xref: /reactos/drivers/filesystems/btrfs/zstd/mem.h (revision 06042735)
1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 #ifndef MEM_H_MODULE
12 #define MEM_H_MODULE
13 
14 #if defined (__cplusplus)
15 extern "C" {
16 #endif
17 
18 /*-****************************************
19 *  Dependencies
20 ******************************************/
21 #include <stddef.h>     /* size_t, ptrdiff_t */
22 #include <string.h>     /* memcpy */
23 
24 
25 /*-****************************************
26 *  Compiler specifics
27 ******************************************/
28 #if defined(_MSC_VER)   /* Visual Studio */
29 #   include <stdlib.h>  /* _byteswap_ulong */
30 #   include <intrin.h>  /* _byteswap_* */
31 #endif
32 #if defined(__GNUC__)
33 #  define MEM_STATIC static __inline __attribute__((unused))
34 #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
35 #  define MEM_STATIC static inline
36 #elif defined(_MSC_VER)
37 #  define MEM_STATIC static __inline
38 #else
39 #  define MEM_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
40 #endif
41 
42 #ifndef __has_builtin
43 #  define __has_builtin(x) 0  /* compat. with non-clang compilers */
44 #endif
45 
46 /* code only tested on 32 and 64 bits systems */
47 #define MEM_STATIC_ASSERT(c)   { enum { MEM_static_assert = 1/(int)(!!(c)) }; }
MEM_check(void)48 MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
49 
50 /* detects whether we are being compiled under msan */
51 #if defined (__has_feature)
52 #  if __has_feature(memory_sanitizer)
53 #    define MEMORY_SANITIZER 1
54 #  endif
55 #endif
56 
57 #if defined (MEMORY_SANITIZER)
58 /* Not all platforms that support msan provide sanitizers/msan_interface.h.
59  * We therefore declare the functions we need ourselves, rather than trying to
60  * include the header file... */
61 
62 #include <stdint.h> /* intptr_t */
63 
64 /* Make memory region fully initialized (without changing its contents). */
65 void __msan_unpoison(const volatile void *a, size_t size);
66 
67 /* Make memory region fully uninitialized (without changing its contents).
68    This is a legacy interface that does not update origin information. Use
69    __msan_allocated_memory() instead. */
70 void __msan_poison(const volatile void *a, size_t size);
71 
72 /* Returns the offset of the first (at least partially) poisoned byte in the
73    memory range, or -1 if the whole range is good. */
74 intptr_t __msan_test_shadow(const volatile void *x, size_t size);
75 #endif
76 
77 /* detects whether we are being compiled under asan */
78 #if defined (__has_feature)
79 #  if __has_feature(address_sanitizer)
80 #    define ADDRESS_SANITIZER 1
81 #  endif
82 #elif defined(__SANITIZE_ADDRESS__)
83 #  define ADDRESS_SANITIZER 1
84 #endif
85 
86 #if defined (ADDRESS_SANITIZER)
87 /* Not all platforms that support asan provide sanitizers/asan_interface.h.
88  * We therefore declare the functions we need ourselves, rather than trying to
89  * include the header file... */
90 
91 /**
92  * Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
93  *
94  * This memory must be previously allocated by your program. Instrumented
95  * code is forbidden from accessing addresses in this region until it is
96  * unpoisoned. This function is not guaranteed to poison the entire region -
97  * it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
98  * alignment restrictions.
99  *
100  * \note This function is not thread-safe because no two threads can poison or
101  * unpoison memory in the same memory region simultaneously.
102  *
103  * \param addr Start of memory region.
104  * \param size Size of memory region. */
105 void __asan_poison_memory_region(void const volatile *addr, size_t size);
106 
107 /**
108  * Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
109  *
110  * This memory must be previously allocated by your program. Accessing
111  * addresses in this region is allowed until this region is poisoned again.
112  * This function could unpoison a super-region of <c>[addr, addr+size)</c> due
113  * to ASan alignment restrictions.
114  *
115  * \note This function is not thread-safe because no two threads can
116  * poison or unpoison memory in the same memory region simultaneously.
117  *
118  * \param addr Start of memory region.
119  * \param size Size of memory region. */
120 void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
121 #endif
122 
123 
124 /*-**************************************************************
125 *  Basic Types
126 *****************************************************************/
127 #if  !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
128 # include <stdint.h>
129   typedef   uint8_t BYTE;
130   typedef  uint16_t U16;
131   typedef   int16_t S16;
132   typedef  uint32_t U32;
133   typedef   int32_t S32;
134   typedef  uint64_t U64;
135   typedef   int64_t S64;
136 #else
137 # include <limits.h>
138 #if CHAR_BIT != 8
139 #  error "this implementation requires char to be exactly 8-bit type"
140 #endif
141   typedef unsigned char      BYTE;
142 #if USHRT_MAX != 65535
143 #  error "this implementation requires short to be exactly 16-bit type"
144 #endif
145   typedef unsigned short      U16;
146   typedef   signed short      S16;
147 #if UINT_MAX != 4294967295
148 #  error "this implementation requires int to be exactly 32-bit type"
149 #endif
150   typedef unsigned int        U32;
151   typedef   signed int        S32;
152 /* note : there are no limits defined for long long type in C90.
153  * limits exist in C99, however, in such case, <stdint.h> is preferred */
154   typedef unsigned long long  U64;
155   typedef   signed long long  S64;
156 #endif
157 
158 
159 /*-**************************************************************
160 *  Memory I/O
161 *****************************************************************/
162 /* MEM_FORCE_MEMORY_ACCESS :
163  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
164  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
165  * The below switch allow to select different access method for improved performance.
166  * Method 0 (default) : use `memcpy()`. Safe and portable.
167  * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable).
168  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
169  * Method 2 : direct access. This method is portable but violate C standard.
170  *            It can generate buggy code on targets depending on alignment.
171  *            In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6)
172  * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
173  * Prefer these methods in priority order (0 > 1 > 2)
174  */
175 #ifndef MEM_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
176 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
177 #    define MEM_FORCE_MEMORY_ACCESS 2
178 #  elif defined(__INTEL_COMPILER) || defined(__GNUC__) || defined(__ICCARM__)
179 #    define MEM_FORCE_MEMORY_ACCESS 1
180 #  endif
181 #endif
182 
MEM_32bits(void)183 MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_64bits(void)184 MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
185 
MEM_isLittleEndian(void)186 MEM_STATIC unsigned MEM_isLittleEndian(void)
187 {
188     const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
189     return one.c[0];
190 }
191 
192 #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
193 
194 /* violates C standard, by lying on structure alignment.
195 Only use if no other choice to achieve best performance on target platform */
MEM_read16(const void * memPtr)196 MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_read32(const void * memPtr)197 MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_read64(const void * memPtr)198 MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_readST(const void * memPtr)199 MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
200 
MEM_write16(void * memPtr,U16 value)201 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_write32(void * memPtr,U32 value)202 MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_write64(void * memPtr,U64 value)203 MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
204 
205 #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
206 
207 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
208 /* currently only defined for gcc and icc */
209 #if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32))
210     __pragma( pack(push, 1) )
211     typedef struct { U16 v; } unalign16;
212     typedef struct { U32 v; } unalign32;
213     typedef struct { U64 v; } unalign64;
214     typedef struct { size_t v; } unalignArch;
__pragma(pack (pop))215     __pragma( pack(pop) )
216 #else
217     typedef struct { U16 v; } __attribute__((packed)) unalign16;
218     typedef struct { U32 v; } __attribute__((packed)) unalign32;
219     typedef struct { U64 v; } __attribute__((packed)) unalign64;
220     typedef struct { size_t v; } __attribute__((packed)) unalignArch;
221 #endif
222 
223 MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; }
MEM_read32(const void * ptr)224 MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; }
MEM_read64(const void * ptr)225 MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; }
MEM_readST(const void * ptr)226 MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; }
227 
MEM_write16(void * memPtr,U16 value)228 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; }
MEM_write32(void * memPtr,U32 value)229 MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; }
MEM_write64(void * memPtr,U64 value)230 MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; }
231 
232 #else
233 
234 /* default method, safe and standard.
235    can sometimes prove slower */
236 
MEM_read16(const void * memPtr)237 MEM_STATIC U16 MEM_read16(const void* memPtr)
238 {
239     U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
240 }
241 
MEM_read32(const void * memPtr)242 MEM_STATIC U32 MEM_read32(const void* memPtr)
243 {
244     U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
245 }
246 
MEM_read64(const void * memPtr)247 MEM_STATIC U64 MEM_read64(const void* memPtr)
248 {
249     U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
250 }
251 
MEM_readST(const void * memPtr)252 MEM_STATIC size_t MEM_readST(const void* memPtr)
253 {
254     size_t val; memcpy(&val, memPtr, sizeof(val)); return val;
255 }
256 
MEM_write16(void * memPtr,U16 value)257 MEM_STATIC void MEM_write16(void* memPtr, U16 value)
258 {
259     memcpy(memPtr, &value, sizeof(value));
260 }
261 
MEM_write32(void * memPtr,U32 value)262 MEM_STATIC void MEM_write32(void* memPtr, U32 value)
263 {
264     memcpy(memPtr, &value, sizeof(value));
265 }
266 
MEM_write64(void * memPtr,U64 value)267 MEM_STATIC void MEM_write64(void* memPtr, U64 value)
268 {
269     memcpy(memPtr, &value, sizeof(value));
270 }
271 
272 #endif /* MEM_FORCE_MEMORY_ACCESS */
273 
MEM_swap32(U32 in)274 MEM_STATIC U32 MEM_swap32(U32 in)
275 {
276 #if (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
277   || (defined(__clang__) && __has_builtin(__builtin_bswap32))
278     return __builtin_bswap32(in);
279 #else
280     return  ((in << 24) & 0xff000000 ) |
281             ((in <<  8) & 0x00ff0000 ) |
282             ((in >>  8) & 0x0000ff00 ) |
283             ((in >> 24) & 0x000000ff );
284 #endif
285 }
286 
MEM_swap64(U64 in)287 MEM_STATIC U64 MEM_swap64(U64 in)
288 {
289 #if (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
290   || (defined(__clang__) && __has_builtin(__builtin_bswap64))
291     return __builtin_bswap64(in);
292 #else
293     return  ((in << 56) & 0xff00000000000000ULL) |
294             ((in << 40) & 0x00ff000000000000ULL) |
295             ((in << 24) & 0x0000ff0000000000ULL) |
296             ((in << 8)  & 0x000000ff00000000ULL) |
297             ((in >> 8)  & 0x00000000ff000000ULL) |
298             ((in >> 24) & 0x0000000000ff0000ULL) |
299             ((in >> 40) & 0x000000000000ff00ULL) |
300             ((in >> 56) & 0x00000000000000ffULL);
301 #endif
302 }
303 
MEM_swapST(size_t in)304 MEM_STATIC size_t MEM_swapST(size_t in)
305 {
306     if (MEM_32bits())
307         return (size_t)MEM_swap32((U32)in);
308     else
309         return (size_t)MEM_swap64((U64)in);
310 }
311 
312 /*=== Little endian r/w ===*/
313 
MEM_readLE16(const void * memPtr)314 MEM_STATIC U16 MEM_readLE16(const void* memPtr)
315 {
316     if (MEM_isLittleEndian())
317         return MEM_read16(memPtr);
318     else {
319         const BYTE* p = (const BYTE*)memPtr;
320         return (U16)(p[0] + (p[1]<<8));
321     }
322 }
323 
MEM_writeLE16(void * memPtr,U16 val)324 MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
325 {
326     if (MEM_isLittleEndian()) {
327         MEM_write16(memPtr, val);
328     } else {
329         BYTE* p = (BYTE*)memPtr;
330         p[0] = (BYTE)val;
331         p[1] = (BYTE)(val>>8);
332     }
333 }
334 
MEM_readLE24(const void * memPtr)335 MEM_STATIC U32 MEM_readLE24(const void* memPtr)
336 {
337     return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
338 }
339 
MEM_writeLE24(void * memPtr,U32 val)340 MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
341 {
342     MEM_writeLE16(memPtr, (U16)val);
343     ((BYTE*)memPtr)[2] = (BYTE)(val>>16);
344 }
345 
MEM_readLE32(const void * memPtr)346 MEM_STATIC U32 MEM_readLE32(const void* memPtr)
347 {
348     if (MEM_isLittleEndian())
349         return MEM_read32(memPtr);
350     else
351         return MEM_swap32(MEM_read32(memPtr));
352 }
353 
MEM_writeLE32(void * memPtr,U32 val32)354 MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
355 {
356     if (MEM_isLittleEndian())
357         MEM_write32(memPtr, val32);
358     else
359         MEM_write32(memPtr, MEM_swap32(val32));
360 }
361 
MEM_readLE64(const void * memPtr)362 MEM_STATIC U64 MEM_readLE64(const void* memPtr)
363 {
364     if (MEM_isLittleEndian())
365         return MEM_read64(memPtr);
366     else
367         return MEM_swap64(MEM_read64(memPtr));
368 }
369 
MEM_writeLE64(void * memPtr,U64 val64)370 MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
371 {
372     if (MEM_isLittleEndian())
373         MEM_write64(memPtr, val64);
374     else
375         MEM_write64(memPtr, MEM_swap64(val64));
376 }
377 
MEM_readLEST(const void * memPtr)378 MEM_STATIC size_t MEM_readLEST(const void* memPtr)
379 {
380     if (MEM_32bits())
381         return (size_t)MEM_readLE32(memPtr);
382     else
383         return (size_t)MEM_readLE64(memPtr);
384 }
385 
MEM_writeLEST(void * memPtr,size_t val)386 MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
387 {
388     if (MEM_32bits())
389         MEM_writeLE32(memPtr, (U32)val);
390     else
391         MEM_writeLE64(memPtr, (U64)val);
392 }
393 
394 /*=== Big endian r/w ===*/
395 
MEM_readBE32(const void * memPtr)396 MEM_STATIC U32 MEM_readBE32(const void* memPtr)
397 {
398     if (MEM_isLittleEndian())
399         return MEM_swap32(MEM_read32(memPtr));
400     else
401         return MEM_read32(memPtr);
402 }
403 
MEM_writeBE32(void * memPtr,U32 val32)404 MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
405 {
406     if (MEM_isLittleEndian())
407         MEM_write32(memPtr, MEM_swap32(val32));
408     else
409         MEM_write32(memPtr, val32);
410 }
411 
MEM_readBE64(const void * memPtr)412 MEM_STATIC U64 MEM_readBE64(const void* memPtr)
413 {
414     if (MEM_isLittleEndian())
415         return MEM_swap64(MEM_read64(memPtr));
416     else
417         return MEM_read64(memPtr);
418 }
419 
MEM_writeBE64(void * memPtr,U64 val64)420 MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
421 {
422     if (MEM_isLittleEndian())
423         MEM_write64(memPtr, MEM_swap64(val64));
424     else
425         MEM_write64(memPtr, val64);
426 }
427 
MEM_readBEST(const void * memPtr)428 MEM_STATIC size_t MEM_readBEST(const void* memPtr)
429 {
430     if (MEM_32bits())
431         return (size_t)MEM_readBE32(memPtr);
432     else
433         return (size_t)MEM_readBE64(memPtr);
434 }
435 
MEM_writeBEST(void * memPtr,size_t val)436 MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
437 {
438     if (MEM_32bits())
439         MEM_writeBE32(memPtr, (U32)val);
440     else
441         MEM_writeBE64(memPtr, (U64)val);
442 }
443 
444 
445 #if defined (__cplusplus)
446 }
447 #endif
448 
449 #endif /* MEM_H_MODULE */
450