1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "util/format/u_format.h"
41 #include "compiler/nir_types.h"
42 #include "compiler/shader_enums.h"
43 #include "compiler/shader_info.h"
44 #define XXH_INLINE_ALL
45 #include "util/xxhash.h"
46 #include <stdio.h>
47 
48 #ifndef NDEBUG
49 #include "util/debug.h"
50 #endif /* NDEBUG */
51 
52 #include "nir_opcodes.h"
53 
54 #if defined(_WIN32) && !defined(snprintf)
55 #define snprintf _snprintf
56 #endif
57 
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61 
62 #define NIR_FALSE 0u
63 #define NIR_TRUE (~0u)
64 #define NIR_MAX_VEC_COMPONENTS 16
65 #define NIR_MAX_MATRIX_COLUMNS 4
66 #define NIR_STREAM_PACKED (1 << 8)
67 typedef uint16_t nir_component_mask_t;
68 
69 static inline bool
nir_num_components_valid(unsigned num_components)70 nir_num_components_valid(unsigned num_components)
71 {
72    return (num_components >= 1  &&
73            num_components <= 4) ||
74            num_components == 8  ||
75            num_components == 16;
76 }
77 
78 /** Defines a cast function
79  *
80  * This macro defines a cast function from in_type to out_type where
81  * out_type is some structure type that contains a field of type out_type.
82  *
83  * Note that you have to be a bit careful as the generated cast function
84  * destroys constness.
85  */
86 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
87                         type_field, type_value)         \
88 static inline out_type *                                \
89 name(const in_type *parent)                             \
90 {                                                       \
91    assert(parent && parent->type_field == type_value);  \
92    return exec_node_data(out_type, parent, field);      \
93 }
94 
95 struct nir_function;
96 struct nir_shader;
97 struct nir_instr;
98 struct nir_builder;
99 
100 
101 /**
102  * Description of built-in state associated with a uniform
103  *
104  * \sa nir_variable::state_slots
105  */
106 typedef struct {
107    gl_state_index16 tokens[STATE_LENGTH];
108    uint16_t swizzle;
109 } nir_state_slot;
110 
111 typedef enum {
112    nir_var_shader_in       = (1 << 0),
113    nir_var_shader_out      = (1 << 1),
114    nir_var_shader_temp     = (1 << 2),
115    nir_var_function_temp   = (1 << 3),
116    nir_var_uniform         = (1 << 4),
117    nir_var_mem_ubo         = (1 << 5),
118    nir_var_system_value    = (1 << 6),
119    nir_var_mem_ssbo        = (1 << 7),
120    nir_var_mem_shared      = (1 << 8),
121    nir_var_mem_global      = (1 << 9),
122    nir_var_mem_push_const  = (1 << 10), /* not actually used for variables */
123    nir_num_variable_modes  = 11,
124    nir_var_all             = (1 << nir_num_variable_modes) - 1,
125 } nir_variable_mode;
126 
127 /**
128  * Rounding modes.
129  */
130 typedef enum {
131    nir_rounding_mode_undef = 0,
132    nir_rounding_mode_rtne  = 1, /* round to nearest even */
133    nir_rounding_mode_ru    = 2, /* round up */
134    nir_rounding_mode_rd    = 3, /* round down */
135    nir_rounding_mode_rtz   = 4, /* round towards zero */
136 } nir_rounding_mode;
137 
138 typedef union {
139    bool b;
140    float f32;
141    double f64;
142    int8_t i8;
143    uint8_t u8;
144    int16_t i16;
145    uint16_t u16;
146    int32_t i32;
147    uint32_t u32;
148    int64_t i64;
149    uint64_t u64;
150 } nir_const_value;
151 
152 #define nir_const_value_to_array(arr, c, components, m) \
153 { \
154    for (unsigned i = 0; i < components; ++i) \
155       arr[i] = c[i].m; \
156 } while (false)
157 
158 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)159 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
160 {
161    nir_const_value v;
162    memset(&v, 0, sizeof(v));
163 
164    switch (bit_size) {
165    case 1:  v.b   = x;  break;
166    case 8:  v.u8  = x;  break;
167    case 16: v.u16 = x;  break;
168    case 32: v.u32 = x;  break;
169    case 64: v.u64 = x;  break;
170    default:
171       unreachable("Invalid bit size");
172    }
173 
174    return v;
175 }
176 
177 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)178 nir_const_value_for_int(int64_t i, unsigned bit_size)
179 {
180    nir_const_value v;
181    memset(&v, 0, sizeof(v));
182 
183    assert(bit_size <= 64);
184    if (bit_size < 64) {
185       assert(i >= (-(1ll << (bit_size - 1))));
186       assert(i < (1ll << (bit_size - 1)));
187    }
188 
189    return nir_const_value_for_raw_uint(i, bit_size);
190 }
191 
192 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)193 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
194 {
195    nir_const_value v;
196    memset(&v, 0, sizeof(v));
197 
198    assert(bit_size <= 64);
199    if (bit_size < 64)
200       assert(u < (1ull << bit_size));
201 
202    return nir_const_value_for_raw_uint(u, bit_size);
203 }
204 
205 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)206 nir_const_value_for_bool(bool b, unsigned bit_size)
207 {
208    /* Booleans use a 0/-1 convention */
209    return nir_const_value_for_int(-(int)b, bit_size);
210 }
211 
212 /* This one isn't inline because it requires half-float conversion */
213 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
214 
215 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)216 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
217 {
218    switch (bit_size) {
219    /* int1_t uses 0/-1 convention */
220    case 1:  return -(int)value.b;
221    case 8:  return value.i8;
222    case 16: return value.i16;
223    case 32: return value.i32;
224    case 64: return value.i64;
225    default:
226       unreachable("Invalid bit size");
227    }
228 }
229 
230 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)231 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
232 {
233    switch (bit_size) {
234    case 1:  return value.b;
235    case 8:  return value.u8;
236    case 16: return value.u16;
237    case 32: return value.u32;
238    case 64: return value.u64;
239    default:
240       unreachable("Invalid bit size");
241    }
242 }
243 
244 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)245 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
246 {
247    int64_t i = nir_const_value_as_int(value, bit_size);
248 
249    /* Booleans of any size use 0/-1 convention */
250    assert(i == 0 || i == -1);
251 
252    return i;
253 }
254 
255 /* This one isn't inline because it requires half-float conversion */
256 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
257 
258 typedef struct nir_constant {
259    /**
260     * Value of the constant.
261     *
262     * The field used to back the values supplied by the constant is determined
263     * by the type associated with the \c nir_variable.  Constants may be
264     * scalars, vectors, or matrices.
265     */
266    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
267 
268    /* we could get this from the var->type but makes clone *much* easier to
269     * not have to care about the type.
270     */
271    unsigned num_elements;
272 
273    /* Array elements / Structure Fields */
274    struct nir_constant **elements;
275 } nir_constant;
276 
277 /**
278  * \brief Layout qualifiers for gl_FragDepth.
279  *
280  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
281  * with a layout qualifier.
282  */
283 typedef enum {
284     nir_depth_layout_none, /**< No depth layout is specified. */
285     nir_depth_layout_any,
286     nir_depth_layout_greater,
287     nir_depth_layout_less,
288     nir_depth_layout_unchanged
289 } nir_depth_layout;
290 
291 /**
292  * Enum keeping track of how a variable was declared.
293  */
294 typedef enum {
295    /**
296     * Normal declaration.
297     */
298    nir_var_declared_normally = 0,
299 
300    /**
301     * Variable is implicitly generated by the compiler and should not be
302     * visible via the API.
303     */
304    nir_var_hidden,
305 } nir_var_declaration_type;
306 
307 /**
308  * Either a uniform, global variable, shader input, or shader output. Based on
309  * ir_variable - it should be easy to translate between the two.
310  */
311 
312 typedef struct nir_variable {
313    struct exec_node node;
314 
315    /**
316     * Declared type of the variable
317     */
318    const struct glsl_type *type;
319 
320    /**
321     * Declared name of the variable
322     */
323    char *name;
324 
325    struct nir_variable_data {
326       /**
327        * Storage class of the variable.
328        *
329        * \sa nir_variable_mode
330        */
331       nir_variable_mode mode:11;
332 
333       /**
334        * Is the variable read-only?
335        *
336        * This is set for variables declared as \c const, shader inputs,
337        * and uniforms.
338        */
339       unsigned read_only:1;
340       unsigned centroid:1;
341       unsigned sample:1;
342       unsigned patch:1;
343       unsigned invariant:1;
344 
345      /**
346        * Precision qualifier.
347        *
348        * In desktop GLSL we do not care about precision qualifiers at all, in
349        * fact, the spec says that precision qualifiers are ignored.
350        *
351        * To make things easy, we make it so that this field is always
352        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
353        * have the same precision value and the checks we add in the compiler
354        * for this field will never break a desktop shader compile.
355        */
356       unsigned precision:2;
357 
358       /**
359        * Can this variable be coalesced with another?
360        *
361        * This is set by nir_lower_io_to_temporaries to say that any
362        * copies involving this variable should stay put. Propagating it can
363        * duplicate the resulting load/store, which is not wanted, and may
364        * result in a load/store of the variable with an indirect offset which
365        * the backend may not be able to handle.
366        */
367       unsigned cannot_coalesce:1;
368 
369       /**
370        * When separate shader programs are enabled, only input/outputs between
371        * the stages of a multi-stage separate program can be safely removed
372        * from the shader interface. Other input/outputs must remains active.
373        *
374        * This is also used to make sure xfb varyings that are unused by the
375        * fragment shader are not removed.
376        */
377       unsigned always_active_io:1;
378 
379       /**
380        * Interpolation mode for shader inputs / outputs
381        *
382        * \sa glsl_interp_mode
383        */
384       unsigned interpolation:3;
385 
386       /**
387        * If non-zero, then this variable may be packed along with other variables
388        * into a single varying slot, so this offset should be applied when
389        * accessing components.  For example, an offset of 1 means that the x
390        * component of this variable is actually stored in component y of the
391        * location specified by \c location.
392        */
393       unsigned location_frac:2;
394 
395       /**
396        * If true, this variable represents an array of scalars that should
397        * be tightly packed.  In other words, consecutive array elements
398        * should be stored one component apart, rather than one slot apart.
399        */
400       unsigned compact:1;
401 
402       /**
403        * Whether this is a fragment shader output implicitly initialized with
404        * the previous contents of the specified render target at the
405        * framebuffer location corresponding to this shader invocation.
406        */
407       unsigned fb_fetch_output:1;
408 
409       /**
410        * Non-zero if this variable is considered bindless as defined by
411        * ARB_bindless_texture.
412        */
413       unsigned bindless:1;
414 
415       /**
416        * Was an explicit binding set in the shader?
417        */
418       unsigned explicit_binding:1;
419 
420       /**
421        * Was the location explicitly set in the shader?
422        *
423        * If the location is explicitly set in the shader, it \b cannot be changed
424        * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
425        * no effect).
426        */
427       unsigned explicit_location:1;
428 
429       /**
430        * Was a transfer feedback buffer set in the shader?
431        */
432       unsigned explicit_xfb_buffer:1;
433 
434       /**
435        * Was a transfer feedback stride set in the shader?
436        */
437       unsigned explicit_xfb_stride:1;
438 
439       /**
440        * Was an explicit offset set in the shader?
441        */
442       unsigned explicit_offset:1;
443 
444       /**
445        * Layout of the matrix.  Uses glsl_matrix_layout values.
446        */
447       unsigned matrix_layout:2;
448 
449       /**
450        * Non-zero if this variable was created by lowering a named interface
451        * block.
452        */
453       unsigned from_named_ifc_block:1;
454 
455       /**
456        * How the variable was declared.  See nir_var_declaration_type.
457        *
458        * This is used to detect variables generated by the compiler, so should
459        * not be visible via the API.
460        */
461       unsigned how_declared:2;
462 
463       /**
464        * Is this variable per-view?  If so, we know it must be an array with
465        * size corresponding to the number of views.
466        */
467       unsigned per_view:1;
468 
469       /**
470        * \brief Layout qualifier for gl_FragDepth.
471        *
472        * This is not equal to \c ir_depth_layout_none if and only if this
473        * variable is \c gl_FragDepth and a layout qualifier is specified.
474        */
475       nir_depth_layout depth_layout:3;
476 
477       /**
478        * Vertex stream output identifier.
479        *
480        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
481        * indicate the stream of the i-th component.
482        */
483       unsigned stream:9;
484 
485       /**
486        * Access flags for memory variables (SSBO/global), image uniforms, and
487        * bindless images in uniforms/inputs/outputs.
488        */
489       enum gl_access_qualifier access:8;
490 
491       /**
492        * Descriptor set binding for sampler or UBO.
493        */
494       unsigned descriptor_set:5;
495 
496       /**
497        * output index for dual source blending.
498        */
499       unsigned index;
500 
501       /**
502        * Initial binding point for a sampler or UBO.
503        *
504        * For array types, this represents the binding point for the first element.
505        */
506       unsigned binding;
507 
508       /**
509        * Storage location of the base of this variable
510        *
511        * The precise meaning of this field depends on the nature of the variable.
512        *
513        *   - Vertex shader input: one of the values from \c gl_vert_attrib.
514        *   - Vertex shader output: one of the values from \c gl_varying_slot.
515        *   - Geometry shader input: one of the values from \c gl_varying_slot.
516        *   - Geometry shader output: one of the values from \c gl_varying_slot.
517        *   - Fragment shader input: one of the values from \c gl_varying_slot.
518        *   - Fragment shader output: one of the values from \c gl_frag_result.
519        *   - Uniforms: Per-stage uniform slot number for default uniform block.
520        *   - Uniforms: Index within the uniform block definition for UBO members.
521        *   - Non-UBO Uniforms: uniform slot number.
522        *   - Other: This field is not currently used.
523        *
524        * If the variable is a uniform, shader input, or shader output, and the
525        * slot has not been assigned, the value will be -1.
526        */
527       int location;
528 
529       /**
530        * The actual location of the variable in the IR. Only valid for inputs,
531        * outputs, and uniforms (including samplers and images).
532        */
533       unsigned driver_location;
534 
535       /**
536        * Location an atomic counter or transform feedback is stored at.
537        */
538       unsigned offset;
539 
540       union {
541          struct {
542             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
543             enum pipe_format format;
544          } image;
545 
546          struct {
547             /**
548              * Transform feedback buffer.
549              */
550             uint16_t buffer:2;
551 
552             /**
553              * Transform feedback stride.
554              */
555             uint16_t stride;
556          } xfb;
557       };
558    } data;
559 
560    /**
561     * Identifier for this variable generated by nir_index_vars() that is unique
562     * among other variables in the same exec_list.
563     */
564    unsigned index;
565 
566    /* Number of nir_variable_data members */
567    uint16_t num_members;
568 
569    /**
570     * Built-in state that backs this uniform
571     *
572     * Once set at variable creation, \c state_slots must remain invariant.
573     * This is because, ideally, this array would be shared by all clones of
574     * this variable in the IR tree.  In other words, we'd really like for it
575     * to be a fly-weight.
576     *
577     * If the variable is not a uniform, \c num_state_slots will be zero and
578     * \c state_slots will be \c NULL.
579     */
580    /*@{*/
581    uint16_t num_state_slots;    /**< Number of state slots used */
582    nir_state_slot *state_slots;  /**< State descriptors. */
583    /*@}*/
584 
585    /**
586     * Constant expression assigned in the initializer of the variable
587     *
588     * This field should only be used temporarily by creators of NIR shaders
589     * and then lower_constant_initializers can be used to get rid of them.
590     * Most of the rest of NIR ignores this field or asserts that it's NULL.
591     */
592    nir_constant *constant_initializer;
593 
594    /**
595     * Global variable assigned in the initializer of the variable
596     * This field should only be used temporarily by creators of NIR shaders
597     * and then lower_constant_initializers can be used to get rid of them.
598     * Most of the rest of NIR ignores this field or asserts that it's NULL.
599     */
600    struct nir_variable *pointer_initializer;
601 
602    /**
603     * For variables that are in an interface block or are an instance of an
604     * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
605     *
606     * \sa ir_variable::location
607     */
608    const struct glsl_type *interface_type;
609 
610    /**
611     * Description of per-member data for per-member struct variables
612     *
613     * This is used for variables which are actually an amalgamation of
614     * multiple entities such as a struct of built-in values or a struct of
615     * inputs each with their own layout specifier.  This is only allowed on
616     * variables with a struct or array of array of struct type.
617     */
618    struct nir_variable_data *members;
619 } nir_variable;
620 
621 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)622 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
623 {
624    /* This isn't a shader variable */
625    assert(!(modes & nir_var_function_temp));
626    return var->data.mode & modes;
627 }
628 
629 #define nir_foreach_variable_in_list(var, var_list) \
630    foreach_list_typed(nir_variable, var, node, var_list)
631 
632 #define nir_foreach_variable_in_list_safe(var, var_list) \
633    foreach_list_typed_safe(nir_variable, var, node, var_list)
634 
635 #define nir_foreach_variable_in_shader(var, shader) \
636    nir_foreach_variable_in_list(var, &(shader)->variables)
637 
638 #define nir_foreach_variable_in_shader_safe(var, shader) \
639    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
640 
641 #define nir_foreach_variable_with_modes(var, shader, modes) \
642    nir_foreach_variable_in_shader(var, shader) \
643       if (_nir_shader_variable_has_mode(var, modes))
644 
645 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
646    nir_foreach_variable_in_shader_safe(var, shader) \
647       if (_nir_shader_variable_has_mode(var, modes))
648 
649 #define nir_foreach_shader_in_variable(var, shader) \
650    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
651 
652 #define nir_foreach_shader_in_variable_safe(var, shader) \
653    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
654 
655 #define nir_foreach_shader_out_variable(var, shader) \
656    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
657 
658 #define nir_foreach_shader_out_variable_safe(var, shader) \
659    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
660 
661 #define nir_foreach_uniform_variable(var, shader) \
662    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
663 
664 #define nir_foreach_uniform_variable_safe(var, shader) \
665    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
666 
667 static inline bool
nir_variable_is_global(const nir_variable * var)668 nir_variable_is_global(const nir_variable *var)
669 {
670    return var->data.mode != nir_var_function_temp;
671 }
672 
673 typedef struct nir_register {
674    struct exec_node node;
675 
676    unsigned num_components; /** < number of vector components */
677    unsigned num_array_elems; /** < size of array (0 for no array) */
678 
679    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
680    uint8_t bit_size;
681 
682    /** generic register index. */
683    unsigned index;
684 
685    /** only for debug purposes, can be NULL */
686    const char *name;
687 
688    /** set of nir_srcs where this register is used (read from) */
689    struct list_head uses;
690 
691    /** set of nir_dests where this register is defined (written to) */
692    struct list_head defs;
693 
694    /** set of nir_ifs where this register is used as a condition */
695    struct list_head if_uses;
696 } nir_register;
697 
698 #define nir_foreach_register(reg, reg_list) \
699    foreach_list_typed(nir_register, reg, node, reg_list)
700 #define nir_foreach_register_safe(reg, reg_list) \
701    foreach_list_typed_safe(nir_register, reg, node, reg_list)
702 
703 typedef enum PACKED {
704    nir_instr_type_alu,
705    nir_instr_type_deref,
706    nir_instr_type_call,
707    nir_instr_type_tex,
708    nir_instr_type_intrinsic,
709    nir_instr_type_load_const,
710    nir_instr_type_jump,
711    nir_instr_type_ssa_undef,
712    nir_instr_type_phi,
713    nir_instr_type_parallel_copy,
714 } nir_instr_type;
715 
716 typedef struct nir_instr {
717    struct exec_node node;
718    struct nir_block *block;
719    nir_instr_type type;
720 
721    /* A temporary for optimization and analysis passes to use for storing
722     * flags.  For instance, DCE uses this to store the "dead/live" info.
723     */
724    uint8_t pass_flags;
725 
726    /** generic instruction index. */
727    unsigned index;
728 } nir_instr;
729 
730 static inline nir_instr *
nir_instr_next(nir_instr * instr)731 nir_instr_next(nir_instr *instr)
732 {
733    struct exec_node *next = exec_node_get_next(&instr->node);
734    if (exec_node_is_tail_sentinel(next))
735       return NULL;
736    else
737       return exec_node_data(nir_instr, next, node);
738 }
739 
740 static inline nir_instr *
nir_instr_prev(nir_instr * instr)741 nir_instr_prev(nir_instr *instr)
742 {
743    struct exec_node *prev = exec_node_get_prev(&instr->node);
744    if (exec_node_is_head_sentinel(prev))
745       return NULL;
746    else
747       return exec_node_data(nir_instr, prev, node);
748 }
749 
750 static inline bool
nir_instr_is_first(const nir_instr * instr)751 nir_instr_is_first(const nir_instr *instr)
752 {
753    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
754 }
755 
756 static inline bool
nir_instr_is_last(const nir_instr * instr)757 nir_instr_is_last(const nir_instr *instr)
758 {
759    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
760 }
761 
762 typedef struct nir_ssa_def {
763    /** for debugging only, can be NULL */
764    const char* name;
765 
766    /** generic SSA definition index. */
767    unsigned index;
768 
769    /** Index into the live_in and live_out bitfields */
770    unsigned live_index;
771 
772    /** Instruction which produces this SSA value. */
773    nir_instr *parent_instr;
774 
775    /** set of nir_instrs where this register is used (read from) */
776    struct list_head uses;
777 
778    /** set of nir_ifs where this register is used as a condition */
779    struct list_head if_uses;
780 
781    uint8_t num_components;
782 
783    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
784    uint8_t bit_size;
785 
786    /**
787     * True if this SSA value may have different values in different SIMD
788     * invocations of the shader.  This is set by nir_divergence_analysis.
789     */
790    bool divergent;
791 } nir_ssa_def;
792 
793 struct nir_src;
794 
795 typedef struct {
796    nir_register *reg;
797    struct nir_src *indirect; /** < NULL for no indirect offset */
798    unsigned base_offset;
799 
800    /* TODO use-def chain goes here */
801 } nir_reg_src;
802 
803 typedef struct {
804    nir_instr *parent_instr;
805    struct list_head def_link;
806 
807    nir_register *reg;
808    struct nir_src *indirect; /** < NULL for no indirect offset */
809    unsigned base_offset;
810 
811    /* TODO def-use chain goes here */
812 } nir_reg_dest;
813 
814 struct nir_if;
815 
816 typedef struct nir_src {
817    union {
818       /** Instruction that consumes this value as a source. */
819       nir_instr *parent_instr;
820       struct nir_if *parent_if;
821    };
822 
823    struct list_head use_link;
824 
825    union {
826       nir_reg_src reg;
827       nir_ssa_def *ssa;
828    };
829 
830    bool is_ssa;
831 } nir_src;
832 
833 static inline nir_src
nir_src_init(void)834 nir_src_init(void)
835 {
836    nir_src src = { { NULL } };
837    return src;
838 }
839 
840 #define NIR_SRC_INIT nir_src_init()
841 
842 #define nir_foreach_use(src, reg_or_ssa_def) \
843    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
844 
845 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
846    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
847 
848 #define nir_foreach_if_use(src, reg_or_ssa_def) \
849    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
850 
851 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
852    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
853 
854 typedef struct {
855    union {
856       nir_reg_dest reg;
857       nir_ssa_def ssa;
858    };
859 
860    bool is_ssa;
861 } nir_dest;
862 
863 static inline nir_dest
nir_dest_init(void)864 nir_dest_init(void)
865 {
866    nir_dest dest = { { { NULL } } };
867    return dest;
868 }
869 
870 #define NIR_DEST_INIT nir_dest_init()
871 
872 #define nir_foreach_def(dest, reg) \
873    list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
874 
875 #define nir_foreach_def_safe(dest, reg) \
876    list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
877 
878 static inline nir_src
nir_src_for_ssa(nir_ssa_def * def)879 nir_src_for_ssa(nir_ssa_def *def)
880 {
881    nir_src src = NIR_SRC_INIT;
882 
883    src.is_ssa = true;
884    src.ssa = def;
885 
886    return src;
887 }
888 
889 static inline nir_src
nir_src_for_reg(nir_register * reg)890 nir_src_for_reg(nir_register *reg)
891 {
892    nir_src src = NIR_SRC_INIT;
893 
894    src.is_ssa = false;
895    src.reg.reg = reg;
896    src.reg.indirect = NULL;
897    src.reg.base_offset = 0;
898 
899    return src;
900 }
901 
902 static inline nir_dest
nir_dest_for_reg(nir_register * reg)903 nir_dest_for_reg(nir_register *reg)
904 {
905    nir_dest dest = NIR_DEST_INIT;
906 
907    dest.reg.reg = reg;
908 
909    return dest;
910 }
911 
912 static inline unsigned
nir_src_bit_size(nir_src src)913 nir_src_bit_size(nir_src src)
914 {
915    return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
916 }
917 
918 static inline unsigned
nir_src_num_components(nir_src src)919 nir_src_num_components(nir_src src)
920 {
921    return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
922 }
923 
924 static inline bool
nir_src_is_const(nir_src src)925 nir_src_is_const(nir_src src)
926 {
927    return src.is_ssa &&
928           src.ssa->parent_instr->type == nir_instr_type_load_const;
929 }
930 
931 static inline bool
nir_src_is_divergent(nir_src src)932 nir_src_is_divergent(nir_src src)
933 {
934    assert(src.is_ssa);
935    return src.ssa->divergent;
936 }
937 
938 static inline unsigned
nir_dest_bit_size(nir_dest dest)939 nir_dest_bit_size(nir_dest dest)
940 {
941    return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
942 }
943 
944 static inline unsigned
nir_dest_num_components(nir_dest dest)945 nir_dest_num_components(nir_dest dest)
946 {
947    return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
948 }
949 
950 static inline bool
nir_dest_is_divergent(nir_dest dest)951 nir_dest_is_divergent(nir_dest dest)
952 {
953    assert(dest.is_ssa);
954    return dest.ssa.divergent;
955 }
956 
957 /* Are all components the same, ie. .xxxx */
958 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)959 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
960 {
961    for (unsigned i = 1; i < nr_comp; i++)
962       if (swiz[i] != swiz[0])
963          return false;
964    return true;
965 }
966 
967 /* Are all components sequential, ie. .yzw */
968 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)969 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
970 {
971    for (unsigned i = 1; i < nr_comp; i++)
972       if (swiz[i] != (swiz[0] + i))
973          return false;
974    return true;
975 }
976 
977 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
978 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
979 
980 typedef struct {
981    nir_src src;
982 
983    /**
984     * \name input modifiers
985     */
986    /*@{*/
987    /**
988     * For inputs interpreted as floating point, flips the sign bit. For
989     * inputs interpreted as integers, performs the two's complement negation.
990     */
991    bool negate;
992 
993    /**
994     * Clears the sign bit for floating point values, and computes the integer
995     * absolute value for integers. Note that the negate modifier acts after
996     * the absolute value modifier, therefore if both are set then all inputs
997     * will become negative.
998     */
999    bool abs;
1000    /*@}*/
1001 
1002    /**
1003     * For each input component, says which component of the register it is
1004     * chosen from. Note that which elements of the swizzle are used and which
1005     * are ignored are based on the write mask for most opcodes - for example,
1006     * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1007     * a swizzle of {2, x, 1, 0} where x means "don't care."
1008     */
1009    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1010 } nir_alu_src;
1011 
1012 typedef struct {
1013    nir_dest dest;
1014 
1015    /**
1016     * \name saturate output modifier
1017     *
1018     * Only valid for opcodes that output floating-point numbers. Clamps the
1019     * output to between 0.0 and 1.0 inclusive.
1020     */
1021 
1022    bool saturate;
1023 
1024    unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1025 } nir_alu_dest;
1026 
1027 /** NIR sized and unsized types
1028  *
1029  * The values in this enum are carefully chosen so that the sized type is
1030  * just the unsized type OR the number of bits.
1031  */
1032 typedef enum PACKED {
1033    nir_type_invalid = 0, /* Not a valid type */
1034    nir_type_int =       2,
1035    nir_type_uint =      4,
1036    nir_type_bool =      6,
1037    nir_type_float =     128,
1038    nir_type_bool1 =     1  | nir_type_bool,
1039    nir_type_bool8 =     8  | nir_type_bool,
1040    nir_type_bool16 =    16 | nir_type_bool,
1041    nir_type_bool32 =    32 | nir_type_bool,
1042    nir_type_int1 =      1  | nir_type_int,
1043    nir_type_int8 =      8  | nir_type_int,
1044    nir_type_int16 =     16 | nir_type_int,
1045    nir_type_int32 =     32 | nir_type_int,
1046    nir_type_int64 =     64 | nir_type_int,
1047    nir_type_uint1 =     1  | nir_type_uint,
1048    nir_type_uint8 =     8  | nir_type_uint,
1049    nir_type_uint16 =    16 | nir_type_uint,
1050    nir_type_uint32 =    32 | nir_type_uint,
1051    nir_type_uint64 =    64 | nir_type_uint,
1052    nir_type_float16 =   16 | nir_type_float,
1053    nir_type_float32 =   32 | nir_type_float,
1054    nir_type_float64 =   64 | nir_type_float,
1055 } nir_alu_type;
1056 
1057 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1058 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1059 
1060 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1061 nir_alu_type_get_type_size(nir_alu_type type)
1062 {
1063    return type & NIR_ALU_TYPE_SIZE_MASK;
1064 }
1065 
1066 static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1067 nir_alu_type_get_base_type(nir_alu_type type)
1068 {
1069    return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1070 }
1071 
1072 static inline nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)1073 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1074 {
1075    switch (base_type) {
1076    case GLSL_TYPE_BOOL:
1077       return nir_type_bool1;
1078       break;
1079    case GLSL_TYPE_UINT:
1080       return nir_type_uint32;
1081       break;
1082    case GLSL_TYPE_INT:
1083       return nir_type_int32;
1084       break;
1085    case GLSL_TYPE_UINT16:
1086       return nir_type_uint16;
1087       break;
1088    case GLSL_TYPE_INT16:
1089       return nir_type_int16;
1090       break;
1091    case GLSL_TYPE_UINT8:
1092       return nir_type_uint8;
1093    case GLSL_TYPE_INT8:
1094       return nir_type_int8;
1095    case GLSL_TYPE_UINT64:
1096       return nir_type_uint64;
1097       break;
1098    case GLSL_TYPE_INT64:
1099       return nir_type_int64;
1100       break;
1101    case GLSL_TYPE_FLOAT:
1102       return nir_type_float32;
1103       break;
1104    case GLSL_TYPE_FLOAT16:
1105       return nir_type_float16;
1106       break;
1107    case GLSL_TYPE_DOUBLE:
1108       return nir_type_float64;
1109       break;
1110 
1111    case GLSL_TYPE_SAMPLER:
1112    case GLSL_TYPE_IMAGE:
1113    case GLSL_TYPE_ATOMIC_UINT:
1114    case GLSL_TYPE_STRUCT:
1115    case GLSL_TYPE_INTERFACE:
1116    case GLSL_TYPE_ARRAY:
1117    case GLSL_TYPE_VOID:
1118    case GLSL_TYPE_SUBROUTINE:
1119    case GLSL_TYPE_FUNCTION:
1120    case GLSL_TYPE_ERROR:
1121       return nir_type_invalid;
1122    }
1123 
1124    unreachable("unknown type");
1125 }
1126 
1127 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1128 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1129 {
1130    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1131 }
1132 
1133 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1134                               nir_rounding_mode rnd);
1135 
1136 static inline nir_op
nir_op_vec(unsigned components)1137 nir_op_vec(unsigned components)
1138 {
1139    switch (components) {
1140    case  1: return nir_op_mov;
1141    case  2: return nir_op_vec2;
1142    case  3: return nir_op_vec3;
1143    case  4: return nir_op_vec4;
1144    case  8: return nir_op_vec8;
1145    case 16: return nir_op_vec16;
1146    default: unreachable("bad component count");
1147    }
1148 }
1149 
1150 static inline bool
nir_op_is_vec(nir_op op)1151 nir_op_is_vec(nir_op op)
1152 {
1153    switch (op) {
1154    case nir_op_mov:
1155    case nir_op_vec2:
1156    case nir_op_vec3:
1157    case nir_op_vec4:
1158    case nir_op_vec8:
1159    case nir_op_vec16:
1160       return true;
1161    default:
1162       return false;
1163    }
1164 }
1165 
1166 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1167 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1168 {
1169     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1170         (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1171         (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1172 }
1173 
1174 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1175 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1176 {
1177     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1178         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1179         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1180 }
1181 
1182 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1183 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1184 {
1185     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1186         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1187         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1188 }
1189 
1190 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1191 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1192 {
1193     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1194         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1195         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1196 }
1197 
1198 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1199 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1200 {
1201     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1202         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1203         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1204 }
1205 
1206 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1207 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1208 {
1209     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1210         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1211         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1212 }
1213 
1214 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1215 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1216 {
1217     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1218         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1219         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1220 }
1221 
1222 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1223 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1224                                           nir_alu_type type)
1225 {
1226    if (nir_alu_type_get_base_type(type) != nir_type_float)
1227       return nir_rounding_mode_undef;
1228 
1229    unsigned bit_size = nir_alu_type_get_type_size(type);
1230 
1231    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1232       return nir_rounding_mode_rtz;
1233    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1234       return nir_rounding_mode_rtne;
1235    return nir_rounding_mode_undef;
1236 }
1237 
1238 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1239 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1240 {
1241    bool result =
1242       nir_has_any_rounding_mode_rtne(execution_mode) ||
1243       nir_has_any_rounding_mode_rtz(execution_mode);
1244    return result;
1245 }
1246 
1247 typedef enum {
1248    /**
1249     * Operation where the first two sources are commutative.
1250     *
1251     * For 2-source operations, this just mathematical commutativity.  Some
1252     * 3-source operations, like ffma, are only commutative in the first two
1253     * sources.
1254     */
1255    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1256    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1257 } nir_op_algebraic_property;
1258 
1259 typedef struct {
1260    const char *name;
1261 
1262    uint8_t num_inputs;
1263 
1264    /**
1265     * The number of components in the output
1266     *
1267     * If non-zero, this is the size of the output and input sizes are
1268     * explicitly given; swizzle and writemask are still in effect, but if
1269     * the output component is masked out, then the input component may
1270     * still be in use.
1271     *
1272     * If zero, the opcode acts in the standard, per-component manner; the
1273     * operation is performed on each component (except the ones that are
1274     * masked out) with the input being taken from the input swizzle for
1275     * that component.
1276     *
1277     * The size of some of the inputs may be given (i.e. non-zero) even
1278     * though output_size is zero; in that case, the inputs with a zero
1279     * size act per-component, while the inputs with non-zero size don't.
1280     */
1281    uint8_t output_size;
1282 
1283    /**
1284     * The type of vector that the instruction outputs. Note that the
1285     * staurate modifier is only allowed on outputs with the float type.
1286     */
1287 
1288    nir_alu_type output_type;
1289 
1290    /**
1291     * The number of components in each input
1292     */
1293    uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1294 
1295    /**
1296     * The type of vector that each input takes. Note that negate and
1297     * absolute value are only allowed on inputs with int or float type and
1298     * behave differently on the two.
1299     */
1300    nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1301 
1302    nir_op_algebraic_property algebraic_properties;
1303 
1304    /* Whether this represents a numeric conversion opcode */
1305    bool is_conversion;
1306 } nir_op_info;
1307 
1308 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1309 
1310 typedef struct nir_alu_instr {
1311    nir_instr instr;
1312    nir_op op;
1313 
1314    /** Indicates that this ALU instruction generates an exact value
1315     *
1316     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1317     * really equivalent to either.  This indicates that the value generated by
1318     * this operation is high-precision and any code transformations that touch
1319     * it must ensure that the resulting value is bit-for-bit identical to the
1320     * original.
1321     */
1322    bool exact:1;
1323 
1324    /**
1325     * Indicates that this instruction do not cause wrapping to occur, in the
1326     * form of overflow or underflow.
1327     */
1328    bool no_signed_wrap:1;
1329    bool no_unsigned_wrap:1;
1330 
1331    nir_alu_dest dest;
1332    nir_alu_src src[];
1333 } nir_alu_instr;
1334 
1335 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1336                       nir_alu_instr *instr);
1337 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1338                        nir_alu_instr *instr);
1339 
1340 /* is this source channel used? */
1341 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1342 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1343                            unsigned channel)
1344 {
1345    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1346       return channel < nir_op_infos[instr->op].input_sizes[src];
1347 
1348    return (instr->dest.write_mask >> channel) & 1;
1349 }
1350 
1351 static inline nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr * instr,unsigned src)1352 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1353 {
1354    nir_component_mask_t read_mask = 0;
1355    for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1356       if (!nir_alu_instr_channel_used(instr, src, c))
1357          continue;
1358 
1359       read_mask |= (1 << instr->src[src].swizzle[c]);
1360    }
1361    return read_mask;
1362 }
1363 
1364 /**
1365  * Get the number of channels used for a source
1366  */
1367 static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr * instr,unsigned src)1368 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1369 {
1370    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1371       return nir_op_infos[instr->op].input_sizes[src];
1372 
1373    return nir_dest_num_components(instr->dest.dest);
1374 }
1375 
1376 static inline bool
nir_alu_instr_is_comparison(const nir_alu_instr * instr)1377 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1378 {
1379    switch (instr->op) {
1380    case nir_op_flt:
1381    case nir_op_fge:
1382    case nir_op_feq:
1383    case nir_op_fne:
1384    case nir_op_ilt:
1385    case nir_op_ult:
1386    case nir_op_ige:
1387    case nir_op_uge:
1388    case nir_op_ieq:
1389    case nir_op_ine:
1390    case nir_op_i2b1:
1391    case nir_op_f2b1:
1392    case nir_op_inot:
1393       return true;
1394    default:
1395       return false;
1396    }
1397 }
1398 
1399 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1400                                     nir_alu_type full_type);
1401 
1402 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1403                         unsigned src1, unsigned src2);
1404 
1405 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1406                                  const nir_alu_instr *alu2,
1407                                  unsigned src1, unsigned src2);
1408 
1409 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1410 
1411 typedef enum {
1412    nir_deref_type_var,
1413    nir_deref_type_array,
1414    nir_deref_type_array_wildcard,
1415    nir_deref_type_ptr_as_array,
1416    nir_deref_type_struct,
1417    nir_deref_type_cast,
1418 } nir_deref_type;
1419 
1420 typedef struct {
1421    nir_instr instr;
1422 
1423    /** The type of this deref instruction */
1424    nir_deref_type deref_type;
1425 
1426    /** The mode of the underlying variable */
1427    nir_variable_mode mode;
1428 
1429    /** The dereferenced type of the resulting pointer value */
1430    const struct glsl_type *type;
1431 
1432    union {
1433       /** Variable being dereferenced if deref_type is a deref_var */
1434       nir_variable *var;
1435 
1436       /** Parent deref if deref_type is not deref_var */
1437       nir_src parent;
1438    };
1439 
1440    /** Additional deref parameters */
1441    union {
1442       struct {
1443          nir_src index;
1444       } arr;
1445 
1446       struct {
1447          unsigned index;
1448       } strct;
1449 
1450       struct {
1451          unsigned ptr_stride;
1452       } cast;
1453    };
1454 
1455    /** Destination to store the resulting "pointer" */
1456    nir_dest dest;
1457 } nir_deref_instr;
1458 
1459 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1460 
1461 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1462 nir_deref_instr_parent(const nir_deref_instr *instr)
1463 {
1464    if (instr->deref_type == nir_deref_type_var)
1465       return NULL;
1466    else
1467       return nir_src_as_deref(instr->parent);
1468 }
1469 
1470 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1471 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1472 {
1473    while (instr->deref_type != nir_deref_type_var) {
1474       if (instr->deref_type == nir_deref_type_cast)
1475          return NULL;
1476 
1477       instr = nir_deref_instr_parent(instr);
1478    }
1479 
1480    return instr->var;
1481 }
1482 
1483 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1484 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1485 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1486 
1487 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1488 
1489 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1490 
1491 typedef struct {
1492    nir_instr instr;
1493 
1494    struct nir_function *callee;
1495 
1496    unsigned num_params;
1497    nir_src params[];
1498 } nir_call_instr;
1499 
1500 #include "nir_intrinsics.h"
1501 
1502 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1503 
1504 /** Represents an intrinsic
1505  *
1506  * An intrinsic is an instruction type for handling things that are
1507  * more-or-less regular operations but don't just consume and produce SSA
1508  * values like ALU operations do.  Intrinsics are not for things that have
1509  * special semantic meaning such as phi nodes and parallel copies.
1510  * Examples of intrinsics include variable load/store operations, system
1511  * value loads, and the like.  Even though texturing more-or-less falls
1512  * under this category, texturing is its own instruction type because
1513  * trying to represent texturing with intrinsics would lead to a
1514  * combinatorial explosion of intrinsic opcodes.
1515  *
1516  * By having a single instruction type for handling a lot of different
1517  * cases, optimization passes can look for intrinsics and, for the most
1518  * part, completely ignore them.  Each intrinsic type also has a few
1519  * possible flags that govern whether or not they can be reordered or
1520  * eliminated.  That way passes like dead code elimination can still work
1521  * on intrisics without understanding the meaning of each.
1522  *
1523  * Each intrinsic has some number of constant indices, some number of
1524  * variables, and some number of sources.  What these sources, variables,
1525  * and indices mean depends on the intrinsic and is documented with the
1526  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1527  * instructions are the only types of instruction that can operate on
1528  * variables.
1529  */
1530 typedef struct {
1531    nir_instr instr;
1532 
1533    nir_intrinsic_op intrinsic;
1534 
1535    nir_dest dest;
1536 
1537    /** number of components if this is a vectorized intrinsic
1538     *
1539     * Similarly to ALU operations, some intrinsics are vectorized.
1540     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1541     * For vectorized intrinsics, the num_components field specifies the
1542     * number of destination components and the number of source components
1543     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1544     */
1545    uint8_t num_components;
1546 
1547    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1548 
1549    nir_src src[];
1550 } nir_intrinsic_instr;
1551 
1552 static inline nir_variable *
nir_intrinsic_get_var(nir_intrinsic_instr * intrin,unsigned i)1553 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1554 {
1555    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1556 }
1557 
1558 typedef enum {
1559    /* Memory ordering. */
1560    NIR_MEMORY_ACQUIRE        = 1 << 0,
1561    NIR_MEMORY_RELEASE        = 1 << 1,
1562    NIR_MEMORY_ACQ_REL        = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1563 
1564    /* Memory visibility operations. */
1565    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1566    NIR_MEMORY_MAKE_VISIBLE   = 1 << 3,
1567 } nir_memory_semantics;
1568 
1569 typedef enum {
1570    NIR_SCOPE_NONE,
1571    NIR_SCOPE_INVOCATION,
1572    NIR_SCOPE_SUBGROUP,
1573    NIR_SCOPE_WORKGROUP,
1574    NIR_SCOPE_QUEUE_FAMILY,
1575    NIR_SCOPE_DEVICE,
1576 } nir_scope;
1577 
1578 /**
1579  * \name NIR intrinsics semantic flags
1580  *
1581  * information about what the compiler can do with the intrinsics.
1582  *
1583  * \sa nir_intrinsic_info::flags
1584  */
1585 typedef enum {
1586    /**
1587     * whether the intrinsic can be safely eliminated if none of its output
1588     * value is not being used.
1589     */
1590    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1591 
1592    /**
1593     * Whether the intrinsic can be reordered with respect to any other
1594     * intrinsic, i.e. whether the only reordering dependencies of the
1595     * intrinsic are due to the register reads/writes.
1596     */
1597    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1598 } nir_intrinsic_semantic_flag;
1599 
1600 /**
1601  * \name NIR intrinsics const-index flag
1602  *
1603  * Indicates the usage of a const_index slot.
1604  *
1605  * \sa nir_intrinsic_info::index_map
1606  */
1607 typedef enum {
1608    /**
1609     * Generally instructions that take a offset src argument, can encode
1610     * a constant 'base' value which is added to the offset.
1611     */
1612    NIR_INTRINSIC_BASE = 1,
1613 
1614    /**
1615     * For store instructions, a writemask for the store.
1616     */
1617    NIR_INTRINSIC_WRMASK,
1618 
1619    /**
1620     * The stream-id for GS emit_vertex/end_primitive intrinsics.
1621     */
1622    NIR_INTRINSIC_STREAM_ID,
1623 
1624    /**
1625     * The clip-plane id for load_user_clip_plane intrinsic.
1626     */
1627    NIR_INTRINSIC_UCP_ID,
1628 
1629    /**
1630     * The amount of data, starting from BASE, that this instruction may
1631     * access.  This is used to provide bounds if the offset is not constant.
1632     */
1633    NIR_INTRINSIC_RANGE,
1634 
1635    /**
1636     * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1637     */
1638    NIR_INTRINSIC_DESC_SET,
1639 
1640    /**
1641     * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1642     */
1643    NIR_INTRINSIC_BINDING,
1644 
1645    /**
1646     * Component offset.
1647     */
1648    NIR_INTRINSIC_COMPONENT,
1649 
1650    /**
1651     * Interpolation mode (only meaningful for FS inputs).
1652     */
1653    NIR_INTRINSIC_INTERP_MODE,
1654 
1655    /**
1656     * A binary nir_op to use when performing a reduction or scan operation
1657     */
1658    NIR_INTRINSIC_REDUCTION_OP,
1659 
1660    /**
1661     * Cluster size for reduction operations
1662     */
1663    NIR_INTRINSIC_CLUSTER_SIZE,
1664 
1665    /**
1666     * Parameter index for a load_param intrinsic
1667     */
1668    NIR_INTRINSIC_PARAM_IDX,
1669 
1670    /**
1671     * Image dimensionality for image intrinsics
1672     *
1673     * One of GLSL_SAMPLER_DIM_*
1674     */
1675    NIR_INTRINSIC_IMAGE_DIM,
1676 
1677    /**
1678     * Non-zero if we are accessing an array image
1679     */
1680    NIR_INTRINSIC_IMAGE_ARRAY,
1681 
1682    /**
1683     * Image format for image intrinsics
1684     */
1685    NIR_INTRINSIC_FORMAT,
1686 
1687    /**
1688     * Access qualifiers for image and memory access intrinsics
1689     */
1690    NIR_INTRINSIC_ACCESS,
1691 
1692    /**
1693     * Alignment for offsets and addresses
1694     *
1695     * These two parameters, specify an alignment in terms of a multiplier and
1696     * an offset.  The offset or address parameter X of the intrinsic is
1697     * guaranteed to satisfy the following:
1698     *
1699     *                (X - align_offset) % align_mul == 0
1700     */
1701    NIR_INTRINSIC_ALIGN_MUL,
1702    NIR_INTRINSIC_ALIGN_OFFSET,
1703 
1704    /**
1705     * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1706     */
1707    NIR_INTRINSIC_DESC_TYPE,
1708 
1709    /**
1710     * The nir_alu_type of a uniform/input/output
1711     */
1712    NIR_INTRINSIC_TYPE,
1713 
1714    /**
1715     * The swizzle mask for the instructions
1716     * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1717     */
1718    NIR_INTRINSIC_SWIZZLE_MASK,
1719 
1720    /* Separate source/dest access flags for copies */
1721    NIR_INTRINSIC_SRC_ACCESS,
1722    NIR_INTRINSIC_DST_ACCESS,
1723 
1724    /* Driver location for nir_load_patch_location_ir3 */
1725    NIR_INTRINSIC_DRIVER_LOCATION,
1726 
1727    /**
1728     * Mask of nir_memory_semantics, includes ordering and visibility.
1729     */
1730    NIR_INTRINSIC_MEMORY_SEMANTICS,
1731 
1732    /**
1733     * Mask of nir_variable_modes affected by the memory operation.
1734     */
1735    NIR_INTRINSIC_MEMORY_MODES,
1736 
1737    /**
1738     * Value of nir_scope.
1739     */
1740    NIR_INTRINSIC_MEMORY_SCOPE,
1741 
1742    /**
1743     * Value of nir_scope.
1744     */
1745    NIR_INTRINSIC_EXECUTION_SCOPE,
1746 
1747    NIR_INTRINSIC_NUM_INDEX_FLAGS,
1748 
1749 } nir_intrinsic_index_flag;
1750 
1751 #define NIR_INTRINSIC_MAX_INPUTS 5
1752 
1753 typedef struct {
1754    const char *name;
1755 
1756    uint8_t num_srcs; /** < number of register/SSA inputs */
1757 
1758    /** number of components of each input register
1759     *
1760     * If this value is 0, the number of components is given by the
1761     * num_components field of nir_intrinsic_instr.  If this value is -1, the
1762     * intrinsic consumes however many components are provided and it is not
1763     * validated at all.
1764     */
1765    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1766 
1767    bool has_dest;
1768 
1769    /** number of components of the output register
1770     *
1771     * If this value is 0, the number of components is given by the
1772     * num_components field of nir_intrinsic_instr.
1773     */
1774    uint8_t dest_components;
1775 
1776    /** bitfield of legal bit sizes */
1777    uint8_t dest_bit_sizes;
1778 
1779    /** the number of constant indices used by the intrinsic */
1780    uint8_t num_indices;
1781 
1782    /** indicates the usage of intr->const_index[n] */
1783    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1784 
1785    /** semantic flags for calls to this intrinsic */
1786    nir_intrinsic_semantic_flag flags;
1787 } nir_intrinsic_info;
1788 
1789 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1790 
1791 static inline unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr * intr,unsigned srcn)1792 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1793 {
1794    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1795    assert(srcn < info->num_srcs);
1796    if (info->src_components[srcn] > 0)
1797       return info->src_components[srcn];
1798    else if (info->src_components[srcn] == 0)
1799       return intr->num_components;
1800    else
1801       return nir_src_num_components(intr->src[srcn]);
1802 }
1803 
1804 static inline unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr * intr)1805 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1806 {
1807    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1808    if (!info->has_dest)
1809       return 0;
1810    else if (info->dest_components)
1811       return info->dest_components;
1812    else
1813       return intr->num_components;
1814 }
1815 
1816 /**
1817  * Helper to copy const_index[] from src to dst, without assuming they
1818  * match in order.
1819  */
1820 static inline void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr * dst,nir_intrinsic_instr * src)1821 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
1822 {
1823    if (src->intrinsic == dst->intrinsic) {
1824       memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
1825       return;
1826    }
1827 
1828    const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
1829    const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
1830 
1831    for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
1832       if (src_info->index_map[i] == 0)
1833          continue;
1834 
1835       /* require that dst instruction also uses the same const_index[]: */
1836       assert(dst_info->index_map[i] > 0);
1837 
1838       dst->const_index[dst_info->index_map[i] - 1] =
1839             src->const_index[src_info->index_map[i] - 1];
1840    }
1841 }
1842 
1843 #define INTRINSIC_IDX_ACCESSORS(name, flag, type)                             \
1844 static inline type                                                            \
1845 nir_intrinsic_##name(const nir_intrinsic_instr *instr)                        \
1846 {                                                                             \
1847    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1848    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1849    return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1850 }                                                                             \
1851 static inline void                                                            \
1852 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val)                \
1853 {                                                                             \
1854    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
1855    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
1856    instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val;       \
1857 }
1858 
INTRINSIC_IDX_ACCESSORS(write_mask,WRMASK,unsigned)1859 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1860 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1861 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1862 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1863 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1864 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1865 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1866 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1867 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1868 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1869 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1870 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1871 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1872 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1873 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1874 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1875 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1876 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
1877 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1878 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1879 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1880 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1881 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1882 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1883 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1884 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1885 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1886 INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
1887 
1888 static inline void
1889 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1890                         unsigned align_mul, unsigned align_offset)
1891 {
1892    assert(util_is_power_of_two_nonzero(align_mul));
1893    assert(align_offset < align_mul);
1894    nir_intrinsic_set_align_mul(intrin, align_mul);
1895    nir_intrinsic_set_align_offset(intrin, align_offset);
1896 }
1897 
1898 /** Returns a simple alignment for a load/store intrinsic offset
1899  *
1900  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1901  * and ALIGN_OFFSET parameters, this helper takes both into account and
1902  * provides a single simple alignment parameter.  The offset X is guaranteed
1903  * to satisfy X % align == 0.
1904  */
1905 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)1906 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1907 {
1908    const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1909    const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1910    assert(align_offset < align_mul);
1911    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1912 }
1913 
1914 unsigned
1915 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1916 
1917 /* Converts a image_deref_* intrinsic into a image_* one */
1918 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1919                                  nir_ssa_def *handle, bool bindless);
1920 
1921 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1922 static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)1923 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1924 {
1925    if (instr->intrinsic == nir_intrinsic_load_deref ||
1926        instr->intrinsic == nir_intrinsic_load_ssbo ||
1927        instr->intrinsic == nir_intrinsic_bindless_image_load ||
1928        instr->intrinsic == nir_intrinsic_image_deref_load ||
1929        instr->intrinsic == nir_intrinsic_image_load) {
1930       return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1931    } else {
1932       const nir_intrinsic_info *info =
1933          &nir_intrinsic_infos[instr->intrinsic];
1934       return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1935              (info->flags & NIR_INTRINSIC_CAN_REORDER);
1936    }
1937 }
1938 
1939 /**
1940  * \group texture information
1941  *
1942  * This gives semantic information about textures which is useful to the
1943  * frontend, the backend, and lowering passes, but not the optimizer.
1944  */
1945 
1946 typedef enum {
1947    nir_tex_src_coord,
1948    nir_tex_src_projector,
1949    nir_tex_src_comparator, /* shadow comparator */
1950    nir_tex_src_offset,
1951    nir_tex_src_bias,
1952    nir_tex_src_lod,
1953    nir_tex_src_min_lod,
1954    nir_tex_src_ms_index, /* MSAA sample index */
1955    nir_tex_src_ms_mcs, /* MSAA compression value */
1956    nir_tex_src_ddx,
1957    nir_tex_src_ddy,
1958    nir_tex_src_texture_deref, /* < deref pointing to the texture */
1959    nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1960    nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1961    nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1962    nir_tex_src_texture_handle, /* < bindless texture handle */
1963    nir_tex_src_sampler_handle, /* < bindless sampler handle */
1964    nir_tex_src_plane,          /* < selects plane for planar textures */
1965    nir_num_tex_src_types
1966 } nir_tex_src_type;
1967 
1968 typedef struct {
1969    nir_src src;
1970    nir_tex_src_type src_type;
1971 } nir_tex_src;
1972 
1973 typedef enum {
1974    nir_texop_tex,                /**< Regular texture look-up */
1975    nir_texop_txb,                /**< Texture look-up with LOD bias */
1976    nir_texop_txl,                /**< Texture look-up with explicit LOD */
1977    nir_texop_txd,                /**< Texture look-up with partial derivatives */
1978    nir_texop_txf,                /**< Texel fetch with explicit LOD */
1979    nir_texop_txf_ms,             /**< Multisample texture fetch */
1980    nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
1981    nir_texop_txf_ms_mcs,         /**< Multisample compression value fetch */
1982    nir_texop_txs,                /**< Texture size */
1983    nir_texop_lod,                /**< Texture lod query */
1984    nir_texop_tg4,                /**< Texture gather */
1985    nir_texop_query_levels,       /**< Texture levels query */
1986    nir_texop_texture_samples,    /**< Texture samples query */
1987    nir_texop_samples_identical,  /**< Query whether all samples are definitely
1988                                   * identical.
1989                                   */
1990    nir_texop_tex_prefetch,       /**< Regular texture look-up, eligible for pre-dispatch */
1991    nir_texop_fragment_fetch,     /**< Multisample fragment color texture fetch */
1992    nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
1993 } nir_texop;
1994 
1995 typedef struct {
1996    nir_instr instr;
1997 
1998    enum glsl_sampler_dim sampler_dim;
1999    nir_alu_type dest_type;
2000 
2001    nir_texop op;
2002    nir_dest dest;
2003    nir_tex_src *src;
2004    unsigned num_srcs, coord_components;
2005    bool is_array, is_shadow;
2006 
2007    /**
2008     * If is_shadow is true, whether this is the old-style shadow that outputs 4
2009     * components or the new-style shadow that outputs 1 component.
2010     */
2011    bool is_new_style_shadow;
2012 
2013    /* gather component selector */
2014    unsigned component : 2;
2015 
2016    /* gather offsets */
2017    int8_t tg4_offsets[4][2];
2018 
2019    /* True if the texture index or handle is not dynamically uniform */
2020    bool texture_non_uniform;
2021 
2022    /* True if the sampler index or handle is not dynamically uniform */
2023    bool sampler_non_uniform;
2024 
2025    /** The texture index
2026     *
2027     * If this texture instruction has a nir_tex_src_texture_offset source,
2028     * then the texture index is given by texture_index + texture_offset.
2029     */
2030    unsigned texture_index;
2031 
2032    /** The sampler index
2033     *
2034     * The following operations do not require a sampler and, as such, this
2035     * field should be ignored:
2036     *    - nir_texop_txf
2037     *    - nir_texop_txf_ms
2038     *    - nir_texop_txs
2039     *    - nir_texop_lod
2040     *    - nir_texop_query_levels
2041     *    - nir_texop_texture_samples
2042     *    - nir_texop_samples_identical
2043     *
2044     * If this texture instruction has a nir_tex_src_sampler_offset source,
2045     * then the sampler index is given by sampler_index + sampler_offset.
2046     */
2047    unsigned sampler_index;
2048 } nir_tex_instr;
2049 
2050 /*
2051  * Returns true if the texture operation requires a sampler as a general rule,
2052  * see the documentation of sampler_index.
2053  *
2054  * Note that the specific hw/driver backend could require to a sampler
2055  * object/configuration packet in any case, for some other reason.
2056  */
2057 static inline bool
nir_tex_instr_need_sampler(const nir_tex_instr * instr)2058 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2059 {
2060    switch (instr->op) {
2061    case nir_texop_txf:
2062    case nir_texop_txf_ms:
2063    case nir_texop_txs:
2064    case nir_texop_lod:
2065    case nir_texop_query_levels:
2066    case nir_texop_texture_samples:
2067    case nir_texop_samples_identical:
2068       return false;
2069    default:
2070       return true;
2071    }
2072 }
2073 
2074 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2075 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2076 {
2077    switch (instr->op) {
2078    case nir_texop_txs: {
2079       unsigned ret;
2080       switch (instr->sampler_dim) {
2081          case GLSL_SAMPLER_DIM_1D:
2082          case GLSL_SAMPLER_DIM_BUF:
2083             ret = 1;
2084             break;
2085          case GLSL_SAMPLER_DIM_2D:
2086          case GLSL_SAMPLER_DIM_CUBE:
2087          case GLSL_SAMPLER_DIM_MS:
2088          case GLSL_SAMPLER_DIM_RECT:
2089          case GLSL_SAMPLER_DIM_EXTERNAL:
2090          case GLSL_SAMPLER_DIM_SUBPASS:
2091             ret = 2;
2092             break;
2093          case GLSL_SAMPLER_DIM_3D:
2094             ret = 3;
2095             break;
2096          default:
2097             unreachable("not reached");
2098       }
2099       if (instr->is_array)
2100          ret++;
2101       return ret;
2102    }
2103 
2104    case nir_texop_lod:
2105       return 2;
2106 
2107    case nir_texop_texture_samples:
2108    case nir_texop_query_levels:
2109    case nir_texop_samples_identical:
2110    case nir_texop_fragment_mask_fetch:
2111       return 1;
2112 
2113    default:
2114       if (instr->is_shadow && instr->is_new_style_shadow)
2115          return 1;
2116 
2117       return 4;
2118    }
2119 }
2120 
2121 /* Returns true if this texture operation queries something about the texture
2122  * rather than actually sampling it.
2123  */
2124 static inline bool
nir_tex_instr_is_query(const nir_tex_instr * instr)2125 nir_tex_instr_is_query(const nir_tex_instr *instr)
2126 {
2127    switch (instr->op) {
2128    case nir_texop_txs:
2129    case nir_texop_lod:
2130    case nir_texop_texture_samples:
2131    case nir_texop_query_levels:
2132    case nir_texop_txf_ms_mcs:
2133       return true;
2134    case nir_texop_tex:
2135    case nir_texop_txb:
2136    case nir_texop_txl:
2137    case nir_texop_txd:
2138    case nir_texop_txf:
2139    case nir_texop_txf_ms:
2140    case nir_texop_txf_ms_fb:
2141    case nir_texop_tg4:
2142       return false;
2143    default:
2144       unreachable("Invalid texture opcode");
2145    }
2146 }
2147 
2148 static inline bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr * instr)2149 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2150 {
2151    switch (instr->op) {
2152    case nir_texop_tex:
2153    case nir_texop_txb:
2154    case nir_texop_lod:
2155       return true;
2156    default:
2157       return false;
2158    }
2159 }
2160 
2161 static inline nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr * instr,unsigned src)2162 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2163 {
2164    switch (instr->src[src].src_type) {
2165    case nir_tex_src_coord:
2166       switch (instr->op) {
2167       case nir_texop_txf:
2168       case nir_texop_txf_ms:
2169       case nir_texop_txf_ms_fb:
2170       case nir_texop_txf_ms_mcs:
2171       case nir_texop_samples_identical:
2172          return nir_type_int;
2173 
2174       default:
2175          return nir_type_float;
2176       }
2177 
2178    case nir_tex_src_lod:
2179       switch (instr->op) {
2180       case nir_texop_txs:
2181       case nir_texop_txf:
2182          return nir_type_int;
2183 
2184       default:
2185          return nir_type_float;
2186       }
2187 
2188    case nir_tex_src_projector:
2189    case nir_tex_src_comparator:
2190    case nir_tex_src_bias:
2191    case nir_tex_src_min_lod:
2192    case nir_tex_src_ddx:
2193    case nir_tex_src_ddy:
2194       return nir_type_float;
2195 
2196    case nir_tex_src_offset:
2197    case nir_tex_src_ms_index:
2198    case nir_tex_src_plane:
2199       return nir_type_int;
2200 
2201    case nir_tex_src_ms_mcs:
2202    case nir_tex_src_texture_deref:
2203    case nir_tex_src_sampler_deref:
2204    case nir_tex_src_texture_offset:
2205    case nir_tex_src_sampler_offset:
2206    case nir_tex_src_texture_handle:
2207    case nir_tex_src_sampler_handle:
2208       return nir_type_uint;
2209 
2210    case nir_num_tex_src_types:
2211       unreachable("nir_num_tex_src_types is not a valid source type");
2212    }
2213 
2214    unreachable("Invalid texture source type");
2215 }
2216 
2217 static inline unsigned
nir_tex_instr_src_size(const nir_tex_instr * instr,unsigned src)2218 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2219 {
2220    if (instr->src[src].src_type == nir_tex_src_coord)
2221       return instr->coord_components;
2222 
2223    /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2224    if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2225       return 4;
2226 
2227    if (instr->src[src].src_type == nir_tex_src_ddx ||
2228        instr->src[src].src_type == nir_tex_src_ddy) {
2229       if (instr->is_array)
2230          return instr->coord_components - 1;
2231       else
2232          return instr->coord_components;
2233    }
2234 
2235    /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2236     * the offset, since a cube maps to a single face.
2237     */
2238    if (instr->src[src].src_type == nir_tex_src_offset) {
2239       if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2240          return 2;
2241       else if (instr->is_array)
2242          return instr->coord_components - 1;
2243       else
2244          return instr->coord_components;
2245    }
2246 
2247    return 1;
2248 }
2249 
2250 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2251 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2252 {
2253    for (unsigned i = 0; i < instr->num_srcs; i++)
2254       if (instr->src[i].src_type == type)
2255          return (int) i;
2256 
2257    return -1;
2258 }
2259 
2260 void nir_tex_instr_add_src(nir_tex_instr *tex,
2261                            nir_tex_src_type src_type,
2262                            nir_src src);
2263 
2264 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2265 
2266 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2267 
2268 typedef struct {
2269    nir_instr instr;
2270 
2271    nir_ssa_def def;
2272 
2273    nir_const_value value[];
2274 } nir_load_const_instr;
2275 
2276 typedef enum {
2277    /** Return from a function
2278     *
2279     * This instruction is a classic function return.  It jumps to
2280     * nir_function_impl::end_block.  No return value is provided in this
2281     * instruction.  Instead, the function is expected to write any return
2282     * data to a deref passed in from the caller.
2283     */
2284    nir_jump_return,
2285 
2286    /** Break out of the inner-most loop
2287     *
2288     * This has the same semantics as C's "break" statement.
2289     */
2290    nir_jump_break,
2291 
2292    /** Jump back to the top of the inner-most loop
2293     *
2294     * This has the same semantics as C's "continue" statement assuming that a
2295     * NIR loop is implemented as "while (1) { body }".
2296     */
2297    nir_jump_continue,
2298 } nir_jump_type;
2299 
2300 typedef struct {
2301    nir_instr instr;
2302    nir_jump_type type;
2303 } nir_jump_instr;
2304 
2305 /* creates a new SSA variable in an undefined state */
2306 
2307 typedef struct {
2308    nir_instr instr;
2309    nir_ssa_def def;
2310 } nir_ssa_undef_instr;
2311 
2312 typedef struct {
2313    struct exec_node node;
2314 
2315    /* The predecessor block corresponding to this source */
2316    struct nir_block *pred;
2317 
2318    nir_src src;
2319 } nir_phi_src;
2320 
2321 #define nir_foreach_phi_src(phi_src, phi) \
2322    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2323 #define nir_foreach_phi_src_safe(phi_src, phi) \
2324    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2325 
2326 typedef struct {
2327    nir_instr instr;
2328 
2329    struct exec_list srcs; /** < list of nir_phi_src */
2330 
2331    nir_dest dest;
2332 } nir_phi_instr;
2333 
2334 typedef struct {
2335    struct exec_node node;
2336    nir_src src;
2337    nir_dest dest;
2338 } nir_parallel_copy_entry;
2339 
2340 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2341    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2342 
2343 typedef struct {
2344    nir_instr instr;
2345 
2346    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2347     * entries are copied to the corresponding destinations "in parallel".
2348     * In other words, if we have two entries: a -> b and b -> a, the values
2349     * get swapped.
2350     */
2351    struct exec_list entries;
2352 } nir_parallel_copy_instr;
2353 
2354 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2355                 type, nir_instr_type_alu)
2356 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2357                 type, nir_instr_type_deref)
2358 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2359                 type, nir_instr_type_call)
2360 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2361                 type, nir_instr_type_jump)
2362 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2363                 type, nir_instr_type_tex)
2364 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2365                 type, nir_instr_type_intrinsic)
2366 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2367                 type, nir_instr_type_load_const)
2368 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2369                 type, nir_instr_type_ssa_undef)
2370 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2371                 type, nir_instr_type_phi)
2372 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2373                 nir_parallel_copy_instr, instr,
2374                 type, nir_instr_type_parallel_copy)
2375 
2376 
2377 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)               \
2378 static inline type                                          \
2379 nir_src_comp_as_##suffix(nir_src src, unsigned comp)        \
2380 {                                                           \
2381    assert(nir_src_is_const(src));                           \
2382    nir_load_const_instr *load =                             \
2383       nir_instr_as_load_const(src.ssa->parent_instr);       \
2384    assert(comp < load->def.num_components);                 \
2385    return nir_const_value_as_##suffix(load->value[comp],    \
2386                                       load->def.bit_size);  \
2387 }                                                           \
2388                                                             \
2389 static inline type                                          \
2390 nir_src_as_##suffix(nir_src src)                            \
2391 {                                                           \
2392    assert(nir_src_num_components(src) == 1);                \
2393    return nir_src_comp_as_##suffix(src, 0);                 \
2394 }
2395 
2396 NIR_DEFINE_SRC_AS_CONST(int64_t,    int)
2397 NIR_DEFINE_SRC_AS_CONST(uint64_t,   uint)
2398 NIR_DEFINE_SRC_AS_CONST(bool,       bool)
2399 NIR_DEFINE_SRC_AS_CONST(double,     float)
2400 
2401 #undef NIR_DEFINE_SRC_AS_CONST
2402 
2403 
2404 typedef struct {
2405    nir_ssa_def *def;
2406    unsigned comp;
2407 } nir_ssa_scalar;
2408 
2409 static inline bool
nir_ssa_scalar_is_const(nir_ssa_scalar s)2410 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2411 {
2412    return s.def->parent_instr->type == nir_instr_type_load_const;
2413 }
2414 
2415 static inline nir_const_value
nir_ssa_scalar_as_const_value(nir_ssa_scalar s)2416 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2417 {
2418    assert(s.comp < s.def->num_components);
2419    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2420    return load->value[s.comp];
2421 }
2422 
2423 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
2424 static inline type                                                   \
2425 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
2426 {                                                                    \
2427    return nir_const_value_as_##suffix(                               \
2428       nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
2429 }
2430 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2431 NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
2432 NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
2433 NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
2434 NIR_DEFINE_SCALAR_AS_CONST(double,     float)
2435 
2436 #undef NIR_DEFINE_SCALAR_AS_CONST
2437 
2438 static inline bool
2439 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2440 {
2441    return s.def->parent_instr->type == nir_instr_type_alu;
2442 }
2443 
2444 static inline nir_op
nir_ssa_scalar_alu_op(nir_ssa_scalar s)2445 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2446 {
2447    return nir_instr_as_alu(s.def->parent_instr)->op;
2448 }
2449 
2450 static inline nir_ssa_scalar
nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s,unsigned alu_src_idx)2451 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2452 {
2453    nir_ssa_scalar out = { NULL, 0 };
2454 
2455    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2456    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2457 
2458    /* Our component must be written */
2459    assert(s.comp < s.def->num_components);
2460    assert(alu->dest.write_mask & (1u << s.comp));
2461 
2462    assert(alu->src[alu_src_idx].src.is_ssa);
2463    out.def = alu->src[alu_src_idx].src.ssa;
2464 
2465    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2466       /* The ALU src is unsized so the source component follows the
2467        * destination component.
2468        */
2469       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2470    } else {
2471       /* This is a sized source so all source components work together to
2472        * produce all the destination components.  Since we need to return a
2473        * scalar, this only works if the source is a scalar.
2474        */
2475       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2476       out.comp = alu->src[alu_src_idx].swizzle[0];
2477    }
2478    assert(out.comp < out.def->num_components);
2479 
2480    return out;
2481 }
2482 
2483 
2484 /*
2485  * Control flow
2486  *
2487  * Control flow consists of a tree of control flow nodes, which include
2488  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2489  * instructions that always run start-to-finish. Each basic block also keeps
2490  * track of its successors (blocks which may run immediately after the current
2491  * block) and predecessors (blocks which could have run immediately before the
2492  * current block). Each function also has a start block and an end block which
2493  * all return statements point to (which is always empty). Together, all the
2494  * blocks with their predecessors and successors make up the control flow
2495  * graph (CFG) of the function. There are helpers that modify the tree of
2496  * control flow nodes while modifying the CFG appropriately; these should be
2497  * used instead of modifying the tree directly.
2498  */
2499 
2500 typedef enum {
2501    nir_cf_node_block,
2502    nir_cf_node_if,
2503    nir_cf_node_loop,
2504    nir_cf_node_function
2505 } nir_cf_node_type;
2506 
2507 typedef struct nir_cf_node {
2508    struct exec_node node;
2509    nir_cf_node_type type;
2510    struct nir_cf_node *parent;
2511 } nir_cf_node;
2512 
2513 typedef struct nir_block {
2514    nir_cf_node cf_node;
2515 
2516    struct exec_list instr_list; /** < list of nir_instr */
2517 
2518    /** generic block index; generated by nir_index_blocks */
2519    unsigned index;
2520 
2521    /*
2522     * Each block can only have up to 2 successors, so we put them in a simple
2523     * array - no need for anything more complicated.
2524     */
2525    struct nir_block *successors[2];
2526 
2527    /* Set of nir_block predecessors in the CFG */
2528    struct set *predecessors;
2529 
2530    /*
2531     * this node's immediate dominator in the dominance tree - set to NULL for
2532     * the start block.
2533     */
2534    struct nir_block *imm_dom;
2535 
2536    /* This node's children in the dominance tree */
2537    unsigned num_dom_children;
2538    struct nir_block **dom_children;
2539 
2540    /* Set of nir_blocks on the dominance frontier of this block */
2541    struct set *dom_frontier;
2542 
2543    /*
2544     * These two indices have the property that dom_{pre,post}_index for each
2545     * child of this block in the dominance tree will always be between
2546     * dom_pre_index and dom_post_index for this block, which makes testing if
2547     * a given block is dominated by another block an O(1) operation.
2548     */
2549    int16_t dom_pre_index, dom_post_index;
2550 
2551    /* live in and out for this block; used for liveness analysis */
2552    BITSET_WORD *live_in;
2553    BITSET_WORD *live_out;
2554 } nir_block;
2555 
2556 static inline bool
nir_block_is_reachable(nir_block * b)2557 nir_block_is_reachable(nir_block *b)
2558 {
2559    /* See also nir_block_dominates */
2560    return b->dom_post_index != -1;
2561 }
2562 
2563 static inline nir_instr *
nir_block_first_instr(nir_block * block)2564 nir_block_first_instr(nir_block *block)
2565 {
2566    struct exec_node *head = exec_list_get_head(&block->instr_list);
2567    return exec_node_data(nir_instr, head, node);
2568 }
2569 
2570 static inline nir_instr *
nir_block_last_instr(nir_block * block)2571 nir_block_last_instr(nir_block *block)
2572 {
2573    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2574    return exec_node_data(nir_instr, tail, node);
2575 }
2576 
2577 static inline bool
nir_block_ends_in_jump(nir_block * block)2578 nir_block_ends_in_jump(nir_block *block)
2579 {
2580    return !exec_list_is_empty(&block->instr_list) &&
2581           nir_block_last_instr(block)->type == nir_instr_type_jump;
2582 }
2583 
2584 #define nir_foreach_instr(instr, block) \
2585    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2586 #define nir_foreach_instr_reverse(instr, block) \
2587    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2588 #define nir_foreach_instr_safe(instr, block) \
2589    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2590 #define nir_foreach_instr_reverse_safe(instr, block) \
2591    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2592 
2593 typedef enum {
2594    nir_selection_control_none = 0x0,
2595    nir_selection_control_flatten = 0x1,
2596    nir_selection_control_dont_flatten = 0x2,
2597 } nir_selection_control;
2598 
2599 typedef struct nir_if {
2600    nir_cf_node cf_node;
2601    nir_src condition;
2602    nir_selection_control control;
2603 
2604    struct exec_list then_list; /** < list of nir_cf_node */
2605    struct exec_list else_list; /** < list of nir_cf_node */
2606 } nir_if;
2607 
2608 typedef struct {
2609    nir_if *nif;
2610 
2611    /** Instruction that generates nif::condition. */
2612    nir_instr *conditional_instr;
2613 
2614    /** Block within ::nif that has the break instruction. */
2615    nir_block *break_block;
2616 
2617    /** Last block for the then- or else-path that does not contain the break. */
2618    nir_block *continue_from_block;
2619 
2620    /** True when ::break_block is in the else-path of ::nif. */
2621    bool continue_from_then;
2622    bool induction_rhs;
2623 
2624    /* This is true if the terminators exact trip count is unknown. For
2625     * example:
2626     *
2627     *    for (int i = 0; i < imin(x, 4); i++)
2628     *       ...
2629     *
2630     * Here loop analysis would have set a max_trip_count of 4 however we dont
2631     * know for sure that this is the exact trip count.
2632     */
2633    bool exact_trip_count_unknown;
2634 
2635    struct list_head loop_terminator_link;
2636 } nir_loop_terminator;
2637 
2638 typedef struct {
2639    /* Estimated cost (in number of instructions) of the loop */
2640    unsigned instr_cost;
2641 
2642    /* Guessed trip count based on array indexing */
2643    unsigned guessed_trip_count;
2644 
2645    /* Maximum number of times the loop is run (if known) */
2646    unsigned max_trip_count;
2647 
2648    /* Do we know the exact number of times the loop will be run */
2649    bool exact_trip_count_known;
2650 
2651    /* Unroll the loop regardless of its size */
2652    bool force_unroll;
2653 
2654    /* Does the loop contain complex loop terminators, continues or other
2655     * complex behaviours? If this is true we can't rely on
2656     * loop_terminator_list to be complete or accurate.
2657     */
2658    bool complex_loop;
2659 
2660    nir_loop_terminator *limiting_terminator;
2661 
2662    /* A list of loop_terminators terminating this loop. */
2663    struct list_head loop_terminator_list;
2664 } nir_loop_info;
2665 
2666 typedef enum {
2667    nir_loop_control_none = 0x0,
2668    nir_loop_control_unroll = 0x1,
2669    nir_loop_control_dont_unroll = 0x2,
2670 } nir_loop_control;
2671 
2672 typedef struct {
2673    nir_cf_node cf_node;
2674 
2675    struct exec_list body; /** < list of nir_cf_node */
2676 
2677    nir_loop_info *info;
2678    nir_loop_control control;
2679    bool partially_unrolled;
2680 } nir_loop;
2681 
2682 /**
2683  * Various bits of metadata that can may be created or required by
2684  * optimization and analysis passes
2685  */
2686 typedef enum {
2687    nir_metadata_none = 0x0,
2688 
2689    /** Indicates that nir_block::index values are valid.
2690     *
2691     * The start block has index 0 and they increase through a natural walk of
2692     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
2693     * every block index is in the range [0, nir_function_impl::num_blocks].
2694     *
2695     * A pass can preserve this metadata type if it doesn't touch the CFG.
2696     */
2697    nir_metadata_block_index = 0x1,
2698 
2699    /** Indicates that block dominance information is valid
2700     *
2701     * This includes:
2702     *
2703     *   - nir_block::num_dom_children
2704     *   - nir_block::dom_children
2705     *   - nir_block::dom_frontier
2706     *   - nir_block::dom_pre_index
2707     *   - nir_block::dom_post_index
2708     *
2709     * A pass can preserve this metadata type if it doesn't touch the CFG.
2710     */
2711    nir_metadata_dominance = 0x2,
2712 
2713    /** Indicates that SSA def data-flow liveness information is valid
2714     *
2715     * This includes:
2716     *
2717     *   - nir_ssa_def::live_index
2718     *   - nir_block::live_in
2719     *   - nir_block::live_out
2720     *
2721     * A pass can preserve this metadata type if it never adds or removes any
2722     * SSA defs (most passes shouldn't preserve this metadata type).
2723     */
2724    nir_metadata_live_ssa_defs = 0x4,
2725 
2726    /** A dummy metadata value to track when a pass forgot to call
2727     * nir_metadata_preserve.
2728     *
2729     * A pass should always clear this value even if it doesn't make any
2730     * progress to indicate that it thought about preserving metadata.
2731     */
2732    nir_metadata_not_properly_reset = 0x8,
2733 
2734    /** Indicates that loop analysis information is valid.
2735     *
2736     * This includes everything pointed to by nir_loop::info.
2737     *
2738     * A pass can preserve this metadata type if it is guaranteed to not affect
2739     * any loop metadata.  However, since loop metadata includes things like
2740     * loop counts which depend on arithmetic in the loop, this is very hard to
2741     * determine.  Most passes shouldn't preserve this metadata type.
2742     */
2743    nir_metadata_loop_analysis = 0x10,
2744 
2745    /** All metadata
2746     *
2747     * This includes all nir_metadata flags except not_properly_reset.  Passes
2748     * which do not change the shader in any way should call
2749     *
2750     *    nir_metadata_preserve(impl, nir_metadata_all);
2751     */
2752    nir_metadata_all = ~nir_metadata_not_properly_reset,
2753 } nir_metadata;
2754 
2755 typedef struct {
2756    nir_cf_node cf_node;
2757 
2758    /** pointer to the function of which this is an implementation */
2759    struct nir_function *function;
2760 
2761    struct exec_list body; /** < list of nir_cf_node */
2762 
2763    nir_block *end_block;
2764 
2765    /** list for all local variables in the function */
2766    struct exec_list locals;
2767 
2768    /** list of local registers in the function */
2769    struct exec_list registers;
2770 
2771    /** next available local register index */
2772    unsigned reg_alloc;
2773 
2774    /** next available SSA value index */
2775    unsigned ssa_alloc;
2776 
2777    /* total number of basic blocks, only valid when block_index_dirty = false */
2778    unsigned num_blocks;
2779 
2780    nir_metadata valid_metadata;
2781 } nir_function_impl;
2782 
2783 #define nir_foreach_function_temp_variable(var, impl) \
2784    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
2785 
2786 #define nir_foreach_function_temp_variable_safe(var, impl) \
2787    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
2788 
2789 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)2790 nir_start_block(nir_function_impl *impl)
2791 {
2792    return (nir_block *) impl->body.head_sentinel.next;
2793 }
2794 
2795 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)2796 nir_impl_last_block(nir_function_impl *impl)
2797 {
2798    return (nir_block *) impl->body.tail_sentinel.prev;
2799 }
2800 
2801 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)2802 nir_cf_node_next(nir_cf_node *node)
2803 {
2804    struct exec_node *next = exec_node_get_next(&node->node);
2805    if (exec_node_is_tail_sentinel(next))
2806       return NULL;
2807    else
2808       return exec_node_data(nir_cf_node, next, node);
2809 }
2810 
2811 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)2812 nir_cf_node_prev(nir_cf_node *node)
2813 {
2814    struct exec_node *prev = exec_node_get_prev(&node->node);
2815    if (exec_node_is_head_sentinel(prev))
2816       return NULL;
2817    else
2818       return exec_node_data(nir_cf_node, prev, node);
2819 }
2820 
2821 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)2822 nir_cf_node_is_first(const nir_cf_node *node)
2823 {
2824    return exec_node_is_head_sentinel(node->node.prev);
2825 }
2826 
2827 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)2828 nir_cf_node_is_last(const nir_cf_node *node)
2829 {
2830    return exec_node_is_tail_sentinel(node->node.next);
2831 }
2832 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)2833 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2834                 type, nir_cf_node_block)
2835 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2836                 type, nir_cf_node_if)
2837 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2838                 type, nir_cf_node_loop)
2839 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2840                 nir_function_impl, cf_node, type, nir_cf_node_function)
2841 
2842 static inline nir_block *
2843 nir_if_first_then_block(nir_if *if_stmt)
2844 {
2845    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2846    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2847 }
2848 
2849 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)2850 nir_if_last_then_block(nir_if *if_stmt)
2851 {
2852    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2853    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2854 }
2855 
2856 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)2857 nir_if_first_else_block(nir_if *if_stmt)
2858 {
2859    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2860    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2861 }
2862 
2863 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)2864 nir_if_last_else_block(nir_if *if_stmt)
2865 {
2866    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2867    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2868 }
2869 
2870 static inline nir_block *
nir_loop_first_block(nir_loop * loop)2871 nir_loop_first_block(nir_loop *loop)
2872 {
2873    struct exec_node *head = exec_list_get_head(&loop->body);
2874    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2875 }
2876 
2877 static inline nir_block *
nir_loop_last_block(nir_loop * loop)2878 nir_loop_last_block(nir_loop *loop)
2879 {
2880    struct exec_node *tail = exec_list_get_tail(&loop->body);
2881    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2882 }
2883 
2884 /**
2885  * Return true if this list of cf_nodes contains a single empty block.
2886  */
2887 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)2888 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2889 {
2890    if (exec_list_is_singular(cf_list)) {
2891       struct exec_node *head = exec_list_get_head(cf_list);
2892       nir_block *block =
2893          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2894       return exec_list_is_empty(&block->instr_list);
2895    }
2896    return false;
2897 }
2898 
2899 typedef struct {
2900    uint8_t num_components;
2901    uint8_t bit_size;
2902 } nir_parameter;
2903 
2904 typedef struct nir_function {
2905    struct exec_node node;
2906 
2907    const char *name;
2908    struct nir_shader *shader;
2909 
2910    unsigned num_params;
2911    nir_parameter *params;
2912 
2913    /** The implementation of this function.
2914     *
2915     * If the function is only declared and not implemented, this is NULL.
2916     */
2917    nir_function_impl *impl;
2918 
2919    bool is_entrypoint;
2920 } nir_function;
2921 
2922 typedef enum {
2923    nir_lower_imul64 = (1 << 0),
2924    nir_lower_isign64 = (1 << 1),
2925    /** Lower all int64 modulus and division opcodes */
2926    nir_lower_divmod64 = (1 << 2),
2927    /** Lower all 64-bit umul_high and imul_high opcodes */
2928    nir_lower_imul_high64 = (1 << 3),
2929    nir_lower_mov64 = (1 << 4),
2930    nir_lower_icmp64 = (1 << 5),
2931    nir_lower_iadd64 = (1 << 6),
2932    nir_lower_iabs64 = (1 << 7),
2933    nir_lower_ineg64 = (1 << 8),
2934    nir_lower_logic64 = (1 << 9),
2935    nir_lower_minmax64 = (1 << 10),
2936    nir_lower_shift64 = (1 << 11),
2937    nir_lower_imul_2x32_64 = (1 << 12),
2938    nir_lower_extract64 = (1 << 13),
2939    nir_lower_ufind_msb64 = (1 << 14),
2940 } nir_lower_int64_options;
2941 
2942 typedef enum {
2943    nir_lower_drcp = (1 << 0),
2944    nir_lower_dsqrt = (1 << 1),
2945    nir_lower_drsq = (1 << 2),
2946    nir_lower_dtrunc = (1 << 3),
2947    nir_lower_dfloor = (1 << 4),
2948    nir_lower_dceil = (1 << 5),
2949    nir_lower_dfract = (1 << 6),
2950    nir_lower_dround_even = (1 << 7),
2951    nir_lower_dmod = (1 << 8),
2952    nir_lower_dsub = (1 << 9),
2953    nir_lower_ddiv = (1 << 10),
2954    nir_lower_fp64_full_software = (1 << 11),
2955 } nir_lower_doubles_options;
2956 
2957 typedef enum {
2958    nir_divergence_single_prim_per_subgroup = (1 << 0),
2959    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2960    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2961    nir_divergence_view_index_uniform = (1 << 3),
2962 } nir_divergence_options;
2963 
2964 typedef struct nir_shader_compiler_options {
2965    bool lower_fdiv;
2966    bool lower_ffma;
2967    bool fuse_ffma;
2968    bool lower_flrp16;
2969    bool lower_flrp32;
2970    /** Lowers flrp when it does not support doubles */
2971    bool lower_flrp64;
2972    bool lower_fpow;
2973    bool lower_fsat;
2974    bool lower_fsqrt;
2975    bool lower_sincos;
2976    bool lower_fmod;
2977    /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2978    bool lower_bitfield_extract;
2979    /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2980    bool lower_bitfield_extract_to_shifts;
2981    /** Lowers bitfield_insert to bfi/bfm */
2982    bool lower_bitfield_insert;
2983    /** Lowers bitfield_insert to compares, and shifts. */
2984    bool lower_bitfield_insert_to_shifts;
2985    /** Lowers bitfield_insert to bfm/bitfield_select. */
2986    bool lower_bitfield_insert_to_bitfield_select;
2987    /** Lowers bitfield_reverse to shifts. */
2988    bool lower_bitfield_reverse;
2989    /** Lowers bit_count to shifts. */
2990    bool lower_bit_count;
2991    /** Lowers ifind_msb to compare and ufind_msb */
2992    bool lower_ifind_msb;
2993    /** Lowers find_lsb to ufind_msb and logic ops */
2994    bool lower_find_lsb;
2995    bool lower_uadd_carry;
2996    bool lower_usub_borrow;
2997    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2998    bool lower_mul_high;
2999    /** lowers fneg and ineg to fsub and isub. */
3000    bool lower_negate;
3001    /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
3002    bool lower_sub;
3003 
3004    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
3005    bool lower_scmp;
3006 
3007    /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3008    bool lower_vector_cmp;
3009 
3010    /** enables rules to lower idiv by power-of-two: */
3011    bool lower_idiv;
3012 
3013    /** enable rules to avoid bit ops */
3014    bool lower_bitops;
3015 
3016    /** enables rules to lower isign to imin+imax */
3017    bool lower_isign;
3018 
3019    /** enables rules to lower fsign to fsub and flt */
3020    bool lower_fsign;
3021 
3022    /** enable rules that avoid generating umax from signed integer ops */
3023    bool lower_umax;
3024 
3025    /** enable rules that avoid generating umin from signed integer ops */
3026    bool lower_umin;
3027 
3028    /* lower fdph to fdot4 */
3029    bool lower_fdph;
3030 
3031    /** lower fdot to fmul and fsum/fadd. */
3032    bool lower_fdot;
3033 
3034    /* Does the native fdot instruction replicate its result for four
3035     * components?  If so, then opt_algebraic_late will turn all fdotN
3036     * instructions into fdot_replicatedN instructions.
3037     */
3038    bool fdot_replicates;
3039 
3040    /** lowers ffloor to fsub+ffract: */
3041    bool lower_ffloor;
3042 
3043    /** lowers ffract to fsub+ffloor: */
3044    bool lower_ffract;
3045 
3046    /** lowers fceil to fneg+ffloor+fneg: */
3047    bool lower_fceil;
3048 
3049    bool lower_ftrunc;
3050 
3051    bool lower_ldexp;
3052 
3053    bool lower_pack_half_2x16;
3054    bool lower_pack_unorm_2x16;
3055    bool lower_pack_snorm_2x16;
3056    bool lower_pack_unorm_4x8;
3057    bool lower_pack_snorm_4x8;
3058    bool lower_unpack_half_2x16;
3059    bool lower_unpack_unorm_2x16;
3060    bool lower_unpack_snorm_2x16;
3061    bool lower_unpack_unorm_4x8;
3062    bool lower_unpack_snorm_4x8;
3063 
3064    bool lower_pack_split;
3065 
3066    bool lower_extract_byte;
3067    bool lower_extract_word;
3068 
3069    bool lower_all_io_to_temps;
3070    bool lower_all_io_to_elements;
3071 
3072    /* Indicates that the driver only has zero-based vertex id */
3073    bool vertex_id_zero_based;
3074 
3075    /**
3076     * If enabled, gl_BaseVertex will be lowered as:
3077     * is_indexed_draw (~0/0) & firstvertex
3078     */
3079    bool lower_base_vertex;
3080 
3081    /**
3082     * If enabled, gl_HelperInvocation will be lowered as:
3083     *
3084     *   !((1 << sample_id) & sample_mask_in))
3085     *
3086     * This depends on some possibly hw implementation details, which may
3087     * not be true for all hw.  In particular that the FS is only executed
3088     * for covered samples or for helper invocations.  So, do not blindly
3089     * enable this option.
3090     *
3091     * Note: See also issue #22 in ARB_shader_image_load_store
3092     */
3093    bool lower_helper_invocation;
3094 
3095    /**
3096     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3097     *
3098     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3099     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3100     */
3101    bool optimize_sample_mask_in;
3102 
3103    bool lower_cs_local_index_from_id;
3104    bool lower_cs_local_id_from_index;
3105 
3106    bool lower_device_index_to_zero;
3107 
3108    /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
3109    bool lower_wpos_pntc;
3110 
3111    /**
3112     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3113     * lowered to simple arithmetic.
3114     *
3115     * If this flag is set, the lowering will be applied to all bit-sizes of
3116     * these instructions.
3117     *
3118     * \sa ::lower_hadd64
3119     */
3120    bool lower_hadd;
3121 
3122    /**
3123     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3124     * should be lowered to simple arithmetic.
3125     *
3126     * If this flag is set, the lowering will be applied to only 64-bit
3127     * versions of these instructions.
3128     *
3129     * \sa ::lower_hadd
3130     */
3131    bool lower_hadd64;
3132 
3133    /**
3134     * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3135     * arithmetic.
3136     *
3137     * If this flag is set, the lowering will be applied to all bit-sizes of
3138     * these instructions.
3139     *
3140     * \sa ::lower_usub_sat64
3141     */
3142    bool lower_add_sat;
3143 
3144    /**
3145     * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3146     * arithmetic.
3147     *
3148     * \sa ::lower_add_sat
3149     */
3150    bool lower_usub_sat64;
3151 
3152    /**
3153     * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3154     * for IO purposes and would prefer loads/stores be vectorized.
3155     */
3156    bool vectorize_io;
3157    bool lower_to_scalar;
3158 
3159    /**
3160     * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3161     */
3162    bool vectorize_vec2_16bit;
3163 
3164    /**
3165     * Should the linker unify inputs_read/outputs_written between adjacent
3166     * shader stages which are linked into a single program?
3167     */
3168    bool unify_interfaces;
3169 
3170    /**
3171     * Should nir_lower_io() create load_interpolated_input intrinsics?
3172     *
3173     * If not, it generates regular load_input intrinsics and interpolation
3174     * information must be inferred from the list of input nir_variables.
3175     */
3176    bool use_interpolated_input_intrinsics;
3177 
3178    /* Lowers when 32x32->64 bit multiplication is not supported */
3179    bool lower_mul_2x32_64;
3180 
3181    /* Lowers when rotate instruction is not supported */
3182    bool lower_rotate;
3183 
3184    /**
3185     * Backend supports imul24, and would like to use it (when possible)
3186     * for address/offset calculation.  If true, driver should call
3187     * nir_lower_amul().  (If not set, amul will automatically be lowered
3188     * to imul.)
3189     */
3190    bool has_imul24;
3191 
3192    /** Backend supports umul24, if not set  umul24 will automatically be lowered
3193     * to imul with masked inputs */
3194    bool has_umul24;
3195 
3196    /** Backend supports umad24, if not set  umad24 will automatically be lowered
3197     * to imul with masked inputs and iadd */
3198    bool has_umad24;
3199 
3200    /* Whether to generate only scoped_barrier intrinsics instead of the set of
3201     * memory and control barrier intrinsics based on GLSL.
3202     */
3203    bool use_scoped_barrier;
3204 
3205    /**
3206     * Is this the Intel vec4 backend?
3207     *
3208     * Used to inhibit algebraic optimizations that are known to be harmful on
3209     * the Intel vec4 backend.  This is generally applicable to any
3210     * optimization that might cause more immediate values to be used in
3211     * 3-source (e.g., ffma and flrp) instructions.
3212     */
3213    bool intel_vec4;
3214 
3215    /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3216    bool lower_bfe_with_two_constants;
3217 
3218    /** Whether 8-bit ALU is supported. */
3219    bool support_8bit_alu;
3220 
3221    /** Whether 16-bit ALU is supported. */
3222    bool support_16bit_alu;
3223 
3224    unsigned max_unroll_iterations;
3225 
3226    nir_lower_int64_options lower_int64_options;
3227    nir_lower_doubles_options lower_doubles_options;
3228 } nir_shader_compiler_options;
3229 
3230 typedef struct nir_shader {
3231    /** list of uniforms (nir_variable) */
3232    struct exec_list variables;
3233 
3234    /** Set of driver-specific options for the shader.
3235     *
3236     * The memory for the options is expected to be kept in a single static
3237     * copy by the driver.
3238     */
3239    const struct nir_shader_compiler_options *options;
3240 
3241    /** Various bits of compile-time information about a given shader */
3242    struct shader_info info;
3243 
3244    struct exec_list functions; /** < list of nir_function */
3245 
3246    /**
3247     * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
3248     * access plus one
3249     */
3250    unsigned num_inputs, num_uniforms, num_outputs, num_shared;
3251 
3252    /** Size in bytes of required scratch space */
3253    unsigned scratch_size;
3254 
3255    /** Constant data associated with this shader.
3256     *
3257     * Constant data is loaded through load_constant intrinsics (as compared to
3258     * the NIR load_const instructions which have the constant value inlined
3259     * into them).  This is usually generated by nir_opt_large_constants (so
3260     * shaders don't have to load_const into a temporary array when they want
3261     * to indirect on a const array).
3262     */
3263    void *constant_data;
3264    /** Size of the constant data associated with the shader, in bytes */
3265    unsigned constant_data_size;
3266 } nir_shader;
3267 
3268 #define nir_foreach_function(func, shader) \
3269    foreach_list_typed(nir_function, func, node, &(shader)->functions)
3270 
3271 static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader * shader)3272 nir_shader_get_entrypoint(nir_shader *shader)
3273 {
3274    nir_function *func = NULL;
3275 
3276    nir_foreach_function(function, shader) {
3277       assert(func == NULL);
3278       if (function->is_entrypoint) {
3279          func = function;
3280 #ifndef NDEBUG
3281          break;
3282 #endif
3283       }
3284    }
3285 
3286    if (!func)
3287       return NULL;
3288 
3289    assert(func->num_params == 0);
3290    assert(func->impl);
3291    return func->impl;
3292 }
3293 
3294 nir_shader *nir_shader_create(void *mem_ctx,
3295                               gl_shader_stage stage,
3296                               const nir_shader_compiler_options *options,
3297                               shader_info *si);
3298 
3299 nir_register *nir_local_reg_create(nir_function_impl *impl);
3300 
3301 void nir_reg_remove(nir_register *reg);
3302 
3303 /** Adds a variable to the appropriate list in nir_shader */
3304 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3305 
3306 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)3307 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3308 {
3309    assert(var->data.mode == nir_var_function_temp);
3310    exec_list_push_tail(&impl->locals, &var->node);
3311 }
3312 
3313 /** creates a variable, sets a few defaults, and adds it to the list */
3314 nir_variable *nir_variable_create(nir_shader *shader,
3315                                   nir_variable_mode mode,
3316                                   const struct glsl_type *type,
3317                                   const char *name);
3318 /** creates a local variable and adds it to the list */
3319 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3320                                         const struct glsl_type *type,
3321                                         const char *name);
3322 
3323 nir_variable *nir_find_variable_with_location(nir_shader *shader,
3324                                               nir_variable_mode mode,
3325                                               unsigned location);
3326 
3327 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3328                                                      nir_variable_mode mode,
3329                                                      unsigned location);
3330 
3331 /** creates a function and adds it to the shader's list of functions */
3332 nir_function *nir_function_create(nir_shader *shader, const char *name);
3333 
3334 nir_function_impl *nir_function_impl_create(nir_function *func);
3335 /** creates a function_impl that isn't tied to any particular function */
3336 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3337 
3338 nir_block *nir_block_create(nir_shader *shader);
3339 nir_if *nir_if_create(nir_shader *shader);
3340 nir_loop *nir_loop_create(nir_shader *shader);
3341 
3342 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3343 
3344 /** requests that the given pieces of metadata be generated */
3345 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3346 /** dirties all but the preserved metadata */
3347 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3348 /** Preserves all metadata for the given shader */
3349 void nir_shader_preserve_all_metadata(nir_shader *shader);
3350 
3351 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3352 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3353 
3354 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3355                                         nir_deref_type deref_type);
3356 
3357 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3358 
3359 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3360                                                   unsigned num_components,
3361                                                   unsigned bit_size);
3362 
3363 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3364                                                 nir_intrinsic_op op);
3365 
3366 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3367                                       nir_function *callee);
3368 
3369 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3370 
3371 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3372 
3373 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3374 
3375 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3376                                                 unsigned num_components,
3377                                                 unsigned bit_size);
3378 
3379 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3380 
3381 /**
3382  * NIR Cursors and Instruction Insertion API
3383  * @{
3384  *
3385  * A tiny struct representing a point to insert/extract instructions or
3386  * control flow nodes.  Helps reduce the combinatorial explosion of possible
3387  * points to insert/extract.
3388  *
3389  * \sa nir_control_flow.h
3390  */
3391 typedef enum {
3392    nir_cursor_before_block,
3393    nir_cursor_after_block,
3394    nir_cursor_before_instr,
3395    nir_cursor_after_instr,
3396 } nir_cursor_option;
3397 
3398 typedef struct {
3399    nir_cursor_option option;
3400    union {
3401       nir_block *block;
3402       nir_instr *instr;
3403    };
3404 } nir_cursor;
3405 
3406 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)3407 nir_cursor_current_block(nir_cursor cursor)
3408 {
3409    if (cursor.option == nir_cursor_before_instr ||
3410        cursor.option == nir_cursor_after_instr) {
3411       return cursor.instr->block;
3412    } else {
3413       return cursor.block;
3414    }
3415 }
3416 
3417 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3418 
3419 static inline nir_cursor
nir_before_block(nir_block * block)3420 nir_before_block(nir_block *block)
3421 {
3422    nir_cursor cursor;
3423    cursor.option = nir_cursor_before_block;
3424    cursor.block = block;
3425    return cursor;
3426 }
3427 
3428 static inline nir_cursor
nir_after_block(nir_block * block)3429 nir_after_block(nir_block *block)
3430 {
3431    nir_cursor cursor;
3432    cursor.option = nir_cursor_after_block;
3433    cursor.block = block;
3434    return cursor;
3435 }
3436 
3437 static inline nir_cursor
nir_before_instr(nir_instr * instr)3438 nir_before_instr(nir_instr *instr)
3439 {
3440    nir_cursor cursor;
3441    cursor.option = nir_cursor_before_instr;
3442    cursor.instr = instr;
3443    return cursor;
3444 }
3445 
3446 static inline nir_cursor
nir_after_instr(nir_instr * instr)3447 nir_after_instr(nir_instr *instr)
3448 {
3449    nir_cursor cursor;
3450    cursor.option = nir_cursor_after_instr;
3451    cursor.instr = instr;
3452    return cursor;
3453 }
3454 
3455 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)3456 nir_after_block_before_jump(nir_block *block)
3457 {
3458    nir_instr *last_instr = nir_block_last_instr(block);
3459    if (last_instr && last_instr->type == nir_instr_type_jump) {
3460       return nir_before_instr(last_instr);
3461    } else {
3462       return nir_after_block(block);
3463    }
3464 }
3465 
3466 static inline nir_cursor
nir_before_src(nir_src * src,bool is_if_condition)3467 nir_before_src(nir_src *src, bool is_if_condition)
3468 {
3469    if (is_if_condition) {
3470       nir_block *prev_block =
3471          nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3472       assert(!nir_block_ends_in_jump(prev_block));
3473       return nir_after_block(prev_block);
3474    } else if (src->parent_instr->type == nir_instr_type_phi) {
3475 #ifndef NDEBUG
3476       nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3477       bool found = false;
3478       nir_foreach_phi_src(phi_src, cond_phi) {
3479          if (phi_src->src.ssa == src->ssa) {
3480             found = true;
3481             break;
3482          }
3483       }
3484       assert(found);
3485 #endif
3486       /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3487        * to have a more specific name.
3488        */
3489       nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3490       return nir_after_block_before_jump(phi_src->pred);
3491    } else {
3492       return nir_before_instr(src->parent_instr);
3493    }
3494 }
3495 
3496 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)3497 nir_before_cf_node(nir_cf_node *node)
3498 {
3499    if (node->type == nir_cf_node_block)
3500       return nir_before_block(nir_cf_node_as_block(node));
3501 
3502    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3503 }
3504 
3505 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)3506 nir_after_cf_node(nir_cf_node *node)
3507 {
3508    if (node->type == nir_cf_node_block)
3509       return nir_after_block(nir_cf_node_as_block(node));
3510 
3511    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3512 }
3513 
3514 static inline nir_cursor
nir_after_phis(nir_block * block)3515 nir_after_phis(nir_block *block)
3516 {
3517    nir_foreach_instr(instr, block) {
3518       if (instr->type != nir_instr_type_phi)
3519          return nir_before_instr(instr);
3520    }
3521    return nir_after_block(block);
3522 }
3523 
3524 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)3525 nir_after_cf_node_and_phis(nir_cf_node *node)
3526 {
3527    if (node->type == nir_cf_node_block)
3528       return nir_after_block(nir_cf_node_as_block(node));
3529 
3530    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3531 
3532    return nir_after_phis(block);
3533 }
3534 
3535 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)3536 nir_before_cf_list(struct exec_list *cf_list)
3537 {
3538    nir_cf_node *first_node = exec_node_data(nir_cf_node,
3539                                             exec_list_get_head(cf_list), node);
3540    return nir_before_cf_node(first_node);
3541 }
3542 
3543 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)3544 nir_after_cf_list(struct exec_list *cf_list)
3545 {
3546    nir_cf_node *last_node = exec_node_data(nir_cf_node,
3547                                            exec_list_get_tail(cf_list), node);
3548    return nir_after_cf_node(last_node);
3549 }
3550 
3551 /**
3552  * Insert a NIR instruction at the given cursor.
3553  *
3554  * Note: This does not update the cursor.
3555  */
3556 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3557 
3558 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)3559 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3560 {
3561    nir_instr_insert(nir_before_instr(instr), before);
3562 }
3563 
3564 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)3565 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3566 {
3567    nir_instr_insert(nir_after_instr(instr), after);
3568 }
3569 
3570 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)3571 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3572 {
3573    nir_instr_insert(nir_before_block(block), before);
3574 }
3575 
3576 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)3577 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3578 {
3579    nir_instr_insert(nir_after_block(block), after);
3580 }
3581 
3582 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)3583 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3584 {
3585    nir_instr_insert(nir_before_cf_node(node), before);
3586 }
3587 
3588 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)3589 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3590 {
3591    nir_instr_insert(nir_after_cf_node(node), after);
3592 }
3593 
3594 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)3595 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3596 {
3597    nir_instr_insert(nir_before_cf_list(list), before);
3598 }
3599 
3600 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)3601 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3602 {
3603    nir_instr_insert(nir_after_cf_list(list), after);
3604 }
3605 
3606 void nir_instr_remove_v(nir_instr *instr);
3607 
3608 static inline nir_cursor
nir_instr_remove(nir_instr * instr)3609 nir_instr_remove(nir_instr *instr)
3610 {
3611    nir_cursor cursor;
3612    nir_instr *prev = nir_instr_prev(instr);
3613    if (prev) {
3614       cursor = nir_after_instr(prev);
3615    } else {
3616       cursor = nir_before_block(instr->block);
3617    }
3618    nir_instr_remove_v(instr);
3619    return cursor;
3620 }
3621 
3622 /** @} */
3623 
3624 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3625 
3626 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3627 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3628 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3629 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3630                          void *state);
3631 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3632 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3633 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3634                                        nir_foreach_src_cb cb,
3635                                        void *state);
3636 
3637 nir_const_value *nir_src_as_const_value(nir_src src);
3638 
3639 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
3640 static inline c_type *                                                  \
3641 nir_src_as_ ## name (nir_src src)                                       \
3642 {                                                                       \
3643     return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
3644            ? cast_macro(src.ssa->parent_instr) : NULL;                  \
3645 }
3646 
3647 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3648 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3649             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3650 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3651 
3652 bool nir_src_is_dynamically_uniform(nir_src src);
3653 bool nir_srcs_equal(nir_src src1, nir_src src2);
3654 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3655 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3656 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3657 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3658 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3659                             nir_dest new_dest);
3660 
3661 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3662                        unsigned num_components, unsigned bit_size,
3663                        const char *name);
3664 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3665                       unsigned num_components, unsigned bit_size,
3666                       const char *name);
3667 static inline void
nir_ssa_dest_init_for_type(nir_instr * instr,nir_dest * dest,const struct glsl_type * type,const char * name)3668 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3669                            const struct glsl_type *type,
3670                            const char *name)
3671 {
3672    assert(glsl_type_is_vector_or_scalar(type));
3673    nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3674                      glsl_get_bit_size(type), name);
3675 }
3676 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3677 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3678                                     nir_instr *after_me);
3679 
3680 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3681 
3682 /*
3683  * finds the next basic block in source-code order, returns NULL if there is
3684  * none
3685  */
3686 
3687 nir_block *nir_block_cf_tree_next(nir_block *block);
3688 
3689 /* Performs the opposite of nir_block_cf_tree_next() */
3690 
3691 nir_block *nir_block_cf_tree_prev(nir_block *block);
3692 
3693 /* Gets the first block in a CF node in source-code order */
3694 
3695 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3696 
3697 /* Gets the last block in a CF node in source-code order */
3698 
3699 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3700 
3701 /* Gets the next block after a CF node in source-code order */
3702 
3703 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3704 
3705 /* Macros for loops that visit blocks in source-code order */
3706 
3707 #define nir_foreach_block(block, impl) \
3708    for (nir_block *block = nir_start_block(impl); block != NULL; \
3709         block = nir_block_cf_tree_next(block))
3710 
3711 #define nir_foreach_block_safe(block, impl) \
3712    for (nir_block *block = nir_start_block(impl), \
3713         *next = nir_block_cf_tree_next(block); \
3714         block != NULL; \
3715         block = next, next = nir_block_cf_tree_next(block))
3716 
3717 #define nir_foreach_block_reverse(block, impl) \
3718    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3719         block = nir_block_cf_tree_prev(block))
3720 
3721 #define nir_foreach_block_reverse_safe(block, impl) \
3722    for (nir_block *block = nir_impl_last_block(impl), \
3723         *prev = nir_block_cf_tree_prev(block); \
3724         block != NULL; \
3725         block = prev, prev = nir_block_cf_tree_prev(block))
3726 
3727 #define nir_foreach_block_in_cf_node(block, node) \
3728    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3729         block != nir_cf_node_cf_tree_next(node); \
3730         block = nir_block_cf_tree_next(block))
3731 
3732 /* If the following CF node is an if, this function returns that if.
3733  * Otherwise, it returns NULL.
3734  */
3735 nir_if *nir_block_get_following_if(nir_block *block);
3736 
3737 nir_loop *nir_block_get_following_loop(nir_block *block);
3738 
3739 void nir_index_local_regs(nir_function_impl *impl);
3740 void nir_index_ssa_defs(nir_function_impl *impl);
3741 unsigned nir_index_instrs(nir_function_impl *impl);
3742 
3743 void nir_index_blocks(nir_function_impl *impl);
3744 
3745 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
3746 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
3747 
3748 void nir_print_shader(nir_shader *shader, FILE *fp);
3749 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3750 void nir_print_instr(const nir_instr *instr, FILE *fp);
3751 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3752 
3753 /** Shallow clone of a single ALU instruction. */
3754 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3755 
3756 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3757 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3758                                            const nir_function_impl *fi);
3759 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3760 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3761 
3762 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3763 
3764 void nir_shader_serialize_deserialize(nir_shader *s);
3765 
3766 #ifndef NDEBUG
3767 void nir_validate_shader(nir_shader *shader, const char *when);
3768 void nir_metadata_set_validation_flag(nir_shader *shader);
3769 void nir_metadata_check_validation_flag(nir_shader *shader);
3770 
3771 static inline bool
should_skip_nir(const char * name)3772 should_skip_nir(const char *name)
3773 {
3774    static const char *list = NULL;
3775    if (!list) {
3776       /* Comma separated list of names to skip. */
3777       list = getenv("NIR_SKIP");
3778       if (!list)
3779          list = "";
3780    }
3781 
3782    if (!list[0])
3783       return false;
3784 
3785    return comma_separated_list_contains(list, name);
3786 }
3787 
3788 static inline bool
should_clone_nir(void)3789 should_clone_nir(void)
3790 {
3791    static int should_clone = -1;
3792    if (should_clone < 0)
3793       should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3794 
3795    return should_clone;
3796 }
3797 
3798 static inline bool
should_serialize_deserialize_nir(void)3799 should_serialize_deserialize_nir(void)
3800 {
3801    static int test_serialize = -1;
3802    if (test_serialize < 0)
3803       test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3804 
3805    return test_serialize;
3806 }
3807 
3808 static inline bool
should_print_nir(void)3809 should_print_nir(void)
3810 {
3811    static int should_print = -1;
3812    if (should_print < 0)
3813       should_print = env_var_as_boolean("NIR_PRINT", false);
3814 
3815    return should_print;
3816 }
3817 #else
nir_validate_shader(nir_shader * shader,const char * when)3818 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_metadata_set_validation_flag(nir_shader * shader)3819 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
nir_metadata_check_validation_flag(nir_shader * shader)3820 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
should_skip_nir(UNUSED const char * pass_name)3821 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
should_clone_nir(void)3822 static inline bool should_clone_nir(void) { return false; }
should_serialize_deserialize_nir(void)3823 static inline bool should_serialize_deserialize_nir(void) { return false; }
should_print_nir(void)3824 static inline bool should_print_nir(void) { return false; }
3825 #endif /* NDEBUG */
3826 
3827 #define _PASS(pass, nir, do_pass) do {                               \
3828    if (should_skip_nir(#pass)) {                                     \
3829       printf("skipping %s\n", #pass);                                \
3830       break;                                                         \
3831    }                                                                 \
3832    do_pass                                                           \
3833    nir_validate_shader(nir, "after " #pass);                         \
3834    if (should_clone_nir()) {                                         \
3835       nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3836       nir_shader_replace(nir, clone);                                \
3837    }                                                                 \
3838    if (should_serialize_deserialize_nir()) {                         \
3839       nir_shader_serialize_deserialize(nir);                         \
3840    }                                                                 \
3841 } while (0)
3842 
3843 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
3844    nir_metadata_set_validation_flag(nir);                            \
3845    if (should_print_nir())                                           \
3846       printf("%s\n", #pass);                                         \
3847    if (pass(nir, ##__VA_ARGS__)) {                                   \
3848       progress = true;                                               \
3849       if (should_print_nir())                                        \
3850          nir_print_shader(nir, stdout);                              \
3851       nir_metadata_check_validation_flag(nir);                       \
3852    }                                                                 \
3853 )
3854 
3855 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
3856    if (should_print_nir())                                           \
3857       printf("%s\n", #pass);                                         \
3858    pass(nir, ##__VA_ARGS__);                                         \
3859    if (should_print_nir())                                           \
3860       nir_print_shader(nir, stdout);                                 \
3861 )
3862 
3863 #define NIR_SKIP(name) should_skip_nir(#name)
3864 
3865 /** An instruction filtering callback
3866  *
3867  * Returns true if the instruction should be processed and false otherwise.
3868  */
3869 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3870 
3871 /** A simple instruction lowering callback
3872  *
3873  * Many instruction lowering passes can be written as a simple function which
3874  * takes an instruction as its input and returns a sequence of instructions
3875  * that implement the consumed instruction.  This function type represents
3876  * such a lowering function.  When called, a function with this prototype
3877  * should either return NULL indicating that no lowering needs to be done or
3878  * emit a sequence of instructions using the provided builder (whose cursor
3879  * will already be placed after the instruction to be lowered) and return the
3880  * resulting nir_ssa_def.
3881  */
3882 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3883                                            nir_instr *, void *);
3884 
3885 /**
3886  * Special return value for nir_lower_instr_cb when some progress occurred
3887  * (like changing an input to the instr) that didn't result in a replacement
3888  * SSA def being generated.
3889  */
3890 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3891 
3892 /** Iterate over all the instructions in a nir_function_impl and lower them
3893  *  using the provided callbacks
3894  *
3895  * This function implements the guts of a standard lowering pass for you.  It
3896  * iterates over all of the instructions in a nir_function_impl and calls the
3897  * filter callback on each one.  If the filter callback returns true, it then
3898  * calls the lowering call back on the instruction.  (Splitting it this way
3899  * allows us to avoid some save/restore work for instructions we know won't be
3900  * lowered.)  If the instruction is dead after the lowering is complete, it
3901  * will be removed.  If new instructions are added, the lowering callback will
3902  * also be called on them in case multiple lowerings are required.
3903  *
3904  * The metadata for the nir_function_impl will also be updated.  If any blocks
3905  * are added (they cannot be removed), dominance and block indices will be
3906  * invalidated.
3907  */
3908 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3909                                           nir_instr_filter_cb filter,
3910                                           nir_lower_instr_cb lower,
3911                                           void *cb_data);
3912 bool nir_shader_lower_instructions(nir_shader *shader,
3913                                    nir_instr_filter_cb filter,
3914                                    nir_lower_instr_cb lower,
3915                                    void *cb_data);
3916 
3917 void nir_calc_dominance_impl(nir_function_impl *impl);
3918 void nir_calc_dominance(nir_shader *shader);
3919 
3920 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3921 bool nir_block_dominates(nir_block *parent, nir_block *child);
3922 bool nir_block_is_unreachable(nir_block *block);
3923 
3924 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3925 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3926 
3927 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3928 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3929 
3930 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3931 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3932 
3933 int nir_gs_count_vertices(const nir_shader *shader);
3934 
3935 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3936 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3937 bool nir_split_var_copies(nir_shader *shader);
3938 bool nir_split_per_member_structs(nir_shader *shader);
3939 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3940 
3941 bool nir_lower_returns_impl(nir_function_impl *impl);
3942 bool nir_lower_returns(nir_shader *shader);
3943 
3944 void nir_inline_function_impl(struct nir_builder *b,
3945                               const nir_function_impl *impl,
3946                               nir_ssa_def **params);
3947 bool nir_inline_functions(nir_shader *shader);
3948 
3949 bool nir_propagate_invariant(nir_shader *shader);
3950 
3951 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3952 void nir_lower_deref_copy_instr(struct nir_builder *b,
3953                                 nir_intrinsic_instr *copy);
3954 bool nir_lower_var_copies(nir_shader *shader);
3955 
3956 void nir_fixup_deref_modes(nir_shader *shader);
3957 
3958 bool nir_lower_global_vars_to_local(nir_shader *shader);
3959 
3960 typedef enum {
3961    nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
3962    nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
3963    nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
3964    nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
3965 } nir_lower_array_deref_of_vec_options;
3966 
3967 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3968                                   nir_lower_array_deref_of_vec_options options);
3969 
3970 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3971 
3972 bool nir_lower_locals_to_regs(nir_shader *shader);
3973 
3974 void nir_lower_io_to_temporaries(nir_shader *shader,
3975                                  nir_function_impl *entrypoint,
3976                                  bool outputs, bool inputs);
3977 
3978 bool nir_lower_vars_to_scratch(nir_shader *shader,
3979                                nir_variable_mode modes,
3980                                int size_threshold,
3981                                glsl_type_size_align_func size_align);
3982 
3983 void nir_lower_clip_halfz(nir_shader *shader);
3984 
3985 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3986 
3987 void nir_gather_ssa_types(nir_function_impl *impl,
3988                           BITSET_WORD *float_types,
3989                           BITSET_WORD *int_types);
3990 
3991 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
3992                               unsigned *size,
3993                               int (*type_size)(const struct glsl_type *, bool));
3994 
3995 /* Some helpers to do very simple linking */
3996 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3997 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
3998                                uint64_t *used_by_other_stage,
3999                                uint64_t *used_by_other_stage_patches);
4000 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4001                           bool default_to_smooth_interp);
4002 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4003 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4004 
4005 bool nir_lower_amul(nir_shader *shader,
4006                     int (*type_size)(const struct glsl_type *, bool));
4007 
4008 void nir_assign_io_var_locations(nir_shader *shader,
4009                                  nir_variable_mode mode,
4010                                  unsigned *size,
4011                                  gl_shader_stage stage);
4012 
4013 typedef struct {
4014    uint8_t num_linked_io_vars;
4015    uint8_t num_linked_patch_io_vars;
4016 } nir_linked_io_var_info;
4017 
4018 nir_linked_io_var_info
4019 nir_assign_linked_io_var_locations(nir_shader *producer,
4020                                    nir_shader *consumer);
4021 
4022 typedef enum {
4023    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4024     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
4025     * modes.
4026     */
4027    nir_lower_io_lower_64bit_to_32 = (1 << 0),
4028 
4029    /* If set, this forces all non-flat fragment shader inputs to be
4030     * interpolated as if with the "sample" qualifier.  This requires
4031     * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4032     */
4033    nir_lower_io_force_sample_interpolation = (1 << 1),
4034 } nir_lower_io_options;
4035 bool nir_lower_io(nir_shader *shader,
4036                   nir_variable_mode modes,
4037                   int (*type_size)(const struct glsl_type *, bool),
4038                   nir_lower_io_options);
4039 
4040 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
4041 
4042 bool
4043 nir_lower_vars_to_explicit_types(nir_shader *shader,
4044                                  nir_variable_mode modes,
4045                                  glsl_type_size_align_func type_info);
4046 
4047 typedef enum {
4048    /**
4049     * An address format which is a simple 32-bit global GPU address.
4050     */
4051    nir_address_format_32bit_global,
4052 
4053    /**
4054     * An address format which is a simple 64-bit global GPU address.
4055     */
4056    nir_address_format_64bit_global,
4057 
4058    /**
4059     * An address format which is a bounds-checked 64-bit global GPU address.
4060     *
4061     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4062     * address stored with the low bits in .x and high bits in .y, .z is a
4063     * size, and .w is an offset.  When the final I/O operation is lowered, .w
4064     * is checked against .z and the operation is predicated on the result.
4065     */
4066    nir_address_format_64bit_bounded_global,
4067 
4068    /**
4069     * An address format which is comprised of a vec2 where the first
4070     * component is a buffer index and the second is an offset.
4071     */
4072    nir_address_format_32bit_index_offset,
4073 
4074    /**
4075     * An address format which is comprised of a vec3 where the first two
4076     * components specify the buffer and the third is an offset.
4077     */
4078    nir_address_format_vec2_index_32bit_offset,
4079 
4080    /**
4081     * An address format which is a simple 32-bit offset.
4082     */
4083    nir_address_format_32bit_offset,
4084 
4085    /**
4086     * An address format representing a purely logical addressing model.  In
4087     * this model, all deref chains must be complete from the dereference
4088     * operation to the variable.  Cast derefs are not allowed.  These
4089     * addresses will be 32-bit scalars but the format is immaterial because
4090     * you can always chase the chain.
4091     */
4092    nir_address_format_logical,
4093 } nir_address_format;
4094 
4095 static inline unsigned
nir_address_format_bit_size(nir_address_format addr_format)4096 nir_address_format_bit_size(nir_address_format addr_format)
4097 {
4098    switch (addr_format) {
4099    case nir_address_format_32bit_global:              return 32;
4100    case nir_address_format_64bit_global:              return 64;
4101    case nir_address_format_64bit_bounded_global:      return 32;
4102    case nir_address_format_32bit_index_offset:        return 32;
4103    case nir_address_format_vec2_index_32bit_offset:   return 32;
4104    case nir_address_format_32bit_offset:              return 32;
4105    case nir_address_format_logical:                   return 32;
4106    }
4107    unreachable("Invalid address format");
4108 }
4109 
4110 static inline unsigned
nir_address_format_num_components(nir_address_format addr_format)4111 nir_address_format_num_components(nir_address_format addr_format)
4112 {
4113    switch (addr_format) {
4114    case nir_address_format_32bit_global:              return 1;
4115    case nir_address_format_64bit_global:              return 1;
4116    case nir_address_format_64bit_bounded_global:      return 4;
4117    case nir_address_format_32bit_index_offset:        return 2;
4118    case nir_address_format_vec2_index_32bit_offset:   return 3;
4119    case nir_address_format_32bit_offset:              return 1;
4120    case nir_address_format_logical:                   return 1;
4121    }
4122    unreachable("Invalid address format");
4123 }
4124 
4125 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)4126 nir_address_format_to_glsl_type(nir_address_format addr_format)
4127 {
4128    unsigned bit_size = nir_address_format_bit_size(addr_format);
4129    assert(bit_size == 32 || bit_size == 64);
4130    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4131                            nir_address_format_num_components(addr_format));
4132 }
4133 
4134 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4135 
4136 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4137                                 nir_address_format addr_format);
4138 
4139 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4140                                  nir_address_format addr_format);
4141 
4142 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4143                                                  nir_deref_instr *deref,
4144                                                  nir_ssa_def *base_addr,
4145                                                  nir_address_format addr_format);
4146 void nir_lower_explicit_io_instr(struct nir_builder *b,
4147                                  nir_intrinsic_instr *io_instr,
4148                                  nir_ssa_def *addr,
4149                                  nir_address_format addr_format);
4150 
4151 bool nir_lower_explicit_io(nir_shader *shader,
4152                            nir_variable_mode modes,
4153                            nir_address_format);
4154 
4155 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4156 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4157 
4158 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4159 
4160 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4161 bool nir_lower_regs_to_ssa(nir_shader *shader);
4162 bool nir_lower_vars_to_ssa(nir_shader *shader);
4163 
4164 bool nir_remove_dead_derefs(nir_shader *shader);
4165 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4166 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4167                                bool (*can_remove_var)(nir_variable *var));
4168 bool nir_lower_variable_initializers(nir_shader *shader,
4169                                      nir_variable_mode modes);
4170 
4171 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4172 bool nir_lower_vec_to_movs(nir_shader *shader);
4173 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4174                           bool alpha_to_one,
4175                           const gl_state_index16 *alpha_ref_state_tokens);
4176 bool nir_lower_alu(nir_shader *shader);
4177 
4178 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4179                     bool always_precise, bool have_ffma);
4180 
4181 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4182 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4183 bool nir_lower_bool_to_float(nir_shader *shader);
4184 bool nir_lower_bool_to_int32(nir_shader *shader);
4185 bool nir_lower_int_to_float(nir_shader *shader);
4186 bool nir_lower_load_const_to_scalar(nir_shader *shader);
4187 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4188 bool nir_lower_phis_to_scalar(nir_shader *shader);
4189 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4190 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4191                                                   bool outputs_only);
4192 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4193 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4194 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4195 
4196 bool nir_lower_fragcolor(nir_shader *shader);
4197 void nir_lower_fragcoord_wtrans(nir_shader *shader);
4198 void nir_lower_viewport_transform(nir_shader *shader);
4199 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4200 
4201 typedef struct nir_lower_subgroups_options {
4202    uint8_t subgroup_size;
4203    uint8_t ballot_bit_size;
4204    bool lower_to_scalar:1;
4205    bool lower_vote_trivial:1;
4206    bool lower_vote_eq_to_ballot:1;
4207    bool lower_subgroup_masks:1;
4208    bool lower_shuffle:1;
4209    bool lower_shuffle_to_32bit:1;
4210    bool lower_shuffle_to_swizzle_amd:1;
4211    bool lower_quad:1;
4212    bool lower_quad_broadcast_dynamic:1;
4213    bool lower_quad_broadcast_dynamic_to_const:1;
4214 } nir_lower_subgroups_options;
4215 
4216 bool nir_lower_subgroups(nir_shader *shader,
4217                          const nir_lower_subgroups_options *options);
4218 
4219 bool nir_lower_system_values(nir_shader *shader);
4220 
4221 enum PACKED nir_lower_tex_packing {
4222    nir_lower_tex_packing_none = 0,
4223    /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4224     * or unsigned ints based on the sampler type
4225     */
4226    nir_lower_tex_packing_16,
4227    /* The sampler returns 1 32-bit word of 4x8 unorm */
4228    nir_lower_tex_packing_8,
4229 };
4230 
4231 typedef struct nir_lower_tex_options {
4232    /**
4233     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4234     * sampler types a texture projector is lowered.
4235     */
4236    unsigned lower_txp;
4237 
4238    /**
4239     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4240     */
4241    bool lower_txf_offset;
4242 
4243    /**
4244     * If true, lower away nir_tex_src_offset for all rect textures.
4245     */
4246    bool lower_rect_offset;
4247 
4248    /**
4249     * If true, lower rect textures to 2D, using txs to fetch the
4250     * texture dimensions and dividing the texture coords by the
4251     * texture dims to normalize.
4252     */
4253    bool lower_rect;
4254 
4255    /**
4256     * If true, convert yuv to rgb.
4257     */
4258    unsigned lower_y_uv_external;
4259    unsigned lower_y_u_v_external;
4260    unsigned lower_yx_xuxv_external;
4261    unsigned lower_xy_uxvx_external;
4262    unsigned lower_ayuv_external;
4263    unsigned lower_xyuv_external;
4264    unsigned bt709_external;
4265    unsigned bt2020_external;
4266 
4267    /**
4268     * To emulate certain texture wrap modes, this can be used
4269     * to saturate the specified tex coord to [0.0, 1.0].  The
4270     * bits are according to sampler #, ie. if, for example:
4271     *
4272     *   (conf->saturate_s & (1 << n))
4273     *
4274     * is true, then the s coord for sampler n is saturated.
4275     *
4276     * Note that clamping must happen *after* projector lowering
4277     * so any projected texture sample instruction with a clamped
4278     * coordinate gets automatically lowered, regardless of the
4279     * 'lower_txp' setting.
4280     */
4281    unsigned saturate_s;
4282    unsigned saturate_t;
4283    unsigned saturate_r;
4284 
4285    /* Bitmask of textures that need swizzling.
4286     *
4287     * If (swizzle_result & (1 << texture_index)), then the swizzle in
4288     * swizzles[texture_index] is applied to the result of the texturing
4289     * operation.
4290     */
4291    unsigned swizzle_result;
4292 
4293    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
4294     * while 4 and 5 represent 0 and 1 respectively.
4295     */
4296    uint8_t swizzles[32][4];
4297 
4298    /* Can be used to scale sampled values in range required by the format. */
4299    float scale_factors[32];
4300 
4301    /**
4302     * Bitmap of textures that need srgb to linear conversion.  If
4303     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4304     * of the texture are lowered to linear.
4305     */
4306    unsigned lower_srgb;
4307 
4308    /**
4309     * If true, lower nir_texop_tex on shaders that doesn't support implicit
4310     * LODs to nir_texop_txl.
4311     */
4312    bool lower_tex_without_implicit_lod;
4313 
4314    /**
4315     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4316     */
4317    bool lower_txd_cube_map;
4318 
4319    /**
4320     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4321     */
4322    bool lower_txd_3d;
4323 
4324    /**
4325     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4326     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4327     * with lower_txd_cube_map.
4328     */
4329    bool lower_txd_shadow;
4330 
4331    /**
4332     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4333     * Implies lower_txd_cube_map and lower_txd_shadow.
4334     */
4335    bool lower_txd;
4336 
4337    /**
4338     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4339     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4340     */
4341    bool lower_txb_shadow_clamp;
4342 
4343    /**
4344     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4345     * with nir_texop_txl.  This includes cube maps.
4346     */
4347    bool lower_txd_shadow_clamp;
4348 
4349    /**
4350     * If true, lower nir_texop_txd on when it uses both offset and min_lod
4351     * with nir_texop_txl.  This includes cube maps.
4352     */
4353    bool lower_txd_offset_clamp;
4354 
4355    /**
4356     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4357     * sampler is bindless.
4358     */
4359    bool lower_txd_clamp_bindless_sampler;
4360 
4361    /**
4362     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4363     * sampler index is not statically determinable to be less than 16.
4364     */
4365    bool lower_txd_clamp_if_sampler_index_not_lt_16;
4366 
4367    /**
4368     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4369     * 0-lod followed by a nir_ishr.
4370     */
4371    bool lower_txs_lod;
4372 
4373    /**
4374     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4375     * mixed-up tg4 locations.
4376     */
4377    bool lower_tg4_broadcom_swizzle;
4378 
4379    /**
4380     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4381     */
4382    bool lower_tg4_offsets;
4383 
4384    enum nir_lower_tex_packing lower_tex_packing[32];
4385 } nir_lower_tex_options;
4386 
4387 bool nir_lower_tex(nir_shader *shader,
4388                    const nir_lower_tex_options *options);
4389 
4390 enum nir_lower_non_uniform_access_type {
4391    nir_lower_non_uniform_ubo_access     = (1 << 0),
4392    nir_lower_non_uniform_ssbo_access    = (1 << 1),
4393    nir_lower_non_uniform_texture_access = (1 << 2),
4394    nir_lower_non_uniform_image_access   = (1 << 3),
4395 };
4396 
4397 bool nir_lower_non_uniform_access(nir_shader *shader,
4398                                   enum nir_lower_non_uniform_access_type);
4399 
4400 enum nir_lower_idiv_path {
4401    /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4402     * the two but it is not exact in some cases (for example, 1091317713u /
4403     * 1034u gives 5209173 instead of 1055432) */
4404    nir_lower_idiv_fast,
4405    /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4406     * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4407     * the nv50 path and many of them are integer multiplications, so it is
4408     * probably slower. It should always return the correct result, though. */
4409    nir_lower_idiv_precise,
4410 };
4411 
4412 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4413 
4414 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
4415 
4416 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4417                        bool use_vars,
4418                        bool use_clipdist_array,
4419                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4420 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4421                        bool use_clipdist_array,
4422                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4423 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4424                        bool use_clipdist_array);
4425 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4426 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4427 
4428 void nir_lower_point_size_mov(nir_shader *shader,
4429                               const gl_state_index16 *pointsize_state_tokens);
4430 
4431 bool nir_lower_frexp(nir_shader *nir);
4432 
4433 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4434 
4435 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4436 
4437 bool nir_lower_flatshade(nir_shader *shader);
4438 
4439 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4440 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4441                               const gl_state_index16 *uniform_state_tokens);
4442 
4443 typedef struct nir_lower_wpos_ytransform_options {
4444    gl_state_index16 state_tokens[STATE_LENGTH];
4445    bool fs_coord_origin_upper_left :1;
4446    bool fs_coord_origin_lower_left :1;
4447    bool fs_coord_pixel_center_integer :1;
4448    bool fs_coord_pixel_center_half_integer :1;
4449 } nir_lower_wpos_ytransform_options;
4450 
4451 bool nir_lower_wpos_ytransform(nir_shader *shader,
4452                                const nir_lower_wpos_ytransform_options *options);
4453 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4454 
4455 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4456 
4457 bool nir_lower_fb_read(nir_shader *shader);
4458 
4459 typedef struct nir_lower_drawpixels_options {
4460    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4461    gl_state_index16 scale_state_tokens[STATE_LENGTH];
4462    gl_state_index16 bias_state_tokens[STATE_LENGTH];
4463    unsigned drawpix_sampler;
4464    unsigned pixelmap_sampler;
4465    bool pixel_maps :1;
4466    bool scale_and_bias :1;
4467 } nir_lower_drawpixels_options;
4468 
4469 void nir_lower_drawpixels(nir_shader *shader,
4470                           const nir_lower_drawpixels_options *options);
4471 
4472 typedef struct nir_lower_bitmap_options {
4473    unsigned sampler;
4474    bool swizzle_xxxx;
4475 } nir_lower_bitmap_options;
4476 
4477 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4478 
4479 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4480 
4481 typedef enum  {
4482    nir_lower_int_source_mods = 1 << 0,
4483    nir_lower_float_source_mods = 1 << 1,
4484    nir_lower_triop_abs = 1 << 2,
4485    nir_lower_all_source_mods = (1 << 3) - 1
4486 } nir_lower_to_source_mods_flags;
4487 
4488 
4489 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4490 
4491 bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
4492 
4493 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4494 
4495 bool nir_lower_bit_size(nir_shader *shader,
4496                         nir_lower_bit_size_callback callback,
4497                         void *callback_data);
4498 
4499 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4500 bool nir_lower_int64(nir_shader *shader);
4501 
4502 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4503 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4504                        nir_lower_doubles_options options);
4505 bool nir_lower_pack(nir_shader *shader);
4506 
4507 void nir_lower_mediump_outputs(nir_shader *nir);
4508 
4509 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4510 
4511 typedef enum {
4512    nir_lower_interpolation_at_sample = (1 << 1),
4513    nir_lower_interpolation_at_offset = (1 << 2),
4514    nir_lower_interpolation_centroid  = (1 << 3),
4515    nir_lower_interpolation_pixel     = (1 << 4),
4516    nir_lower_interpolation_sample    = (1 << 5),
4517 } nir_lower_interpolation_options;
4518 
4519 bool nir_lower_interpolation(nir_shader *shader,
4520                              nir_lower_interpolation_options options);
4521 
4522 bool nir_lower_discard_to_demote(nir_shader *shader);
4523 
4524 bool nir_lower_memory_model(nir_shader *shader);
4525 
4526 bool nir_normalize_cubemap_coords(nir_shader *shader);
4527 
4528 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4529 
4530 void nir_loop_analyze_impl(nir_function_impl *impl,
4531                            nir_variable_mode indirect_mask);
4532 
4533 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4534 
4535 bool nir_repair_ssa_impl(nir_function_impl *impl);
4536 bool nir_repair_ssa(nir_shader *shader);
4537 
4538 void nir_convert_loop_to_lcssa(nir_loop *loop);
4539 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4540 void nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4541 
4542 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4543  * registers.  If false, convert all values (even those not involved in a phi
4544  * node) to registers.
4545  */
4546 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4547 
4548 bool nir_lower_phis_to_regs_block(nir_block *block);
4549 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4550 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4551 
4552 bool nir_lower_samplers(nir_shader *shader);
4553 bool nir_lower_ssbo(nir_shader *shader);
4554 
4555 /* This is here for unit tests. */
4556 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4557 
4558 bool nir_opt_comparison_pre(nir_shader *shader);
4559 
4560 bool nir_opt_access(nir_shader *shader);
4561 bool nir_opt_algebraic(nir_shader *shader);
4562 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4563 bool nir_opt_algebraic_late(nir_shader *shader);
4564 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
4565 bool nir_opt_constant_folding(nir_shader *shader);
4566 
4567 /* Try to combine a and b into a.  Return true if combination was possible,
4568  * which will result in b being removed by the pass.  Return false if
4569  * combination wasn't possible.
4570  */
4571 typedef bool (*nir_combine_memory_barrier_cb)(
4572    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
4573 
4574 bool nir_opt_combine_memory_barriers(nir_shader *shader,
4575                                      nir_combine_memory_barrier_cb combine_cb,
4576                                      void *data);
4577 
4578 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4579 
4580 bool nir_copy_prop(nir_shader *shader);
4581 
4582 bool nir_opt_copy_prop_vars(nir_shader *shader);
4583 
4584 bool nir_opt_cse(nir_shader *shader);
4585 
4586 bool nir_opt_dce(nir_shader *shader);
4587 
4588 bool nir_opt_dead_cf(nir_shader *shader);
4589 
4590 bool nir_opt_dead_write_vars(nir_shader *shader);
4591 
4592 bool nir_opt_deref_impl(nir_function_impl *impl);
4593 bool nir_opt_deref(nir_shader *shader);
4594 
4595 bool nir_opt_find_array_copies(nir_shader *shader);
4596 
4597 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4598 
4599 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4600 
4601 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4602 
4603 bool nir_opt_intrinsics(nir_shader *shader);
4604 
4605 bool nir_opt_large_constants(nir_shader *shader,
4606                              glsl_type_size_align_func size_align,
4607                              unsigned threshold);
4608 
4609 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4610 
4611 typedef enum {
4612     nir_move_const_undef = (1 << 0),
4613     nir_move_load_ubo    = (1 << 1),
4614     nir_move_load_input  = (1 << 2),
4615     nir_move_comparisons = (1 << 3),
4616     nir_move_copies      = (1 << 4),
4617 } nir_move_options;
4618 
4619 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4620 
4621 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4622 
4623 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4624 
4625 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4626                              bool indirect_load_ok, bool expensive_alu_ok);
4627 
4628 bool nir_opt_rematerialize_compares(nir_shader *shader);
4629 
4630 bool nir_opt_remove_phis(nir_shader *shader);
4631 bool nir_opt_remove_phis_block(nir_block *block);
4632 
4633 bool nir_opt_shrink_vectors(nir_shader *shader);
4634 
4635 bool nir_opt_trivial_continues(nir_shader *shader);
4636 
4637 bool nir_opt_undef(nir_shader *shader);
4638 
4639 bool nir_opt_vectorize(nir_shader *shader);
4640 
4641 bool nir_opt_conditional_discard(nir_shader *shader);
4642 
4643 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4644                                               unsigned num_components, unsigned high_offset,
4645                                               nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4646 
4647 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4648                                   nir_should_vectorize_mem_func callback,
4649                                   nir_variable_mode robust_modes);
4650 
4651 void nir_strip(nir_shader *shader);
4652 
4653 void nir_sweep(nir_shader *shader);
4654 
4655 void nir_remap_dual_slot_attributes(nir_shader *shader,
4656                                     uint64_t *dual_slot_inputs);
4657 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4658 
4659 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4660 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4661 
4662 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)4663 nir_variable_is_in_ubo(const nir_variable *var)
4664 {
4665    return (var->data.mode == nir_var_mem_ubo &&
4666            var->interface_type != NULL);
4667 }
4668 
4669 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)4670 nir_variable_is_in_ssbo(const nir_variable *var)
4671 {
4672    return (var->data.mode == nir_var_mem_ssbo &&
4673            var->interface_type != NULL);
4674 }
4675 
4676 static inline bool
nir_variable_is_in_block(const nir_variable * var)4677 nir_variable_is_in_block(const nir_variable *var)
4678 {
4679    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4680 }
4681 
4682 typedef struct nir_unsigned_upper_bound_config {
4683    unsigned min_subgroup_size;
4684    unsigned max_subgroup_size;
4685    unsigned max_work_group_invocations;
4686    unsigned max_work_group_count[3];
4687    unsigned max_work_group_size[3];
4688 
4689    uint32_t vertex_attrib_max[32];
4690 } nir_unsigned_upper_bound_config;
4691 
4692 uint32_t
4693 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
4694                          nir_ssa_scalar scalar,
4695                          const nir_unsigned_upper_bound_config *config);
4696 
4697 bool
4698 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
4699                             nir_ssa_scalar ssa, unsigned const_val,
4700                             const nir_unsigned_upper_bound_config *config);
4701 
4702 #ifdef __cplusplus
4703 } /* extern "C" */
4704 #endif
4705 
4706 #endif /* NIR_H */
4707