1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 /// Diagnostic information for unimplemented or unsupported feature reporting.
38 class DiagnosticInfoUnsupported : public DiagnosticInfo {
39 private:
40   const Twine &Description;
41   const Function &Fn;
42 
43   static int KindID;
44 
getKindID()45   static int getKindID() {
46     if (KindID == 0)
47       KindID = llvm::getNextAvailablePluginDiagnosticKind();
48     return KindID;
49   }
50 
51 public:
DiagnosticInfoUnsupported(const Function & Fn,const Twine & Desc,DiagnosticSeverity Severity=DS_Error)52   DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
53                           DiagnosticSeverity Severity = DS_Error)
54     : DiagnosticInfo(getKindID(), Severity),
55       Description(Desc),
56       Fn(Fn) { }
57 
getFunction() const58   const Function &getFunction() const { return Fn; }
getDescription() const59   const Twine &getDescription() const { return Description; }
60 
print(DiagnosticPrinter & DP) const61   void print(DiagnosticPrinter &DP) const override {
62     DP << "unsupported " << getDescription() << " in " << Fn.getName();
63   }
64 
classof(const DiagnosticInfo * DI)65   static bool classof(const DiagnosticInfo *DI) {
66     return DI->getKind() == getKindID();
67   }
68 };
69 
70 int DiagnosticInfoUnsupported::KindID = 0;
71 }
72 
73 
allocateStack(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
75                       CCValAssign::LocInfo LocInfo,
76                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
77   unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
78                                         ArgFlags.getOrigAlign());
79   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
80 
81   return true;
82 }
83 
84 #include "AMDGPUGenCallingConv.inc"
85 
86 // Find a larger type to do a load / store of a vector with.
getEquivalentMemType(LLVMContext & Ctx,EVT VT)87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
88   unsigned StoreSize = VT.getStoreSizeInBits();
89   if (StoreSize <= 32)
90     return EVT::getIntegerVT(Ctx, StoreSize);
91 
92   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
93   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
94 }
95 
96 // Type for a vector that will be loaded to.
getEquivalentLoadRegType(LLVMContext & Ctx,EVT VT)97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
98   unsigned StoreSize = VT.getStoreSizeInBits();
99   if (StoreSize <= 32)
100     return EVT::getIntegerVT(Ctx, 32);
101 
102   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
103 }
104 
AMDGPUTargetLowering(TargetMachine & TM)105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
106   TargetLowering(TM) {
107 
108   Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
109 
110   setOperationAction(ISD::Constant, MVT::i32, Legal);
111   setOperationAction(ISD::Constant, MVT::i64, Legal);
112   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
113   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
114 
115   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
116   setOperationAction(ISD::BRIND, MVT::Other, Expand);
117 
118   // We need to custom lower some of the intrinsics
119   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
120 
121   // Library functions.  These default to Expand, but we have instructions
122   // for them.
123   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
124   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
125   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
126   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
127   setOperationAction(ISD::FABS,   MVT::f32, Legal);
128   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
129   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
130   setOperationAction(ISD::FROUND, MVT::f32, Legal);
131   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
132 
133   setOperationAction(ISD::FREM, MVT::f32, Custom);
134   setOperationAction(ISD::FREM, MVT::f64, Custom);
135 
136   // Lower floating point store/load to integer store/load to reduce the number
137   // of patterns in tablegen.
138   setOperationAction(ISD::STORE, MVT::f32, Promote);
139   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
140 
141   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
142   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
143 
144   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
145   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
146 
147   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
148   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
149 
150   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
151   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
152 
153   setOperationAction(ISD::STORE, MVT::f64, Promote);
154   AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
155 
156   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
157   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
158 
159   // Custom lowering of vector stores is required for local address space
160   // stores.
161   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
162 
163   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
164   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
165   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
166 
167   // XXX: This can be change to Custom, once ExpandVectorStores can
168   // handle 64-bit stores.
169   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
170 
171   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
172   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
173   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
174   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
175   setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
176 
177 
178   setOperationAction(ISD::LOAD, MVT::f32, Promote);
179   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
180 
181   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
182   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
183 
184   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
185   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
186 
187   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
188   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
189 
190   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
191   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
192 
193   setOperationAction(ISD::LOAD, MVT::f64, Promote);
194   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
195 
196   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
197   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
198 
199   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
200   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
201   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
202   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
203   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
204   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
205   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
206   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
207   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
208   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
209 
210   // There are no 64-bit extloads. These should be done as a 32-bit extload and
211   // an extension to 64-bit.
212   for (MVT VT : MVT::integer_valuetypes()) {
213     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
214     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
215     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
216   }
217 
218   for (MVT VT : MVT::integer_vector_valuetypes()) {
219     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
220     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
221     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
222     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
223     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
224     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
225     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
226     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
227     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
228     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
229     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
230     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
231   }
232 
233   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
234 
235   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
236     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
237     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
238     setOperationAction(ISD::FRINT, MVT::f64, Custom);
239     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
240   }
241 
242   if (!Subtarget->hasBFI()) {
243     // fcopysign can be done in a single instruction with BFI.
244     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
245     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
246   }
247 
248   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
249 
250   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
251   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
252   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
253   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
254 
255   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
256   for (MVT VT : ScalarIntVTs) {
257     setOperationAction(ISD::SREM, VT, Expand);
258     setOperationAction(ISD::SDIV, VT, Expand);
259 
260     // GPU does not have divrem function for signed or unsigned.
261     setOperationAction(ISD::SDIVREM, VT, Custom);
262     setOperationAction(ISD::UDIVREM, VT, Custom);
263 
264     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
265     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
266     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
267 
268     setOperationAction(ISD::BSWAP, VT, Expand);
269     setOperationAction(ISD::CTTZ, VT, Expand);
270     setOperationAction(ISD::CTLZ, VT, Expand);
271   }
272 
273   if (!Subtarget->hasBCNT(32))
274     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
275 
276   if (!Subtarget->hasBCNT(64))
277     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
278 
279   // The hardware supports 32-bit ROTR, but not ROTL.
280   setOperationAction(ISD::ROTL, MVT::i32, Expand);
281   setOperationAction(ISD::ROTL, MVT::i64, Expand);
282   setOperationAction(ISD::ROTR, MVT::i64, Expand);
283 
284   setOperationAction(ISD::MUL, MVT::i64, Expand);
285   setOperationAction(ISD::MULHU, MVT::i64, Expand);
286   setOperationAction(ISD::MULHS, MVT::i64, Expand);
287   setOperationAction(ISD::UDIV, MVT::i32, Expand);
288   setOperationAction(ISD::UREM, MVT::i32, Expand);
289   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
290   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
291   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
292   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
293   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
294 
295   if (!Subtarget->hasFFBH())
296     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
297 
298   if (!Subtarget->hasFFBL())
299     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
300 
301   static const MVT::SimpleValueType VectorIntTypes[] = {
302     MVT::v2i32, MVT::v4i32
303   };
304 
305   for (MVT VT : VectorIntTypes) {
306     // Expand the following operations for the current type by default.
307     setOperationAction(ISD::ADD,  VT, Expand);
308     setOperationAction(ISD::AND,  VT, Expand);
309     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
310     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
311     setOperationAction(ISD::MUL,  VT, Expand);
312     setOperationAction(ISD::OR,   VT, Expand);
313     setOperationAction(ISD::SHL,  VT, Expand);
314     setOperationAction(ISD::SRA,  VT, Expand);
315     setOperationAction(ISD::SRL,  VT, Expand);
316     setOperationAction(ISD::ROTL, VT, Expand);
317     setOperationAction(ISD::ROTR, VT, Expand);
318     setOperationAction(ISD::SUB,  VT, Expand);
319     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
320     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
321     setOperationAction(ISD::SDIV, VT, Expand);
322     setOperationAction(ISD::UDIV, VT, Expand);
323     setOperationAction(ISD::SREM, VT, Expand);
324     setOperationAction(ISD::UREM, VT, Expand);
325     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
327     setOperationAction(ISD::SDIVREM, VT, Custom);
328     setOperationAction(ISD::UDIVREM, VT, Custom);
329     setOperationAction(ISD::ADDC, VT, Expand);
330     setOperationAction(ISD::SUBC, VT, Expand);
331     setOperationAction(ISD::ADDE, VT, Expand);
332     setOperationAction(ISD::SUBE, VT, Expand);
333     setOperationAction(ISD::SELECT, VT, Expand);
334     setOperationAction(ISD::VSELECT, VT, Expand);
335     setOperationAction(ISD::SELECT_CC, VT, Expand);
336     setOperationAction(ISD::XOR,  VT, Expand);
337     setOperationAction(ISD::BSWAP, VT, Expand);
338     setOperationAction(ISD::CTPOP, VT, Expand);
339     setOperationAction(ISD::CTTZ, VT, Expand);
340     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
341     setOperationAction(ISD::CTLZ, VT, Expand);
342     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
343     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
344   }
345 
346   static const MVT::SimpleValueType FloatVectorTypes[] = {
347     MVT::v2f32, MVT::v4f32
348   };
349 
350   for (MVT VT : FloatVectorTypes) {
351     setOperationAction(ISD::FABS, VT, Expand);
352     setOperationAction(ISD::FMINNUM, VT, Expand);
353     setOperationAction(ISD::FMAXNUM, VT, Expand);
354     setOperationAction(ISD::FADD, VT, Expand);
355     setOperationAction(ISD::FCEIL, VT, Expand);
356     setOperationAction(ISD::FCOS, VT, Expand);
357     setOperationAction(ISD::FDIV, VT, Expand);
358     setOperationAction(ISD::FEXP2, VT, Expand);
359     setOperationAction(ISD::FLOG2, VT, Expand);
360     setOperationAction(ISD::FREM, VT, Expand);
361     setOperationAction(ISD::FPOW, VT, Expand);
362     setOperationAction(ISD::FFLOOR, VT, Expand);
363     setOperationAction(ISD::FTRUNC, VT, Expand);
364     setOperationAction(ISD::FMUL, VT, Expand);
365     setOperationAction(ISD::FMA, VT, Expand);
366     setOperationAction(ISD::FRINT, VT, Expand);
367     setOperationAction(ISD::FNEARBYINT, VT, Expand);
368     setOperationAction(ISD::FSQRT, VT, Expand);
369     setOperationAction(ISD::FSIN, VT, Expand);
370     setOperationAction(ISD::FSUB, VT, Expand);
371     setOperationAction(ISD::FNEG, VT, Expand);
372     setOperationAction(ISD::SELECT, VT, Expand);
373     setOperationAction(ISD::VSELECT, VT, Expand);
374     setOperationAction(ISD::SELECT_CC, VT, Expand);
375     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
376     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
377   }
378 
379   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
380   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
381 
382   setTargetDAGCombine(ISD::MUL);
383   setTargetDAGCombine(ISD::SELECT);
384   setTargetDAGCombine(ISD::SELECT_CC);
385   setTargetDAGCombine(ISD::STORE);
386 
387   setBooleanContents(ZeroOrNegativeOneBooleanContent);
388   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
389 
390   setSchedulingPreference(Sched::RegPressure);
391   setJumpIsExpensive(true);
392 
393   // SI at least has hardware support for floating point exceptions, but no way
394   // of using or handling them is implemented. They are also optional in OpenCL
395   // (Section 7.3)
396   setHasFloatingPointExceptions(false);
397 
398   setSelectIsExpensive(false);
399   PredictableSelectIsExpensive = false;
400 
401   // There are no integer divide instructions, and these expand to a pretty
402   // large sequence of instructions.
403   setIntDivIsCheap(false);
404   setPow2SDivIsCheap(false);
405   setFsqrtIsCheap(true);
406 
407   // FIXME: Need to really handle these.
408   MaxStoresPerMemcpy  = 4096;
409   MaxStoresPerMemmove = 4096;
410   MaxStoresPerMemset  = 4096;
411 }
412 
413 //===----------------------------------------------------------------------===//
414 // Target Information
415 //===----------------------------------------------------------------------===//
416 
getVectorIdxTy() const417 MVT AMDGPUTargetLowering::getVectorIdxTy() const {
418   return MVT::i32;
419 }
420 
isSelectSupported(SelectSupportKind SelType) const421 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
422   return true;
423 }
424 
425 // The backend supports 32 and 64 bit floating point immediates.
426 // FIXME: Why are we reporting vectors of FP immediates as legal?
isFPImmLegal(const APFloat & Imm,EVT VT) const427 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
428   EVT ScalarVT = VT.getScalarType();
429   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
430 }
431 
432 // We don't want to shrink f64 / f32 constants.
ShouldShrinkFPConstant(EVT VT) const433 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
434   EVT ScalarVT = VT.getScalarType();
435   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
436 }
437 
shouldReduceLoadWidth(SDNode * N,ISD::LoadExtType,EVT NewVT) const438 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
439                                                  ISD::LoadExtType,
440                                                  EVT NewVT) const {
441 
442   unsigned NewSize = NewVT.getStoreSizeInBits();
443 
444   // If we are reducing to a 32-bit load, this is always better.
445   if (NewSize == 32)
446     return true;
447 
448   EVT OldVT = N->getValueType(0);
449   unsigned OldSize = OldVT.getStoreSizeInBits();
450 
451   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
452   // extloads, so doing one requires using a buffer_load. In cases where we
453   // still couldn't use a scalar load, using the wider load shouldn't really
454   // hurt anything.
455 
456   // If the old size already had to be an extload, there's no harm in continuing
457   // to reduce the width.
458   return (OldSize < 32);
459 }
460 
isLoadBitCastBeneficial(EVT LoadTy,EVT CastTy) const461 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
462                                                    EVT CastTy) const {
463   if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
464     return true;
465 
466   unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
467   unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
468 
469   return ((LScalarSize <= CastScalarSize) ||
470           (CastScalarSize >= 32) ||
471           (LScalarSize < 32));
472 }
473 
474 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
475 // profitable with the expansion for 64-bit since it's generally good to
476 // speculate things.
477 // FIXME: These should really have the size as a parameter.
isCheapToSpeculateCttz() const478 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
479   return true;
480 }
481 
isCheapToSpeculateCtlz() const482 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
483   return true;
484 }
485 
486 //===---------------------------------------------------------------------===//
487 // Target Properties
488 //===---------------------------------------------------------------------===//
489 
isFAbsFree(EVT VT) const490 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
491   assert(VT.isFloatingPoint());
492   return VT == MVT::f32 || VT == MVT::f64;
493 }
494 
isFNegFree(EVT VT) const495 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
496   assert(VT.isFloatingPoint());
497   return VT == MVT::f32 || VT == MVT::f64;
498 }
499 
isTruncateFree(EVT Source,EVT Dest) const500 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
501   // Truncate is just accessing a subregister.
502   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
503 }
504 
isTruncateFree(Type * Source,Type * Dest) const505 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
506   // Truncate is just accessing a subregister.
507   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
508          (Dest->getPrimitiveSizeInBits() % 32 == 0);
509 }
510 
isZExtFree(Type * Src,Type * Dest) const511 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
512   const DataLayout *DL = getDataLayout();
513   unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
514   unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
515 
516   return SrcSize == 32 && DestSize == 64;
517 }
518 
isZExtFree(EVT Src,EVT Dest) const519 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
520   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
521   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
522   // this will enable reducing 64-bit operations the 32-bit, which is always
523   // good.
524   return Src == MVT::i32 && Dest == MVT::i64;
525 }
526 
isZExtFree(SDValue Val,EVT VT2) const527 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
528   return isZExtFree(Val.getValueType(), VT2);
529 }
530 
isNarrowingProfitable(EVT SrcVT,EVT DestVT) const531 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
532   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
533   // limited number of native 64-bit operations. Shrinking an operation to fit
534   // in a single 32-bit register should always be helpful. As currently used,
535   // this is much less general than the name suggests, and is only used in
536   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
537   // not profitable, and may actually be harmful.
538   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
539 }
540 
541 //===---------------------------------------------------------------------===//
542 // TargetLowering Callbacks
543 //===---------------------------------------------------------------------===//
544 
AnalyzeFormalArguments(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins) const545 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
546                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
547 
548   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
549 }
550 
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc DL,SelectionDAG & DAG) const551 SDValue AMDGPUTargetLowering::LowerReturn(
552                                      SDValue Chain,
553                                      CallingConv::ID CallConv,
554                                      bool isVarArg,
555                                      const SmallVectorImpl<ISD::OutputArg> &Outs,
556                                      const SmallVectorImpl<SDValue> &OutVals,
557                                      SDLoc DL, SelectionDAG &DAG) const {
558   return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
559 }
560 
561 //===---------------------------------------------------------------------===//
562 // Target specific lowering
563 //===---------------------------------------------------------------------===//
564 
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const565 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
566                                         SmallVectorImpl<SDValue> &InVals) const {
567   SDValue Callee = CLI.Callee;
568   SelectionDAG &DAG = CLI.DAG;
569 
570   const Function &Fn = *DAG.getMachineFunction().getFunction();
571 
572   StringRef FuncName("<unknown>");
573 
574   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
575     FuncName = G->getSymbol();
576   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
577     FuncName = G->getGlobal()->getName();
578 
579   DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
580   DAG.getContext()->diagnose(NoCalls);
581   return SDValue();
582 }
583 
LowerOperation(SDValue Op,SelectionDAG & DAG) const584 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
585                                              SelectionDAG &DAG) const {
586   switch (Op.getOpcode()) {
587   default:
588     Op.getNode()->dump();
589     llvm_unreachable("Custom lowering code for this"
590                      "instruction is not implemented yet!");
591     break;
592   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
593   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
594   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
595   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
596   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
597   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
598   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
599   case ISD::FREM: return LowerFREM(Op, DAG);
600   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
601   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
602   case ISD::FRINT: return LowerFRINT(Op, DAG);
603   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
604   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
605   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
606   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
607   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
608   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
609   }
610   return Op;
611 }
612 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const613 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
614                                               SmallVectorImpl<SDValue> &Results,
615                                               SelectionDAG &DAG) const {
616   switch (N->getOpcode()) {
617   case ISD::SIGN_EXTEND_INREG:
618     // Different parts of legalization seem to interpret which type of
619     // sign_extend_inreg is the one to check for custom lowering. The extended
620     // from type is what really matters, but some places check for custom
621     // lowering of the result type. This results in trying to use
622     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
623     // nothing here and let the illegal result integer be handled normally.
624     return;
625   case ISD::LOAD: {
626     SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
627     if (!Node)
628       return;
629 
630     Results.push_back(SDValue(Node, 0));
631     Results.push_back(SDValue(Node, 1));
632     // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
633     // function
634     DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
635     return;
636   }
637   case ISD::STORE: {
638     SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
639     if (Lowered.getNode())
640       Results.push_back(Lowered);
641     return;
642   }
643   default:
644     return;
645   }
646 }
647 
648 // FIXME: This implements accesses to initialized globals in the constant
649 // address space by copying them to private and accessing that. It does not
650 // properly handle illegal types or vectors. The private vector loads are not
651 // scalarized, and the illegal scalars hit an assertion. This technique will not
652 // work well with large initializers, and this should eventually be
653 // removed. Initialized globals should be placed into a data section that the
654 // runtime will load into a buffer before the kernel is executed. Uses of the
655 // global need to be replaced with a pointer loaded from an implicit kernel
656 // argument into this buffer holding the copy of the data, which will remove the
657 // need for any of this.
LowerConstantInitializer(const Constant * Init,const GlobalValue * GV,const SDValue & InitPtr,SDValue Chain,SelectionDAG & DAG) const658 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
659                                                        const GlobalValue *GV,
660                                                        const SDValue &InitPtr,
661                                                        SDValue Chain,
662                                                        SelectionDAG &DAG) const {
663   const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
664   SDLoc DL(InitPtr);
665   Type *InitTy = Init->getType();
666 
667   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
668     EVT VT = EVT::getEVT(InitTy);
669     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
670     return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
671                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
672                         TD->getPrefTypeAlignment(InitTy));
673   }
674 
675   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
676     EVT VT = EVT::getEVT(CFP->getType());
677     PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
678     return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
679                  MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
680                  TD->getPrefTypeAlignment(CFP->getType()));
681   }
682 
683   if (StructType *ST = dyn_cast<StructType>(InitTy)) {
684     const StructLayout *SL = TD->getStructLayout(ST);
685 
686     EVT PtrVT = InitPtr.getValueType();
687     SmallVector<SDValue, 8> Chains;
688 
689     for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
690       SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
691       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
692 
693       Constant *Elt = Init->getAggregateElement(I);
694       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
695     }
696 
697     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
698   }
699 
700   if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
701     EVT PtrVT = InitPtr.getValueType();
702 
703     unsigned NumElements;
704     if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
705       NumElements = AT->getNumElements();
706     else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
707       NumElements = VT->getNumElements();
708     else
709       llvm_unreachable("Unexpected type");
710 
711     unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
712     SmallVector<SDValue, 8> Chains;
713     for (unsigned i = 0; i < NumElements; ++i) {
714       SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
715       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
716 
717       Constant *Elt = Init->getAggregateElement(i);
718       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
719     }
720 
721     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
722   }
723 
724   if (isa<UndefValue>(Init)) {
725     EVT VT = EVT::getEVT(InitTy);
726     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
727     return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
728                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
729                         TD->getPrefTypeAlignment(InitTy));
730   }
731 
732   Init->dump();
733   llvm_unreachable("Unhandled constant initializer");
734 }
735 
hasDefinedInitializer(const GlobalValue * GV)736 static bool hasDefinedInitializer(const GlobalValue *GV) {
737   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
738   if (!GVar || !GVar->hasInitializer())
739     return false;
740 
741   if (isa<UndefValue>(GVar->getInitializer()))
742     return false;
743 
744   return true;
745 }
746 
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const747 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
748                                                  SDValue Op,
749                                                  SelectionDAG &DAG) const {
750 
751   const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
752   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
753   const GlobalValue *GV = G->getGlobal();
754 
755   switch (G->getAddressSpace()) {
756   case AMDGPUAS::LOCAL_ADDRESS: {
757     // XXX: What does the value of G->getOffset() mean?
758     assert(G->getOffset() == 0 &&
759          "Do not know what to do with an non-zero offset");
760 
761     // TODO: We could emit code to handle the initialization somewhere.
762     if (hasDefinedInitializer(GV))
763       break;
764 
765     unsigned Offset;
766     if (MFI->LocalMemoryObjects.count(GV) == 0) {
767       uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
768       Offset = MFI->LDSSize;
769       MFI->LocalMemoryObjects[GV] = Offset;
770       // XXX: Account for alignment?
771       MFI->LDSSize += Size;
772     } else {
773       Offset = MFI->LocalMemoryObjects[GV];
774     }
775 
776     return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
777   }
778   case AMDGPUAS::CONSTANT_ADDRESS: {
779     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
780     Type *EltType = GV->getType()->getElementType();
781     unsigned Size = TD->getTypeAllocSize(EltType);
782     unsigned Alignment = TD->getPrefTypeAlignment(EltType);
783 
784     MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
785     MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
786 
787     int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
788     SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
789 
790     const GlobalVariable *Var = cast<GlobalVariable>(GV);
791     if (!Var->hasInitializer()) {
792       // This has no use, but bugpoint will hit it.
793       return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
794     }
795 
796     const Constant *Init = Var->getInitializer();
797     SmallVector<SDNode*, 8> WorkList;
798 
799     for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
800                               E = DAG.getEntryNode()->use_end(); I != E; ++I) {
801       if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
802         continue;
803       WorkList.push_back(*I);
804     }
805     SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
806     for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
807                                            E = WorkList.end(); I != E; ++I) {
808       SmallVector<SDValue, 8> Ops;
809       Ops.push_back(Chain);
810       for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
811         Ops.push_back((*I)->getOperand(i));
812       }
813       DAG.UpdateNodeOperands(*I, Ops);
814     }
815     return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
816   }
817   }
818 
819   const Function &Fn = *DAG.getMachineFunction().getFunction();
820   DiagnosticInfoUnsupported BadInit(Fn,
821                                     "initializer for address space");
822   DAG.getContext()->diagnose(BadInit);
823   return SDValue();
824 }
825 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const826 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
827                                                   SelectionDAG &DAG) const {
828   SmallVector<SDValue, 8> Args;
829 
830   for (const SDUse &U : Op->ops())
831     DAG.ExtractVectorElements(U.get(), Args);
832 
833   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
834 }
835 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const836 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
837                                                      SelectionDAG &DAG) const {
838 
839   SmallVector<SDValue, 8> Args;
840   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
841   EVT VT = Op.getValueType();
842   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
843                             VT.getVectorNumElements());
844 
845   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
846 }
847 
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const848 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
849                                               SelectionDAG &DAG) const {
850 
851   MachineFunction &MF = DAG.getMachineFunction();
852   const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
853       getTargetMachine().getSubtargetImpl()->getFrameLowering());
854 
855   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
856 
857   unsigned FrameIndex = FIN->getIndex();
858   unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
859   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
860                          Op.getValueType());
861 }
862 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const863 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
864     SelectionDAG &DAG) const {
865   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
866   SDLoc DL(Op);
867   EVT VT = Op.getValueType();
868 
869   switch (IntrinsicID) {
870     default: return Op;
871     case AMDGPUIntrinsic::AMDGPU_abs:
872     case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
873       return LowerIntrinsicIABS(Op, DAG);
874     case AMDGPUIntrinsic::AMDGPU_lrp:
875       return LowerIntrinsicLRP(Op, DAG);
876 
877     case AMDGPUIntrinsic::AMDGPU_clamp:
878     case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
879       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
880                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
881 
882     case Intrinsic::AMDGPU_div_scale: {
883       // 3rd parameter required to be a constant.
884       const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
885       if (!Param)
886         return DAG.getUNDEF(VT);
887 
888       // Translate to the operands expected by the machine instruction. The
889       // first parameter must be the same as the first instruction.
890       SDValue Numerator = Op.getOperand(1);
891       SDValue Denominator = Op.getOperand(2);
892 
893       // Note this order is opposite of the machine instruction's operations,
894       // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
895       // intrinsic has the numerator as the first operand to match a normal
896       // division operation.
897 
898       SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
899 
900       return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
901                          Denominator, Numerator);
902     }
903 
904     case Intrinsic::AMDGPU_div_fmas:
905       return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
906                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
907                          Op.getOperand(4));
908 
909     case Intrinsic::AMDGPU_div_fixup:
910       return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
911                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
912 
913     case Intrinsic::AMDGPU_trig_preop:
914       return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
915                          Op.getOperand(1), Op.getOperand(2));
916 
917     case Intrinsic::AMDGPU_rcp:
918       return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
919 
920     case Intrinsic::AMDGPU_rsq:
921       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
922 
923     case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
924       return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
925 
926     case Intrinsic::AMDGPU_rsq_clamped:
927       if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
928         Type *Type = VT.getTypeForEVT(*DAG.getContext());
929         APFloat Max = APFloat::getLargest(Type->getFltSemantics());
930         APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
931 
932         SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
933         SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
934                                   DAG.getConstantFP(Max, VT));
935         return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
936                            DAG.getConstantFP(Min, VT));
937       } else {
938         return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
939       }
940 
941     case Intrinsic::AMDGPU_ldexp:
942       return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
943                                                    Op.getOperand(2));
944 
945     case AMDGPUIntrinsic::AMDGPU_imax:
946       return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
947                                                   Op.getOperand(2));
948     case AMDGPUIntrinsic::AMDGPU_umax:
949       return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
950                                                   Op.getOperand(2));
951     case AMDGPUIntrinsic::AMDGPU_imin:
952       return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
953                                                   Op.getOperand(2));
954     case AMDGPUIntrinsic::AMDGPU_umin:
955       return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
956                                                   Op.getOperand(2));
957 
958     case AMDGPUIntrinsic::AMDGPU_umul24:
959       return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
960                          Op.getOperand(1), Op.getOperand(2));
961 
962     case AMDGPUIntrinsic::AMDGPU_imul24:
963       return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
964                          Op.getOperand(1), Op.getOperand(2));
965 
966     case AMDGPUIntrinsic::AMDGPU_umad24:
967       return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
968                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
969 
970     case AMDGPUIntrinsic::AMDGPU_imad24:
971       return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
972                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
973 
974     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
975       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
976 
977     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
978       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
979 
980     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
981       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
982 
983     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
984       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
985 
986     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
987       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
988                          Op.getOperand(1),
989                          Op.getOperand(2),
990                          Op.getOperand(3));
991 
992     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
993       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
994                          Op.getOperand(1),
995                          Op.getOperand(2),
996                          Op.getOperand(3));
997 
998     case AMDGPUIntrinsic::AMDGPU_bfi:
999       return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1000                          Op.getOperand(1),
1001                          Op.getOperand(2),
1002                          Op.getOperand(3));
1003 
1004     case AMDGPUIntrinsic::AMDGPU_bfm:
1005       return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1006                          Op.getOperand(1),
1007                          Op.getOperand(2));
1008 
1009     case AMDGPUIntrinsic::AMDGPU_brev:
1010       return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
1011 
1012   case Intrinsic::AMDGPU_class:
1013     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1014                        Op.getOperand(1), Op.getOperand(2));
1015 
1016     case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1017       return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1018 
1019     case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1020       return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1021     case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1022       return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1023   }
1024 }
1025 
1026 ///IABS(a) = SMAX(sub(0, a), a)
LowerIntrinsicIABS(SDValue Op,SelectionDAG & DAG) const1027 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1028                                                  SelectionDAG &DAG) const {
1029   SDLoc DL(Op);
1030   EVT VT = Op.getValueType();
1031   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1032                                               Op.getOperand(1));
1033 
1034   return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1035 }
1036 
1037 /// Linear Interpolation
1038 /// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
LowerIntrinsicLRP(SDValue Op,SelectionDAG & DAG) const1039 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1040                                                 SelectionDAG &DAG) const {
1041   SDLoc DL(Op);
1042   EVT VT = Op.getValueType();
1043   SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1044                                 DAG.getConstantFP(1.0f, MVT::f32),
1045                                 Op.getOperand(1));
1046   SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1047                                                     Op.getOperand(3));
1048   return DAG.getNode(ISD::FADD, DL, VT,
1049       DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1050       OneSubAC);
1051 }
1052 
1053 /// \brief Generate Min/Max node
CombineFMinMaxLegacy(SDLoc DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,DAGCombinerInfo & DCI) const1054 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1055                                                    EVT VT,
1056                                                    SDValue LHS,
1057                                                    SDValue RHS,
1058                                                    SDValue True,
1059                                                    SDValue False,
1060                                                    SDValue CC,
1061                                                    DAGCombinerInfo &DCI) const {
1062   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1063     return SDValue();
1064 
1065   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1066     return SDValue();
1067 
1068   SelectionDAG &DAG = DCI.DAG;
1069   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1070   switch (CCOpcode) {
1071   case ISD::SETOEQ:
1072   case ISD::SETONE:
1073   case ISD::SETUNE:
1074   case ISD::SETNE:
1075   case ISD::SETUEQ:
1076   case ISD::SETEQ:
1077   case ISD::SETFALSE:
1078   case ISD::SETFALSE2:
1079   case ISD::SETTRUE:
1080   case ISD::SETTRUE2:
1081   case ISD::SETUO:
1082   case ISD::SETO:
1083     break;
1084   case ISD::SETULE:
1085   case ISD::SETULT: {
1086     if (LHS == True)
1087       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1088     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1089   }
1090   case ISD::SETOLE:
1091   case ISD::SETOLT:
1092   case ISD::SETLE:
1093   case ISD::SETLT: {
1094     // Ordered. Assume ordered for undefined.
1095 
1096     // Only do this after legalization to avoid interfering with other combines
1097     // which might occur.
1098     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1099         !DCI.isCalledByLegalizer())
1100       return SDValue();
1101 
1102     // We need to permute the operands to get the correct NaN behavior. The
1103     // selected operand is the second one based on the failing compare with NaN,
1104     // so permute it based on the compare type the hardware uses.
1105     if (LHS == True)
1106       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1107     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1108   }
1109   case ISD::SETUGE:
1110   case ISD::SETUGT: {
1111     if (LHS == True)
1112       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1113     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1114   }
1115   case ISD::SETGT:
1116   case ISD::SETGE:
1117   case ISD::SETOGE:
1118   case ISD::SETOGT: {
1119     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1120         !DCI.isCalledByLegalizer())
1121       return SDValue();
1122 
1123     if (LHS == True)
1124       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1125     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1126   }
1127   case ISD::SETCC_INVALID:
1128     llvm_unreachable("Invalid setcc condcode!");
1129   }
1130   return SDValue();
1131 }
1132 
1133 /// \brief Generate Min/Max node
CombineIMinMax(SDLoc DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,SelectionDAG & DAG) const1134 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
1135                                              EVT VT,
1136                                              SDValue LHS,
1137                                              SDValue RHS,
1138                                              SDValue True,
1139                                              SDValue False,
1140                                              SDValue CC,
1141                                              SelectionDAG &DAG) const {
1142   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1143     return SDValue();
1144 
1145   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1146   switch (CCOpcode) {
1147   case ISD::SETULE:
1148   case ISD::SETULT: {
1149     unsigned Opc = (LHS == True) ? AMDGPUISD::UMIN : AMDGPUISD::UMAX;
1150     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1151   }
1152   case ISD::SETLE:
1153   case ISD::SETLT: {
1154     unsigned Opc = (LHS == True) ? AMDGPUISD::SMIN : AMDGPUISD::SMAX;
1155     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1156   }
1157   case ISD::SETGT:
1158   case ISD::SETGE: {
1159     unsigned Opc = (LHS == True) ? AMDGPUISD::SMAX : AMDGPUISD::SMIN;
1160     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1161   }
1162   case ISD::SETUGE:
1163   case ISD::SETUGT: {
1164     unsigned Opc = (LHS == True) ? AMDGPUISD::UMAX : AMDGPUISD::UMIN;
1165     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1166   }
1167   default:
1168     return SDValue();
1169   }
1170 }
1171 
ScalarizeVectorLoad(const SDValue Op,SelectionDAG & DAG) const1172 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1173                                                   SelectionDAG &DAG) const {
1174   LoadSDNode *Load = cast<LoadSDNode>(Op);
1175   EVT MemVT = Load->getMemoryVT();
1176   EVT MemEltVT = MemVT.getVectorElementType();
1177 
1178   EVT LoadVT = Op.getValueType();
1179   EVT EltVT = LoadVT.getVectorElementType();
1180   EVT PtrVT = Load->getBasePtr().getValueType();
1181 
1182   unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1183   SmallVector<SDValue, 8> Loads;
1184   SmallVector<SDValue, 8> Chains;
1185 
1186   SDLoc SL(Op);
1187   unsigned MemEltSize = MemEltVT.getStoreSize();
1188   MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1189 
1190   for (unsigned i = 0; i < NumElts; ++i) {
1191     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1192                               DAG.getConstant(i * MemEltSize, PtrVT));
1193 
1194     SDValue NewLoad
1195       = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1196                        Load->getChain(), Ptr,
1197                        SrcValue.getWithOffset(i * MemEltSize),
1198                        MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1199                        Load->isInvariant(), Load->getAlignment());
1200     Loads.push_back(NewLoad.getValue(0));
1201     Chains.push_back(NewLoad.getValue(1));
1202   }
1203 
1204   SDValue Ops[] = {
1205     DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1206     DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1207   };
1208 
1209   return DAG.getMergeValues(Ops, SL);
1210 }
1211 
SplitVectorLoad(const SDValue Op,SelectionDAG & DAG) const1212 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1213                                               SelectionDAG &DAG) const {
1214   EVT VT = Op.getValueType();
1215 
1216   // If this is a 2 element vector, we really want to scalarize and not create
1217   // weird 1 element vectors.
1218   if (VT.getVectorNumElements() == 2)
1219     return ScalarizeVectorLoad(Op, DAG);
1220 
1221   LoadSDNode *Load = cast<LoadSDNode>(Op);
1222   SDValue BasePtr = Load->getBasePtr();
1223   EVT PtrVT = BasePtr.getValueType();
1224   EVT MemVT = Load->getMemoryVT();
1225   SDLoc SL(Op);
1226   MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1227 
1228   EVT LoVT, HiVT;
1229   EVT LoMemVT, HiMemVT;
1230   SDValue Lo, Hi;
1231 
1232   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1233   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1234   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1235   SDValue LoLoad
1236     = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1237                      Load->getChain(), BasePtr,
1238                      SrcValue,
1239                      LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1240                      Load->isInvariant(), Load->getAlignment());
1241 
1242   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1243                               DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1244 
1245   SDValue HiLoad
1246     = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1247                      Load->getChain(), HiPtr,
1248                      SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1249                      HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1250                      Load->isInvariant(), Load->getAlignment());
1251 
1252   SDValue Ops[] = {
1253     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1254     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1255                 LoLoad.getValue(1), HiLoad.getValue(1))
1256   };
1257 
1258   return DAG.getMergeValues(Ops, SL);
1259 }
1260 
MergeVectorStore(const SDValue & Op,SelectionDAG & DAG) const1261 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1262                                                SelectionDAG &DAG) const {
1263   StoreSDNode *Store = cast<StoreSDNode>(Op);
1264   EVT MemVT = Store->getMemoryVT();
1265   unsigned MemBits = MemVT.getSizeInBits();
1266 
1267   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1268   // truncating store into an i32 store.
1269   // XXX: We could also handle optimize other vector bitwidths.
1270   if (!MemVT.isVector() || MemBits > 32) {
1271     return SDValue();
1272   }
1273 
1274   SDLoc DL(Op);
1275   SDValue Value = Store->getValue();
1276   EVT VT = Value.getValueType();
1277   EVT ElemVT = VT.getVectorElementType();
1278   SDValue Ptr = Store->getBasePtr();
1279   EVT MemEltVT = MemVT.getVectorElementType();
1280   unsigned MemEltBits = MemEltVT.getSizeInBits();
1281   unsigned MemNumElements = MemVT.getVectorNumElements();
1282   unsigned PackedSize = MemVT.getStoreSizeInBits();
1283   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
1284 
1285   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1286 
1287   SDValue PackedValue;
1288   for (unsigned i = 0; i < MemNumElements; ++i) {
1289     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1290                               DAG.getConstant(i, MVT::i32));
1291     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1292     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1293 
1294     SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
1295     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1296 
1297     if (i == 0) {
1298       PackedValue = Elt;
1299     } else {
1300       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1301     }
1302   }
1303 
1304   if (PackedSize < 32) {
1305     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1306     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1307                              Store->getMemOperand()->getPointerInfo(),
1308                              PackedVT,
1309                              Store->isNonTemporal(), Store->isVolatile(),
1310                              Store->getAlignment());
1311   }
1312 
1313   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1314                       Store->getMemOperand()->getPointerInfo(),
1315                       Store->isVolatile(),  Store->isNonTemporal(),
1316                       Store->getAlignment());
1317 }
1318 
ScalarizeVectorStore(SDValue Op,SelectionDAG & DAG) const1319 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1320                                                    SelectionDAG &DAG) const {
1321   StoreSDNode *Store = cast<StoreSDNode>(Op);
1322   EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1323   EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1324   EVT PtrVT = Store->getBasePtr().getValueType();
1325   unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1326   SDLoc SL(Op);
1327 
1328   SmallVector<SDValue, 8> Chains;
1329 
1330   unsigned EltSize = MemEltVT.getStoreSize();
1331   MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1332 
1333   for (unsigned i = 0, e = NumElts; i != e; ++i) {
1334     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1335                               Store->getValue(),
1336                               DAG.getConstant(i, MVT::i32));
1337 
1338     SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
1339     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1340     SDValue NewStore =
1341       DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1342                         SrcValue.getWithOffset(i * EltSize),
1343                         MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1344                         Store->getAlignment());
1345     Chains.push_back(NewStore);
1346   }
1347 
1348   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1349 }
1350 
SplitVectorStore(SDValue Op,SelectionDAG & DAG) const1351 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1352                                                SelectionDAG &DAG) const {
1353   StoreSDNode *Store = cast<StoreSDNode>(Op);
1354   SDValue Val = Store->getValue();
1355   EVT VT = Val.getValueType();
1356 
1357   // If this is a 2 element vector, we really want to scalarize and not create
1358   // weird 1 element vectors.
1359   if (VT.getVectorNumElements() == 2)
1360     return ScalarizeVectorStore(Op, DAG);
1361 
1362   EVT MemVT = Store->getMemoryVT();
1363   SDValue Chain = Store->getChain();
1364   SDValue BasePtr = Store->getBasePtr();
1365   SDLoc SL(Op);
1366 
1367   EVT LoVT, HiVT;
1368   EVT LoMemVT, HiMemVT;
1369   SDValue Lo, Hi;
1370 
1371   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1372   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1373   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1374 
1375   EVT PtrVT = BasePtr.getValueType();
1376   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1377                               DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1378 
1379   MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1380   SDValue LoStore
1381     = DAG.getTruncStore(Chain, SL, Lo,
1382                         BasePtr,
1383                         SrcValue,
1384                         LoMemVT,
1385                         Store->isNonTemporal(),
1386                         Store->isVolatile(),
1387                         Store->getAlignment());
1388   SDValue HiStore
1389     = DAG.getTruncStore(Chain, SL, Hi,
1390                         HiPtr,
1391                         SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1392                         HiMemVT,
1393                         Store->isNonTemporal(),
1394                         Store->isVolatile(),
1395                         Store->getAlignment());
1396 
1397   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1398 }
1399 
1400 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1401 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1402   SDLoc DL(Op);
1403   LoadSDNode *Load = cast<LoadSDNode>(Op);
1404   ISD::LoadExtType ExtType = Load->getExtensionType();
1405   EVT VT = Op.getValueType();
1406   EVT MemVT = Load->getMemoryVT();
1407 
1408   if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1409     assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1410     // FIXME: Copied from PPC
1411     // First, load into 32 bits, then truncate to 1 bit.
1412 
1413     SDValue Chain = Load->getChain();
1414     SDValue BasePtr = Load->getBasePtr();
1415     MachineMemOperand *MMO = Load->getMemOperand();
1416 
1417     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1418                                    BasePtr, MVT::i8, MMO);
1419 
1420     SDValue Ops[] = {
1421       DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1422       NewLD.getValue(1)
1423     };
1424 
1425     return DAG.getMergeValues(Ops, DL);
1426   }
1427 
1428   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1429       Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1430       ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1431     return SDValue();
1432 
1433 
1434   SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1435                             DAG.getConstant(2, MVT::i32));
1436   SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1437                             Load->getChain(), Ptr,
1438                             DAG.getTargetConstant(0, MVT::i32),
1439                             Op.getOperand(2));
1440   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1441                                 Load->getBasePtr(),
1442                                 DAG.getConstant(0x3, MVT::i32));
1443   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1444                                  DAG.getConstant(3, MVT::i32));
1445 
1446   Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1447 
1448   EVT MemEltVT = MemVT.getScalarType();
1449   if (ExtType == ISD::SEXTLOAD) {
1450     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1451 
1452     SDValue Ops[] = {
1453       DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1454       Load->getChain()
1455     };
1456 
1457     return DAG.getMergeValues(Ops, DL);
1458   }
1459 
1460   SDValue Ops[] = {
1461     DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1462     Load->getChain()
1463   };
1464 
1465   return DAG.getMergeValues(Ops, DL);
1466 }
1467 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1468 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1469   SDLoc DL(Op);
1470   SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1471   if (Result.getNode()) {
1472     return Result;
1473   }
1474 
1475   StoreSDNode *Store = cast<StoreSDNode>(Op);
1476   SDValue Chain = Store->getChain();
1477   if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1478        Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1479       Store->getValue().getValueType().isVector()) {
1480     return ScalarizeVectorStore(Op, DAG);
1481   }
1482 
1483   EVT MemVT = Store->getMemoryVT();
1484   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1485       MemVT.bitsLT(MVT::i32)) {
1486     unsigned Mask = 0;
1487     if (Store->getMemoryVT() == MVT::i8) {
1488       Mask = 0xff;
1489     } else if (Store->getMemoryVT() == MVT::i16) {
1490       Mask = 0xffff;
1491     }
1492     SDValue BasePtr = Store->getBasePtr();
1493     SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1494                               DAG.getConstant(2, MVT::i32));
1495     SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1496                               Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1497 
1498     SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1499                                   DAG.getConstant(0x3, MVT::i32));
1500 
1501     SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1502                                    DAG.getConstant(3, MVT::i32));
1503 
1504     SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1505                                     Store->getValue());
1506 
1507     SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1508 
1509     SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1510                                        MaskedValue, ShiftAmt);
1511 
1512     SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1513                                   ShiftAmt);
1514     DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1515                           DAG.getConstant(0xffffffff, MVT::i32));
1516     Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1517 
1518     SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1519     return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1520                        Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1521   }
1522   return SDValue();
1523 }
1524 
1525 // This is a shortcut for integer division because we have fast i32<->f32
1526 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1527 // float is enough to accurately represent up to a 24-bit integer.
LowerDIVREM24(SDValue Op,SelectionDAG & DAG,bool sign) const1528 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1529   SDLoc DL(Op);
1530   EVT VT = Op.getValueType();
1531   SDValue LHS = Op.getOperand(0);
1532   SDValue RHS = Op.getOperand(1);
1533   MVT IntVT = MVT::i32;
1534   MVT FltVT = MVT::f32;
1535 
1536   ISD::NodeType ToFp  = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1537   ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1538 
1539   if (VT.isVector()) {
1540     unsigned NElts = VT.getVectorNumElements();
1541     IntVT = MVT::getVectorVT(MVT::i32, NElts);
1542     FltVT = MVT::getVectorVT(MVT::f32, NElts);
1543   }
1544 
1545   unsigned BitSize = VT.getScalarType().getSizeInBits();
1546 
1547   SDValue jq = DAG.getConstant(1, IntVT);
1548 
1549   if (sign) {
1550     // char|short jq = ia ^ ib;
1551     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1552 
1553     // jq = jq >> (bitsize - 2)
1554     jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
1555 
1556     // jq = jq | 0x1
1557     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
1558 
1559     // jq = (int)jq
1560     jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1561   }
1562 
1563   // int ia = (int)LHS;
1564   SDValue ia = sign ?
1565     DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1566 
1567   // int ib, (int)RHS;
1568   SDValue ib = sign ?
1569     DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1570 
1571   // float fa = (float)ia;
1572   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1573 
1574   // float fb = (float)ib;
1575   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1576 
1577   // float fq = native_divide(fa, fb);
1578   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1579                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1580 
1581   // fq = trunc(fq);
1582   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1583 
1584   // float fqneg = -fq;
1585   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1586 
1587   // float fr = mad(fqneg, fb, fa);
1588   SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1589                            DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1590 
1591   // int iq = (int)fq;
1592   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1593 
1594   // fr = fabs(fr);
1595   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1596 
1597   // fb = fabs(fb);
1598   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1599 
1600   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
1601 
1602   // int cv = fr >= fb;
1603   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1604 
1605   // jq = (cv ? jq : 0);
1606   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
1607 
1608   // dst = trunc/extend to legal type
1609   iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1610 
1611   // dst = iq + jq;
1612   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1613 
1614   // Rem needs compensation, it's easier to recompute it
1615   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1616   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1617 
1618   SDValue Res[2] = {
1619     Div,
1620     Rem
1621   };
1622   return DAG.getMergeValues(Res, DL);
1623 }
1624 
LowerUDIVREM64(SDValue Op,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results) const1625 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1626                                       SelectionDAG &DAG,
1627                                       SmallVectorImpl<SDValue> &Results) const {
1628   assert(Op.getValueType() == MVT::i64);
1629 
1630   SDLoc DL(Op);
1631   EVT VT = Op.getValueType();
1632   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1633 
1634   SDValue one = DAG.getConstant(1, HalfVT);
1635   SDValue zero = DAG.getConstant(0, HalfVT);
1636 
1637   //HiLo split
1638   SDValue LHS = Op.getOperand(0);
1639   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1640   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1641 
1642   SDValue RHS = Op.getOperand(1);
1643   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1644   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1645 
1646   // Get Speculative values
1647   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1648   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1649 
1650   SDValue REM_Hi = zero;
1651   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1652 
1653   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1654   SDValue DIV_Lo = zero;
1655 
1656   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1657 
1658   for (unsigned i = 0; i < halfBitWidth; ++i) {
1659     SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
1660     // Get Value of high bit
1661     SDValue HBit;
1662     if (halfBitWidth == 32 && Subtarget->hasBFE()) {
1663       HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
1664     } else {
1665       HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1666       HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1667     }
1668 
1669     SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
1670       DAG.getConstant(halfBitWidth - 1, HalfVT));
1671     REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
1672     REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
1673 
1674     REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
1675     REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
1676 
1677 
1678     SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
1679 
1680     SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
1681     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1682 
1683     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1684 
1685     // Update REM
1686 
1687     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1688 
1689     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1690     REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
1691     REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
1692   }
1693 
1694   SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
1695   SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1696   Results.push_back(DIV);
1697   Results.push_back(REM);
1698 }
1699 
LowerUDIVREM(SDValue Op,SelectionDAG & DAG) const1700 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1701                                            SelectionDAG &DAG) const {
1702   SDLoc DL(Op);
1703   EVT VT = Op.getValueType();
1704 
1705   if (VT == MVT::i64) {
1706     SmallVector<SDValue, 2> Results;
1707     LowerUDIVREM64(Op, DAG, Results);
1708     return DAG.getMergeValues(Results, DL);
1709   }
1710 
1711   SDValue Num = Op.getOperand(0);
1712   SDValue Den = Op.getOperand(1);
1713 
1714   if (VT == MVT::i32) {
1715     if (DAG.MaskedValueIsZero(Op.getOperand(0), APInt(32, 0xff << 24)) &&
1716         DAG.MaskedValueIsZero(Op.getOperand(1), APInt(32, 0xff << 24))) {
1717       // TODO: We technically could do this for i64, but shouldn't that just be
1718       // handled by something generally reducing 64-bit division on 32-bit
1719       // values to 32-bit?
1720       return LowerDIVREM24(Op, DAG, false);
1721     }
1722   }
1723 
1724   // RCP =  URECIP(Den) = 2^32 / Den + e
1725   // e is rounding error.
1726   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1727 
1728   // RCP_LO = mul(RCP, Den) */
1729   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1730 
1731   // RCP_HI = mulhu (RCP, Den) */
1732   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1733 
1734   // NEG_RCP_LO = -RCP_LO
1735   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1736                                                      RCP_LO);
1737 
1738   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1739   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1740                                            NEG_RCP_LO, RCP_LO,
1741                                            ISD::SETEQ);
1742   // Calculate the rounding error from the URECIP instruction
1743   // E = mulhu(ABS_RCP_LO, RCP)
1744   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1745 
1746   // RCP_A_E = RCP + E
1747   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1748 
1749   // RCP_S_E = RCP - E
1750   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1751 
1752   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1753   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1754                                      RCP_A_E, RCP_S_E,
1755                                      ISD::SETEQ);
1756   // Quotient = mulhu(Tmp0, Num)
1757   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1758 
1759   // Num_S_Remainder = Quotient * Den
1760   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1761 
1762   // Remainder = Num - Num_S_Remainder
1763   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1764 
1765   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1766   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1767                                                  DAG.getConstant(-1, VT),
1768                                                  DAG.getConstant(0, VT),
1769                                                  ISD::SETUGE);
1770   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1771   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1772                                                   Num_S_Remainder,
1773                                                   DAG.getConstant(-1, VT),
1774                                                   DAG.getConstant(0, VT),
1775                                                   ISD::SETUGE);
1776   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1777   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1778                                                Remainder_GE_Zero);
1779 
1780   // Calculate Division result:
1781 
1782   // Quotient_A_One = Quotient + 1
1783   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1784                                                          DAG.getConstant(1, VT));
1785 
1786   // Quotient_S_One = Quotient - 1
1787   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1788                                                          DAG.getConstant(1, VT));
1789 
1790   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1791   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1792                                      Quotient, Quotient_A_One, ISD::SETEQ);
1793 
1794   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1795   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1796                             Quotient_S_One, Div, ISD::SETEQ);
1797 
1798   // Calculate Rem result:
1799 
1800   // Remainder_S_Den = Remainder - Den
1801   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1802 
1803   // Remainder_A_Den = Remainder + Den
1804   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1805 
1806   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1807   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1808                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1809 
1810   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1811   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1812                             Remainder_A_Den, Rem, ISD::SETEQ);
1813   SDValue Ops[2] = {
1814     Div,
1815     Rem
1816   };
1817   return DAG.getMergeValues(Ops, DL);
1818 }
1819 
LowerSDIVREM(SDValue Op,SelectionDAG & DAG) const1820 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1821                                            SelectionDAG &DAG) const {
1822   SDLoc DL(Op);
1823   EVT VT = Op.getValueType();
1824 
1825   SDValue LHS = Op.getOperand(0);
1826   SDValue RHS = Op.getOperand(1);
1827 
1828   if (VT == MVT::i32) {
1829     if (DAG.ComputeNumSignBits(Op.getOperand(0)) > 8 &&
1830         DAG.ComputeNumSignBits(Op.getOperand(1)) > 8) {
1831       // TODO: We technically could do this for i64, but shouldn't that just be
1832       // handled by something generally reducing 64-bit division on 32-bit
1833       // values to 32-bit?
1834       return LowerDIVREM24(Op, DAG, true);
1835     }
1836   }
1837 
1838   SDValue Zero = DAG.getConstant(0, VT);
1839   SDValue NegOne = DAG.getConstant(-1, VT);
1840 
1841   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1842   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1843   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1844   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1845 
1846   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1847   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1848 
1849   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1850   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1851 
1852   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1853   SDValue Rem = Div.getValue(1);
1854 
1855   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1856   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1857 
1858   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1859   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1860 
1861   SDValue Res[2] = {
1862     Div,
1863     Rem
1864   };
1865   return DAG.getMergeValues(Res, DL);
1866 }
1867 
1868 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
LowerFREM(SDValue Op,SelectionDAG & DAG) const1869 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1870   SDLoc SL(Op);
1871   EVT VT = Op.getValueType();
1872   SDValue X = Op.getOperand(0);
1873   SDValue Y = Op.getOperand(1);
1874 
1875   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1876   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1877   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1878 
1879   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1880 }
1881 
LowerFCEIL(SDValue Op,SelectionDAG & DAG) const1882 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1883   SDLoc SL(Op);
1884   SDValue Src = Op.getOperand(0);
1885 
1886   // result = trunc(src)
1887   // if (src > 0.0 && src != result)
1888   //   result += 1.0
1889 
1890   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1891 
1892   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1893   const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1894 
1895   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1896 
1897   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1898   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1899   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1900 
1901   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1902   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1903 }
1904 
LowerFTRUNC(SDValue Op,SelectionDAG & DAG) const1905 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1906   SDLoc SL(Op);
1907   SDValue Src = Op.getOperand(0);
1908 
1909   assert(Op.getValueType() == MVT::f64);
1910 
1911   const SDValue Zero = DAG.getConstant(0, MVT::i32);
1912   const SDValue One = DAG.getConstant(1, MVT::i32);
1913 
1914   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1915 
1916   // Extract the upper half, since this is where we will find the sign and
1917   // exponent.
1918   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1919 
1920   const unsigned FractBits = 52;
1921   const unsigned ExpBits = 11;
1922 
1923   // Extract the exponent.
1924   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1925                                 Hi,
1926                                 DAG.getConstant(FractBits - 32, MVT::i32),
1927                                 DAG.getConstant(ExpBits, MVT::i32));
1928   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1929                             DAG.getConstant(1023, MVT::i32));
1930 
1931   // Extract the sign bit.
1932   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
1933   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1934 
1935   // Extend back to to 64-bits.
1936   SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1937                                   Zero, SignBit);
1938   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1939 
1940   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1941   const SDValue FractMask
1942     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
1943 
1944   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1945   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1946   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1947 
1948   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
1949 
1950   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
1951 
1952   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1953   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1954 
1955   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1956   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1957 
1958   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1959 }
1960 
LowerFRINT(SDValue Op,SelectionDAG & DAG) const1961 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1962   SDLoc SL(Op);
1963   SDValue Src = Op.getOperand(0);
1964 
1965   assert(Op.getValueType() == MVT::f64);
1966 
1967   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
1968   SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
1969   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
1970 
1971   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
1972   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
1973 
1974   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
1975 
1976   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
1977   SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
1978 
1979   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1980   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
1981 
1982   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
1983 }
1984 
LowerFNEARBYINT(SDValue Op,SelectionDAG & DAG) const1985 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
1986   // FNEARBYINT and FRINT are the same, except in their handling of FP
1987   // exceptions. Those aren't really meaningful for us, and OpenCL only has
1988   // rint, so just treat them as equivalent.
1989   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
1990 }
1991 
LowerFFLOOR(SDValue Op,SelectionDAG & DAG) const1992 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
1993   SDLoc SL(Op);
1994   SDValue Src = Op.getOperand(0);
1995 
1996   // result = trunc(src);
1997   // if (src < 0.0 && src != result)
1998   //   result += -1.0.
1999 
2000   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2001 
2002   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
2003   const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
2004 
2005   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2006 
2007   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2008   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2009   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2010 
2011   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2012   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2013 }
2014 
LowerINT_TO_FP64(SDValue Op,SelectionDAG & DAG,bool Signed) const2015 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2016                                                bool Signed) const {
2017   SDLoc SL(Op);
2018   SDValue Src = Op.getOperand(0);
2019 
2020   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2021 
2022   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2023                            DAG.getConstant(0, MVT::i32));
2024   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2025                            DAG.getConstant(1, MVT::i32));
2026 
2027   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2028                               SL, MVT::f64, Hi);
2029 
2030   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2031 
2032   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2033                               DAG.getConstant(32, MVT::i32));
2034 
2035   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2036 }
2037 
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2038 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2039                                                SelectionDAG &DAG) const {
2040   SDValue S0 = Op.getOperand(0);
2041   if (S0.getValueType() != MVT::i64)
2042     return SDValue();
2043 
2044   EVT DestVT = Op.getValueType();
2045   if (DestVT == MVT::f64)
2046     return LowerINT_TO_FP64(Op, DAG, false);
2047 
2048   assert(DestVT == MVT::f32);
2049 
2050   SDLoc DL(Op);
2051 
2052   // f32 uint_to_fp i64
2053   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2054                            DAG.getConstant(0, MVT::i32));
2055   SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
2056   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2057                            DAG.getConstant(1, MVT::i32));
2058   SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
2059   FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
2060                         DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
2061   return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
2062 }
2063 
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2064 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2065                                               SelectionDAG &DAG) const {
2066   SDValue Src = Op.getOperand(0);
2067   if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
2068     return LowerINT_TO_FP64(Op, DAG, true);
2069 
2070   return SDValue();
2071 }
2072 
LowerFP64_TO_INT(SDValue Op,SelectionDAG & DAG,bool Signed) const2073 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2074                                                bool Signed) const {
2075   SDLoc SL(Op);
2076 
2077   SDValue Src = Op.getOperand(0);
2078 
2079   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2080 
2081   SDValue K0
2082     = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), MVT::f64);
2083   SDValue K1
2084     = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), MVT::f64);
2085 
2086   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2087 
2088   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2089 
2090 
2091   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2092 
2093   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2094                            MVT::i32, FloorMul);
2095   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2096 
2097   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2098 
2099   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2100 }
2101 
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const2102 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2103                                               SelectionDAG &DAG) const {
2104   SDValue Src = Op.getOperand(0);
2105 
2106   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2107     return LowerFP64_TO_INT(Op, DAG, true);
2108 
2109   return SDValue();
2110 }
2111 
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const2112 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2113                                               SelectionDAG &DAG) const {
2114   SDValue Src = Op.getOperand(0);
2115 
2116   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2117     return LowerFP64_TO_INT(Op, DAG, false);
2118 
2119   return SDValue();
2120 }
2121 
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const2122 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2123                                                      SelectionDAG &DAG) const {
2124   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2125   MVT VT = Op.getSimpleValueType();
2126   MVT ScalarVT = VT.getScalarType();
2127 
2128   if (!VT.isVector())
2129     return SDValue();
2130 
2131   SDValue Src = Op.getOperand(0);
2132   SDLoc DL(Op);
2133 
2134   // TODO: Don't scalarize on Evergreen?
2135   unsigned NElts = VT.getVectorNumElements();
2136   SmallVector<SDValue, 8> Args;
2137   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2138 
2139   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2140   for (unsigned I = 0; I < NElts; ++I)
2141     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2142 
2143   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2144 }
2145 
2146 //===----------------------------------------------------------------------===//
2147 // Custom DAG optimizations
2148 //===----------------------------------------------------------------------===//
2149 
isU24(SDValue Op,SelectionDAG & DAG)2150 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2151   APInt KnownZero, KnownOne;
2152   EVT VT = Op.getValueType();
2153   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2154 
2155   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2156 }
2157 
isI24(SDValue Op,SelectionDAG & DAG)2158 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2159   EVT VT = Op.getValueType();
2160 
2161   // In order for this to be a signed 24-bit value, bit 23, must
2162   // be a sign bit.
2163   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2164                                      // as unsigned 24-bit values.
2165          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2166 }
2167 
simplifyI24(SDValue Op,TargetLowering::DAGCombinerInfo & DCI)2168 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2169 
2170   SelectionDAG &DAG = DCI.DAG;
2171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2172   EVT VT = Op.getValueType();
2173 
2174   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2175   APInt KnownZero, KnownOne;
2176   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2177   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2178     DCI.CommitTargetLoweringOpt(TLO);
2179 }
2180 
2181 template <typename IntTy>
constantFoldBFE(SelectionDAG & DAG,IntTy Src0,uint32_t Offset,uint32_t Width)2182 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2183                                uint32_t Offset, uint32_t Width) {
2184   if (Width + Offset < 32) {
2185     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2186     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2187     return DAG.getConstant(Result, MVT::i32);
2188   }
2189 
2190   return DAG.getConstant(Src0 >> Offset, MVT::i32);
2191 }
2192 
usesAllNormalStores(SDNode * LoadVal)2193 static bool usesAllNormalStores(SDNode *LoadVal) {
2194   for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2195     if (!ISD::isNormalStore(*I))
2196       return false;
2197   }
2198 
2199   return true;
2200 }
2201 
2202 // If we have a copy of an illegal type, replace it with a load / store of an
2203 // equivalently sized legal type. This avoids intermediate bit pack / unpack
2204 // instructions emitted when handling extloads and truncstores. Ideally we could
2205 // recognize the pack / unpack pattern to eliminate it.
performStoreCombine(SDNode * N,DAGCombinerInfo & DCI) const2206 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2207                                                   DAGCombinerInfo &DCI) const {
2208   if (!DCI.isBeforeLegalize())
2209     return SDValue();
2210 
2211   StoreSDNode *SN = cast<StoreSDNode>(N);
2212   SDValue Value = SN->getValue();
2213   EVT VT = Value.getValueType();
2214 
2215   if (isTypeLegal(VT) || SN->isVolatile() ||
2216       !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2217     return SDValue();
2218 
2219   LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2220   if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2221     return SDValue();
2222 
2223   EVT MemVT = LoadVal->getMemoryVT();
2224 
2225   SDLoc SL(N);
2226   SelectionDAG &DAG = DCI.DAG;
2227   EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2228 
2229   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2230                                 LoadVT, SL,
2231                                 LoadVal->getChain(),
2232                                 LoadVal->getBasePtr(),
2233                                 LoadVal->getOffset(),
2234                                 LoadVT,
2235                                 LoadVal->getMemOperand());
2236 
2237   SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2238   DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2239 
2240   return DAG.getStore(SN->getChain(), SL, NewLoad,
2241                       SN->getBasePtr(), SN->getMemOperand());
2242 }
2243 
performMulCombine(SDNode * N,DAGCombinerInfo & DCI) const2244 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2245                                                 DAGCombinerInfo &DCI) const {
2246   EVT VT = N->getValueType(0);
2247 
2248   if (VT.isVector() || VT.getSizeInBits() > 32)
2249     return SDValue();
2250 
2251   SelectionDAG &DAG = DCI.DAG;
2252   SDLoc DL(N);
2253 
2254   SDValue N0 = N->getOperand(0);
2255   SDValue N1 = N->getOperand(1);
2256   SDValue Mul;
2257 
2258   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2259     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2260     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2261     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2262   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2263     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2264     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2265     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2266   } else {
2267     return SDValue();
2268   }
2269 
2270   // We need to use sext even for MUL_U24, because MUL_U24 is used
2271   // for signed multiply of 8 and 16-bit types.
2272   return DAG.getSExtOrTrunc(Mul, DL, VT);
2273 }
2274 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2275 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2276                                                 DAGCombinerInfo &DCI) const {
2277   SelectionDAG &DAG = DCI.DAG;
2278   SDLoc DL(N);
2279 
2280   switch(N->getOpcode()) {
2281     default: break;
2282     case ISD::MUL:
2283       return performMulCombine(N, DCI);
2284     case AMDGPUISD::MUL_I24:
2285     case AMDGPUISD::MUL_U24: {
2286       SDValue N0 = N->getOperand(0);
2287       SDValue N1 = N->getOperand(1);
2288       simplifyI24(N0, DCI);
2289       simplifyI24(N1, DCI);
2290       return SDValue();
2291     }
2292   case ISD::SELECT: {
2293     SDValue Cond = N->getOperand(0);
2294     if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
2295       SDLoc DL(N);
2296       EVT VT = N->getValueType(0);
2297       SDValue LHS = Cond.getOperand(0);
2298       SDValue RHS = Cond.getOperand(1);
2299       SDValue CC = Cond.getOperand(2);
2300 
2301       SDValue True = N->getOperand(1);
2302       SDValue False = N->getOperand(2);
2303 
2304       if (VT == MVT::f32)
2305         return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
2306 
2307       // TODO: Implement min / max Evergreen instructions.
2308       if (VT == MVT::i32 &&
2309           Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2310         return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
2311       }
2312     }
2313 
2314     break;
2315   }
2316   case AMDGPUISD::BFE_I32:
2317   case AMDGPUISD::BFE_U32: {
2318     assert(!N->getValueType(0).isVector() &&
2319            "Vector handling of BFE not implemented");
2320     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2321     if (!Width)
2322       break;
2323 
2324     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2325     if (WidthVal == 0)
2326       return DAG.getConstant(0, MVT::i32);
2327 
2328     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2329     if (!Offset)
2330       break;
2331 
2332     SDValue BitsFrom = N->getOperand(0);
2333     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2334 
2335     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2336 
2337     if (OffsetVal == 0) {
2338       // This is already sign / zero extended, so try to fold away extra BFEs.
2339       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2340 
2341       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2342       if (OpSignBits >= SignBits)
2343         return BitsFrom;
2344 
2345       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2346       if (Signed) {
2347         // This is a sign_extend_inreg. Replace it to take advantage of existing
2348         // DAG Combines. If not eliminated, we will match back to BFE during
2349         // selection.
2350 
2351         // TODO: The sext_inreg of extended types ends, although we can could
2352         // handle them in a single BFE.
2353         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2354                            DAG.getValueType(SmallVT));
2355       }
2356 
2357       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2358     }
2359 
2360     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2361       if (Signed) {
2362         return constantFoldBFE<int32_t>(DAG,
2363                                         CVal->getSExtValue(),
2364                                         OffsetVal,
2365                                         WidthVal);
2366       }
2367 
2368       return constantFoldBFE<uint32_t>(DAG,
2369                                        CVal->getZExtValue(),
2370                                        OffsetVal,
2371                                        WidthVal);
2372     }
2373 
2374     if ((OffsetVal + WidthVal) >= 32) {
2375       SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
2376       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2377                          BitsFrom, ShiftVal);
2378     }
2379 
2380     if (BitsFrom.hasOneUse()) {
2381       APInt Demanded = APInt::getBitsSet(32,
2382                                          OffsetVal,
2383                                          OffsetVal + WidthVal);
2384 
2385       APInt KnownZero, KnownOne;
2386       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2387                                             !DCI.isBeforeLegalizeOps());
2388       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2389       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2390           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2391                                    KnownZero, KnownOne, TLO)) {
2392         DCI.CommitTargetLoweringOpt(TLO);
2393       }
2394     }
2395 
2396     break;
2397   }
2398 
2399   case ISD::STORE:
2400     return performStoreCombine(N, DCI);
2401   }
2402   return SDValue();
2403 }
2404 
2405 //===----------------------------------------------------------------------===//
2406 // Helper functions
2407 //===----------------------------------------------------------------------===//
2408 
getOriginalFunctionArgs(SelectionDAG & DAG,const Function * F,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<ISD::InputArg> & OrigIns) const2409 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2410                                SelectionDAG &DAG,
2411                                const Function *F,
2412                                const SmallVectorImpl<ISD::InputArg> &Ins,
2413                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2414 
2415   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2416     if (Ins[i].ArgVT == Ins[i].VT) {
2417       OrigIns.push_back(Ins[i]);
2418       continue;
2419     }
2420 
2421     EVT VT;
2422     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2423       // Vector has been split into scalars.
2424       VT = Ins[i].ArgVT.getVectorElementType();
2425     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2426                Ins[i].ArgVT.getVectorElementType() !=
2427                Ins[i].VT.getVectorElementType()) {
2428       // Vector elements have been promoted
2429       VT = Ins[i].ArgVT;
2430     } else {
2431       // Vector has been spilt into smaller vectors.
2432       VT = Ins[i].VT;
2433     }
2434 
2435     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2436                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2437     OrigIns.push_back(Arg);
2438   }
2439 }
2440 
isHWTrueValue(SDValue Op) const2441 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2442   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2443     return CFP->isExactlyValue(1.0);
2444   }
2445   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2446     return C->isAllOnesValue();
2447   }
2448   return false;
2449 }
2450 
isHWFalseValue(SDValue Op) const2451 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2452   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2453     return CFP->getValueAPF().isZero();
2454   }
2455   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2456     return C->isNullValue();
2457   }
2458   return false;
2459 }
2460 
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const2461 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2462                                                   const TargetRegisterClass *RC,
2463                                                    unsigned Reg, EVT VT) const {
2464   MachineFunction &MF = DAG.getMachineFunction();
2465   MachineRegisterInfo &MRI = MF.getRegInfo();
2466   unsigned VirtualRegister;
2467   if (!MRI.isLiveIn(Reg)) {
2468     VirtualRegister = MRI.createVirtualRegister(RC);
2469     MRI.addLiveIn(Reg, VirtualRegister);
2470   } else {
2471     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2472   }
2473   return DAG.getRegister(VirtualRegister, VT);
2474 }
2475 
2476 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2477 
getTargetNodeName(unsigned Opcode) const2478 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2479   switch (Opcode) {
2480   default: return nullptr;
2481   // AMDIL DAG nodes
2482   NODE_NAME_CASE(CALL);
2483   NODE_NAME_CASE(UMUL);
2484   NODE_NAME_CASE(RET_FLAG);
2485   NODE_NAME_CASE(BRANCH_COND);
2486 
2487   // AMDGPU DAG nodes
2488   NODE_NAME_CASE(DWORDADDR)
2489   NODE_NAME_CASE(FRACT)
2490   NODE_NAME_CASE(CLAMP)
2491   NODE_NAME_CASE(MAD)
2492   NODE_NAME_CASE(FMAX_LEGACY)
2493   NODE_NAME_CASE(SMAX)
2494   NODE_NAME_CASE(UMAX)
2495   NODE_NAME_CASE(FMIN_LEGACY)
2496   NODE_NAME_CASE(SMIN)
2497   NODE_NAME_CASE(UMIN)
2498   NODE_NAME_CASE(FMAX3)
2499   NODE_NAME_CASE(SMAX3)
2500   NODE_NAME_CASE(UMAX3)
2501   NODE_NAME_CASE(FMIN3)
2502   NODE_NAME_CASE(SMIN3)
2503   NODE_NAME_CASE(UMIN3)
2504   NODE_NAME_CASE(URECIP)
2505   NODE_NAME_CASE(DIV_SCALE)
2506   NODE_NAME_CASE(DIV_FMAS)
2507   NODE_NAME_CASE(DIV_FIXUP)
2508   NODE_NAME_CASE(TRIG_PREOP)
2509   NODE_NAME_CASE(RCP)
2510   NODE_NAME_CASE(RSQ)
2511   NODE_NAME_CASE(RSQ_LEGACY)
2512   NODE_NAME_CASE(RSQ_CLAMPED)
2513   NODE_NAME_CASE(LDEXP)
2514   NODE_NAME_CASE(FP_CLASS)
2515   NODE_NAME_CASE(DOT4)
2516   NODE_NAME_CASE(BFE_U32)
2517   NODE_NAME_CASE(BFE_I32)
2518   NODE_NAME_CASE(BFI)
2519   NODE_NAME_CASE(BFM)
2520   NODE_NAME_CASE(BREV)
2521   NODE_NAME_CASE(MUL_U24)
2522   NODE_NAME_CASE(MUL_I24)
2523   NODE_NAME_CASE(MAD_U24)
2524   NODE_NAME_CASE(MAD_I24)
2525   NODE_NAME_CASE(EXPORT)
2526   NODE_NAME_CASE(CONST_ADDRESS)
2527   NODE_NAME_CASE(REGISTER_LOAD)
2528   NODE_NAME_CASE(REGISTER_STORE)
2529   NODE_NAME_CASE(LOAD_CONSTANT)
2530   NODE_NAME_CASE(LOAD_INPUT)
2531   NODE_NAME_CASE(SAMPLE)
2532   NODE_NAME_CASE(SAMPLEB)
2533   NODE_NAME_CASE(SAMPLED)
2534   NODE_NAME_CASE(SAMPLEL)
2535   NODE_NAME_CASE(CVT_F32_UBYTE0)
2536   NODE_NAME_CASE(CVT_F32_UBYTE1)
2537   NODE_NAME_CASE(CVT_F32_UBYTE2)
2538   NODE_NAME_CASE(CVT_F32_UBYTE3)
2539   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2540   NODE_NAME_CASE(CONST_DATA_PTR)
2541   NODE_NAME_CASE(STORE_MSKOR)
2542   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2543   }
2544 }
2545 
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps,bool & UseOneConstNR) const2546 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2547                                                DAGCombinerInfo &DCI,
2548                                                unsigned &RefinementSteps,
2549                                                bool &UseOneConstNR) const {
2550   SelectionDAG &DAG = DCI.DAG;
2551   EVT VT = Operand.getValueType();
2552 
2553   if (VT == MVT::f32) {
2554     RefinementSteps = 0;
2555     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2556   }
2557 
2558   // TODO: There is also f64 rsq instruction, but the documentation is less
2559   // clear on its precision.
2560 
2561   return SDValue();
2562 }
2563 
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & RefinementSteps) const2564 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2565                                                DAGCombinerInfo &DCI,
2566                                                unsigned &RefinementSteps) const {
2567   SelectionDAG &DAG = DCI.DAG;
2568   EVT VT = Operand.getValueType();
2569 
2570   if (VT == MVT::f32) {
2571     // Reciprocal, < 1 ulp error.
2572     //
2573     // This reciprocal approximation converges to < 0.5 ulp error with one
2574     // newton rhapson performed with two fused multiple adds (FMAs).
2575 
2576     RefinementSteps = 0;
2577     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2578   }
2579 
2580   // TODO: There is also f64 rcp instruction, but the documentation is less
2581   // clear on its precision.
2582 
2583   return SDValue();
2584 }
2585 
computeKnownBitsForMinMax(const SDValue Op0,const SDValue Op1,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth)2586 static void computeKnownBitsForMinMax(const SDValue Op0,
2587                                       const SDValue Op1,
2588                                       APInt &KnownZero,
2589                                       APInt &KnownOne,
2590                                       const SelectionDAG &DAG,
2591                                       unsigned Depth) {
2592   APInt Op0Zero, Op0One;
2593   APInt Op1Zero, Op1One;
2594   DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2595   DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2596 
2597   KnownZero = Op0Zero & Op1Zero;
2598   KnownOne = Op0One & Op1One;
2599 }
2600 
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const2601 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2602   const SDValue Op,
2603   APInt &KnownZero,
2604   APInt &KnownOne,
2605   const SelectionDAG &DAG,
2606   unsigned Depth) const {
2607 
2608   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2609 
2610   APInt KnownZero2;
2611   APInt KnownOne2;
2612   unsigned Opc = Op.getOpcode();
2613 
2614   switch (Opc) {
2615   default:
2616     break;
2617   case ISD::INTRINSIC_WO_CHAIN: {
2618     // FIXME: The intrinsic should just use the node.
2619     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2620     case AMDGPUIntrinsic::AMDGPU_imax:
2621     case AMDGPUIntrinsic::AMDGPU_umax:
2622     case AMDGPUIntrinsic::AMDGPU_imin:
2623     case AMDGPUIntrinsic::AMDGPU_umin:
2624       computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2625                                 KnownZero, KnownOne, DAG, Depth);
2626       break;
2627     default:
2628       break;
2629     }
2630 
2631     break;
2632   }
2633   case AMDGPUISD::SMAX:
2634   case AMDGPUISD::UMAX:
2635   case AMDGPUISD::SMIN:
2636   case AMDGPUISD::UMIN:
2637     computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
2638                               KnownZero, KnownOne, DAG, Depth);
2639     break;
2640 
2641   case AMDGPUISD::BFE_I32:
2642   case AMDGPUISD::BFE_U32: {
2643     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2644     if (!CWidth)
2645       return;
2646 
2647     unsigned BitWidth = 32;
2648     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2649 
2650     if (Opc == AMDGPUISD::BFE_U32)
2651       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2652 
2653     break;
2654   }
2655   }
2656 }
2657 
ComputeNumSignBitsForTargetNode(SDValue Op,const SelectionDAG & DAG,unsigned Depth) const2658 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2659   SDValue Op,
2660   const SelectionDAG &DAG,
2661   unsigned Depth) const {
2662   switch (Op.getOpcode()) {
2663   case AMDGPUISD::BFE_I32: {
2664     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2665     if (!Width)
2666       return 1;
2667 
2668     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2669     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2670     if (!Offset || !Offset->isNullValue())
2671       return SignBits;
2672 
2673     // TODO: Could probably figure something out with non-0 offsets.
2674     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2675     return std::max(SignBits, Op0SignBits);
2676   }
2677 
2678   case AMDGPUISD::BFE_U32: {
2679     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2680     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2681   }
2682 
2683   default:
2684     return 1;
2685   }
2686 }
2687