1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15
16 #include "Config.h"
17 #include "lld/Common/LLVM.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/Compiler.h"
22 #include <tuple>
23
24 namespace lld {
25 namespace elf {
26 class Symbol;
27 }
28 // Returns a string representation for a symbol for diagnostics.
29 std::string toString(const elf::Symbol &);
30
31 namespace elf {
32 class CommonSymbol;
33 class Defined;
34 class OutputSection;
35 class SectionBase;
36 class InputSectionBase;
37 class SharedSymbol;
38 class Symbol;
39 class Undefined;
40 class LazyObject;
41 class InputFile;
42
43 void printTraceSymbol(const Symbol &sym, StringRef name);
44
45 enum {
46 NEEDS_GOT = 1 << 0,
47 NEEDS_PLT = 1 << 1,
48 HAS_DIRECT_RELOC = 1 << 2,
49 // True if this symbol needs a canonical PLT entry, or (during
50 // postScanRelocations) a copy relocation.
51 NEEDS_COPY = 1 << 3,
52 NEEDS_TLSDESC = 1 << 4,
53 NEEDS_TLSGD = 1 << 5,
54 NEEDS_TLSGD_TO_IE = 1 << 6,
55 NEEDS_GOT_DTPREL = 1 << 7,
56 NEEDS_TLSIE = 1 << 8,
57 };
58
59 // Some index properties of a symbol are stored separately in this auxiliary
60 // struct to decrease sizeof(SymbolUnion) in the majority of cases.
61 struct SymbolAux {
62 uint32_t gotIdx = -1;
63 uint32_t pltIdx = -1;
64 uint32_t tlsDescIdx = -1;
65 uint32_t tlsGdIdx = -1;
66 };
67
68 LLVM_LIBRARY_VISIBILITY extern SmallVector<SymbolAux, 0> symAux;
69
70 // The base class for real symbol classes.
71 class Symbol {
72 public:
73 enum Kind {
74 PlaceholderKind,
75 DefinedKind,
76 CommonKind,
77 SharedKind,
78 UndefinedKind,
79 LazyObjectKind,
80 };
81
kind()82 Kind kind() const { return static_cast<Kind>(symbolKind); }
83
84 // The file from which this symbol was created.
85 InputFile *file;
86
87 // The default copy constructor is deleted due to atomic flags. Define one for
88 // places where no atomic is needed.
Symbol(const Symbol & o)89 Symbol(const Symbol &o) { memcpy(this, &o, sizeof(o)); }
90
91 protected:
92 const char *nameData;
93 // 32-bit size saves space.
94 uint32_t nameSize;
95
96 public:
97 // The next three fields have the same meaning as the ELF symbol attributes.
98 // type and binding are placed in this order to optimize generating st_info,
99 // which is defined as (binding << 4) + (type & 0xf), on a little-endian
100 // system.
101 uint8_t type : 4; // symbol type
102
103 // Symbol binding. This is not overwritten by replace() to track
104 // changes during resolution. In particular:
105 // - An undefined weak is still weak when it resolves to a shared library.
106 // - An undefined weak will not extract archive members, but we have to
107 // remember it is weak.
108 uint8_t binding : 4;
109
110 uint8_t stOther; // st_other field value
111
112 uint8_t symbolKind;
113
114 // The partition whose dynamic symbol table contains this symbol's definition.
115 uint8_t partition;
116
117 // True if this symbol is preemptible at load time.
118 uint8_t isPreemptible : 1;
119
120 // True if the symbol was used for linking and thus need to be added to the
121 // output file's symbol table. This is true for all symbols except for
122 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
123 // are unreferenced except by other bitcode objects.
124 uint8_t isUsedInRegularObj : 1;
125
126 // True if an undefined or shared symbol is used from a live section.
127 //
128 // NOTE: In Writer.cpp the field is used to mark local defined symbols
129 // which are referenced by relocations when -r or --emit-relocs is given.
130 uint8_t used : 1;
131
132 // Used by a Defined symbol with protected or default visibility, to record
133 // whether it is required to be exported into .dynsym. This is set when any of
134 // the following conditions hold:
135 //
136 // - If there is an interposable symbol from a DSO. Note: We also do this for
137 // STV_PROTECTED symbols which can't be interposed (to match BFD behavior).
138 // - If -shared or --export-dynamic is specified, any symbol in an object
139 // file/bitcode sets this property, unless suppressed by LTO
140 // canBeOmittedFromSymbolTable().
141 uint8_t exportDynamic : 1;
142
143 // True if the symbol is in the --dynamic-list file. A Defined symbol with
144 // protected or default visibility with this property is required to be
145 // exported into .dynsym.
146 uint8_t inDynamicList : 1;
147
148 // Used to track if there has been at least one undefined reference to the
149 // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
150 // if the first undefined reference from a non-shared object is weak.
151 uint8_t referenced : 1;
152
153 // Used to track if this symbol will be referenced after wrapping is performed
154 // (i.e. this will be true for foo if __real_foo is referenced, and will be
155 // true for __wrap_foo if foo is referenced).
156 uint8_t referencedAfterWrap : 1;
157
158 // True if this symbol is specified by --trace-symbol option.
159 uint8_t traced : 1;
160
161 // True if the name contains '@'.
162 uint8_t hasVersionSuffix : 1;
163
164 // True if the .gnu.warning.SYMBOL is set for the symbol
165 uint8_t gwarn : 1;
166
167 // Symbol visibility. This is the computed minimum visibility of all
168 // observed non-DSO symbols.
visibility()169 uint8_t visibility() const { return stOther & 3; }
setVisibility(uint8_t visibility)170 void setVisibility(uint8_t visibility) {
171 stOther = (stOther & ~3) | visibility;
172 }
173
174 bool includeInDynsym() const;
175 uint8_t computeBinding() const;
isGlobal()176 bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; }
isWeak()177 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
178
isUndefined()179 bool isUndefined() const { return symbolKind == UndefinedKind; }
isCommon()180 bool isCommon() const { return symbolKind == CommonKind; }
isDefined()181 bool isDefined() const { return symbolKind == DefinedKind; }
isShared()182 bool isShared() const { return symbolKind == SharedKind; }
isPlaceholder()183 bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
184
isLocal()185 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
186
isLazy()187 bool isLazy() const { return symbolKind == LazyObjectKind; }
188
189 // True if this is an undefined weak symbol. This only works once
190 // all input files have been added.
isUndefWeak()191 bool isUndefWeak() const { return isWeak() && isUndefined(); }
192
getName()193 StringRef getName() const { return {nameData, nameSize}; }
194
setName(StringRef s)195 void setName(StringRef s) {
196 nameData = s.data();
197 nameSize = s.size();
198 }
199
200 void parseSymbolVersion();
201
202 // Get the NUL-terminated version suffix ("", "@...", or "@@...").
203 //
204 // For @@, the name has been truncated by insert(). For @, the name has been
205 // truncated by Symbol::parseSymbolVersion().
getVersionSuffix()206 const char *getVersionSuffix() const { return nameData + nameSize; }
207
getGotIdx()208 uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; }
getPltIdx()209 uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; }
getTlsDescIdx()210 uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; }
getTlsGdIdx()211 uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; }
212
isInGot()213 bool isInGot() const { return getGotIdx() != uint32_t(-1); }
isInPlt()214 bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
215
216 uint64_t getVA(int64_t addend = 0) const;
217
218 uint64_t getGotOffset() const;
219 uint64_t getGotVA() const;
220 uint64_t getGotPltOffset() const;
221 uint64_t getGotPltVA() const;
222 uint64_t getPltVA() const;
223 uint64_t getSize() const;
224 OutputSection *getOutputSection() const;
225
226 // The following two functions are used for symbol resolution.
227 //
228 // You are expected to call mergeProperties for all symbols in input
229 // files so that attributes that are attached to names rather than
230 // indivisual symbol (such as visibility) are merged together.
231 //
232 // Every time you read a new symbol from an input, you are supposed
233 // to call resolve() with the new symbol. That function replaces
234 // "this" object as a result of name resolution if the new symbol is
235 // more appropriate to be included in the output.
236 //
237 // For example, if "this" is an undefined symbol and a new symbol is
238 // a defined symbol, "this" is replaced with the new symbol.
239 void mergeProperties(const Symbol &other);
240 void resolve(const Undefined &other);
241 void resolve(const CommonSymbol &other);
242 void resolve(const Defined &other);
243 void resolve(const LazyObject &other);
244 void resolve(const SharedSymbol &other);
245
246 // If this is a lazy symbol, extract an input file and add the symbol
247 // in the file to the symbol table. Calling this function on
248 // non-lazy object causes a runtime error.
249 void extract() const;
250
251 void checkDuplicate(const Defined &other) const;
252
253 private:
254 bool shouldReplace(const Defined &other) const;
255
256 protected:
Symbol(Kind k,InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type)257 Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding,
258 uint8_t stOther, uint8_t type)
259 : file(file), nameData(name.data()), nameSize(name.size()), type(type),
260 binding(binding), stOther(stOther), symbolKind(k),
261 exportDynamic(false), gwarn(false) {}
262
overwrite(Symbol & sym,Kind k)263 void overwrite(Symbol &sym, Kind k) const {
264 if (sym.traced)
265 printTraceSymbol(*this, sym.getName());
266 sym.file = file;
267 sym.type = type;
268 sym.binding = binding;
269 sym.stOther = (stOther & ~3) | sym.visibility();
270 sym.symbolKind = k;
271 }
272
273 public:
274 // True if this symbol is in the Iplt sub-section of the Plt and the Igot
275 // sub-section of the .got.plt or .got.
276 uint8_t isInIplt : 1;
277
278 // True if this symbol needs a GOT entry and its GOT entry is actually in
279 // Igot. This will be true only for certain non-preemptible ifuncs.
280 uint8_t gotInIgot : 1;
281
282 // True if defined relative to a section discarded by ICF.
283 uint8_t folded : 1;
284
285 // True if a call to this symbol needs to be followed by a restore of the
286 // PPC64 toc pointer.
287 uint8_t needsTocRestore : 1;
288
289 // True if this symbol is defined by a symbol assignment or wrapped by --wrap.
290 //
291 // LTO shouldn't inline the symbol because it doesn't know the final content
292 // of the symbol.
293 uint8_t scriptDefined : 1;
294
295 // True if defined in a DSO as protected visibility.
296 uint8_t dsoProtected : 1;
297
298 // True if targeted by a range extension thunk.
299 uint8_t thunkAccessed : 1;
300
301 // Temporary flags used to communicate which symbol entries need PLT and GOT
302 // entries during postScanRelocations();
303 std::atomic<uint16_t> flags;
304
305 // A symAux index used to access GOT/PLT entry indexes. This is allocated in
306 // postScanRelocations().
307 uint32_t auxIdx;
308 uint32_t dynsymIndex;
309
310 // This field is a index to the symbol's version definition.
311 uint16_t verdefIndex;
312
313 // Version definition index.
314 uint16_t versionId;
315
setFlags(uint16_t bits)316 void setFlags(uint16_t bits) {
317 flags.fetch_or(bits, std::memory_order_relaxed);
318 }
hasFlag(uint16_t bit)319 bool hasFlag(uint16_t bit) const {
320 assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2");
321 return flags.load(std::memory_order_relaxed) & bit;
322 }
323
needsDynReloc()324 bool needsDynReloc() const {
325 return flags.load(std::memory_order_relaxed) &
326 (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD |
327 NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE);
328 }
allocateAux()329 void allocateAux() {
330 assert(auxIdx == 0);
331 auxIdx = symAux.size();
332 symAux.emplace_back();
333 }
334
isSection()335 bool isSection() const { return type == llvm::ELF::STT_SECTION; }
isTls()336 bool isTls() const { return type == llvm::ELF::STT_TLS; }
isFunc()337 bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
isGnuIFunc()338 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
isObject()339 bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
isFile()340 bool isFile() const { return type == llvm::ELF::STT_FILE; }
341 };
342
343 // Represents a symbol that is defined in the current output file.
344 class Defined : public Symbol {
345 public:
Defined(InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,SectionBase * section)346 Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
347 uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
348 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
349 size(size), section(section) {
350 exportDynamic = config->exportDynamic;
351 }
overwrite(Symbol & sym)352 void overwrite(Symbol &sym) const {
353 Symbol::overwrite(sym, DefinedKind);
354 sym.verdefIndex = -1;
355 auto &s = static_cast<Defined &>(sym);
356 s.value = value;
357 s.size = size;
358 s.section = section;
359 }
360
classof(const Symbol * s)361 static bool classof(const Symbol *s) { return s->isDefined(); }
362
363 uint64_t value;
364 uint64_t size;
365 SectionBase *section;
366 };
367
368 // Represents a common symbol.
369 //
370 // On Unix, it is traditionally allowed to write variable definitions
371 // without initialization expressions (such as "int foo;") to header
372 // files. Such definition is called "tentative definition".
373 //
374 // Using tentative definition is usually considered a bad practice
375 // because you should write only declarations (such as "extern int
376 // foo;") to header files. Nevertheless, the linker and the compiler
377 // have to do something to support bad code by allowing duplicate
378 // definitions for this particular case.
379 //
380 // Common symbols represent variable definitions without initializations.
381 // The compiler creates common symbols when it sees variable definitions
382 // without initialization (you can suppress this behavior and let the
383 // compiler create a regular defined symbol by -fno-common).
384 //
385 // The linker allows common symbols to be replaced by regular defined
386 // symbols. If there are remaining common symbols after name resolution is
387 // complete, they are converted to regular defined symbols in a .bss
388 // section. (Therefore, the later passes don't see any CommonSymbols.)
389 class CommonSymbol : public Symbol {
390 public:
CommonSymbol(InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t alignment,uint64_t size)391 CommonSymbol(InputFile *file, StringRef name, uint8_t binding,
392 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
393 : Symbol(CommonKind, file, name, binding, stOther, type),
394 alignment(alignment), size(size) {
395 exportDynamic = config->exportDynamic;
396 }
overwrite(Symbol & sym)397 void overwrite(Symbol &sym) const {
398 Symbol::overwrite(sym, CommonKind);
399 auto &s = static_cast<CommonSymbol &>(sym);
400 s.alignment = alignment;
401 s.size = size;
402 }
403
classof(const Symbol * s)404 static bool classof(const Symbol *s) { return s->isCommon(); }
405
406 uint32_t alignment;
407 uint64_t size;
408 };
409
410 class Undefined : public Symbol {
411 public:
412 Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
413 uint8_t type, uint32_t discardedSecIdx = 0)
Symbol(UndefinedKind,file,name,binding,stOther,type)414 : Symbol(UndefinedKind, file, name, binding, stOther, type),
415 discardedSecIdx(discardedSecIdx) {}
overwrite(Symbol & sym)416 void overwrite(Symbol &sym) const {
417 Symbol::overwrite(sym, UndefinedKind);
418 auto &s = static_cast<Undefined &>(sym);
419 s.discardedSecIdx = discardedSecIdx;
420 s.nonPrevailing = nonPrevailing;
421 }
422
classof(const Symbol * s)423 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
424
425 // The section index if in a discarded section, 0 otherwise.
426 uint32_t discardedSecIdx;
427 bool nonPrevailing = false;
428 };
429
430 class SharedSymbol : public Symbol {
431 public:
classof(const Symbol * s)432 static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
433
SharedSymbol(InputFile & file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,uint32_t alignment)434 SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
435 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
436 uint32_t alignment)
437 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
438 size(size), alignment(alignment) {
439 exportDynamic = true;
440 dsoProtected = visibility() == llvm::ELF::STV_PROTECTED;
441 // GNU ifunc is a mechanism to allow user-supplied functions to
442 // resolve PLT slot values at load-time. This is contrary to the
443 // regular symbol resolution scheme in which symbols are resolved just
444 // by name. Using this hook, you can program how symbols are solved
445 // for you program. For example, you can make "memcpy" to be resolved
446 // to a SSE-enabled version of memcpy only when a machine running the
447 // program supports the SSE instruction set.
448 //
449 // Naturally, such symbols should always be called through their PLT
450 // slots. What GNU ifunc symbols point to are resolver functions, and
451 // calling them directly doesn't make sense (unless you are writing a
452 // loader).
453 //
454 // For DSO symbols, we always call them through PLT slots anyway.
455 // So there's no difference between GNU ifunc and regular function
456 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
457 if (this->type == llvm::ELF::STT_GNU_IFUNC)
458 this->type = llvm::ELF::STT_FUNC;
459 }
overwrite(Symbol & sym)460 void overwrite(Symbol &sym) const {
461 Symbol::overwrite(sym, SharedKind);
462 auto &s = static_cast<SharedSymbol &>(sym);
463 s.dsoProtected = dsoProtected;
464 s.value = value;
465 s.size = size;
466 s.alignment = alignment;
467 }
468
469 uint64_t value; // st_value
470 uint64_t size; // st_size
471 uint32_t alignment;
472 };
473
474 // LazyObject symbols represent symbols in object files between --start-lib and
475 // --end-lib options. LLD also handles traditional archives as if all the files
476 // in the archive are surrounded by --start-lib and --end-lib.
477 //
478 // A special complication is the handling of weak undefined symbols. They should
479 // not load a file, but we have to remember we have seen both the weak undefined
480 // and the lazy. We represent that with a lazy symbol with a weak binding. This
481 // means that code looking for undefined symbols normally also has to take lazy
482 // symbols into consideration.
483 class LazyObject : public Symbol {
484 public:
LazyObject(InputFile & file)485 LazyObject(InputFile &file)
486 : Symbol(LazyObjectKind, &file, {}, llvm::ELF::STB_GLOBAL,
487 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
overwrite(Symbol & sym)488 void overwrite(Symbol &sym) const { Symbol::overwrite(sym, LazyObjectKind); }
489
classof(const Symbol * s)490 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
491 };
492
493 // Some linker-generated symbols need to be created as
494 // Defined symbols.
495 struct ElfSym {
496 // __bss_start
497 static Defined *bss;
498
499 // __data_start
500 static Defined *data;
501
502 // etext and _etext
503 static Defined *etext1;
504 static Defined *etext2;
505
506 // edata and _edata
507 static Defined *edata1;
508 static Defined *edata2;
509
510 // end and _end
511 static Defined *end1;
512 static Defined *end2;
513
514 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
515 // be at some offset from the base of the .got section, usually 0 or
516 // the end of the .got.
517 static Defined *globalOffsetTable;
518
519 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
520 static Defined *mipsGp;
521 static Defined *mipsGpDisp;
522 static Defined *mipsLocalGp;
523
524 // __rel{,a}_iplt_{start,end} symbols.
525 static Defined *relaIpltStart;
526 static Defined *relaIpltEnd;
527
528 // _TLS_MODULE_BASE_ on targets that support TLSDESC.
529 static Defined *tlsModuleBase;
530 };
531
532 // A buffer class that is large enough to hold any Symbol-derived
533 // object. We allocate memory using this class and instantiate a symbol
534 // using the placement new.
535
536 // It is important to keep the size of SymbolUnion small for performance and
537 // memory usage reasons. 64 bytes is a soft limit based on the size of Defined
538 // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp.
539 union SymbolUnion {
540 alignas(Defined) char a[sizeof(Defined)];
541 alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
542 alignas(Undefined) char c[sizeof(Undefined)];
543 alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
544 alignas(LazyObject) char e[sizeof(LazyObject)];
545 };
546
makeDefined(T &&...args)547 template <typename... T> Defined *makeDefined(T &&...args) {
548 auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate();
549 memset(sym, 0, sizeof(Symbol));
550 auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...);
551 return &s;
552 }
553
554 void reportDuplicate(const Symbol &sym, const InputFile *newFile,
555 InputSectionBase *errSec, uint64_t errOffset);
556 void maybeWarnUnorderableSymbol(const Symbol *sym);
557 bool computeIsPreemptible(const Symbol &sym);
558
559 extern llvm::DenseMap<StringRef, StringRef> gnuWarnings;
560
561 } // namespace elf
562 } // namespace lld
563
564 #endif
565