1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/ilist.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/TrailingObjects.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <utility>
38 
39 namespace llvm {
40 
41 class AAResults;
42 template <typename T> class ArrayRef;
43 class DIExpression;
44 class DILocalVariable;
45 class MachineBasicBlock;
46 class MachineFunction;
47 class MachineRegisterInfo;
48 class ModuleSlotTracker;
49 class raw_ostream;
50 template <typename T> class SmallVectorImpl;
51 class SmallBitVector;
52 class StringRef;
53 class TargetInstrInfo;
54 class TargetRegisterClass;
55 class TargetRegisterInfo;
56 
57 //===----------------------------------------------------------------------===//
58 /// Representation of each machine instruction.
59 ///
60 /// This class isn't a POD type, but it must have a trivial destructor. When a
61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62 /// without having their destructor called.
63 ///
64 class MachineInstr
65     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66                                     ilist_sentinel_tracking<true>> {
67 public:
68   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 
70   /// Flags to specify different kinds of comments to output in
71   /// assembly code.  These flags carry semantic information not
72   /// otherwise easily derivable from the IR text.
73   ///
74   enum CommentFlag {
75     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
76     NoSchedComment = 0x2,
77     TAsmComments = 0x4    // Target Asm comments should start from this value.
78   };
79 
80   enum MIFlag {
81     NoFlags      = 0,
82     FrameSetup   = 1 << 0,              // Instruction is used as a part of
83                                         // function frame setup code.
84     FrameDestroy = 1 << 1,              // Instruction is used as a part of
85                                         // function frame destruction code.
86     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
87     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
88     FmNoNans     = 1 << 4,              // Instruction does not support Fast
89                                         // math nan values.
90     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
91                                         // math infinity values.
92     FmNsz        = 1 << 6,              // Instruction is not required to retain
93                                         // signed zero values.
94     FmArcp       = 1 << 7,              // Instruction supports Fast math
95                                         // reciprocal approximations.
96     FmContract   = 1 << 8,              // Instruction supports Fast math
97                                         // contraction operations like fma.
98     FmAfn        = 1 << 9,              // Instruction may map to Fast math
99                                         // instrinsic approximation.
100     FmReassoc    = 1 << 10,             // Instruction supports Fast math
101                                         // reassociation of operand order.
102     NoUWrap      = 1 << 11,             // Instruction supports binary operator
103                                         // no unsigned wrap.
104     NoSWrap      = 1 << 12,             // Instruction supports binary operator
105                                         // no signed wrap.
106     IsExact      = 1 << 13,             // Instruction supports division is
107                                         // known to be exact.
108     NoFPExcept   = 1 << 14,             // Instruction does not raise
109                                         // floatint-point exceptions.
110     NoMerge      = 1 << 15,             // Passes that drop source location info
111                                         // (e.g. branch folding) should skip
112                                         // this instruction.
113   };
114 
115 private:
116   const MCInstrDesc *MCID;              // Instruction descriptor.
117   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
118 
119   // Operands are allocated by an ArrayRecycler.
120   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
121   unsigned NumOperands = 0;             // Number of operands on instruction.
122 
123   uint16_t Flags = 0;                   // Various bits of additional
124                                         // information about machine
125                                         // instruction.
126 
127   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
128                                         // the AsmPrinter to emit helpful
129                                         // comments.  This is *not* semantic
130                                         // information.  Do not use this for
131                                         // anything other than to convey comment
132                                         // information to AsmPrinter.
133 
134   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
135   // to properly pack.
136   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
137   OperandCapacity CapOperands;          // Capacity of the Operands array.
138 
139   /// Internal implementation detail class that provides out-of-line storage for
140   /// extra info used by the machine instruction when this info cannot be stored
141   /// in-line within the instruction itself.
142   ///
143   /// This has to be defined eagerly due to the implementation constraints of
144   /// `PointerSumType` where it is used.
145   class ExtraInfo final
146       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
147   public:
148     static ExtraInfo *create(BumpPtrAllocator &Allocator,
149                              ArrayRef<MachineMemOperand *> MMOs,
150                              MCSymbol *PreInstrSymbol = nullptr,
151                              MCSymbol *PostInstrSymbol = nullptr,
152                              MDNode *HeapAllocMarker = nullptr) {
153       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
154       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
155       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
156       auto *Result = new (Allocator.Allocate(
157           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
158               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
159               HasHeapAllocMarker),
160           alignof(ExtraInfo)))
161           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
162                     HasHeapAllocMarker);
163 
164       // Copy the actual data into the trailing objects.
165       std::copy(MMOs.begin(), MMOs.end(),
166                 Result->getTrailingObjects<MachineMemOperand *>());
167 
168       if (HasPreInstrSymbol)
169         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
170       if (HasPostInstrSymbol)
171         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
172             PostInstrSymbol;
173       if (HasHeapAllocMarker)
174         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
175 
176       return Result;
177     }
178 
getMMOs()179     ArrayRef<MachineMemOperand *> getMMOs() const {
180       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
181     }
182 
getPreInstrSymbol()183     MCSymbol *getPreInstrSymbol() const {
184       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
185     }
186 
getPostInstrSymbol()187     MCSymbol *getPostInstrSymbol() const {
188       return HasPostInstrSymbol
189                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
190                  : nullptr;
191     }
192 
getHeapAllocMarker()193     MDNode *getHeapAllocMarker() const {
194       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
195     }
196 
197   private:
198     friend TrailingObjects;
199 
200     // Description of the extra info, used to interpret the actual optional
201     // data appended.
202     //
203     // Note that this is not terribly space optimized. This leaves a great deal
204     // of flexibility to fit more in here later.
205     const int NumMMOs;
206     const bool HasPreInstrSymbol;
207     const bool HasPostInstrSymbol;
208     const bool HasHeapAllocMarker;
209 
210     // Implement the `TrailingObjects` internal API.
numTrailingObjects(OverloadToken<MachineMemOperand * >)211     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
212       return NumMMOs;
213     }
numTrailingObjects(OverloadToken<MCSymbol * >)214     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
215       return HasPreInstrSymbol + HasPostInstrSymbol;
216     }
numTrailingObjects(OverloadToken<MDNode * >)217     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
218       return HasHeapAllocMarker;
219     }
220 
221     // Just a boring constructor to allow us to initialize the sizes. Always use
222     // the `create` routine above.
ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker)223     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
224               bool HasHeapAllocMarker)
225         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
226           HasPostInstrSymbol(HasPostInstrSymbol),
227           HasHeapAllocMarker(HasHeapAllocMarker) {}
228   };
229 
230   /// Enumeration of the kinds of inline extra info available. It is important
231   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
232   /// it accessible as an `ArrayRef`.
233   enum ExtraInfoInlineKinds {
234     EIIK_MMO = 0,
235     EIIK_PreInstrSymbol,
236     EIIK_PostInstrSymbol,
237     EIIK_OutOfLine
238   };
239 
240   // We store extra information about the instruction here. The common case is
241   // expected to be nothing or a single pointer (typically a MMO or a symbol).
242   // We work to optimize this common case by storing it inline here rather than
243   // requiring a separate allocation, but we fall back to an allocation when
244   // multiple pointers are needed.
245   PointerSumType<ExtraInfoInlineKinds,
246                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
247                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
248                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
249                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
250       Info;
251 
252   DebugLoc debugLoc;                    // Source line information.
253 
254   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
255   /// defined by this instruction.
256   unsigned DebugInstrNum;
257 
258   // Intrusive list support
259   friend struct ilist_traits<MachineInstr>;
260   friend struct ilist_callback_traits<MachineBasicBlock>;
261   void setParent(MachineBasicBlock *P) { Parent = P; }
262 
263   /// This constructor creates a copy of the given
264   /// MachineInstr in the given MachineFunction.
265   MachineInstr(MachineFunction &, const MachineInstr &);
266 
267   /// This constructor create a MachineInstr and add the implicit operands.
268   /// It reserves space for number of operands specified by
269   /// MCInstrDesc.  An explicit DebugLoc is supplied.
270   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
271                bool NoImp = false);
272 
273   // MachineInstrs are pool-allocated and owned by MachineFunction.
274   friend class MachineFunction;
275 
276   void
277   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
278             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
279 
280 public:
281   MachineInstr(const MachineInstr &) = delete;
282   MachineInstr &operator=(const MachineInstr &) = delete;
283   // Use MachineFunction::DeleteMachineInstr() instead.
284   ~MachineInstr() = delete;
285 
286   const MachineBasicBlock* getParent() const { return Parent; }
287   MachineBasicBlock* getParent() { return Parent; }
288 
289   /// Move the instruction before \p MovePos.
290   void moveBefore(MachineInstr *MovePos);
291 
292   /// Return the function that contains the basic block that this instruction
293   /// belongs to.
294   ///
295   /// Note: this is undefined behaviour if the instruction does not have a
296   /// parent.
297   const MachineFunction *getMF() const;
298   MachineFunction *getMF() {
299     return const_cast<MachineFunction *>(
300         static_cast<const MachineInstr *>(this)->getMF());
301   }
302 
303   /// Return the asm printer flags bitvector.
304   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
305 
306   /// Clear the AsmPrinter bitvector.
307   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
308 
309   /// Return whether an AsmPrinter flag is set.
310   bool getAsmPrinterFlag(CommentFlag Flag) const {
311     return AsmPrinterFlags & Flag;
312   }
313 
314   /// Set a flag for the AsmPrinter.
315   void setAsmPrinterFlag(uint8_t Flag) {
316     AsmPrinterFlags |= Flag;
317   }
318 
319   /// Clear specific AsmPrinter flags.
320   void clearAsmPrinterFlag(CommentFlag Flag) {
321     AsmPrinterFlags &= ~Flag;
322   }
323 
324   /// Return the MI flags bitvector.
325   uint16_t getFlags() const {
326     return Flags;
327   }
328 
329   /// Return whether an MI flag is set.
330   bool getFlag(MIFlag Flag) const {
331     return Flags & Flag;
332   }
333 
334   /// Set a MI flag.
335   void setFlag(MIFlag Flag) {
336     Flags |= (uint16_t)Flag;
337   }
338 
339   void setFlags(unsigned flags) {
340     // Filter out the automatically maintained flags.
341     unsigned Mask = BundledPred | BundledSucc;
342     Flags = (Flags & Mask) | (flags & ~Mask);
343   }
344 
345   /// clearFlag - Clear a MI flag.
346   void clearFlag(MIFlag Flag) {
347     Flags &= ~((uint16_t)Flag);
348   }
349 
350   /// Return true if MI is in a bundle (but not the first MI in a bundle).
351   ///
352   /// A bundle looks like this before it's finalized:
353   ///   ----------------
354   ///   |      MI      |
355   ///   ----------------
356   ///          |
357   ///   ----------------
358   ///   |      MI    * |
359   ///   ----------------
360   ///          |
361   ///   ----------------
362   ///   |      MI    * |
363   ///   ----------------
364   /// In this case, the first MI starts a bundle but is not inside a bundle, the
365   /// next 2 MIs are considered "inside" the bundle.
366   ///
367   /// After a bundle is finalized, it looks like this:
368   ///   ----------------
369   ///   |    Bundle    |
370   ///   ----------------
371   ///          |
372   ///   ----------------
373   ///   |      MI    * |
374   ///   ----------------
375   ///          |
376   ///   ----------------
377   ///   |      MI    * |
378   ///   ----------------
379   ///          |
380   ///   ----------------
381   ///   |      MI    * |
382   ///   ----------------
383   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
384   /// a bundle, but the next three MIs are.
385   bool isInsideBundle() const {
386     return getFlag(BundledPred);
387   }
388 
389   /// Return true if this instruction part of a bundle. This is true
390   /// if either itself or its following instruction is marked "InsideBundle".
391   bool isBundled() const {
392     return isBundledWithPred() || isBundledWithSucc();
393   }
394 
395   /// Return true if this instruction is part of a bundle, and it is not the
396   /// first instruction in the bundle.
397   bool isBundledWithPred() const { return getFlag(BundledPred); }
398 
399   /// Return true if this instruction is part of a bundle, and it is not the
400   /// last instruction in the bundle.
401   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
402 
403   /// Bundle this instruction with its predecessor. This can be an unbundled
404   /// instruction, or it can be the first instruction in a bundle.
405   void bundleWithPred();
406 
407   /// Bundle this instruction with its successor. This can be an unbundled
408   /// instruction, or it can be the last instruction in a bundle.
409   void bundleWithSucc();
410 
411   /// Break bundle above this instruction.
412   void unbundleFromPred();
413 
414   /// Break bundle below this instruction.
415   void unbundleFromSucc();
416 
417   /// Returns the debug location id of this MachineInstr.
418   const DebugLoc &getDebugLoc() const { return debugLoc; }
419 
420   /// Return the operand containing the offset to be used if this DBG_VALUE
421   /// instruction is indirect; will be an invalid register if this value is
422   /// not indirect, and an immediate with value 0 otherwise.
423   const MachineOperand &getDebugOffset() const {
424     assert(isNonListDebugValue() && "not a DBG_VALUE");
425     return getOperand(1);
426   }
427   MachineOperand &getDebugOffset() {
428     assert(isNonListDebugValue() && "not a DBG_VALUE");
429     return getOperand(1);
430   }
431 
432   /// Return the operand for the debug variable referenced by
433   /// this DBG_VALUE instruction.
434   const MachineOperand &getDebugVariableOp() const;
435   MachineOperand &getDebugVariableOp();
436 
437   /// Return the debug variable referenced by
438   /// this DBG_VALUE instruction.
439   const DILocalVariable *getDebugVariable() const;
440 
441   /// Return the operand for the complex address expression referenced by
442   /// this DBG_VALUE instruction.
443   const MachineOperand &getDebugExpressionOp() const;
444   MachineOperand &getDebugExpressionOp();
445 
446   /// Return the complex address expression referenced by
447   /// this DBG_VALUE instruction.
448   const DIExpression *getDebugExpression() const;
449 
450   /// Return the debug label referenced by
451   /// this DBG_LABEL instruction.
452   const DILabel *getDebugLabel() const;
453 
454   /// Fetch the instruction number of this MachineInstr. If it does not have
455   /// one already, a new and unique number will be assigned.
456   unsigned getDebugInstrNum();
457 
458   /// Examine the instruction number of this MachineInstr. May be zero if
459   /// it hasn't been assigned a number yet.
460   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
461 
462   /// Set instruction number of this MachineInstr. Avoid using unless you're
463   /// deserializing this information.
464   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
465 
466   /// Emit an error referring to the source location of this instruction.
467   /// This should only be used for inline assembly that is somehow
468   /// impossible to compile. Other errors should have been handled much
469   /// earlier.
470   ///
471   /// If this method returns, the caller should try to recover from the error.
472   void emitError(StringRef Msg) const;
473 
474   /// Returns the target instruction descriptor of this MachineInstr.
475   const MCInstrDesc &getDesc() const { return *MCID; }
476 
477   /// Returns the opcode of this MachineInstr.
478   unsigned getOpcode() const { return MCID->Opcode; }
479 
480   /// Retuns the total number of operands.
481   unsigned getNumOperands() const { return NumOperands; }
482 
483   /// Returns the total number of operands which are debug locations.
484   unsigned getNumDebugOperands() const {
485     return std::distance(debug_operands().begin(), debug_operands().end());
486   }
487 
488   const MachineOperand& getOperand(unsigned i) const {
489     assert(i < getNumOperands() && "getOperand() out of range!");
490     return Operands[i];
491   }
492   MachineOperand& getOperand(unsigned i) {
493     assert(i < getNumOperands() && "getOperand() out of range!");
494     return Operands[i];
495   }
496 
497   MachineOperand &getDebugOperand(unsigned Index) {
498     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
499     return *(debug_operands().begin() + Index);
500   }
501   const MachineOperand &getDebugOperand(unsigned Index) const {
502     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
503     return *(debug_operands().begin() + Index);
504   }
505 
506   SmallSet<Register, 4> getUsedDebugRegs() const {
507     assert(isDebugValue() && "not a DBG_VALUE*");
508     SmallSet<Register, 4> UsedRegs;
509     for (auto MO : debug_operands())
510       if (MO.isReg() && MO.getReg())
511         UsedRegs.insert(MO.getReg());
512     return UsedRegs;
513   }
514 
515   /// Returns whether this debug value has at least one debug operand with the
516   /// register \p Reg.
517   bool hasDebugOperandForReg(Register Reg) const {
518     return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
519       return Op.isReg() && Op.getReg() == Reg;
520     });
521   }
522 
523   /// Returns a range of all of the operands that correspond to a debug use of
524   /// \p Reg.
525   template <typename Operand, typename Instruction>
526   static iterator_range<
527       filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
528   getDebugOperandsForReg(Instruction *MI, Register Reg) {
529     std::function<bool(Operand & Op)> OpUsesReg(
530         [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
531     return make_filter_range(MI->debug_operands(), OpUsesReg);
532   }
533   iterator_range<filter_iterator<const MachineOperand *,
534                                  std::function<bool(const MachineOperand &Op)>>>
535   getDebugOperandsForReg(Register Reg) const {
536     return MachineInstr::getDebugOperandsForReg<const MachineOperand,
537                                                 const MachineInstr>(this, Reg);
538   }
539   iterator_range<filter_iterator<MachineOperand *,
540                                  std::function<bool(MachineOperand &Op)>>>
541   getDebugOperandsForReg(Register Reg) {
542     return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
543         this, Reg);
544   }
545 
546   bool isDebugOperand(const MachineOperand *Op) const {
547     return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
548   }
549 
550   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
551     assert(isDebugOperand(Op) && "Expected a debug operand.");
552     return std::distance(adl_begin(debug_operands()), Op);
553   }
554 
555   /// Returns the total number of definitions.
556   unsigned getNumDefs() const {
557     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
558   }
559 
560   /// Returns true if the instruction has implicit definition.
561   bool hasImplicitDef() const {
562     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
563       I != E; ++I) {
564       const MachineOperand &MO = getOperand(I);
565       if (MO.isDef() && MO.isImplicit())
566         return true;
567     }
568     return false;
569   }
570 
571   /// Returns the implicit operands number.
572   unsigned getNumImplicitOperands() const {
573     return getNumOperands() - getNumExplicitOperands();
574   }
575 
576   /// Return true if operand \p OpIdx is a subregister index.
577   bool isOperandSubregIdx(unsigned OpIdx) const {
578     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
579            "Expected MO_Immediate operand type.");
580     if (isExtractSubreg() && OpIdx == 2)
581       return true;
582     if (isInsertSubreg() && OpIdx == 3)
583       return true;
584     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
585       return true;
586     if (isSubregToReg() && OpIdx == 3)
587       return true;
588     return false;
589   }
590 
591   /// Returns the number of non-implicit operands.
592   unsigned getNumExplicitOperands() const;
593 
594   /// Returns the number of non-implicit definitions.
595   unsigned getNumExplicitDefs() const;
596 
597   /// iterator/begin/end - Iterate over all operands of a machine instruction.
598   using mop_iterator = MachineOperand *;
599   using const_mop_iterator = const MachineOperand *;
600 
601   mop_iterator operands_begin() { return Operands; }
602   mop_iterator operands_end() { return Operands + NumOperands; }
603 
604   const_mop_iterator operands_begin() const { return Operands; }
605   const_mop_iterator operands_end() const { return Operands + NumOperands; }
606 
607   iterator_range<mop_iterator> operands() {
608     return make_range(operands_begin(), operands_end());
609   }
610   iterator_range<const_mop_iterator> operands() const {
611     return make_range(operands_begin(), operands_end());
612   }
613   iterator_range<mop_iterator> explicit_operands() {
614     return make_range(operands_begin(),
615                       operands_begin() + getNumExplicitOperands());
616   }
617   iterator_range<const_mop_iterator> explicit_operands() const {
618     return make_range(operands_begin(),
619                       operands_begin() + getNumExplicitOperands());
620   }
621   iterator_range<mop_iterator> implicit_operands() {
622     return make_range(explicit_operands().end(), operands_end());
623   }
624   iterator_range<const_mop_iterator> implicit_operands() const {
625     return make_range(explicit_operands().end(), operands_end());
626   }
627   /// Returns a range over all operands that are used to determine the variable
628   /// location for this DBG_VALUE instruction.
629   iterator_range<mop_iterator> debug_operands() {
630     assert(isDebugValue() && "Must be a debug value instruction.");
631     return isDebugValueList()
632                ? make_range(operands_begin() + 2, operands_end())
633                : make_range(operands_begin(), operands_begin() + 1);
634   }
635   /// \copydoc debug_operands()
636   iterator_range<const_mop_iterator> debug_operands() const {
637     assert(isDebugValue() && "Must be a debug value instruction.");
638     return isDebugValueList()
639                ? make_range(operands_begin() + 2, operands_end())
640                : make_range(operands_begin(), operands_begin() + 1);
641   }
642   /// Returns a range over all explicit operands that are register definitions.
643   /// Implicit definition are not included!
644   iterator_range<mop_iterator> defs() {
645     return make_range(operands_begin(),
646                       operands_begin() + getNumExplicitDefs());
647   }
648   /// \copydoc defs()
649   iterator_range<const_mop_iterator> defs() const {
650     return make_range(operands_begin(),
651                       operands_begin() + getNumExplicitDefs());
652   }
653   /// Returns a range that includes all operands that are register uses.
654   /// This may include unrelated operands which are not register uses.
655   iterator_range<mop_iterator> uses() {
656     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
657   }
658   /// \copydoc uses()
659   iterator_range<const_mop_iterator> uses() const {
660     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
661   }
662   iterator_range<mop_iterator> explicit_uses() {
663     return make_range(operands_begin() + getNumExplicitDefs(),
664                       operands_begin() + getNumExplicitOperands());
665   }
666   iterator_range<const_mop_iterator> explicit_uses() const {
667     return make_range(operands_begin() + getNumExplicitDefs(),
668                       operands_begin() + getNumExplicitOperands());
669   }
670 
671   /// Returns the number of the operand iterator \p I points to.
672   unsigned getOperandNo(const_mop_iterator I) const {
673     return I - operands_begin();
674   }
675 
676   /// Access to memory operands of the instruction. If there are none, that does
677   /// not imply anything about whether the function accesses memory. Instead,
678   /// the caller must behave conservatively.
679   ArrayRef<MachineMemOperand *> memoperands() const {
680     if (!Info)
681       return {};
682 
683     if (Info.is<EIIK_MMO>())
684       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
685 
686     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
687       return EI->getMMOs();
688 
689     return {};
690   }
691 
692   /// Access to memory operands of the instruction.
693   ///
694   /// If `memoperands_begin() == memoperands_end()`, that does not imply
695   /// anything about whether the function accesses memory. Instead, the caller
696   /// must behave conservatively.
697   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
698 
699   /// Access to memory operands of the instruction.
700   ///
701   /// If `memoperands_begin() == memoperands_end()`, that does not imply
702   /// anything about whether the function accesses memory. Instead, the caller
703   /// must behave conservatively.
704   mmo_iterator memoperands_end() const { return memoperands().end(); }
705 
706   /// Return true if we don't have any memory operands which described the
707   /// memory access done by this instruction.  If this is true, calling code
708   /// must be conservative.
709   bool memoperands_empty() const { return memoperands().empty(); }
710 
711   /// Return true if this instruction has exactly one MachineMemOperand.
712   bool hasOneMemOperand() const { return memoperands().size() == 1; }
713 
714   /// Return the number of memory operands.
715   unsigned getNumMemOperands() const { return memoperands().size(); }
716 
717   /// Helper to extract a pre-instruction symbol if one has been added.
718   MCSymbol *getPreInstrSymbol() const {
719     if (!Info)
720       return nullptr;
721     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
722       return S;
723     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
724       return EI->getPreInstrSymbol();
725 
726     return nullptr;
727   }
728 
729   /// Helper to extract a post-instruction symbol if one has been added.
730   MCSymbol *getPostInstrSymbol() const {
731     if (!Info)
732       return nullptr;
733     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
734       return S;
735     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
736       return EI->getPostInstrSymbol();
737 
738     return nullptr;
739   }
740 
741   /// Helper to extract a heap alloc marker if one has been added.
742   MDNode *getHeapAllocMarker() const {
743     if (!Info)
744       return nullptr;
745     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
746       return EI->getHeapAllocMarker();
747 
748     return nullptr;
749   }
750 
751   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
752   /// queries but they are bundle aware.
753 
754   enum QueryType {
755     IgnoreBundle,    // Ignore bundles
756     AnyInBundle,     // Return true if any instruction in bundle has property
757     AllInBundle      // Return true if all instructions in bundle have property
758   };
759 
760   /// Return true if the instruction (or in the case of a bundle,
761   /// the instructions inside the bundle) has the specified property.
762   /// The first argument is the property being queried.
763   /// The second argument indicates whether the query should look inside
764   /// instruction bundles.
765   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
766     assert(MCFlag < 64 &&
767            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
768     // Inline the fast path for unbundled or bundle-internal instructions.
769     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
770       return getDesc().getFlags() & (1ULL << MCFlag);
771 
772     // If this is the first instruction in a bundle, take the slow path.
773     return hasPropertyInBundle(1ULL << MCFlag, Type);
774   }
775 
776   /// Return true if this is an instruction that should go through the usual
777   /// legalization steps.
778   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
779     return hasProperty(MCID::PreISelOpcode, Type);
780   }
781 
782   /// Return true if this instruction can have a variable number of operands.
783   /// In this case, the variable operands will be after the normal
784   /// operands but before the implicit definitions and uses (if any are
785   /// present).
786   bool isVariadic(QueryType Type = IgnoreBundle) const {
787     return hasProperty(MCID::Variadic, Type);
788   }
789 
790   /// Set if this instruction has an optional definition, e.g.
791   /// ARM instructions which can set condition code if 's' bit is set.
792   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
793     return hasProperty(MCID::HasOptionalDef, Type);
794   }
795 
796   /// Return true if this is a pseudo instruction that doesn't
797   /// correspond to a real machine instruction.
798   bool isPseudo(QueryType Type = IgnoreBundle) const {
799     return hasProperty(MCID::Pseudo, Type);
800   }
801 
802   bool isReturn(QueryType Type = AnyInBundle) const {
803     return hasProperty(MCID::Return, Type);
804   }
805 
806   /// Return true if this is an instruction that marks the end of an EH scope,
807   /// i.e., a catchpad or a cleanuppad instruction.
808   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
809     return hasProperty(MCID::EHScopeReturn, Type);
810   }
811 
812   bool isCall(QueryType Type = AnyInBundle) const {
813     return hasProperty(MCID::Call, Type);
814   }
815 
816   /// Return true if this is a call instruction that may have an associated
817   /// call site entry in the debug info.
818   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
819   /// Return true if copying, moving, or erasing this instruction requires
820   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
821   /// \ref eraseCallSiteInfo).
822   bool shouldUpdateCallSiteInfo() const;
823 
824   /// Returns true if the specified instruction stops control flow
825   /// from executing the instruction immediately following it.  Examples include
826   /// unconditional branches and return instructions.
827   bool isBarrier(QueryType Type = AnyInBundle) const {
828     return hasProperty(MCID::Barrier, Type);
829   }
830 
831   /// Returns true if this instruction part of the terminator for a basic block.
832   /// Typically this is things like return and branch instructions.
833   ///
834   /// Various passes use this to insert code into the bottom of a basic block,
835   /// but before control flow occurs.
836   bool isTerminator(QueryType Type = AnyInBundle) const {
837     return hasProperty(MCID::Terminator, Type);
838   }
839 
840   /// Returns true if this is a conditional, unconditional, or indirect branch.
841   /// Predicates below can be used to discriminate between
842   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
843   /// get more information.
844   bool isBranch(QueryType Type = AnyInBundle) const {
845     return hasProperty(MCID::Branch, Type);
846   }
847 
848   /// Return true if this is an indirect branch, such as a
849   /// branch through a register.
850   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
851     return hasProperty(MCID::IndirectBranch, Type);
852   }
853 
854   /// Return true if this is a branch which may fall
855   /// through to the next instruction or may transfer control flow to some other
856   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
857   /// information about this branch.
858   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
859     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
860   }
861 
862   /// Return true if this is a branch which always
863   /// transfers control flow to some other block.  The
864   /// TargetInstrInfo::analyzeBranch method can be used to get more information
865   /// about this branch.
866   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
867     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
868   }
869 
870   /// Return true if this instruction has a predicate operand that
871   /// controls execution.  It may be set to 'always', or may be set to other
872   /// values.   There are various methods in TargetInstrInfo that can be used to
873   /// control and modify the predicate in this instruction.
874   bool isPredicable(QueryType Type = AllInBundle) const {
875     // If it's a bundle than all bundled instructions must be predicable for this
876     // to return true.
877     return hasProperty(MCID::Predicable, Type);
878   }
879 
880   /// Return true if this instruction is a comparison.
881   bool isCompare(QueryType Type = IgnoreBundle) const {
882     return hasProperty(MCID::Compare, Type);
883   }
884 
885   /// Return true if this instruction is a move immediate
886   /// (including conditional moves) instruction.
887   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
888     return hasProperty(MCID::MoveImm, Type);
889   }
890 
891   /// Return true if this instruction is a register move.
892   /// (including moving values from subreg to reg)
893   bool isMoveReg(QueryType Type = IgnoreBundle) const {
894     return hasProperty(MCID::MoveReg, Type);
895   }
896 
897   /// Return true if this instruction is a bitcast instruction.
898   bool isBitcast(QueryType Type = IgnoreBundle) const {
899     return hasProperty(MCID::Bitcast, Type);
900   }
901 
902   /// Return true if this instruction is a select instruction.
903   bool isSelect(QueryType Type = IgnoreBundle) const {
904     return hasProperty(MCID::Select, Type);
905   }
906 
907   /// Return true if this instruction cannot be safely duplicated.
908   /// For example, if the instruction has a unique labels attached
909   /// to it, duplicating it would cause multiple definition errors.
910   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
911     return hasProperty(MCID::NotDuplicable, Type);
912   }
913 
914   /// Return true if this instruction is convergent.
915   /// Convergent instructions can not be made control-dependent on any
916   /// additional values.
917   bool isConvergent(QueryType Type = AnyInBundle) const {
918     if (isInlineAsm()) {
919       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
920       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
921         return true;
922     }
923     return hasProperty(MCID::Convergent, Type);
924   }
925 
926   /// Returns true if the specified instruction has a delay slot
927   /// which must be filled by the code generator.
928   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
929     return hasProperty(MCID::DelaySlot, Type);
930   }
931 
932   /// Return true for instructions that can be folded as
933   /// memory operands in other instructions. The most common use for this
934   /// is instructions that are simple loads from memory that don't modify
935   /// the loaded value in any way, but it can also be used for instructions
936   /// that can be expressed as constant-pool loads, such as V_SETALLONES
937   /// on x86, to allow them to be folded when it is beneficial.
938   /// This should only be set on instructions that return a value in their
939   /// only virtual register definition.
940   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
941     return hasProperty(MCID::FoldableAsLoad, Type);
942   }
943 
944   /// Return true if this instruction behaves
945   /// the same way as the generic REG_SEQUENCE instructions.
946   /// E.g., on ARM,
947   /// dX VMOVDRR rY, rZ
948   /// is equivalent to
949   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
950   ///
951   /// Note that for the optimizers to be able to take advantage of
952   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
953   /// override accordingly.
954   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
955     return hasProperty(MCID::RegSequence, Type);
956   }
957 
958   /// Return true if this instruction behaves
959   /// the same way as the generic EXTRACT_SUBREG instructions.
960   /// E.g., on ARM,
961   /// rX, rY VMOVRRD dZ
962   /// is equivalent to two EXTRACT_SUBREG:
963   /// rX = EXTRACT_SUBREG dZ, ssub_0
964   /// rY = EXTRACT_SUBREG dZ, ssub_1
965   ///
966   /// Note that for the optimizers to be able to take advantage of
967   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
968   /// override accordingly.
969   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
970     return hasProperty(MCID::ExtractSubreg, Type);
971   }
972 
973   /// Return true if this instruction behaves
974   /// the same way as the generic INSERT_SUBREG instructions.
975   /// E.g., on ARM,
976   /// dX = VSETLNi32 dY, rZ, Imm
977   /// is equivalent to a INSERT_SUBREG:
978   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
979   ///
980   /// Note that for the optimizers to be able to take advantage of
981   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
982   /// override accordingly.
983   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
984     return hasProperty(MCID::InsertSubreg, Type);
985   }
986 
987   //===--------------------------------------------------------------------===//
988   // Side Effect Analysis
989   //===--------------------------------------------------------------------===//
990 
991   /// Return true if this instruction could possibly read memory.
992   /// Instructions with this flag set are not necessarily simple load
993   /// instructions, they may load a value and modify it, for example.
994   bool mayLoad(QueryType Type = AnyInBundle) const {
995     if (isInlineAsm()) {
996       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
997       if (ExtraInfo & InlineAsm::Extra_MayLoad)
998         return true;
999     }
1000     return hasProperty(MCID::MayLoad, Type);
1001   }
1002 
1003   /// Return true if this instruction could possibly modify memory.
1004   /// Instructions with this flag set are not necessarily simple store
1005   /// instructions, they may store a modified value based on their operands, or
1006   /// may not actually modify anything, for example.
1007   bool mayStore(QueryType Type = AnyInBundle) const {
1008     if (isInlineAsm()) {
1009       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1010       if (ExtraInfo & InlineAsm::Extra_MayStore)
1011         return true;
1012     }
1013     return hasProperty(MCID::MayStore, Type);
1014   }
1015 
1016   /// Return true if this instruction could possibly read or modify memory.
1017   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1018     return mayLoad(Type) || mayStore(Type);
1019   }
1020 
1021   /// Return true if this instruction could possibly raise a floating-point
1022   /// exception.  This is the case if the instruction is a floating-point
1023   /// instruction that can in principle raise an exception, as indicated
1024   /// by the MCID::MayRaiseFPException property, *and* at the same time,
1025   /// the instruction is used in a context where we expect floating-point
1026   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1027   bool mayRaiseFPException() const {
1028     return hasProperty(MCID::MayRaiseFPException) &&
1029            !getFlag(MachineInstr::MIFlag::NoFPExcept);
1030   }
1031 
1032   //===--------------------------------------------------------------------===//
1033   // Flags that indicate whether an instruction can be modified by a method.
1034   //===--------------------------------------------------------------------===//
1035 
1036   /// Return true if this may be a 2- or 3-address
1037   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1038   /// result if Y and Z are exchanged.  If this flag is set, then the
1039   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1040   /// instruction.
1041   ///
1042   /// Note that this flag may be set on instructions that are only commutable
1043   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1044   /// Also note that some instructions require non-trivial modification to
1045   /// commute them.
1046   bool isCommutable(QueryType Type = IgnoreBundle) const {
1047     return hasProperty(MCID::Commutable, Type);
1048   }
1049 
1050   /// Return true if this is a 2-address instruction
1051   /// which can be changed into a 3-address instruction if needed.  Doing this
1052   /// transformation can be profitable in the register allocator, because it
1053   /// means that the instruction can use a 2-address form if possible, but
1054   /// degrade into a less efficient form if the source and dest register cannot
1055   /// be assigned to the same register.  For example, this allows the x86
1056   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1057   /// is the same speed as the shift but has bigger code size.
1058   ///
1059   /// If this returns true, then the target must implement the
1060   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1061   /// is allowed to fail if the transformation isn't valid for this specific
1062   /// instruction (e.g. shl reg, 4 on x86).
1063   ///
1064   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1065     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1066   }
1067 
1068   /// Return true if this instruction requires
1069   /// custom insertion support when the DAG scheduler is inserting it into a
1070   /// machine basic block.  If this is true for the instruction, it basically
1071   /// means that it is a pseudo instruction used at SelectionDAG time that is
1072   /// expanded out into magic code by the target when MachineInstrs are formed.
1073   ///
1074   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1075   /// is used to insert this into the MachineBasicBlock.
1076   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1077     return hasProperty(MCID::UsesCustomInserter, Type);
1078   }
1079 
1080   /// Return true if this instruction requires *adjustment*
1081   /// after instruction selection by calling a target hook. For example, this
1082   /// can be used to fill in ARM 's' optional operand depending on whether
1083   /// the conditional flag register is used.
1084   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1085     return hasProperty(MCID::HasPostISelHook, Type);
1086   }
1087 
1088   /// Returns true if this instruction is a candidate for remat.
1089   /// This flag is deprecated, please don't use it anymore.  If this
1090   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1091   /// verify the instruction is really rematable.
1092   bool isRematerializable(QueryType Type = AllInBundle) const {
1093     // It's only possible to re-mat a bundle if all bundled instructions are
1094     // re-materializable.
1095     return hasProperty(MCID::Rematerializable, Type);
1096   }
1097 
1098   /// Returns true if this instruction has the same cost (or less) than a move
1099   /// instruction. This is useful during certain types of optimizations
1100   /// (e.g., remat during two-address conversion or machine licm)
1101   /// where we would like to remat or hoist the instruction, but not if it costs
1102   /// more than moving the instruction into the appropriate register. Note, we
1103   /// are not marking copies from and to the same register class with this flag.
1104   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1105     // Only returns true for a bundle if all bundled instructions are cheap.
1106     return hasProperty(MCID::CheapAsAMove, Type);
1107   }
1108 
1109   /// Returns true if this instruction source operands
1110   /// have special register allocation requirements that are not captured by the
1111   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1112   /// even / odd pair, ARM::STM registers have to be in ascending order.
1113   /// Post-register allocation passes should not attempt to change allocations
1114   /// for sources of instructions with this flag.
1115   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1116     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1117   }
1118 
1119   /// Returns true if this instruction def operands
1120   /// have special register allocation requirements that are not captured by the
1121   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1122   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1123   /// Post-register allocation passes should not attempt to change allocations
1124   /// for definitions of instructions with this flag.
1125   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1126     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1127   }
1128 
1129   enum MICheckType {
1130     CheckDefs,      // Check all operands for equality
1131     CheckKillDead,  // Check all operands including kill / dead markers
1132     IgnoreDefs,     // Ignore all definitions
1133     IgnoreVRegDefs  // Ignore virtual register definitions
1134   };
1135 
1136   /// Return true if this instruction is identical to \p Other.
1137   /// Two instructions are identical if they have the same opcode and all their
1138   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1139   /// Note that this means liveness related flags (dead, undef, kill) do not
1140   /// affect the notion of identical.
1141   bool isIdenticalTo(const MachineInstr &Other,
1142                      MICheckType Check = CheckDefs) const;
1143 
1144   /// Unlink 'this' from the containing basic block, and return it without
1145   /// deleting it.
1146   ///
1147   /// This function can not be used on bundled instructions, use
1148   /// removeFromBundle() to remove individual instructions from a bundle.
1149   MachineInstr *removeFromParent();
1150 
1151   /// Unlink this instruction from its basic block and return it without
1152   /// deleting it.
1153   ///
1154   /// If the instruction is part of a bundle, the other instructions in the
1155   /// bundle remain bundled.
1156   MachineInstr *removeFromBundle();
1157 
1158   /// Unlink 'this' from the containing basic block and delete it.
1159   ///
1160   /// If this instruction is the header of a bundle, the whole bundle is erased.
1161   /// This function can not be used for instructions inside a bundle, use
1162   /// eraseFromBundle() to erase individual bundled instructions.
1163   void eraseFromParent();
1164 
1165   /// Unlink 'this' from the containing basic block and delete it.
1166   ///
1167   /// For all definitions mark their uses in DBG_VALUE nodes
1168   /// as undefined. Otherwise like eraseFromParent().
1169   void eraseFromParentAndMarkDBGValuesForRemoval();
1170 
1171   /// Unlink 'this' form its basic block and delete it.
1172   ///
1173   /// If the instruction is part of a bundle, the other instructions in the
1174   /// bundle remain bundled.
1175   void eraseFromBundle();
1176 
1177   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1178   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1179   bool isAnnotationLabel() const {
1180     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1181   }
1182 
1183   /// Returns true if the MachineInstr represents a label.
1184   bool isLabel() const {
1185     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1186   }
1187 
1188   bool isCFIInstruction() const {
1189     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1190   }
1191 
1192   bool isPseudoProbe() const {
1193     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1194   }
1195 
1196   // True if the instruction represents a position in the function.
1197   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1198 
1199   bool isNonListDebugValue() const {
1200     return getOpcode() == TargetOpcode::DBG_VALUE;
1201   }
1202   bool isDebugValueList() const {
1203     return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1204   }
1205   bool isDebugValue() const {
1206     return isNonListDebugValue() || isDebugValueList();
1207   }
1208   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1209   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1210   bool isDebugInstr() const {
1211     return isDebugValue() || isDebugLabel() || isDebugRef();
1212   }
1213   bool isDebugOrPseudoInstr() const {
1214     return isDebugInstr() || isPseudoProbe();
1215   }
1216 
1217   bool isDebugOffsetImm() const {
1218     return isNonListDebugValue() && getDebugOffset().isImm();
1219   }
1220 
1221   /// A DBG_VALUE is indirect iff the location operand is a register and
1222   /// the offset operand is an immediate.
1223   bool isIndirectDebugValue() const {
1224     return isDebugOffsetImm() && getDebugOperand(0).isReg();
1225   }
1226 
1227   /// A DBG_VALUE is an entry value iff its debug expression contains the
1228   /// DW_OP_LLVM_entry_value operation.
1229   bool isDebugEntryValue() const;
1230 
1231   /// Return true if the instruction is a debug value which describes a part of
1232   /// a variable as unavailable.
1233   bool isUndefDebugValue() const {
1234     if (!isDebugValue())
1235       return false;
1236     // If any $noreg locations are given, this DV is undef.
1237     for (const MachineOperand &Op : debug_operands())
1238       if (Op.isReg() && !Op.getReg().isValid())
1239         return true;
1240     return false;
1241   }
1242 
1243   bool isPHI() const {
1244     return getOpcode() == TargetOpcode::PHI ||
1245            getOpcode() == TargetOpcode::G_PHI;
1246   }
1247   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1248   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1249   bool isInlineAsm() const {
1250     return getOpcode() == TargetOpcode::INLINEASM ||
1251            getOpcode() == TargetOpcode::INLINEASM_BR;
1252   }
1253 
1254   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1255   /// specific, be attached to a generic MachineInstr.
1256   bool isMSInlineAsm() const {
1257     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1258   }
1259 
1260   bool isStackAligningInlineAsm() const;
1261   InlineAsm::AsmDialect getInlineAsmDialect() const;
1262 
1263   bool isInsertSubreg() const {
1264     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1265   }
1266 
1267   bool isSubregToReg() const {
1268     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1269   }
1270 
1271   bool isRegSequence() const {
1272     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1273   }
1274 
1275   bool isBundle() const {
1276     return getOpcode() == TargetOpcode::BUNDLE;
1277   }
1278 
1279   bool isCopy() const {
1280     return getOpcode() == TargetOpcode::COPY;
1281   }
1282 
1283   bool isFullCopy() const {
1284     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1285   }
1286 
1287   bool isExtractSubreg() const {
1288     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1289   }
1290 
1291   /// Return true if the instruction behaves like a copy.
1292   /// This does not include native copy instructions.
1293   bool isCopyLike() const {
1294     return isCopy() || isSubregToReg();
1295   }
1296 
1297   /// Return true is the instruction is an identity copy.
1298   bool isIdentityCopy() const {
1299     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1300       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1301   }
1302 
1303   /// Return true if this instruction doesn't produce any output in the form of
1304   /// executable instructions.
1305   bool isMetaInstruction() const {
1306     switch (getOpcode()) {
1307     default:
1308       return false;
1309     case TargetOpcode::IMPLICIT_DEF:
1310     case TargetOpcode::KILL:
1311     case TargetOpcode::CFI_INSTRUCTION:
1312     case TargetOpcode::EH_LABEL:
1313     case TargetOpcode::GC_LABEL:
1314     case TargetOpcode::DBG_VALUE:
1315     case TargetOpcode::DBG_VALUE_LIST:
1316     case TargetOpcode::DBG_INSTR_REF:
1317     case TargetOpcode::DBG_LABEL:
1318     case TargetOpcode::LIFETIME_START:
1319     case TargetOpcode::LIFETIME_END:
1320     case TargetOpcode::PSEUDO_PROBE:
1321       return true;
1322     }
1323   }
1324 
1325   /// Return true if this is a transient instruction that is either very likely
1326   /// to be eliminated during register allocation (such as copy-like
1327   /// instructions), or if this instruction doesn't have an execution-time cost.
1328   bool isTransient() const {
1329     switch (getOpcode()) {
1330     default:
1331       return isMetaInstruction();
1332     // Copy-like instructions are usually eliminated during register allocation.
1333     case TargetOpcode::PHI:
1334     case TargetOpcode::G_PHI:
1335     case TargetOpcode::COPY:
1336     case TargetOpcode::INSERT_SUBREG:
1337     case TargetOpcode::SUBREG_TO_REG:
1338     case TargetOpcode::REG_SEQUENCE:
1339       return true;
1340     }
1341   }
1342 
1343   /// Return the number of instructions inside the MI bundle, excluding the
1344   /// bundle header.
1345   ///
1346   /// This is the number of instructions that MachineBasicBlock::iterator
1347   /// skips, 0 for unbundled instructions.
1348   unsigned getBundleSize() const;
1349 
1350   /// Return true if the MachineInstr reads the specified register.
1351   /// If TargetRegisterInfo is passed, then it also checks if there
1352   /// is a read of a super-register.
1353   /// This does not count partial redefines of virtual registers as reads:
1354   ///   %reg1024:6 = OP.
1355   bool readsRegister(Register Reg,
1356                      const TargetRegisterInfo *TRI = nullptr) const {
1357     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1358   }
1359 
1360   /// Return true if the MachineInstr reads the specified virtual register.
1361   /// Take into account that a partial define is a
1362   /// read-modify-write operation.
1363   bool readsVirtualRegister(Register Reg) const {
1364     return readsWritesVirtualRegister(Reg).first;
1365   }
1366 
1367   /// Return a pair of bools (reads, writes) indicating if this instruction
1368   /// reads or writes Reg. This also considers partial defines.
1369   /// If Ops is not null, all operand indices for Reg are added.
1370   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1371                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1372 
1373   /// Return true if the MachineInstr kills the specified register.
1374   /// If TargetRegisterInfo is passed, then it also checks if there is
1375   /// a kill of a super-register.
1376   bool killsRegister(Register Reg,
1377                      const TargetRegisterInfo *TRI = nullptr) const {
1378     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1379   }
1380 
1381   /// Return true if the MachineInstr fully defines the specified register.
1382   /// If TargetRegisterInfo is passed, then it also checks
1383   /// if there is a def of a super-register.
1384   /// NOTE: It's ignoring subreg indices on virtual registers.
1385   bool definesRegister(Register Reg,
1386                        const TargetRegisterInfo *TRI = nullptr) const {
1387     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1388   }
1389 
1390   /// Return true if the MachineInstr modifies (fully define or partially
1391   /// define) the specified register.
1392   /// NOTE: It's ignoring subreg indices on virtual registers.
1393   bool modifiesRegister(Register Reg,
1394                         const TargetRegisterInfo *TRI = nullptr) const {
1395     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1396   }
1397 
1398   /// Returns true if the register is dead in this machine instruction.
1399   /// If TargetRegisterInfo is passed, then it also checks
1400   /// if there is a dead def of a super-register.
1401   bool registerDefIsDead(Register Reg,
1402                          const TargetRegisterInfo *TRI = nullptr) const {
1403     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1404   }
1405 
1406   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1407   /// the given register (not considering sub/super-registers).
1408   bool hasRegisterImplicitUseOperand(Register Reg) const;
1409 
1410   /// Returns the operand index that is a use of the specific register or -1
1411   /// if it is not found. It further tightens the search criteria to a use
1412   /// that kills the register if isKill is true.
1413   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1414                                 const TargetRegisterInfo *TRI = nullptr) const;
1415 
1416   /// Wrapper for findRegisterUseOperandIdx, it returns
1417   /// a pointer to the MachineOperand rather than an index.
1418   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1419                                       const TargetRegisterInfo *TRI = nullptr) {
1420     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1421     return (Idx == -1) ? nullptr : &getOperand(Idx);
1422   }
1423 
1424   const MachineOperand *findRegisterUseOperand(
1425     Register Reg, bool isKill = false,
1426     const TargetRegisterInfo *TRI = nullptr) const {
1427     return const_cast<MachineInstr *>(this)->
1428       findRegisterUseOperand(Reg, isKill, TRI);
1429   }
1430 
1431   /// Returns the operand index that is a def of the specified register or
1432   /// -1 if it is not found. If isDead is true, defs that are not dead are
1433   /// skipped. If Overlap is true, then it also looks for defs that merely
1434   /// overlap the specified register. If TargetRegisterInfo is non-null,
1435   /// then it also checks if there is a def of a super-register.
1436   /// This may also return a register mask operand when Overlap is true.
1437   int findRegisterDefOperandIdx(Register Reg,
1438                                 bool isDead = false, bool Overlap = false,
1439                                 const TargetRegisterInfo *TRI = nullptr) const;
1440 
1441   /// Wrapper for findRegisterDefOperandIdx, it returns
1442   /// a pointer to the MachineOperand rather than an index.
1443   MachineOperand *
1444   findRegisterDefOperand(Register Reg, bool isDead = false,
1445                          bool Overlap = false,
1446                          const TargetRegisterInfo *TRI = nullptr) {
1447     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1448     return (Idx == -1) ? nullptr : &getOperand(Idx);
1449   }
1450 
1451   const MachineOperand *
1452   findRegisterDefOperand(Register Reg, bool isDead = false,
1453                          bool Overlap = false,
1454                          const TargetRegisterInfo *TRI = nullptr) const {
1455     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1456         Reg, isDead, Overlap, TRI);
1457   }
1458 
1459   /// Find the index of the first operand in the
1460   /// operand list that is used to represent the predicate. It returns -1 if
1461   /// none is found.
1462   int findFirstPredOperandIdx() const;
1463 
1464   /// Find the index of the flag word operand that
1465   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1466   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1467   ///
1468   /// If GroupNo is not NULL, it will receive the number of the operand group
1469   /// containing OpIdx.
1470   ///
1471   /// The flag operand is an immediate that can be decoded with methods like
1472   /// InlineAsm::hasRegClassConstraint().
1473   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1474 
1475   /// Compute the static register class constraint for operand OpIdx.
1476   /// For normal instructions, this is derived from the MCInstrDesc.
1477   /// For inline assembly it is derived from the flag words.
1478   ///
1479   /// Returns NULL if the static register class constraint cannot be
1480   /// determined.
1481   const TargetRegisterClass*
1482   getRegClassConstraint(unsigned OpIdx,
1483                         const TargetInstrInfo *TII,
1484                         const TargetRegisterInfo *TRI) const;
1485 
1486   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1487   /// the given \p CurRC.
1488   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1489   /// instructions inside the bundle will be taken into account. In other words,
1490   /// this method accumulates all the constraints of the operand of this MI and
1491   /// the related bundle if MI is a bundle or inside a bundle.
1492   ///
1493   /// Returns the register class that satisfies both \p CurRC and the
1494   /// constraints set by MI. Returns NULL if such a register class does not
1495   /// exist.
1496   ///
1497   /// \pre CurRC must not be NULL.
1498   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1499       Register Reg, const TargetRegisterClass *CurRC,
1500       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1501       bool ExploreBundle = false) const;
1502 
1503   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1504   /// to the given \p CurRC.
1505   ///
1506   /// Returns the register class that satisfies both \p CurRC and the
1507   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1508   /// does not exist.
1509   ///
1510   /// \pre CurRC must not be NULL.
1511   /// \pre The operand at \p OpIdx must be a register.
1512   const TargetRegisterClass *
1513   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1514                               const TargetInstrInfo *TII,
1515                               const TargetRegisterInfo *TRI) const;
1516 
1517   /// Add a tie between the register operands at DefIdx and UseIdx.
1518   /// The tie will cause the register allocator to ensure that the two
1519   /// operands are assigned the same physical register.
1520   ///
1521   /// Tied operands are managed automatically for explicit operands in the
1522   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1523   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1524 
1525   /// Given the index of a tied register operand, find the
1526   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1527   /// index of the tied operand which must exist.
1528   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1529 
1530   /// Given the index of a register def operand,
1531   /// check if the register def is tied to a source operand, due to either
1532   /// two-address elimination or inline assembly constraints. Returns the
1533   /// first tied use operand index by reference if UseOpIdx is not null.
1534   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1535                              unsigned *UseOpIdx = nullptr) const {
1536     const MachineOperand &MO = getOperand(DefOpIdx);
1537     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1538       return false;
1539     if (UseOpIdx)
1540       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1541     return true;
1542   }
1543 
1544   /// Return true if the use operand of the specified index is tied to a def
1545   /// operand. It also returns the def operand index by reference if DefOpIdx
1546   /// is not null.
1547   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1548                              unsigned *DefOpIdx = nullptr) const {
1549     const MachineOperand &MO = getOperand(UseOpIdx);
1550     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1551       return false;
1552     if (DefOpIdx)
1553       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1554     return true;
1555   }
1556 
1557   /// Clears kill flags on all operands.
1558   void clearKillInfo();
1559 
1560   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1561   /// properly composing subreg indices where necessary.
1562   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1563                           const TargetRegisterInfo &RegInfo);
1564 
1565   /// We have determined MI kills a register. Look for the
1566   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1567   /// add a implicit operand if it's not found. Returns true if the operand
1568   /// exists / is added.
1569   bool addRegisterKilled(Register IncomingReg,
1570                          const TargetRegisterInfo *RegInfo,
1571                          bool AddIfNotFound = false);
1572 
1573   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1574   /// all aliasing registers.
1575   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1576 
1577   /// We have determined MI defined a register without a use.
1578   /// Look for the operand that defines it and mark it as IsDead. If
1579   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1580   /// true if the operand exists / is added.
1581   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1582                        bool AddIfNotFound = false);
1583 
1584   /// Clear all dead flags on operands defining register @p Reg.
1585   void clearRegisterDeads(Register Reg);
1586 
1587   /// Mark all subregister defs of register @p Reg with the undef flag.
1588   /// This function is used when we determined to have a subregister def in an
1589   /// otherwise undefined super register.
1590   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1591 
1592   /// We have determined MI defines a register. Make sure there is an operand
1593   /// defining Reg.
1594   void addRegisterDefined(Register Reg,
1595                           const TargetRegisterInfo *RegInfo = nullptr);
1596 
1597   /// Mark every physreg used by this instruction as
1598   /// dead except those in the UsedRegs list.
1599   ///
1600   /// On instructions with register mask operands, also add implicit-def
1601   /// operands for all registers in UsedRegs.
1602   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1603                              const TargetRegisterInfo &TRI);
1604 
1605   /// Return true if it is safe to move this instruction. If
1606   /// SawStore is set to true, it means that there is a store (or call) between
1607   /// the instruction's location and its intended destination.
1608   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1609 
1610   /// Returns true if this instruction's memory access aliases the memory
1611   /// access of Other.
1612   //
1613   /// Assumes any physical registers used to compute addresses
1614   /// have the same value for both instructions.  Returns false if neither
1615   /// instruction writes to memory.
1616   ///
1617   /// @param AA Optional alias analysis, used to compare memory operands.
1618   /// @param Other MachineInstr to check aliasing against.
1619   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1620   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1621 
1622   /// Return true if this instruction may have an ordered
1623   /// or volatile memory reference, or if the information describing the memory
1624   /// reference is not available. Return false if it is known to have no
1625   /// ordered or volatile memory references.
1626   bool hasOrderedMemoryRef() const;
1627 
1628   /// Return true if this load instruction never traps and points to a memory
1629   /// location whose value doesn't change during the execution of this function.
1630   ///
1631   /// Examples include loading a value from the constant pool or from the
1632   /// argument area of a function (if it does not change).  If the instruction
1633   /// does multiple loads, this returns true only if all of the loads are
1634   /// dereferenceable and invariant.
1635   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1636 
1637   /// If the specified instruction is a PHI that always merges together the
1638   /// same virtual register, return the register, otherwise return 0.
1639   unsigned isConstantValuePHI() const;
1640 
1641   /// Return true if this instruction has side effects that are not modeled
1642   /// by mayLoad / mayStore, etc.
1643   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1644   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1645   /// INLINEASM instruction, in which case the side effect property is encoded
1646   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1647   ///
1648   bool hasUnmodeledSideEffects() const;
1649 
1650   /// Returns true if it is illegal to fold a load across this instruction.
1651   bool isLoadFoldBarrier() const;
1652 
1653   /// Return true if all the defs of this instruction are dead.
1654   bool allDefsAreDead() const;
1655 
1656   /// Return a valid size if the instruction is a spill instruction.
1657   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1658 
1659   /// Return a valid size if the instruction is a folded spill instruction.
1660   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1661 
1662   /// Return a valid size if the instruction is a restore instruction.
1663   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1664 
1665   /// Return a valid size if the instruction is a folded restore instruction.
1666   Optional<unsigned>
1667   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1668 
1669   /// Copy implicit register operands from specified
1670   /// instruction to this instruction.
1671   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1672 
1673   /// Debugging support
1674   /// @{
1675   /// Determine the generic type to be printed (if needed) on uses and defs.
1676   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1677                      const MachineRegisterInfo &MRI) const;
1678 
1679   /// Return true when an instruction has tied register that can't be determined
1680   /// by the instruction's descriptor. This is useful for MIR printing, to
1681   /// determine whether we need to print the ties or not.
1682   bool hasComplexRegisterTies() const;
1683 
1684   /// Print this MI to \p OS.
1685   /// Don't print information that can be inferred from other instructions if
1686   /// \p IsStandalone is false. It is usually true when only a fragment of the
1687   /// function is printed.
1688   /// Only print the defs and the opcode if \p SkipOpers is true.
1689   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1690   /// Otherwise, also print the debug loc, with a terminating newline.
1691   /// \p TII is used to print the opcode name.  If it's not present, but the
1692   /// MI is in a function, the opcode will be printed using the function's TII.
1693   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1694              bool SkipDebugLoc = false, bool AddNewLine = true,
1695              const TargetInstrInfo *TII = nullptr) const;
1696   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1697              bool SkipOpers = false, bool SkipDebugLoc = false,
1698              bool AddNewLine = true,
1699              const TargetInstrInfo *TII = nullptr) const;
1700   void dump() const;
1701   /// Print on dbgs() the current instruction and the instructions defining its
1702   /// operands and so on until we reach \p MaxDepth.
1703   void dumpr(const MachineRegisterInfo &MRI,
1704              unsigned MaxDepth = UINT_MAX) const;
1705   /// @}
1706 
1707   //===--------------------------------------------------------------------===//
1708   // Accessors used to build up machine instructions.
1709 
1710   /// Add the specified operand to the instruction.  If it is an implicit
1711   /// operand, it is added to the end of the operand list.  If it is an
1712   /// explicit operand it is added at the end of the explicit operand list
1713   /// (before the first implicit operand).
1714   ///
1715   /// MF must be the machine function that was used to allocate this
1716   /// instruction.
1717   ///
1718   /// MachineInstrBuilder provides a more convenient interface for creating
1719   /// instructions and adding operands.
1720   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1721 
1722   /// Add an operand without providing an MF reference. This only works for
1723   /// instructions that are inserted in a basic block.
1724   ///
1725   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1726   /// preferred.
1727   void addOperand(const MachineOperand &Op);
1728 
1729   /// Replace the instruction descriptor (thus opcode) of
1730   /// the current instruction with a new one.
1731   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1732 
1733   /// Replace current source information with new such.
1734   /// Avoid using this, the constructor argument is preferable.
1735   void setDebugLoc(DebugLoc dl) {
1736     debugLoc = std::move(dl);
1737     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1738   }
1739 
1740   /// Erase an operand from an instruction, leaving it with one
1741   /// fewer operand than it started with.
1742   void RemoveOperand(unsigned OpNo);
1743 
1744   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1745   /// the memrefs to their most conservative state.  This should be used only
1746   /// as a last resort since it greatly pessimizes our knowledge of the memory
1747   /// access performed by the instruction.
1748   void dropMemRefs(MachineFunction &MF);
1749 
1750   /// Assign this MachineInstr's memory reference descriptor list.
1751   ///
1752   /// Unlike other methods, this *will* allocate them into a new array
1753   /// associated with the provided `MachineFunction`.
1754   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1755 
1756   /// Add a MachineMemOperand to the machine instruction.
1757   /// This function should be used only occasionally. The setMemRefs function
1758   /// is the primary method for setting up a MachineInstr's MemRefs list.
1759   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1760 
1761   /// Clone another MachineInstr's memory reference descriptor list and replace
1762   /// ours with it.
1763   ///
1764   /// Note that `*this` may be the incoming MI!
1765   ///
1766   /// Prefer this API whenever possible as it can avoid allocations in common
1767   /// cases.
1768   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1769 
1770   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1771   /// list and replace ours with it.
1772   ///
1773   /// Note that `*this` may be one of the incoming MIs!
1774   ///
1775   /// Prefer this API whenever possible as it can avoid allocations in common
1776   /// cases.
1777   void cloneMergedMemRefs(MachineFunction &MF,
1778                           ArrayRef<const MachineInstr *> MIs);
1779 
1780   /// Set a symbol that will be emitted just prior to the instruction itself.
1781   ///
1782   /// Setting this to a null pointer will remove any such symbol.
1783   ///
1784   /// FIXME: This is not fully implemented yet.
1785   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1786 
1787   /// Set a symbol that will be emitted just after the instruction itself.
1788   ///
1789   /// Setting this to a null pointer will remove any such symbol.
1790   ///
1791   /// FIXME: This is not fully implemented yet.
1792   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1793 
1794   /// Clone another MachineInstr's pre- and post- instruction symbols and
1795   /// replace ours with it.
1796   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1797 
1798   /// Set a marker on instructions that denotes where we should create and emit
1799   /// heap alloc site labels. This waits until after instruction selection and
1800   /// optimizations to create the label, so it should still work if the
1801   /// instruction is removed or duplicated.
1802   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1803 
1804   /// Return the MIFlags which represent both MachineInstrs. This
1805   /// should be used when merging two MachineInstrs into one. This routine does
1806   /// not modify the MIFlags of this MachineInstr.
1807   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1808 
1809   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1810 
1811   /// Copy all flags to MachineInst MIFlags
1812   void copyIRFlags(const Instruction &I);
1813 
1814   /// Break any tie involving OpIdx.
1815   void untieRegOperand(unsigned OpIdx) {
1816     MachineOperand &MO = getOperand(OpIdx);
1817     if (MO.isReg() && MO.isTied()) {
1818       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1819       MO.TiedTo = 0;
1820     }
1821   }
1822 
1823   /// Add all implicit def and use operands to this instruction.
1824   void addImplicitDefUseOperands(MachineFunction &MF);
1825 
1826   /// Scan instructions immediately following MI and collect any matching
1827   /// DBG_VALUEs.
1828   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1829 
1830   /// Find all DBG_VALUEs that point to the register def in this instruction
1831   /// and point them to \p Reg instead.
1832   void changeDebugValuesDefReg(Register Reg);
1833 
1834   /// Returns the Intrinsic::ID for this instruction.
1835   /// \pre Must have an intrinsic ID operand.
1836   unsigned getIntrinsicID() const {
1837     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1838   }
1839 
1840   /// Sets all register debug operands in this debug value instruction to be
1841   /// undef.
1842   void setDebugValueUndef() {
1843     assert(isDebugValue() && "Must be a debug value instruction.");
1844     for (MachineOperand &MO : debug_operands()) {
1845       if (MO.isReg()) {
1846         MO.setReg(0);
1847         MO.setSubReg(0);
1848       }
1849     }
1850   }
1851 
1852   PseudoProbeAttributes getPseudoProbeAttribute() const {
1853     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1854     return (PseudoProbeAttributes)getOperand(3).getImm();
1855   }
1856 
1857   void addPseudoProbeAttribute(PseudoProbeAttributes Attr) {
1858     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1859     MachineOperand &AttrOperand = getOperand(3);
1860     AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr);
1861   }
1862 
1863 private:
1864   /// If this instruction is embedded into a MachineFunction, return the
1865   /// MachineRegisterInfo object for the current function, otherwise
1866   /// return null.
1867   MachineRegisterInfo *getRegInfo();
1868 
1869   /// Unlink all of the register operands in this instruction from their
1870   /// respective use lists.  This requires that the operands already be on their
1871   /// use lists.
1872   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1873 
1874   /// Add all of the register operands in this instruction from their
1875   /// respective use lists.  This requires that the operands not be on their
1876   /// use lists yet.
1877   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1878 
1879   /// Slow path for hasProperty when we're dealing with a bundle.
1880   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1881 
1882   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1883   /// this MI and the given operand index \p OpIdx.
1884   /// If the related operand does not constrained Reg, this returns CurRC.
1885   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1886       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1887       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1888 
1889   /// Stores extra instruction information inline or allocates as ExtraInfo
1890   /// based on the number of pointers.
1891   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1892                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1893                     MDNode *HeapAllocMarker);
1894 };
1895 
1896 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1897 /// instruction rather than by pointer value.
1898 /// The hashing and equality testing functions ignore definitions so this is
1899 /// useful for CSE, etc.
1900 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1901   static inline MachineInstr *getEmptyKey() {
1902     return nullptr;
1903   }
1904 
1905   static inline MachineInstr *getTombstoneKey() {
1906     return reinterpret_cast<MachineInstr*>(-1);
1907   }
1908 
1909   static unsigned getHashValue(const MachineInstr* const &MI);
1910 
1911   static bool isEqual(const MachineInstr* const &LHS,
1912                       const MachineInstr* const &RHS) {
1913     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1914         LHS == getEmptyKey() || LHS == getTombstoneKey())
1915       return LHS == RHS;
1916     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1917   }
1918 };
1919 
1920 //===----------------------------------------------------------------------===//
1921 // Debugging Support
1922 
1923 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1924   MI.print(OS);
1925   return OS;
1926 }
1927 
1928 } // end namespace llvm
1929 
1930 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1931