1 /*
2 * kernel internal memory management definitions for amd64
3 */
4 #pragma once
5
6 #define _MI_PAGING_LEVELS 4
7 #define _MI_HAS_NO_EXECUTE 1
8
9 /* Memory layout base addresses (This is based on Vista!) */
10 #define MI_USER_PROBE_ADDRESS (PVOID)0x000007FFFFFF0000ULL
11 #define MI_DEFAULT_SYSTEM_RANGE_START (PVOID)0xFFFF080000000000ULL
12 #define MI_REAL_SYSTEM_RANGE_START 0xFFFF800000000000ULL
13 //#define MI_PAGE_TABLE_BASE 0xFFFFF68000000000ULL // 512 GB page tables
14 #define HYPER_SPACE 0xFFFFF70000000000ULL // 512 GB hyper space [MiVaProcessSpace]
15 #define HYPER_SPACE_END 0xFFFFF77FFFFFFFFFULL
16 //#define MI_SHARED_SYSTEM_PAGE 0xFFFFF78000000000ULL
17 #define MI_SYSTEM_CACHE_WS_START 0xFFFFF78000001000ULL // 512 GB - 4 KB system cache working set
18 //#define MI_LOADER_MAPPINGS 0xFFFFF80000000000ULL // 512 GB loader mappings aka KSEG0_BASE (NDK) [MiVaBootLoaded]
19 #define MM_SYSTEM_SPACE_START 0xFFFFF88000000000ULL // 128 GB system PTEs [MiVaSystemPtes]
20 #define MI_DEBUG_MAPPING (PVOID)0xFFFFF89FFFFFF000ULL // FIXME should be allocated from System PTEs
21 #define MI_PAGED_POOL_START (PVOID)0xFFFFF8A000000000ULL // 128 GB paged pool [MiVaPagedPool]
22 //#define MI_PAGED_POOL_END 0xFFFFF8BFFFFFFFFFULL
23 //#define MI_SESSION_SPACE_START 0xFFFFF90000000000ULL // 512 GB session space [MiVaSessionSpace]
24 //#define MI_SESSION_VIEW_END 0xFFFFF97FFF000000ULL
25 #define MI_SESSION_SPACE_END 0xFFFFF98000000000ULL
26 #define MI_SYSTEM_CACHE_START 0xFFFFF98000000000ULL // 1 TB system cache (on Vista+ this is dynamic VA space) [MiVaSystemCache,MiVaSpecialPoolPaged,MiVaSpecialPoolNonPaged]
27 #define MI_SYSTEM_CACHE_END 0xFFFFFA7FFFFFFFFFULL
28 #define MI_PFN_DATABASE 0xFFFFFA8000000000ULL // up to 5.5 TB PFN database followed by non paged pool [MiVaPfnDatabase/MiVaNonPagedPool]
29 #define MI_NONPAGED_POOL_END (PVOID)0xFFFFFFFFFFBFFFFFULL
30 //#define MM_HAL_VA_START 0xFFFFFFFFFFC00000ULL // 4 MB HAL mappings, defined in NDK [MiVaHal]
31 #define MI_HIGHEST_SYSTEM_ADDRESS (PVOID)0xFFFFFFFFFFFFFFFFULL
32 #define MmSystemRangeStart ((PVOID)MI_REAL_SYSTEM_RANGE_START)
33
34 /* WOW64 address definitions */
35 #define MM_HIGHEST_USER_ADDRESS_WOW64 0x7FFEFFFF
36 #define MM_SYSTEM_RANGE_START_WOW64 0x80000000
37
38 /* The size of the virtual memory area that is mapped using a single PDE */
39 #define PDE_MAPPED_VA (PTE_PER_PAGE * PAGE_SIZE)
40
41 /* Misc address definitions */
42 //#define MI_NON_PAGED_SYSTEM_START_MIN MM_SYSTEM_SPACE_START // FIXME
43 //#define MI_SYSTEM_PTE_START MM_SYSTEM_SPACE_START
44 //#define MI_SYSTEM_PTE_END (MI_SYSTEM_PTE_START + MI_NUMBER_SYSTEM_PTES * PAGE_SIZE - 1)
45 #define MI_SYSTEM_PTE_BASE (PVOID)MiAddressToPte(KSEG0_BASE)
46 #define MM_HIGHEST_VAD_ADDRESS (PVOID)((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (16 * PAGE_SIZE))
47 #define MI_MAPPING_RANGE_START HYPER_SPACE
48 #define MI_MAPPING_RANGE_END (MI_MAPPING_RANGE_START + MI_HYPERSPACE_PTES * PAGE_SIZE)
49 #define MI_DUMMY_PTE (MI_MAPPING_RANGE_END + PAGE_SIZE)
50 #define MI_VAD_BITMAP (MI_DUMMY_PTE + PAGE_SIZE)
51 #define MI_WORKING_SET_LIST (MI_VAD_BITMAP + PAGE_SIZE)
52
53 /* Memory sizes */
54 #define MI_MIN_PAGES_FOR_NONPAGED_POOL_TUNING ((255 * _1MB) >> PAGE_SHIFT)
55 #define MI_MIN_PAGES_FOR_SYSPTE_TUNING ((19 * _1MB) >> PAGE_SHIFT)
56 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST ((32 * _1MB) >> PAGE_SHIFT)
57 #define MI_MIN_PAGES_FOR_SYSPTE_BOOST_BOOST ((256 * _1MB) >> PAGE_SHIFT)
58 #define MI_MIN_INIT_PAGED_POOLSIZE (32 * _1MB)
59 #define MI_MAX_INIT_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
60 #define MI_MAX_NONPAGED_POOL_SIZE (128ULL * 1024 * 1024 * 1024)
61 #define MI_SYSTEM_VIEW_SIZE (512 * _1MB)
62 #define MI_SESSION_VIEW_SIZE (512 * _1MB)
63 #define MI_SESSION_POOL_SIZE (64 * _1MB)
64 #define MI_SESSION_IMAGE_SIZE (16 * _1MB)
65 #define MI_SESSION_WORKING_SET_SIZE (16 * _1MB)
66 #define MI_SESSION_SIZE (MI_SESSION_VIEW_SIZE + \
67 MI_SESSION_POOL_SIZE + \
68 MI_SESSION_IMAGE_SIZE + \
69 MI_SESSION_WORKING_SET_SIZE)
70 #define MI_MIN_ALLOCATION_FRAGMENT (4 * _1KB)
71 #define MI_ALLOCATION_FRAGMENT (64 * _1KB)
72 #define MI_MAX_ALLOCATION_FRAGMENT (2 * _1MB)
73
74 /* Misc constants */
75 #define MM_PTE_SOFTWARE_PROTECTION_BITS 5
76 #define MI_MIN_SECONDARY_COLORS 8
77 #define MI_SECONDARY_COLORS 64
78 #define MI_MAX_SECONDARY_COLORS 1024
79 #define MI_NUMBER_SYSTEM_PTES 22000
80 #define MI_MAX_FREE_PAGE_LISTS 4
81 #define MI_HYPERSPACE_PTES (256 - 1)
82 #define MI_ZERO_PTES (32)
83 #define MI_MAX_ZERO_BITS 53
84 #define SESSION_POOL_LOOKASIDES 21
85
86 /* MMPTE related defines */
87 #define MM_EMPTY_PTE_LIST ((ULONG64)0xFFFFFFFF)
88 #define MM_EMPTY_LIST ((ULONG_PTR)-1)
89
90
91 /* Easy accessing PFN in PTE */
92 #define PFN_FROM_PTE(v) ((v)->u.Hard.PageFrameNumber)
93 #define PFN_FROM_PDE(v) ((v)->u.Hard.PageFrameNumber)
94 #define PFN_FROM_PPE(v) ((v)->u.Hard.PageFrameNumber)
95 #define PFN_FROM_PXE(v) ((v)->u.Hard.PageFrameNumber)
96
97 /* Macros for portable PTE modification */
98 #define MI_MAKE_DIRTY_PAGE(x) ((x)->u.Hard.Dirty = 1)
99 #define MI_MAKE_CLEAN_PAGE(x) ((x)->u.Hard.Dirty = 0)
100 #define MI_MAKE_ACCESSED_PAGE(x) ((x)->u.Hard.Accessed = 1)
101 #define MI_PAGE_DISABLE_CACHE(x) ((x)->u.Hard.CacheDisable = 1)
102 #define MI_PAGE_WRITE_THROUGH(x) ((x)->u.Hard.WriteThrough = 1)
103 #define MI_PAGE_WRITE_COMBINED(x) ((x)->u.Hard.WriteThrough = 0)
104 #define MI_IS_PAGE_LARGE(x) ((x)->u.Hard.LargePage == 1)
105 #if !defined(CONFIG_SMP)
106 #define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Write == 1)
107 #else
108 #define MI_IS_PAGE_WRITEABLE(x) ((x)->u.Hard.Writable == 1)
109 #endif
110 #define MI_IS_PAGE_COPY_ON_WRITE(x)((x)->u.Hard.CopyOnWrite == 1)
111 #define MI_IS_PAGE_EXECUTABLE(x) ((x)->u.Hard.NoExecute == 0)
112 #define MI_IS_PAGE_DIRTY(x) ((x)->u.Hard.Dirty == 1)
113 #define MI_MAKE_OWNER_PAGE(x) ((x)->u.Hard.Owner = 1)
114 #if !defined(CONFIG_SMP)
115 #define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Write = 1)
116 #else
117 #define MI_MAKE_WRITE_PAGE(x) ((x)->u.Hard.Writable = 1)
118 #endif
119
120 /* Macros to identify the page fault reason from the error code */
121 #define MI_IS_NOT_PRESENT_FAULT(FaultCode) !BooleanFlagOn(FaultCode, 0x00000001)
122 #define MI_IS_WRITE_ACCESS(FaultCode) BooleanFlagOn(FaultCode, 0x00000002)
123 // 0x00000004: user-mode access.
124 // 0x00000008: reserved bit violation.
125 #define MI_IS_INSTRUCTION_FETCH(FaultCode) BooleanFlagOn(FaultCode, 0x00000010)
126 // 0x00000020: protection-key violation.
127 // 0x00000040: shadow-stack access.
128 // Bits 7-14: reserved.
129 // 0x00008000: violation of SGX-specific access-control requirements.
130 // Bits 16-31: reserved.
131
132 /* On x64, these are the same */
133 #define MI_WRITE_VALID_PPE MI_WRITE_VALID_PTE
134 #define ValidKernelPpe ValidKernelPde
135
136 /* Convert an address to a corresponding PTE */
137 FORCEINLINE
138 PMMPTE
_MiAddressToPte(PVOID Address)139 _MiAddressToPte(PVOID Address)
140 {
141 ULONG64 Offset = (ULONG64)Address >> (PTI_SHIFT - 3);
142 Offset &= 0xFFFFFFFFFULL << 3;
143 return (PMMPTE)(PTE_BASE + Offset);
144 }
145 #define MiAddressToPte(x) _MiAddressToPte((PVOID)(x))
146
147 /* Convert an address to a corresponding PDE */
148 FORCEINLINE
149 PMMPTE
_MiAddressToPde(PVOID Address)150 _MiAddressToPde(PVOID Address)
151 {
152 ULONG64 Offset = (ULONG64)Address >> (PDI_SHIFT - 3);
153 Offset &= 0x7FFFFFF << 3;
154 return (PMMPTE)(PDE_BASE + Offset);
155 }
156 #define MiAddressToPde(x) _MiAddressToPde((PVOID)(x))
157
158 /* Convert an address to a corresponding PPE */
159 FORCEINLINE
160 PMMPTE
MiAddressToPpe(PVOID Address)161 MiAddressToPpe(PVOID Address)
162 {
163 ULONG64 Offset = (ULONG64)Address >> (PPI_SHIFT - 3);
164 Offset &= 0x3FFFF << 3;
165 return (PMMPTE)(PPE_BASE + Offset);
166 }
167
168 /* Convert an address to a corresponding PXE */
169 FORCEINLINE
170 PMMPTE
MiAddressToPxe(PVOID Address)171 MiAddressToPxe(PVOID Address)
172 {
173 ULONG64 Offset = (ULONG64)Address >> (PXI_SHIFT - 3);
174 Offset &= PXI_MASK << 3;
175 return (PMMPTE)(PXE_BASE + Offset);
176 }
177
178 /* Convert an address to a corresponding PTE offset/index */
179 FORCEINLINE
180 ULONG
MiAddressToPti(PVOID Address)181 MiAddressToPti(PVOID Address)
182 {
183 return ((((ULONG64)Address) >> PTI_SHIFT) & 0x1FF);
184 }
185 #define MiAddressToPteOffset(x) MiAddressToPti(x) // FIXME: bad name
186
187 /* Convert an address to a corresponding PDE offset/index */
188 FORCEINLINE
189 ULONG
MiAddressToPdi(PVOID Address)190 MiAddressToPdi(PVOID Address)
191 {
192 return ((((ULONG64)Address) >> PDI_SHIFT) & 0x1FF);
193 }
194 #define MiAddressToPdeOffset(x) MiAddressToPdi(x)
195 #define MiGetPdeOffset(x) MiAddressToPdi(x)
196
197 /* Convert an address to a corresponding PXE offset/index */
198 FORCEINLINE
199 ULONG
MiAddressToPxi(PVOID Address)200 MiAddressToPxi(PVOID Address)
201 {
202 return ((((ULONG64)Address) >> PXI_SHIFT) & 0x1FF);
203 }
204
205 /* Convert a PTE into a corresponding address */
206 FORCEINLINE
207 PVOID
MiPteToAddress(PMMPTE PointerPte)208 MiPteToAddress(PMMPTE PointerPte)
209 {
210 /* Use signed math */
211 return (PVOID)(((LONG64)PointerPte << 25) >> 16);
212 }
213
214 /* Convert a PDE into a corresponding address */
215 FORCEINLINE
216 PVOID
MiPdeToAddress(PMMPTE PointerPde)217 MiPdeToAddress(PMMPTE PointerPde)
218 {
219 /* Use signed math */
220 return (PVOID)(((LONG64)PointerPde << 34) >> 16);
221 }
222
223 /* Convert a PPE into a corresponding address */
224 FORCEINLINE
225 PVOID
MiPpeToAddress(PMMPTE PointerPpe)226 MiPpeToAddress(PMMPTE PointerPpe)
227 {
228 /* Use signed math */
229 return (PVOID)(((LONG64)PointerPpe << 43) >> 16);
230 }
231
232 /* Convert a PXE into a corresponding address */
233 FORCEINLINE
234 PVOID
MiPxeToAddress(PMMPTE PointerPxe)235 MiPxeToAddress(PMMPTE PointerPxe)
236 {
237 /* Use signed math */
238 return (PVOID)(((LONG64)PointerPxe << 52) >> 16);
239 }
240
241 /* Convert a PDE into its lowest PTE */
242 FORCEINLINE
243 PMMPTE
MiPdeToPte(PMMPDE PointerPde)244 MiPdeToPte(PMMPDE PointerPde)
245 {
246 return (PMMPTE)MiPteToAddress(PointerPde);
247 }
248
249 /* Convert a PPE into its lowest PTE */
250 FORCEINLINE
251 PMMPTE
MiPpeToPte(PMMPPE PointerPpe)252 MiPpeToPte(PMMPPE PointerPpe)
253 {
254 return (PMMPTE)MiPdeToAddress(PointerPpe);
255 }
256
257 /* Convert a PXE into its lowest PTE */
258 FORCEINLINE
259 PMMPTE
MiPxeToPte(PMMPXE PointerPxe)260 MiPxeToPte(PMMPXE PointerPxe)
261 {
262 return (PMMPTE)MiPpeToAddress(PointerPxe);
263 }
264
265 /* Convert a PTE to a corresponding PDE */
266 FORCEINLINE
267 PMMPDE
MiPteToPde(PMMPTE PointerPte)268 MiPteToPde(PMMPTE PointerPte)
269 {
270 return (PMMPDE)MiAddressToPte(PointerPte);
271 }
272
273 /* Convert a PTE to a corresponding PPE */
274 FORCEINLINE
275 PMMPPE
MiPteToPpe(PMMPTE PointerPte)276 MiPteToPpe(PMMPTE PointerPte)
277 {
278 return (PMMPPE)MiAddressToPde(PointerPte);
279 }
280
281 /* Convert a PTE to a corresponding PXE */
282 FORCEINLINE
283 PMMPXE
MiPteToPxe(PMMPTE PointerPte)284 MiPteToPxe(PMMPTE PointerPte)
285 {
286 return (PMMPXE)MiAddressToPpe(PointerPte);
287 }
288
289 /* Convert a PDE to a corresponding PPE */
290 FORCEINLINE
291 PMMPDE
MiPdeToPpe(PMMPDE PointerPde)292 MiPdeToPpe(PMMPDE PointerPde)
293 {
294 return (PMMPPE)MiAddressToPte(PointerPde);
295 }
296
297 /* Convert a PDE to a corresponding PXE */
298 FORCEINLINE
299 PMMPXE
MiPdeToPxe(PMMPDE PointerPde)300 MiPdeToPxe(PMMPDE PointerPde)
301 {
302 return (PMMPXE)MiAddressToPde(PointerPde);
303 }
304
305 /* Check P*E boundaries */
306 #define MiIsPteOnPdeBoundary(PointerPte) \
307 ((((ULONG_PTR)PointerPte) & (PAGE_SIZE - 1)) == 0)
308 #define MiIsPteOnPpeBoundary(PointerPte) \
309 ((((ULONG_PTR)PointerPte) & (PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
310 #define MiIsPteOnPxeBoundary(PointerPte) \
311 ((((ULONG_PTR)PointerPte) & (PPE_PER_PAGE * PDE_PER_PAGE * PAGE_SIZE - 1)) == 0)
312
313 //
314 // Decodes a Prototype PTE into the underlying PTE
315 //
316 #define MiProtoPteToPte(x) \
317 (PMMPTE)(((LONG64)(x)->u.Long) >> 16) /* Sign extend 48 bits */
318
319 //
320 // Decodes a Prototype PTE into the underlying PTE
321 // The 48 bit signed value gets sign-extended to 64 bits.
322 //
323 #define MiSubsectionPteToSubsection(x) \
324 (PMMPTE)((LONG64)(x)->u.Subsect.SubsectionAddress)
325
326 FORCEINLINE
327 VOID
MI_MAKE_SUBSECTION_PTE(_Out_ PMMPTE NewPte,_In_ PVOID Segment)328 MI_MAKE_SUBSECTION_PTE(
329 _Out_ PMMPTE NewPte,
330 _In_ PVOID Segment)
331 {
332 /* Mark this as a prototype */
333 NewPte->u.Long = 0;
334 NewPte->u.Subsect.Prototype = 1;
335
336 /* Store the lower 48 bits of the Segment address */
337 NewPte->u.Subsect.SubsectionAddress = ((ULONG_PTR)Segment & 0x0000FFFFFFFFFFFF);
338 }
339
340 FORCEINLINE
341 VOID
MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,IN PMMPTE PointerPte)342 MI_MAKE_PROTOTYPE_PTE(IN PMMPTE NewPte,
343 IN PMMPTE PointerPte)
344 {
345 /* Store the Address */
346 NewPte->u.Long = (ULONG64)PointerPte << 16;
347
348 /* Mark this as a prototype PTE */
349 NewPte->u.Proto.Prototype = 1;
350
351 ASSERT(MiProtoPteToPte(NewPte) == PointerPte);
352 }
353
354 FORCEINLINE
355 BOOLEAN
MI_IS_MAPPED_PTE(PMMPTE PointerPte)356 MI_IS_MAPPED_PTE(PMMPTE PointerPte)
357 {
358 return ((PointerPte->u.Hard.Valid != 0) ||
359 (PointerPte->u.Proto.Prototype != 0) ||
360 (PointerPte->u.Trans.Transition != 0) ||
361 (PointerPte->u.Hard.PageFrameNumber != 0));
362 }
363
364 FORCEINLINE
365 BOOLEAN
MiIsPdeForAddressValid(PVOID Address)366 MiIsPdeForAddressValid(PVOID Address)
367 {
368 return ((MiAddressToPxe(Address)->u.Hard.Valid) &&
369 (MiAddressToPpe(Address)->u.Hard.Valid) &&
370 (MiAddressToPde(Address)->u.Hard.Valid));
371 }
372
373