1 //==--- MachineLateInstrsCleanup.cpp - Late Instructions Cleanup Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This simple pass removes any identical and redundant immediate or address
10 // loads to the same register. The immediate loads removed can originally be
11 // the result of rematerialization, while the addresses are redundant frame
12 // addressing anchor points created during Frame Indices elimination.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "machine-latecleanup"
35 
36 STATISTIC(NumRemoved, "Number of redundant instructions removed.");
37 
38 namespace {
39 
40 class MachineLateInstrsCleanup : public MachineFunctionPass {
41   const TargetRegisterInfo *TRI = nullptr;
42   const TargetInstrInfo *TII = nullptr;
43 
44   // Data structures to map regs to their definitions and kills per MBB.
45   struct Reg2MIMap : public SmallDenseMap<Register, MachineInstr *> {
hasIdentical__anonbee743620111::MachineLateInstrsCleanup::Reg2MIMap46     bool hasIdentical(Register Reg, MachineInstr *ArgMI) {
47       MachineInstr *MI = lookup(Reg);
48       return MI && MI->isIdenticalTo(*ArgMI);
49     }
50   };
51 
52   std::vector<Reg2MIMap> RegDefs;
53   std::vector<Reg2MIMap> RegKills;
54 
55   // Walk through the instructions in MBB and remove any redundant
56   // instructions.
57   bool processBlock(MachineBasicBlock *MBB);
58 
59   void removeRedundantDef(MachineInstr *MI);
60   void clearKillsForDef(Register Reg, MachineBasicBlock *MBB,
61                         MachineBasicBlock::iterator I,
62                         BitVector &VisitedPreds);
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66 
MachineLateInstrsCleanup()67   MachineLateInstrsCleanup() : MachineFunctionPass(ID) {
68     initializeMachineLateInstrsCleanupPass(*PassRegistry::getPassRegistry());
69   }
70 
getAnalysisUsage(AnalysisUsage & AU) const71   void getAnalysisUsage(AnalysisUsage &AU) const override {
72     AU.setPreservesCFG();
73     MachineFunctionPass::getAnalysisUsage(AU);
74   }
75 
76   bool runOnMachineFunction(MachineFunction &MF) override;
77 
getRequiredProperties() const78   MachineFunctionProperties getRequiredProperties() const override {
79     return MachineFunctionProperties().set(
80         MachineFunctionProperties::Property::NoVRegs);
81   }
82 };
83 
84 } // end anonymous namespace
85 
86 char MachineLateInstrsCleanup::ID = 0;
87 
88 char &llvm::MachineLateInstrsCleanupID = MachineLateInstrsCleanup::ID;
89 
90 INITIALIZE_PASS(MachineLateInstrsCleanup, DEBUG_TYPE,
91                 "Machine Late Instructions Cleanup Pass", false, false)
92 
runOnMachineFunction(MachineFunction & MF)93 bool MachineLateInstrsCleanup::runOnMachineFunction(MachineFunction &MF) {
94   if (skipFunction(MF.getFunction()))
95     return false;
96 
97   TRI = MF.getSubtarget().getRegisterInfo();
98   TII = MF.getSubtarget().getInstrInfo();
99 
100   RegDefs.clear();
101   RegDefs.resize(MF.getNumBlockIDs());
102   RegKills.clear();
103   RegKills.resize(MF.getNumBlockIDs());
104 
105   // Visit all MBBs in an order that maximises the reuse from predecessors.
106   bool Changed = false;
107   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
108   for (MachineBasicBlock *MBB : RPOT)
109     Changed |= processBlock(MBB);
110 
111   return Changed;
112 }
113 
114 // Clear any previous kill flag on Reg found before I in MBB. Walk backwards
115 // in MBB and if needed continue in predecessors until a use/def of Reg is
116 // encountered. This seems to be faster in practice than tracking kill flags
117 // in a map.
118 void MachineLateInstrsCleanup::
clearKillsForDef(Register Reg,MachineBasicBlock * MBB,MachineBasicBlock::iterator I,BitVector & VisitedPreds)119 clearKillsForDef(Register Reg, MachineBasicBlock *MBB,
120                  MachineBasicBlock::iterator I,
121                  BitVector &VisitedPreds) {
122   VisitedPreds.set(MBB->getNumber());
123 
124   // Kill flag in MBB
125   if (MachineInstr *KillMI = RegKills[MBB->getNumber()].lookup(Reg)) {
126     KillMI->clearRegisterKills(Reg, TRI);
127     return;
128   }
129 
130   // Def in MBB (missing kill flag)
131   if (MachineInstr *DefMI = RegDefs[MBB->getNumber()].lookup(Reg))
132     if (DefMI->getParent() == MBB)
133       return;
134 
135   // If an earlier def is not in MBB, continue in predecessors.
136   if (!MBB->isLiveIn(Reg))
137     MBB->addLiveIn(Reg);
138   assert(!MBB->pred_empty() && "Predecessor def not found!");
139   for (MachineBasicBlock *Pred : MBB->predecessors())
140     if (!VisitedPreds.test(Pred->getNumber()))
141       clearKillsForDef(Reg, Pred, Pred->end(), VisitedPreds);
142 }
143 
removeRedundantDef(MachineInstr * MI)144 void MachineLateInstrsCleanup::removeRedundantDef(MachineInstr *MI) {
145   Register Reg = MI->getOperand(0).getReg();
146   BitVector VisitedPreds(MI->getMF()->getNumBlockIDs());
147   clearKillsForDef(Reg, MI->getParent(), MI->getIterator(), VisitedPreds);
148   MI->eraseFromParent();
149   ++NumRemoved;
150 }
151 
152 // Return true if MI is a potential candidate for reuse/removal and if so
153 // also the register it defines in DefedReg.  A candidate is a simple
154 // instruction that does not touch memory, has only one register definition
155 // and the only reg it may use is FrameReg. Typically this is an immediate
156 // load or a load-address instruction.
isCandidate(const MachineInstr * MI,Register & DefedReg,Register FrameReg)157 static bool isCandidate(const MachineInstr *MI, Register &DefedReg,
158                         Register FrameReg) {
159   DefedReg = MCRegister::NoRegister;
160   bool SawStore = true;
161   if (!MI->isSafeToMove(nullptr, SawStore) || MI->isImplicitDef() ||
162       MI->isInlineAsm())
163     return false;
164   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
165     const MachineOperand &MO = MI->getOperand(i);
166     if (MO.isReg()) {
167       if (MO.isDef()) {
168         if (i == 0 && !MO.isImplicit() && !MO.isDead())
169           DefedReg = MO.getReg();
170         else
171           return false;
172       } else if (MO.getReg() && MO.getReg() != FrameReg)
173         return false;
174     } else if (!(MO.isImm() || MO.isCImm() || MO.isFPImm() || MO.isCPI() ||
175                  MO.isGlobal() || MO.isSymbol()))
176       return false;
177   }
178   return DefedReg.isValid();
179 }
180 
processBlock(MachineBasicBlock * MBB)181 bool MachineLateInstrsCleanup::processBlock(MachineBasicBlock *MBB) {
182   bool Changed = false;
183   Reg2MIMap &MBBDefs = RegDefs[MBB->getNumber()];
184   Reg2MIMap &MBBKills = RegKills[MBB->getNumber()];
185 
186   // Find reusable definitions in the predecessor(s).
187   if (!MBB->pred_empty() && !MBB->isEHPad() &&
188       !MBB->isInlineAsmBrIndirectTarget()) {
189     MachineBasicBlock *FirstPred = *MBB->pred_begin();
190     for (auto [Reg, DefMI] : RegDefs[FirstPred->getNumber()])
191       if (llvm::all_of(
192               drop_begin(MBB->predecessors()),
193               [&, &Reg = Reg, &DefMI = DefMI](const MachineBasicBlock *Pred) {
194                 return RegDefs[Pred->getNumber()].hasIdentical(Reg, DefMI);
195               })) {
196         MBBDefs[Reg] = DefMI;
197         LLVM_DEBUG(dbgs() << "Reusable instruction from pred(s): in "
198                           << printMBBReference(*MBB) << ":  " << *DefMI;);
199       }
200   }
201 
202   // Process MBB.
203   MachineFunction *MF = MBB->getParent();
204   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
205   Register FrameReg = TRI->getFrameRegister(*MF);
206   for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
207     // If FrameReg is modified, no previous load-address instructions (using
208     // it) are valid.
209     if (MI.modifiesRegister(FrameReg, TRI)) {
210       MBBDefs.clear();
211       MBBKills.clear();
212       continue;
213     }
214 
215     Register DefedReg;
216     bool IsCandidate = isCandidate(&MI, DefedReg, FrameReg);
217 
218     // Check for an earlier identical and reusable instruction.
219     if (IsCandidate && MBBDefs.hasIdentical(DefedReg, &MI)) {
220       LLVM_DEBUG(dbgs() << "Removing redundant instruction in "
221                         << printMBBReference(*MBB) << ":  " << MI;);
222       removeRedundantDef(&MI);
223       Changed = true;
224       continue;
225     }
226 
227     // Clear any entries in map that MI clobbers.
228     for (auto DefI : llvm::make_early_inc_range(MBBDefs)) {
229       Register Reg = DefI.first;
230       if (MI.modifiesRegister(Reg, TRI)) {
231         MBBDefs.erase(Reg);
232         MBBKills.erase(Reg);
233       } else if (MI.findRegisterUseOperandIdx(Reg, true /*isKill*/, TRI) != -1)
234         // Keep track of register kills.
235         MBBKills[Reg] = &MI;
236     }
237 
238     // Record this MI for potential later reuse.
239     if (IsCandidate) {
240       LLVM_DEBUG(dbgs() << "Found interesting instruction in "
241                         << printMBBReference(*MBB) << ":  " << MI;);
242       MBBDefs[DefedReg] = &MI;
243       assert(!MBBKills.count(DefedReg) && "Should already have been removed.");
244     }
245   }
246 
247   return Changed;
248 }
249