1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/IR/DiagnosticInfo.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 #include "AMDGPUGenCallingConv.inc"
32
33 static cl::opt<bool> AMDGPUBypassSlowDiv(
34 "amdgpu-bypass-slow-div",
35 cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
36 cl::init(true));
37
38 // Find a larger type to do a load / store of a vector with.
getEquivalentMemType(LLVMContext & Ctx,EVT VT)39 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
40 unsigned StoreSize = VT.getStoreSizeInBits();
41 if (StoreSize <= 32)
42 return EVT::getIntegerVT(Ctx, StoreSize);
43
44 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
45 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
46 }
47
numBitsUnsigned(SDValue Op,SelectionDAG & DAG)48 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
49 return DAG.computeKnownBits(Op).countMaxActiveBits();
50 }
51
numBitsSigned(SDValue Op,SelectionDAG & DAG)52 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
53 // In order for this to be a signed 24-bit value, bit 23, must
54 // be a sign bit.
55 return DAG.ComputeMaxSignificantBits(Op);
56 }
57
AMDGPUTargetLowering(const TargetMachine & TM,const AMDGPUSubtarget & STI)58 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
59 const AMDGPUSubtarget &STI)
60 : TargetLowering(TM), Subtarget(&STI) {
61 // Lower floating point store/load to integer store/load to reduce the number
62 // of patterns in tablegen.
63 setOperationAction(ISD::LOAD, MVT::f32, Promote);
64 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
65
66 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
67 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
68
69 setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
70 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
71
72 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
73 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
74
75 setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
76 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
77
78 setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
79 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
80
81 setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
82 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
83
84 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
85 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
86
87 setOperationAction(ISD::LOAD, MVT::v9f32, Promote);
88 AddPromotedToType(ISD::LOAD, MVT::v9f32, MVT::v9i32);
89
90 setOperationAction(ISD::LOAD, MVT::v10f32, Promote);
91 AddPromotedToType(ISD::LOAD, MVT::v10f32, MVT::v10i32);
92
93 setOperationAction(ISD::LOAD, MVT::v11f32, Promote);
94 AddPromotedToType(ISD::LOAD, MVT::v11f32, MVT::v11i32);
95
96 setOperationAction(ISD::LOAD, MVT::v12f32, Promote);
97 AddPromotedToType(ISD::LOAD, MVT::v12f32, MVT::v12i32);
98
99 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
100 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
101
102 setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
103 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
104
105 setOperationAction(ISD::LOAD, MVT::i64, Promote);
106 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
107
108 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
109 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
110
111 setOperationAction(ISD::LOAD, MVT::f64, Promote);
112 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
113
114 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
115 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
116
117 setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
118 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
119
120 setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
121 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
122
123 setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
124 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
125
126 setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
127 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
128
129 setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
130 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
131
132 setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
133 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
134
135 setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
136 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
137
138 setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
139 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
140
141 // There are no 64-bit extloads. These should be done as a 32-bit extload and
142 // an extension to 64-bit.
143 for (MVT VT : MVT::integer_valuetypes())
144 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64, VT,
145 Expand);
146
147 for (MVT VT : MVT::integer_valuetypes()) {
148 if (VT == MVT::i64)
149 continue;
150
151 for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) {
152 setLoadExtAction(Op, VT, MVT::i1, Promote);
153 setLoadExtAction(Op, VT, MVT::i8, Legal);
154 setLoadExtAction(Op, VT, MVT::i16, Legal);
155 setLoadExtAction(Op, VT, MVT::i32, Expand);
156 }
157 }
158
159 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
160 for (auto MemVT :
161 {MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16})
162 setLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, VT, MemVT,
163 Expand);
164
165 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
166 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
167 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
168 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
169 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
170 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
171 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
172 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
173
174 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
175 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
176 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
177 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
178 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
179 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
180
181 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
182 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
183 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
184 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
185 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
186 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
187 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
188
189 setOperationAction(ISD::STORE, MVT::f32, Promote);
190 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
191
192 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
193 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
194
195 setOperationAction(ISD::STORE, MVT::v3f32, Promote);
196 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
197
198 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
199 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
200
201 setOperationAction(ISD::STORE, MVT::v5f32, Promote);
202 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
203
204 setOperationAction(ISD::STORE, MVT::v6f32, Promote);
205 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
206
207 setOperationAction(ISD::STORE, MVT::v7f32, Promote);
208 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
209
210 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
211 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
212
213 setOperationAction(ISD::STORE, MVT::v9f32, Promote);
214 AddPromotedToType(ISD::STORE, MVT::v9f32, MVT::v9i32);
215
216 setOperationAction(ISD::STORE, MVT::v10f32, Promote);
217 AddPromotedToType(ISD::STORE, MVT::v10f32, MVT::v10i32);
218
219 setOperationAction(ISD::STORE, MVT::v11f32, Promote);
220 AddPromotedToType(ISD::STORE, MVT::v11f32, MVT::v11i32);
221
222 setOperationAction(ISD::STORE, MVT::v12f32, Promote);
223 AddPromotedToType(ISD::STORE, MVT::v12f32, MVT::v12i32);
224
225 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
226 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
227
228 setOperationAction(ISD::STORE, MVT::v32f32, Promote);
229 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
230
231 setOperationAction(ISD::STORE, MVT::i64, Promote);
232 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
233
234 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
235 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
236
237 setOperationAction(ISD::STORE, MVT::f64, Promote);
238 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
239
240 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
241 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
242
243 setOperationAction(ISD::STORE, MVT::v3i64, Promote);
244 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
245
246 setOperationAction(ISD::STORE, MVT::v3f64, Promote);
247 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
248
249 setOperationAction(ISD::STORE, MVT::v4i64, Promote);
250 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
251
252 setOperationAction(ISD::STORE, MVT::v4f64, Promote);
253 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
254
255 setOperationAction(ISD::STORE, MVT::v8i64, Promote);
256 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
257
258 setOperationAction(ISD::STORE, MVT::v8f64, Promote);
259 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
260
261 setOperationAction(ISD::STORE, MVT::v16i64, Promote);
262 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
263
264 setOperationAction(ISD::STORE, MVT::v16f64, Promote);
265 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
266
267 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
268 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
269 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
270 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
271
272 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
273 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
274 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
275 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
276
277 setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
278 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
279 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
280 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
281 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
282 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
283 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
284 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
285
286 setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
287 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
288 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
289
290 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
291 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
292
293 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
294 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
295 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
296 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
297
298 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
299 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
300 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
301 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
302
303 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
304 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
305
306 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
307 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
308 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
309 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
310 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
311 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
312 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
313
314 setOperationAction(ISD::Constant, {MVT::i32, MVT::i64}, Legal);
315 setOperationAction(ISD::ConstantFP, {MVT::f32, MVT::f64}, Legal);
316
317 setOperationAction({ISD::BR_JT, ISD::BRIND}, MVT::Other, Expand);
318
319 // This is totally unsupported, just custom lower to produce an error.
320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
321
322 // Library functions. These default to Expand, but we have instructions
323 // for them.
324 setOperationAction({ISD::FCEIL, ISD::FEXP2, ISD::FPOW, ISD::FLOG2, ISD::FABS,
325 ISD::FFLOOR, ISD::FRINT, ISD::FTRUNC, ISD::FMINNUM,
326 ISD::FMAXNUM},
327 MVT::f32, Legal);
328
329 setOperationAction(ISD::FROUND, {MVT::f32, MVT::f64}, Custom);
330
331 setOperationAction({ISD::FLOG, ISD::FLOG10, ISD::FEXP}, MVT::f32, Custom);
332
333 setOperationAction(ISD::FNEARBYINT, {MVT::f16, MVT::f32, MVT::f64}, Custom);
334
335 setOperationAction(ISD::FROUNDEVEN, {MVT::f16, MVT::f32, MVT::f64}, Custom);
336
337 setOperationAction(ISD::FREM, {MVT::f16, MVT::f32, MVT::f64}, Custom);
338
339 if (Subtarget->has16BitInsts())
340 setOperationAction(ISD::IS_FPCLASS, {MVT::f16, MVT::f32, MVT::f64}, Legal);
341 else
342 setOperationAction(ISD::IS_FPCLASS, {MVT::f32, MVT::f64}, Legal);
343
344 // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches
345 // scalarization code. Can be removed when IS_FPCLASS expand isn't called by
346 // default unless marked custom/legal.
347 setOperationAction(
348 ISD::IS_FPCLASS,
349 {MVT::v2f16, MVT::v3f16, MVT::v4f16, MVT::v16f16, MVT::v2f32, MVT::v3f32,
350 MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32,
351 MVT::v2f64, MVT::v3f64, MVT::v4f64, MVT::v8f64, MVT::v16f64},
352 Custom);
353
354 // Expand to fneg + fadd.
355 setOperationAction(ISD::FSUB, MVT::f64, Expand);
356
357 setOperationAction(ISD::CONCAT_VECTORS,
358 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32,
359 MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
360 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
361 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
362 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
363 Custom);
364 setOperationAction(
365 ISD::EXTRACT_SUBVECTOR,
366 {MVT::v2f16, MVT::v2i16, MVT::v4f16, MVT::v4i16, MVT::v2f32,
367 MVT::v2i32, MVT::v3f32, MVT::v3i32, MVT::v4f32, MVT::v4i32,
368 MVT::v5f32, MVT::v5i32, MVT::v6f32, MVT::v6i32, MVT::v7f32,
369 MVT::v7i32, MVT::v8f32, MVT::v8i32, MVT::v9f32, MVT::v9i32,
370 MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32,
371 MVT::v12f32, MVT::v16f16, MVT::v16i16, MVT::v16f32, MVT::v16i32,
372 MVT::v32f32, MVT::v32i32, MVT::v2f64, MVT::v2i64, MVT::v3f64,
373 MVT::v3i64, MVT::v4f64, MVT::v4i64, MVT::v8f64, MVT::v8i64,
374 MVT::v16f64, MVT::v16i64},
375 Custom);
376
377 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
378 setOperationAction(ISD::FP_TO_FP16, {MVT::f64, MVT::f32}, Custom);
379
380 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
381 for (MVT VT : ScalarIntVTs) {
382 // These should use [SU]DIVREM, so set them to expand
383 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT,
384 Expand);
385
386 // GPU does not have divrem function for signed or unsigned.
387 setOperationAction({ISD::SDIVREM, ISD::UDIVREM}, VT, Custom);
388
389 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
390 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
391
392 setOperationAction({ISD::BSWAP, ISD::CTTZ, ISD::CTLZ}, VT, Expand);
393
394 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
395 setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, Legal);
396 }
397
398 // The hardware supports 32-bit FSHR, but not FSHL.
399 setOperationAction(ISD::FSHR, MVT::i32, Legal);
400
401 // The hardware supports 32-bit ROTR, but not ROTL.
402 setOperationAction(ISD::ROTL, {MVT::i32, MVT::i64}, Expand);
403 setOperationAction(ISD::ROTR, MVT::i64, Expand);
404
405 setOperationAction({ISD::MULHU, ISD::MULHS}, MVT::i16, Expand);
406
407 setOperationAction({ISD::MUL, ISD::MULHU, ISD::MULHS}, MVT::i64, Expand);
408 setOperationAction(
409 {ISD::UINT_TO_FP, ISD::SINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
410 MVT::i64, Custom);
411 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
412
413 setOperationAction({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, MVT::i32,
414 Legal);
415
416 setOperationAction(
417 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
418 MVT::i64, Custom);
419
420 static const MVT::SimpleValueType VectorIntTypes[] = {
421 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32,
422 MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32};
423
424 for (MVT VT : VectorIntTypes) {
425 // Expand the following operations for the current type by default.
426 setOperationAction({ISD::ADD, ISD::AND, ISD::FP_TO_SINT,
427 ISD::FP_TO_UINT, ISD::MUL, ISD::MULHU,
428 ISD::MULHS, ISD::OR, ISD::SHL,
429 ISD::SRA, ISD::SRL, ISD::ROTL,
430 ISD::ROTR, ISD::SUB, ISD::SINT_TO_FP,
431 ISD::UINT_TO_FP, ISD::SDIV, ISD::UDIV,
432 ISD::SREM, ISD::UREM, ISD::SMUL_LOHI,
433 ISD::UMUL_LOHI, ISD::SDIVREM, ISD::UDIVREM,
434 ISD::SELECT, ISD::VSELECT, ISD::SELECT_CC,
435 ISD::XOR, ISD::BSWAP, ISD::CTPOP,
436 ISD::CTTZ, ISD::CTLZ, ISD::VECTOR_SHUFFLE,
437 ISD::SETCC},
438 VT, Expand);
439 }
440
441 static const MVT::SimpleValueType FloatVectorTypes[] = {
442 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32,
443 MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32};
444
445 for (MVT VT : FloatVectorTypes) {
446 setOperationAction(
447 {ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD,
448 ISD::FCEIL, ISD::FCOS, ISD::FDIV, ISD::FEXP2,
449 ISD::FEXP, ISD::FLOG2, ISD::FREM, ISD::FLOG,
450 ISD::FLOG10, ISD::FPOW, ISD::FFLOOR, ISD::FTRUNC,
451 ISD::FMUL, ISD::FMA, ISD::FRINT, ISD::FNEARBYINT,
452 ISD::FSQRT, ISD::FSIN, ISD::FSUB, ISD::FNEG,
453 ISD::VSELECT, ISD::SELECT_CC, ISD::FCOPYSIGN, ISD::VECTOR_SHUFFLE,
454 ISD::SETCC, ISD::FCANONICALIZE},
455 VT, Expand);
456 }
457
458 // This causes using an unrolled select operation rather than expansion with
459 // bit operations. This is in general better, but the alternative using BFI
460 // instructions may be better if the select sources are SGPRs.
461 setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
462 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
463
464 setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
465 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
466
467 setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
468 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
469
470 setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
471 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
472
473 setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
474 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
475
476 setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
477 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
478
479 setOperationAction(ISD::SELECT, MVT::v9f32, Promote);
480 AddPromotedToType(ISD::SELECT, MVT::v9f32, MVT::v9i32);
481
482 setOperationAction(ISD::SELECT, MVT::v10f32, Promote);
483 AddPromotedToType(ISD::SELECT, MVT::v10f32, MVT::v10i32);
484
485 setOperationAction(ISD::SELECT, MVT::v11f32, Promote);
486 AddPromotedToType(ISD::SELECT, MVT::v11f32, MVT::v11i32);
487
488 setOperationAction(ISD::SELECT, MVT::v12f32, Promote);
489 AddPromotedToType(ISD::SELECT, MVT::v12f32, MVT::v12i32);
490
491 // There are no libcalls of any kind.
492 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
493 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
494
495 setSchedulingPreference(Sched::RegPressure);
496 setJumpIsExpensive(true);
497
498 // FIXME: This is only partially true. If we have to do vector compares, any
499 // SGPR pair can be a condition register. If we have a uniform condition, we
500 // are better off doing SALU operations, where there is only one SCC. For now,
501 // we don't have a way of knowing during instruction selection if a condition
502 // will be uniform and we always use vector compares. Assume we are using
503 // vector compares until that is fixed.
504 setHasMultipleConditionRegisters(true);
505
506 setMinCmpXchgSizeInBits(32);
507 setSupportsUnalignedAtomics(false);
508
509 PredictableSelectIsExpensive = false;
510
511 // We want to find all load dependencies for long chains of stores to enable
512 // merging into very wide vectors. The problem is with vectors with > 4
513 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
514 // vectors are a legal type, even though we have to split the loads
515 // usually. When we can more precisely specify load legality per address
516 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
517 // smarter so that they can figure out what to do in 2 iterations without all
518 // N > 4 stores on the same chain.
519 GatherAllAliasesMaxDepth = 16;
520
521 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
522 // about these during lowering.
523 MaxStoresPerMemcpy = 0xffffffff;
524 MaxStoresPerMemmove = 0xffffffff;
525 MaxStoresPerMemset = 0xffffffff;
526
527 // The expansion for 64-bit division is enormous.
528 if (AMDGPUBypassSlowDiv)
529 addBypassSlowDiv(64, 32);
530
531 setTargetDAGCombine({ISD::BITCAST, ISD::SHL,
532 ISD::SRA, ISD::SRL,
533 ISD::TRUNCATE, ISD::MUL,
534 ISD::SMUL_LOHI, ISD::UMUL_LOHI,
535 ISD::MULHU, ISD::MULHS,
536 ISD::SELECT, ISD::SELECT_CC,
537 ISD::STORE, ISD::FADD,
538 ISD::FSUB, ISD::FNEG,
539 ISD::FABS, ISD::AssertZext,
540 ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN});
541 }
542
mayIgnoreSignedZero(SDValue Op) const543 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
544 if (getTargetMachine().Options.NoSignedZerosFPMath)
545 return true;
546
547 const auto Flags = Op.getNode()->getFlags();
548 if (Flags.hasNoSignedZeros())
549 return true;
550
551 return false;
552 }
553
554 //===----------------------------------------------------------------------===//
555 // Target Information
556 //===----------------------------------------------------------------------===//
557
558 LLVM_READNONE
fnegFoldsIntoOp(unsigned Opc)559 static bool fnegFoldsIntoOp(unsigned Opc) {
560 switch (Opc) {
561 case ISD::FADD:
562 case ISD::FSUB:
563 case ISD::FMUL:
564 case ISD::FMA:
565 case ISD::FMAD:
566 case ISD::FMINNUM:
567 case ISD::FMAXNUM:
568 case ISD::FMINNUM_IEEE:
569 case ISD::FMAXNUM_IEEE:
570 case ISD::FSIN:
571 case ISD::FTRUNC:
572 case ISD::FRINT:
573 case ISD::FNEARBYINT:
574 case ISD::FCANONICALIZE:
575 case AMDGPUISD::RCP:
576 case AMDGPUISD::RCP_LEGACY:
577 case AMDGPUISD::RCP_IFLAG:
578 case AMDGPUISD::SIN_HW:
579 case AMDGPUISD::FMUL_LEGACY:
580 case AMDGPUISD::FMIN_LEGACY:
581 case AMDGPUISD::FMAX_LEGACY:
582 case AMDGPUISD::FMED3:
583 // TODO: handle llvm.amdgcn.fma.legacy
584 return true;
585 default:
586 return false;
587 }
588 }
589
590 /// \p returns true if the operation will definitely need to use a 64-bit
591 /// encoding, and thus will use a VOP3 encoding regardless of the source
592 /// modifiers.
593 LLVM_READONLY
opMustUseVOP3Encoding(const SDNode * N,MVT VT)594 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
595 return N->getNumOperands() > 2 || VT == MVT::f64;
596 }
597
598 // Most FP instructions support source modifiers, but this could be refined
599 // slightly.
600 LLVM_READONLY
hasSourceMods(const SDNode * N)601 static bool hasSourceMods(const SDNode *N) {
602 if (isa<MemSDNode>(N))
603 return false;
604
605 switch (N->getOpcode()) {
606 case ISD::CopyToReg:
607 case ISD::SELECT:
608 case ISD::FDIV:
609 case ISD::FREM:
610 case ISD::INLINEASM:
611 case ISD::INLINEASM_BR:
612 case AMDGPUISD::DIV_SCALE:
613 case ISD::INTRINSIC_W_CHAIN:
614
615 // TODO: Should really be looking at the users of the bitcast. These are
616 // problematic because bitcasts are used to legalize all stores to integer
617 // types.
618 case ISD::BITCAST:
619 return false;
620 case ISD::INTRINSIC_WO_CHAIN: {
621 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
622 case Intrinsic::amdgcn_interp_p1:
623 case Intrinsic::amdgcn_interp_p2:
624 case Intrinsic::amdgcn_interp_mov:
625 case Intrinsic::amdgcn_interp_p1_f16:
626 case Intrinsic::amdgcn_interp_p2_f16:
627 return false;
628 default:
629 return true;
630 }
631 }
632 default:
633 return true;
634 }
635 }
636
allUsesHaveSourceMods(const SDNode * N,unsigned CostThreshold)637 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
638 unsigned CostThreshold) {
639 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
640 // it is truly free to use a source modifier in all cases. If there are
641 // multiple users but for each one will necessitate using VOP3, there will be
642 // a code size increase. Try to avoid increasing code size unless we know it
643 // will save on the instruction count.
644 unsigned NumMayIncreaseSize = 0;
645 MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
646
647 // XXX - Should this limit number of uses to check?
648 for (const SDNode *U : N->uses()) {
649 if (!hasSourceMods(U))
650 return false;
651
652 if (!opMustUseVOP3Encoding(U, VT)) {
653 if (++NumMayIncreaseSize > CostThreshold)
654 return false;
655 }
656 }
657
658 return true;
659 }
660
getTypeForExtReturn(LLVMContext & Context,EVT VT,ISD::NodeType ExtendKind) const661 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
662 ISD::NodeType ExtendKind) const {
663 assert(!VT.isVector() && "only scalar expected");
664
665 // Round to the next multiple of 32-bits.
666 unsigned Size = VT.getSizeInBits();
667 if (Size <= 32)
668 return MVT::i32;
669 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
670 }
671
getVectorIdxTy(const DataLayout &) const672 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
673 return MVT::i32;
674 }
675
isSelectSupported(SelectSupportKind SelType) const676 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
677 return true;
678 }
679
680 // The backend supports 32 and 64 bit floating point immediates.
681 // FIXME: Why are we reporting vectors of FP immediates as legal?
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const682 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
683 bool ForCodeSize) const {
684 EVT ScalarVT = VT.getScalarType();
685 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
686 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
687 }
688
689 // We don't want to shrink f64 / f32 constants.
ShouldShrinkFPConstant(EVT VT) const690 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
691 EVT ScalarVT = VT.getScalarType();
692 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
693 }
694
shouldReduceLoadWidth(SDNode * N,ISD::LoadExtType ExtTy,EVT NewVT) const695 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
696 ISD::LoadExtType ExtTy,
697 EVT NewVT) const {
698 // TODO: This may be worth removing. Check regression tests for diffs.
699 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
700 return false;
701
702 unsigned NewSize = NewVT.getStoreSizeInBits();
703
704 // If we are reducing to a 32-bit load or a smaller multi-dword load,
705 // this is always better.
706 if (NewSize >= 32)
707 return true;
708
709 EVT OldVT = N->getValueType(0);
710 unsigned OldSize = OldVT.getStoreSizeInBits();
711
712 MemSDNode *MN = cast<MemSDNode>(N);
713 unsigned AS = MN->getAddressSpace();
714 // Do not shrink an aligned scalar load to sub-dword.
715 // Scalar engine cannot do sub-dword loads.
716 if (OldSize >= 32 && NewSize < 32 && MN->getAlign() >= Align(4) &&
717 (AS == AMDGPUAS::CONSTANT_ADDRESS ||
718 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
719 (isa<LoadSDNode>(N) && AS == AMDGPUAS::GLOBAL_ADDRESS &&
720 MN->isInvariant())) &&
721 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
722 return false;
723
724 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
725 // extloads, so doing one requires using a buffer_load. In cases where we
726 // still couldn't use a scalar load, using the wider load shouldn't really
727 // hurt anything.
728
729 // If the old size already had to be an extload, there's no harm in continuing
730 // to reduce the width.
731 return (OldSize < 32);
732 }
733
isLoadBitCastBeneficial(EVT LoadTy,EVT CastTy,const SelectionDAG & DAG,const MachineMemOperand & MMO) const734 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
735 const SelectionDAG &DAG,
736 const MachineMemOperand &MMO) const {
737
738 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
739
740 if (LoadTy.getScalarType() == MVT::i32)
741 return false;
742
743 unsigned LScalarSize = LoadTy.getScalarSizeInBits();
744 unsigned CastScalarSize = CastTy.getScalarSizeInBits();
745
746 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
747 return false;
748
749 unsigned Fast = 0;
750 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
751 CastTy, MMO, &Fast) &&
752 Fast;
753 }
754
755 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
756 // profitable with the expansion for 64-bit since it's generally good to
757 // speculate things.
isCheapToSpeculateCttz(Type * Ty) const758 bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
759 return true;
760 }
761
isCheapToSpeculateCtlz(Type * Ty) const762 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
763 return true;
764 }
765
isSDNodeAlwaysUniform(const SDNode * N) const766 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
767 switch (N->getOpcode()) {
768 case ISD::EntryToken:
769 case ISD::TokenFactor:
770 return true;
771 case ISD::INTRINSIC_WO_CHAIN: {
772 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
773 switch (IntrID) {
774 case Intrinsic::amdgcn_readfirstlane:
775 case Intrinsic::amdgcn_readlane:
776 return true;
777 }
778 return false;
779 }
780 case ISD::LOAD:
781 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
782 AMDGPUAS::CONSTANT_ADDRESS_32BIT)
783 return true;
784 return false;
785 case AMDGPUISD::SETCC: // ballot-style instruction
786 return true;
787 }
788 return false;
789 }
790
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOperations,bool ForCodeSize,NegatibleCost & Cost,unsigned Depth) const791 SDValue AMDGPUTargetLowering::getNegatedExpression(
792 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
793 NegatibleCost &Cost, unsigned Depth) const {
794
795 switch (Op.getOpcode()) {
796 case ISD::FMA:
797 case ISD::FMAD: {
798 // Negating a fma is not free if it has users without source mods.
799 if (!allUsesHaveSourceMods(Op.getNode()))
800 return SDValue();
801 break;
802 }
803 default:
804 break;
805 }
806
807 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
808 ForCodeSize, Cost, Depth);
809 }
810
811 //===---------------------------------------------------------------------===//
812 // Target Properties
813 //===---------------------------------------------------------------------===//
814
isFAbsFree(EVT VT) const815 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
816 assert(VT.isFloatingPoint());
817
818 // Packed operations do not have a fabs modifier.
819 return VT == MVT::f32 || VT == MVT::f64 ||
820 (Subtarget->has16BitInsts() && VT == MVT::f16);
821 }
822
isFNegFree(EVT VT) const823 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
824 assert(VT.isFloatingPoint());
825 // Report this based on the end legalized type.
826 VT = VT.getScalarType();
827 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
828 }
829
storeOfVectorConstantIsCheap(EVT MemVT,unsigned NumElem,unsigned AS) const830 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
831 unsigned NumElem,
832 unsigned AS) const {
833 return true;
834 }
835
aggressivelyPreferBuildVectorSources(EVT VecVT) const836 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
837 // There are few operations which truly have vector input operands. Any vector
838 // operation is going to involve operations on each component, and a
839 // build_vector will be a copy per element, so it always makes sense to use a
840 // build_vector input in place of the extracted element to avoid a copy into a
841 // super register.
842 //
843 // We should probably only do this if all users are extracts only, but this
844 // should be the common case.
845 return true;
846 }
847
isTruncateFree(EVT Source,EVT Dest) const848 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
849 // Truncate is just accessing a subregister.
850
851 unsigned SrcSize = Source.getSizeInBits();
852 unsigned DestSize = Dest.getSizeInBits();
853
854 return DestSize < SrcSize && DestSize % 32 == 0 ;
855 }
856
isTruncateFree(Type * Source,Type * Dest) const857 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
858 // Truncate is just accessing a subregister.
859
860 unsigned SrcSize = Source->getScalarSizeInBits();
861 unsigned DestSize = Dest->getScalarSizeInBits();
862
863 if (DestSize== 16 && Subtarget->has16BitInsts())
864 return SrcSize >= 32;
865
866 return DestSize < SrcSize && DestSize % 32 == 0;
867 }
868
isZExtFree(Type * Src,Type * Dest) const869 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
870 unsigned SrcSize = Src->getScalarSizeInBits();
871 unsigned DestSize = Dest->getScalarSizeInBits();
872
873 if (SrcSize == 16 && Subtarget->has16BitInsts())
874 return DestSize >= 32;
875
876 return SrcSize == 32 && DestSize == 64;
877 }
878
isZExtFree(EVT Src,EVT Dest) const879 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
880 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
881 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
882 // this will enable reducing 64-bit operations the 32-bit, which is always
883 // good.
884
885 if (Src == MVT::i16)
886 return Dest == MVT::i32 ||Dest == MVT::i64 ;
887
888 return Src == MVT::i32 && Dest == MVT::i64;
889 }
890
isZExtFree(SDValue Val,EVT VT2) const891 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
892 return isZExtFree(Val.getValueType(), VT2);
893 }
894
isNarrowingProfitable(EVT SrcVT,EVT DestVT) const895 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
896 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
897 // limited number of native 64-bit operations. Shrinking an operation to fit
898 // in a single 32-bit register should always be helpful. As currently used,
899 // this is much less general than the name suggests, and is only used in
900 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
901 // not profitable, and may actually be harmful.
902 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
903 }
904
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const905 bool AMDGPUTargetLowering::isDesirableToCommuteWithShift(
906 const SDNode* N, CombineLevel Level) const {
907 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
908 N->getOpcode() == ISD::SRL) &&
909 "Expected shift op");
910 // Always commute pre-type legalization and right shifts.
911 // We're looking for shl(or(x,y),z) patterns.
912 if (Level < CombineLevel::AfterLegalizeTypes ||
913 N->getOpcode() != ISD::SHL || N->getOperand(0).getOpcode() != ISD::OR)
914 return true;
915
916 // If only user is a i32 right-shift, then don't destroy a BFE pattern.
917 if (N->getValueType(0) == MVT::i32 && N->use_size() == 1 &&
918 (N->use_begin()->getOpcode() == ISD::SRA ||
919 N->use_begin()->getOpcode() == ISD::SRL))
920 return false;
921
922 // Don't destroy or(shl(load_zext(),c), load_zext()) patterns.
923 auto IsShiftAndLoad = [](SDValue LHS, SDValue RHS) {
924 if (LHS.getOpcode() != ISD::SHL)
925 return false;
926 auto *RHSLd = dyn_cast<LoadSDNode>(RHS);
927 auto *LHS0 = dyn_cast<LoadSDNode>(LHS.getOperand(0));
928 auto *LHS1 = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
929 return LHS0 && LHS1 && RHSLd && LHS0->getExtensionType() == ISD::ZEXTLOAD &&
930 LHS1->getAPIntValue() == LHS0->getMemoryVT().getScalarSizeInBits() &&
931 RHSLd->getExtensionType() == ISD::ZEXTLOAD;
932 };
933 SDValue LHS = N->getOperand(0).getOperand(0);
934 SDValue RHS = N->getOperand(0).getOperand(1);
935 return !(IsShiftAndLoad(LHS, RHS) || IsShiftAndLoad(RHS, LHS));
936 }
937
938 //===---------------------------------------------------------------------===//
939 // TargetLowering Callbacks
940 //===---------------------------------------------------------------------===//
941
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg)942 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
943 bool IsVarArg) {
944 switch (CC) {
945 case CallingConv::AMDGPU_VS:
946 case CallingConv::AMDGPU_GS:
947 case CallingConv::AMDGPU_PS:
948 case CallingConv::AMDGPU_CS:
949 case CallingConv::AMDGPU_HS:
950 case CallingConv::AMDGPU_ES:
951 case CallingConv::AMDGPU_LS:
952 return CC_AMDGPU;
953 case CallingConv::C:
954 case CallingConv::Fast:
955 case CallingConv::Cold:
956 return CC_AMDGPU_Func;
957 case CallingConv::AMDGPU_Gfx:
958 return CC_SI_Gfx;
959 case CallingConv::AMDGPU_KERNEL:
960 case CallingConv::SPIR_KERNEL:
961 default:
962 report_fatal_error("Unsupported calling convention for call");
963 }
964 }
965
CCAssignFnForReturn(CallingConv::ID CC,bool IsVarArg)966 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
967 bool IsVarArg) {
968 switch (CC) {
969 case CallingConv::AMDGPU_KERNEL:
970 case CallingConv::SPIR_KERNEL:
971 llvm_unreachable("kernels should not be handled here");
972 case CallingConv::AMDGPU_VS:
973 case CallingConv::AMDGPU_GS:
974 case CallingConv::AMDGPU_PS:
975 case CallingConv::AMDGPU_CS:
976 case CallingConv::AMDGPU_HS:
977 case CallingConv::AMDGPU_ES:
978 case CallingConv::AMDGPU_LS:
979 return RetCC_SI_Shader;
980 case CallingConv::AMDGPU_Gfx:
981 return RetCC_SI_Gfx;
982 case CallingConv::C:
983 case CallingConv::Fast:
984 case CallingConv::Cold:
985 return RetCC_AMDGPU_Func;
986 default:
987 report_fatal_error("Unsupported calling convention.");
988 }
989 }
990
991 /// The SelectionDAGBuilder will automatically promote function arguments
992 /// with illegal types. However, this does not work for the AMDGPU targets
993 /// since the function arguments are stored in memory as these illegal types.
994 /// In order to handle this properly we need to get the original types sizes
995 /// from the LLVM IR Function and fixup the ISD:InputArg values before
996 /// passing them to AnalyzeFormalArguments()
997
998 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
999 /// input values across multiple registers. Each item in the Ins array
1000 /// represents a single value that will be stored in registers. Ins[x].VT is
1001 /// the value type of the value that will be stored in the register, so
1002 /// whatever SDNode we lower the argument to needs to be this type.
1003 ///
1004 /// In order to correctly lower the arguments we need to know the size of each
1005 /// argument. Since Ins[x].VT gives us the size of the register that will
1006 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1007 /// for the original function argument so that we can deduce the correct memory
1008 /// type to use for Ins[x]. In most cases the correct memory type will be
1009 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
1010 /// we have a kernel argument of type v8i8, this argument will be split into
1011 /// 8 parts and each part will be represented by its own item in the Ins array.
1012 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1013 /// the argument before it was split. From this, we deduce that the memory type
1014 /// for each individual part is i8. We pass the memory type as LocVT to the
1015 /// calling convention analysis function and the register type (Ins[x].VT) as
1016 /// the ValVT.
analyzeFormalArgumentsCompute(CCState & State,const SmallVectorImpl<ISD::InputArg> & Ins) const1017 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1018 CCState &State,
1019 const SmallVectorImpl<ISD::InputArg> &Ins) const {
1020 const MachineFunction &MF = State.getMachineFunction();
1021 const Function &Fn = MF.getFunction();
1022 LLVMContext &Ctx = Fn.getParent()->getContext();
1023 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1024 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1025 CallingConv::ID CC = Fn.getCallingConv();
1026
1027 Align MaxAlign = Align(1);
1028 uint64_t ExplicitArgOffset = 0;
1029 const DataLayout &DL = Fn.getParent()->getDataLayout();
1030
1031 unsigned InIndex = 0;
1032
1033 for (const Argument &Arg : Fn.args()) {
1034 const bool IsByRef = Arg.hasByRefAttr();
1035 Type *BaseArgTy = Arg.getType();
1036 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1037 Align Alignment = DL.getValueOrABITypeAlignment(
1038 IsByRef ? Arg.getParamAlign() : std::nullopt, MemArgTy);
1039 MaxAlign = std::max(Alignment, MaxAlign);
1040 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1041
1042 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1043 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1044
1045 // We're basically throwing away everything passed into us and starting over
1046 // to get accurate in-memory offsets. The "PartOffset" is completely useless
1047 // to us as computed in Ins.
1048 //
1049 // We also need to figure out what type legalization is trying to do to get
1050 // the correct memory offsets.
1051
1052 SmallVector<EVT, 16> ValueVTs;
1053 SmallVector<uint64_t, 16> Offsets;
1054 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1055
1056 for (unsigned Value = 0, NumValues = ValueVTs.size();
1057 Value != NumValues; ++Value) {
1058 uint64_t BasePartOffset = Offsets[Value];
1059
1060 EVT ArgVT = ValueVTs[Value];
1061 EVT MemVT = ArgVT;
1062 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1063 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1064
1065 if (NumRegs == 1) {
1066 // This argument is not split, so the IR type is the memory type.
1067 if (ArgVT.isExtended()) {
1068 // We have an extended type, like i24, so we should just use the
1069 // register type.
1070 MemVT = RegisterVT;
1071 } else {
1072 MemVT = ArgVT;
1073 }
1074 } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1075 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1076 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1077 // We have a vector value which has been split into a vector with
1078 // the same scalar type, but fewer elements. This should handle
1079 // all the floating-point vector types.
1080 MemVT = RegisterVT;
1081 } else if (ArgVT.isVector() &&
1082 ArgVT.getVectorNumElements() == NumRegs) {
1083 // This arg has been split so that each element is stored in a separate
1084 // register.
1085 MemVT = ArgVT.getScalarType();
1086 } else if (ArgVT.isExtended()) {
1087 // We have an extended type, like i65.
1088 MemVT = RegisterVT;
1089 } else {
1090 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1091 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1092 if (RegisterVT.isInteger()) {
1093 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1094 } else if (RegisterVT.isVector()) {
1095 assert(!RegisterVT.getScalarType().isFloatingPoint());
1096 unsigned NumElements = RegisterVT.getVectorNumElements();
1097 assert(MemoryBits % NumElements == 0);
1098 // This vector type has been split into another vector type with
1099 // a different elements size.
1100 EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1101 MemoryBits / NumElements);
1102 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1103 } else {
1104 llvm_unreachable("cannot deduce memory type.");
1105 }
1106 }
1107
1108 // Convert one element vectors to scalar.
1109 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1110 MemVT = MemVT.getScalarType();
1111
1112 // Round up vec3/vec5 argument.
1113 if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1114 assert(MemVT.getVectorNumElements() == 3 ||
1115 MemVT.getVectorNumElements() == 5 ||
1116 (MemVT.getVectorNumElements() >= 9 &&
1117 MemVT.getVectorNumElements() <= 12));
1118 MemVT = MemVT.getPow2VectorType(State.getContext());
1119 } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1120 MemVT = MemVT.getRoundIntegerType(State.getContext());
1121 }
1122
1123 unsigned PartOffset = 0;
1124 for (unsigned i = 0; i != NumRegs; ++i) {
1125 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1126 BasePartOffset + PartOffset,
1127 MemVT.getSimpleVT(),
1128 CCValAssign::Full));
1129 PartOffset += MemVT.getStoreSize();
1130 }
1131 }
1132 }
1133 }
1134
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1135 SDValue AMDGPUTargetLowering::LowerReturn(
1136 SDValue Chain, CallingConv::ID CallConv,
1137 bool isVarArg,
1138 const SmallVectorImpl<ISD::OutputArg> &Outs,
1139 const SmallVectorImpl<SDValue> &OutVals,
1140 const SDLoc &DL, SelectionDAG &DAG) const {
1141 // FIXME: Fails for r600 tests
1142 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1143 // "wave terminate should not have return values");
1144 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1145 }
1146
1147 //===---------------------------------------------------------------------===//
1148 // Target specific lowering
1149 //===---------------------------------------------------------------------===//
1150
1151 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg)1152 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1153 bool IsVarArg) {
1154 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1155 }
1156
CCAssignFnForReturn(CallingConv::ID CC,bool IsVarArg)1157 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1158 bool IsVarArg) {
1159 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1160 }
1161
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo & MFI,int ClobberedFI) const1162 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1163 SelectionDAG &DAG,
1164 MachineFrameInfo &MFI,
1165 int ClobberedFI) const {
1166 SmallVector<SDValue, 8> ArgChains;
1167 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1168 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1169
1170 // Include the original chain at the beginning of the list. When this is
1171 // used by target LowerCall hooks, this helps legalize find the
1172 // CALLSEQ_BEGIN node.
1173 ArgChains.push_back(Chain);
1174
1175 // Add a chain value for each stack argument corresponding
1176 for (SDNode *U : DAG.getEntryNode().getNode()->uses()) {
1177 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) {
1178 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1179 if (FI->getIndex() < 0) {
1180 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1181 int64_t InLastByte = InFirstByte;
1182 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1183
1184 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1185 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1186 ArgChains.push_back(SDValue(L, 1));
1187 }
1188 }
1189 }
1190 }
1191
1192 // Build a tokenfactor for all the chains.
1193 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1194 }
1195
lowerUnhandledCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals,StringRef Reason) const1196 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1197 SmallVectorImpl<SDValue> &InVals,
1198 StringRef Reason) const {
1199 SDValue Callee = CLI.Callee;
1200 SelectionDAG &DAG = CLI.DAG;
1201
1202 const Function &Fn = DAG.getMachineFunction().getFunction();
1203
1204 StringRef FuncName("<unknown>");
1205
1206 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1207 FuncName = G->getSymbol();
1208 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1209 FuncName = G->getGlobal()->getName();
1210
1211 DiagnosticInfoUnsupported NoCalls(
1212 Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1213 DAG.getContext()->diagnose(NoCalls);
1214
1215 if (!CLI.IsTailCall) {
1216 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1217 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1218 }
1219
1220 return DAG.getEntryNode();
1221 }
1222
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1223 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1224 SmallVectorImpl<SDValue> &InVals) const {
1225 return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1226 }
1227
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const1228 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1229 SelectionDAG &DAG) const {
1230 const Function &Fn = DAG.getMachineFunction().getFunction();
1231
1232 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1233 SDLoc(Op).getDebugLoc());
1234 DAG.getContext()->diagnose(NoDynamicAlloca);
1235 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1236 return DAG.getMergeValues(Ops, SDLoc());
1237 }
1238
LowerOperation(SDValue Op,SelectionDAG & DAG) const1239 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1240 SelectionDAG &DAG) const {
1241 switch (Op.getOpcode()) {
1242 default:
1243 Op->print(errs(), &DAG);
1244 llvm_unreachable("Custom lowering code for this "
1245 "instruction is not implemented yet!");
1246 break;
1247 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1248 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1249 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1250 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1251 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1252 case ISD::FREM: return LowerFREM(Op, DAG);
1253 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1254 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1255 case ISD::FRINT: return LowerFRINT(Op, DAG);
1256 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1257 case ISD::FROUNDEVEN:
1258 return LowerFROUNDEVEN(Op, DAG);
1259 case ISD::FROUND: return LowerFROUND(Op, DAG);
1260 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1261 case ISD::FLOG:
1262 return LowerFLOG(Op, DAG, numbers::ln2f);
1263 case ISD::FLOG10:
1264 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1265 case ISD::FEXP:
1266 return lowerFEXP(Op, DAG);
1267 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1268 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1269 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1270 case ISD::FP_TO_SINT:
1271 case ISD::FP_TO_UINT:
1272 return LowerFP_TO_INT(Op, DAG);
1273 case ISD::CTTZ:
1274 case ISD::CTTZ_ZERO_UNDEF:
1275 case ISD::CTLZ:
1276 case ISD::CTLZ_ZERO_UNDEF:
1277 return LowerCTLZ_CTTZ(Op, DAG);
1278 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1279 }
1280 return Op;
1281 }
1282
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1283 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1284 SmallVectorImpl<SDValue> &Results,
1285 SelectionDAG &DAG) const {
1286 switch (N->getOpcode()) {
1287 case ISD::SIGN_EXTEND_INREG:
1288 // Different parts of legalization seem to interpret which type of
1289 // sign_extend_inreg is the one to check for custom lowering. The extended
1290 // from type is what really matters, but some places check for custom
1291 // lowering of the result type. This results in trying to use
1292 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1293 // nothing here and let the illegal result integer be handled normally.
1294 return;
1295 default:
1296 return;
1297 }
1298 }
1299
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const1300 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1301 SDValue Op,
1302 SelectionDAG &DAG) const {
1303
1304 const DataLayout &DL = DAG.getDataLayout();
1305 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1306 const GlobalValue *GV = G->getGlobal();
1307
1308 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1309 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1310 if (!MFI->isModuleEntryFunction() &&
1311 !GV->getName().equals("llvm.amdgcn.module.lds")) {
1312 SDLoc DL(Op);
1313 const Function &Fn = DAG.getMachineFunction().getFunction();
1314 DiagnosticInfoUnsupported BadLDSDecl(
1315 Fn, "local memory global used by non-kernel function",
1316 DL.getDebugLoc(), DS_Warning);
1317 DAG.getContext()->diagnose(BadLDSDecl);
1318
1319 // We currently don't have a way to correctly allocate LDS objects that
1320 // aren't directly associated with a kernel. We do force inlining of
1321 // functions that use local objects. However, if these dead functions are
1322 // not eliminated, we don't want a compile time error. Just emit a warning
1323 // and a trap, since there should be no callable path here.
1324 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1325 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1326 Trap, DAG.getRoot());
1327 DAG.setRoot(OutputChain);
1328 return DAG.getUNDEF(Op.getValueType());
1329 }
1330
1331 // XXX: What does the value of G->getOffset() mean?
1332 assert(G->getOffset() == 0 &&
1333 "Do not know what to do with an non-zero offset");
1334
1335 // TODO: We could emit code to handle the initialization somewhere.
1336 // We ignore the initializer for now and legalize it to allow selection.
1337 // The initializer will anyway get errored out during assembly emission.
1338 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1339 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1340 }
1341 return SDValue();
1342 }
1343
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1344 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1345 SelectionDAG &DAG) const {
1346 SmallVector<SDValue, 8> Args;
1347 SDLoc SL(Op);
1348
1349 EVT VT = Op.getValueType();
1350 if (VT.getVectorElementType().getSizeInBits() < 32) {
1351 unsigned OpBitSize = Op.getOperand(0).getValueType().getSizeInBits();
1352 if (OpBitSize >= 32 && OpBitSize % 32 == 0) {
1353 unsigned NewNumElt = OpBitSize / 32;
1354 EVT NewEltVT = (NewNumElt == 1) ? MVT::i32
1355 : EVT::getVectorVT(*DAG.getContext(),
1356 MVT::i32, NewNumElt);
1357 for (const SDUse &U : Op->ops()) {
1358 SDValue In = U.get();
1359 SDValue NewIn = DAG.getNode(ISD::BITCAST, SL, NewEltVT, In);
1360 if (NewNumElt > 1)
1361 DAG.ExtractVectorElements(NewIn, Args);
1362 else
1363 Args.push_back(NewIn);
1364 }
1365
1366 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
1367 NewNumElt * Op.getNumOperands());
1368 SDValue BV = DAG.getBuildVector(NewVT, SL, Args);
1369 return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1370 }
1371 }
1372
1373 for (const SDUse &U : Op->ops())
1374 DAG.ExtractVectorElements(U.get(), Args);
1375
1376 return DAG.getBuildVector(Op.getValueType(), SL, Args);
1377 }
1378
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const1379 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1380 SelectionDAG &DAG) const {
1381
1382 SmallVector<SDValue, 8> Args;
1383 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1384 EVT VT = Op.getValueType();
1385 EVT SrcVT = Op.getOperand(0).getValueType();
1386
1387 // For these types, we have some TableGen patterns except if the index is 1
1388 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1389 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1390 Start != 1)
1391 return Op;
1392
1393 if (((SrcVT == MVT::v8f16 && VT == MVT::v4f16) ||
1394 (SrcVT == MVT::v8i16 && VT == MVT::v4i16)) &&
1395 (Start == 0 || Start == 4))
1396 return Op;
1397
1398 if (((SrcVT == MVT::v16f16 && VT == MVT::v8f16) ||
1399 (SrcVT == MVT::v16i16 && VT == MVT::v8i16)) &&
1400 (Start == 0 || Start == 8))
1401 return Op;
1402
1403 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1404 VT.getVectorNumElements());
1405
1406 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1407 }
1408
1409 /// Generate Min/Max node
combineFMinMaxLegacy(const SDLoc & DL,EVT VT,SDValue LHS,SDValue RHS,SDValue True,SDValue False,SDValue CC,DAGCombinerInfo & DCI) const1410 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1411 SDValue LHS, SDValue RHS,
1412 SDValue True, SDValue False,
1413 SDValue CC,
1414 DAGCombinerInfo &DCI) const {
1415 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1416 return SDValue();
1417
1418 SelectionDAG &DAG = DCI.DAG;
1419 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1420 switch (CCOpcode) {
1421 case ISD::SETOEQ:
1422 case ISD::SETONE:
1423 case ISD::SETUNE:
1424 case ISD::SETNE:
1425 case ISD::SETUEQ:
1426 case ISD::SETEQ:
1427 case ISD::SETFALSE:
1428 case ISD::SETFALSE2:
1429 case ISD::SETTRUE:
1430 case ISD::SETTRUE2:
1431 case ISD::SETUO:
1432 case ISD::SETO:
1433 break;
1434 case ISD::SETULE:
1435 case ISD::SETULT: {
1436 if (LHS == True)
1437 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1438 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1439 }
1440 case ISD::SETOLE:
1441 case ISD::SETOLT:
1442 case ISD::SETLE:
1443 case ISD::SETLT: {
1444 // Ordered. Assume ordered for undefined.
1445
1446 // Only do this after legalization to avoid interfering with other combines
1447 // which might occur.
1448 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1449 !DCI.isCalledByLegalizer())
1450 return SDValue();
1451
1452 // We need to permute the operands to get the correct NaN behavior. The
1453 // selected operand is the second one based on the failing compare with NaN,
1454 // so permute it based on the compare type the hardware uses.
1455 if (LHS == True)
1456 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1457 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1458 }
1459 case ISD::SETUGE:
1460 case ISD::SETUGT: {
1461 if (LHS == True)
1462 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1463 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1464 }
1465 case ISD::SETGT:
1466 case ISD::SETGE:
1467 case ISD::SETOGE:
1468 case ISD::SETOGT: {
1469 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1470 !DCI.isCalledByLegalizer())
1471 return SDValue();
1472
1473 if (LHS == True)
1474 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1475 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1476 }
1477 case ISD::SETCC_INVALID:
1478 llvm_unreachable("Invalid setcc condcode!");
1479 }
1480 return SDValue();
1481 }
1482
1483 std::pair<SDValue, SDValue>
split64BitValue(SDValue Op,SelectionDAG & DAG) const1484 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1485 SDLoc SL(Op);
1486
1487 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1488
1489 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1490 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1491
1492 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1493 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1494
1495 return std::pair(Lo, Hi);
1496 }
1497
getLoHalf64(SDValue Op,SelectionDAG & DAG) const1498 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1499 SDLoc SL(Op);
1500
1501 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1502 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1503 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1504 }
1505
getHiHalf64(SDValue Op,SelectionDAG & DAG) const1506 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1507 SDLoc SL(Op);
1508
1509 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1510 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1511 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1512 }
1513
1514 // Split a vector type into two parts. The first part is a power of two vector.
1515 // The second part is whatever is left over, and is a scalar if it would
1516 // otherwise be a 1-vector.
1517 std::pair<EVT, EVT>
getSplitDestVTs(const EVT & VT,SelectionDAG & DAG) const1518 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1519 EVT LoVT, HiVT;
1520 EVT EltVT = VT.getVectorElementType();
1521 unsigned NumElts = VT.getVectorNumElements();
1522 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1523 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1524 HiVT = NumElts - LoNumElts == 1
1525 ? EltVT
1526 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1527 return std::pair(LoVT, HiVT);
1528 }
1529
1530 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1531 // scalar.
1532 std::pair<SDValue, SDValue>
splitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT,SelectionDAG & DAG) const1533 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1534 const EVT &LoVT, const EVT &HiVT,
1535 SelectionDAG &DAG) const {
1536 assert(LoVT.getVectorNumElements() +
1537 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1538 N.getValueType().getVectorNumElements() &&
1539 "More vector elements requested than available!");
1540 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1541 DAG.getVectorIdxConstant(0, DL));
1542 SDValue Hi = DAG.getNode(
1543 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1544 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1545 return std::pair(Lo, Hi);
1546 }
1547
SplitVectorLoad(const SDValue Op,SelectionDAG & DAG) const1548 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1549 SelectionDAG &DAG) const {
1550 LoadSDNode *Load = cast<LoadSDNode>(Op);
1551 EVT VT = Op.getValueType();
1552 SDLoc SL(Op);
1553
1554
1555 // If this is a 2 element vector, we really want to scalarize and not create
1556 // weird 1 element vectors.
1557 if (VT.getVectorNumElements() == 2) {
1558 SDValue Ops[2];
1559 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1560 return DAG.getMergeValues(Ops, SL);
1561 }
1562
1563 SDValue BasePtr = Load->getBasePtr();
1564 EVT MemVT = Load->getMemoryVT();
1565
1566 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1567
1568 EVT LoVT, HiVT;
1569 EVT LoMemVT, HiMemVT;
1570 SDValue Lo, Hi;
1571
1572 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1573 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1574 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1575
1576 unsigned Size = LoMemVT.getStoreSize();
1577 Align BaseAlign = Load->getAlign();
1578 Align HiAlign = commonAlignment(BaseAlign, Size);
1579
1580 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1581 Load->getChain(), BasePtr, SrcValue, LoMemVT,
1582 BaseAlign, Load->getMemOperand()->getFlags());
1583 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1584 SDValue HiLoad =
1585 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1586 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1587 HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1588
1589 SDValue Join;
1590 if (LoVT == HiVT) {
1591 // This is the case that the vector is power of two so was evenly split.
1592 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1593 } else {
1594 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1595 DAG.getVectorIdxConstant(0, SL));
1596 Join = DAG.getNode(
1597 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1598 VT, Join, HiLoad,
1599 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1600 }
1601
1602 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1603 LoLoad.getValue(1), HiLoad.getValue(1))};
1604
1605 return DAG.getMergeValues(Ops, SL);
1606 }
1607
WidenOrSplitVectorLoad(SDValue Op,SelectionDAG & DAG) const1608 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1609 SelectionDAG &DAG) const {
1610 LoadSDNode *Load = cast<LoadSDNode>(Op);
1611 EVT VT = Op.getValueType();
1612 SDValue BasePtr = Load->getBasePtr();
1613 EVT MemVT = Load->getMemoryVT();
1614 SDLoc SL(Op);
1615 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1616 Align BaseAlign = Load->getAlign();
1617 unsigned NumElements = MemVT.getVectorNumElements();
1618
1619 // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1620 // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1621 if (NumElements != 3 ||
1622 (BaseAlign < Align(8) &&
1623 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1624 return SplitVectorLoad(Op, DAG);
1625
1626 assert(NumElements == 3);
1627
1628 EVT WideVT =
1629 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1630 EVT WideMemVT =
1631 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1632 SDValue WideLoad = DAG.getExtLoad(
1633 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1634 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1635 return DAG.getMergeValues(
1636 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1637 DAG.getVectorIdxConstant(0, SL)),
1638 WideLoad.getValue(1)},
1639 SL);
1640 }
1641
SplitVectorStore(SDValue Op,SelectionDAG & DAG) const1642 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1643 SelectionDAG &DAG) const {
1644 StoreSDNode *Store = cast<StoreSDNode>(Op);
1645 SDValue Val = Store->getValue();
1646 EVT VT = Val.getValueType();
1647
1648 // If this is a 2 element vector, we really want to scalarize and not create
1649 // weird 1 element vectors.
1650 if (VT.getVectorNumElements() == 2)
1651 return scalarizeVectorStore(Store, DAG);
1652
1653 EVT MemVT = Store->getMemoryVT();
1654 SDValue Chain = Store->getChain();
1655 SDValue BasePtr = Store->getBasePtr();
1656 SDLoc SL(Op);
1657
1658 EVT LoVT, HiVT;
1659 EVT LoMemVT, HiMemVT;
1660 SDValue Lo, Hi;
1661
1662 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1663 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1664 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1665
1666 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1667
1668 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1669 Align BaseAlign = Store->getAlign();
1670 unsigned Size = LoMemVT.getStoreSize();
1671 Align HiAlign = commonAlignment(BaseAlign, Size);
1672
1673 SDValue LoStore =
1674 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1675 Store->getMemOperand()->getFlags());
1676 SDValue HiStore =
1677 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1678 HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1679
1680 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1681 }
1682
1683 // This is a shortcut for integer division because we have fast i32<->f32
1684 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1685 // float is enough to accurately represent up to a 24-bit signed integer.
LowerDIVREM24(SDValue Op,SelectionDAG & DAG,bool Sign) const1686 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1687 bool Sign) const {
1688 SDLoc DL(Op);
1689 EVT VT = Op.getValueType();
1690 SDValue LHS = Op.getOperand(0);
1691 SDValue RHS = Op.getOperand(1);
1692 MVT IntVT = MVT::i32;
1693 MVT FltVT = MVT::f32;
1694
1695 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1696 if (LHSSignBits < 9)
1697 return SDValue();
1698
1699 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1700 if (RHSSignBits < 9)
1701 return SDValue();
1702
1703 unsigned BitSize = VT.getSizeInBits();
1704 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1705 unsigned DivBits = BitSize - SignBits;
1706 if (Sign)
1707 ++DivBits;
1708
1709 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1710 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1711
1712 SDValue jq = DAG.getConstant(1, DL, IntVT);
1713
1714 if (Sign) {
1715 // char|short jq = ia ^ ib;
1716 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1717
1718 // jq = jq >> (bitsize - 2)
1719 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1720 DAG.getConstant(BitSize - 2, DL, VT));
1721
1722 // jq = jq | 0x1
1723 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1724 }
1725
1726 // int ia = (int)LHS;
1727 SDValue ia = LHS;
1728
1729 // int ib, (int)RHS;
1730 SDValue ib = RHS;
1731
1732 // float fa = (float)ia;
1733 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1734
1735 // float fb = (float)ib;
1736 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1737
1738 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1739 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1740
1741 // fq = trunc(fq);
1742 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1743
1744 // float fqneg = -fq;
1745 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1746
1747 MachineFunction &MF = DAG.getMachineFunction();
1748
1749 bool UseFmadFtz = false;
1750 if (Subtarget->isGCN()) {
1751 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1752 UseFmadFtz = MFI->getMode().allFP32Denormals();
1753 }
1754
1755 // float fr = mad(fqneg, fb, fa);
1756 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA
1757 : UseFmadFtz ? (unsigned)AMDGPUISD::FMAD_FTZ
1758 : (unsigned)ISD::FMAD;
1759 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1760
1761 // int iq = (int)fq;
1762 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1763
1764 // fr = fabs(fr);
1765 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1766
1767 // fb = fabs(fb);
1768 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1769
1770 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1771
1772 // int cv = fr >= fb;
1773 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1774
1775 // jq = (cv ? jq : 0);
1776 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1777
1778 // dst = iq + jq;
1779 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1780
1781 // Rem needs compensation, it's easier to recompute it
1782 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1783 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1784
1785 // Truncate to number of bits this divide really is.
1786 if (Sign) {
1787 SDValue InRegSize
1788 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1789 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1790 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1791 } else {
1792 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1793 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1794 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1795 }
1796
1797 return DAG.getMergeValues({ Div, Rem }, DL);
1798 }
1799
LowerUDIVREM64(SDValue Op,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results) const1800 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1801 SelectionDAG &DAG,
1802 SmallVectorImpl<SDValue> &Results) const {
1803 SDLoc DL(Op);
1804 EVT VT = Op.getValueType();
1805
1806 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1807
1808 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1809
1810 SDValue One = DAG.getConstant(1, DL, HalfVT);
1811 SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1812
1813 //HiLo split
1814 SDValue LHS = Op.getOperand(0);
1815 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1816 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1817
1818 SDValue RHS = Op.getOperand(1);
1819 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1820 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1821
1822 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1823 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1824
1825 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1826 LHS_Lo, RHS_Lo);
1827
1828 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1829 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1830
1831 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1832 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1833 return;
1834 }
1835
1836 if (isTypeLegal(MVT::i64)) {
1837 // The algorithm here is based on ideas from "Software Integer Division",
1838 // Tom Rodeheffer, August 2008.
1839
1840 MachineFunction &MF = DAG.getMachineFunction();
1841 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1842
1843 // Compute denominator reciprocal.
1844 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1845 (unsigned)ISD::FMA :
1846 !MFI->getMode().allFP32Denormals() ?
1847 (unsigned)ISD::FMAD :
1848 (unsigned)AMDGPUISD::FMAD_FTZ;
1849
1850 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1851 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1852 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1853 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1854 Cvt_Lo);
1855 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1856 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1857 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1858 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1859 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1860 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1861 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1862 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1863 Mul1);
1864 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1865 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1866 SDValue Rcp64 = DAG.getBitcast(VT,
1867 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1868
1869 SDValue Zero64 = DAG.getConstant(0, DL, VT);
1870 SDValue One64 = DAG.getConstant(1, DL, VT);
1871 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1872 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1873
1874 // First round of UNR (Unsigned integer Newton-Raphson).
1875 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1876 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1877 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1878 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1879 Zero);
1880 SDValue Mulhi1_Hi =
1881 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, One);
1882 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1883 Mulhi1_Lo, Zero1);
1884 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1885 Mulhi1_Hi, Add1_Lo.getValue(1));
1886 SDValue Add1 = DAG.getBitcast(VT,
1887 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1888
1889 // Second round of UNR.
1890 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1891 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1892 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1893 Zero);
1894 SDValue Mulhi2_Hi =
1895 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, One);
1896 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1897 Mulhi2_Lo, Zero1);
1898 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Hi,
1899 Mulhi2_Hi, Add2_Lo.getValue(1));
1900 SDValue Add2 = DAG.getBitcast(VT,
1901 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1902
1903 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1904
1905 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1906
1907 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1908 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1909 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1910 Mul3_Lo, Zero1);
1911 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1912 Mul3_Hi, Sub1_Lo.getValue(1));
1913 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1914 SDValue Sub1 = DAG.getBitcast(VT,
1915 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1916
1917 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1918 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1919 ISD::SETUGE);
1920 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1921 ISD::SETUGE);
1922 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1923
1924 // TODO: Here and below portions of the code can be enclosed into if/endif.
1925 // Currently control flow is unconditional and we have 4 selects after
1926 // potential endif to substitute PHIs.
1927
1928 // if C3 != 0 ...
1929 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1930 RHS_Lo, Zero1);
1931 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1932 RHS_Hi, Sub1_Lo.getValue(1));
1933 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1934 Zero, Sub2_Lo.getValue(1));
1935 SDValue Sub2 = DAG.getBitcast(VT,
1936 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1937
1938 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1939
1940 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1941 ISD::SETUGE);
1942 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1943 ISD::SETUGE);
1944 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1945
1946 // if (C6 != 0)
1947 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1948
1949 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1950 RHS_Lo, Zero1);
1951 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1952 RHS_Hi, Sub2_Lo.getValue(1));
1953 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1954 Zero, Sub3_Lo.getValue(1));
1955 SDValue Sub3 = DAG.getBitcast(VT,
1956 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1957
1958 // endif C6
1959 // endif C3
1960
1961 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1962 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1963
1964 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1965 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1966
1967 Results.push_back(Div);
1968 Results.push_back(Rem);
1969
1970 return;
1971 }
1972
1973 // r600 expandion.
1974 // Get Speculative values
1975 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1976 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1977
1978 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
1979 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
1980 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
1981
1982 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
1983 SDValue DIV_Lo = Zero;
1984
1985 const unsigned halfBitWidth = HalfVT.getSizeInBits();
1986
1987 for (unsigned i = 0; i < halfBitWidth; ++i) {
1988 const unsigned bitPos = halfBitWidth - i - 1;
1989 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
1990 // Get value of high bit
1991 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1992 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
1993 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1994
1995 // Shift
1996 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
1997 // Add LHS high bit
1998 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1999
2000 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2001 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2002
2003 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2004
2005 // Update REM
2006 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2007 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2008 }
2009
2010 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2011 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2012 Results.push_back(DIV);
2013 Results.push_back(REM);
2014 }
2015
LowerUDIVREM(SDValue Op,SelectionDAG & DAG) const2016 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2017 SelectionDAG &DAG) const {
2018 SDLoc DL(Op);
2019 EVT VT = Op.getValueType();
2020
2021 if (VT == MVT::i64) {
2022 SmallVector<SDValue, 2> Results;
2023 LowerUDIVREM64(Op, DAG, Results);
2024 return DAG.getMergeValues(Results, DL);
2025 }
2026
2027 if (VT == MVT::i32) {
2028 if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2029 return Res;
2030 }
2031
2032 SDValue X = Op.getOperand(0);
2033 SDValue Y = Op.getOperand(1);
2034
2035 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2036 // algorithm used here.
2037
2038 // Initial estimate of inv(y).
2039 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2040
2041 // One round of UNR.
2042 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2043 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2044 Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2045 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2046
2047 // Quotient/remainder estimate.
2048 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2049 SDValue R =
2050 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2051
2052 // First quotient/remainder refinement.
2053 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2054 SDValue One = DAG.getConstant(1, DL, VT);
2055 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2056 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2057 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2058 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2059 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2060
2061 // Second quotient/remainder refinement.
2062 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2063 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2064 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2065 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2066 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2067
2068 return DAG.getMergeValues({Q, R}, DL);
2069 }
2070
LowerSDIVREM(SDValue Op,SelectionDAG & DAG) const2071 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2072 SelectionDAG &DAG) const {
2073 SDLoc DL(Op);
2074 EVT VT = Op.getValueType();
2075
2076 SDValue LHS = Op.getOperand(0);
2077 SDValue RHS = Op.getOperand(1);
2078
2079 SDValue Zero = DAG.getConstant(0, DL, VT);
2080 SDValue NegOne = DAG.getConstant(-1, DL, VT);
2081
2082 if (VT == MVT::i32) {
2083 if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2084 return Res;
2085 }
2086
2087 if (VT == MVT::i64 &&
2088 DAG.ComputeNumSignBits(LHS) > 32 &&
2089 DAG.ComputeNumSignBits(RHS) > 32) {
2090 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2091
2092 //HiLo split
2093 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2094 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2095 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2096 LHS_Lo, RHS_Lo);
2097 SDValue Res[2] = {
2098 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2099 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2100 };
2101 return DAG.getMergeValues(Res, DL);
2102 }
2103
2104 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2105 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2106 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2107 SDValue RSign = LHSign; // Remainder sign is the same as LHS
2108
2109 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2110 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2111
2112 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2113 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2114
2115 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2116 SDValue Rem = Div.getValue(1);
2117
2118 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2119 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2120
2121 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2122 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2123
2124 SDValue Res[2] = {
2125 Div,
2126 Rem
2127 };
2128 return DAG.getMergeValues(Res, DL);
2129 }
2130
2131 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
LowerFREM(SDValue Op,SelectionDAG & DAG) const2132 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2133 SDLoc SL(Op);
2134 EVT VT = Op.getValueType();
2135 auto Flags = Op->getFlags();
2136 SDValue X = Op.getOperand(0);
2137 SDValue Y = Op.getOperand(1);
2138
2139 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2140 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2141 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2142 // TODO: For f32 use FMAD instead if !hasFastFMA32?
2143 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2144 }
2145
LowerFCEIL(SDValue Op,SelectionDAG & DAG) const2146 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2147 SDLoc SL(Op);
2148 SDValue Src = Op.getOperand(0);
2149
2150 // result = trunc(src)
2151 // if (src > 0.0 && src != result)
2152 // result += 1.0
2153
2154 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2155
2156 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2157 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2158
2159 EVT SetCCVT =
2160 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2161
2162 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2163 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2164 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2165
2166 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2167 // TODO: Should this propagate fast-math-flags?
2168 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2169 }
2170
extractF64Exponent(SDValue Hi,const SDLoc & SL,SelectionDAG & DAG)2171 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2172 SelectionDAG &DAG) {
2173 const unsigned FractBits = 52;
2174 const unsigned ExpBits = 11;
2175
2176 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2177 Hi,
2178 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2179 DAG.getConstant(ExpBits, SL, MVT::i32));
2180 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2181 DAG.getConstant(1023, SL, MVT::i32));
2182
2183 return Exp;
2184 }
2185
LowerFTRUNC(SDValue Op,SelectionDAG & DAG) const2186 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2187 SDLoc SL(Op);
2188 SDValue Src = Op.getOperand(0);
2189
2190 assert(Op.getValueType() == MVT::f64);
2191
2192 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2193
2194 // Extract the upper half, since this is where we will find the sign and
2195 // exponent.
2196 SDValue Hi = getHiHalf64(Src, DAG);
2197
2198 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2199
2200 const unsigned FractBits = 52;
2201
2202 // Extract the sign bit.
2203 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2204 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2205
2206 // Extend back to 64-bits.
2207 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2208 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2209
2210 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2211 const SDValue FractMask
2212 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2213
2214 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2215 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2216 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2217
2218 EVT SetCCVT =
2219 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2220
2221 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2222
2223 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2224 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2225
2226 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2227 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2228
2229 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2230 }
2231
LowerFRINT(SDValue Op,SelectionDAG & DAG) const2232 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2233 SDLoc SL(Op);
2234 SDValue Src = Op.getOperand(0);
2235
2236 assert(Op.getValueType() == MVT::f64);
2237
2238 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2239 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2240 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2241
2242 // TODO: Should this propagate fast-math-flags?
2243
2244 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2245 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2246
2247 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2248
2249 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2250 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2251
2252 EVT SetCCVT =
2253 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2254 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2255
2256 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2257 }
2258
LowerFNEARBYINT(SDValue Op,SelectionDAG & DAG) const2259 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2260 // FNEARBYINT and FRINT are the same, except in their handling of FP
2261 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2262 // rint, so just treat them as equivalent.
2263 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2264 }
2265
LowerFROUNDEVEN(SDValue Op,SelectionDAG & DAG) const2266 SDValue AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op,
2267 SelectionDAG &DAG) const {
2268 auto VT = Op.getValueType();
2269 auto Arg = Op.getOperand(0u);
2270 return DAG.getNode(ISD::FRINT, SDLoc(Op), VT, Arg);
2271 }
2272
2273 // XXX - May require not supporting f32 denormals?
2274
2275 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2276 // compare and vselect end up producing worse code than scalarizing the whole
2277 // operation.
LowerFROUND(SDValue Op,SelectionDAG & DAG) const2278 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2279 SDLoc SL(Op);
2280 SDValue X = Op.getOperand(0);
2281 EVT VT = Op.getValueType();
2282
2283 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2284
2285 // TODO: Should this propagate fast-math-flags?
2286
2287 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2288
2289 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2290
2291 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2292 const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2293 const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2294
2295 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2296
2297 EVT SetCCVT =
2298 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2299
2300 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2301
2302 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2303
2304 return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2305 }
2306
LowerFFLOOR(SDValue Op,SelectionDAG & DAG) const2307 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2308 SDLoc SL(Op);
2309 SDValue Src = Op.getOperand(0);
2310
2311 // result = trunc(src);
2312 // if (src < 0.0 && src != result)
2313 // result += -1.0.
2314
2315 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2316
2317 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2318 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2319
2320 EVT SetCCVT =
2321 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2322
2323 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2324 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2325 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2326
2327 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2328 // TODO: Should this propagate fast-math-flags?
2329 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2330 }
2331
LowerFLOG(SDValue Op,SelectionDAG & DAG,double Log2BaseInverted) const2332 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2333 double Log2BaseInverted) const {
2334 EVT VT = Op.getValueType();
2335
2336 SDLoc SL(Op);
2337 SDValue Operand = Op.getOperand(0);
2338 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2339 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2340
2341 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2342 }
2343
2344 // exp2(M_LOG2E_F * f);
lowerFEXP(SDValue Op,SelectionDAG & DAG) const2345 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2346 EVT VT = Op.getValueType();
2347 SDLoc SL(Op);
2348 SDValue Src = Op.getOperand(0);
2349
2350 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2351 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2352 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2353 }
2354
isCtlzOpc(unsigned Opc)2355 static bool isCtlzOpc(unsigned Opc) {
2356 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2357 }
2358
isCttzOpc(unsigned Opc)2359 static bool isCttzOpc(unsigned Opc) {
2360 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2361 }
2362
LowerCTLZ_CTTZ(SDValue Op,SelectionDAG & DAG) const2363 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2364 SDLoc SL(Op);
2365 SDValue Src = Op.getOperand(0);
2366
2367 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()));
2368 bool Ctlz = isCtlzOpc(Op.getOpcode());
2369 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32;
2370
2371 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ||
2372 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF;
2373
2374 if (Src.getValueType() == MVT::i32) {
2375 // (ctlz hi:lo) -> (umin (ffbh src), 32)
2376 // (cttz hi:lo) -> (umin (ffbl src), 32)
2377 // (ctlz_zero_undef src) -> (ffbh src)
2378 // (cttz_zero_undef src) -> (ffbl src)
2379 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src);
2380 if (!ZeroUndef) {
2381 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2382 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32);
2383 }
2384 return NewOpr;
2385 }
2386
2387 SDValue Lo, Hi;
2388 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2389
2390 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo);
2391 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi);
2392
2393 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2394 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2395 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2396 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2397
2398 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT;
2399 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2400 if (Ctlz)
2401 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32);
2402 else
2403 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32);
2404
2405 SDValue NewOpr;
2406 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi);
2407 if (!ZeroUndef) {
2408 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32);
2409 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64);
2410 }
2411
2412 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2413 }
2414
LowerINT_TO_FP32(SDValue Op,SelectionDAG & DAG,bool Signed) const2415 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2416 bool Signed) const {
2417 // The regular method converting a 64-bit integer to float roughly consists of
2418 // 2 steps: normalization and rounding. In fact, after normalization, the
2419 // conversion from a 64-bit integer to a float is essentially the same as the
2420 // one from a 32-bit integer. The only difference is that it has more
2421 // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2422 // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2423 // converted into the correct float number. The basic steps for the unsigned
2424 // conversion are illustrated in the following pseudo code:
2425 //
2426 // f32 uitofp(i64 u) {
2427 // i32 hi, lo = split(u);
2428 // // Only count the leading zeros in hi as we have native support of the
2429 // // conversion from i32 to f32. If hi is all 0s, the conversion is
2430 // // reduced to a 32-bit one automatically.
2431 // i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2432 // u <<= shamt;
2433 // hi, lo = split(u);
2434 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2435 // // convert it as a 32-bit integer and scale the result back.
2436 // return uitofp(hi) * 2^(32 - shamt);
2437 // }
2438 //
2439 // The signed one follows the same principle but uses 'ffbh_i32' to count its
2440 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2441 // converted instead followed by negation based its sign bit.
2442
2443 SDLoc SL(Op);
2444 SDValue Src = Op.getOperand(0);
2445
2446 SDValue Lo, Hi;
2447 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2448 SDValue Sign;
2449 SDValue ShAmt;
2450 if (Signed && Subtarget->isGCN()) {
2451 // We also need to consider the sign bit in Lo if Hi has just sign bits,
2452 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2453 // account. That is, the maximal shift is
2454 // - 32 if Lo and Hi have opposite signs;
2455 // - 33 if Lo and Hi have the same sign.
2456 //
2457 // Or, MaxShAmt = 33 + OppositeSign, where
2458 //
2459 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2460 // - -1 if Lo and Hi have opposite signs; and
2461 // - 0 otherwise.
2462 //
2463 // All in all, ShAmt is calculated as
2464 //
2465 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2466 //
2467 // or
2468 //
2469 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2470 //
2471 // to reduce the critical path.
2472 SDValue OppositeSign = DAG.getNode(
2473 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi),
2474 DAG.getConstant(31, SL, MVT::i32));
2475 SDValue MaxShAmt =
2476 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2477 OppositeSign);
2478 // Count the leading sign bits.
2479 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi);
2480 // Different from unsigned conversion, the shift should be one bit less to
2481 // preserve the sign bit.
2482 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt,
2483 DAG.getConstant(1, SL, MVT::i32));
2484 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt);
2485 } else {
2486 if (Signed) {
2487 // Without 'ffbh_i32', only leading zeros could be counted. Take the
2488 // absolute value first.
2489 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src,
2490 DAG.getConstant(63, SL, MVT::i64));
2491 SDValue Abs =
2492 DAG.getNode(ISD::XOR, SL, MVT::i64,
2493 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign);
2494 std::tie(Lo, Hi) = split64BitValue(Abs, DAG);
2495 }
2496 // Count the leading zeros.
2497 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi);
2498 // The shift amount for signed integers is [0, 32].
2499 }
2500 // Normalize the given 64-bit integer.
2501 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt);
2502 // Split it again.
2503 std::tie(Lo, Hi) = split64BitValue(Norm, DAG);
2504 // Calculate the adjust bit for rounding.
2505 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2506 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32,
2507 DAG.getConstant(1, SL, MVT::i32), Lo);
2508 // Get the 32-bit normalized integer.
2509 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust);
2510 // Convert the normalized 32-bit integer into f32.
2511 unsigned Opc =
2512 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
2513 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm);
2514
2515 // Finally, need to scale back the converted floating number as the original
2516 // 64-bit integer is converted as a 32-bit one.
2517 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2518 ShAmt);
2519 // On GCN, use LDEXP directly.
2520 if (Subtarget->isGCN())
2521 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt);
2522
2523 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2524 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2525 // exponent is enough to avoid overflowing into the sign bit.
2526 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt,
2527 DAG.getConstant(23, SL, MVT::i32));
2528 SDValue IVal =
2529 DAG.getNode(ISD::ADD, SL, MVT::i32,
2530 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp);
2531 if (Signed) {
2532 // Set the sign bit.
2533 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32,
2534 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign),
2535 DAG.getConstant(31, SL, MVT::i32));
2536 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign);
2537 }
2538 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal);
2539 }
2540
LowerINT_TO_FP64(SDValue Op,SelectionDAG & DAG,bool Signed) const2541 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2542 bool Signed) const {
2543 SDLoc SL(Op);
2544 SDValue Src = Op.getOperand(0);
2545
2546 SDValue Lo, Hi;
2547 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2548
2549 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2550 SL, MVT::f64, Hi);
2551
2552 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2553
2554 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2555 DAG.getConstant(32, SL, MVT::i32));
2556 // TODO: Should this propagate fast-math-flags?
2557 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2558 }
2559
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2560 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2561 SelectionDAG &DAG) const {
2562 // TODO: Factor out code common with LowerSINT_TO_FP.
2563 EVT DestVT = Op.getValueType();
2564 SDValue Src = Op.getOperand(0);
2565 EVT SrcVT = Src.getValueType();
2566
2567 if (SrcVT == MVT::i16) {
2568 if (DestVT == MVT::f16)
2569 return Op;
2570 SDLoc DL(Op);
2571
2572 // Promote src to i32
2573 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2574 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2575 }
2576
2577 assert(SrcVT == MVT::i64 && "operation should be legal");
2578
2579 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2580 SDLoc DL(Op);
2581
2582 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2583 SDValue FPRoundFlag =
2584 DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true);
2585 SDValue FPRound =
2586 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2587
2588 return FPRound;
2589 }
2590
2591 if (DestVT == MVT::f32)
2592 return LowerINT_TO_FP32(Op, DAG, false);
2593
2594 assert(DestVT == MVT::f64);
2595 return LowerINT_TO_FP64(Op, DAG, false);
2596 }
2597
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2598 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2599 SelectionDAG &DAG) const {
2600 EVT DestVT = Op.getValueType();
2601
2602 SDValue Src = Op.getOperand(0);
2603 EVT SrcVT = Src.getValueType();
2604
2605 if (SrcVT == MVT::i16) {
2606 if (DestVT == MVT::f16)
2607 return Op;
2608
2609 SDLoc DL(Op);
2610 // Promote src to i32
2611 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2612 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2613 }
2614
2615 assert(SrcVT == MVT::i64 && "operation should be legal");
2616
2617 // TODO: Factor out code common with LowerUINT_TO_FP.
2618
2619 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2620 SDLoc DL(Op);
2621 SDValue Src = Op.getOperand(0);
2622
2623 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2624 SDValue FPRoundFlag =
2625 DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true);
2626 SDValue FPRound =
2627 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2628
2629 return FPRound;
2630 }
2631
2632 if (DestVT == MVT::f32)
2633 return LowerINT_TO_FP32(Op, DAG, true);
2634
2635 assert(DestVT == MVT::f64);
2636 return LowerINT_TO_FP64(Op, DAG, true);
2637 }
2638
LowerFP_TO_INT64(SDValue Op,SelectionDAG & DAG,bool Signed) const2639 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2640 bool Signed) const {
2641 SDLoc SL(Op);
2642
2643 SDValue Src = Op.getOperand(0);
2644 EVT SrcVT = Src.getValueType();
2645
2646 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64);
2647
2648 // The basic idea of converting a floating point number into a pair of 32-bit
2649 // integers is illustrated as follows:
2650 //
2651 // tf := trunc(val);
2652 // hif := floor(tf * 2^-32);
2653 // lof := tf - hif * 2^32; // lof is always positive due to floor.
2654 // hi := fptoi(hif);
2655 // lo := fptoi(lof);
2656 //
2657 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2658 SDValue Sign;
2659 if (Signed && SrcVT == MVT::f32) {
2660 // However, a 32-bit floating point number has only 23 bits mantissa and
2661 // it's not enough to hold all the significant bits of `lof` if val is
2662 // negative. To avoid the loss of precision, We need to take the absolute
2663 // value after truncating and flip the result back based on the original
2664 // signedness.
2665 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2666 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2667 DAG.getConstant(31, SL, MVT::i32));
2668 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2669 }
2670
2671 SDValue K0, K1;
2672 if (SrcVT == MVT::f64) {
2673 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)),
2674 SL, SrcVT);
2675 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)),
2676 SL, SrcVT);
2677 } else {
2678 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL,
2679 SrcVT);
2680 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL,
2681 SrcVT);
2682 }
2683 // TODO: Should this propagate fast-math-flags?
2684 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2685
2686 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2687
2688 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2689
2690 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2691 : ISD::FP_TO_UINT,
2692 SL, MVT::i32, FloorMul);
2693 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2694
2695 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2696 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2697
2698 if (Signed && SrcVT == MVT::f32) {
2699 assert(Sign);
2700 // Flip the result based on the signedness, which is either all 0s or 1s.
2701 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2702 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2703 // r := xor(r, sign) - sign;
2704 Result =
2705 DAG.getNode(ISD::SUB, SL, MVT::i64,
2706 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2707 }
2708
2709 return Result;
2710 }
2711
LowerFP_TO_FP16(SDValue Op,SelectionDAG & DAG) const2712 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2713 SDLoc DL(Op);
2714 SDValue N0 = Op.getOperand(0);
2715
2716 // Convert to target node to get known bits
2717 if (N0.getValueType() == MVT::f32)
2718 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2719
2720 if (getTargetMachine().Options.UnsafeFPMath) {
2721 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2722 return SDValue();
2723 }
2724
2725 assert(N0.getSimpleValueType() == MVT::f64);
2726
2727 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2728 const unsigned ExpMask = 0x7ff;
2729 const unsigned ExpBiasf64 = 1023;
2730 const unsigned ExpBiasf16 = 15;
2731 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2732 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2733 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2734 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2735 DAG.getConstant(32, DL, MVT::i64));
2736 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2737 U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2738 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2739 DAG.getConstant(20, DL, MVT::i64));
2740 E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2741 DAG.getConstant(ExpMask, DL, MVT::i32));
2742 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2743 // add the f16 bias (15) to get the biased exponent for the f16 format.
2744 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2745 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2746
2747 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2748 DAG.getConstant(8, DL, MVT::i32));
2749 M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2750 DAG.getConstant(0xffe, DL, MVT::i32));
2751
2752 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2753 DAG.getConstant(0x1ff, DL, MVT::i32));
2754 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2755
2756 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2757 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2758
2759 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2760 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2761 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2762 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2763
2764 // N = M | (E << 12);
2765 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2766 DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2767 DAG.getConstant(12, DL, MVT::i32)));
2768
2769 // B = clamp(1-E, 0, 13);
2770 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2771 One, E);
2772 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2773 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2774 DAG.getConstant(13, DL, MVT::i32));
2775
2776 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2777 DAG.getConstant(0x1000, DL, MVT::i32));
2778
2779 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2780 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2781 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2782 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2783
2784 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2785 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2786 DAG.getConstant(0x7, DL, MVT::i32));
2787 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2788 DAG.getConstant(2, DL, MVT::i32));
2789 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2790 One, Zero, ISD::SETEQ);
2791 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2792 One, Zero, ISD::SETGT);
2793 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2794 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2795
2796 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2797 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2798 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2799 I, V, ISD::SETEQ);
2800
2801 // Extract the sign bit.
2802 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2803 DAG.getConstant(16, DL, MVT::i32));
2804 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2805 DAG.getConstant(0x8000, DL, MVT::i32));
2806
2807 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2808 return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2809 }
2810
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const2811 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2812 SelectionDAG &DAG) const {
2813 SDValue Src = Op.getOperand(0);
2814 unsigned OpOpcode = Op.getOpcode();
2815 EVT SrcVT = Src.getValueType();
2816 EVT DestVT = Op.getValueType();
2817
2818 // Will be selected natively
2819 if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2820 return Op;
2821
2822 // Promote i16 to i32
2823 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2824 SDLoc DL(Op);
2825
2826 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2827 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2828 }
2829
2830 if (SrcVT == MVT::f16 ||
2831 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2832 SDLoc DL(Op);
2833
2834 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2835 unsigned Ext =
2836 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2837 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2838 }
2839
2840 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2841 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2842
2843 return SDValue();
2844 }
2845
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const2846 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2847 SelectionDAG &DAG) const {
2848 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2849 MVT VT = Op.getSimpleValueType();
2850 MVT ScalarVT = VT.getScalarType();
2851
2852 assert(VT.isVector());
2853
2854 SDValue Src = Op.getOperand(0);
2855 SDLoc DL(Op);
2856
2857 // TODO: Don't scalarize on Evergreen?
2858 unsigned NElts = VT.getVectorNumElements();
2859 SmallVector<SDValue, 8> Args;
2860 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2861
2862 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2863 for (unsigned I = 0; I < NElts; ++I)
2864 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2865
2866 return DAG.getBuildVector(VT, DL, Args);
2867 }
2868
2869 //===----------------------------------------------------------------------===//
2870 // Custom DAG optimizations
2871 //===----------------------------------------------------------------------===//
2872
isU24(SDValue Op,SelectionDAG & DAG)2873 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2874 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2875 }
2876
isI24(SDValue Op,SelectionDAG & DAG)2877 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2878 EVT VT = Op.getValueType();
2879 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2880 // as unsigned 24-bit values.
2881 AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24;
2882 }
2883
simplifyMul24(SDNode * Node24,TargetLowering::DAGCombinerInfo & DCI)2884 static SDValue simplifyMul24(SDNode *Node24,
2885 TargetLowering::DAGCombinerInfo &DCI) {
2886 SelectionDAG &DAG = DCI.DAG;
2887 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2888 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2889
2890 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2891 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2892 unsigned NewOpcode = Node24->getOpcode();
2893 if (IsIntrin) {
2894 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2895 switch (IID) {
2896 case Intrinsic::amdgcn_mul_i24:
2897 NewOpcode = AMDGPUISD::MUL_I24;
2898 break;
2899 case Intrinsic::amdgcn_mul_u24:
2900 NewOpcode = AMDGPUISD::MUL_U24;
2901 break;
2902 case Intrinsic::amdgcn_mulhi_i24:
2903 NewOpcode = AMDGPUISD::MULHI_I24;
2904 break;
2905 case Intrinsic::amdgcn_mulhi_u24:
2906 NewOpcode = AMDGPUISD::MULHI_U24;
2907 break;
2908 default:
2909 llvm_unreachable("Expected 24-bit mul intrinsic");
2910 }
2911 }
2912
2913 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2914
2915 // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2916 // the operands to have other uses, but will only perform simplifications that
2917 // involve bypassing some nodes for this user.
2918 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2919 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2920 if (DemandedLHS || DemandedRHS)
2921 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2922 DemandedLHS ? DemandedLHS : LHS,
2923 DemandedRHS ? DemandedRHS : RHS);
2924
2925 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2926 // operands if this node is the only user.
2927 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2928 return SDValue(Node24, 0);
2929 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2930 return SDValue(Node24, 0);
2931
2932 return SDValue();
2933 }
2934
2935 template <typename IntTy>
constantFoldBFE(SelectionDAG & DAG,IntTy Src0,uint32_t Offset,uint32_t Width,const SDLoc & DL)2936 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2937 uint32_t Width, const SDLoc &DL) {
2938 if (Width + Offset < 32) {
2939 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2940 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2941 return DAG.getConstant(Result, DL, MVT::i32);
2942 }
2943
2944 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2945 }
2946
hasVolatileUser(SDNode * Val)2947 static bool hasVolatileUser(SDNode *Val) {
2948 for (SDNode *U : Val->uses()) {
2949 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2950 if (M->isVolatile())
2951 return true;
2952 }
2953 }
2954
2955 return false;
2956 }
2957
shouldCombineMemoryType(EVT VT) const2958 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2959 // i32 vectors are the canonical memory type.
2960 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2961 return false;
2962
2963 if (!VT.isByteSized())
2964 return false;
2965
2966 unsigned Size = VT.getStoreSize();
2967
2968 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2969 return false;
2970
2971 if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2972 return false;
2973
2974 return true;
2975 }
2976
2977 // Replace load of an illegal type with a store of a bitcast to a friendlier
2978 // type.
performLoadCombine(SDNode * N,DAGCombinerInfo & DCI) const2979 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2980 DAGCombinerInfo &DCI) const {
2981 if (!DCI.isBeforeLegalize())
2982 return SDValue();
2983
2984 LoadSDNode *LN = cast<LoadSDNode>(N);
2985 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2986 return SDValue();
2987
2988 SDLoc SL(N);
2989 SelectionDAG &DAG = DCI.DAG;
2990 EVT VT = LN->getMemoryVT();
2991
2992 unsigned Size = VT.getStoreSize();
2993 Align Alignment = LN->getAlign();
2994 if (Alignment < Size && isTypeLegal(VT)) {
2995 unsigned IsFast;
2996 unsigned AS = LN->getAddressSpace();
2997
2998 // Expand unaligned loads earlier than legalization. Due to visitation order
2999 // problems during legalization, the emitted instructions to pack and unpack
3000 // the bytes again are not eliminated in the case of an unaligned copy.
3001 if (!allowsMisalignedMemoryAccesses(
3002 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
3003 if (VT.isVector())
3004 return SplitVectorLoad(SDValue(LN, 0), DAG);
3005
3006 SDValue Ops[2];
3007 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
3008
3009 return DAG.getMergeValues(Ops, SDLoc(N));
3010 }
3011
3012 if (!IsFast)
3013 return SDValue();
3014 }
3015
3016 if (!shouldCombineMemoryType(VT))
3017 return SDValue();
3018
3019 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3020
3021 SDValue NewLoad
3022 = DAG.getLoad(NewVT, SL, LN->getChain(),
3023 LN->getBasePtr(), LN->getMemOperand());
3024
3025 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3026 DCI.CombineTo(N, BC, NewLoad.getValue(1));
3027 return SDValue(N, 0);
3028 }
3029
3030 // Replace store of an illegal type with a store of a bitcast to a friendlier
3031 // type.
performStoreCombine(SDNode * N,DAGCombinerInfo & DCI) const3032 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3033 DAGCombinerInfo &DCI) const {
3034 if (!DCI.isBeforeLegalize())
3035 return SDValue();
3036
3037 StoreSDNode *SN = cast<StoreSDNode>(N);
3038 if (!SN->isSimple() || !ISD::isNormalStore(SN))
3039 return SDValue();
3040
3041 EVT VT = SN->getMemoryVT();
3042 unsigned Size = VT.getStoreSize();
3043
3044 SDLoc SL(N);
3045 SelectionDAG &DAG = DCI.DAG;
3046 Align Alignment = SN->getAlign();
3047 if (Alignment < Size && isTypeLegal(VT)) {
3048 unsigned IsFast;
3049 unsigned AS = SN->getAddressSpace();
3050
3051 // Expand unaligned stores earlier than legalization. Due to visitation
3052 // order problems during legalization, the emitted instructions to pack and
3053 // unpack the bytes again are not eliminated in the case of an unaligned
3054 // copy.
3055 if (!allowsMisalignedMemoryAccesses(
3056 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3057 if (VT.isVector())
3058 return SplitVectorStore(SDValue(SN, 0), DAG);
3059
3060 return expandUnalignedStore(SN, DAG);
3061 }
3062
3063 if (!IsFast)
3064 return SDValue();
3065 }
3066
3067 if (!shouldCombineMemoryType(VT))
3068 return SDValue();
3069
3070 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3071 SDValue Val = SN->getValue();
3072
3073 //DCI.AddToWorklist(Val.getNode());
3074
3075 bool OtherUses = !Val.hasOneUse();
3076 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3077 if (OtherUses) {
3078 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3079 DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3080 }
3081
3082 return DAG.getStore(SN->getChain(), SL, CastVal,
3083 SN->getBasePtr(), SN->getMemOperand());
3084 }
3085
3086 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3087 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3088 // issues.
performAssertSZExtCombine(SDNode * N,DAGCombinerInfo & DCI) const3089 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3090 DAGCombinerInfo &DCI) const {
3091 SelectionDAG &DAG = DCI.DAG;
3092 SDValue N0 = N->getOperand(0);
3093
3094 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3095 // (vt2 (truncate (assertzext vt0:x, vt1)))
3096 if (N0.getOpcode() == ISD::TRUNCATE) {
3097 SDValue N1 = N->getOperand(1);
3098 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3099 SDLoc SL(N);
3100
3101 SDValue Src = N0.getOperand(0);
3102 EVT SrcVT = Src.getValueType();
3103 if (SrcVT.bitsGE(ExtVT)) {
3104 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3105 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3106 }
3107 }
3108
3109 return SDValue();
3110 }
3111
performIntrinsicWOChainCombine(SDNode * N,DAGCombinerInfo & DCI) const3112 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3113 SDNode *N, DAGCombinerInfo &DCI) const {
3114 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3115 switch (IID) {
3116 case Intrinsic::amdgcn_mul_i24:
3117 case Intrinsic::amdgcn_mul_u24:
3118 case Intrinsic::amdgcn_mulhi_i24:
3119 case Intrinsic::amdgcn_mulhi_u24:
3120 return simplifyMul24(N, DCI);
3121 case Intrinsic::amdgcn_fract:
3122 case Intrinsic::amdgcn_rsq:
3123 case Intrinsic::amdgcn_rcp_legacy:
3124 case Intrinsic::amdgcn_rsq_legacy:
3125 case Intrinsic::amdgcn_rsq_clamp:
3126 case Intrinsic::amdgcn_ldexp: {
3127 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3128 SDValue Src = N->getOperand(1);
3129 return Src.isUndef() ? Src : SDValue();
3130 }
3131 default:
3132 return SDValue();
3133 }
3134 }
3135
3136 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3137 /// binary operation \p Opc to it with the corresponding constant operands.
splitBinaryBitConstantOpImpl(DAGCombinerInfo & DCI,const SDLoc & SL,unsigned Opc,SDValue LHS,uint32_t ValLo,uint32_t ValHi) const3138 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3139 DAGCombinerInfo &DCI, const SDLoc &SL,
3140 unsigned Opc, SDValue LHS,
3141 uint32_t ValLo, uint32_t ValHi) const {
3142 SelectionDAG &DAG = DCI.DAG;
3143 SDValue Lo, Hi;
3144 std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3145
3146 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3147 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3148
3149 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3150 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3151
3152 // Re-visit the ands. It's possible we eliminated one of them and it could
3153 // simplify the vector.
3154 DCI.AddToWorklist(Lo.getNode());
3155 DCI.AddToWorklist(Hi.getNode());
3156
3157 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3158 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3159 }
3160
performShlCombine(SDNode * N,DAGCombinerInfo & DCI) const3161 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3162 DAGCombinerInfo &DCI) const {
3163 EVT VT = N->getValueType(0);
3164
3165 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3166 if (!RHS)
3167 return SDValue();
3168
3169 SDValue LHS = N->getOperand(0);
3170 unsigned RHSVal = RHS->getZExtValue();
3171 if (!RHSVal)
3172 return LHS;
3173
3174 SDLoc SL(N);
3175 SelectionDAG &DAG = DCI.DAG;
3176
3177 switch (LHS->getOpcode()) {
3178 default:
3179 break;
3180 case ISD::ZERO_EXTEND:
3181 case ISD::SIGN_EXTEND:
3182 case ISD::ANY_EXTEND: {
3183 SDValue X = LHS->getOperand(0);
3184
3185 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3186 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3187 // Prefer build_vector as the canonical form if packed types are legal.
3188 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3189 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3190 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3191 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3192 }
3193
3194 // shl (ext x) => zext (shl x), if shift does not overflow int
3195 if (VT != MVT::i64)
3196 break;
3197 KnownBits Known = DAG.computeKnownBits(X);
3198 unsigned LZ = Known.countMinLeadingZeros();
3199 if (LZ < RHSVal)
3200 break;
3201 EVT XVT = X.getValueType();
3202 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3203 return DAG.getZExtOrTrunc(Shl, SL, VT);
3204 }
3205 }
3206
3207 if (VT != MVT::i64)
3208 return SDValue();
3209
3210 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3211
3212 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3213 // common case, splitting this into a move and a 32-bit shift is faster and
3214 // the same code size.
3215 if (RHSVal < 32)
3216 return SDValue();
3217
3218 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3219
3220 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3221 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3222
3223 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3224
3225 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3226 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3227 }
3228
performSraCombine(SDNode * N,DAGCombinerInfo & DCI) const3229 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3230 DAGCombinerInfo &DCI) const {
3231 if (N->getValueType(0) != MVT::i64)
3232 return SDValue();
3233
3234 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3235 if (!RHS)
3236 return SDValue();
3237
3238 SelectionDAG &DAG = DCI.DAG;
3239 SDLoc SL(N);
3240 unsigned RHSVal = RHS->getZExtValue();
3241
3242 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3243 if (RHSVal == 32) {
3244 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3245 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3246 DAG.getConstant(31, SL, MVT::i32));
3247
3248 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3249 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3250 }
3251
3252 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3253 if (RHSVal == 63) {
3254 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3255 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3256 DAG.getConstant(31, SL, MVT::i32));
3257 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3258 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3259 }
3260
3261 return SDValue();
3262 }
3263
performSrlCombine(SDNode * N,DAGCombinerInfo & DCI) const3264 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3265 DAGCombinerInfo &DCI) const {
3266 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3267 if (!RHS)
3268 return SDValue();
3269
3270 EVT VT = N->getValueType(0);
3271 SDValue LHS = N->getOperand(0);
3272 unsigned ShiftAmt = RHS->getZExtValue();
3273 SelectionDAG &DAG = DCI.DAG;
3274 SDLoc SL(N);
3275
3276 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3277 // this improves the ability to match BFE patterns in isel.
3278 if (LHS.getOpcode() == ISD::AND) {
3279 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3280 unsigned MaskIdx, MaskLen;
3281 if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) &&
3282 MaskIdx == ShiftAmt) {
3283 return DAG.getNode(
3284 ISD::AND, SL, VT,
3285 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3286 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3287 }
3288 }
3289 }
3290
3291 if (VT != MVT::i64)
3292 return SDValue();
3293
3294 if (ShiftAmt < 32)
3295 return SDValue();
3296
3297 // srl i64:x, C for C >= 32
3298 // =>
3299 // build_pair (srl hi_32(x), C - 32), 0
3300 SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3301
3302 SDValue Hi = getHiHalf64(LHS, DAG);
3303
3304 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3305 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3306
3307 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3308
3309 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3310 }
3311
performTruncateCombine(SDNode * N,DAGCombinerInfo & DCI) const3312 SDValue AMDGPUTargetLowering::performTruncateCombine(
3313 SDNode *N, DAGCombinerInfo &DCI) const {
3314 SDLoc SL(N);
3315 SelectionDAG &DAG = DCI.DAG;
3316 EVT VT = N->getValueType(0);
3317 SDValue Src = N->getOperand(0);
3318
3319 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3320 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3321 SDValue Vec = Src.getOperand(0);
3322 if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3323 SDValue Elt0 = Vec.getOperand(0);
3324 EVT EltVT = Elt0.getValueType();
3325 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3326 if (EltVT.isFloatingPoint()) {
3327 Elt0 = DAG.getNode(ISD::BITCAST, SL,
3328 EltVT.changeTypeToInteger(), Elt0);
3329 }
3330
3331 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3332 }
3333 }
3334 }
3335
3336 // Equivalent of above for accessing the high element of a vector as an
3337 // integer operation.
3338 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3339 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3340 if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3341 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3342 SDValue BV = stripBitcast(Src.getOperand(0));
3343 if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3344 BV.getValueType().getVectorNumElements() == 2) {
3345 SDValue SrcElt = BV.getOperand(1);
3346 EVT SrcEltVT = SrcElt.getValueType();
3347 if (SrcEltVT.isFloatingPoint()) {
3348 SrcElt = DAG.getNode(ISD::BITCAST, SL,
3349 SrcEltVT.changeTypeToInteger(), SrcElt);
3350 }
3351
3352 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3353 }
3354 }
3355 }
3356 }
3357
3358 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3359 //
3360 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3361 // i16 (trunc (srl (i32 (trunc x), K)))
3362 if (VT.getScalarSizeInBits() < 32) {
3363 EVT SrcVT = Src.getValueType();
3364 if (SrcVT.getScalarSizeInBits() > 32 &&
3365 (Src.getOpcode() == ISD::SRL ||
3366 Src.getOpcode() == ISD::SRA ||
3367 Src.getOpcode() == ISD::SHL)) {
3368 SDValue Amt = Src.getOperand(1);
3369 KnownBits Known = DAG.computeKnownBits(Amt);
3370
3371 // - For left shifts, do the transform as long as the shift
3372 // amount is still legal for i32, so when ShiftAmt < 32 (<= 31)
3373 // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid
3374 // losing information stored in the high bits when truncating.
3375 const unsigned MaxCstSize =
3376 (Src.getOpcode() == ISD::SHL) ? 31 : (32 - VT.getScalarSizeInBits());
3377 if (Known.getMaxValue().ule(MaxCstSize)) {
3378 EVT MidVT = VT.isVector() ?
3379 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3380 VT.getVectorNumElements()) : MVT::i32;
3381
3382 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3383 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3384 Src.getOperand(0));
3385 DCI.AddToWorklist(Trunc.getNode());
3386
3387 if (Amt.getValueType() != NewShiftVT) {
3388 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3389 DCI.AddToWorklist(Amt.getNode());
3390 }
3391
3392 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3393 Trunc, Amt);
3394 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3395 }
3396 }
3397 }
3398
3399 return SDValue();
3400 }
3401
3402 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3403 // instructions. If we only match on the legalized i64 mul expansion,
3404 // SimplifyDemandedBits will be unable to remove them because there will be
3405 // multiple uses due to the separate mul + mulh[su].
getMul24(SelectionDAG & DAG,const SDLoc & SL,SDValue N0,SDValue N1,unsigned Size,bool Signed)3406 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3407 SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3408 if (Size <= 32) {
3409 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3410 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3411 }
3412
3413 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3414 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3415
3416 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3417 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3418
3419 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3420 }
3421
performMulCombine(SDNode * N,DAGCombinerInfo & DCI) const3422 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3423 DAGCombinerInfo &DCI) const {
3424 EVT VT = N->getValueType(0);
3425
3426 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3427 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3428 // unnecessarily). isDivergent() is used as an approximation of whether the
3429 // value is in an SGPR.
3430 if (!N->isDivergent())
3431 return SDValue();
3432
3433 unsigned Size = VT.getSizeInBits();
3434 if (VT.isVector() || Size > 64)
3435 return SDValue();
3436
3437 // There are i16 integer mul/mad.
3438 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3439 return SDValue();
3440
3441 SelectionDAG &DAG = DCI.DAG;
3442 SDLoc DL(N);
3443
3444 SDValue N0 = N->getOperand(0);
3445 SDValue N1 = N->getOperand(1);
3446
3447 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3448 // in the source into any_extends if the result of the mul is truncated. Since
3449 // we can assume the high bits are whatever we want, use the underlying value
3450 // to avoid the unknown high bits from interfering.
3451 if (N0.getOpcode() == ISD::ANY_EXTEND)
3452 N0 = N0.getOperand(0);
3453
3454 if (N1.getOpcode() == ISD::ANY_EXTEND)
3455 N1 = N1.getOperand(0);
3456
3457 SDValue Mul;
3458
3459 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3460 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3461 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3462 Mul = getMul24(DAG, DL, N0, N1, Size, false);
3463 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3464 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3465 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3466 Mul = getMul24(DAG, DL, N0, N1, Size, true);
3467 } else {
3468 return SDValue();
3469 }
3470
3471 // We need to use sext even for MUL_U24, because MUL_U24 is used
3472 // for signed multiply of 8 and 16-bit types.
3473 return DAG.getSExtOrTrunc(Mul, DL, VT);
3474 }
3475
3476 SDValue
performMulLoHiCombine(SDNode * N,DAGCombinerInfo & DCI) const3477 AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N,
3478 DAGCombinerInfo &DCI) const {
3479 if (N->getValueType(0) != MVT::i32)
3480 return SDValue();
3481
3482 SelectionDAG &DAG = DCI.DAG;
3483 SDLoc DL(N);
3484
3485 SDValue N0 = N->getOperand(0);
3486 SDValue N1 = N->getOperand(1);
3487
3488 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3489 // in the source into any_extends if the result of the mul is truncated. Since
3490 // we can assume the high bits are whatever we want, use the underlying value
3491 // to avoid the unknown high bits from interfering.
3492 if (N0.getOpcode() == ISD::ANY_EXTEND)
3493 N0 = N0.getOperand(0);
3494 if (N1.getOpcode() == ISD::ANY_EXTEND)
3495 N1 = N1.getOperand(0);
3496
3497 // Try to use two fast 24-bit multiplies (one for each half of the result)
3498 // instead of one slow extending multiply.
3499 unsigned LoOpcode, HiOpcode;
3500 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3501 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3502 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3503 LoOpcode = AMDGPUISD::MUL_U24;
3504 HiOpcode = AMDGPUISD::MULHI_U24;
3505 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3506 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3507 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3508 LoOpcode = AMDGPUISD::MUL_I24;
3509 HiOpcode = AMDGPUISD::MULHI_I24;
3510 } else {
3511 return SDValue();
3512 }
3513
3514 SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1);
3515 SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1);
3516 DCI.CombineTo(N, Lo, Hi);
3517 return SDValue(N, 0);
3518 }
3519
performMulhsCombine(SDNode * N,DAGCombinerInfo & DCI) const3520 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3521 DAGCombinerInfo &DCI) const {
3522 EVT VT = N->getValueType(0);
3523
3524 if (!Subtarget->hasMulI24() || VT.isVector())
3525 return SDValue();
3526
3527 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3528 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3529 // unnecessarily). isDivergent() is used as an approximation of whether the
3530 // value is in an SGPR.
3531 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3532 // valu op anyway)
3533 if (Subtarget->hasSMulHi() && !N->isDivergent())
3534 return SDValue();
3535
3536 SelectionDAG &DAG = DCI.DAG;
3537 SDLoc DL(N);
3538
3539 SDValue N0 = N->getOperand(0);
3540 SDValue N1 = N->getOperand(1);
3541
3542 if (!isI24(N0, DAG) || !isI24(N1, DAG))
3543 return SDValue();
3544
3545 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3546 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3547
3548 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3549 DCI.AddToWorklist(Mulhi.getNode());
3550 return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3551 }
3552
performMulhuCombine(SDNode * N,DAGCombinerInfo & DCI) const3553 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3554 DAGCombinerInfo &DCI) const {
3555 EVT VT = N->getValueType(0);
3556
3557 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3558 return SDValue();
3559
3560 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3561 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3562 // unnecessarily). isDivergent() is used as an approximation of whether the
3563 // value is in an SGPR.
3564 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3565 // valu op anyway)
3566 if (Subtarget->hasSMulHi() && !N->isDivergent())
3567 return SDValue();
3568
3569 SelectionDAG &DAG = DCI.DAG;
3570 SDLoc DL(N);
3571
3572 SDValue N0 = N->getOperand(0);
3573 SDValue N1 = N->getOperand(1);
3574
3575 if (!isU24(N0, DAG) || !isU24(N1, DAG))
3576 return SDValue();
3577
3578 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3579 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3580
3581 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3582 DCI.AddToWorklist(Mulhi.getNode());
3583 return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3584 }
3585
isNegativeOne(SDValue Val)3586 static bool isNegativeOne(SDValue Val) {
3587 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3588 return C->isAllOnes();
3589 return false;
3590 }
3591
getFFBX_U32(SelectionDAG & DAG,SDValue Op,const SDLoc & DL,unsigned Opc) const3592 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3593 SDValue Op,
3594 const SDLoc &DL,
3595 unsigned Opc) const {
3596 EVT VT = Op.getValueType();
3597 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3598 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3599 LegalVT != MVT::i16))
3600 return SDValue();
3601
3602 if (VT != MVT::i32)
3603 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3604
3605 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3606 if (VT != MVT::i32)
3607 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3608
3609 return FFBX;
3610 }
3611
3612 // The native instructions return -1 on 0 input. Optimize out a select that
3613 // produces -1 on 0.
3614 //
3615 // TODO: If zero is not undef, we could also do this if the output is compared
3616 // against the bitwidth.
3617 //
3618 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
performCtlz_CttzCombine(const SDLoc & SL,SDValue Cond,SDValue LHS,SDValue RHS,DAGCombinerInfo & DCI) const3619 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3620 SDValue LHS, SDValue RHS,
3621 DAGCombinerInfo &DCI) const {
3622 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3623 if (!CmpRhs || !CmpRhs->isZero())
3624 return SDValue();
3625
3626 SelectionDAG &DAG = DCI.DAG;
3627 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3628 SDValue CmpLHS = Cond.getOperand(0);
3629
3630 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3631 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3632 if (CCOpcode == ISD::SETEQ &&
3633 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3634 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3635 unsigned Opc =
3636 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3637 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3638 }
3639
3640 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3641 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3642 if (CCOpcode == ISD::SETNE &&
3643 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3644 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3645 unsigned Opc =
3646 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3647
3648 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3649 }
3650
3651 return SDValue();
3652 }
3653
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo & DCI,unsigned Op,const SDLoc & SL,SDValue Cond,SDValue N1,SDValue N2)3654 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3655 unsigned Op,
3656 const SDLoc &SL,
3657 SDValue Cond,
3658 SDValue N1,
3659 SDValue N2) {
3660 SelectionDAG &DAG = DCI.DAG;
3661 EVT VT = N1.getValueType();
3662
3663 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3664 N1.getOperand(0), N2.getOperand(0));
3665 DCI.AddToWorklist(NewSelect.getNode());
3666 return DAG.getNode(Op, SL, VT, NewSelect);
3667 }
3668
3669 // Pull a free FP operation out of a select so it may fold into uses.
3670 //
3671 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3672 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3673 //
3674 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3675 // select c, (fabs x), +k -> fabs (select c, x, k)
foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo & DCI,SDValue N)3676 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3677 SDValue N) {
3678 SelectionDAG &DAG = DCI.DAG;
3679 SDValue Cond = N.getOperand(0);
3680 SDValue LHS = N.getOperand(1);
3681 SDValue RHS = N.getOperand(2);
3682
3683 EVT VT = N.getValueType();
3684 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3685 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3686 return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3687 SDLoc(N), Cond, LHS, RHS);
3688 }
3689
3690 bool Inv = false;
3691 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3692 std::swap(LHS, RHS);
3693 Inv = true;
3694 }
3695
3696 // TODO: Support vector constants.
3697 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3698 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3699 SDLoc SL(N);
3700 // If one side is an fneg/fabs and the other is a constant, we can push the
3701 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3702 SDValue NewLHS = LHS.getOperand(0);
3703 SDValue NewRHS = RHS;
3704
3705 // Careful: if the neg can be folded up, don't try to pull it back down.
3706 bool ShouldFoldNeg = true;
3707
3708 if (NewLHS.hasOneUse()) {
3709 unsigned Opc = NewLHS.getOpcode();
3710 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3711 ShouldFoldNeg = false;
3712 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3713 ShouldFoldNeg = false;
3714 }
3715
3716 if (ShouldFoldNeg) {
3717 if (LHS.getOpcode() == ISD::FNEG)
3718 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3719 else if (CRHS->isNegative())
3720 return SDValue();
3721
3722 if (Inv)
3723 std::swap(NewLHS, NewRHS);
3724
3725 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3726 Cond, NewLHS, NewRHS);
3727 DCI.AddToWorklist(NewSelect.getNode());
3728 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3729 }
3730 }
3731
3732 return SDValue();
3733 }
3734
3735
performSelectCombine(SDNode * N,DAGCombinerInfo & DCI) const3736 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3737 DAGCombinerInfo &DCI) const {
3738 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3739 return Folded;
3740
3741 SDValue Cond = N->getOperand(0);
3742 if (Cond.getOpcode() != ISD::SETCC)
3743 return SDValue();
3744
3745 EVT VT = N->getValueType(0);
3746 SDValue LHS = Cond.getOperand(0);
3747 SDValue RHS = Cond.getOperand(1);
3748 SDValue CC = Cond.getOperand(2);
3749
3750 SDValue True = N->getOperand(1);
3751 SDValue False = N->getOperand(2);
3752
3753 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3754 SelectionDAG &DAG = DCI.DAG;
3755 if (DAG.isConstantValueOfAnyType(True) &&
3756 !DAG.isConstantValueOfAnyType(False)) {
3757 // Swap cmp + select pair to move constant to false input.
3758 // This will allow using VOPC cndmasks more often.
3759 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3760
3761 SDLoc SL(N);
3762 ISD::CondCode NewCC =
3763 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3764
3765 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3766 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3767 }
3768
3769 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3770 SDValue MinMax
3771 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3772 // Revisit this node so we can catch min3/max3/med3 patterns.
3773 //DCI.AddToWorklist(MinMax.getNode());
3774 return MinMax;
3775 }
3776 }
3777
3778 // There's no reason to not do this if the condition has other uses.
3779 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3780 }
3781
isInv2Pi(const APFloat & APF)3782 static bool isInv2Pi(const APFloat &APF) {
3783 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3784 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3785 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3786
3787 return APF.bitwiseIsEqual(KF16) ||
3788 APF.bitwiseIsEqual(KF32) ||
3789 APF.bitwiseIsEqual(KF64);
3790 }
3791
3792 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3793 // additional cost to negate them.
isConstantCostlierToNegate(SDValue N) const3794 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3795 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3796 if (C->isZero() && !C->isNegative())
3797 return true;
3798
3799 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3800 return true;
3801 }
3802
3803 return false;
3804 }
3805
inverseMinMax(unsigned Opc)3806 static unsigned inverseMinMax(unsigned Opc) {
3807 switch (Opc) {
3808 case ISD::FMAXNUM:
3809 return ISD::FMINNUM;
3810 case ISD::FMINNUM:
3811 return ISD::FMAXNUM;
3812 case ISD::FMAXNUM_IEEE:
3813 return ISD::FMINNUM_IEEE;
3814 case ISD::FMINNUM_IEEE:
3815 return ISD::FMAXNUM_IEEE;
3816 case AMDGPUISD::FMAX_LEGACY:
3817 return AMDGPUISD::FMIN_LEGACY;
3818 case AMDGPUISD::FMIN_LEGACY:
3819 return AMDGPUISD::FMAX_LEGACY;
3820 default:
3821 llvm_unreachable("invalid min/max opcode");
3822 }
3823 }
3824
performFNegCombine(SDNode * N,DAGCombinerInfo & DCI) const3825 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3826 DAGCombinerInfo &DCI) const {
3827 SelectionDAG &DAG = DCI.DAG;
3828 SDValue N0 = N->getOperand(0);
3829 EVT VT = N->getValueType(0);
3830
3831 unsigned Opc = N0.getOpcode();
3832
3833 // If the input has multiple uses and we can either fold the negate down, or
3834 // the other uses cannot, give up. This both prevents unprofitable
3835 // transformations and infinite loops: we won't repeatedly try to fold around
3836 // a negate that has no 'good' form.
3837 if (N0.hasOneUse()) {
3838 // This may be able to fold into the source, but at a code size cost. Don't
3839 // fold if the fold into the user is free.
3840 if (allUsesHaveSourceMods(N, 0))
3841 return SDValue();
3842 } else {
3843 if (fnegFoldsIntoOp(Opc) &&
3844 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3845 return SDValue();
3846 }
3847
3848 SDLoc SL(N);
3849 switch (Opc) {
3850 case ISD::FADD: {
3851 if (!mayIgnoreSignedZero(N0))
3852 return SDValue();
3853
3854 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3855 SDValue LHS = N0.getOperand(0);
3856 SDValue RHS = N0.getOperand(1);
3857
3858 if (LHS.getOpcode() != ISD::FNEG)
3859 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3860 else
3861 LHS = LHS.getOperand(0);
3862
3863 if (RHS.getOpcode() != ISD::FNEG)
3864 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3865 else
3866 RHS = RHS.getOperand(0);
3867
3868 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3869 if (Res.getOpcode() != ISD::FADD)
3870 return SDValue(); // Op got folded away.
3871 if (!N0.hasOneUse())
3872 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3873 return Res;
3874 }
3875 case ISD::FMUL:
3876 case AMDGPUISD::FMUL_LEGACY: {
3877 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3878 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3879 SDValue LHS = N0.getOperand(0);
3880 SDValue RHS = N0.getOperand(1);
3881
3882 if (LHS.getOpcode() == ISD::FNEG)
3883 LHS = LHS.getOperand(0);
3884 else if (RHS.getOpcode() == ISD::FNEG)
3885 RHS = RHS.getOperand(0);
3886 else
3887 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3888
3889 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3890 if (Res.getOpcode() != Opc)
3891 return SDValue(); // Op got folded away.
3892 if (!N0.hasOneUse())
3893 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3894 return Res;
3895 }
3896 case ISD::FMA:
3897 case ISD::FMAD: {
3898 // TODO: handle llvm.amdgcn.fma.legacy
3899 if (!mayIgnoreSignedZero(N0))
3900 return SDValue();
3901
3902 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3903 SDValue LHS = N0.getOperand(0);
3904 SDValue MHS = N0.getOperand(1);
3905 SDValue RHS = N0.getOperand(2);
3906
3907 if (LHS.getOpcode() == ISD::FNEG)
3908 LHS = LHS.getOperand(0);
3909 else if (MHS.getOpcode() == ISD::FNEG)
3910 MHS = MHS.getOperand(0);
3911 else
3912 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3913
3914 if (RHS.getOpcode() != ISD::FNEG)
3915 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3916 else
3917 RHS = RHS.getOperand(0);
3918
3919 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3920 if (Res.getOpcode() != Opc)
3921 return SDValue(); // Op got folded away.
3922 if (!N0.hasOneUse())
3923 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3924 return Res;
3925 }
3926 case ISD::FMAXNUM:
3927 case ISD::FMINNUM:
3928 case ISD::FMAXNUM_IEEE:
3929 case ISD::FMINNUM_IEEE:
3930 case AMDGPUISD::FMAX_LEGACY:
3931 case AMDGPUISD::FMIN_LEGACY: {
3932 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3933 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3934 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3935 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3936
3937 SDValue LHS = N0.getOperand(0);
3938 SDValue RHS = N0.getOperand(1);
3939
3940 // 0 doesn't have a negated inline immediate.
3941 // TODO: This constant check should be generalized to other operations.
3942 if (isConstantCostlierToNegate(RHS))
3943 return SDValue();
3944
3945 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3946 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3947 unsigned Opposite = inverseMinMax(Opc);
3948
3949 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3950 if (Res.getOpcode() != Opposite)
3951 return SDValue(); // Op got folded away.
3952 if (!N0.hasOneUse())
3953 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3954 return Res;
3955 }
3956 case AMDGPUISD::FMED3: {
3957 SDValue Ops[3];
3958 for (unsigned I = 0; I < 3; ++I)
3959 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3960
3961 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3962 if (Res.getOpcode() != AMDGPUISD::FMED3)
3963 return SDValue(); // Op got folded away.
3964
3965 if (!N0.hasOneUse()) {
3966 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3967 DAG.ReplaceAllUsesWith(N0, Neg);
3968
3969 for (SDNode *U : Neg->uses())
3970 DCI.AddToWorklist(U);
3971 }
3972
3973 return Res;
3974 }
3975 case ISD::FP_EXTEND:
3976 case ISD::FTRUNC:
3977 case ISD::FRINT:
3978 case ISD::FNEARBYINT: // XXX - Should fround be handled?
3979 case ISD::FSIN:
3980 case ISD::FCANONICALIZE:
3981 case AMDGPUISD::RCP:
3982 case AMDGPUISD::RCP_LEGACY:
3983 case AMDGPUISD::RCP_IFLAG:
3984 case AMDGPUISD::SIN_HW: {
3985 SDValue CvtSrc = N0.getOperand(0);
3986 if (CvtSrc.getOpcode() == ISD::FNEG) {
3987 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3988 // (fneg (rcp (fneg x))) -> (rcp x)
3989 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3990 }
3991
3992 if (!N0.hasOneUse())
3993 return SDValue();
3994
3995 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3996 // (fneg (rcp x)) -> (rcp (fneg x))
3997 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3998 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3999 }
4000 case ISD::FP_ROUND: {
4001 SDValue CvtSrc = N0.getOperand(0);
4002
4003 if (CvtSrc.getOpcode() == ISD::FNEG) {
4004 // (fneg (fp_round (fneg x))) -> (fp_round x)
4005 return DAG.getNode(ISD::FP_ROUND, SL, VT,
4006 CvtSrc.getOperand(0), N0.getOperand(1));
4007 }
4008
4009 if (!N0.hasOneUse())
4010 return SDValue();
4011
4012 // (fneg (fp_round x)) -> (fp_round (fneg x))
4013 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
4014 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
4015 }
4016 case ISD::FP16_TO_FP: {
4017 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
4018 // f16, but legalization of f16 fneg ends up pulling it out of the source.
4019 // Put the fneg back as a legal source operation that can be matched later.
4020 SDLoc SL(N);
4021
4022 SDValue Src = N0.getOperand(0);
4023 EVT SrcVT = Src.getValueType();
4024
4025 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
4026 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
4027 DAG.getConstant(0x8000, SL, SrcVT));
4028 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
4029 }
4030 default:
4031 return SDValue();
4032 }
4033 }
4034
performFAbsCombine(SDNode * N,DAGCombinerInfo & DCI) const4035 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
4036 DAGCombinerInfo &DCI) const {
4037 SelectionDAG &DAG = DCI.DAG;
4038 SDValue N0 = N->getOperand(0);
4039
4040 if (!N0.hasOneUse())
4041 return SDValue();
4042
4043 switch (N0.getOpcode()) {
4044 case ISD::FP16_TO_FP: {
4045 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
4046 SDLoc SL(N);
4047 SDValue Src = N0.getOperand(0);
4048 EVT SrcVT = Src.getValueType();
4049
4050 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
4051 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
4052 DAG.getConstant(0x7fff, SL, SrcVT));
4053 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
4054 }
4055 default:
4056 return SDValue();
4057 }
4058 }
4059
performRcpCombine(SDNode * N,DAGCombinerInfo & DCI) const4060 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
4061 DAGCombinerInfo &DCI) const {
4062 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4063 if (!CFP)
4064 return SDValue();
4065
4066 // XXX - Should this flush denormals?
4067 const APFloat &Val = CFP->getValueAPF();
4068 APFloat One(Val.getSemantics(), "1.0");
4069 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4070 }
4071
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4072 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4073 DAGCombinerInfo &DCI) const {
4074 SelectionDAG &DAG = DCI.DAG;
4075 SDLoc DL(N);
4076
4077 switch(N->getOpcode()) {
4078 default:
4079 break;
4080 case ISD::BITCAST: {
4081 EVT DestVT = N->getValueType(0);
4082
4083 // Push casts through vector builds. This helps avoid emitting a large
4084 // number of copies when materializing floating point vector constants.
4085 //
4086 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4087 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4088 if (DestVT.isVector()) {
4089 SDValue Src = N->getOperand(0);
4090 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4091 EVT SrcVT = Src.getValueType();
4092 unsigned NElts = DestVT.getVectorNumElements();
4093
4094 if (SrcVT.getVectorNumElements() == NElts) {
4095 EVT DestEltVT = DestVT.getVectorElementType();
4096
4097 SmallVector<SDValue, 8> CastedElts;
4098 SDLoc SL(N);
4099 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4100 SDValue Elt = Src.getOperand(I);
4101 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4102 }
4103
4104 return DAG.getBuildVector(DestVT, SL, CastedElts);
4105 }
4106 }
4107 }
4108
4109 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4110 break;
4111
4112 // Fold bitcasts of constants.
4113 //
4114 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4115 // TODO: Generalize and move to DAGCombiner
4116 SDValue Src = N->getOperand(0);
4117 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4118 SDLoc SL(N);
4119 uint64_t CVal = C->getZExtValue();
4120 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4121 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4122 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4123 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4124 }
4125
4126 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4127 const APInt &Val = C->getValueAPF().bitcastToAPInt();
4128 SDLoc SL(N);
4129 uint64_t CVal = Val.getZExtValue();
4130 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4131 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4132 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4133
4134 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4135 }
4136
4137 break;
4138 }
4139 case ISD::SHL: {
4140 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4141 break;
4142
4143 return performShlCombine(N, DCI);
4144 }
4145 case ISD::SRL: {
4146 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4147 break;
4148
4149 return performSrlCombine(N, DCI);
4150 }
4151 case ISD::SRA: {
4152 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4153 break;
4154
4155 return performSraCombine(N, DCI);
4156 }
4157 case ISD::TRUNCATE:
4158 return performTruncateCombine(N, DCI);
4159 case ISD::MUL:
4160 return performMulCombine(N, DCI);
4161 case ISD::SMUL_LOHI:
4162 case ISD::UMUL_LOHI:
4163 return performMulLoHiCombine(N, DCI);
4164 case ISD::MULHS:
4165 return performMulhsCombine(N, DCI);
4166 case ISD::MULHU:
4167 return performMulhuCombine(N, DCI);
4168 case AMDGPUISD::MUL_I24:
4169 case AMDGPUISD::MUL_U24:
4170 case AMDGPUISD::MULHI_I24:
4171 case AMDGPUISD::MULHI_U24:
4172 return simplifyMul24(N, DCI);
4173 case ISD::SELECT:
4174 return performSelectCombine(N, DCI);
4175 case ISD::FNEG:
4176 return performFNegCombine(N, DCI);
4177 case ISD::FABS:
4178 return performFAbsCombine(N, DCI);
4179 case AMDGPUISD::BFE_I32:
4180 case AMDGPUISD::BFE_U32: {
4181 assert(!N->getValueType(0).isVector() &&
4182 "Vector handling of BFE not implemented");
4183 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4184 if (!Width)
4185 break;
4186
4187 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4188 if (WidthVal == 0)
4189 return DAG.getConstant(0, DL, MVT::i32);
4190
4191 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4192 if (!Offset)
4193 break;
4194
4195 SDValue BitsFrom = N->getOperand(0);
4196 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4197
4198 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4199
4200 if (OffsetVal == 0) {
4201 // This is already sign / zero extended, so try to fold away extra BFEs.
4202 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4203
4204 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4205 if (OpSignBits >= SignBits)
4206 return BitsFrom;
4207
4208 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4209 if (Signed) {
4210 // This is a sign_extend_inreg. Replace it to take advantage of existing
4211 // DAG Combines. If not eliminated, we will match back to BFE during
4212 // selection.
4213
4214 // TODO: The sext_inreg of extended types ends, although we can could
4215 // handle them in a single BFE.
4216 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4217 DAG.getValueType(SmallVT));
4218 }
4219
4220 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4221 }
4222
4223 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4224 if (Signed) {
4225 return constantFoldBFE<int32_t>(DAG,
4226 CVal->getSExtValue(),
4227 OffsetVal,
4228 WidthVal,
4229 DL);
4230 }
4231
4232 return constantFoldBFE<uint32_t>(DAG,
4233 CVal->getZExtValue(),
4234 OffsetVal,
4235 WidthVal,
4236 DL);
4237 }
4238
4239 if ((OffsetVal + WidthVal) >= 32 &&
4240 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4241 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4242 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4243 BitsFrom, ShiftVal);
4244 }
4245
4246 if (BitsFrom.hasOneUse()) {
4247 APInt Demanded = APInt::getBitsSet(32,
4248 OffsetVal,
4249 OffsetVal + WidthVal);
4250
4251 KnownBits Known;
4252 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4253 !DCI.isBeforeLegalizeOps());
4254 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4255 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4256 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4257 DCI.CommitTargetLoweringOpt(TLO);
4258 }
4259 }
4260
4261 break;
4262 }
4263 case ISD::LOAD:
4264 return performLoadCombine(N, DCI);
4265 case ISD::STORE:
4266 return performStoreCombine(N, DCI);
4267 case AMDGPUISD::RCP:
4268 case AMDGPUISD::RCP_IFLAG:
4269 return performRcpCombine(N, DCI);
4270 case ISD::AssertZext:
4271 case ISD::AssertSext:
4272 return performAssertSZExtCombine(N, DCI);
4273 case ISD::INTRINSIC_WO_CHAIN:
4274 return performIntrinsicWOChainCombine(N, DCI);
4275 }
4276 return SDValue();
4277 }
4278
4279 //===----------------------------------------------------------------------===//
4280 // Helper functions
4281 //===----------------------------------------------------------------------===//
4282
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,Register Reg,EVT VT,const SDLoc & SL,bool RawReg) const4283 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4284 const TargetRegisterClass *RC,
4285 Register Reg, EVT VT,
4286 const SDLoc &SL,
4287 bool RawReg) const {
4288 MachineFunction &MF = DAG.getMachineFunction();
4289 MachineRegisterInfo &MRI = MF.getRegInfo();
4290 Register VReg;
4291
4292 if (!MRI.isLiveIn(Reg)) {
4293 VReg = MRI.createVirtualRegister(RC);
4294 MRI.addLiveIn(Reg, VReg);
4295 } else {
4296 VReg = MRI.getLiveInVirtReg(Reg);
4297 }
4298
4299 if (RawReg)
4300 return DAG.getRegister(VReg, VT);
4301
4302 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4303 }
4304
4305 // This may be called multiple times, and nothing prevents creating multiple
4306 // objects at the same offset. See if we already defined this object.
getOrCreateFixedStackObject(MachineFrameInfo & MFI,unsigned Size,int64_t Offset)4307 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4308 int64_t Offset) {
4309 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4310 if (MFI.getObjectOffset(I) == Offset) {
4311 assert(MFI.getObjectSize(I) == Size);
4312 return I;
4313 }
4314 }
4315
4316 return MFI.CreateFixedObject(Size, Offset, true);
4317 }
4318
loadStackInputValue(SelectionDAG & DAG,EVT VT,const SDLoc & SL,int64_t Offset) const4319 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4320 EVT VT,
4321 const SDLoc &SL,
4322 int64_t Offset) const {
4323 MachineFunction &MF = DAG.getMachineFunction();
4324 MachineFrameInfo &MFI = MF.getFrameInfo();
4325 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4326
4327 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4328 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4329
4330 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4331 MachineMemOperand::MODereferenceable |
4332 MachineMemOperand::MOInvariant);
4333 }
4334
storeStackInputValue(SelectionDAG & DAG,const SDLoc & SL,SDValue Chain,SDValue ArgVal,int64_t Offset) const4335 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4336 const SDLoc &SL,
4337 SDValue Chain,
4338 SDValue ArgVal,
4339 int64_t Offset) const {
4340 MachineFunction &MF = DAG.getMachineFunction();
4341 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4342 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4343
4344 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4345 // Stores to the argument stack area are relative to the stack pointer.
4346 SDValue SP =
4347 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4348 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4349 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4350 MachineMemOperand::MODereferenceable);
4351 return Store;
4352 }
4353
loadInputValue(SelectionDAG & DAG,const TargetRegisterClass * RC,EVT VT,const SDLoc & SL,const ArgDescriptor & Arg) const4354 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4355 const TargetRegisterClass *RC,
4356 EVT VT, const SDLoc &SL,
4357 const ArgDescriptor &Arg) const {
4358 assert(Arg && "Attempting to load missing argument");
4359
4360 SDValue V = Arg.isRegister() ?
4361 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4362 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4363
4364 if (!Arg.isMasked())
4365 return V;
4366
4367 unsigned Mask = Arg.getMask();
4368 unsigned Shift = countTrailingZeros<unsigned>(Mask);
4369 V = DAG.getNode(ISD::SRL, SL, VT, V,
4370 DAG.getShiftAmountConstant(Shift, VT, SL));
4371 return DAG.getNode(ISD::AND, SL, VT, V,
4372 DAG.getConstant(Mask >> Shift, SL, VT));
4373 }
4374
getImplicitParameterOffset(const MachineFunction & MF,const ImplicitParameter Param) const4375 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4376 const MachineFunction &MF, const ImplicitParameter Param) const {
4377 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4378 const AMDGPUSubtarget &ST =
4379 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4380 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4381 const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4382 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4383 ExplicitArgOffset;
4384 switch (Param) {
4385 case FIRST_IMPLICIT:
4386 return ArgOffset;
4387 case PRIVATE_BASE:
4388 return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET;
4389 case SHARED_BASE:
4390 return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET;
4391 case QUEUE_PTR:
4392 return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET;
4393 }
4394 llvm_unreachable("unexpected implicit parameter type");
4395 }
4396
4397 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4398
getTargetNodeName(unsigned Opcode) const4399 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4400 switch ((AMDGPUISD::NodeType)Opcode) {
4401 case AMDGPUISD::FIRST_NUMBER: break;
4402 // AMDIL DAG nodes
4403 NODE_NAME_CASE(UMUL);
4404 NODE_NAME_CASE(BRANCH_COND);
4405
4406 // AMDGPU DAG nodes
4407 NODE_NAME_CASE(IF)
4408 NODE_NAME_CASE(ELSE)
4409 NODE_NAME_CASE(LOOP)
4410 NODE_NAME_CASE(CALL)
4411 NODE_NAME_CASE(TC_RETURN)
4412 NODE_NAME_CASE(TRAP)
4413 NODE_NAME_CASE(RET_FLAG)
4414 NODE_NAME_CASE(RETURN_TO_EPILOG)
4415 NODE_NAME_CASE(ENDPGM)
4416 NODE_NAME_CASE(DWORDADDR)
4417 NODE_NAME_CASE(FRACT)
4418 NODE_NAME_CASE(SETCC)
4419 NODE_NAME_CASE(SETREG)
4420 NODE_NAME_CASE(DENORM_MODE)
4421 NODE_NAME_CASE(FMA_W_CHAIN)
4422 NODE_NAME_CASE(FMUL_W_CHAIN)
4423 NODE_NAME_CASE(CLAMP)
4424 NODE_NAME_CASE(COS_HW)
4425 NODE_NAME_CASE(SIN_HW)
4426 NODE_NAME_CASE(FMAX_LEGACY)
4427 NODE_NAME_CASE(FMIN_LEGACY)
4428 NODE_NAME_CASE(FMAX3)
4429 NODE_NAME_CASE(SMAX3)
4430 NODE_NAME_CASE(UMAX3)
4431 NODE_NAME_CASE(FMIN3)
4432 NODE_NAME_CASE(SMIN3)
4433 NODE_NAME_CASE(UMIN3)
4434 NODE_NAME_CASE(FMED3)
4435 NODE_NAME_CASE(SMED3)
4436 NODE_NAME_CASE(UMED3)
4437 NODE_NAME_CASE(FDOT2)
4438 NODE_NAME_CASE(URECIP)
4439 NODE_NAME_CASE(DIV_SCALE)
4440 NODE_NAME_CASE(DIV_FMAS)
4441 NODE_NAME_CASE(DIV_FIXUP)
4442 NODE_NAME_CASE(FMAD_FTZ)
4443 NODE_NAME_CASE(RCP)
4444 NODE_NAME_CASE(RSQ)
4445 NODE_NAME_CASE(RCP_LEGACY)
4446 NODE_NAME_CASE(RCP_IFLAG)
4447 NODE_NAME_CASE(FMUL_LEGACY)
4448 NODE_NAME_CASE(RSQ_CLAMP)
4449 NODE_NAME_CASE(LDEXP)
4450 NODE_NAME_CASE(FP_CLASS)
4451 NODE_NAME_CASE(DOT4)
4452 NODE_NAME_CASE(CARRY)
4453 NODE_NAME_CASE(BORROW)
4454 NODE_NAME_CASE(BFE_U32)
4455 NODE_NAME_CASE(BFE_I32)
4456 NODE_NAME_CASE(BFI)
4457 NODE_NAME_CASE(BFM)
4458 NODE_NAME_CASE(FFBH_U32)
4459 NODE_NAME_CASE(FFBH_I32)
4460 NODE_NAME_CASE(FFBL_B32)
4461 NODE_NAME_CASE(MUL_U24)
4462 NODE_NAME_CASE(MUL_I24)
4463 NODE_NAME_CASE(MULHI_U24)
4464 NODE_NAME_CASE(MULHI_I24)
4465 NODE_NAME_CASE(MAD_U24)
4466 NODE_NAME_CASE(MAD_I24)
4467 NODE_NAME_CASE(MAD_I64_I32)
4468 NODE_NAME_CASE(MAD_U64_U32)
4469 NODE_NAME_CASE(PERM)
4470 NODE_NAME_CASE(TEXTURE_FETCH)
4471 NODE_NAME_CASE(R600_EXPORT)
4472 NODE_NAME_CASE(CONST_ADDRESS)
4473 NODE_NAME_CASE(REGISTER_LOAD)
4474 NODE_NAME_CASE(REGISTER_STORE)
4475 NODE_NAME_CASE(SAMPLE)
4476 NODE_NAME_CASE(SAMPLEB)
4477 NODE_NAME_CASE(SAMPLED)
4478 NODE_NAME_CASE(SAMPLEL)
4479 NODE_NAME_CASE(CVT_F32_UBYTE0)
4480 NODE_NAME_CASE(CVT_F32_UBYTE1)
4481 NODE_NAME_CASE(CVT_F32_UBYTE2)
4482 NODE_NAME_CASE(CVT_F32_UBYTE3)
4483 NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4484 NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4485 NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4486 NODE_NAME_CASE(CVT_PK_I16_I32)
4487 NODE_NAME_CASE(CVT_PK_U16_U32)
4488 NODE_NAME_CASE(FP_TO_FP16)
4489 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4490 NODE_NAME_CASE(CONST_DATA_PTR)
4491 NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4492 NODE_NAME_CASE(LDS)
4493 NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD)
4494 NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD)
4495 NODE_NAME_CASE(DUMMY_CHAIN)
4496 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4497 NODE_NAME_CASE(LOAD_D16_HI)
4498 NODE_NAME_CASE(LOAD_D16_LO)
4499 NODE_NAME_CASE(LOAD_D16_HI_I8)
4500 NODE_NAME_CASE(LOAD_D16_HI_U8)
4501 NODE_NAME_CASE(LOAD_D16_LO_I8)
4502 NODE_NAME_CASE(LOAD_D16_LO_U8)
4503 NODE_NAME_CASE(STORE_MSKOR)
4504 NODE_NAME_CASE(LOAD_CONSTANT)
4505 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4506 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4507 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4508 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4509 NODE_NAME_CASE(DS_ORDERED_COUNT)
4510 NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4511 NODE_NAME_CASE(ATOMIC_INC)
4512 NODE_NAME_CASE(ATOMIC_DEC)
4513 NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4514 NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4515 NODE_NAME_CASE(BUFFER_LOAD)
4516 NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4517 NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4518 NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4519 NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4520 NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4521 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_TFE)
4522 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4523 NODE_NAME_CASE(SBUFFER_LOAD)
4524 NODE_NAME_CASE(BUFFER_STORE)
4525 NODE_NAME_CASE(BUFFER_STORE_BYTE)
4526 NODE_NAME_CASE(BUFFER_STORE_SHORT)
4527 NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4528 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4529 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4530 NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4531 NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4532 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4533 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4534 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4535 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4536 NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4537 NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4538 NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4539 NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4540 NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4541 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4542 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4543 NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4544 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4545 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4546
4547 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4548 }
4549 return nullptr;
4550 }
4551
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal) const4552 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4553 SelectionDAG &DAG, int Enabled,
4554 int &RefinementSteps,
4555 bool &UseOneConstNR,
4556 bool Reciprocal) const {
4557 EVT VT = Operand.getValueType();
4558
4559 if (VT == MVT::f32) {
4560 RefinementSteps = 0;
4561 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4562 }
4563
4564 // TODO: There is also f64 rsq instruction, but the documentation is less
4565 // clear on its precision.
4566
4567 return SDValue();
4568 }
4569
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps) const4570 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4571 SelectionDAG &DAG, int Enabled,
4572 int &RefinementSteps) const {
4573 EVT VT = Operand.getValueType();
4574
4575 if (VT == MVT::f32) {
4576 // Reciprocal, < 1 ulp error.
4577 //
4578 // This reciprocal approximation converges to < 0.5 ulp error with one
4579 // newton rhapson performed with two fused multiple adds (FMAs).
4580
4581 RefinementSteps = 0;
4582 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4583 }
4584
4585 // TODO: There is also f64 rcp instruction, but the documentation is less
4586 // clear on its precision.
4587
4588 return SDValue();
4589 }
4590
workitemIntrinsicDim(unsigned ID)4591 static unsigned workitemIntrinsicDim(unsigned ID) {
4592 switch (ID) {
4593 case Intrinsic::amdgcn_workitem_id_x:
4594 return 0;
4595 case Intrinsic::amdgcn_workitem_id_y:
4596 return 1;
4597 case Intrinsic::amdgcn_workitem_id_z:
4598 return 2;
4599 default:
4600 llvm_unreachable("not a workitem intrinsic");
4601 }
4602 }
4603
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const4604 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4605 const SDValue Op, KnownBits &Known,
4606 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4607
4608 Known.resetAll(); // Don't know anything.
4609
4610 unsigned Opc = Op.getOpcode();
4611
4612 switch (Opc) {
4613 default:
4614 break;
4615 case AMDGPUISD::CARRY:
4616 case AMDGPUISD::BORROW: {
4617 Known.Zero = APInt::getHighBitsSet(32, 31);
4618 break;
4619 }
4620
4621 case AMDGPUISD::BFE_I32:
4622 case AMDGPUISD::BFE_U32: {
4623 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4624 if (!CWidth)
4625 return;
4626
4627 uint32_t Width = CWidth->getZExtValue() & 0x1f;
4628
4629 if (Opc == AMDGPUISD::BFE_U32)
4630 Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4631
4632 break;
4633 }
4634 case AMDGPUISD::FP_TO_FP16: {
4635 unsigned BitWidth = Known.getBitWidth();
4636
4637 // High bits are zero.
4638 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4639 break;
4640 }
4641 case AMDGPUISD::MUL_U24:
4642 case AMDGPUISD::MUL_I24: {
4643 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4644 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4645 unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4646 RHSKnown.countMinTrailingZeros();
4647 Known.Zero.setLowBits(std::min(TrailZ, 32u));
4648 // Skip extra check if all bits are known zeros.
4649 if (TrailZ >= 32)
4650 break;
4651
4652 // Truncate to 24 bits.
4653 LHSKnown = LHSKnown.trunc(24);
4654 RHSKnown = RHSKnown.trunc(24);
4655
4656 if (Opc == AMDGPUISD::MUL_I24) {
4657 unsigned LHSValBits = LHSKnown.countMaxSignificantBits();
4658 unsigned RHSValBits = RHSKnown.countMaxSignificantBits();
4659 unsigned MaxValBits = LHSValBits + RHSValBits;
4660 if (MaxValBits > 32)
4661 break;
4662 unsigned SignBits = 32 - MaxValBits + 1;
4663 bool LHSNegative = LHSKnown.isNegative();
4664 bool LHSNonNegative = LHSKnown.isNonNegative();
4665 bool LHSPositive = LHSKnown.isStrictlyPositive();
4666 bool RHSNegative = RHSKnown.isNegative();
4667 bool RHSNonNegative = RHSKnown.isNonNegative();
4668 bool RHSPositive = RHSKnown.isStrictlyPositive();
4669
4670 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4671 Known.Zero.setHighBits(SignBits);
4672 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4673 Known.One.setHighBits(SignBits);
4674 } else {
4675 unsigned LHSValBits = LHSKnown.countMaxActiveBits();
4676 unsigned RHSValBits = RHSKnown.countMaxActiveBits();
4677 unsigned MaxValBits = LHSValBits + RHSValBits;
4678 if (MaxValBits >= 32)
4679 break;
4680 Known.Zero.setBitsFrom(MaxValBits);
4681 }
4682 break;
4683 }
4684 case AMDGPUISD::PERM: {
4685 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4686 if (!CMask)
4687 return;
4688
4689 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4690 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4691 unsigned Sel = CMask->getZExtValue();
4692
4693 for (unsigned I = 0; I < 32; I += 8) {
4694 unsigned SelBits = Sel & 0xff;
4695 if (SelBits < 4) {
4696 SelBits *= 8;
4697 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4698 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4699 } else if (SelBits < 7) {
4700 SelBits = (SelBits & 3) * 8;
4701 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4702 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4703 } else if (SelBits == 0x0c) {
4704 Known.Zero |= 0xFFull << I;
4705 } else if (SelBits > 0x0c) {
4706 Known.One |= 0xFFull << I;
4707 }
4708 Sel >>= 8;
4709 }
4710 break;
4711 }
4712 case AMDGPUISD::BUFFER_LOAD_UBYTE: {
4713 Known.Zero.setHighBits(24);
4714 break;
4715 }
4716 case AMDGPUISD::BUFFER_LOAD_USHORT: {
4717 Known.Zero.setHighBits(16);
4718 break;
4719 }
4720 case AMDGPUISD::LDS: {
4721 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4722 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4723
4724 Known.Zero.setHighBits(16);
4725 Known.Zero.setLowBits(Log2(Alignment));
4726 break;
4727 }
4728 case ISD::INTRINSIC_WO_CHAIN: {
4729 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4730 switch (IID) {
4731 case Intrinsic::amdgcn_mbcnt_lo:
4732 case Intrinsic::amdgcn_mbcnt_hi: {
4733 const GCNSubtarget &ST =
4734 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4735 // These return at most the (wavefront size - 1) + src1
4736 // As long as src1 is an immediate we can calc known bits
4737 KnownBits Src1Known = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
4738 unsigned Src1ValBits = Src1Known.countMaxActiveBits();
4739 unsigned MaxActiveBits = std::max(Src1ValBits, ST.getWavefrontSizeLog2());
4740 // Cater for potential carry
4741 MaxActiveBits += Src1ValBits ? 1 : 0;
4742 unsigned Size = Op.getValueType().getSizeInBits();
4743 if (MaxActiveBits < Size)
4744 Known.Zero.setHighBits(Size - MaxActiveBits);
4745 break;
4746 }
4747 case Intrinsic::amdgcn_workitem_id_x:
4748 case Intrinsic::amdgcn_workitem_id_y:
4749 case Intrinsic::amdgcn_workitem_id_z: {
4750 unsigned MaxValue = Subtarget->getMaxWorkitemID(
4751 DAG.getMachineFunction().getFunction(), workitemIntrinsicDim(IID));
4752 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
4753 break;
4754 }
4755 default:
4756 break;
4757 }
4758 }
4759 }
4760 }
4761
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const4762 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4763 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4764 unsigned Depth) const {
4765 switch (Op.getOpcode()) {
4766 case AMDGPUISD::BFE_I32: {
4767 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4768 if (!Width)
4769 return 1;
4770
4771 unsigned SignBits = 32 - Width->getZExtValue() + 1;
4772 if (!isNullConstant(Op.getOperand(1)))
4773 return SignBits;
4774
4775 // TODO: Could probably figure something out with non-0 offsets.
4776 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4777 return std::max(SignBits, Op0SignBits);
4778 }
4779
4780 case AMDGPUISD::BFE_U32: {
4781 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4782 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4783 }
4784
4785 case AMDGPUISD::CARRY:
4786 case AMDGPUISD::BORROW:
4787 return 31;
4788 case AMDGPUISD::BUFFER_LOAD_BYTE:
4789 return 25;
4790 case AMDGPUISD::BUFFER_LOAD_SHORT:
4791 return 17;
4792 case AMDGPUISD::BUFFER_LOAD_UBYTE:
4793 return 24;
4794 case AMDGPUISD::BUFFER_LOAD_USHORT:
4795 return 16;
4796 case AMDGPUISD::FP_TO_FP16:
4797 return 16;
4798 default:
4799 return 1;
4800 }
4801 }
4802
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const4803 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4804 GISelKnownBits &Analysis, Register R,
4805 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4806 unsigned Depth) const {
4807 const MachineInstr *MI = MRI.getVRegDef(R);
4808 if (!MI)
4809 return 1;
4810
4811 // TODO: Check range metadata on MMO.
4812 switch (MI->getOpcode()) {
4813 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4814 return 25;
4815 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4816 return 17;
4817 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4818 return 24;
4819 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4820 return 16;
4821 default:
4822 return 1;
4823 }
4824 }
4825
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const4826 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4827 const SelectionDAG &DAG,
4828 bool SNaN,
4829 unsigned Depth) const {
4830 unsigned Opcode = Op.getOpcode();
4831 switch (Opcode) {
4832 case AMDGPUISD::FMIN_LEGACY:
4833 case AMDGPUISD::FMAX_LEGACY: {
4834 if (SNaN)
4835 return true;
4836
4837 // TODO: Can check no nans on one of the operands for each one, but which
4838 // one?
4839 return false;
4840 }
4841 case AMDGPUISD::FMUL_LEGACY:
4842 case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4843 if (SNaN)
4844 return true;
4845 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4846 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4847 }
4848 case AMDGPUISD::FMED3:
4849 case AMDGPUISD::FMIN3:
4850 case AMDGPUISD::FMAX3:
4851 case AMDGPUISD::FMAD_FTZ: {
4852 if (SNaN)
4853 return true;
4854 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4855 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4856 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4857 }
4858 case AMDGPUISD::CVT_F32_UBYTE0:
4859 case AMDGPUISD::CVT_F32_UBYTE1:
4860 case AMDGPUISD::CVT_F32_UBYTE2:
4861 case AMDGPUISD::CVT_F32_UBYTE3:
4862 return true;
4863
4864 case AMDGPUISD::RCP:
4865 case AMDGPUISD::RSQ:
4866 case AMDGPUISD::RCP_LEGACY:
4867 case AMDGPUISD::RSQ_CLAMP: {
4868 if (SNaN)
4869 return true;
4870
4871 // TODO: Need is known positive check.
4872 return false;
4873 }
4874 case AMDGPUISD::LDEXP:
4875 case AMDGPUISD::FRACT: {
4876 if (SNaN)
4877 return true;
4878 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4879 }
4880 case AMDGPUISD::DIV_SCALE:
4881 case AMDGPUISD::DIV_FMAS:
4882 case AMDGPUISD::DIV_FIXUP:
4883 // TODO: Refine on operands.
4884 return SNaN;
4885 case AMDGPUISD::SIN_HW:
4886 case AMDGPUISD::COS_HW: {
4887 // TODO: Need check for infinity
4888 return SNaN;
4889 }
4890 case ISD::INTRINSIC_WO_CHAIN: {
4891 unsigned IntrinsicID
4892 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4893 // TODO: Handle more intrinsics
4894 switch (IntrinsicID) {
4895 case Intrinsic::amdgcn_cubeid:
4896 return true;
4897
4898 case Intrinsic::amdgcn_frexp_mant: {
4899 if (SNaN)
4900 return true;
4901 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4902 }
4903 case Intrinsic::amdgcn_cvt_pkrtz: {
4904 if (SNaN)
4905 return true;
4906 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4907 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4908 }
4909 case Intrinsic::amdgcn_rcp:
4910 case Intrinsic::amdgcn_rsq:
4911 case Intrinsic::amdgcn_rcp_legacy:
4912 case Intrinsic::amdgcn_rsq_legacy:
4913 case Intrinsic::amdgcn_rsq_clamp: {
4914 if (SNaN)
4915 return true;
4916
4917 // TODO: Need is known positive check.
4918 return false;
4919 }
4920 case Intrinsic::amdgcn_trig_preop:
4921 case Intrinsic::amdgcn_fdot2:
4922 // TODO: Refine on operand
4923 return SNaN;
4924 case Intrinsic::amdgcn_fma_legacy:
4925 if (SNaN)
4926 return true;
4927 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4928 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4929 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4930 default:
4931 return false;
4932 }
4933 }
4934 default:
4935 return false;
4936 }
4937 }
4938
4939 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW) const4940 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4941 switch (RMW->getOperation()) {
4942 case AtomicRMWInst::Nand:
4943 case AtomicRMWInst::FAdd:
4944 case AtomicRMWInst::FSub:
4945 case AtomicRMWInst::FMax:
4946 case AtomicRMWInst::FMin:
4947 return AtomicExpansionKind::CmpXChg;
4948 default: {
4949 if (auto *IntTy = dyn_cast<IntegerType>(RMW->getType())) {
4950 unsigned Size = IntTy->getBitWidth();
4951 if (Size == 32 || Size == 64)
4952 return AtomicExpansionKind::None;
4953 }
4954
4955 return AtomicExpansionKind::CmpXChg;
4956 }
4957 }
4958 }
4959
isConstantUnsignedBitfieldExtractLegal(unsigned Opc,LLT Ty1,LLT Ty2) const4960 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal(
4961 unsigned Opc, LLT Ty1, LLT Ty2) const {
4962 return (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)) &&
4963 Ty2 == LLT::scalar(32);
4964 }
4965