xref: /linux/include/linux/mmzone.h (revision fae7d834)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
209 #ifdef CONFIG_SWAP
210 	NR_SWAPCACHE,
211 #endif
212 #ifdef CONFIG_NUMA_BALANCING
213 	PGPROMOTE_SUCCESS,	/* promote successfully */
214 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
215 #endif
216 	/* PGDEMOTE_*: pages demoted */
217 	PGDEMOTE_KSWAPD,
218 	PGDEMOTE_DIRECT,
219 	PGDEMOTE_KHUGEPAGED,
220 	NR_VM_NODE_STAT_ITEMS
221 };
222 
223 /*
224  * Returns true if the item should be printed in THPs (/proc/vmstat
225  * currently prints number of anon, file and shmem THPs. But the item
226  * is charged in pages).
227  */
vmstat_item_print_in_thp(enum node_stat_item item)228 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
229 {
230 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
231 		return false;
232 
233 	return item == NR_ANON_THPS ||
234 	       item == NR_FILE_THPS ||
235 	       item == NR_SHMEM_THPS ||
236 	       item == NR_SHMEM_PMDMAPPED ||
237 	       item == NR_FILE_PMDMAPPED;
238 }
239 
240 /*
241  * Returns true if the value is measured in bytes (most vmstat values are
242  * measured in pages). This defines the API part, the internal representation
243  * might be different.
244  */
vmstat_item_in_bytes(int idx)245 static __always_inline bool vmstat_item_in_bytes(int idx)
246 {
247 	/*
248 	 * Global and per-node slab counters track slab pages.
249 	 * It's expected that changes are multiples of PAGE_SIZE.
250 	 * Internally values are stored in pages.
251 	 *
252 	 * Per-memcg and per-lruvec counters track memory, consumed
253 	 * by individual slab objects. These counters are actually
254 	 * byte-precise.
255 	 */
256 	return (idx == NR_SLAB_RECLAIMABLE_B ||
257 		idx == NR_SLAB_UNRECLAIMABLE_B);
258 }
259 
260 /*
261  * We do arithmetic on the LRU lists in various places in the code,
262  * so it is important to keep the active lists LRU_ACTIVE higher in
263  * the array than the corresponding inactive lists, and to keep
264  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
265  *
266  * This has to be kept in sync with the statistics in zone_stat_item
267  * above and the descriptions in vmstat_text in mm/vmstat.c
268  */
269 #define LRU_BASE 0
270 #define LRU_ACTIVE 1
271 #define LRU_FILE 2
272 
273 enum lru_list {
274 	LRU_INACTIVE_ANON = LRU_BASE,
275 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
276 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
277 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
278 	LRU_UNEVICTABLE,
279 	NR_LRU_LISTS
280 };
281 
282 enum vmscan_throttle_state {
283 	VMSCAN_THROTTLE_WRITEBACK,
284 	VMSCAN_THROTTLE_ISOLATED,
285 	VMSCAN_THROTTLE_NOPROGRESS,
286 	VMSCAN_THROTTLE_CONGESTED,
287 	NR_VMSCAN_THROTTLE,
288 };
289 
290 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
291 
292 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
293 
is_file_lru(enum lru_list lru)294 static inline bool is_file_lru(enum lru_list lru)
295 {
296 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
297 }
298 
is_active_lru(enum lru_list lru)299 static inline bool is_active_lru(enum lru_list lru)
300 {
301 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
302 }
303 
304 #define WORKINGSET_ANON 0
305 #define WORKINGSET_FILE 1
306 #define ANON_AND_FILE 2
307 
308 enum lruvec_flags {
309 	/*
310 	 * An lruvec has many dirty pages backed by a congested BDI:
311 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
312 	 *    It can be cleared by cgroup reclaim or kswapd.
313 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
314 	 *    It can only be cleared by kswapd.
315 	 *
316 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
317 	 * reclaim, but not vice versa. This only applies to the root cgroup.
318 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
319 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
320 	 * by kswapd).
321 	 */
322 	LRUVEC_CGROUP_CONGESTED,
323 	LRUVEC_NODE_CONGESTED,
324 };
325 
326 #endif /* !__GENERATING_BOUNDS_H */
327 
328 /*
329  * Evictable pages are divided into multiple generations. The youngest and the
330  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
331  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
332  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
333  * corresponding generation. The gen counter in folio->flags stores gen+1 while
334  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
335  *
336  * A page is added to the youngest generation on faulting. The aging needs to
337  * check the accessed bit at least twice before handing this page over to the
338  * eviction. The first check takes care of the accessed bit set on the initial
339  * fault; the second check makes sure this page hasn't been used since then.
340  * This process, AKA second chance, requires a minimum of two generations,
341  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
342  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
343  * rest of generations, if they exist, are considered inactive. See
344  * lru_gen_is_active().
345  *
346  * PG_active is always cleared while a page is on one of lrugen->folios[] so
347  * that the aging needs not to worry about it. And it's set again when a page
348  * considered active is isolated for non-reclaiming purposes, e.g., migration.
349  * See lru_gen_add_folio() and lru_gen_del_folio().
350  *
351  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
352  * number of categories of the active/inactive LRU when keeping track of
353  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
354  * in folio->flags.
355  */
356 #define MIN_NR_GENS		2U
357 #define MAX_NR_GENS		4U
358 
359 /*
360  * Each generation is divided into multiple tiers. A page accessed N times
361  * through file descriptors is in tier order_base_2(N). A page in the first tier
362  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
363  * tables or read ahead. A page in any other tier (N>1) is marked by
364  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
365  * supported without using additional bits in folio->flags.
366  *
367  * In contrast to moving across generations which requires the LRU lock, moving
368  * across tiers only involves atomic operations on folio->flags and therefore
369  * has a negligible cost in the buffered access path. In the eviction path,
370  * comparisons of refaulted/(evicted+protected) from the first tier and the
371  * rest infer whether pages accessed multiple times through file descriptors
372  * are statistically hot and thus worth protecting.
373  *
374  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
375  * number of categories of the active/inactive LRU when keeping track of
376  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
377  * folio->flags.
378  */
379 #define MAX_NR_TIERS		4U
380 
381 #ifndef __GENERATING_BOUNDS_H
382 
383 struct lruvec;
384 struct page_vma_mapped_walk;
385 
386 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
387 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
388 
389 #ifdef CONFIG_LRU_GEN
390 
391 enum {
392 	LRU_GEN_ANON,
393 	LRU_GEN_FILE,
394 };
395 
396 enum {
397 	LRU_GEN_CORE,
398 	LRU_GEN_MM_WALK,
399 	LRU_GEN_NONLEAF_YOUNG,
400 	NR_LRU_GEN_CAPS
401 };
402 
403 #define MIN_LRU_BATCH		BITS_PER_LONG
404 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
405 
406 /* whether to keep historical stats from evicted generations */
407 #ifdef CONFIG_LRU_GEN_STATS
408 #define NR_HIST_GENS		MAX_NR_GENS
409 #else
410 #define NR_HIST_GENS		1U
411 #endif
412 
413 /*
414  * The youngest generation number is stored in max_seq for both anon and file
415  * types as they are aged on an equal footing. The oldest generation numbers are
416  * stored in min_seq[] separately for anon and file types as clean file pages
417  * can be evicted regardless of swap constraints.
418  *
419  * Normally anon and file min_seq are in sync. But if swapping is constrained,
420  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
421  * min_seq behind.
422  *
423  * The number of pages in each generation is eventually consistent and therefore
424  * can be transiently negative when reset_batch_size() is pending.
425  */
426 struct lru_gen_folio {
427 	/* the aging increments the youngest generation number */
428 	unsigned long max_seq;
429 	/* the eviction increments the oldest generation numbers */
430 	unsigned long min_seq[ANON_AND_FILE];
431 	/* the birth time of each generation in jiffies */
432 	unsigned long timestamps[MAX_NR_GENS];
433 	/* the multi-gen LRU lists, lazily sorted on eviction */
434 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
435 	/* the multi-gen LRU sizes, eventually consistent */
436 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
437 	/* the exponential moving average of refaulted */
438 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
439 	/* the exponential moving average of evicted+protected */
440 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
441 	/* the first tier doesn't need protection, hence the minus one */
442 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
443 	/* can be modified without holding the LRU lock */
444 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
445 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
446 	/* whether the multi-gen LRU is enabled */
447 	bool enabled;
448 	/* the memcg generation this lru_gen_folio belongs to */
449 	u8 gen;
450 	/* the list segment this lru_gen_folio belongs to */
451 	u8 seg;
452 	/* per-node lru_gen_folio list for global reclaim */
453 	struct hlist_nulls_node list;
454 };
455 
456 enum {
457 	MM_LEAF_TOTAL,		/* total leaf entries */
458 	MM_LEAF_OLD,		/* old leaf entries */
459 	MM_LEAF_YOUNG,		/* young leaf entries */
460 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
461 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
462 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
463 	NR_MM_STATS
464 };
465 
466 /* double-buffering Bloom filters */
467 #define NR_BLOOM_FILTERS	2
468 
469 struct lru_gen_mm_state {
470 	/* synced with max_seq after each iteration */
471 	unsigned long seq;
472 	/* where the current iteration continues after */
473 	struct list_head *head;
474 	/* where the last iteration ended before */
475 	struct list_head *tail;
476 	/* Bloom filters flip after each iteration */
477 	unsigned long *filters[NR_BLOOM_FILTERS];
478 	/* the mm stats for debugging */
479 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
480 };
481 
482 struct lru_gen_mm_walk {
483 	/* the lruvec under reclaim */
484 	struct lruvec *lruvec;
485 	/* max_seq from lru_gen_folio: can be out of date */
486 	unsigned long seq;
487 	/* the next address within an mm to scan */
488 	unsigned long next_addr;
489 	/* to batch promoted pages */
490 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
491 	/* to batch the mm stats */
492 	int mm_stats[NR_MM_STATS];
493 	/* total batched items */
494 	int batched;
495 	bool can_swap;
496 	bool force_scan;
497 };
498 
499 /*
500  * For each node, memcgs are divided into two generations: the old and the
501  * young. For each generation, memcgs are randomly sharded into multiple bins
502  * to improve scalability. For each bin, the hlist_nulls is virtually divided
503  * into three segments: the head, the tail and the default.
504  *
505  * An onlining memcg is added to the tail of a random bin in the old generation.
506  * The eviction starts at the head of a random bin in the old generation. The
507  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
508  * the old generation, is incremented when all its bins become empty.
509  *
510  * There are four operations:
511  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
512  *    current generation (old or young) and updates its "seg" to "head";
513  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
514  *    current generation (old or young) and updates its "seg" to "tail";
515  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
516  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
517  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
518  *    young generation, updates its "gen" to "young" and resets its "seg" to
519  *    "default".
520  *
521  * The events that trigger the above operations are:
522  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
523  * 2. The first attempt to reclaim a memcg below low, which triggers
524  *    MEMCG_LRU_TAIL;
525  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
526  *    threshold, which triggers MEMCG_LRU_TAIL;
527  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
528  *    threshold, which triggers MEMCG_LRU_YOUNG;
529  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
530  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
531  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
532  *
533  * Notes:
534  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
535  *    of their max_seq counters ensures the eventual fairness to all eligible
536  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
537  * 2. There are only two valid generations: old (seq) and young (seq+1).
538  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
539  *    locklessly, a stale value (seq-1) does not wraparound to young.
540  */
541 #define MEMCG_NR_GENS	3
542 #define MEMCG_NR_BINS	8
543 
544 struct lru_gen_memcg {
545 	/* the per-node memcg generation counter */
546 	unsigned long seq;
547 	/* each memcg has one lru_gen_folio per node */
548 	unsigned long nr_memcgs[MEMCG_NR_GENS];
549 	/* per-node lru_gen_folio list for global reclaim */
550 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
551 	/* protects the above */
552 	spinlock_t lock;
553 };
554 
555 void lru_gen_init_pgdat(struct pglist_data *pgdat);
556 void lru_gen_init_lruvec(struct lruvec *lruvec);
557 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
558 
559 void lru_gen_init_memcg(struct mem_cgroup *memcg);
560 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
561 void lru_gen_online_memcg(struct mem_cgroup *memcg);
562 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
563 void lru_gen_release_memcg(struct mem_cgroup *memcg);
564 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
565 
566 #else /* !CONFIG_LRU_GEN */
567 
lru_gen_init_pgdat(struct pglist_data * pgdat)568 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
569 {
570 }
571 
lru_gen_init_lruvec(struct lruvec * lruvec)572 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
573 {
574 }
575 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)576 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
577 {
578 }
579 
lru_gen_init_memcg(struct mem_cgroup * memcg)580 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
581 {
582 }
583 
lru_gen_exit_memcg(struct mem_cgroup * memcg)584 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
585 {
586 }
587 
lru_gen_online_memcg(struct mem_cgroup * memcg)588 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
589 {
590 }
591 
lru_gen_offline_memcg(struct mem_cgroup * memcg)592 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
593 {
594 }
595 
lru_gen_release_memcg(struct mem_cgroup * memcg)596 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
597 {
598 }
599 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)600 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
601 {
602 }
603 
604 #endif /* CONFIG_LRU_GEN */
605 
606 struct lruvec {
607 	struct list_head		lists[NR_LRU_LISTS];
608 	/* per lruvec lru_lock for memcg */
609 	spinlock_t			lru_lock;
610 	/*
611 	 * These track the cost of reclaiming one LRU - file or anon -
612 	 * over the other. As the observed cost of reclaiming one LRU
613 	 * increases, the reclaim scan balance tips toward the other.
614 	 */
615 	unsigned long			anon_cost;
616 	unsigned long			file_cost;
617 	/* Non-resident age, driven by LRU movement */
618 	atomic_long_t			nonresident_age;
619 	/* Refaults at the time of last reclaim cycle */
620 	unsigned long			refaults[ANON_AND_FILE];
621 	/* Various lruvec state flags (enum lruvec_flags) */
622 	unsigned long			flags;
623 #ifdef CONFIG_LRU_GEN
624 	/* evictable pages divided into generations */
625 	struct lru_gen_folio		lrugen;
626 #ifdef CONFIG_LRU_GEN_WALKS_MMU
627 	/* to concurrently iterate lru_gen_mm_list */
628 	struct lru_gen_mm_state		mm_state;
629 #endif
630 #endif /* CONFIG_LRU_GEN */
631 #ifdef CONFIG_MEMCG
632 	struct pglist_data *pgdat;
633 #endif
634 	struct zswap_lruvec_state zswap_lruvec_state;
635 };
636 
637 /* Isolate for asynchronous migration */
638 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
639 /* Isolate unevictable pages */
640 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
641 
642 /* LRU Isolation modes. */
643 typedef unsigned __bitwise isolate_mode_t;
644 
645 enum zone_watermarks {
646 	WMARK_MIN,
647 	WMARK_LOW,
648 	WMARK_HIGH,
649 	WMARK_PROMO,
650 	NR_WMARK
651 };
652 
653 /*
654  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
655  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
656  * it should not contribute to serious fragmentation causing THP allocation
657  * failures.
658  */
659 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
660 #define NR_PCP_THP 1
661 #else
662 #define NR_PCP_THP 0
663 #endif
664 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
665 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
666 
667 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
668 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
669 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
670 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
671 
672 /*
673  * Flags used in pcp->flags field.
674  *
675  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
676  * previous page freeing.  To avoid to drain PCP for an accident
677  * high-order page freeing.
678  *
679  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
680  * draining PCP for consecutive high-order pages freeing without
681  * allocation if data cache slice of CPU is large enough.  To reduce
682  * zone lock contention and keep cache-hot pages reusing.
683  */
684 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
685 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
686 
687 struct per_cpu_pages {
688 	spinlock_t lock;	/* Protects lists field */
689 	int count;		/* number of pages in the list */
690 	int high;		/* high watermark, emptying needed */
691 	int high_min;		/* min high watermark */
692 	int high_max;		/* max high watermark */
693 	int batch;		/* chunk size for buddy add/remove */
694 	u8 flags;		/* protected by pcp->lock */
695 	u8 alloc_factor;	/* batch scaling factor during allocate */
696 #ifdef CONFIG_NUMA
697 	u8 expire;		/* When 0, remote pagesets are drained */
698 #endif
699 	short free_count;	/* consecutive free count */
700 
701 	/* Lists of pages, one per migrate type stored on the pcp-lists */
702 	struct list_head lists[NR_PCP_LISTS];
703 } ____cacheline_aligned_in_smp;
704 
705 struct per_cpu_zonestat {
706 #ifdef CONFIG_SMP
707 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
708 	s8 stat_threshold;
709 #endif
710 #ifdef CONFIG_NUMA
711 	/*
712 	 * Low priority inaccurate counters that are only folded
713 	 * on demand. Use a large type to avoid the overhead of
714 	 * folding during refresh_cpu_vm_stats.
715 	 */
716 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
717 #endif
718 };
719 
720 struct per_cpu_nodestat {
721 	s8 stat_threshold;
722 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
723 };
724 
725 #endif /* !__GENERATING_BOUNDS.H */
726 
727 enum zone_type {
728 	/*
729 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
730 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
731 	 * On architectures where this area covers the whole 32 bit address
732 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
733 	 * DMA addressing constraints. This distinction is important as a 32bit
734 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
735 	 * platforms may need both zones as they support peripherals with
736 	 * different DMA addressing limitations.
737 	 */
738 #ifdef CONFIG_ZONE_DMA
739 	ZONE_DMA,
740 #endif
741 #ifdef CONFIG_ZONE_DMA32
742 	ZONE_DMA32,
743 #endif
744 	/*
745 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
746 	 * performed on pages in ZONE_NORMAL if the DMA devices support
747 	 * transfers to all addressable memory.
748 	 */
749 	ZONE_NORMAL,
750 #ifdef CONFIG_HIGHMEM
751 	/*
752 	 * A memory area that is only addressable by the kernel through
753 	 * mapping portions into its own address space. This is for example
754 	 * used by i386 to allow the kernel to address the memory beyond
755 	 * 900MB. The kernel will set up special mappings (page
756 	 * table entries on i386) for each page that the kernel needs to
757 	 * access.
758 	 */
759 	ZONE_HIGHMEM,
760 #endif
761 	/*
762 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
763 	 * movable pages with few exceptional cases described below. Main use
764 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
765 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
766 	 * to increase the number of THP/huge pages. Notable special cases are:
767 	 *
768 	 * 1. Pinned pages: (long-term) pinning of movable pages might
769 	 *    essentially turn such pages unmovable. Therefore, we do not allow
770 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
771 	 *    faulted, they come from the right zone right away. However, it is
772 	 *    still possible that address space already has pages in
773 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
774 	 *    touches that memory before pinning). In such case we migrate them
775 	 *    to a different zone. When migration fails - pinning fails.
776 	 * 2. memblock allocations: kernelcore/movablecore setups might create
777 	 *    situations where ZONE_MOVABLE contains unmovable allocations
778 	 *    after boot. Memory offlining and allocations fail early.
779 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
780 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
781 	 *    for example, if we have sections that are only partially
782 	 *    populated. Memory offlining and allocations fail early.
783 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
784 	 *    memory offlining, such pages cannot be allocated.
785 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
786 	 *    hotplugged memory blocks might only partially be managed by the
787 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
788 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
789 	 *    some cases (virtio-mem), such pages can be skipped during
790 	 *    memory offlining, however, cannot be moved/allocated. These
791 	 *    techniques might use alloc_contig_range() to hide previously
792 	 *    exposed pages from the buddy again (e.g., to implement some sort
793 	 *    of memory unplug in virtio-mem).
794 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
795 	 *    situations where ZERO_PAGE(0) which is allocated differently
796 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
797 	 *    cannot be migrated.
798 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
799 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
800 	 *    such zone. Such pages cannot be really moved around as they are
801 	 *    self-stored in the range, but they are treated as movable when
802 	 *    the range they describe is about to be offlined.
803 	 *
804 	 * In general, no unmovable allocations that degrade memory offlining
805 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
806 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
807 	 * if has_unmovable_pages() states that there are no unmovable pages,
808 	 * there can be false negatives).
809 	 */
810 	ZONE_MOVABLE,
811 #ifdef CONFIG_ZONE_DEVICE
812 	ZONE_DEVICE,
813 #endif
814 	__MAX_NR_ZONES
815 
816 };
817 
818 #ifndef __GENERATING_BOUNDS_H
819 
820 #define ASYNC_AND_SYNC 2
821 
822 struct zone {
823 	/* Read-mostly fields */
824 
825 	/* zone watermarks, access with *_wmark_pages(zone) macros */
826 	unsigned long _watermark[NR_WMARK];
827 	unsigned long watermark_boost;
828 
829 	unsigned long nr_reserved_highatomic;
830 
831 	/*
832 	 * We don't know if the memory that we're going to allocate will be
833 	 * freeable or/and it will be released eventually, so to avoid totally
834 	 * wasting several GB of ram we must reserve some of the lower zone
835 	 * memory (otherwise we risk to run OOM on the lower zones despite
836 	 * there being tons of freeable ram on the higher zones).  This array is
837 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
838 	 * changes.
839 	 */
840 	long lowmem_reserve[MAX_NR_ZONES];
841 
842 #ifdef CONFIG_NUMA
843 	int node;
844 #endif
845 	struct pglist_data	*zone_pgdat;
846 	struct per_cpu_pages	__percpu *per_cpu_pageset;
847 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
848 	/*
849 	 * the high and batch values are copied to individual pagesets for
850 	 * faster access
851 	 */
852 	int pageset_high_min;
853 	int pageset_high_max;
854 	int pageset_batch;
855 
856 #ifndef CONFIG_SPARSEMEM
857 	/*
858 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
859 	 * In SPARSEMEM, this map is stored in struct mem_section
860 	 */
861 	unsigned long		*pageblock_flags;
862 #endif /* CONFIG_SPARSEMEM */
863 
864 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
865 	unsigned long		zone_start_pfn;
866 
867 	/*
868 	 * spanned_pages is the total pages spanned by the zone, including
869 	 * holes, which is calculated as:
870 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
871 	 *
872 	 * present_pages is physical pages existing within the zone, which
873 	 * is calculated as:
874 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
875 	 *
876 	 * present_early_pages is present pages existing within the zone
877 	 * located on memory available since early boot, excluding hotplugged
878 	 * memory.
879 	 *
880 	 * managed_pages is present pages managed by the buddy system, which
881 	 * is calculated as (reserved_pages includes pages allocated by the
882 	 * bootmem allocator):
883 	 *	managed_pages = present_pages - reserved_pages;
884 	 *
885 	 * cma pages is present pages that are assigned for CMA use
886 	 * (MIGRATE_CMA).
887 	 *
888 	 * So present_pages may be used by memory hotplug or memory power
889 	 * management logic to figure out unmanaged pages by checking
890 	 * (present_pages - managed_pages). And managed_pages should be used
891 	 * by page allocator and vm scanner to calculate all kinds of watermarks
892 	 * and thresholds.
893 	 *
894 	 * Locking rules:
895 	 *
896 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
897 	 * It is a seqlock because it has to be read outside of zone->lock,
898 	 * and it is done in the main allocator path.  But, it is written
899 	 * quite infrequently.
900 	 *
901 	 * The span_seq lock is declared along with zone->lock because it is
902 	 * frequently read in proximity to zone->lock.  It's good to
903 	 * give them a chance of being in the same cacheline.
904 	 *
905 	 * Write access to present_pages at runtime should be protected by
906 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
907 	 * present_pages should use get_online_mems() to get a stable value.
908 	 */
909 	atomic_long_t		managed_pages;
910 	unsigned long		spanned_pages;
911 	unsigned long		present_pages;
912 #if defined(CONFIG_MEMORY_HOTPLUG)
913 	unsigned long		present_early_pages;
914 #endif
915 #ifdef CONFIG_CMA
916 	unsigned long		cma_pages;
917 #endif
918 
919 	const char		*name;
920 
921 #ifdef CONFIG_MEMORY_ISOLATION
922 	/*
923 	 * Number of isolated pageblock. It is used to solve incorrect
924 	 * freepage counting problem due to racy retrieving migratetype
925 	 * of pageblock. Protected by zone->lock.
926 	 */
927 	unsigned long		nr_isolate_pageblock;
928 #endif
929 
930 #ifdef CONFIG_MEMORY_HOTPLUG
931 	/* see spanned/present_pages for more description */
932 	seqlock_t		span_seqlock;
933 #endif
934 
935 	int initialized;
936 
937 	/* Write-intensive fields used from the page allocator */
938 	CACHELINE_PADDING(_pad1_);
939 
940 	/* free areas of different sizes */
941 	struct free_area	free_area[NR_PAGE_ORDERS];
942 
943 #ifdef CONFIG_UNACCEPTED_MEMORY
944 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
945 	struct list_head	unaccepted_pages;
946 #endif
947 
948 	/* zone flags, see below */
949 	unsigned long		flags;
950 
951 	/* Primarily protects free_area */
952 	spinlock_t		lock;
953 
954 	/* Write-intensive fields used by compaction and vmstats. */
955 	CACHELINE_PADDING(_pad2_);
956 
957 	/*
958 	 * When free pages are below this point, additional steps are taken
959 	 * when reading the number of free pages to avoid per-cpu counter
960 	 * drift allowing watermarks to be breached
961 	 */
962 	unsigned long percpu_drift_mark;
963 
964 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
965 	/* pfn where compaction free scanner should start */
966 	unsigned long		compact_cached_free_pfn;
967 	/* pfn where compaction migration scanner should start */
968 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
969 	unsigned long		compact_init_migrate_pfn;
970 	unsigned long		compact_init_free_pfn;
971 #endif
972 
973 #ifdef CONFIG_COMPACTION
974 	/*
975 	 * On compaction failure, 1<<compact_defer_shift compactions
976 	 * are skipped before trying again. The number attempted since
977 	 * last failure is tracked with compact_considered.
978 	 * compact_order_failed is the minimum compaction failed order.
979 	 */
980 	unsigned int		compact_considered;
981 	unsigned int		compact_defer_shift;
982 	int			compact_order_failed;
983 #endif
984 
985 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
986 	/* Set to true when the PG_migrate_skip bits should be cleared */
987 	bool			compact_blockskip_flush;
988 #endif
989 
990 	bool			contiguous;
991 
992 	CACHELINE_PADDING(_pad3_);
993 	/* Zone statistics */
994 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
995 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
996 } ____cacheline_internodealigned_in_smp;
997 
998 enum pgdat_flags {
999 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1000 					 * many dirty file pages at the tail
1001 					 * of the LRU.
1002 					 */
1003 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1004 					 * many pages under writeback
1005 					 */
1006 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1007 };
1008 
1009 enum zone_flags {
1010 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1011 					 * Cleared when kswapd is woken.
1012 					 */
1013 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1014 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1015 };
1016 
zone_managed_pages(struct zone * zone)1017 static inline unsigned long zone_managed_pages(struct zone *zone)
1018 {
1019 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1020 }
1021 
zone_cma_pages(struct zone * zone)1022 static inline unsigned long zone_cma_pages(struct zone *zone)
1023 {
1024 #ifdef CONFIG_CMA
1025 	return zone->cma_pages;
1026 #else
1027 	return 0;
1028 #endif
1029 }
1030 
zone_end_pfn(const struct zone * zone)1031 static inline unsigned long zone_end_pfn(const struct zone *zone)
1032 {
1033 	return zone->zone_start_pfn + zone->spanned_pages;
1034 }
1035 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1036 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1037 {
1038 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1039 }
1040 
zone_is_initialized(struct zone * zone)1041 static inline bool zone_is_initialized(struct zone *zone)
1042 {
1043 	return zone->initialized;
1044 }
1045 
zone_is_empty(struct zone * zone)1046 static inline bool zone_is_empty(struct zone *zone)
1047 {
1048 	return zone->spanned_pages == 0;
1049 }
1050 
1051 #ifndef BUILD_VDSO32_64
1052 /*
1053  * The zone field is never updated after free_area_init_core()
1054  * sets it, so none of the operations on it need to be atomic.
1055  */
1056 
1057 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1060 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1061 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1064 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1065 
1066 /*
1067  * Define the bit shifts to access each section.  For non-existent
1068  * sections we define the shift as 0; that plus a 0 mask ensures
1069  * the compiler will optimise away reference to them.
1070  */
1071 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1072 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1073 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1074 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1075 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1076 
1077 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1078 #ifdef NODE_NOT_IN_PAGE_FLAGS
1079 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1080 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1081 						SECTIONS_PGOFF : ZONES_PGOFF)
1082 #else
1083 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1084 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1085 						NODES_PGOFF : ZONES_PGOFF)
1086 #endif
1087 
1088 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1089 
1090 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1091 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1092 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1093 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1094 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1095 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1096 
page_zonenum(const struct page * page)1097 static inline enum zone_type page_zonenum(const struct page *page)
1098 {
1099 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1100 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1101 }
1102 
folio_zonenum(const struct folio * folio)1103 static inline enum zone_type folio_zonenum(const struct folio *folio)
1104 {
1105 	return page_zonenum(&folio->page);
1106 }
1107 
1108 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1109 static inline bool is_zone_device_page(const struct page *page)
1110 {
1111 	return page_zonenum(page) == ZONE_DEVICE;
1112 }
1113 
1114 /*
1115  * Consecutive zone device pages should not be merged into the same sgl
1116  * or bvec segment with other types of pages or if they belong to different
1117  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1118  * without scanning the entire segment. This helper returns true either if
1119  * both pages are not zone device pages or both pages are zone device pages
1120  * with the same pgmap.
1121  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1122 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1123 						     const struct page *b)
1124 {
1125 	if (is_zone_device_page(a) != is_zone_device_page(b))
1126 		return false;
1127 	if (!is_zone_device_page(a))
1128 		return true;
1129 	return a->pgmap == b->pgmap;
1130 }
1131 
1132 extern void memmap_init_zone_device(struct zone *, unsigned long,
1133 				    unsigned long, struct dev_pagemap *);
1134 #else
is_zone_device_page(const struct page * page)1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137 	return false;
1138 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1139 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1140 						     const struct page *b)
1141 {
1142 	return true;
1143 }
1144 #endif
1145 
folio_is_zone_device(const struct folio * folio)1146 static inline bool folio_is_zone_device(const struct folio *folio)
1147 {
1148 	return is_zone_device_page(&folio->page);
1149 }
1150 
is_zone_movable_page(const struct page * page)1151 static inline bool is_zone_movable_page(const struct page *page)
1152 {
1153 	return page_zonenum(page) == ZONE_MOVABLE;
1154 }
1155 
folio_is_zone_movable(const struct folio * folio)1156 static inline bool folio_is_zone_movable(const struct folio *folio)
1157 {
1158 	return folio_zonenum(folio) == ZONE_MOVABLE;
1159 }
1160 #endif
1161 
1162 /*
1163  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1164  * intersection with the given zone
1165  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1166 static inline bool zone_intersects(struct zone *zone,
1167 		unsigned long start_pfn, unsigned long nr_pages)
1168 {
1169 	if (zone_is_empty(zone))
1170 		return false;
1171 	if (start_pfn >= zone_end_pfn(zone) ||
1172 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1173 		return false;
1174 
1175 	return true;
1176 }
1177 
1178 /*
1179  * The "priority" of VM scanning is how much of the queues we will scan in one
1180  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1181  * queues ("queue_length >> 12") during an aging round.
1182  */
1183 #define DEF_PRIORITY 12
1184 
1185 /* Maximum number of zones on a zonelist */
1186 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1187 
1188 enum {
1189 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1190 #ifdef CONFIG_NUMA
1191 	/*
1192 	 * The NUMA zonelists are doubled because we need zonelists that
1193 	 * restrict the allocations to a single node for __GFP_THISNODE.
1194 	 */
1195 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1196 #endif
1197 	MAX_ZONELISTS
1198 };
1199 
1200 /*
1201  * This struct contains information about a zone in a zonelist. It is stored
1202  * here to avoid dereferences into large structures and lookups of tables
1203  */
1204 struct zoneref {
1205 	struct zone *zone;	/* Pointer to actual zone */
1206 	int zone_idx;		/* zone_idx(zoneref->zone) */
1207 };
1208 
1209 /*
1210  * One allocation request operates on a zonelist. A zonelist
1211  * is a list of zones, the first one is the 'goal' of the
1212  * allocation, the other zones are fallback zones, in decreasing
1213  * priority.
1214  *
1215  * To speed the reading of the zonelist, the zonerefs contain the zone index
1216  * of the entry being read. Helper functions to access information given
1217  * a struct zoneref are
1218  *
1219  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1220  * zonelist_zone_idx()	- Return the index of the zone for an entry
1221  * zonelist_node_idx()	- Return the index of the node for an entry
1222  */
1223 struct zonelist {
1224 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1225 };
1226 
1227 /*
1228  * The array of struct pages for flatmem.
1229  * It must be declared for SPARSEMEM as well because there are configurations
1230  * that rely on that.
1231  */
1232 extern struct page *mem_map;
1233 
1234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1235 struct deferred_split {
1236 	spinlock_t split_queue_lock;
1237 	struct list_head split_queue;
1238 	unsigned long split_queue_len;
1239 };
1240 #endif
1241 
1242 #ifdef CONFIG_MEMORY_FAILURE
1243 /*
1244  * Per NUMA node memory failure handling statistics.
1245  */
1246 struct memory_failure_stats {
1247 	/*
1248 	 * Number of raw pages poisoned.
1249 	 * Cases not accounted: memory outside kernel control, offline page,
1250 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1251 	 * error events, and unpoison actions from hwpoison_unpoison.
1252 	 */
1253 	unsigned long total;
1254 	/*
1255 	 * Recovery results of poisoned raw pages handled by memory_failure,
1256 	 * in sync with mf_result.
1257 	 * total = ignored + failed + delayed + recovered.
1258 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1259 	 */
1260 	unsigned long ignored;
1261 	unsigned long failed;
1262 	unsigned long delayed;
1263 	unsigned long recovered;
1264 };
1265 #endif
1266 
1267 /*
1268  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1269  * it's memory layout. On UMA machines there is a single pglist_data which
1270  * describes the whole memory.
1271  *
1272  * Memory statistics and page replacement data structures are maintained on a
1273  * per-zone basis.
1274  */
1275 typedef struct pglist_data {
1276 	/*
1277 	 * node_zones contains just the zones for THIS node. Not all of the
1278 	 * zones may be populated, but it is the full list. It is referenced by
1279 	 * this node's node_zonelists as well as other node's node_zonelists.
1280 	 */
1281 	struct zone node_zones[MAX_NR_ZONES];
1282 
1283 	/*
1284 	 * node_zonelists contains references to all zones in all nodes.
1285 	 * Generally the first zones will be references to this node's
1286 	 * node_zones.
1287 	 */
1288 	struct zonelist node_zonelists[MAX_ZONELISTS];
1289 
1290 	int nr_zones; /* number of populated zones in this node */
1291 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1292 	struct page *node_mem_map;
1293 #ifdef CONFIG_PAGE_EXTENSION
1294 	struct page_ext *node_page_ext;
1295 #endif
1296 #endif
1297 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1298 	/*
1299 	 * Must be held any time you expect node_start_pfn,
1300 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1301 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1302 	 * init.
1303 	 *
1304 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1305 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1306 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1307 	 *
1308 	 * Nests above zone->lock and zone->span_seqlock
1309 	 */
1310 	spinlock_t node_size_lock;
1311 #endif
1312 	unsigned long node_start_pfn;
1313 	unsigned long node_present_pages; /* total number of physical pages */
1314 	unsigned long node_spanned_pages; /* total size of physical page
1315 					     range, including holes */
1316 	int node_id;
1317 	wait_queue_head_t kswapd_wait;
1318 	wait_queue_head_t pfmemalloc_wait;
1319 
1320 	/* workqueues for throttling reclaim for different reasons. */
1321 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1322 
1323 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1324 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1325 					 * when throttling started. */
1326 #ifdef CONFIG_MEMORY_HOTPLUG
1327 	struct mutex kswapd_lock;
1328 #endif
1329 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1330 	int kswapd_order;
1331 	enum zone_type kswapd_highest_zoneidx;
1332 
1333 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1334 
1335 #ifdef CONFIG_COMPACTION
1336 	int kcompactd_max_order;
1337 	enum zone_type kcompactd_highest_zoneidx;
1338 	wait_queue_head_t kcompactd_wait;
1339 	struct task_struct *kcompactd;
1340 	bool proactive_compact_trigger;
1341 #endif
1342 	/*
1343 	 * This is a per-node reserve of pages that are not available
1344 	 * to userspace allocations.
1345 	 */
1346 	unsigned long		totalreserve_pages;
1347 
1348 #ifdef CONFIG_NUMA
1349 	/*
1350 	 * node reclaim becomes active if more unmapped pages exist.
1351 	 */
1352 	unsigned long		min_unmapped_pages;
1353 	unsigned long		min_slab_pages;
1354 #endif /* CONFIG_NUMA */
1355 
1356 	/* Write-intensive fields used by page reclaim */
1357 	CACHELINE_PADDING(_pad1_);
1358 
1359 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1360 	/*
1361 	 * If memory initialisation on large machines is deferred then this
1362 	 * is the first PFN that needs to be initialised.
1363 	 */
1364 	unsigned long first_deferred_pfn;
1365 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1366 
1367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1368 	struct deferred_split deferred_split_queue;
1369 #endif
1370 
1371 #ifdef CONFIG_NUMA_BALANCING
1372 	/* start time in ms of current promote rate limit period */
1373 	unsigned int nbp_rl_start;
1374 	/* number of promote candidate pages at start time of current rate limit period */
1375 	unsigned long nbp_rl_nr_cand;
1376 	/* promote threshold in ms */
1377 	unsigned int nbp_threshold;
1378 	/* start time in ms of current promote threshold adjustment period */
1379 	unsigned int nbp_th_start;
1380 	/*
1381 	 * number of promote candidate pages at start time of current promote
1382 	 * threshold adjustment period
1383 	 */
1384 	unsigned long nbp_th_nr_cand;
1385 #endif
1386 	/* Fields commonly accessed by the page reclaim scanner */
1387 
1388 	/*
1389 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1390 	 *
1391 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1392 	 */
1393 	struct lruvec		__lruvec;
1394 
1395 	unsigned long		flags;
1396 
1397 #ifdef CONFIG_LRU_GEN
1398 	/* kswap mm walk data */
1399 	struct lru_gen_mm_walk mm_walk;
1400 	/* lru_gen_folio list */
1401 	struct lru_gen_memcg memcg_lru;
1402 #endif
1403 
1404 	CACHELINE_PADDING(_pad2_);
1405 
1406 	/* Per-node vmstats */
1407 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1408 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1409 #ifdef CONFIG_NUMA
1410 	struct memory_tier __rcu *memtier;
1411 #endif
1412 #ifdef CONFIG_MEMORY_FAILURE
1413 	struct memory_failure_stats mf_stats;
1414 #endif
1415 } pg_data_t;
1416 
1417 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1418 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1419 
1420 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1421 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1422 
pgdat_end_pfn(pg_data_t * pgdat)1423 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1424 {
1425 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1426 }
1427 
1428 #include <linux/memory_hotplug.h>
1429 
1430 void build_all_zonelists(pg_data_t *pgdat);
1431 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1432 		   enum zone_type highest_zoneidx);
1433 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1434 			 int highest_zoneidx, unsigned int alloc_flags,
1435 			 long free_pages);
1436 bool zone_watermark_ok(struct zone *z, unsigned int order,
1437 		unsigned long mark, int highest_zoneidx,
1438 		unsigned int alloc_flags);
1439 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1440 		unsigned long mark, int highest_zoneidx);
1441 /*
1442  * Memory initialization context, use to differentiate memory added by
1443  * the platform statically or via memory hotplug interface.
1444  */
1445 enum meminit_context {
1446 	MEMINIT_EARLY,
1447 	MEMINIT_HOTPLUG,
1448 };
1449 
1450 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1451 				     unsigned long size);
1452 
1453 extern void lruvec_init(struct lruvec *lruvec);
1454 
lruvec_pgdat(struct lruvec * lruvec)1455 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1456 {
1457 #ifdef CONFIG_MEMCG
1458 	return lruvec->pgdat;
1459 #else
1460 	return container_of(lruvec, struct pglist_data, __lruvec);
1461 #endif
1462 }
1463 
1464 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1465 int local_memory_node(int node_id);
1466 #else
local_memory_node(int node_id)1467 static inline int local_memory_node(int node_id) { return node_id; };
1468 #endif
1469 
1470 /*
1471  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1472  */
1473 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1474 
1475 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1476 static inline bool zone_is_zone_device(struct zone *zone)
1477 {
1478 	return zone_idx(zone) == ZONE_DEVICE;
1479 }
1480 #else
zone_is_zone_device(struct zone * zone)1481 static inline bool zone_is_zone_device(struct zone *zone)
1482 {
1483 	return false;
1484 }
1485 #endif
1486 
1487 /*
1488  * Returns true if a zone has pages managed by the buddy allocator.
1489  * All the reclaim decisions have to use this function rather than
1490  * populated_zone(). If the whole zone is reserved then we can easily
1491  * end up with populated_zone() && !managed_zone().
1492  */
managed_zone(struct zone * zone)1493 static inline bool managed_zone(struct zone *zone)
1494 {
1495 	return zone_managed_pages(zone);
1496 }
1497 
1498 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1499 static inline bool populated_zone(struct zone *zone)
1500 {
1501 	return zone->present_pages;
1502 }
1503 
1504 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1505 static inline int zone_to_nid(struct zone *zone)
1506 {
1507 	return zone->node;
1508 }
1509 
zone_set_nid(struct zone * zone,int nid)1510 static inline void zone_set_nid(struct zone *zone, int nid)
1511 {
1512 	zone->node = nid;
1513 }
1514 #else
zone_to_nid(struct zone * zone)1515 static inline int zone_to_nid(struct zone *zone)
1516 {
1517 	return 0;
1518 }
1519 
zone_set_nid(struct zone * zone,int nid)1520 static inline void zone_set_nid(struct zone *zone, int nid) {}
1521 #endif
1522 
1523 extern int movable_zone;
1524 
is_highmem_idx(enum zone_type idx)1525 static inline int is_highmem_idx(enum zone_type idx)
1526 {
1527 #ifdef CONFIG_HIGHMEM
1528 	return (idx == ZONE_HIGHMEM ||
1529 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1530 #else
1531 	return 0;
1532 #endif
1533 }
1534 
1535 /**
1536  * is_highmem - helper function to quickly check if a struct zone is a
1537  *              highmem zone or not.  This is an attempt to keep references
1538  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1539  * @zone: pointer to struct zone variable
1540  * Return: 1 for a highmem zone, 0 otherwise
1541  */
is_highmem(struct zone * zone)1542 static inline int is_highmem(struct zone *zone)
1543 {
1544 	return is_highmem_idx(zone_idx(zone));
1545 }
1546 
1547 #ifdef CONFIG_ZONE_DMA
1548 bool has_managed_dma(void);
1549 #else
has_managed_dma(void)1550 static inline bool has_managed_dma(void)
1551 {
1552 	return false;
1553 }
1554 #endif
1555 
1556 
1557 #ifndef CONFIG_NUMA
1558 
1559 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1560 static inline struct pglist_data *NODE_DATA(int nid)
1561 {
1562 	return &contig_page_data;
1563 }
1564 
1565 #else /* CONFIG_NUMA */
1566 
1567 #include <asm/mmzone.h>
1568 
1569 #endif /* !CONFIG_NUMA */
1570 
1571 extern struct pglist_data *first_online_pgdat(void);
1572 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1573 extern struct zone *next_zone(struct zone *zone);
1574 
1575 /**
1576  * for_each_online_pgdat - helper macro to iterate over all online nodes
1577  * @pgdat: pointer to a pg_data_t variable
1578  */
1579 #define for_each_online_pgdat(pgdat)			\
1580 	for (pgdat = first_online_pgdat();		\
1581 	     pgdat;					\
1582 	     pgdat = next_online_pgdat(pgdat))
1583 /**
1584  * for_each_zone - helper macro to iterate over all memory zones
1585  * @zone: pointer to struct zone variable
1586  *
1587  * The user only needs to declare the zone variable, for_each_zone
1588  * fills it in.
1589  */
1590 #define for_each_zone(zone)			        \
1591 	for (zone = (first_online_pgdat())->node_zones; \
1592 	     zone;					\
1593 	     zone = next_zone(zone))
1594 
1595 #define for_each_populated_zone(zone)		        \
1596 	for (zone = (first_online_pgdat())->node_zones; \
1597 	     zone;					\
1598 	     zone = next_zone(zone))			\
1599 		if (!populated_zone(zone))		\
1600 			; /* do nothing */		\
1601 		else
1602 
zonelist_zone(struct zoneref * zoneref)1603 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1604 {
1605 	return zoneref->zone;
1606 }
1607 
zonelist_zone_idx(struct zoneref * zoneref)1608 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1609 {
1610 	return zoneref->zone_idx;
1611 }
1612 
zonelist_node_idx(struct zoneref * zoneref)1613 static inline int zonelist_node_idx(struct zoneref *zoneref)
1614 {
1615 	return zone_to_nid(zoneref->zone);
1616 }
1617 
1618 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1619 					enum zone_type highest_zoneidx,
1620 					nodemask_t *nodes);
1621 
1622 /**
1623  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1624  * @z: The cursor used as a starting point for the search
1625  * @highest_zoneidx: The zone index of the highest zone to return
1626  * @nodes: An optional nodemask to filter the zonelist with
1627  *
1628  * This function returns the next zone at or below a given zone index that is
1629  * within the allowed nodemask using a cursor as the starting point for the
1630  * search. The zoneref returned is a cursor that represents the current zone
1631  * being examined. It should be advanced by one before calling
1632  * next_zones_zonelist again.
1633  *
1634  * Return: the next zone at or below highest_zoneidx within the allowed
1635  * nodemask using a cursor within a zonelist as a starting point
1636  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1637 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1638 					enum zone_type highest_zoneidx,
1639 					nodemask_t *nodes)
1640 {
1641 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1642 		return z;
1643 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1644 }
1645 
1646 /**
1647  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1648  * @zonelist: The zonelist to search for a suitable zone
1649  * @highest_zoneidx: The zone index of the highest zone to return
1650  * @nodes: An optional nodemask to filter the zonelist with
1651  *
1652  * This function returns the first zone at or below a given zone index that is
1653  * within the allowed nodemask. The zoneref returned is a cursor that can be
1654  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1655  * one before calling.
1656  *
1657  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1658  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1659  * update due to cpuset modification.
1660  *
1661  * Return: Zoneref pointer for the first suitable zone found
1662  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1663 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1664 					enum zone_type highest_zoneidx,
1665 					nodemask_t *nodes)
1666 {
1667 	return next_zones_zonelist(zonelist->_zonerefs,
1668 							highest_zoneidx, nodes);
1669 }
1670 
1671 /**
1672  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1673  * @zone: The current zone in the iterator
1674  * @z: The current pointer within zonelist->_zonerefs being iterated
1675  * @zlist: The zonelist being iterated
1676  * @highidx: The zone index of the highest zone to return
1677  * @nodemask: Nodemask allowed by the allocator
1678  *
1679  * This iterator iterates though all zones at or below a given zone index and
1680  * within a given nodemask
1681  */
1682 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1683 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1684 		zone;							\
1685 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1686 			zone = zonelist_zone(z))
1687 
1688 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1689 	for (zone = z->zone;	\
1690 		zone;							\
1691 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1692 			zone = zonelist_zone(z))
1693 
1694 
1695 /**
1696  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1697  * @zone: The current zone in the iterator
1698  * @z: The current pointer within zonelist->zones being iterated
1699  * @zlist: The zonelist being iterated
1700  * @highidx: The zone index of the highest zone to return
1701  *
1702  * This iterator iterates though all zones at or below a given zone index.
1703  */
1704 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1705 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1706 
1707 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1708 static inline bool movable_only_nodes(nodemask_t *nodes)
1709 {
1710 	struct zonelist *zonelist;
1711 	struct zoneref *z;
1712 	int nid;
1713 
1714 	if (nodes_empty(*nodes))
1715 		return false;
1716 
1717 	/*
1718 	 * We can chose arbitrary node from the nodemask to get a
1719 	 * zonelist as they are interlinked. We just need to find
1720 	 * at least one zone that can satisfy kernel allocations.
1721 	 */
1722 	nid = first_node(*nodes);
1723 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1724 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1725 	return (!z->zone) ? true : false;
1726 }
1727 
1728 
1729 #ifdef CONFIG_SPARSEMEM
1730 #include <asm/sparsemem.h>
1731 #endif
1732 
1733 #ifdef CONFIG_FLATMEM
1734 #define pfn_to_nid(pfn)		(0)
1735 #endif
1736 
1737 #ifdef CONFIG_SPARSEMEM
1738 
1739 /*
1740  * PA_SECTION_SHIFT		physical address to/from section number
1741  * PFN_SECTION_SHIFT		pfn to/from section number
1742  */
1743 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1744 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1745 
1746 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1747 
1748 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1749 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1750 
1751 #define SECTION_BLOCKFLAGS_BITS \
1752 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1753 
1754 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1755 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1756 #endif
1757 
pfn_to_section_nr(unsigned long pfn)1758 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1759 {
1760 	return pfn >> PFN_SECTION_SHIFT;
1761 }
section_nr_to_pfn(unsigned long sec)1762 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1763 {
1764 	return sec << PFN_SECTION_SHIFT;
1765 }
1766 
1767 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1768 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1769 
1770 #define SUBSECTION_SHIFT 21
1771 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1772 
1773 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1774 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1775 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1776 
1777 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1778 #error Subsection size exceeds section size
1779 #else
1780 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1781 #endif
1782 
1783 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1784 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1785 
1786 struct mem_section_usage {
1787 	struct rcu_head rcu;
1788 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1789 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1790 #endif
1791 	/* See declaration of similar field in struct zone */
1792 	unsigned long pageblock_flags[0];
1793 };
1794 
1795 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1796 
1797 struct page;
1798 struct page_ext;
1799 struct mem_section {
1800 	/*
1801 	 * This is, logically, a pointer to an array of struct
1802 	 * pages.  However, it is stored with some other magic.
1803 	 * (see sparse.c::sparse_init_one_section())
1804 	 *
1805 	 * Additionally during early boot we encode node id of
1806 	 * the location of the section here to guide allocation.
1807 	 * (see sparse.c::memory_present())
1808 	 *
1809 	 * Making it a UL at least makes someone do a cast
1810 	 * before using it wrong.
1811 	 */
1812 	unsigned long section_mem_map;
1813 
1814 	struct mem_section_usage *usage;
1815 #ifdef CONFIG_PAGE_EXTENSION
1816 	/*
1817 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1818 	 * section. (see page_ext.h about this.)
1819 	 */
1820 	struct page_ext *page_ext;
1821 	unsigned long pad;
1822 #endif
1823 	/*
1824 	 * WARNING: mem_section must be a power-of-2 in size for the
1825 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1826 	 */
1827 };
1828 
1829 #ifdef CONFIG_SPARSEMEM_EXTREME
1830 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1831 #else
1832 #define SECTIONS_PER_ROOT	1
1833 #endif
1834 
1835 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1836 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1837 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1838 
1839 #ifdef CONFIG_SPARSEMEM_EXTREME
1840 extern struct mem_section **mem_section;
1841 #else
1842 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1843 #endif
1844 
section_to_usemap(struct mem_section * ms)1845 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1846 {
1847 	return ms->usage->pageblock_flags;
1848 }
1849 
__nr_to_section(unsigned long nr)1850 static inline struct mem_section *__nr_to_section(unsigned long nr)
1851 {
1852 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1853 
1854 	if (unlikely(root >= NR_SECTION_ROOTS))
1855 		return NULL;
1856 
1857 #ifdef CONFIG_SPARSEMEM_EXTREME
1858 	if (!mem_section || !mem_section[root])
1859 		return NULL;
1860 #endif
1861 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1862 }
1863 extern size_t mem_section_usage_size(void);
1864 
1865 /*
1866  * We use the lower bits of the mem_map pointer to store
1867  * a little bit of information.  The pointer is calculated
1868  * as mem_map - section_nr_to_pfn(pnum).  The result is
1869  * aligned to the minimum alignment of the two values:
1870  *   1. All mem_map arrays are page-aligned.
1871  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1872  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1873  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1874  *      worst combination is powerpc with 256k pages,
1875  *      which results in PFN_SECTION_SHIFT equal 6.
1876  * To sum it up, at least 6 bits are available on all architectures.
1877  * However, we can exceed 6 bits on some other architectures except
1878  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1879  * with the worst case of 64K pages on arm64) if we make sure the
1880  * exceeded bit is not applicable to powerpc.
1881  */
1882 enum {
1883 	SECTION_MARKED_PRESENT_BIT,
1884 	SECTION_HAS_MEM_MAP_BIT,
1885 	SECTION_IS_ONLINE_BIT,
1886 	SECTION_IS_EARLY_BIT,
1887 #ifdef CONFIG_ZONE_DEVICE
1888 	SECTION_TAINT_ZONE_DEVICE_BIT,
1889 #endif
1890 	SECTION_MAP_LAST_BIT,
1891 };
1892 
1893 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1894 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1895 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1896 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1897 #ifdef CONFIG_ZONE_DEVICE
1898 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1899 #endif
1900 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1901 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1902 
__section_mem_map_addr(struct mem_section * section)1903 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1904 {
1905 	unsigned long map = section->section_mem_map;
1906 	map &= SECTION_MAP_MASK;
1907 	return (struct page *)map;
1908 }
1909 
present_section(struct mem_section * section)1910 static inline int present_section(struct mem_section *section)
1911 {
1912 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1913 }
1914 
present_section_nr(unsigned long nr)1915 static inline int present_section_nr(unsigned long nr)
1916 {
1917 	return present_section(__nr_to_section(nr));
1918 }
1919 
valid_section(struct mem_section * section)1920 static inline int valid_section(struct mem_section *section)
1921 {
1922 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1923 }
1924 
early_section(struct mem_section * section)1925 static inline int early_section(struct mem_section *section)
1926 {
1927 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1928 }
1929 
valid_section_nr(unsigned long nr)1930 static inline int valid_section_nr(unsigned long nr)
1931 {
1932 	return valid_section(__nr_to_section(nr));
1933 }
1934 
online_section(struct mem_section * section)1935 static inline int online_section(struct mem_section *section)
1936 {
1937 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1938 }
1939 
1940 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1941 static inline int online_device_section(struct mem_section *section)
1942 {
1943 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1944 
1945 	return section && ((section->section_mem_map & flags) == flags);
1946 }
1947 #else
online_device_section(struct mem_section * section)1948 static inline int online_device_section(struct mem_section *section)
1949 {
1950 	return 0;
1951 }
1952 #endif
1953 
online_section_nr(unsigned long nr)1954 static inline int online_section_nr(unsigned long nr)
1955 {
1956 	return online_section(__nr_to_section(nr));
1957 }
1958 
1959 #ifdef CONFIG_MEMORY_HOTPLUG
1960 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1961 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1962 #endif
1963 
__pfn_to_section(unsigned long pfn)1964 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1965 {
1966 	return __nr_to_section(pfn_to_section_nr(pfn));
1967 }
1968 
1969 extern unsigned long __highest_present_section_nr;
1970 
subsection_map_index(unsigned long pfn)1971 static inline int subsection_map_index(unsigned long pfn)
1972 {
1973 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1974 }
1975 
1976 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1977 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1978 {
1979 	int idx = subsection_map_index(pfn);
1980 
1981 	return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1982 }
1983 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1984 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1985 {
1986 	return 1;
1987 }
1988 #endif
1989 
1990 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1991 /**
1992  * pfn_valid - check if there is a valid memory map entry for a PFN
1993  * @pfn: the page frame number to check
1994  *
1995  * Check if there is a valid memory map entry aka struct page for the @pfn.
1996  * Note, that availability of the memory map entry does not imply that
1997  * there is actual usable memory at that @pfn. The struct page may
1998  * represent a hole or an unusable page frame.
1999  *
2000  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2001  */
pfn_valid(unsigned long pfn)2002 static inline int pfn_valid(unsigned long pfn)
2003 {
2004 	struct mem_section *ms;
2005 	int ret;
2006 
2007 	/*
2008 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2009 	 * pfn. Else it might lead to false positives when
2010 	 * some of the upper bits are set, but the lower bits
2011 	 * match a valid pfn.
2012 	 */
2013 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2014 		return 0;
2015 
2016 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2017 		return 0;
2018 	ms = __pfn_to_section(pfn);
2019 	rcu_read_lock_sched();
2020 	if (!valid_section(ms)) {
2021 		rcu_read_unlock_sched();
2022 		return 0;
2023 	}
2024 	/*
2025 	 * Traditionally early sections always returned pfn_valid() for
2026 	 * the entire section-sized span.
2027 	 */
2028 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2029 	rcu_read_unlock_sched();
2030 
2031 	return ret;
2032 }
2033 #endif
2034 
pfn_in_present_section(unsigned long pfn)2035 static inline int pfn_in_present_section(unsigned long pfn)
2036 {
2037 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2038 		return 0;
2039 	return present_section(__pfn_to_section(pfn));
2040 }
2041 
next_present_section_nr(unsigned long section_nr)2042 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2043 {
2044 	while (++section_nr <= __highest_present_section_nr) {
2045 		if (present_section_nr(section_nr))
2046 			return section_nr;
2047 	}
2048 
2049 	return -1;
2050 }
2051 
2052 /*
2053  * These are _only_ used during initialisation, therefore they
2054  * can use __initdata ...  They could have names to indicate
2055  * this restriction.
2056  */
2057 #ifdef CONFIG_NUMA
2058 #define pfn_to_nid(pfn)							\
2059 ({									\
2060 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2061 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2062 })
2063 #else
2064 #define pfn_to_nid(pfn)		(0)
2065 #endif
2066 
2067 void sparse_init(void);
2068 #else
2069 #define sparse_init()	do {} while (0)
2070 #define sparse_index_init(_sec, _nid)  do {} while (0)
2071 #define pfn_in_present_section pfn_valid
2072 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2073 #endif /* CONFIG_SPARSEMEM */
2074 
2075 #endif /* !__GENERATING_BOUNDS.H */
2076 #endif /* !__ASSEMBLY__ */
2077 #endif /* _LINUX_MMZONE_H */
2078