size)
1175 .add(MI.getOperand(1))
1176 .addImm(MI.getOperand(2).getImm())
1177 .addMemOperand(MMO);
1178 }
1179 // Handle conversion of stores.
1180 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1181 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1182 get(SystemZ::MVC))
1183 .add(MI.getOperand(1))
1184 .addImm(MI.getOperand(2).getImm())
1185 .addImm(Size)
1186 .addFrameIndex(FrameIndex)
1187 .addImm(0)
1188 .addMemOperand(MMO);
1189 }
1190 }
1191 }
1192
1193 // If the spilled operand is the final one or the instruction is
1194 // commutable, try to change <INSN>R into <INSN>. Don't introduce a def of
1195 // CC if it is live and MI does not define it.
1196 unsigned NumOps = MI.getNumExplicitOperands();
1197 int MemOpcode = SystemZ::getMemOpcode(Opcode);
1198 if (MemOpcode == -1 ||
1199 (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1200 get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1201 return nullptr;
1202
1203 // Check if all other vregs have a usable allocation in the case of vector
1204 // to FP conversion.
1205 const MCInstrDesc &MCID = MI.getDesc();
1206 for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1207 const MCOperandInfo &MCOI = MCID.operands()[I];
1208 if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1209 continue;
1210 const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1211 if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1212 Register Reg = MI.getOperand(I).getReg();
1213 Register PhysReg = Reg.isVirtual()
1214 ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1215 : Reg;
1216 if (!PhysReg ||
1217 !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1218 SystemZ::FP64BitRegClass.contains(PhysReg) ||
1219 SystemZ::VF128BitRegClass.contains(PhysReg)))
1220 return nullptr;
1221 }
1222 }
1223 // Fused multiply and add/sub need to have the same dst and accumulator reg.
1224 bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1225 Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1226 if (FusedFPOp) {
1227 Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1228 Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1229 if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1230 return nullptr;
1231 }
1232
1233 // Try to swap compare operands if possible.
1234 bool NeedsCommute = false;
1235 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1236 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1237 MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1238 MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1239 OpNum == 0 && prepareCompareSwapOperands(MI))
1240 NeedsCommute = true;
1241
1242 bool CCOperands = false;
1243 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1244 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1245 assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1246 "LOCR/SELR instruction operands corrupt?");
1247 NumOps -= 2;
1248 CCOperands = true;
1249 }
1250
1251 // See if this is a 3-address instruction that is convertible to 2-address
1252 // and suitable for folding below. Only try this with virtual registers
1253 // and a provided VRM (during regalloc).
1254 if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1255 if (VRM == nullptr)
1256 return nullptr;
1257 else {
1258 Register DstReg = MI.getOperand(0).getReg();
1259 Register DstPhys =
1260 (DstReg.isVirtual() ? Register(VRM->getPhys(DstReg)) : DstReg);
1261 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1262 : ((OpNum == 1 && MI.isCommutable())
1263 ? MI.getOperand(2).getReg()
1264 : Register()));
1265 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1266 SrcReg.isVirtual() && DstPhys == VRM->getPhys(SrcReg))
1267 NeedsCommute = (OpNum == 1);
1268 else
1269 return nullptr;
1270 }
1271 }
1272
1273 if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1274 const MCInstrDesc &MemDesc = get(MemOpcode);
1275 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1276 assert(AccessBytes != 0 && "Size of access should be known");
1277 assert(AccessBytes <= Size && "Access outside the frame index");
1278 uint64_t Offset = Size - AccessBytes;
1279 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1280 MI.getDebugLoc(), get(MemOpcode));
1281 if (MI.isCompare()) {
1282 assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1283 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1284 }
1285 else if (FusedFPOp) {
1286 MIB.add(MI.getOperand(0));
1287 MIB.add(MI.getOperand(3));
1288 MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1289 }
1290 else {
1291 MIB.add(MI.getOperand(0));
1292 if (NeedsCommute)
1293 MIB.add(MI.getOperand(2));
1294 else
1295 for (unsigned I = 1; I < OpNum; ++I)
1296 MIB.add(MI.getOperand(I));
1297 }
1298 MIB.addFrameIndex(FrameIndex).addImm(Offset);
1299 if (MemDesc.TSFlags & SystemZII::HasIndex)
1300 MIB.addReg(0);
1301 if (CCOperands) {
1302 unsigned CCValid = MI.getOperand(NumOps).getImm();
1303 unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1304 MIB.addImm(CCValid);
1305 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1306 }
1307 if (MIB->definesRegister(SystemZ::CC) &&
1308 (!MI.definesRegister(SystemZ::CC) ||
1309 MI.registerDefIsDead(SystemZ::CC))) {
1310 MIB->addRegisterDead(SystemZ::CC, TRI);
1311 if (CCLiveRange)
1312 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1313 }
1314 // Constrain the register classes if converted from a vector opcode. The
1315 // allocated regs are in an FP reg-class per previous check above.
1316 for (const MachineOperand &MO : MIB->operands())
1317 if (MO.isReg() && MO.getReg().isVirtual()) {
1318 Register Reg = MO.getReg();
1319 if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1320 MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1321 else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1322 MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1323 else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1324 MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1325 }
1326
1327 transferDeadCC(&MI, MIB);
1328 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1329 transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1330 return MIB;
1331 }
1332
1333 return nullptr;
1334 }
1335
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const1336 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1337 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1338 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1339 LiveIntervals *LIS) const {
1340 return nullptr;
1341 }
1342
expandPostRAPseudo(MachineInstr & MI) const1343 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1344 switch (MI.getOpcode()) {
1345 case SystemZ::L128:
1346 splitMove(MI, SystemZ::LG);
1347 return true;
1348
1349 case SystemZ::ST128:
1350 splitMove(MI, SystemZ::STG);
1351 return true;
1352
1353 case SystemZ::LX:
1354 splitMove(MI, SystemZ::LD);
1355 return true;
1356
1357 case SystemZ::STX:
1358 splitMove(MI, SystemZ::STD);
1359 return true;
1360
1361 case SystemZ::LBMux:
1362 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1363 return true;
1364
1365 case SystemZ::LHMux:
1366 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1367 return true;
1368
1369 case SystemZ::LLCRMux:
1370 expandZExtPseudo(MI, SystemZ::LLCR, 8);
1371 return true;
1372
1373 case SystemZ::LLHRMux:
1374 expandZExtPseudo(MI, SystemZ::LLHR, 16);
1375 return true;
1376
1377 case SystemZ::LLCMux:
1378 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1379 return true;
1380
1381 case SystemZ::LLHMux:
1382 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1383 return true;
1384
1385 case SystemZ::LMux:
1386 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1387 return true;
1388
1389 case SystemZ::LOCMux:
1390 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1391 return true;
1392
1393 case SystemZ::LOCHIMux:
1394 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1395 return true;
1396
1397 case SystemZ::STCMux:
1398 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1399 return true;
1400
1401 case SystemZ::STHMux:
1402 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1403 return true;
1404
1405 case SystemZ::STMux:
1406 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1407 return true;
1408
1409 case SystemZ::STOCMux:
1410 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1411 return true;
1412
1413 case SystemZ::LHIMux:
1414 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1415 return true;
1416
1417 case SystemZ::IIFMux:
1418 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1419 return true;
1420
1421 case SystemZ::IILMux:
1422 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1423 return true;
1424
1425 case SystemZ::IIHMux:
1426 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1427 return true;
1428
1429 case SystemZ::NIFMux:
1430 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1431 return true;
1432
1433 case SystemZ::NILMux:
1434 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1435 return true;
1436
1437 case SystemZ::NIHMux:
1438 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1439 return true;
1440
1441 case SystemZ::OIFMux:
1442 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1443 return true;
1444
1445 case SystemZ::OILMux:
1446 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1447 return true;
1448
1449 case SystemZ::OIHMux:
1450 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1451 return true;
1452
1453 case SystemZ::XIFMux:
1454 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1455 return true;
1456
1457 case SystemZ::TMLMux:
1458 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1459 return true;
1460
1461 case SystemZ::TMHMux:
1462 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1463 return true;
1464
1465 case SystemZ::AHIMux:
1466 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1467 return true;
1468
1469 case SystemZ::AHIMuxK:
1470 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1471 return true;
1472
1473 case SystemZ::AFIMux:
1474 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1475 return true;
1476
1477 case SystemZ::CHIMux:
1478 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1479 return true;
1480
1481 case SystemZ::CFIMux:
1482 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1483 return true;
1484
1485 case SystemZ::CLFIMux:
1486 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1487 return true;
1488
1489 case SystemZ::CMux:
1490 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1491 return true;
1492
1493 case SystemZ::CLMux:
1494 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1495 return true;
1496
1497 case SystemZ::RISBMux: {
1498 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1499 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1500 if (SrcIsHigh == DestIsHigh)
1501 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1502 else {
1503 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1504 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1505 }
1506 return true;
1507 }
1508
1509 case SystemZ::ADJDYNALLOC:
1510 splitAdjDynAlloc(MI);
1511 return true;
1512
1513 case TargetOpcode::LOAD_STACK_GUARD:
1514 expandLoadStackGuard(&MI);
1515 return true;
1516
1517 default:
1518 return false;
1519 }
1520 }
1521
getInstSizeInBytes(const MachineInstr & MI) const1522 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1523 if (MI.isInlineAsm()) {
1524 const MachineFunction *MF = MI.getParent()->getParent();
1525 const char *AsmStr = MI.getOperand(0).getSymbolName();
1526 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1527 }
1528 else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1529 return PatchPointOpers(&MI).getNumPatchBytes();
1530 else if (MI.getOpcode() == SystemZ::STACKMAP)
1531 return MI.getOperand(1).getImm();
1532 else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1533 return 6;
1534
1535 return MI.getDesc().getSize();
1536 }
1537
1538 SystemZII::Branch
getBranchInfo(const MachineInstr & MI) const1539 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1540 switch (MI.getOpcode()) {
1541 case SystemZ::BR:
1542 case SystemZ::BI:
1543 case SystemZ::J:
1544 case SystemZ::JG:
1545 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1546 SystemZ::CCMASK_ANY, &MI.getOperand(0));
1547
1548 case SystemZ::BRC:
1549 case SystemZ::BRCL:
1550 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1551 MI.getOperand(1).getImm(), &MI.getOperand(2));
1552
1553 case SystemZ::BRCT:
1554 case SystemZ::BRCTH:
1555 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1556 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1557
1558 case SystemZ::BRCTG:
1559 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1560 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1561
1562 case SystemZ::CIJ:
1563 case SystemZ::CRJ:
1564 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1565 MI.getOperand(2).getImm(), &MI.getOperand(3));
1566
1567 case SystemZ::CLIJ:
1568 case SystemZ::CLRJ:
1569 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1570 MI.getOperand(2).getImm(), &MI.getOperand(3));
1571
1572 case SystemZ::CGIJ:
1573 case SystemZ::CGRJ:
1574 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1575 MI.getOperand(2).getImm(), &MI.getOperand(3));
1576
1577 case SystemZ::CLGIJ:
1578 case SystemZ::CLGRJ:
1579 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1580 MI.getOperand(2).getImm(), &MI.getOperand(3));
1581
1582 case SystemZ::INLINEASM_BR:
1583 // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1584 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1585
1586 default:
1587 llvm_unreachable("Unrecognized branch opcode");
1588 }
1589 }
1590
getLoadStoreOpcodes(const TargetRegisterClass * RC,unsigned & LoadOpcode,unsigned & StoreOpcode) const1591 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1592 unsigned &LoadOpcode,
1593 unsigned &StoreOpcode) const {
1594 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1595 LoadOpcode = SystemZ::L;
1596 StoreOpcode = SystemZ::ST;
1597 } else if (RC == &SystemZ::GRH32BitRegClass) {
1598 LoadOpcode = SystemZ::LFH;
1599 StoreOpcode = SystemZ::STFH;
1600 } else if (RC == &SystemZ::GRX32BitRegClass) {
1601 LoadOpcode = SystemZ::LMux;
1602 StoreOpcode = SystemZ::STMux;
1603 } else if (RC == &SystemZ::GR64BitRegClass ||
1604 RC == &SystemZ::ADDR64BitRegClass) {
1605 LoadOpcode = SystemZ::LG;
1606 StoreOpcode = SystemZ::STG;
1607 } else if (RC == &SystemZ::GR128BitRegClass ||
1608 RC == &SystemZ::ADDR128BitRegClass) {
1609 LoadOpcode = SystemZ::L128;
1610 StoreOpcode = SystemZ::ST128;
1611 } else if (RC == &SystemZ::FP32BitRegClass) {
1612 LoadOpcode = SystemZ::LE;
1613 StoreOpcode = SystemZ::STE;
1614 } else if (RC == &SystemZ::FP64BitRegClass) {
1615 LoadOpcode = SystemZ::LD;
1616 StoreOpcode = SystemZ::STD;
1617 } else if (RC == &SystemZ::FP128BitRegClass) {
1618 LoadOpcode = SystemZ::LX;
1619 StoreOpcode = SystemZ::STX;
1620 } else if (RC == &SystemZ::VR32BitRegClass) {
1621 LoadOpcode = SystemZ::VL32;
1622 StoreOpcode = SystemZ::VST32;
1623 } else if (RC == &SystemZ::VR64BitRegClass) {
1624 LoadOpcode = SystemZ::VL64;
1625 StoreOpcode = SystemZ::VST64;
1626 } else if (RC == &SystemZ::VF128BitRegClass ||
1627 RC == &SystemZ::VR128BitRegClass) {
1628 LoadOpcode = SystemZ::VL;
1629 StoreOpcode = SystemZ::VST;
1630 } else
1631 llvm_unreachable("Unsupported regclass to load or store");
1632 }
1633
getOpcodeForOffset(unsigned Opcode,int64_t Offset,const MachineInstr * MI) const1634 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1635 int64_t Offset,
1636 const MachineInstr *MI) const {
1637 const MCInstrDesc &MCID = get(Opcode);
1638 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1639 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1640 // Get the instruction to use for unsigned 12-bit displacements.
1641 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1642 if (Disp12Opcode >= 0)
1643 return Disp12Opcode;
1644
1645 // All address-related instructions can use unsigned 12-bit
1646 // displacements.
1647 return Opcode;
1648 }
1649 if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1650 // Get the instruction to use for signed 20-bit displacements.
1651 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1652 if (Disp20Opcode >= 0)
1653 return Disp20Opcode;
1654
1655 // Check whether Opcode allows signed 20-bit displacements.
1656 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1657 return Opcode;
1658
1659 // If a VR32/VR64 reg ended up in an FP register, use the FP opcode.
1660 if (MI && MI->getOperand(0).isReg()) {
1661 Register Reg = MI->getOperand(0).getReg();
1662 if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) {
1663 switch (Opcode) {
1664 case SystemZ::VL32:
1665 return SystemZ::LEY;
1666 case SystemZ::VST32:
1667 return SystemZ::STEY;
1668 case SystemZ::VL64:
1669 return SystemZ::LDY;
1670 case SystemZ::VST64:
1671 return SystemZ::STDY;
1672 default: break;
1673 }
1674 }
1675 }
1676 }
1677 return 0;
1678 }
1679
hasDisplacementPairInsn(unsigned Opcode) const1680 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1681 const MCInstrDesc &MCID = get(Opcode);
1682 if (MCID.TSFlags & SystemZII::Has20BitOffset)
1683 return SystemZ::getDisp12Opcode(Opcode) >= 0;
1684 return SystemZ::getDisp20Opcode(Opcode) >= 0;
1685 }
1686
getLoadAndTest(unsigned Opcode) const1687 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1688 switch (Opcode) {
1689 case SystemZ::L: return SystemZ::LT;
1690 case SystemZ::LY: return SystemZ::LT;
1691 case SystemZ::LG: return SystemZ::LTG;
1692 case SystemZ::LGF: return SystemZ::LTGF;
1693 case SystemZ::LR: return SystemZ::LTR;
1694 case SystemZ::LGFR: return SystemZ::LTGFR;
1695 case SystemZ::LGR: return SystemZ::LTGR;
1696 case SystemZ::LER: return SystemZ::LTEBR;
1697 case SystemZ::LDR: return SystemZ::LTDBR;
1698 case SystemZ::LXR: return SystemZ::LTXBR;
1699 case SystemZ::LCDFR: return SystemZ::LCDBR;
1700 case SystemZ::LPDFR: return SystemZ::LPDBR;
1701 case SystemZ::LNDFR: return SystemZ::LNDBR;
1702 case SystemZ::LCDFR_32: return SystemZ::LCEBR;
1703 case SystemZ::LPDFR_32: return SystemZ::LPEBR;
1704 case SystemZ::LNDFR_32: return SystemZ::LNEBR;
1705 // On zEC12 we prefer to use RISBGN. But if there is a chance to
1706 // actually use the condition code, we may turn it back into RISGB.
1707 // Note that RISBG is not really a "load-and-test" instruction,
1708 // but sets the same condition code values, so is OK to use here.
1709 case SystemZ::RISBGN: return SystemZ::RISBG;
1710 default: return 0;
1711 }
1712 }
1713
isRxSBGMask(uint64_t Mask,unsigned BitSize,unsigned & Start,unsigned & End) const1714 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1715 unsigned &Start, unsigned &End) const {
1716 // Reject trivial all-zero masks.
1717 Mask &= allOnes(BitSize);
1718 if (Mask == 0)
1719 return false;
1720
1721 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
1722 // the msb and End specifies the index of the lsb.
1723 unsigned LSB, Length;
1724 if (isShiftedMask_64(Mask, LSB, Length)) {
1725 Start = 63 - (LSB + Length - 1);
1726 End = 63 - LSB;
1727 return true;
1728 }
1729
1730 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
1731 // of the low 1s and End specifies the lsb of the high 1s.
1732 if (isShiftedMask_64(Mask ^ allOnes(BitSize), LSB, Length)) {
1733 assert(LSB > 0 && "Bottom bit must be set");
1734 assert(LSB + Length < BitSize && "Top bit must be set");
1735 Start = 63 - (LSB - 1);
1736 End = 63 - (LSB + Length);
1737 return true;
1738 }
1739
1740 return false;
1741 }
1742
getFusedCompare(unsigned Opcode,SystemZII::FusedCompareType Type,const MachineInstr * MI) const1743 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1744 SystemZII::FusedCompareType Type,
1745 const MachineInstr *MI) const {
1746 switch (Opcode) {
1747 case SystemZ::CHI:
1748 case SystemZ::CGHI:
1749 if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1750 return 0;
1751 break;
1752 case SystemZ::CLFI:
1753 case SystemZ::CLGFI:
1754 if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1755 return 0;
1756 break;
1757 case SystemZ::CL:
1758 case SystemZ::CLG:
1759 if (!STI.hasMiscellaneousExtensions())
1760 return 0;
1761 if (!(MI && MI->getOperand(3).getReg() == 0))
1762 return 0;
1763 break;
1764 }
1765 switch (Type) {
1766 case SystemZII::CompareAndBranch:
1767 switch (Opcode) {
1768 case SystemZ::CR:
1769 return SystemZ::CRJ;
1770 case SystemZ::CGR:
1771 return SystemZ::CGRJ;
1772 case SystemZ::CHI:
1773 return SystemZ::CIJ;
1774 case SystemZ::CGHI:
1775 return SystemZ::CGIJ;
1776 case SystemZ::CLR:
1777 return SystemZ::CLRJ;
1778 case SystemZ::CLGR:
1779 return SystemZ::CLGRJ;
1780 case SystemZ::CLFI:
1781 return SystemZ::CLIJ;
1782 case SystemZ::CLGFI:
1783 return SystemZ::CLGIJ;
1784 default:
1785 return 0;
1786 }
1787 case SystemZII::CompareAndReturn:
1788 switch (Opcode) {
1789 case SystemZ::CR:
1790 return SystemZ::CRBReturn;
1791 case SystemZ::CGR:
1792 return SystemZ::CGRBReturn;
1793 case SystemZ::CHI:
1794 return SystemZ::CIBReturn;
1795 case SystemZ::CGHI:
1796 return SystemZ::CGIBReturn;
1797 case SystemZ::CLR:
1798 return SystemZ::CLRBReturn;
1799 case SystemZ::CLGR:
1800 return SystemZ::CLGRBReturn;
1801 case SystemZ::CLFI:
1802 return SystemZ::CLIBReturn;
1803 case SystemZ::CLGFI:
1804 return SystemZ::CLGIBReturn;
1805 default:
1806 return 0;
1807 }
1808 case SystemZII::CompareAndSibcall:
1809 switch (Opcode) {
1810 case SystemZ::CR:
1811 return SystemZ::CRBCall;
1812 case SystemZ::CGR:
1813 return SystemZ::CGRBCall;
1814 case SystemZ::CHI:
1815 return SystemZ::CIBCall;
1816 case SystemZ::CGHI:
1817 return SystemZ::CGIBCall;
1818 case SystemZ::CLR:
1819 return SystemZ::CLRBCall;
1820 case SystemZ::CLGR:
1821 return SystemZ::CLGRBCall;
1822 case SystemZ::CLFI:
1823 return SystemZ::CLIBCall;
1824 case SystemZ::CLGFI:
1825 return SystemZ::CLGIBCall;
1826 default:
1827 return 0;
1828 }
1829 case SystemZII::CompareAndTrap:
1830 switch (Opcode) {
1831 case SystemZ::CR:
1832 return SystemZ::CRT;
1833 case SystemZ::CGR:
1834 return SystemZ::CGRT;
1835 case SystemZ::CHI:
1836 return SystemZ::CIT;
1837 case SystemZ::CGHI:
1838 return SystemZ::CGIT;
1839 case SystemZ::CLR:
1840 return SystemZ::CLRT;
1841 case SystemZ::CLGR:
1842 return SystemZ::CLGRT;
1843 case SystemZ::CLFI:
1844 return SystemZ::CLFIT;
1845 case SystemZ::CLGFI:
1846 return SystemZ::CLGIT;
1847 case SystemZ::CL:
1848 return SystemZ::CLT;
1849 case SystemZ::CLG:
1850 return SystemZ::CLGT;
1851 default:
1852 return 0;
1853 }
1854 }
1855 return 0;
1856 }
1857
1858 bool SystemZInstrInfo::
prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const1859 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1860 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1861 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1862 "Not a compare reg/reg.");
1863
1864 MachineBasicBlock *MBB = MBBI->getParent();
1865 bool CCLive = true;
1866 SmallVector<MachineInstr *, 4> CCUsers;
1867 for (MachineInstr &MI : llvm::make_range(std::next(MBBI), MBB->end())) {
1868 if (MI.readsRegister(SystemZ::CC)) {
1869 unsigned Flags = MI.getDesc().TSFlags;
1870 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1871 CCUsers.push_back(&MI);
1872 else
1873 return false;
1874 }
1875 if (MI.definesRegister(SystemZ::CC)) {
1876 CCLive = false;
1877 break;
1878 }
1879 }
1880 if (CCLive) {
1881 LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1882 LiveRegs.addLiveOuts(*MBB);
1883 if (LiveRegs.contains(SystemZ::CC))
1884 return false;
1885 }
1886
1887 // Update all CC users.
1888 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1889 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1890 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1891 0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1892 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1893 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1894 CCMaskMO.setImm(NewCCMask);
1895 }
1896
1897 return true;
1898 }
1899
reverseCCMask(unsigned CCMask)1900 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1901 return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1902 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1903 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1904 (CCMask & SystemZ::CCMASK_CMP_UO));
1905 }
1906
emitBlockAfter(MachineBasicBlock * MBB)1907 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1908 MachineFunction &MF = *MBB->getParent();
1909 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1910 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1911 return NewMBB;
1912 }
1913
splitBlockAfter(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)1914 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1915 MachineBasicBlock *MBB) {
1916 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1917 NewMBB->splice(NewMBB->begin(), MBB,
1918 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1919 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1920 return NewMBB;
1921 }
1922
splitBlockBefore(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB)1923 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1924 MachineBasicBlock *MBB) {
1925 MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1926 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1927 NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1928 return NewMBB;
1929 }
1930
getLoadAndTrap(unsigned Opcode) const1931 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1932 if (!STI.hasLoadAndTrap())
1933 return 0;
1934 switch (Opcode) {
1935 case SystemZ::L:
1936 case SystemZ::LY:
1937 return SystemZ::LAT;
1938 case SystemZ::LG:
1939 return SystemZ::LGAT;
1940 case SystemZ::LFH:
1941 return SystemZ::LFHAT;
1942 case SystemZ::LLGF:
1943 return SystemZ::LLGFAT;
1944 case SystemZ::LLGT:
1945 return SystemZ::LLGTAT;
1946 }
1947 return 0;
1948 }
1949
loadImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned Reg,uint64_t Value) const1950 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1951 MachineBasicBlock::iterator MBBI,
1952 unsigned Reg, uint64_t Value) const {
1953 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1954 unsigned Opcode = 0;
1955 if (isInt<16>(Value))
1956 Opcode = SystemZ::LGHI;
1957 else if (SystemZ::isImmLL(Value))
1958 Opcode = SystemZ::LLILL;
1959 else if (SystemZ::isImmLH(Value)) {
1960 Opcode = SystemZ::LLILH;
1961 Value >>= 16;
1962 }
1963 else if (isInt<32>(Value))
1964 Opcode = SystemZ::LGFI;
1965 if (Opcode) {
1966 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1967 return;
1968 }
1969
1970 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1971 assert (MRI.isSSA() && "Huge values only handled before reg-alloc .");
1972 Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1973 Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1974 BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1975 BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1976 .addReg(Reg0).addImm(Value >> 32);
1977 BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1978 .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1979 }
1980
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const1981 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1982 StringRef &ErrInfo) const {
1983 const MCInstrDesc &MCID = MI.getDesc();
1984 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1985 if (I >= MCID.getNumOperands())
1986 break;
1987 const MachineOperand &Op = MI.getOperand(I);
1988 const MCOperandInfo &MCOI = MCID.operands()[I];
1989 // Addressing modes have register and immediate operands. Op should be a
1990 // register (or frame index) operand if MCOI.RegClass contains a valid
1991 // register class, or an immediate otherwise.
1992 if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1993 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1994 (MCOI.RegClass == -1 && !Op.isImm()))) {
1995 ErrInfo = "Addressing mode operands corrupt!";
1996 return false;
1997 }
1998 }
1999
2000 return true;
2001 }
2002
2003 bool SystemZInstrInfo::
areMemAccessesTriviallyDisjoint(const MachineInstr & MIa,const MachineInstr & MIb) const2004 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
2005 const MachineInstr &MIb) const {
2006
2007 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2008 return false;
2009
2010 // If mem-operands show that the same address Value is used by both
2011 // instructions, check for non-overlapping offsets and widths. Not
2012 // sure if a register based analysis would be an improvement...
2013
2014 MachineMemOperand *MMOa = *MIa.memoperands_begin();
2015 MachineMemOperand *MMOb = *MIb.memoperands_begin();
2016 const Value *VALa = MMOa->getValue();
2017 const Value *VALb = MMOb->getValue();
2018 bool SameVal = (VALa && VALb && (VALa == VALb));
2019 if (!SameVal) {
2020 const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2021 const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2022 if (PSVa && PSVb && (PSVa == PSVb))
2023 SameVal = true;
2024 }
2025 if (SameVal) {
2026 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2027 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2028 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2029 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2030 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2031 if (LowOffset + LowWidth <= HighOffset)
2032 return true;
2033 }
2034
2035 return false;
2036 }
2037