1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ overloading.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DependenceFlags.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "clang/Basic/DiagnosticOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Overload.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/DenseSet.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallString.h"
37 #include <algorithm>
38 #include <cstdlib>
39 
40 using namespace clang;
41 using namespace sema;
42 
43 using AllowedExplicit = Sema::AllowedExplicit;
44 
functionHasPassObjectSizeParams(const FunctionDecl * FD)45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46   return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47     return P->hasAttr<PassObjectSizeAttr>();
48   });
49 }
50 
51 /// A convenience routine for creating a decayed reference to a function.
52 static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,NamedDecl * FoundDecl,const Expr * Base,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54                       const Expr *Base, bool HadMultipleCandidates,
55                       SourceLocation Loc = SourceLocation(),
56                       const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57   if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58     return ExprError();
59   // If FoundDecl is different from Fn (such as if one is a template
60   // and the other a specialization), make sure DiagnoseUseOfDecl is
61   // called on both.
62   // FIXME: This would be more comprehensively addressed by modifying
63   // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64   // being used.
65   if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66     return ExprError();
67   DeclRefExpr *DRE = new (S.Context)
68       DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69   if (HadMultipleCandidates)
70     DRE->setHadMultipleCandidates(true);
71 
72   S.MarkDeclRefReferenced(DRE, Base);
73   if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75       S.ResolveExceptionSpec(Loc, FPT);
76       DRE->setType(Fn->getType());
77     }
78   }
79   return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80                              CK_FunctionToPointerDecay);
81 }
82 
83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84                                  bool InOverloadResolution,
85                                  StandardConversionSequence &SCS,
86                                  bool CStyle,
87                                  bool AllowObjCWritebackConversion);
88 
89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90                                                  QualType &ToType,
91                                                  bool InOverloadResolution,
92                                                  StandardConversionSequence &SCS,
93                                                  bool CStyle);
94 static OverloadingResult
95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96                         UserDefinedConversionSequence& User,
97                         OverloadCandidateSet& Conversions,
98                         AllowedExplicit AllowExplicit,
99                         bool AllowObjCConversionOnExplicit);
100 
101 static ImplicitConversionSequence::CompareKind
102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103                                    const StandardConversionSequence& SCS1,
104                                    const StandardConversionSequence& SCS2);
105 
106 static ImplicitConversionSequence::CompareKind
107 CompareQualificationConversions(Sema &S,
108                                 const StandardConversionSequence& SCS1,
109                                 const StandardConversionSequence& SCS2);
110 
111 static ImplicitConversionSequence::CompareKind
112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113                                 const StandardConversionSequence& SCS1,
114                                 const StandardConversionSequence& SCS2);
115 
116 /// GetConversionRank - Retrieve the implicit conversion rank
117 /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119   static const ImplicitConversionRank
120     Rank[(int)ICK_Num_Conversion_Kinds] = {
121     ICR_Exact_Match,
122     ICR_Exact_Match,
123     ICR_Exact_Match,
124     ICR_Exact_Match,
125     ICR_Exact_Match,
126     ICR_Exact_Match,
127     ICR_Promotion,
128     ICR_Promotion,
129     ICR_Promotion,
130     ICR_Conversion,
131     ICR_Conversion,
132     ICR_Conversion,
133     ICR_Conversion,
134     ICR_Conversion,
135     ICR_Conversion,
136     ICR_Conversion,
137     ICR_Conversion,
138     ICR_Conversion,
139     ICR_Conversion,
140     ICR_Conversion,
141     ICR_OCL_Scalar_Widening,
142     ICR_Complex_Real_Conversion,
143     ICR_Conversion,
144     ICR_Conversion,
145     ICR_Writeback_Conversion,
146     ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147                      // it was omitted by the patch that added
148                      // ICK_Zero_Event_Conversion
149     ICR_C_Conversion,
150     ICR_C_Conversion_Extension
151   };
152   return Rank[(int)Kind];
153 }
154 
155 /// GetImplicitConversionName - Return the name of this kind of
156 /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159     "No conversion",
160     "Lvalue-to-rvalue",
161     "Array-to-pointer",
162     "Function-to-pointer",
163     "Function pointer conversion",
164     "Qualification",
165     "Integral promotion",
166     "Floating point promotion",
167     "Complex promotion",
168     "Integral conversion",
169     "Floating conversion",
170     "Complex conversion",
171     "Floating-integral conversion",
172     "Pointer conversion",
173     "Pointer-to-member conversion",
174     "Boolean conversion",
175     "Compatible-types conversion",
176     "Derived-to-base conversion",
177     "Vector conversion",
178     "SVE Vector conversion",
179     "Vector splat",
180     "Complex-real conversion",
181     "Block Pointer conversion",
182     "Transparent Union Conversion",
183     "Writeback conversion",
184     "OpenCL Zero Event Conversion",
185     "C specific type conversion",
186     "Incompatible pointer conversion"
187   };
188   return Name[Kind];
189 }
190 
191 /// StandardConversionSequence - Set the standard conversion
192 /// sequence to the identity conversion.
setAsIdentityConversion()193 void StandardConversionSequence::setAsIdentityConversion() {
194   First = ICK_Identity;
195   Second = ICK_Identity;
196   Third = ICK_Identity;
197   DeprecatedStringLiteralToCharPtr = false;
198   QualificationIncludesObjCLifetime = false;
199   ReferenceBinding = false;
200   DirectBinding = false;
201   IsLvalueReference = true;
202   BindsToFunctionLvalue = false;
203   BindsToRvalue = false;
204   BindsImplicitObjectArgumentWithoutRefQualifier = false;
205   ObjCLifetimeConversionBinding = false;
206   CopyConstructor = nullptr;
207 }
208 
209 /// getRank - Retrieve the rank of this standard conversion sequence
210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211 /// implicit conversions.
getRank() const212 ImplicitConversionRank StandardConversionSequence::getRank() const {
213   ImplicitConversionRank Rank = ICR_Exact_Match;
214   if  (GetConversionRank(First) > Rank)
215     Rank = GetConversionRank(First);
216   if  (GetConversionRank(Second) > Rank)
217     Rank = GetConversionRank(Second);
218   if  (GetConversionRank(Third) > Rank)
219     Rank = GetConversionRank(Third);
220   return Rank;
221 }
222 
223 /// isPointerConversionToBool - Determines whether this conversion is
224 /// a conversion of a pointer or pointer-to-member to bool. This is
225 /// used as part of the ranking of standard conversion sequences
226 /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const227 bool StandardConversionSequence::isPointerConversionToBool() const {
228   // Note that FromType has not necessarily been transformed by the
229   // array-to-pointer or function-to-pointer implicit conversions, so
230   // check for their presence as well as checking whether FromType is
231   // a pointer.
232   if (getToType(1)->isBooleanType() &&
233       (getFromType()->isPointerType() ||
234        getFromType()->isMemberPointerType() ||
235        getFromType()->isObjCObjectPointerType() ||
236        getFromType()->isBlockPointerType() ||
237        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238     return true;
239 
240   return false;
241 }
242 
243 /// isPointerConversionToVoidPointer - Determines whether this
244 /// conversion is a conversion of a pointer to a void pointer. This is
245 /// used as part of the ranking of standard conversion sequences (C++
246 /// 13.3.3.2p4).
247 bool
248 StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const249 isPointerConversionToVoidPointer(ASTContext& Context) const {
250   QualType FromType = getFromType();
251   QualType ToType = getToType(1);
252 
253   // Note that FromType has not necessarily been transformed by the
254   // array-to-pointer implicit conversion, so check for its presence
255   // and redo the conversion to get a pointer.
256   if (First == ICK_Array_To_Pointer)
257     FromType = Context.getArrayDecayedType(FromType);
258 
259   if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260     if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261       return ToPtrType->getPointeeType()->isVoidType();
262 
263   return false;
264 }
265 
266 /// Skip any implicit casts which could be either part of a narrowing conversion
267 /// or after one in an implicit conversion.
IgnoreNarrowingConversion(ASTContext & Ctx,const Expr * Converted)268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269                                              const Expr *Converted) {
270   // We can have cleanups wrapping the converted expression; these need to be
271   // preserved so that destructors run if necessary.
272   if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273     Expr *Inner =
274         const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275     return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276                                     EWC->getObjects());
277   }
278 
279   while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280     switch (ICE->getCastKind()) {
281     case CK_NoOp:
282     case CK_IntegralCast:
283     case CK_IntegralToBoolean:
284     case CK_IntegralToFloating:
285     case CK_BooleanToSignedIntegral:
286     case CK_FloatingToIntegral:
287     case CK_FloatingToBoolean:
288     case CK_FloatingCast:
289       Converted = ICE->getSubExpr();
290       continue;
291 
292     default:
293       return Converted;
294     }
295   }
296 
297   return Converted;
298 }
299 
300 /// Check if this standard conversion sequence represents a narrowing
301 /// conversion, according to C++11 [dcl.init.list]p7.
302 ///
303 /// \param Ctx  The AST context.
304 /// \param Converted  The result of applying this standard conversion sequence.
305 /// \param ConstantValue  If this is an NK_Constant_Narrowing conversion, the
306 ///        value of the expression prior to the narrowing conversion.
307 /// \param ConstantType  If this is an NK_Constant_Narrowing conversion, the
308 ///        type of the expression prior to the narrowing conversion.
309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310 ///        from floating point types to integral types should be ignored.
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType,bool IgnoreFloatToIntegralConversion) const311 NarrowingKind StandardConversionSequence::getNarrowingKind(
312     ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313     QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314   assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
315 
316   // C++11 [dcl.init.list]p7:
317   //   A narrowing conversion is an implicit conversion ...
318   QualType FromType = getToType(0);
319   QualType ToType = getToType(1);
320 
321   // A conversion to an enumeration type is narrowing if the conversion to
322   // the underlying type is narrowing. This only arises for expressions of
323   // the form 'Enum{init}'.
324   if (auto *ET = ToType->getAs<EnumType>())
325     ToType = ET->getDecl()->getIntegerType();
326 
327   switch (Second) {
328   // 'bool' is an integral type; dispatch to the right place to handle it.
329   case ICK_Boolean_Conversion:
330     if (FromType->isRealFloatingType())
331       goto FloatingIntegralConversion;
332     if (FromType->isIntegralOrUnscopedEnumerationType())
333       goto IntegralConversion;
334     // -- from a pointer type or pointer-to-member type to bool, or
335     return NK_Type_Narrowing;
336 
337   // -- from a floating-point type to an integer type, or
338   //
339   // -- from an integer type or unscoped enumeration type to a floating-point
340   //    type, except where the source is a constant expression and the actual
341   //    value after conversion will fit into the target type and will produce
342   //    the original value when converted back to the original type, or
343   case ICK_Floating_Integral:
344   FloatingIntegralConversion:
345     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346       return NK_Type_Narrowing;
347     } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348                ToType->isRealFloatingType()) {
349       if (IgnoreFloatToIntegralConversion)
350         return NK_Not_Narrowing;
351       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352       assert(Initializer && "Unknown conversion expression");
353 
354       // If it's value-dependent, we can't tell whether it's narrowing.
355       if (Initializer->isValueDependent())
356         return NK_Dependent_Narrowing;
357 
358       if (Optional<llvm::APSInt> IntConstantValue =
359               Initializer->getIntegerConstantExpr(Ctx)) {
360         // Convert the integer to the floating type.
361         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362         Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363                                 llvm::APFloat::rmNearestTiesToEven);
364         // And back.
365         llvm::APSInt ConvertedValue = *IntConstantValue;
366         bool ignored;
367         Result.convertToInteger(ConvertedValue,
368                                 llvm::APFloat::rmTowardZero, &ignored);
369         // If the resulting value is different, this was a narrowing conversion.
370         if (*IntConstantValue != ConvertedValue) {
371           ConstantValue = APValue(*IntConstantValue);
372           ConstantType = Initializer->getType();
373           return NK_Constant_Narrowing;
374         }
375       } else {
376         // Variables are always narrowings.
377         return NK_Variable_Narrowing;
378       }
379     }
380     return NK_Not_Narrowing;
381 
382   // -- from long double to double or float, or from double to float, except
383   //    where the source is a constant expression and the actual value after
384   //    conversion is within the range of values that can be represented (even
385   //    if it cannot be represented exactly), or
386   case ICK_Floating_Conversion:
387     if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388         Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389       // FromType is larger than ToType.
390       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391 
392       // If it's value-dependent, we can't tell whether it's narrowing.
393       if (Initializer->isValueDependent())
394         return NK_Dependent_Narrowing;
395 
396       if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397         // Constant!
398         assert(ConstantValue.isFloat());
399         llvm::APFloat FloatVal = ConstantValue.getFloat();
400         // Convert the source value into the target type.
401         bool ignored;
402         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403           Ctx.getFloatTypeSemantics(ToType),
404           llvm::APFloat::rmNearestTiesToEven, &ignored);
405         // If there was no overflow, the source value is within the range of
406         // values that can be represented.
407         if (ConvertStatus & llvm::APFloat::opOverflow) {
408           ConstantType = Initializer->getType();
409           return NK_Constant_Narrowing;
410         }
411       } else {
412         return NK_Variable_Narrowing;
413       }
414     }
415     return NK_Not_Narrowing;
416 
417   // -- from an integer type or unscoped enumeration type to an integer type
418   //    that cannot represent all the values of the original type, except where
419   //    the source is a constant expression and the actual value after
420   //    conversion will fit into the target type and will produce the original
421   //    value when converted back to the original type.
422   case ICK_Integral_Conversion:
423   IntegralConversion: {
424     assert(FromType->isIntegralOrUnscopedEnumerationType());
425     assert(ToType->isIntegralOrUnscopedEnumerationType());
426     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427     const unsigned FromWidth = Ctx.getIntWidth(FromType);
428     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429     const unsigned ToWidth = Ctx.getIntWidth(ToType);
430 
431     if (FromWidth > ToWidth ||
432         (FromWidth == ToWidth && FromSigned != ToSigned) ||
433         (FromSigned && !ToSigned)) {
434       // Not all values of FromType can be represented in ToType.
435       const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436 
437       // If it's value-dependent, we can't tell whether it's narrowing.
438       if (Initializer->isValueDependent())
439         return NK_Dependent_Narrowing;
440 
441       Optional<llvm::APSInt> OptInitializerValue;
442       if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443         // Such conversions on variables are always narrowing.
444         return NK_Variable_Narrowing;
445       }
446       llvm::APSInt &InitializerValue = *OptInitializerValue;
447       bool Narrowing = false;
448       if (FromWidth < ToWidth) {
449         // Negative -> unsigned is narrowing. Otherwise, more bits is never
450         // narrowing.
451         if (InitializerValue.isSigned() && InitializerValue.isNegative())
452           Narrowing = true;
453       } else {
454         // Add a bit to the InitializerValue so we don't have to worry about
455         // signed vs. unsigned comparisons.
456         InitializerValue = InitializerValue.extend(
457           InitializerValue.getBitWidth() + 1);
458         // Convert the initializer to and from the target width and signed-ness.
459         llvm::APSInt ConvertedValue = InitializerValue;
460         ConvertedValue = ConvertedValue.trunc(ToWidth);
461         ConvertedValue.setIsSigned(ToSigned);
462         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463         ConvertedValue.setIsSigned(InitializerValue.isSigned());
464         // If the result is different, this was a narrowing conversion.
465         if (ConvertedValue != InitializerValue)
466           Narrowing = true;
467       }
468       if (Narrowing) {
469         ConstantType = Initializer->getType();
470         ConstantValue = APValue(InitializerValue);
471         return NK_Constant_Narrowing;
472       }
473     }
474     return NK_Not_Narrowing;
475   }
476 
477   default:
478     // Other kinds of conversions are not narrowings.
479     return NK_Not_Narrowing;
480   }
481 }
482 
483 /// dump - Print this standard conversion sequence to standard
484 /// error. Useful for debugging overloading issues.
dump() const485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
486   raw_ostream &OS = llvm::errs();
487   bool PrintedSomething = false;
488   if (First != ICK_Identity) {
489     OS << GetImplicitConversionName(First);
490     PrintedSomething = true;
491   }
492 
493   if (Second != ICK_Identity) {
494     if (PrintedSomething) {
495       OS << " -> ";
496     }
497     OS << GetImplicitConversionName(Second);
498 
499     if (CopyConstructor) {
500       OS << " (by copy constructor)";
501     } else if (DirectBinding) {
502       OS << " (direct reference binding)";
503     } else if (ReferenceBinding) {
504       OS << " (reference binding)";
505     }
506     PrintedSomething = true;
507   }
508 
509   if (Third != ICK_Identity) {
510     if (PrintedSomething) {
511       OS << " -> ";
512     }
513     OS << GetImplicitConversionName(Third);
514     PrintedSomething = true;
515   }
516 
517   if (!PrintedSomething) {
518     OS << "No conversions required";
519   }
520 }
521 
522 /// dump - Print this user-defined conversion sequence to standard
523 /// error. Useful for debugging overloading issues.
dump() const524 void UserDefinedConversionSequence::dump() const {
525   raw_ostream &OS = llvm::errs();
526   if (Before.First || Before.Second || Before.Third) {
527     Before.dump();
528     OS << " -> ";
529   }
530   if (ConversionFunction)
531     OS << '\'' << *ConversionFunction << '\'';
532   else
533     OS << "aggregate initialization";
534   if (After.First || After.Second || After.Third) {
535     OS << " -> ";
536     After.dump();
537   }
538 }
539 
540 /// dump - Print this implicit conversion sequence to standard
541 /// error. Useful for debugging overloading issues.
dump() const542 void ImplicitConversionSequence::dump() const {
543   raw_ostream &OS = llvm::errs();
544   if (isStdInitializerListElement())
545     OS << "Worst std::initializer_list element conversion: ";
546   switch (ConversionKind) {
547   case StandardConversion:
548     OS << "Standard conversion: ";
549     Standard.dump();
550     break;
551   case UserDefinedConversion:
552     OS << "User-defined conversion: ";
553     UserDefined.dump();
554     break;
555   case EllipsisConversion:
556     OS << "Ellipsis conversion";
557     break;
558   case AmbiguousConversion:
559     OS << "Ambiguous conversion";
560     break;
561   case BadConversion:
562     OS << "Bad conversion";
563     break;
564   }
565 
566   OS << "\n";
567 }
568 
construct()569 void AmbiguousConversionSequence::construct() {
570   new (&conversions()) ConversionSet();
571 }
572 
destruct()573 void AmbiguousConversionSequence::destruct() {
574   conversions().~ConversionSet();
575 }
576 
577 void
copyFrom(const AmbiguousConversionSequence & O)578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579   FromTypePtr = O.FromTypePtr;
580   ToTypePtr = O.ToTypePtr;
581   new (&conversions()) ConversionSet(O.conversions());
582 }
583 
584 namespace {
585   // Structure used by DeductionFailureInfo to store
586   // template argument information.
587   struct DFIArguments {
588     TemplateArgument FirstArg;
589     TemplateArgument SecondArg;
590   };
591   // Structure used by DeductionFailureInfo to store
592   // template parameter and template argument information.
593   struct DFIParamWithArguments : DFIArguments {
594     TemplateParameter Param;
595   };
596   // Structure used by DeductionFailureInfo to store template argument
597   // information and the index of the problematic call argument.
598   struct DFIDeducedMismatchArgs : DFIArguments {
599     TemplateArgumentList *TemplateArgs;
600     unsigned CallArgIndex;
601   };
602   // Structure used by DeductionFailureInfo to store information about
603   // unsatisfied constraints.
604   struct CNSInfo {
605     TemplateArgumentList *TemplateArgs;
606     ConstraintSatisfaction Satisfaction;
607   };
608 }
609 
610 /// Convert from Sema's representation of template deduction information
611 /// to the form used in overload-candidate information.
612 DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)613 clang::MakeDeductionFailureInfo(ASTContext &Context,
614                                 Sema::TemplateDeductionResult TDK,
615                                 TemplateDeductionInfo &Info) {
616   DeductionFailureInfo Result;
617   Result.Result = static_cast<unsigned>(TDK);
618   Result.HasDiagnostic = false;
619   switch (TDK) {
620   case Sema::TDK_Invalid:
621   case Sema::TDK_InstantiationDepth:
622   case Sema::TDK_TooManyArguments:
623   case Sema::TDK_TooFewArguments:
624   case Sema::TDK_MiscellaneousDeductionFailure:
625   case Sema::TDK_CUDATargetMismatch:
626     Result.Data = nullptr;
627     break;
628 
629   case Sema::TDK_Incomplete:
630   case Sema::TDK_InvalidExplicitArguments:
631     Result.Data = Info.Param.getOpaqueValue();
632     break;
633 
634   case Sema::TDK_DeducedMismatch:
635   case Sema::TDK_DeducedMismatchNested: {
636     // FIXME: Should allocate from normal heap so that we can free this later.
637     auto *Saved = new (Context) DFIDeducedMismatchArgs;
638     Saved->FirstArg = Info.FirstArg;
639     Saved->SecondArg = Info.SecondArg;
640     Saved->TemplateArgs = Info.take();
641     Saved->CallArgIndex = Info.CallArgIndex;
642     Result.Data = Saved;
643     break;
644   }
645 
646   case Sema::TDK_NonDeducedMismatch: {
647     // FIXME: Should allocate from normal heap so that we can free this later.
648     DFIArguments *Saved = new (Context) DFIArguments;
649     Saved->FirstArg = Info.FirstArg;
650     Saved->SecondArg = Info.SecondArg;
651     Result.Data = Saved;
652     break;
653   }
654 
655   case Sema::TDK_IncompletePack:
656     // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657   case Sema::TDK_Inconsistent:
658   case Sema::TDK_Underqualified: {
659     // FIXME: Should allocate from normal heap so that we can free this later.
660     DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661     Saved->Param = Info.Param;
662     Saved->FirstArg = Info.FirstArg;
663     Saved->SecondArg = Info.SecondArg;
664     Result.Data = Saved;
665     break;
666   }
667 
668   case Sema::TDK_SubstitutionFailure:
669     Result.Data = Info.take();
670     if (Info.hasSFINAEDiagnostic()) {
671       PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672           SourceLocation(), PartialDiagnostic::NullDiagnostic());
673       Info.takeSFINAEDiagnostic(*Diag);
674       Result.HasDiagnostic = true;
675     }
676     break;
677 
678   case Sema::TDK_ConstraintsNotSatisfied: {
679     CNSInfo *Saved = new (Context) CNSInfo;
680     Saved->TemplateArgs = Info.take();
681     Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682     Result.Data = Saved;
683     break;
684   }
685 
686   case Sema::TDK_Success:
687   case Sema::TDK_NonDependentConversionFailure:
688     llvm_unreachable("not a deduction failure");
689   }
690 
691   return Result;
692 }
693 
Destroy()694 void DeductionFailureInfo::Destroy() {
695   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696   case Sema::TDK_Success:
697   case Sema::TDK_Invalid:
698   case Sema::TDK_InstantiationDepth:
699   case Sema::TDK_Incomplete:
700   case Sema::TDK_TooManyArguments:
701   case Sema::TDK_TooFewArguments:
702   case Sema::TDK_InvalidExplicitArguments:
703   case Sema::TDK_CUDATargetMismatch:
704   case Sema::TDK_NonDependentConversionFailure:
705     break;
706 
707   case Sema::TDK_IncompletePack:
708   case Sema::TDK_Inconsistent:
709   case Sema::TDK_Underqualified:
710   case Sema::TDK_DeducedMismatch:
711   case Sema::TDK_DeducedMismatchNested:
712   case Sema::TDK_NonDeducedMismatch:
713     // FIXME: Destroy the data?
714     Data = nullptr;
715     break;
716 
717   case Sema::TDK_SubstitutionFailure:
718     // FIXME: Destroy the template argument list?
719     Data = nullptr;
720     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721       Diag->~PartialDiagnosticAt();
722       HasDiagnostic = false;
723     }
724     break;
725 
726   case Sema::TDK_ConstraintsNotSatisfied:
727     // FIXME: Destroy the template argument list?
728     Data = nullptr;
729     if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730       Diag->~PartialDiagnosticAt();
731       HasDiagnostic = false;
732     }
733     break;
734 
735   // Unhandled
736   case Sema::TDK_MiscellaneousDeductionFailure:
737     break;
738   }
739 }
740 
getSFINAEDiagnostic()741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742   if (HasDiagnostic)
743     return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744   return nullptr;
745 }
746 
getTemplateParameter()747 TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749   case Sema::TDK_Success:
750   case Sema::TDK_Invalid:
751   case Sema::TDK_InstantiationDepth:
752   case Sema::TDK_TooManyArguments:
753   case Sema::TDK_TooFewArguments:
754   case Sema::TDK_SubstitutionFailure:
755   case Sema::TDK_DeducedMismatch:
756   case Sema::TDK_DeducedMismatchNested:
757   case Sema::TDK_NonDeducedMismatch:
758   case Sema::TDK_CUDATargetMismatch:
759   case Sema::TDK_NonDependentConversionFailure:
760   case Sema::TDK_ConstraintsNotSatisfied:
761     return TemplateParameter();
762 
763   case Sema::TDK_Incomplete:
764   case Sema::TDK_InvalidExplicitArguments:
765     return TemplateParameter::getFromOpaqueValue(Data);
766 
767   case Sema::TDK_IncompletePack:
768   case Sema::TDK_Inconsistent:
769   case Sema::TDK_Underqualified:
770     return static_cast<DFIParamWithArguments*>(Data)->Param;
771 
772   // Unhandled
773   case Sema::TDK_MiscellaneousDeductionFailure:
774     break;
775   }
776 
777   return TemplateParameter();
778 }
779 
getTemplateArgumentList()780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782   case Sema::TDK_Success:
783   case Sema::TDK_Invalid:
784   case Sema::TDK_InstantiationDepth:
785   case Sema::TDK_TooManyArguments:
786   case Sema::TDK_TooFewArguments:
787   case Sema::TDK_Incomplete:
788   case Sema::TDK_IncompletePack:
789   case Sema::TDK_InvalidExplicitArguments:
790   case Sema::TDK_Inconsistent:
791   case Sema::TDK_Underqualified:
792   case Sema::TDK_NonDeducedMismatch:
793   case Sema::TDK_CUDATargetMismatch:
794   case Sema::TDK_NonDependentConversionFailure:
795     return nullptr;
796 
797   case Sema::TDK_DeducedMismatch:
798   case Sema::TDK_DeducedMismatchNested:
799     return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800 
801   case Sema::TDK_SubstitutionFailure:
802     return static_cast<TemplateArgumentList*>(Data);
803 
804   case Sema::TDK_ConstraintsNotSatisfied:
805     return static_cast<CNSInfo*>(Data)->TemplateArgs;
806 
807   // Unhandled
808   case Sema::TDK_MiscellaneousDeductionFailure:
809     break;
810   }
811 
812   return nullptr;
813 }
814 
getFirstArg()815 const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817   case Sema::TDK_Success:
818   case Sema::TDK_Invalid:
819   case Sema::TDK_InstantiationDepth:
820   case Sema::TDK_Incomplete:
821   case Sema::TDK_TooManyArguments:
822   case Sema::TDK_TooFewArguments:
823   case Sema::TDK_InvalidExplicitArguments:
824   case Sema::TDK_SubstitutionFailure:
825   case Sema::TDK_CUDATargetMismatch:
826   case Sema::TDK_NonDependentConversionFailure:
827   case Sema::TDK_ConstraintsNotSatisfied:
828     return nullptr;
829 
830   case Sema::TDK_IncompletePack:
831   case Sema::TDK_Inconsistent:
832   case Sema::TDK_Underqualified:
833   case Sema::TDK_DeducedMismatch:
834   case Sema::TDK_DeducedMismatchNested:
835   case Sema::TDK_NonDeducedMismatch:
836     return &static_cast<DFIArguments*>(Data)->FirstArg;
837 
838   // Unhandled
839   case Sema::TDK_MiscellaneousDeductionFailure:
840     break;
841   }
842 
843   return nullptr;
844 }
845 
getSecondArg()846 const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848   case Sema::TDK_Success:
849   case Sema::TDK_Invalid:
850   case Sema::TDK_InstantiationDepth:
851   case Sema::TDK_Incomplete:
852   case Sema::TDK_IncompletePack:
853   case Sema::TDK_TooManyArguments:
854   case Sema::TDK_TooFewArguments:
855   case Sema::TDK_InvalidExplicitArguments:
856   case Sema::TDK_SubstitutionFailure:
857   case Sema::TDK_CUDATargetMismatch:
858   case Sema::TDK_NonDependentConversionFailure:
859   case Sema::TDK_ConstraintsNotSatisfied:
860     return nullptr;
861 
862   case Sema::TDK_Inconsistent:
863   case Sema::TDK_Underqualified:
864   case Sema::TDK_DeducedMismatch:
865   case Sema::TDK_DeducedMismatchNested:
866   case Sema::TDK_NonDeducedMismatch:
867     return &static_cast<DFIArguments*>(Data)->SecondArg;
868 
869   // Unhandled
870   case Sema::TDK_MiscellaneousDeductionFailure:
871     break;
872   }
873 
874   return nullptr;
875 }
876 
getCallArgIndex()877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878   switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879   case Sema::TDK_DeducedMismatch:
880   case Sema::TDK_DeducedMismatchNested:
881     return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882 
883   default:
884     return llvm::None;
885   }
886 }
887 
shouldAddReversed(OverloadedOperatorKind Op)888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889     OverloadedOperatorKind Op) {
890   if (!AllowRewrittenCandidates)
891     return false;
892   return Op == OO_EqualEqual || Op == OO_Spaceship;
893 }
894 
shouldAddReversed(ASTContext & Ctx,const FunctionDecl * FD)895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896     ASTContext &Ctx, const FunctionDecl *FD) {
897   if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898     return false;
899   // Don't bother adding a reversed candidate that can never be a better
900   // match than the non-reversed version.
901   return FD->getNumParams() != 2 ||
902          !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903                                      FD->getParamDecl(1)->getType()) ||
904          FD->hasAttr<EnableIfAttr>();
905 }
906 
destroyCandidates()907 void OverloadCandidateSet::destroyCandidates() {
908   for (iterator i = begin(), e = end(); i != e; ++i) {
909     for (auto &C : i->Conversions)
910       C.~ImplicitConversionSequence();
911     if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912       i->DeductionFailure.Destroy();
913   }
914 }
915 
clear(CandidateSetKind CSK)916 void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917   destroyCandidates();
918   SlabAllocator.Reset();
919   NumInlineBytesUsed = 0;
920   Candidates.clear();
921   Functions.clear();
922   Kind = CSK;
923 }
924 
925 namespace {
926   class UnbridgedCastsSet {
927     struct Entry {
928       Expr **Addr;
929       Expr *Saved;
930     };
931     SmallVector<Entry, 2> Entries;
932 
933   public:
save(Sema & S,Expr * & E)934     void save(Sema &S, Expr *&E) {
935       assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
936       Entry entry = { &E, E };
937       Entries.push_back(entry);
938       E = S.stripARCUnbridgedCast(E);
939     }
940 
restore()941     void restore() {
942       for (SmallVectorImpl<Entry>::iterator
943              i = Entries.begin(), e = Entries.end(); i != e; ++i)
944         *i->Addr = i->Saved;
945     }
946   };
947 }
948 
949 /// checkPlaceholderForOverload - Do any interesting placeholder-like
950 /// preprocessing on the given expression.
951 ///
952 /// \param unbridgedCasts a collection to which to add unbridged casts;
953 ///   without this, they will be immediately diagnosed as errors
954 ///
955 /// Return true on unrecoverable error.
956 static bool
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=nullptr)957 checkPlaceholderForOverload(Sema &S, Expr *&E,
958                             UnbridgedCastsSet *unbridgedCasts = nullptr) {
959   if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
960     // We can't handle overloaded expressions here because overload
961     // resolution might reasonably tweak them.
962     if (placeholder->getKind() == BuiltinType::Overload) return false;
963 
964     // If the context potentially accepts unbridged ARC casts, strip
965     // the unbridged cast and add it to the collection for later restoration.
966     if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967         unbridgedCasts) {
968       unbridgedCasts->save(S, E);
969       return false;
970     }
971 
972     // Go ahead and check everything else.
973     ExprResult result = S.CheckPlaceholderExpr(E);
974     if (result.isInvalid())
975       return true;
976 
977     E = result.get();
978     return false;
979   }
980 
981   // Nothing to do.
982   return false;
983 }
984 
985 /// checkArgPlaceholdersForOverload - Check a set of call operands for
986 /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,MultiExprArg Args,UnbridgedCastsSet & unbridged)987 static bool checkArgPlaceholdersForOverload(Sema &S,
988                                             MultiExprArg Args,
989                                             UnbridgedCastsSet &unbridged) {
990   for (unsigned i = 0, e = Args.size(); i != e; ++i)
991     if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992       return true;
993 
994   return false;
995 }
996 
997 /// Determine whether the given New declaration is an overload of the
998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999 /// New and Old cannot be overloaded, e.g., if New has the same signature as
1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001 /// functions (or function templates) at all. When it does return Ovl_Match or
1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004 /// declaration.
1005 ///
1006 /// Example: Given the following input:
1007 ///
1008 ///   void f(int, float); // #1
1009 ///   void f(int, int); // #2
1010 ///   int f(int, int); // #3
1011 ///
1012 /// When we process #1, there is no previous declaration of "f", so IsOverload
1013 /// will not be used.
1014 ///
1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have
1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018 /// unchanged.
1019 ///
1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare
1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and
1024 /// MatchedDecl will be set to point to the FunctionDecl for #2.
1025 ///
1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027 /// by a using declaration. The rules for whether to hide shadow declarations
1028 /// ignore some properties which otherwise figure into a function template's
1029 /// signature.
1030 Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032                     NamedDecl *&Match, bool NewIsUsingDecl) {
1033   for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034          I != E; ++I) {
1035     NamedDecl *OldD = *I;
1036 
1037     bool OldIsUsingDecl = false;
1038     if (isa<UsingShadowDecl>(OldD)) {
1039       OldIsUsingDecl = true;
1040 
1041       // We can always introduce two using declarations into the same
1042       // context, even if they have identical signatures.
1043       if (NewIsUsingDecl) continue;
1044 
1045       OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046     }
1047 
1048     // A using-declaration does not conflict with another declaration
1049     // if one of them is hidden.
1050     if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051       continue;
1052 
1053     // If either declaration was introduced by a using declaration,
1054     // we'll need to use slightly different rules for matching.
1055     // Essentially, these rules are the normal rules, except that
1056     // function templates hide function templates with different
1057     // return types or template parameter lists.
1058     bool UseMemberUsingDeclRules =
1059       (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060       !New->getFriendObjectKind();
1061 
1062     if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063       if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064         if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065           HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066           continue;
1067         }
1068 
1069         if (!isa<FunctionTemplateDecl>(OldD) &&
1070             !shouldLinkPossiblyHiddenDecl(*I, New))
1071           continue;
1072 
1073         Match = *I;
1074         return Ovl_Match;
1075       }
1076 
1077       // Builtins that have custom typechecking or have a reference should
1078       // not be overloadable or redeclarable.
1079       if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080         Match = *I;
1081         return Ovl_NonFunction;
1082       }
1083     } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084       // We can overload with these, which can show up when doing
1085       // redeclaration checks for UsingDecls.
1086       assert(Old.getLookupKind() == LookupUsingDeclName);
1087     } else if (isa<TagDecl>(OldD)) {
1088       // We can always overload with tags by hiding them.
1089     } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090       // Optimistically assume that an unresolved using decl will
1091       // overload; if it doesn't, we'll have to diagnose during
1092       // template instantiation.
1093       //
1094       // Exception: if the scope is dependent and this is not a class
1095       // member, the using declaration can only introduce an enumerator.
1096       if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097         Match = *I;
1098         return Ovl_NonFunction;
1099       }
1100     } else {
1101       // (C++ 13p1):
1102       //   Only function declarations can be overloaded; object and type
1103       //   declarations cannot be overloaded.
1104       Match = *I;
1105       return Ovl_NonFunction;
1106     }
1107   }
1108 
1109   // C++ [temp.friend]p1:
1110   //   For a friend function declaration that is not a template declaration:
1111   //    -- if the name of the friend is a qualified or unqualified template-id,
1112   //       [...], otherwise
1113   //    -- if the name of the friend is a qualified-id and a matching
1114   //       non-template function is found in the specified class or namespace,
1115   //       the friend declaration refers to that function, otherwise,
1116   //    -- if the name of the friend is a qualified-id and a matching function
1117   //       template is found in the specified class or namespace, the friend
1118   //       declaration refers to the deduced specialization of that function
1119   //       template, otherwise
1120   //    -- the name shall be an unqualified-id [...]
1121   // If we get here for a qualified friend declaration, we've just reached the
1122   // third bullet. If the type of the friend is dependent, skip this lookup
1123   // until instantiation.
1124   if (New->getFriendObjectKind() && New->getQualifier() &&
1125       !New->getDescribedFunctionTemplate() &&
1126       !New->getDependentSpecializationInfo() &&
1127       !New->getType()->isDependentType()) {
1128     LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129     TemplateSpecResult.addAllDecls(Old);
1130     if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131                                             /*QualifiedFriend*/true)) {
1132       New->setInvalidDecl();
1133       return Ovl_Overload;
1134     }
1135 
1136     Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137     return Ovl_Match;
1138   }
1139 
1140   return Ovl_Overload;
1141 }
1142 
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseMemberUsingDeclRules,bool ConsiderCudaAttrs,bool ConsiderRequiresClauses)1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144                       bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145                       bool ConsiderRequiresClauses) {
1146   // C++ [basic.start.main]p2: This function shall not be overloaded.
1147   if (New->isMain())
1148     return false;
1149 
1150   // MSVCRT user defined entry points cannot be overloaded.
1151   if (New->isMSVCRTEntryPoint())
1152     return false;
1153 
1154   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156 
1157   // C++ [temp.fct]p2:
1158   //   A function template can be overloaded with other function templates
1159   //   and with normal (non-template) functions.
1160   if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161     return true;
1162 
1163   // Is the function New an overload of the function Old?
1164   QualType OldQType = Context.getCanonicalType(Old->getType());
1165   QualType NewQType = Context.getCanonicalType(New->getType());
1166 
1167   // Compare the signatures (C++ 1.3.10) of the two functions to
1168   // determine whether they are overloads. If we find any mismatch
1169   // in the signature, they are overloads.
1170 
1171   // If either of these functions is a K&R-style function (no
1172   // prototype), then we consider them to have matching signatures.
1173   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174       isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175     return false;
1176 
1177   const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178   const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179 
1180   // The signature of a function includes the types of its
1181   // parameters (C++ 1.3.10), which includes the presence or absence
1182   // of the ellipsis; see C++ DR 357).
1183   if (OldQType != NewQType &&
1184       (OldType->getNumParams() != NewType->getNumParams() ||
1185        OldType->isVariadic() != NewType->isVariadic() ||
1186        !FunctionParamTypesAreEqual(OldType, NewType)))
1187     return true;
1188 
1189   // C++ [temp.over.link]p4:
1190   //   The signature of a function template consists of its function
1191   //   signature, its return type and its template parameter list. The names
1192   //   of the template parameters are significant only for establishing the
1193   //   relationship between the template parameters and the rest of the
1194   //   signature.
1195   //
1196   // We check the return type and template parameter lists for function
1197   // templates first; the remaining checks follow.
1198   //
1199   // However, we don't consider either of these when deciding whether
1200   // a member introduced by a shadow declaration is hidden.
1201   if (!UseMemberUsingDeclRules && NewTemplate &&
1202       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203                                        OldTemplate->getTemplateParameters(),
1204                                        false, TPL_TemplateMatch) ||
1205        !Context.hasSameType(Old->getDeclaredReturnType(),
1206                             New->getDeclaredReturnType())))
1207     return true;
1208 
1209   // If the function is a class member, its signature includes the
1210   // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211   //
1212   // As part of this, also check whether one of the member functions
1213   // is static, in which case they are not overloads (C++
1214   // 13.1p2). While not part of the definition of the signature,
1215   // this check is important to determine whether these functions
1216   // can be overloaded.
1217   CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218   CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219   if (OldMethod && NewMethod &&
1220       !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221     if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222       if (!UseMemberUsingDeclRules &&
1223           (OldMethod->getRefQualifier() == RQ_None ||
1224            NewMethod->getRefQualifier() == RQ_None)) {
1225         // C++0x [over.load]p2:
1226         //   - Member function declarations with the same name and the same
1227         //     parameter-type-list as well as member function template
1228         //     declarations with the same name, the same parameter-type-list, and
1229         //     the same template parameter lists cannot be overloaded if any of
1230         //     them, but not all, have a ref-qualifier (8.3.5).
1231         Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232           << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233         Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234       }
1235       return true;
1236     }
1237 
1238     // We may not have applied the implicit const for a constexpr member
1239     // function yet (because we haven't yet resolved whether this is a static
1240     // or non-static member function). Add it now, on the assumption that this
1241     // is a redeclaration of OldMethod.
1242     auto OldQuals = OldMethod->getMethodQualifiers();
1243     auto NewQuals = NewMethod->getMethodQualifiers();
1244     if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245         !isa<CXXConstructorDecl>(NewMethod))
1246       NewQuals.addConst();
1247     // We do not allow overloading based off of '__restrict'.
1248     OldQuals.removeRestrict();
1249     NewQuals.removeRestrict();
1250     if (OldQuals != NewQuals)
1251       return true;
1252   }
1253 
1254   // Though pass_object_size is placed on parameters and takes an argument, we
1255   // consider it to be a function-level modifier for the sake of function
1256   // identity. Either the function has one or more parameters with
1257   // pass_object_size or it doesn't.
1258   if (functionHasPassObjectSizeParams(New) !=
1259       functionHasPassObjectSizeParams(Old))
1260     return true;
1261 
1262   // enable_if attributes are an order-sensitive part of the signature.
1263   for (specific_attr_iterator<EnableIfAttr>
1264          NewI = New->specific_attr_begin<EnableIfAttr>(),
1265          NewE = New->specific_attr_end<EnableIfAttr>(),
1266          OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267          OldE = Old->specific_attr_end<EnableIfAttr>();
1268        NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269     if (NewI == NewE || OldI == OldE)
1270       return true;
1271     llvm::FoldingSetNodeID NewID, OldID;
1272     NewI->getCond()->Profile(NewID, Context, true);
1273     OldI->getCond()->Profile(OldID, Context, true);
1274     if (NewID != OldID)
1275       return true;
1276   }
1277 
1278   if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279     // Don't allow overloading of destructors.  (In theory we could, but it
1280     // would be a giant change to clang.)
1281     if (!isa<CXXDestructorDecl>(New)) {
1282       CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283                          OldTarget = IdentifyCUDATarget(Old);
1284       if (NewTarget != CFT_InvalidTarget) {
1285         assert((OldTarget != CFT_InvalidTarget) &&
1286                "Unexpected invalid target.");
1287 
1288         // Allow overloading of functions with same signature and different CUDA
1289         // target attributes.
1290         if (NewTarget != OldTarget)
1291           return true;
1292       }
1293     }
1294   }
1295 
1296   if (ConsiderRequiresClauses) {
1297     Expr *NewRC = New->getTrailingRequiresClause(),
1298          *OldRC = Old->getTrailingRequiresClause();
1299     if ((NewRC != nullptr) != (OldRC != nullptr))
1300       // RC are most certainly different - these are overloads.
1301       return true;
1302 
1303     if (NewRC) {
1304       llvm::FoldingSetNodeID NewID, OldID;
1305       NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306       OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307       if (NewID != OldID)
1308         // RCs are not equivalent - these are overloads.
1309         return true;
1310     }
1311   }
1312 
1313   // The signatures match; this is not an overload.
1314   return false;
1315 }
1316 
1317 /// Tries a user-defined conversion from From to ToType.
1318 ///
1319 /// Produces an implicit conversion sequence for when a standard conversion
1320 /// is not an option. See TryImplicitConversion for more information.
1321 static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323                          bool SuppressUserConversions,
1324                          AllowedExplicit AllowExplicit,
1325                          bool InOverloadResolution,
1326                          bool CStyle,
1327                          bool AllowObjCWritebackConversion,
1328                          bool AllowObjCConversionOnExplicit) {
1329   ImplicitConversionSequence ICS;
1330 
1331   if (SuppressUserConversions) {
1332     // We're not in the case above, so there is no conversion that
1333     // we can perform.
1334     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335     return ICS;
1336   }
1337 
1338   // Attempt user-defined conversion.
1339   OverloadCandidateSet Conversions(From->getExprLoc(),
1340                                    OverloadCandidateSet::CSK_Normal);
1341   switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342                                   Conversions, AllowExplicit,
1343                                   AllowObjCConversionOnExplicit)) {
1344   case OR_Success:
1345   case OR_Deleted:
1346     ICS.setUserDefined();
1347     // C++ [over.ics.user]p4:
1348     //   A conversion of an expression of class type to the same class
1349     //   type is given Exact Match rank, and a conversion of an
1350     //   expression of class type to a base class of that type is
1351     //   given Conversion rank, in spite of the fact that a copy
1352     //   constructor (i.e., a user-defined conversion function) is
1353     //   called for those cases.
1354     if (CXXConstructorDecl *Constructor
1355           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356       QualType FromCanon
1357         = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358       QualType ToCanon
1359         = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360       if (Constructor->isCopyConstructor() &&
1361           (FromCanon == ToCanon ||
1362            S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363         // Turn this into a "standard" conversion sequence, so that it
1364         // gets ranked with standard conversion sequences.
1365         DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366         ICS.setStandard();
1367         ICS.Standard.setAsIdentityConversion();
1368         ICS.Standard.setFromType(From->getType());
1369         ICS.Standard.setAllToTypes(ToType);
1370         ICS.Standard.CopyConstructor = Constructor;
1371         ICS.Standard.FoundCopyConstructor = Found;
1372         if (ToCanon != FromCanon)
1373           ICS.Standard.Second = ICK_Derived_To_Base;
1374       }
1375     }
1376     break;
1377 
1378   case OR_Ambiguous:
1379     ICS.setAmbiguous();
1380     ICS.Ambiguous.setFromType(From->getType());
1381     ICS.Ambiguous.setToType(ToType);
1382     for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383          Cand != Conversions.end(); ++Cand)
1384       if (Cand->Best)
1385         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386     break;
1387 
1388     // Fall through.
1389   case OR_No_Viable_Function:
1390     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391     break;
1392   }
1393 
1394   return ICS;
1395 }
1396 
1397 /// TryImplicitConversion - Attempt to perform an implicit conversion
1398 /// from the given expression (Expr) to the given type (ToType). This
1399 /// function returns an implicit conversion sequence that can be used
1400 /// to perform the initialization. Given
1401 ///
1402 ///   void f(float f);
1403 ///   void g(int i) { f(i); }
1404 ///
1405 /// this routine would produce an implicit conversion sequence to
1406 /// describe the initialization of f from i, which will be a standard
1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409 //
1410 /// Note that this routine only determines how the conversion can be
1411 /// performed; it does not actually perform the conversion. As such,
1412 /// it will not produce any diagnostics if no conversion is available,
1413 /// but will instead return an implicit conversion sequence of kind
1414 /// "BadConversion".
1415 ///
1416 /// If @p SuppressUserConversions, then user-defined conversions are
1417 /// not permitted.
1418 /// If @p AllowExplicit, then explicit user-defined conversions are
1419 /// permitted.
1420 ///
1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422 /// writeback conversion, which allows __autoreleasing id* parameters to
1423 /// be initialized with __strong id* or __weak id* arguments.
1424 static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426                       bool SuppressUserConversions,
1427                       AllowedExplicit AllowExplicit,
1428                       bool InOverloadResolution,
1429                       bool CStyle,
1430                       bool AllowObjCWritebackConversion,
1431                       bool AllowObjCConversionOnExplicit) {
1432   ImplicitConversionSequence ICS;
1433   if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434                            ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435     ICS.setStandard();
1436     return ICS;
1437   }
1438 
1439   if (!S.getLangOpts().CPlusPlus) {
1440     ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441     return ICS;
1442   }
1443 
1444   // C++ [over.ics.user]p4:
1445   //   A conversion of an expression of class type to the same class
1446   //   type is given Exact Match rank, and a conversion of an
1447   //   expression of class type to a base class of that type is
1448   //   given Conversion rank, in spite of the fact that a copy/move
1449   //   constructor (i.e., a user-defined conversion function) is
1450   //   called for those cases.
1451   QualType FromType = From->getType();
1452   if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453       (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454        S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455     ICS.setStandard();
1456     ICS.Standard.setAsIdentityConversion();
1457     ICS.Standard.setFromType(FromType);
1458     ICS.Standard.setAllToTypes(ToType);
1459 
1460     // We don't actually check at this point whether there is a valid
1461     // copy/move constructor, since overloading just assumes that it
1462     // exists. When we actually perform initialization, we'll find the
1463     // appropriate constructor to copy the returned object, if needed.
1464     ICS.Standard.CopyConstructor = nullptr;
1465 
1466     // Determine whether this is considered a derived-to-base conversion.
1467     if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468       ICS.Standard.Second = ICK_Derived_To_Base;
1469 
1470     return ICS;
1471   }
1472 
1473   return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474                                   AllowExplicit, InOverloadResolution, CStyle,
1475                                   AllowObjCWritebackConversion,
1476                                   AllowObjCConversionOnExplicit);
1477 }
1478 
1479 ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,AllowedExplicit AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1480 Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481                             bool SuppressUserConversions,
1482                             AllowedExplicit AllowExplicit,
1483                             bool InOverloadResolution,
1484                             bool CStyle,
1485                             bool AllowObjCWritebackConversion) {
1486   return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487                                  AllowExplicit, InOverloadResolution, CStyle,
1488                                  AllowObjCWritebackConversion,
1489                                  /*AllowObjCConversionOnExplicit=*/false);
1490 }
1491 
1492 /// PerformImplicitConversion - Perform an implicit conversion of the
1493 /// expression From to the type ToType. Returns the
1494 /// converted expression. Flavor is the kind of conversion we're
1495 /// performing, used in the error message. If @p AllowExplicit,
1496 /// explicit user-defined conversions are permitted.
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498                                            AssignmentAction Action,
1499                                            bool AllowExplicit) {
1500   if (checkPlaceholderForOverload(*this, From))
1501     return ExprError();
1502 
1503   // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504   bool AllowObjCWritebackConversion
1505     = getLangOpts().ObjCAutoRefCount &&
1506       (Action == AA_Passing || Action == AA_Sending);
1507   if (getLangOpts().ObjC)
1508     CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509                                       From->getType(), From);
1510   ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511       *this, From, ToType,
1512       /*SuppressUserConversions=*/false,
1513       AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514       /*InOverloadResolution=*/false,
1515       /*CStyle=*/false, AllowObjCWritebackConversion,
1516       /*AllowObjCConversionOnExplicit=*/false);
1517   return PerformImplicitConversion(From, ToType, ICS, Action);
1518 }
1519 
1520 /// Determine whether the conversion from FromType to ToType is a valid
1521 /// conversion that strips "noexcept" or "noreturn" off the nested function
1522 /// type.
IsFunctionConversion(QualType FromType,QualType ToType,QualType & ResultTy)1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524                                 QualType &ResultTy) {
1525   if (Context.hasSameUnqualifiedType(FromType, ToType))
1526     return false;
1527 
1528   // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529   //                    or F(t noexcept) -> F(t)
1530   // where F adds one of the following at most once:
1531   //   - a pointer
1532   //   - a member pointer
1533   //   - a block pointer
1534   // Changes here need matching changes in FindCompositePointerType.
1535   CanQualType CanTo = Context.getCanonicalType(ToType);
1536   CanQualType CanFrom = Context.getCanonicalType(FromType);
1537   Type::TypeClass TyClass = CanTo->getTypeClass();
1538   if (TyClass != CanFrom->getTypeClass()) return false;
1539   if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540     if (TyClass == Type::Pointer) {
1541       CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542       CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543     } else if (TyClass == Type::BlockPointer) {
1544       CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545       CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546     } else if (TyClass == Type::MemberPointer) {
1547       auto ToMPT = CanTo.castAs<MemberPointerType>();
1548       auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549       // A function pointer conversion cannot change the class of the function.
1550       if (ToMPT->getClass() != FromMPT->getClass())
1551         return false;
1552       CanTo = ToMPT->getPointeeType();
1553       CanFrom = FromMPT->getPointeeType();
1554     } else {
1555       return false;
1556     }
1557 
1558     TyClass = CanTo->getTypeClass();
1559     if (TyClass != CanFrom->getTypeClass()) return false;
1560     if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561       return false;
1562   }
1563 
1564   const auto *FromFn = cast<FunctionType>(CanFrom);
1565   FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566 
1567   const auto *ToFn = cast<FunctionType>(CanTo);
1568   FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569 
1570   bool Changed = false;
1571 
1572   // Drop 'noreturn' if not present in target type.
1573   if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574     FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575     Changed = true;
1576   }
1577 
1578   // Drop 'noexcept' if not present in target type.
1579   if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580     const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581     if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582       FromFn = cast<FunctionType>(
1583           Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584                                                    EST_None)
1585                  .getTypePtr());
1586       Changed = true;
1587     }
1588 
1589     // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590     // only if the ExtParameterInfo lists of the two function prototypes can be
1591     // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592     SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593     bool CanUseToFPT, CanUseFromFPT;
1594     if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595                                       CanUseFromFPT, NewParamInfos) &&
1596         CanUseToFPT && !CanUseFromFPT) {
1597       FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598       ExtInfo.ExtParameterInfos =
1599           NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600       QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601                                             FromFPT->getParamTypes(), ExtInfo);
1602       FromFn = QT->getAs<FunctionType>();
1603       Changed = true;
1604     }
1605   }
1606 
1607   if (!Changed)
1608     return false;
1609 
1610   assert(QualType(FromFn, 0).isCanonical());
1611   if (QualType(FromFn, 0) != CanTo) return false;
1612 
1613   ResultTy = ToType;
1614   return true;
1615 }
1616 
1617 /// Determine whether the conversion from FromType to ToType is a valid
1618 /// vector conversion.
1619 ///
1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector
1621 /// conversion.
IsVectorConversion(Sema & S,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)1622 static bool IsVectorConversion(Sema &S, QualType FromType,
1623                                QualType ToType, ImplicitConversionKind &ICK) {
1624   // We need at least one of these types to be a vector type to have a vector
1625   // conversion.
1626   if (!ToType->isVectorType() && !FromType->isVectorType())
1627     return false;
1628 
1629   // Identical types require no conversions.
1630   if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631     return false;
1632 
1633   // There are no conversions between extended vector types, only identity.
1634   if (ToType->isExtVectorType()) {
1635     // There are no conversions between extended vector types other than the
1636     // identity conversion.
1637     if (FromType->isExtVectorType())
1638       return false;
1639 
1640     // Vector splat from any arithmetic type to a vector.
1641     if (FromType->isArithmeticType()) {
1642       ICK = ICK_Vector_Splat;
1643       return true;
1644     }
1645   }
1646 
1647   if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType())
1648     if (S.Context.areCompatibleSveTypes(FromType, ToType) ||
1649         S.Context.areLaxCompatibleSveTypes(FromType, ToType)) {
1650       ICK = ICK_SVE_Vector_Conversion;
1651       return true;
1652     }
1653 
1654   // We can perform the conversion between vector types in the following cases:
1655   // 1)vector types are equivalent AltiVec and GCC vector types
1656   // 2)lax vector conversions are permitted and the vector types are of the
1657   //   same size
1658   // 3)the destination type does not have the ARM MVE strict-polymorphism
1659   //   attribute, which inhibits lax vector conversion for overload resolution
1660   //   only
1661   if (ToType->isVectorType() && FromType->isVectorType()) {
1662     if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1663         (S.isLaxVectorConversion(FromType, ToType) &&
1664          !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1665       ICK = ICK_Vector_Conversion;
1666       return true;
1667     }
1668   }
1669 
1670   return false;
1671 }
1672 
1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1674                                 bool InOverloadResolution,
1675                                 StandardConversionSequence &SCS,
1676                                 bool CStyle);
1677 
1678 /// IsStandardConversion - Determines whether there is a standard
1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1680 /// expression From to the type ToType. Standard conversion sequences
1681 /// only consider non-class types; for conversions that involve class
1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will
1683 /// contain the standard conversion sequence required to perform this
1684 /// conversion and this routine will return true. Otherwise, this
1685 /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1687                                  bool InOverloadResolution,
1688                                  StandardConversionSequence &SCS,
1689                                  bool CStyle,
1690                                  bool AllowObjCWritebackConversion) {
1691   QualType FromType = From->getType();
1692 
1693   // Standard conversions (C++ [conv])
1694   SCS.setAsIdentityConversion();
1695   SCS.IncompatibleObjC = false;
1696   SCS.setFromType(FromType);
1697   SCS.CopyConstructor = nullptr;
1698 
1699   // There are no standard conversions for class types in C++, so
1700   // abort early. When overloading in C, however, we do permit them.
1701   if (S.getLangOpts().CPlusPlus &&
1702       (FromType->isRecordType() || ToType->isRecordType()))
1703     return false;
1704 
1705   // The first conversion can be an lvalue-to-rvalue conversion,
1706   // array-to-pointer conversion, or function-to-pointer conversion
1707   // (C++ 4p1).
1708 
1709   if (FromType == S.Context.OverloadTy) {
1710     DeclAccessPair AccessPair;
1711     if (FunctionDecl *Fn
1712           = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1713                                                  AccessPair)) {
1714       // We were able to resolve the address of the overloaded function,
1715       // so we can convert to the type of that function.
1716       FromType = Fn->getType();
1717       SCS.setFromType(FromType);
1718 
1719       // we can sometimes resolve &foo<int> regardless of ToType, so check
1720       // if the type matches (identity) or we are converting to bool
1721       if (!S.Context.hasSameUnqualifiedType(
1722                       S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1723         QualType resultTy;
1724         // if the function type matches except for [[noreturn]], it's ok
1725         if (!S.IsFunctionConversion(FromType,
1726               S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1727           // otherwise, only a boolean conversion is standard
1728           if (!ToType->isBooleanType())
1729             return false;
1730       }
1731 
1732       // Check if the "from" expression is taking the address of an overloaded
1733       // function and recompute the FromType accordingly. Take advantage of the
1734       // fact that non-static member functions *must* have such an address-of
1735       // expression.
1736       CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1737       if (Method && !Method->isStatic()) {
1738         assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1739                "Non-unary operator on non-static member address");
1740         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1741                == UO_AddrOf &&
1742                "Non-address-of operator on non-static member address");
1743         const Type *ClassType
1744           = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1745         FromType = S.Context.getMemberPointerType(FromType, ClassType);
1746       } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1747         assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1748                UO_AddrOf &&
1749                "Non-address-of operator for overloaded function expression");
1750         FromType = S.Context.getPointerType(FromType);
1751       }
1752 
1753       // Check that we've computed the proper type after overload resolution.
1754       // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1755       // be calling it from within an NDEBUG block.
1756       assert(S.Context.hasSameType(
1757         FromType,
1758         S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1759     } else {
1760       return false;
1761     }
1762   }
1763   // Lvalue-to-rvalue conversion (C++11 4.1):
1764   //   A glvalue (3.10) of a non-function, non-array type T can
1765   //   be converted to a prvalue.
1766   bool argIsLValue = From->isGLValue();
1767   if (argIsLValue &&
1768       !FromType->isFunctionType() && !FromType->isArrayType() &&
1769       S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1770     SCS.First = ICK_Lvalue_To_Rvalue;
1771 
1772     // C11 6.3.2.1p2:
1773     //   ... if the lvalue has atomic type, the value has the non-atomic version
1774     //   of the type of the lvalue ...
1775     if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1776       FromType = Atomic->getValueType();
1777 
1778     // If T is a non-class type, the type of the rvalue is the
1779     // cv-unqualified version of T. Otherwise, the type of the rvalue
1780     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1781     // just strip the qualifiers because they don't matter.
1782     FromType = FromType.getUnqualifiedType();
1783   } else if (FromType->isArrayType()) {
1784     // Array-to-pointer conversion (C++ 4.2)
1785     SCS.First = ICK_Array_To_Pointer;
1786 
1787     // An lvalue or rvalue of type "array of N T" or "array of unknown
1788     // bound of T" can be converted to an rvalue of type "pointer to
1789     // T" (C++ 4.2p1).
1790     FromType = S.Context.getArrayDecayedType(FromType);
1791 
1792     if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1793       // This conversion is deprecated in C++03 (D.4)
1794       SCS.DeprecatedStringLiteralToCharPtr = true;
1795 
1796       // For the purpose of ranking in overload resolution
1797       // (13.3.3.1.1), this conversion is considered an
1798       // array-to-pointer conversion followed by a qualification
1799       // conversion (4.4). (C++ 4.2p2)
1800       SCS.Second = ICK_Identity;
1801       SCS.Third = ICK_Qualification;
1802       SCS.QualificationIncludesObjCLifetime = false;
1803       SCS.setAllToTypes(FromType);
1804       return true;
1805     }
1806   } else if (FromType->isFunctionType() && argIsLValue) {
1807     // Function-to-pointer conversion (C++ 4.3).
1808     SCS.First = ICK_Function_To_Pointer;
1809 
1810     if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1811       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1812         if (!S.checkAddressOfFunctionIsAvailable(FD))
1813           return false;
1814 
1815     // An lvalue of function type T can be converted to an rvalue of
1816     // type "pointer to T." The result is a pointer to the
1817     // function. (C++ 4.3p1).
1818     FromType = S.Context.getPointerType(FromType);
1819   } else {
1820     // We don't require any conversions for the first step.
1821     SCS.First = ICK_Identity;
1822   }
1823   SCS.setToType(0, FromType);
1824 
1825   // The second conversion can be an integral promotion, floating
1826   // point promotion, integral conversion, floating point conversion,
1827   // floating-integral conversion, pointer conversion,
1828   // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1829   // For overloading in C, this can also be a "compatible-type"
1830   // conversion.
1831   bool IncompatibleObjC = false;
1832   ImplicitConversionKind SecondICK = ICK_Identity;
1833   if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1834     // The unqualified versions of the types are the same: there's no
1835     // conversion to do.
1836     SCS.Second = ICK_Identity;
1837   } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1838     // Integral promotion (C++ 4.5).
1839     SCS.Second = ICK_Integral_Promotion;
1840     FromType = ToType.getUnqualifiedType();
1841   } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1842     // Floating point promotion (C++ 4.6).
1843     SCS.Second = ICK_Floating_Promotion;
1844     FromType = ToType.getUnqualifiedType();
1845   } else if (S.IsComplexPromotion(FromType, ToType)) {
1846     // Complex promotion (Clang extension)
1847     SCS.Second = ICK_Complex_Promotion;
1848     FromType = ToType.getUnqualifiedType();
1849   } else if (ToType->isBooleanType() &&
1850              (FromType->isArithmeticType() ||
1851               FromType->isAnyPointerType() ||
1852               FromType->isBlockPointerType() ||
1853               FromType->isMemberPointerType())) {
1854     // Boolean conversions (C++ 4.12).
1855     SCS.Second = ICK_Boolean_Conversion;
1856     FromType = S.Context.BoolTy;
1857   } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1858              ToType->isIntegralType(S.Context)) {
1859     // Integral conversions (C++ 4.7).
1860     SCS.Second = ICK_Integral_Conversion;
1861     FromType = ToType.getUnqualifiedType();
1862   } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1863     // Complex conversions (C99 6.3.1.6)
1864     SCS.Second = ICK_Complex_Conversion;
1865     FromType = ToType.getUnqualifiedType();
1866   } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1867              (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1868     // Complex-real conversions (C99 6.3.1.7)
1869     SCS.Second = ICK_Complex_Real;
1870     FromType = ToType.getUnqualifiedType();
1871   } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1872     // FIXME: disable conversions between long double and __float128 if
1873     // their representation is different until there is back end support
1874     // We of course allow this conversion if long double is really double.
1875 
1876     // Conversions between bfloat and other floats are not permitted.
1877     if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1878       return false;
1879     if (&S.Context.getFloatTypeSemantics(FromType) !=
1880         &S.Context.getFloatTypeSemantics(ToType)) {
1881       bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1882                                     ToType == S.Context.LongDoubleTy) ||
1883                                    (FromType == S.Context.LongDoubleTy &&
1884                                     ToType == S.Context.Float128Ty));
1885       if (Float128AndLongDouble &&
1886           (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1887            &llvm::APFloat::PPCDoubleDouble()))
1888         return false;
1889     }
1890     // Floating point conversions (C++ 4.8).
1891     SCS.Second = ICK_Floating_Conversion;
1892     FromType = ToType.getUnqualifiedType();
1893   } else if ((FromType->isRealFloatingType() &&
1894               ToType->isIntegralType(S.Context)) ||
1895              (FromType->isIntegralOrUnscopedEnumerationType() &&
1896               ToType->isRealFloatingType())) {
1897     // Conversions between bfloat and int are not permitted.
1898     if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1899       return false;
1900 
1901     // Floating-integral conversions (C++ 4.9).
1902     SCS.Second = ICK_Floating_Integral;
1903     FromType = ToType.getUnqualifiedType();
1904   } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1905     SCS.Second = ICK_Block_Pointer_Conversion;
1906   } else if (AllowObjCWritebackConversion &&
1907              S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1908     SCS.Second = ICK_Writeback_Conversion;
1909   } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1910                                    FromType, IncompatibleObjC)) {
1911     // Pointer conversions (C++ 4.10).
1912     SCS.Second = ICK_Pointer_Conversion;
1913     SCS.IncompatibleObjC = IncompatibleObjC;
1914     FromType = FromType.getUnqualifiedType();
1915   } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1916                                          InOverloadResolution, FromType)) {
1917     // Pointer to member conversions (4.11).
1918     SCS.Second = ICK_Pointer_Member;
1919   } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1920     SCS.Second = SecondICK;
1921     FromType = ToType.getUnqualifiedType();
1922   } else if (!S.getLangOpts().CPlusPlus &&
1923              S.Context.typesAreCompatible(ToType, FromType)) {
1924     // Compatible conversions (Clang extension for C function overloading)
1925     SCS.Second = ICK_Compatible_Conversion;
1926     FromType = ToType.getUnqualifiedType();
1927   } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1928                                              InOverloadResolution,
1929                                              SCS, CStyle)) {
1930     SCS.Second = ICK_TransparentUnionConversion;
1931     FromType = ToType;
1932   } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1933                                  CStyle)) {
1934     // tryAtomicConversion has updated the standard conversion sequence
1935     // appropriately.
1936     return true;
1937   } else if (ToType->isEventT() &&
1938              From->isIntegerConstantExpr(S.getASTContext()) &&
1939              From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1940     SCS.Second = ICK_Zero_Event_Conversion;
1941     FromType = ToType;
1942   } else if (ToType->isQueueT() &&
1943              From->isIntegerConstantExpr(S.getASTContext()) &&
1944              (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1945     SCS.Second = ICK_Zero_Queue_Conversion;
1946     FromType = ToType;
1947   } else if (ToType->isSamplerT() &&
1948              From->isIntegerConstantExpr(S.getASTContext())) {
1949     SCS.Second = ICK_Compatible_Conversion;
1950     FromType = ToType;
1951   } else {
1952     // No second conversion required.
1953     SCS.Second = ICK_Identity;
1954   }
1955   SCS.setToType(1, FromType);
1956 
1957   // The third conversion can be a function pointer conversion or a
1958   // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1959   bool ObjCLifetimeConversion;
1960   if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1961     // Function pointer conversions (removing 'noexcept') including removal of
1962     // 'noreturn' (Clang extension).
1963     SCS.Third = ICK_Function_Conversion;
1964   } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1965                                          ObjCLifetimeConversion)) {
1966     SCS.Third = ICK_Qualification;
1967     SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1968     FromType = ToType;
1969   } else {
1970     // No conversion required
1971     SCS.Third = ICK_Identity;
1972   }
1973 
1974   // C++ [over.best.ics]p6:
1975   //   [...] Any difference in top-level cv-qualification is
1976   //   subsumed by the initialization itself and does not constitute
1977   //   a conversion. [...]
1978   QualType CanonFrom = S.Context.getCanonicalType(FromType);
1979   QualType CanonTo = S.Context.getCanonicalType(ToType);
1980   if (CanonFrom.getLocalUnqualifiedType()
1981                                      == CanonTo.getLocalUnqualifiedType() &&
1982       CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1983     FromType = ToType;
1984     CanonFrom = CanonTo;
1985   }
1986 
1987   SCS.setToType(2, FromType);
1988 
1989   if (CanonFrom == CanonTo)
1990     return true;
1991 
1992   // If we have not converted the argument type to the parameter type,
1993   // this is a bad conversion sequence, unless we're resolving an overload in C.
1994   if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1995     return false;
1996 
1997   ExprResult ER = ExprResult{From};
1998   Sema::AssignConvertType Conv =
1999       S.CheckSingleAssignmentConstraints(ToType, ER,
2000                                          /*Diagnose=*/false,
2001                                          /*DiagnoseCFAudited=*/false,
2002                                          /*ConvertRHS=*/false);
2003   ImplicitConversionKind SecondConv;
2004   switch (Conv) {
2005   case Sema::Compatible:
2006     SecondConv = ICK_C_Only_Conversion;
2007     break;
2008   // For our purposes, discarding qualifiers is just as bad as using an
2009   // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2010   // qualifiers, as well.
2011   case Sema::CompatiblePointerDiscardsQualifiers:
2012   case Sema::IncompatiblePointer:
2013   case Sema::IncompatiblePointerSign:
2014     SecondConv = ICK_Incompatible_Pointer_Conversion;
2015     break;
2016   default:
2017     return false;
2018   }
2019 
2020   // First can only be an lvalue conversion, so we pretend that this was the
2021   // second conversion. First should already be valid from earlier in the
2022   // function.
2023   SCS.Second = SecondConv;
2024   SCS.setToType(1, ToType);
2025 
2026   // Third is Identity, because Second should rank us worse than any other
2027   // conversion. This could also be ICK_Qualification, but it's simpler to just
2028   // lump everything in with the second conversion, and we don't gain anything
2029   // from making this ICK_Qualification.
2030   SCS.Third = ICK_Identity;
2031   SCS.setToType(2, ToType);
2032   return true;
2033 }
2034 
2035 static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)2036 IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2037                                      QualType &ToType,
2038                                      bool InOverloadResolution,
2039                                      StandardConversionSequence &SCS,
2040                                      bool CStyle) {
2041 
2042   const RecordType *UT = ToType->getAsUnionType();
2043   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2044     return false;
2045   // The field to initialize within the transparent union.
2046   RecordDecl *UD = UT->getDecl();
2047   // It's compatible if the expression matches any of the fields.
2048   for (const auto *it : UD->fields()) {
2049     if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2050                              CStyle, /*AllowObjCWritebackConversion=*/false)) {
2051       ToType = it->getType();
2052       return true;
2053     }
2054   }
2055   return false;
2056 }
2057 
2058 /// IsIntegralPromotion - Determines whether the conversion from the
2059 /// expression From (whose potentially-adjusted type is FromType) to
2060 /// ToType is an integral promotion (C++ 4.5). If so, returns true and
2061 /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)2062 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2063   const BuiltinType *To = ToType->getAs<BuiltinType>();
2064   // All integers are built-in.
2065   if (!To) {
2066     return false;
2067   }
2068 
2069   // An rvalue of type char, signed char, unsigned char, short int, or
2070   // unsigned short int can be converted to an rvalue of type int if
2071   // int can represent all the values of the source type; otherwise,
2072   // the source rvalue can be converted to an rvalue of type unsigned
2073   // int (C++ 4.5p1).
2074   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2075       !FromType->isEnumeralType()) {
2076     if (// We can promote any signed, promotable integer type to an int
2077         (FromType->isSignedIntegerType() ||
2078          // We can promote any unsigned integer type whose size is
2079          // less than int to an int.
2080          Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2081       return To->getKind() == BuiltinType::Int;
2082     }
2083 
2084     return To->getKind() == BuiltinType::UInt;
2085   }
2086 
2087   // C++11 [conv.prom]p3:
2088   //   A prvalue of an unscoped enumeration type whose underlying type is not
2089   //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2090   //   following types that can represent all the values of the enumeration
2091   //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
2092   //   unsigned int, long int, unsigned long int, long long int, or unsigned
2093   //   long long int. If none of the types in that list can represent all the
2094   //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2095   //   type can be converted to an rvalue a prvalue of the extended integer type
2096   //   with lowest integer conversion rank (4.13) greater than the rank of long
2097   //   long in which all the values of the enumeration can be represented. If
2098   //   there are two such extended types, the signed one is chosen.
2099   // C++11 [conv.prom]p4:
2100   //   A prvalue of an unscoped enumeration type whose underlying type is fixed
2101   //   can be converted to a prvalue of its underlying type. Moreover, if
2102   //   integral promotion can be applied to its underlying type, a prvalue of an
2103   //   unscoped enumeration type whose underlying type is fixed can also be
2104   //   converted to a prvalue of the promoted underlying type.
2105   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2106     // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2107     // provided for a scoped enumeration.
2108     if (FromEnumType->getDecl()->isScoped())
2109       return false;
2110 
2111     // We can perform an integral promotion to the underlying type of the enum,
2112     // even if that's not the promoted type. Note that the check for promoting
2113     // the underlying type is based on the type alone, and does not consider
2114     // the bitfield-ness of the actual source expression.
2115     if (FromEnumType->getDecl()->isFixed()) {
2116       QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2117       return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2118              IsIntegralPromotion(nullptr, Underlying, ToType);
2119     }
2120 
2121     // We have already pre-calculated the promotion type, so this is trivial.
2122     if (ToType->isIntegerType() &&
2123         isCompleteType(From->getBeginLoc(), FromType))
2124       return Context.hasSameUnqualifiedType(
2125           ToType, FromEnumType->getDecl()->getPromotionType());
2126 
2127     // C++ [conv.prom]p5:
2128     //   If the bit-field has an enumerated type, it is treated as any other
2129     //   value of that type for promotion purposes.
2130     //
2131     // ... so do not fall through into the bit-field checks below in C++.
2132     if (getLangOpts().CPlusPlus)
2133       return false;
2134   }
2135 
2136   // C++0x [conv.prom]p2:
2137   //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2138   //   to an rvalue a prvalue of the first of the following types that can
2139   //   represent all the values of its underlying type: int, unsigned int,
2140   //   long int, unsigned long int, long long int, or unsigned long long int.
2141   //   If none of the types in that list can represent all the values of its
2142   //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
2143   //   or wchar_t can be converted to an rvalue a prvalue of its underlying
2144   //   type.
2145   if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2146       ToType->isIntegerType()) {
2147     // Determine whether the type we're converting from is signed or
2148     // unsigned.
2149     bool FromIsSigned = FromType->isSignedIntegerType();
2150     uint64_t FromSize = Context.getTypeSize(FromType);
2151 
2152     // The types we'll try to promote to, in the appropriate
2153     // order. Try each of these types.
2154     QualType PromoteTypes[6] = {
2155       Context.IntTy, Context.UnsignedIntTy,
2156       Context.LongTy, Context.UnsignedLongTy ,
2157       Context.LongLongTy, Context.UnsignedLongLongTy
2158     };
2159     for (int Idx = 0; Idx < 6; ++Idx) {
2160       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2161       if (FromSize < ToSize ||
2162           (FromSize == ToSize &&
2163            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2164         // We found the type that we can promote to. If this is the
2165         // type we wanted, we have a promotion. Otherwise, no
2166         // promotion.
2167         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2168       }
2169     }
2170   }
2171 
2172   // An rvalue for an integral bit-field (9.6) can be converted to an
2173   // rvalue of type int if int can represent all the values of the
2174   // bit-field; otherwise, it can be converted to unsigned int if
2175   // unsigned int can represent all the values of the bit-field. If
2176   // the bit-field is larger yet, no integral promotion applies to
2177   // it. If the bit-field has an enumerated type, it is treated as any
2178   // other value of that type for promotion purposes (C++ 4.5p3).
2179   // FIXME: We should delay checking of bit-fields until we actually perform the
2180   // conversion.
2181   //
2182   // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2183   // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2184   // bit-fields and those whose underlying type is larger than int) for GCC
2185   // compatibility.
2186   if (From) {
2187     if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2188       Optional<llvm::APSInt> BitWidth;
2189       if (FromType->isIntegralType(Context) &&
2190           (BitWidth =
2191                MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2192         llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2193         ToSize = Context.getTypeSize(ToType);
2194 
2195         // Are we promoting to an int from a bitfield that fits in an int?
2196         if (*BitWidth < ToSize ||
2197             (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2198           return To->getKind() == BuiltinType::Int;
2199         }
2200 
2201         // Are we promoting to an unsigned int from an unsigned bitfield
2202         // that fits into an unsigned int?
2203         if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2204           return To->getKind() == BuiltinType::UInt;
2205         }
2206 
2207         return false;
2208       }
2209     }
2210   }
2211 
2212   // An rvalue of type bool can be converted to an rvalue of type int,
2213   // with false becoming zero and true becoming one (C++ 4.5p4).
2214   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2215     return true;
2216   }
2217 
2218   return false;
2219 }
2220 
2221 /// IsFloatingPointPromotion - Determines whether the conversion from
2222 /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2223 /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)2224 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2225   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2226     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2227       /// An rvalue of type float can be converted to an rvalue of type
2228       /// double. (C++ 4.6p1).
2229       if (FromBuiltin->getKind() == BuiltinType::Float &&
2230           ToBuiltin->getKind() == BuiltinType::Double)
2231         return true;
2232 
2233       // C99 6.3.1.5p1:
2234       //   When a float is promoted to double or long double, or a
2235       //   double is promoted to long double [...].
2236       if (!getLangOpts().CPlusPlus &&
2237           (FromBuiltin->getKind() == BuiltinType::Float ||
2238            FromBuiltin->getKind() == BuiltinType::Double) &&
2239           (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2240            ToBuiltin->getKind() == BuiltinType::Float128))
2241         return true;
2242 
2243       // Half can be promoted to float.
2244       if (!getLangOpts().NativeHalfType &&
2245            FromBuiltin->getKind() == BuiltinType::Half &&
2246           ToBuiltin->getKind() == BuiltinType::Float)
2247         return true;
2248     }
2249 
2250   return false;
2251 }
2252 
2253 /// Determine if a conversion is a complex promotion.
2254 ///
2255 /// A complex promotion is defined as a complex -> complex conversion
2256 /// where the conversion between the underlying real types is a
2257 /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)2258 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2259   const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2260   if (!FromComplex)
2261     return false;
2262 
2263   const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2264   if (!ToComplex)
2265     return false;
2266 
2267   return IsFloatingPointPromotion(FromComplex->getElementType(),
2268                                   ToComplex->getElementType()) ||
2269     IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2270                         ToComplex->getElementType());
2271 }
2272 
2273 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2274 /// the pointer type FromPtr to a pointer to type ToPointee, with the
2275 /// same type qualifiers as FromPtr has on its pointee type. ToType,
2276 /// if non-empty, will be a pointer to ToType that may or may not have
2277 /// the right set of qualifiers on its pointee.
2278 ///
2279 static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)2280 BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2281                                    QualType ToPointee, QualType ToType,
2282                                    ASTContext &Context,
2283                                    bool StripObjCLifetime = false) {
2284   assert((FromPtr->getTypeClass() == Type::Pointer ||
2285           FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2286          "Invalid similarly-qualified pointer type");
2287 
2288   /// Conversions to 'id' subsume cv-qualifier conversions.
2289   if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2290     return ToType.getUnqualifiedType();
2291 
2292   QualType CanonFromPointee
2293     = Context.getCanonicalType(FromPtr->getPointeeType());
2294   QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2295   Qualifiers Quals = CanonFromPointee.getQualifiers();
2296 
2297   if (StripObjCLifetime)
2298     Quals.removeObjCLifetime();
2299 
2300   // Exact qualifier match -> return the pointer type we're converting to.
2301   if (CanonToPointee.getLocalQualifiers() == Quals) {
2302     // ToType is exactly what we need. Return it.
2303     if (!ToType.isNull())
2304       return ToType.getUnqualifiedType();
2305 
2306     // Build a pointer to ToPointee. It has the right qualifiers
2307     // already.
2308     if (isa<ObjCObjectPointerType>(ToType))
2309       return Context.getObjCObjectPointerType(ToPointee);
2310     return Context.getPointerType(ToPointee);
2311   }
2312 
2313   // Just build a canonical type that has the right qualifiers.
2314   QualType QualifiedCanonToPointee
2315     = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2316 
2317   if (isa<ObjCObjectPointerType>(ToType))
2318     return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2319   return Context.getPointerType(QualifiedCanonToPointee);
2320 }
2321 
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)2322 static bool isNullPointerConstantForConversion(Expr *Expr,
2323                                                bool InOverloadResolution,
2324                                                ASTContext &Context) {
2325   // Handle value-dependent integral null pointer constants correctly.
2326   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2327   if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2328       Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2329     return !InOverloadResolution;
2330 
2331   return Expr->isNullPointerConstant(Context,
2332                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2333                                         : Expr::NPC_ValueDependentIsNull);
2334 }
2335 
2336 /// IsPointerConversion - Determines whether the conversion of the
2337 /// expression From, which has the (possibly adjusted) type FromType,
2338 /// can be converted to the type ToType via a pointer conversion (C++
2339 /// 4.10). If so, returns true and places the converted type (that
2340 /// might differ from ToType in its cv-qualifiers at some level) into
2341 /// ConvertedType.
2342 ///
2343 /// This routine also supports conversions to and from block pointers
2344 /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2345 /// pointers to interfaces. FIXME: Once we've determined the
2346 /// appropriate overloading rules for Objective-C, we may want to
2347 /// split the Objective-C checks into a different routine; however,
2348 /// GCC seems to consider all of these conversions to be pointer
2349 /// conversions, so for now they live here. IncompatibleObjC will be
2350 /// set if the conversion is an allowed Objective-C conversion that
2351 /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)2352 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2353                                bool InOverloadResolution,
2354                                QualType& ConvertedType,
2355                                bool &IncompatibleObjC) {
2356   IncompatibleObjC = false;
2357   if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2358                               IncompatibleObjC))
2359     return true;
2360 
2361   // Conversion from a null pointer constant to any Objective-C pointer type.
2362   if (ToType->isObjCObjectPointerType() &&
2363       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2364     ConvertedType = ToType;
2365     return true;
2366   }
2367 
2368   // Blocks: Block pointers can be converted to void*.
2369   if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2370       ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2371     ConvertedType = ToType;
2372     return true;
2373   }
2374   // Blocks: A null pointer constant can be converted to a block
2375   // pointer type.
2376   if (ToType->isBlockPointerType() &&
2377       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2378     ConvertedType = ToType;
2379     return true;
2380   }
2381 
2382   // If the left-hand-side is nullptr_t, the right side can be a null
2383   // pointer constant.
2384   if (ToType->isNullPtrType() &&
2385       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2386     ConvertedType = ToType;
2387     return true;
2388   }
2389 
2390   const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2391   if (!ToTypePtr)
2392     return false;
2393 
2394   // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2395   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2396     ConvertedType = ToType;
2397     return true;
2398   }
2399 
2400   // Beyond this point, both types need to be pointers
2401   // , including objective-c pointers.
2402   QualType ToPointeeType = ToTypePtr->getPointeeType();
2403   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2404       !getLangOpts().ObjCAutoRefCount) {
2405     ConvertedType = BuildSimilarlyQualifiedPointerType(
2406                                       FromType->getAs<ObjCObjectPointerType>(),
2407                                                        ToPointeeType,
2408                                                        ToType, Context);
2409     return true;
2410   }
2411   const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2412   if (!FromTypePtr)
2413     return false;
2414 
2415   QualType FromPointeeType = FromTypePtr->getPointeeType();
2416 
2417   // If the unqualified pointee types are the same, this can't be a
2418   // pointer conversion, so don't do all of the work below.
2419   if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2420     return false;
2421 
2422   // An rvalue of type "pointer to cv T," where T is an object type,
2423   // can be converted to an rvalue of type "pointer to cv void" (C++
2424   // 4.10p2).
2425   if (FromPointeeType->isIncompleteOrObjectType() &&
2426       ToPointeeType->isVoidType()) {
2427     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2428                                                        ToPointeeType,
2429                                                        ToType, Context,
2430                                                    /*StripObjCLifetime=*/true);
2431     return true;
2432   }
2433 
2434   // MSVC allows implicit function to void* type conversion.
2435   if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2436       ToPointeeType->isVoidType()) {
2437     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2438                                                        ToPointeeType,
2439                                                        ToType, Context);
2440     return true;
2441   }
2442 
2443   // When we're overloading in C, we allow a special kind of pointer
2444   // conversion for compatible-but-not-identical pointee types.
2445   if (!getLangOpts().CPlusPlus &&
2446       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2447     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2448                                                        ToPointeeType,
2449                                                        ToType, Context);
2450     return true;
2451   }
2452 
2453   // C++ [conv.ptr]p3:
2454   //
2455   //   An rvalue of type "pointer to cv D," where D is a class type,
2456   //   can be converted to an rvalue of type "pointer to cv B," where
2457   //   B is a base class (clause 10) of D. If B is an inaccessible
2458   //   (clause 11) or ambiguous (10.2) base class of D, a program that
2459   //   necessitates this conversion is ill-formed. The result of the
2460   //   conversion is a pointer to the base class sub-object of the
2461   //   derived class object. The null pointer value is converted to
2462   //   the null pointer value of the destination type.
2463   //
2464   // Note that we do not check for ambiguity or inaccessibility
2465   // here. That is handled by CheckPointerConversion.
2466   if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2467       ToPointeeType->isRecordType() &&
2468       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2469       IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2470     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2471                                                        ToPointeeType,
2472                                                        ToType, Context);
2473     return true;
2474   }
2475 
2476   if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2477       Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2478     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2479                                                        ToPointeeType,
2480                                                        ToType, Context);
2481     return true;
2482   }
2483 
2484   return false;
2485 }
2486 
2487 /// Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2488 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2489   Qualifiers TQs = T.getQualifiers();
2490 
2491   // Check whether qualifiers already match.
2492   if (TQs == Qs)
2493     return T;
2494 
2495   if (Qs.compatiblyIncludes(TQs))
2496     return Context.getQualifiedType(T, Qs);
2497 
2498   return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2499 }
2500 
2501 /// isObjCPointerConversion - Determines whether this is an
2502 /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2503 /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2504 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2505                                    QualType& ConvertedType,
2506                                    bool &IncompatibleObjC) {
2507   if (!getLangOpts().ObjC)
2508     return false;
2509 
2510   // The set of qualifiers on the type we're converting from.
2511   Qualifiers FromQualifiers = FromType.getQualifiers();
2512 
2513   // First, we handle all conversions on ObjC object pointer types.
2514   const ObjCObjectPointerType* ToObjCPtr =
2515     ToType->getAs<ObjCObjectPointerType>();
2516   const ObjCObjectPointerType *FromObjCPtr =
2517     FromType->getAs<ObjCObjectPointerType>();
2518 
2519   if (ToObjCPtr && FromObjCPtr) {
2520     // If the pointee types are the same (ignoring qualifications),
2521     // then this is not a pointer conversion.
2522     if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2523                                        FromObjCPtr->getPointeeType()))
2524       return false;
2525 
2526     // Conversion between Objective-C pointers.
2527     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2528       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2529       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2530       if (getLangOpts().CPlusPlus && LHS && RHS &&
2531           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2532                                                 FromObjCPtr->getPointeeType()))
2533         return false;
2534       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2535                                                    ToObjCPtr->getPointeeType(),
2536                                                          ToType, Context);
2537       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2538       return true;
2539     }
2540 
2541     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2542       // Okay: this is some kind of implicit downcast of Objective-C
2543       // interfaces, which is permitted. However, we're going to
2544       // complain about it.
2545       IncompatibleObjC = true;
2546       ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2547                                                    ToObjCPtr->getPointeeType(),
2548                                                          ToType, Context);
2549       ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2550       return true;
2551     }
2552   }
2553   // Beyond this point, both types need to be C pointers or block pointers.
2554   QualType ToPointeeType;
2555   if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2556     ToPointeeType = ToCPtr->getPointeeType();
2557   else if (const BlockPointerType *ToBlockPtr =
2558             ToType->getAs<BlockPointerType>()) {
2559     // Objective C++: We're able to convert from a pointer to any object
2560     // to a block pointer type.
2561     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2562       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2563       return true;
2564     }
2565     ToPointeeType = ToBlockPtr->getPointeeType();
2566   }
2567   else if (FromType->getAs<BlockPointerType>() &&
2568            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2569     // Objective C++: We're able to convert from a block pointer type to a
2570     // pointer to any object.
2571     ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2572     return true;
2573   }
2574   else
2575     return false;
2576 
2577   QualType FromPointeeType;
2578   if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2579     FromPointeeType = FromCPtr->getPointeeType();
2580   else if (const BlockPointerType *FromBlockPtr =
2581            FromType->getAs<BlockPointerType>())
2582     FromPointeeType = FromBlockPtr->getPointeeType();
2583   else
2584     return false;
2585 
2586   // If we have pointers to pointers, recursively check whether this
2587   // is an Objective-C conversion.
2588   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2589       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2590                               IncompatibleObjC)) {
2591     // We always complain about this conversion.
2592     IncompatibleObjC = true;
2593     ConvertedType = Context.getPointerType(ConvertedType);
2594     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2595     return true;
2596   }
2597   // Allow conversion of pointee being objective-c pointer to another one;
2598   // as in I* to id.
2599   if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2600       ToPointeeType->getAs<ObjCObjectPointerType>() &&
2601       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2602                               IncompatibleObjC)) {
2603 
2604     ConvertedType = Context.getPointerType(ConvertedType);
2605     ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2606     return true;
2607   }
2608 
2609   // If we have pointers to functions or blocks, check whether the only
2610   // differences in the argument and result types are in Objective-C
2611   // pointer conversions. If so, we permit the conversion (but
2612   // complain about it).
2613   const FunctionProtoType *FromFunctionType
2614     = FromPointeeType->getAs<FunctionProtoType>();
2615   const FunctionProtoType *ToFunctionType
2616     = ToPointeeType->getAs<FunctionProtoType>();
2617   if (FromFunctionType && ToFunctionType) {
2618     // If the function types are exactly the same, this isn't an
2619     // Objective-C pointer conversion.
2620     if (Context.getCanonicalType(FromPointeeType)
2621           == Context.getCanonicalType(ToPointeeType))
2622       return false;
2623 
2624     // Perform the quick checks that will tell us whether these
2625     // function types are obviously different.
2626     if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2627         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2628         FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2629       return false;
2630 
2631     bool HasObjCConversion = false;
2632     if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2633         Context.getCanonicalType(ToFunctionType->getReturnType())) {
2634       // Okay, the types match exactly. Nothing to do.
2635     } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2636                                        ToFunctionType->getReturnType(),
2637                                        ConvertedType, IncompatibleObjC)) {
2638       // Okay, we have an Objective-C pointer conversion.
2639       HasObjCConversion = true;
2640     } else {
2641       // Function types are too different. Abort.
2642       return false;
2643     }
2644 
2645     // Check argument types.
2646     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2647          ArgIdx != NumArgs; ++ArgIdx) {
2648       QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2649       QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2650       if (Context.getCanonicalType(FromArgType)
2651             == Context.getCanonicalType(ToArgType)) {
2652         // Okay, the types match exactly. Nothing to do.
2653       } else if (isObjCPointerConversion(FromArgType, ToArgType,
2654                                          ConvertedType, IncompatibleObjC)) {
2655         // Okay, we have an Objective-C pointer conversion.
2656         HasObjCConversion = true;
2657       } else {
2658         // Argument types are too different. Abort.
2659         return false;
2660       }
2661     }
2662 
2663     if (HasObjCConversion) {
2664       // We had an Objective-C conversion. Allow this pointer
2665       // conversion, but complain about it.
2666       ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2667       IncompatibleObjC = true;
2668       return true;
2669     }
2670   }
2671 
2672   return false;
2673 }
2674 
2675 /// Determine whether this is an Objective-C writeback conversion,
2676 /// used for parameter passing when performing automatic reference counting.
2677 ///
2678 /// \param FromType The type we're converting form.
2679 ///
2680 /// \param ToType The type we're converting to.
2681 ///
2682 /// \param ConvertedType The type that will be produced after applying
2683 /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2684 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2685                                      QualType &ConvertedType) {
2686   if (!getLangOpts().ObjCAutoRefCount ||
2687       Context.hasSameUnqualifiedType(FromType, ToType))
2688     return false;
2689 
2690   // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2691   QualType ToPointee;
2692   if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2693     ToPointee = ToPointer->getPointeeType();
2694   else
2695     return false;
2696 
2697   Qualifiers ToQuals = ToPointee.getQualifiers();
2698   if (!ToPointee->isObjCLifetimeType() ||
2699       ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2700       !ToQuals.withoutObjCLifetime().empty())
2701     return false;
2702 
2703   // Argument must be a pointer to __strong to __weak.
2704   QualType FromPointee;
2705   if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2706     FromPointee = FromPointer->getPointeeType();
2707   else
2708     return false;
2709 
2710   Qualifiers FromQuals = FromPointee.getQualifiers();
2711   if (!FromPointee->isObjCLifetimeType() ||
2712       (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2713        FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2714     return false;
2715 
2716   // Make sure that we have compatible qualifiers.
2717   FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2718   if (!ToQuals.compatiblyIncludes(FromQuals))
2719     return false;
2720 
2721   // Remove qualifiers from the pointee type we're converting from; they
2722   // aren't used in the compatibility check belong, and we'll be adding back
2723   // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2724   FromPointee = FromPointee.getUnqualifiedType();
2725 
2726   // The unqualified form of the pointee types must be compatible.
2727   ToPointee = ToPointee.getUnqualifiedType();
2728   bool IncompatibleObjC;
2729   if (Context.typesAreCompatible(FromPointee, ToPointee))
2730     FromPointee = ToPointee;
2731   else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2732                                     IncompatibleObjC))
2733     return false;
2734 
2735   /// Construct the type we're converting to, which is a pointer to
2736   /// __autoreleasing pointee.
2737   FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2738   ConvertedType = Context.getPointerType(FromPointee);
2739   return true;
2740 }
2741 
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2742 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2743                                     QualType& ConvertedType) {
2744   QualType ToPointeeType;
2745   if (const BlockPointerType *ToBlockPtr =
2746         ToType->getAs<BlockPointerType>())
2747     ToPointeeType = ToBlockPtr->getPointeeType();
2748   else
2749     return false;
2750 
2751   QualType FromPointeeType;
2752   if (const BlockPointerType *FromBlockPtr =
2753       FromType->getAs<BlockPointerType>())
2754     FromPointeeType = FromBlockPtr->getPointeeType();
2755   else
2756     return false;
2757   // We have pointer to blocks, check whether the only
2758   // differences in the argument and result types are in Objective-C
2759   // pointer conversions. If so, we permit the conversion.
2760 
2761   const FunctionProtoType *FromFunctionType
2762     = FromPointeeType->getAs<FunctionProtoType>();
2763   const FunctionProtoType *ToFunctionType
2764     = ToPointeeType->getAs<FunctionProtoType>();
2765 
2766   if (!FromFunctionType || !ToFunctionType)
2767     return false;
2768 
2769   if (Context.hasSameType(FromPointeeType, ToPointeeType))
2770     return true;
2771 
2772   // Perform the quick checks that will tell us whether these
2773   // function types are obviously different.
2774   if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2775       FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2776     return false;
2777 
2778   FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2779   FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2780   if (FromEInfo != ToEInfo)
2781     return false;
2782 
2783   bool IncompatibleObjC = false;
2784   if (Context.hasSameType(FromFunctionType->getReturnType(),
2785                           ToFunctionType->getReturnType())) {
2786     // Okay, the types match exactly. Nothing to do.
2787   } else {
2788     QualType RHS = FromFunctionType->getReturnType();
2789     QualType LHS = ToFunctionType->getReturnType();
2790     if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2791         !RHS.hasQualifiers() && LHS.hasQualifiers())
2792        LHS = LHS.getUnqualifiedType();
2793 
2794      if (Context.hasSameType(RHS,LHS)) {
2795        // OK exact match.
2796      } else if (isObjCPointerConversion(RHS, LHS,
2797                                         ConvertedType, IncompatibleObjC)) {
2798      if (IncompatibleObjC)
2799        return false;
2800      // Okay, we have an Objective-C pointer conversion.
2801      }
2802      else
2803        return false;
2804    }
2805 
2806    // Check argument types.
2807    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2808         ArgIdx != NumArgs; ++ArgIdx) {
2809      IncompatibleObjC = false;
2810      QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2811      QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2812      if (Context.hasSameType(FromArgType, ToArgType)) {
2813        // Okay, the types match exactly. Nothing to do.
2814      } else if (isObjCPointerConversion(ToArgType, FromArgType,
2815                                         ConvertedType, IncompatibleObjC)) {
2816        if (IncompatibleObjC)
2817          return false;
2818        // Okay, we have an Objective-C pointer conversion.
2819      } else
2820        // Argument types are too different. Abort.
2821        return false;
2822    }
2823 
2824    SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2825    bool CanUseToFPT, CanUseFromFPT;
2826    if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2827                                       CanUseToFPT, CanUseFromFPT,
2828                                       NewParamInfos))
2829      return false;
2830 
2831    ConvertedType = ToType;
2832    return true;
2833 }
2834 
2835 enum {
2836   ft_default,
2837   ft_different_class,
2838   ft_parameter_arity,
2839   ft_parameter_mismatch,
2840   ft_return_type,
2841   ft_qualifer_mismatch,
2842   ft_noexcept
2843 };
2844 
2845 /// Attempts to get the FunctionProtoType from a Type. Handles
2846 /// MemberFunctionPointers properly.
tryGetFunctionProtoType(QualType FromType)2847 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2848   if (auto *FPT = FromType->getAs<FunctionProtoType>())
2849     return FPT;
2850 
2851   if (auto *MPT = FromType->getAs<MemberPointerType>())
2852     return MPT->getPointeeType()->getAs<FunctionProtoType>();
2853 
2854   return nullptr;
2855 }
2856 
2857 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2858 /// function types.  Catches different number of parameter, mismatch in
2859 /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2860 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2861                                       QualType FromType, QualType ToType) {
2862   // If either type is not valid, include no extra info.
2863   if (FromType.isNull() || ToType.isNull()) {
2864     PDiag << ft_default;
2865     return;
2866   }
2867 
2868   // Get the function type from the pointers.
2869   if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2870     const auto *FromMember = FromType->castAs<MemberPointerType>(),
2871                *ToMember = ToType->castAs<MemberPointerType>();
2872     if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2873       PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2874             << QualType(FromMember->getClass(), 0);
2875       return;
2876     }
2877     FromType = FromMember->getPointeeType();
2878     ToType = ToMember->getPointeeType();
2879   }
2880 
2881   if (FromType->isPointerType())
2882     FromType = FromType->getPointeeType();
2883   if (ToType->isPointerType())
2884     ToType = ToType->getPointeeType();
2885 
2886   // Remove references.
2887   FromType = FromType.getNonReferenceType();
2888   ToType = ToType.getNonReferenceType();
2889 
2890   // Don't print extra info for non-specialized template functions.
2891   if (FromType->isInstantiationDependentType() &&
2892       !FromType->getAs<TemplateSpecializationType>()) {
2893     PDiag << ft_default;
2894     return;
2895   }
2896 
2897   // No extra info for same types.
2898   if (Context.hasSameType(FromType, ToType)) {
2899     PDiag << ft_default;
2900     return;
2901   }
2902 
2903   const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2904                           *ToFunction = tryGetFunctionProtoType(ToType);
2905 
2906   // Both types need to be function types.
2907   if (!FromFunction || !ToFunction) {
2908     PDiag << ft_default;
2909     return;
2910   }
2911 
2912   if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2913     PDiag << ft_parameter_arity << ToFunction->getNumParams()
2914           << FromFunction->getNumParams();
2915     return;
2916   }
2917 
2918   // Handle different parameter types.
2919   unsigned ArgPos;
2920   if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2921     PDiag << ft_parameter_mismatch << ArgPos + 1
2922           << ToFunction->getParamType(ArgPos)
2923           << FromFunction->getParamType(ArgPos);
2924     return;
2925   }
2926 
2927   // Handle different return type.
2928   if (!Context.hasSameType(FromFunction->getReturnType(),
2929                            ToFunction->getReturnType())) {
2930     PDiag << ft_return_type << ToFunction->getReturnType()
2931           << FromFunction->getReturnType();
2932     return;
2933   }
2934 
2935   if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2936     PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2937           << FromFunction->getMethodQuals();
2938     return;
2939   }
2940 
2941   // Handle exception specification differences on canonical type (in C++17
2942   // onwards).
2943   if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2944           ->isNothrow() !=
2945       cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2946           ->isNothrow()) {
2947     PDiag << ft_noexcept;
2948     return;
2949   }
2950 
2951   // Unable to find a difference, so add no extra info.
2952   PDiag << ft_default;
2953 }
2954 
2955 /// FunctionParamTypesAreEqual - This routine checks two function proto types
2956 /// for equality of their argument types. Caller has already checked that
2957 /// they have same number of arguments.  If the parameters are different,
2958 /// ArgPos will have the parameter index of the first different parameter.
FunctionParamTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos)2959 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2960                                       const FunctionProtoType *NewType,
2961                                       unsigned *ArgPos) {
2962   for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2963                                               N = NewType->param_type_begin(),
2964                                               E = OldType->param_type_end();
2965        O && (O != E); ++O, ++N) {
2966     // Ignore address spaces in pointee type. This is to disallow overloading
2967     // on __ptr32/__ptr64 address spaces.
2968     QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2969     QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2970 
2971     if (!Context.hasSameType(Old, New)) {
2972       if (ArgPos)
2973         *ArgPos = O - OldType->param_type_begin();
2974       return false;
2975     }
2976   }
2977   return true;
2978 }
2979 
2980 /// CheckPointerConversion - Check the pointer conversion from the
2981 /// expression From to the type ToType. This routine checks for
2982 /// ambiguous or inaccessible derived-to-base pointer
2983 /// conversions for which IsPointerConversion has already returned
2984 /// true. It returns true and produces a diagnostic if there was an
2985 /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess,bool Diagnose)2986 bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2987                                   CastKind &Kind,
2988                                   CXXCastPath& BasePath,
2989                                   bool IgnoreBaseAccess,
2990                                   bool Diagnose) {
2991   QualType FromType = From->getType();
2992   bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2993 
2994   Kind = CK_BitCast;
2995 
2996   if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2997       From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2998           Expr::NPCK_ZeroExpression) {
2999     if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
3000       DiagRuntimeBehavior(From->getExprLoc(), From,
3001                           PDiag(diag::warn_impcast_bool_to_null_pointer)
3002                             << ToType << From->getSourceRange());
3003     else if (!isUnevaluatedContext())
3004       Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3005         << ToType << From->getSourceRange();
3006   }
3007   if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3008     if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3009       QualType FromPointeeType = FromPtrType->getPointeeType(),
3010                ToPointeeType   = ToPtrType->getPointeeType();
3011 
3012       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3013           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3014         // We must have a derived-to-base conversion. Check an
3015         // ambiguous or inaccessible conversion.
3016         unsigned InaccessibleID = 0;
3017         unsigned AmbiguousID = 0;
3018         if (Diagnose) {
3019           InaccessibleID = diag::err_upcast_to_inaccessible_base;
3020           AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3021         }
3022         if (CheckDerivedToBaseConversion(
3023                 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3024                 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3025                 &BasePath, IgnoreBaseAccess))
3026           return true;
3027 
3028         // The conversion was successful.
3029         Kind = CK_DerivedToBase;
3030       }
3031 
3032       if (Diagnose && !IsCStyleOrFunctionalCast &&
3033           FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3034         assert(getLangOpts().MSVCCompat &&
3035                "this should only be possible with MSVCCompat!");
3036         Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3037             << From->getSourceRange();
3038       }
3039     }
3040   } else if (const ObjCObjectPointerType *ToPtrType =
3041                ToType->getAs<ObjCObjectPointerType>()) {
3042     if (const ObjCObjectPointerType *FromPtrType =
3043           FromType->getAs<ObjCObjectPointerType>()) {
3044       // Objective-C++ conversions are always okay.
3045       // FIXME: We should have a different class of conversions for the
3046       // Objective-C++ implicit conversions.
3047       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3048         return false;
3049     } else if (FromType->isBlockPointerType()) {
3050       Kind = CK_BlockPointerToObjCPointerCast;
3051     } else {
3052       Kind = CK_CPointerToObjCPointerCast;
3053     }
3054   } else if (ToType->isBlockPointerType()) {
3055     if (!FromType->isBlockPointerType())
3056       Kind = CK_AnyPointerToBlockPointerCast;
3057   }
3058 
3059   // We shouldn't fall into this case unless it's valid for other
3060   // reasons.
3061   if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3062     Kind = CK_NullToPointer;
3063 
3064   return false;
3065 }
3066 
3067 /// IsMemberPointerConversion - Determines whether the conversion of the
3068 /// expression From, which has the (possibly adjusted) type FromType, can be
3069 /// converted to the type ToType via a member pointer conversion (C++ 4.11).
3070 /// If so, returns true and places the converted type (that might differ from
3071 /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)3072 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3073                                      QualType ToType,
3074                                      bool InOverloadResolution,
3075                                      QualType &ConvertedType) {
3076   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3077   if (!ToTypePtr)
3078     return false;
3079 
3080   // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3081   if (From->isNullPointerConstant(Context,
3082                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3083                                         : Expr::NPC_ValueDependentIsNull)) {
3084     ConvertedType = ToType;
3085     return true;
3086   }
3087 
3088   // Otherwise, both types have to be member pointers.
3089   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3090   if (!FromTypePtr)
3091     return false;
3092 
3093   // A pointer to member of B can be converted to a pointer to member of D,
3094   // where D is derived from B (C++ 4.11p2).
3095   QualType FromClass(FromTypePtr->getClass(), 0);
3096   QualType ToClass(ToTypePtr->getClass(), 0);
3097 
3098   if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3099       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3100     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3101                                                  ToClass.getTypePtr());
3102     return true;
3103   }
3104 
3105   return false;
3106 }
3107 
3108 /// CheckMemberPointerConversion - Check the member pointer conversion from the
3109 /// expression From to the type ToType. This routine checks for ambiguous or
3110 /// virtual or inaccessible base-to-derived member pointer conversions
3111 /// for which IsMemberPointerConversion has already returned true. It returns
3112 /// true and produces a diagnostic if there was an error, or returns false
3113 /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)3114 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3115                                         CastKind &Kind,
3116                                         CXXCastPath &BasePath,
3117                                         bool IgnoreBaseAccess) {
3118   QualType FromType = From->getType();
3119   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3120   if (!FromPtrType) {
3121     // This must be a null pointer to member pointer conversion
3122     assert(From->isNullPointerConstant(Context,
3123                                        Expr::NPC_ValueDependentIsNull) &&
3124            "Expr must be null pointer constant!");
3125     Kind = CK_NullToMemberPointer;
3126     return false;
3127   }
3128 
3129   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3130   assert(ToPtrType && "No member pointer cast has a target type "
3131                       "that is not a member pointer.");
3132 
3133   QualType FromClass = QualType(FromPtrType->getClass(), 0);
3134   QualType ToClass   = QualType(ToPtrType->getClass(), 0);
3135 
3136   // FIXME: What about dependent types?
3137   assert(FromClass->isRecordType() && "Pointer into non-class.");
3138   assert(ToClass->isRecordType() && "Pointer into non-class.");
3139 
3140   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3141                      /*DetectVirtual=*/true);
3142   bool DerivationOkay =
3143       IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3144   assert(DerivationOkay &&
3145          "Should not have been called if derivation isn't OK.");
3146   (void)DerivationOkay;
3147 
3148   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3149                                   getUnqualifiedType())) {
3150     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3151     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3152       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3153     return true;
3154   }
3155 
3156   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3157     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3158       << FromClass << ToClass << QualType(VBase, 0)
3159       << From->getSourceRange();
3160     return true;
3161   }
3162 
3163   if (!IgnoreBaseAccess)
3164     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3165                          Paths.front(),
3166                          diag::err_downcast_from_inaccessible_base);
3167 
3168   // Must be a base to derived member conversion.
3169   BuildBasePathArray(Paths, BasePath);
3170   Kind = CK_BaseToDerivedMemberPointer;
3171   return false;
3172 }
3173 
3174 /// Determine whether the lifetime conversion between the two given
3175 /// qualifiers sets is nontrivial.
isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,Qualifiers ToQuals)3176 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3177                                                Qualifiers ToQuals) {
3178   // Converting anything to const __unsafe_unretained is trivial.
3179   if (ToQuals.hasConst() &&
3180       ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3181     return false;
3182 
3183   return true;
3184 }
3185 
3186 /// Perform a single iteration of the loop for checking if a qualification
3187 /// conversion is valid.
3188 ///
3189 /// Specifically, check whether any change between the qualifiers of \p
3190 /// FromType and \p ToType is permissible, given knowledge about whether every
3191 /// outer layer is const-qualified.
isQualificationConversionStep(QualType FromType,QualType ToType,bool CStyle,bool IsTopLevel,bool & PreviousToQualsIncludeConst,bool & ObjCLifetimeConversion)3192 static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3193                                           bool CStyle, bool IsTopLevel,
3194                                           bool &PreviousToQualsIncludeConst,
3195                                           bool &ObjCLifetimeConversion) {
3196   Qualifiers FromQuals = FromType.getQualifiers();
3197   Qualifiers ToQuals = ToType.getQualifiers();
3198 
3199   // Ignore __unaligned qualifier if this type is void.
3200   if (ToType.getUnqualifiedType()->isVoidType())
3201     FromQuals.removeUnaligned();
3202 
3203   // Objective-C ARC:
3204   //   Check Objective-C lifetime conversions.
3205   if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3206     if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3207       if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3208         ObjCLifetimeConversion = true;
3209       FromQuals.removeObjCLifetime();
3210       ToQuals.removeObjCLifetime();
3211     } else {
3212       // Qualification conversions cannot cast between different
3213       // Objective-C lifetime qualifiers.
3214       return false;
3215     }
3216   }
3217 
3218   // Allow addition/removal of GC attributes but not changing GC attributes.
3219   if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3220       (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3221     FromQuals.removeObjCGCAttr();
3222     ToQuals.removeObjCGCAttr();
3223   }
3224 
3225   //   -- for every j > 0, if const is in cv 1,j then const is in cv
3226   //      2,j, and similarly for volatile.
3227   if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3228     return false;
3229 
3230   // If address spaces mismatch:
3231   //  - in top level it is only valid to convert to addr space that is a
3232   //    superset in all cases apart from C-style casts where we allow
3233   //    conversions between overlapping address spaces.
3234   //  - in non-top levels it is not a valid conversion.
3235   if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3236       (!IsTopLevel ||
3237        !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3238          (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3239     return false;
3240 
3241   //   -- if the cv 1,j and cv 2,j are different, then const is in
3242   //      every cv for 0 < k < j.
3243   if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3244       !PreviousToQualsIncludeConst)
3245     return false;
3246 
3247   // Keep track of whether all prior cv-qualifiers in the "to" type
3248   // include const.
3249   PreviousToQualsIncludeConst =
3250       PreviousToQualsIncludeConst && ToQuals.hasConst();
3251   return true;
3252 }
3253 
3254 /// IsQualificationConversion - Determines whether the conversion from
3255 /// an rvalue of type FromType to ToType is a qualification conversion
3256 /// (C++ 4.4).
3257 ///
3258 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3259 /// when the qualification conversion involves a change in the Objective-C
3260 /// object lifetime.
3261 bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)3262 Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3263                                 bool CStyle, bool &ObjCLifetimeConversion) {
3264   FromType = Context.getCanonicalType(FromType);
3265   ToType = Context.getCanonicalType(ToType);
3266   ObjCLifetimeConversion = false;
3267 
3268   // If FromType and ToType are the same type, this is not a
3269   // qualification conversion.
3270   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3271     return false;
3272 
3273   // (C++ 4.4p4):
3274   //   A conversion can add cv-qualifiers at levels other than the first
3275   //   in multi-level pointers, subject to the following rules: [...]
3276   bool PreviousToQualsIncludeConst = true;
3277   bool UnwrappedAnyPointer = false;
3278   while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3279     if (!isQualificationConversionStep(
3280             FromType, ToType, CStyle, !UnwrappedAnyPointer,
3281             PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3282       return false;
3283     UnwrappedAnyPointer = true;
3284   }
3285 
3286   // We are left with FromType and ToType being the pointee types
3287   // after unwrapping the original FromType and ToType the same number
3288   // of times. If we unwrapped any pointers, and if FromType and
3289   // ToType have the same unqualified type (since we checked
3290   // qualifiers above), then this is a qualification conversion.
3291   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3292 }
3293 
3294 /// - Determine whether this is a conversion from a scalar type to an
3295 /// atomic type.
3296 ///
3297 /// If successful, updates \c SCS's second and third steps in the conversion
3298 /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)3299 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3300                                 bool InOverloadResolution,
3301                                 StandardConversionSequence &SCS,
3302                                 bool CStyle) {
3303   const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3304   if (!ToAtomic)
3305     return false;
3306 
3307   StandardConversionSequence InnerSCS;
3308   if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3309                             InOverloadResolution, InnerSCS,
3310                             CStyle, /*AllowObjCWritebackConversion=*/false))
3311     return false;
3312 
3313   SCS.Second = InnerSCS.Second;
3314   SCS.setToType(1, InnerSCS.getToType(1));
3315   SCS.Third = InnerSCS.Third;
3316   SCS.QualificationIncludesObjCLifetime
3317     = InnerSCS.QualificationIncludesObjCLifetime;
3318   SCS.setToType(2, InnerSCS.getToType(2));
3319   return true;
3320 }
3321 
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)3322 static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3323                                               CXXConstructorDecl *Constructor,
3324                                               QualType Type) {
3325   const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3326   if (CtorType->getNumParams() > 0) {
3327     QualType FirstArg = CtorType->getParamType(0);
3328     if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3329       return true;
3330   }
3331   return false;
3332 }
3333 
3334 static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)3335 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3336                                        CXXRecordDecl *To,
3337                                        UserDefinedConversionSequence &User,
3338                                        OverloadCandidateSet &CandidateSet,
3339                                        bool AllowExplicit) {
3340   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3341   for (auto *D : S.LookupConstructors(To)) {
3342     auto Info = getConstructorInfo(D);
3343     if (!Info)
3344       continue;
3345 
3346     bool Usable = !Info.Constructor->isInvalidDecl() &&
3347                   S.isInitListConstructor(Info.Constructor);
3348     if (Usable) {
3349       bool SuppressUserConversions = false;
3350       if (Info.ConstructorTmpl)
3351         S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3352                                        /*ExplicitArgs*/ nullptr, From,
3353                                        CandidateSet, SuppressUserConversions,
3354                                        /*PartialOverloading*/ false,
3355                                        AllowExplicit);
3356       else
3357         S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3358                                CandidateSet, SuppressUserConversions,
3359                                /*PartialOverloading*/ false, AllowExplicit);
3360     }
3361   }
3362 
3363   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3364 
3365   OverloadCandidateSet::iterator Best;
3366   switch (auto Result =
3367               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3368   case OR_Deleted:
3369   case OR_Success: {
3370     // Record the standard conversion we used and the conversion function.
3371     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3372     QualType ThisType = Constructor->getThisType();
3373     // Initializer lists don't have conversions as such.
3374     User.Before.setAsIdentityConversion();
3375     User.HadMultipleCandidates = HadMultipleCandidates;
3376     User.ConversionFunction = Constructor;
3377     User.FoundConversionFunction = Best->FoundDecl;
3378     User.After.setAsIdentityConversion();
3379     User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3380     User.After.setAllToTypes(ToType);
3381     return Result;
3382   }
3383 
3384   case OR_No_Viable_Function:
3385     return OR_No_Viable_Function;
3386   case OR_Ambiguous:
3387     return OR_Ambiguous;
3388   }
3389 
3390   llvm_unreachable("Invalid OverloadResult!");
3391 }
3392 
3393 /// Determines whether there is a user-defined conversion sequence
3394 /// (C++ [over.ics.user]) that converts expression From to the type
3395 /// ToType. If such a conversion exists, User will contain the
3396 /// user-defined conversion sequence that performs such a conversion
3397 /// and this routine will return true. Otherwise, this routine returns
3398 /// false and User is unspecified.
3399 ///
3400 /// \param AllowExplicit  true if the conversion should consider C++0x
3401 /// "explicit" conversion functions as well as non-explicit conversion
3402 /// functions (C++0x [class.conv.fct]p2).
3403 ///
3404 /// \param AllowObjCConversionOnExplicit true if the conversion should
3405 /// allow an extra Objective-C pointer conversion on uses of explicit
3406 /// constructors. Requires \c AllowExplicit to also be set.
3407 static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,AllowedExplicit AllowExplicit,bool AllowObjCConversionOnExplicit)3408 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3409                         UserDefinedConversionSequence &User,
3410                         OverloadCandidateSet &CandidateSet,
3411                         AllowedExplicit AllowExplicit,
3412                         bool AllowObjCConversionOnExplicit) {
3413   assert(AllowExplicit != AllowedExplicit::None ||
3414          !AllowObjCConversionOnExplicit);
3415   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3416 
3417   // Whether we will only visit constructors.
3418   bool ConstructorsOnly = false;
3419 
3420   // If the type we are conversion to is a class type, enumerate its
3421   // constructors.
3422   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3423     // C++ [over.match.ctor]p1:
3424     //   When objects of class type are direct-initialized (8.5), or
3425     //   copy-initialized from an expression of the same or a
3426     //   derived class type (8.5), overload resolution selects the
3427     //   constructor. [...] For copy-initialization, the candidate
3428     //   functions are all the converting constructors (12.3.1) of
3429     //   that class. The argument list is the expression-list within
3430     //   the parentheses of the initializer.
3431     if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3432         (From->getType()->getAs<RecordType>() &&
3433          S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3434       ConstructorsOnly = true;
3435 
3436     if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3437       // We're not going to find any constructors.
3438     } else if (CXXRecordDecl *ToRecordDecl
3439                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3440 
3441       Expr **Args = &From;
3442       unsigned NumArgs = 1;
3443       bool ListInitializing = false;
3444       if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3445         // But first, see if there is an init-list-constructor that will work.
3446         OverloadingResult Result = IsInitializerListConstructorConversion(
3447             S, From, ToType, ToRecordDecl, User, CandidateSet,
3448             AllowExplicit == AllowedExplicit::All);
3449         if (Result != OR_No_Viable_Function)
3450           return Result;
3451         // Never mind.
3452         CandidateSet.clear(
3453             OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3454 
3455         // If we're list-initializing, we pass the individual elements as
3456         // arguments, not the entire list.
3457         Args = InitList->getInits();
3458         NumArgs = InitList->getNumInits();
3459         ListInitializing = true;
3460       }
3461 
3462       for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3463         auto Info = getConstructorInfo(D);
3464         if (!Info)
3465           continue;
3466 
3467         bool Usable = !Info.Constructor->isInvalidDecl();
3468         if (!ListInitializing)
3469           Usable = Usable && Info.Constructor->isConvertingConstructor(
3470                                  /*AllowExplicit*/ true);
3471         if (Usable) {
3472           bool SuppressUserConversions = !ConstructorsOnly;
3473           // C++20 [over.best.ics.general]/4.5:
3474           //   if the target is the first parameter of a constructor [of class
3475           //   X] and the constructor [...] is a candidate by [...] the second
3476           //   phase of [over.match.list] when the initializer list has exactly
3477           //   one element that is itself an initializer list, [...] and the
3478           //   conversion is to X or reference to cv X, user-defined conversion
3479           //   sequences are not cnosidered.
3480           if (SuppressUserConversions && ListInitializing) {
3481             SuppressUserConversions =
3482                 NumArgs == 1 && isa<InitListExpr>(Args[0]) &&
3483                 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor,
3484                                                   ToType);
3485           }
3486           if (Info.ConstructorTmpl)
3487             S.AddTemplateOverloadCandidate(
3488                 Info.ConstructorTmpl, Info.FoundDecl,
3489                 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3490                 CandidateSet, SuppressUserConversions,
3491                 /*PartialOverloading*/ false,
3492                 AllowExplicit == AllowedExplicit::All);
3493           else
3494             // Allow one user-defined conversion when user specifies a
3495             // From->ToType conversion via an static cast (c-style, etc).
3496             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3497                                    llvm::makeArrayRef(Args, NumArgs),
3498                                    CandidateSet, SuppressUserConversions,
3499                                    /*PartialOverloading*/ false,
3500                                    AllowExplicit == AllowedExplicit::All);
3501         }
3502       }
3503     }
3504   }
3505 
3506   // Enumerate conversion functions, if we're allowed to.
3507   if (ConstructorsOnly || isa<InitListExpr>(From)) {
3508   } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3509     // No conversion functions from incomplete types.
3510   } else if (const RecordType *FromRecordType =
3511                  From->getType()->getAs<RecordType>()) {
3512     if (CXXRecordDecl *FromRecordDecl
3513          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3514       // Add all of the conversion functions as candidates.
3515       const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3516       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3517         DeclAccessPair FoundDecl = I.getPair();
3518         NamedDecl *D = FoundDecl.getDecl();
3519         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3520         if (isa<UsingShadowDecl>(D))
3521           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3522 
3523         CXXConversionDecl *Conv;
3524         FunctionTemplateDecl *ConvTemplate;
3525         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3526           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3527         else
3528           Conv = cast<CXXConversionDecl>(D);
3529 
3530         if (ConvTemplate)
3531           S.AddTemplateConversionCandidate(
3532               ConvTemplate, FoundDecl, ActingContext, From, ToType,
3533               CandidateSet, AllowObjCConversionOnExplicit,
3534               AllowExplicit != AllowedExplicit::None);
3535         else
3536           S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3537                                    CandidateSet, AllowObjCConversionOnExplicit,
3538                                    AllowExplicit != AllowedExplicit::None);
3539       }
3540     }
3541   }
3542 
3543   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3544 
3545   OverloadCandidateSet::iterator Best;
3546   switch (auto Result =
3547               CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3548   case OR_Success:
3549   case OR_Deleted:
3550     // Record the standard conversion we used and the conversion function.
3551     if (CXXConstructorDecl *Constructor
3552           = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3553       // C++ [over.ics.user]p1:
3554       //   If the user-defined conversion is specified by a
3555       //   constructor (12.3.1), the initial standard conversion
3556       //   sequence converts the source type to the type required by
3557       //   the argument of the constructor.
3558       //
3559       QualType ThisType = Constructor->getThisType();
3560       if (isa<InitListExpr>(From)) {
3561         // Initializer lists don't have conversions as such.
3562         User.Before.setAsIdentityConversion();
3563       } else {
3564         if (Best->Conversions[0].isEllipsis())
3565           User.EllipsisConversion = true;
3566         else {
3567           User.Before = Best->Conversions[0].Standard;
3568           User.EllipsisConversion = false;
3569         }
3570       }
3571       User.HadMultipleCandidates = HadMultipleCandidates;
3572       User.ConversionFunction = Constructor;
3573       User.FoundConversionFunction = Best->FoundDecl;
3574       User.After.setAsIdentityConversion();
3575       User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3576       User.After.setAllToTypes(ToType);
3577       return Result;
3578     }
3579     if (CXXConversionDecl *Conversion
3580                  = dyn_cast<CXXConversionDecl>(Best->Function)) {
3581       // C++ [over.ics.user]p1:
3582       //
3583       //   [...] If the user-defined conversion is specified by a
3584       //   conversion function (12.3.2), the initial standard
3585       //   conversion sequence converts the source type to the
3586       //   implicit object parameter of the conversion function.
3587       User.Before = Best->Conversions[0].Standard;
3588       User.HadMultipleCandidates = HadMultipleCandidates;
3589       User.ConversionFunction = Conversion;
3590       User.FoundConversionFunction = Best->FoundDecl;
3591       User.EllipsisConversion = false;
3592 
3593       // C++ [over.ics.user]p2:
3594       //   The second standard conversion sequence converts the
3595       //   result of the user-defined conversion to the target type
3596       //   for the sequence. Since an implicit conversion sequence
3597       //   is an initialization, the special rules for
3598       //   initialization by user-defined conversion apply when
3599       //   selecting the best user-defined conversion for a
3600       //   user-defined conversion sequence (see 13.3.3 and
3601       //   13.3.3.1).
3602       User.After = Best->FinalConversion;
3603       return Result;
3604     }
3605     llvm_unreachable("Not a constructor or conversion function?");
3606 
3607   case OR_No_Viable_Function:
3608     return OR_No_Viable_Function;
3609 
3610   case OR_Ambiguous:
3611     return OR_Ambiguous;
3612   }
3613 
3614   llvm_unreachable("Invalid OverloadResult!");
3615 }
3616 
3617 bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3618 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3619   ImplicitConversionSequence ICS;
3620   OverloadCandidateSet CandidateSet(From->getExprLoc(),
3621                                     OverloadCandidateSet::CSK_Normal);
3622   OverloadingResult OvResult =
3623     IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3624                             CandidateSet, AllowedExplicit::None, false);
3625 
3626   if (!(OvResult == OR_Ambiguous ||
3627         (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3628     return false;
3629 
3630   auto Cands = CandidateSet.CompleteCandidates(
3631       *this,
3632       OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3633       From);
3634   if (OvResult == OR_Ambiguous)
3635     Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3636         << From->getType() << ToType << From->getSourceRange();
3637   else { // OR_No_Viable_Function && !CandidateSet.empty()
3638     if (!RequireCompleteType(From->getBeginLoc(), ToType,
3639                              diag::err_typecheck_nonviable_condition_incomplete,
3640                              From->getType(), From->getSourceRange()))
3641       Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3642           << false << From->getType() << From->getSourceRange() << ToType;
3643   }
3644 
3645   CandidateSet.NoteCandidates(
3646                               *this, From, Cands);
3647   return true;
3648 }
3649 
3650 // Helper for compareConversionFunctions that gets the FunctionType that the
3651 // conversion-operator return  value 'points' to, or nullptr.
3652 static const FunctionType *
getConversionOpReturnTyAsFunction(CXXConversionDecl * Conv)3653 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3654   const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3655   const PointerType *RetPtrTy =
3656       ConvFuncTy->getReturnType()->getAs<PointerType>();
3657 
3658   if (!RetPtrTy)
3659     return nullptr;
3660 
3661   return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3662 }
3663 
3664 /// Compare the user-defined conversion functions or constructors
3665 /// of two user-defined conversion sequences to determine whether any ordering
3666 /// is possible.
3667 static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3668 compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3669                            FunctionDecl *Function2) {
3670   CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3671   CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3672   if (!Conv1 || !Conv2)
3673     return ImplicitConversionSequence::Indistinguishable;
3674 
3675   if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3676     return ImplicitConversionSequence::Indistinguishable;
3677 
3678   // Objective-C++:
3679   //   If both conversion functions are implicitly-declared conversions from
3680   //   a lambda closure type to a function pointer and a block pointer,
3681   //   respectively, always prefer the conversion to a function pointer,
3682   //   because the function pointer is more lightweight and is more likely
3683   //   to keep code working.
3684   if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3685     bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3686     bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3687     if (Block1 != Block2)
3688       return Block1 ? ImplicitConversionSequence::Worse
3689                     : ImplicitConversionSequence::Better;
3690   }
3691 
3692   // In order to support multiple calling conventions for the lambda conversion
3693   // operator (such as when the free and member function calling convention is
3694   // different), prefer the 'free' mechanism, followed by the calling-convention
3695   // of operator(). The latter is in place to support the MSVC-like solution of
3696   // defining ALL of the possible conversions in regards to calling-convention.
3697   const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3698   const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3699 
3700   if (Conv1FuncRet && Conv2FuncRet &&
3701       Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3702     CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3703     CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3704 
3705     CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3706     const FunctionProtoType *CallOpProto =
3707         CallOp->getType()->getAs<FunctionProtoType>();
3708 
3709     CallingConv CallOpCC =
3710         CallOp->getType()->castAs<FunctionType>()->getCallConv();
3711     CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3712         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3713     CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3714         CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3715 
3716     CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3717     for (CallingConv CC : PrefOrder) {
3718       if (Conv1CC == CC)
3719         return ImplicitConversionSequence::Better;
3720       if (Conv2CC == CC)
3721         return ImplicitConversionSequence::Worse;
3722     }
3723   }
3724 
3725   return ImplicitConversionSequence::Indistinguishable;
3726 }
3727 
hasDeprecatedStringLiteralToCharPtrConversion(const ImplicitConversionSequence & ICS)3728 static bool hasDeprecatedStringLiteralToCharPtrConversion(
3729     const ImplicitConversionSequence &ICS) {
3730   return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3731          (ICS.isUserDefined() &&
3732           ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3733 }
3734 
3735 /// CompareImplicitConversionSequences - Compare two implicit
3736 /// conversion sequences to determine whether one is better than the
3737 /// other or if they are indistinguishable (C++ 13.3.3.2).
3738 static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,SourceLocation Loc,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3739 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3740                                    const ImplicitConversionSequence& ICS1,
3741                                    const ImplicitConversionSequence& ICS2)
3742 {
3743   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3744   // conversion sequences (as defined in 13.3.3.1)
3745   //   -- a standard conversion sequence (13.3.3.1.1) is a better
3746   //      conversion sequence than a user-defined conversion sequence or
3747   //      an ellipsis conversion sequence, and
3748   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
3749   //      conversion sequence than an ellipsis conversion sequence
3750   //      (13.3.3.1.3).
3751   //
3752   // C++0x [over.best.ics]p10:
3753   //   For the purpose of ranking implicit conversion sequences as
3754   //   described in 13.3.3.2, the ambiguous conversion sequence is
3755   //   treated as a user-defined sequence that is indistinguishable
3756   //   from any other user-defined conversion sequence.
3757 
3758   // String literal to 'char *' conversion has been deprecated in C++03. It has
3759   // been removed from C++11. We still accept this conversion, if it happens at
3760   // the best viable function. Otherwise, this conversion is considered worse
3761   // than ellipsis conversion. Consider this as an extension; this is not in the
3762   // standard. For example:
3763   //
3764   // int &f(...);    // #1
3765   // void f(char*);  // #2
3766   // void g() { int &r = f("foo"); }
3767   //
3768   // In C++03, we pick #2 as the best viable function.
3769   // In C++11, we pick #1 as the best viable function, because ellipsis
3770   // conversion is better than string-literal to char* conversion (since there
3771   // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3772   // convert arguments, #2 would be the best viable function in C++11.
3773   // If the best viable function has this conversion, a warning will be issued
3774   // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3775 
3776   if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3777       hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3778       hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3779     return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3780                ? ImplicitConversionSequence::Worse
3781                : ImplicitConversionSequence::Better;
3782 
3783   if (ICS1.getKindRank() < ICS2.getKindRank())
3784     return ImplicitConversionSequence::Better;
3785   if (ICS2.getKindRank() < ICS1.getKindRank())
3786     return ImplicitConversionSequence::Worse;
3787 
3788   // The following checks require both conversion sequences to be of
3789   // the same kind.
3790   if (ICS1.getKind() != ICS2.getKind())
3791     return ImplicitConversionSequence::Indistinguishable;
3792 
3793   ImplicitConversionSequence::CompareKind Result =
3794       ImplicitConversionSequence::Indistinguishable;
3795 
3796   // Two implicit conversion sequences of the same form are
3797   // indistinguishable conversion sequences unless one of the
3798   // following rules apply: (C++ 13.3.3.2p3):
3799 
3800   // List-initialization sequence L1 is a better conversion sequence than
3801   // list-initialization sequence L2 if:
3802   // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3803   //   if not that,
3804   // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3805   //   and N1 is smaller than N2.,
3806   // even if one of the other rules in this paragraph would otherwise apply.
3807   if (!ICS1.isBad()) {
3808     if (ICS1.isStdInitializerListElement() &&
3809         !ICS2.isStdInitializerListElement())
3810       return ImplicitConversionSequence::Better;
3811     if (!ICS1.isStdInitializerListElement() &&
3812         ICS2.isStdInitializerListElement())
3813       return ImplicitConversionSequence::Worse;
3814   }
3815 
3816   if (ICS1.isStandard())
3817     // Standard conversion sequence S1 is a better conversion sequence than
3818     // standard conversion sequence S2 if [...]
3819     Result = CompareStandardConversionSequences(S, Loc,
3820                                                 ICS1.Standard, ICS2.Standard);
3821   else if (ICS1.isUserDefined()) {
3822     // User-defined conversion sequence U1 is a better conversion
3823     // sequence than another user-defined conversion sequence U2 if
3824     // they contain the same user-defined conversion function or
3825     // constructor and if the second standard conversion sequence of
3826     // U1 is better than the second standard conversion sequence of
3827     // U2 (C++ 13.3.3.2p3).
3828     if (ICS1.UserDefined.ConversionFunction ==
3829           ICS2.UserDefined.ConversionFunction)
3830       Result = CompareStandardConversionSequences(S, Loc,
3831                                                   ICS1.UserDefined.After,
3832                                                   ICS2.UserDefined.After);
3833     else
3834       Result = compareConversionFunctions(S,
3835                                           ICS1.UserDefined.ConversionFunction,
3836                                           ICS2.UserDefined.ConversionFunction);
3837   }
3838 
3839   return Result;
3840 }
3841 
3842 // Per 13.3.3.2p3, compare the given standard conversion sequences to
3843 // determine if one is a proper subset of the other.
3844 static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3845 compareStandardConversionSubsets(ASTContext &Context,
3846                                  const StandardConversionSequence& SCS1,
3847                                  const StandardConversionSequence& SCS2) {
3848   ImplicitConversionSequence::CompareKind Result
3849     = ImplicitConversionSequence::Indistinguishable;
3850 
3851   // the identity conversion sequence is considered to be a subsequence of
3852   // any non-identity conversion sequence
3853   if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3854     return ImplicitConversionSequence::Better;
3855   else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3856     return ImplicitConversionSequence::Worse;
3857 
3858   if (SCS1.Second != SCS2.Second) {
3859     if (SCS1.Second == ICK_Identity)
3860       Result = ImplicitConversionSequence::Better;
3861     else if (SCS2.Second == ICK_Identity)
3862       Result = ImplicitConversionSequence::Worse;
3863     else
3864       return ImplicitConversionSequence::Indistinguishable;
3865   } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3866     return ImplicitConversionSequence::Indistinguishable;
3867 
3868   if (SCS1.Third == SCS2.Third) {
3869     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3870                              : ImplicitConversionSequence::Indistinguishable;
3871   }
3872 
3873   if (SCS1.Third == ICK_Identity)
3874     return Result == ImplicitConversionSequence::Worse
3875              ? ImplicitConversionSequence::Indistinguishable
3876              : ImplicitConversionSequence::Better;
3877 
3878   if (SCS2.Third == ICK_Identity)
3879     return Result == ImplicitConversionSequence::Better
3880              ? ImplicitConversionSequence::Indistinguishable
3881              : ImplicitConversionSequence::Worse;
3882 
3883   return ImplicitConversionSequence::Indistinguishable;
3884 }
3885 
3886 /// Determine whether one of the given reference bindings is better
3887 /// than the other based on what kind of bindings they are.
3888 static bool
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3889 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3890                              const StandardConversionSequence &SCS2) {
3891   // C++0x [over.ics.rank]p3b4:
3892   //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3893   //      implicit object parameter of a non-static member function declared
3894   //      without a ref-qualifier, and *either* S1 binds an rvalue reference
3895   //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
3896   //      lvalue reference to a function lvalue and S2 binds an rvalue
3897   //      reference*.
3898   //
3899   // FIXME: Rvalue references. We're going rogue with the above edits,
3900   // because the semantics in the current C++0x working paper (N3225 at the
3901   // time of this writing) break the standard definition of std::forward
3902   // and std::reference_wrapper when dealing with references to functions.
3903   // Proposed wording changes submitted to CWG for consideration.
3904   if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3905       SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3906     return false;
3907 
3908   return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3909           SCS2.IsLvalueReference) ||
3910          (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3911           !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3912 }
3913 
3914 enum class FixedEnumPromotion {
3915   None,
3916   ToUnderlyingType,
3917   ToPromotedUnderlyingType
3918 };
3919 
3920 /// Returns kind of fixed enum promotion the \a SCS uses.
3921 static FixedEnumPromotion
getFixedEnumPromtion(Sema & S,const StandardConversionSequence & SCS)3922 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3923 
3924   if (SCS.Second != ICK_Integral_Promotion)
3925     return FixedEnumPromotion::None;
3926 
3927   QualType FromType = SCS.getFromType();
3928   if (!FromType->isEnumeralType())
3929     return FixedEnumPromotion::None;
3930 
3931   EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl();
3932   if (!Enum->isFixed())
3933     return FixedEnumPromotion::None;
3934 
3935   QualType UnderlyingType = Enum->getIntegerType();
3936   if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3937     return FixedEnumPromotion::ToUnderlyingType;
3938 
3939   return FixedEnumPromotion::ToPromotedUnderlyingType;
3940 }
3941 
3942 /// CompareStandardConversionSequences - Compare two standard
3943 /// conversion sequences to determine whether one is better than the
3944 /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3945 static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3946 CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3947                                    const StandardConversionSequence& SCS1,
3948                                    const StandardConversionSequence& SCS2)
3949 {
3950   // Standard conversion sequence S1 is a better conversion sequence
3951   // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3952 
3953   //  -- S1 is a proper subsequence of S2 (comparing the conversion
3954   //     sequences in the canonical form defined by 13.3.3.1.1,
3955   //     excluding any Lvalue Transformation; the identity conversion
3956   //     sequence is considered to be a subsequence of any
3957   //     non-identity conversion sequence) or, if not that,
3958   if (ImplicitConversionSequence::CompareKind CK
3959         = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3960     return CK;
3961 
3962   //  -- the rank of S1 is better than the rank of S2 (by the rules
3963   //     defined below), or, if not that,
3964   ImplicitConversionRank Rank1 = SCS1.getRank();
3965   ImplicitConversionRank Rank2 = SCS2.getRank();
3966   if (Rank1 < Rank2)
3967     return ImplicitConversionSequence::Better;
3968   else if (Rank2 < Rank1)
3969     return ImplicitConversionSequence::Worse;
3970 
3971   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3972   // are indistinguishable unless one of the following rules
3973   // applies:
3974 
3975   //   A conversion that is not a conversion of a pointer, or
3976   //   pointer to member, to bool is better than another conversion
3977   //   that is such a conversion.
3978   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3979     return SCS2.isPointerConversionToBool()
3980              ? ImplicitConversionSequence::Better
3981              : ImplicitConversionSequence::Worse;
3982 
3983   // C++14 [over.ics.rank]p4b2:
3984   // This is retroactively applied to C++11 by CWG 1601.
3985   //
3986   //   A conversion that promotes an enumeration whose underlying type is fixed
3987   //   to its underlying type is better than one that promotes to the promoted
3988   //   underlying type, if the two are different.
3989   FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3990   FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3991   if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3992       FEP1 != FEP2)
3993     return FEP1 == FixedEnumPromotion::ToUnderlyingType
3994                ? ImplicitConversionSequence::Better
3995                : ImplicitConversionSequence::Worse;
3996 
3997   // C++ [over.ics.rank]p4b2:
3998   //
3999   //   If class B is derived directly or indirectly from class A,
4000   //   conversion of B* to A* is better than conversion of B* to
4001   //   void*, and conversion of A* to void* is better than conversion
4002   //   of B* to void*.
4003   bool SCS1ConvertsToVoid
4004     = SCS1.isPointerConversionToVoidPointer(S.Context);
4005   bool SCS2ConvertsToVoid
4006     = SCS2.isPointerConversionToVoidPointer(S.Context);
4007   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4008     // Exactly one of the conversion sequences is a conversion to
4009     // a void pointer; it's the worse conversion.
4010     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4011                               : ImplicitConversionSequence::Worse;
4012   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4013     // Neither conversion sequence converts to a void pointer; compare
4014     // their derived-to-base conversions.
4015     if (ImplicitConversionSequence::CompareKind DerivedCK
4016           = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4017       return DerivedCK;
4018   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4019              !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4020     // Both conversion sequences are conversions to void
4021     // pointers. Compare the source types to determine if there's an
4022     // inheritance relationship in their sources.
4023     QualType FromType1 = SCS1.getFromType();
4024     QualType FromType2 = SCS2.getFromType();
4025 
4026     // Adjust the types we're converting from via the array-to-pointer
4027     // conversion, if we need to.
4028     if (SCS1.First == ICK_Array_To_Pointer)
4029       FromType1 = S.Context.getArrayDecayedType(FromType1);
4030     if (SCS2.First == ICK_Array_To_Pointer)
4031       FromType2 = S.Context.getArrayDecayedType(FromType2);
4032 
4033     QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4034     QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4035 
4036     if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4037       return ImplicitConversionSequence::Better;
4038     else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4039       return ImplicitConversionSequence::Worse;
4040 
4041     // Objective-C++: If one interface is more specific than the
4042     // other, it is the better one.
4043     const ObjCObjectPointerType* FromObjCPtr1
4044       = FromType1->getAs<ObjCObjectPointerType>();
4045     const ObjCObjectPointerType* FromObjCPtr2
4046       = FromType2->getAs<ObjCObjectPointerType>();
4047     if (FromObjCPtr1 && FromObjCPtr2) {
4048       bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4049                                                           FromObjCPtr2);
4050       bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4051                                                            FromObjCPtr1);
4052       if (AssignLeft != AssignRight) {
4053         return AssignLeft? ImplicitConversionSequence::Better
4054                          : ImplicitConversionSequence::Worse;
4055       }
4056     }
4057   }
4058 
4059   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4060     // Check for a better reference binding based on the kind of bindings.
4061     if (isBetterReferenceBindingKind(SCS1, SCS2))
4062       return ImplicitConversionSequence::Better;
4063     else if (isBetterReferenceBindingKind(SCS2, SCS1))
4064       return ImplicitConversionSequence::Worse;
4065   }
4066 
4067   // Compare based on qualification conversions (C++ 13.3.3.2p3,
4068   // bullet 3).
4069   if (ImplicitConversionSequence::CompareKind QualCK
4070         = CompareQualificationConversions(S, SCS1, SCS2))
4071     return QualCK;
4072 
4073   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4074     // C++ [over.ics.rank]p3b4:
4075     //   -- S1 and S2 are reference bindings (8.5.3), and the types to
4076     //      which the references refer are the same type except for
4077     //      top-level cv-qualifiers, and the type to which the reference
4078     //      initialized by S2 refers is more cv-qualified than the type
4079     //      to which the reference initialized by S1 refers.
4080     QualType T1 = SCS1.getToType(2);
4081     QualType T2 = SCS2.getToType(2);
4082     T1 = S.Context.getCanonicalType(T1);
4083     T2 = S.Context.getCanonicalType(T2);
4084     Qualifiers T1Quals, T2Quals;
4085     QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4086     QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4087     if (UnqualT1 == UnqualT2) {
4088       // Objective-C++ ARC: If the references refer to objects with different
4089       // lifetimes, prefer bindings that don't change lifetime.
4090       if (SCS1.ObjCLifetimeConversionBinding !=
4091                                           SCS2.ObjCLifetimeConversionBinding) {
4092         return SCS1.ObjCLifetimeConversionBinding
4093                                            ? ImplicitConversionSequence::Worse
4094                                            : ImplicitConversionSequence::Better;
4095       }
4096 
4097       // If the type is an array type, promote the element qualifiers to the
4098       // type for comparison.
4099       if (isa<ArrayType>(T1) && T1Quals)
4100         T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4101       if (isa<ArrayType>(T2) && T2Quals)
4102         T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4103       if (T2.isMoreQualifiedThan(T1))
4104         return ImplicitConversionSequence::Better;
4105       if (T1.isMoreQualifiedThan(T2))
4106         return ImplicitConversionSequence::Worse;
4107     }
4108   }
4109 
4110   // In Microsoft mode (below 19.28), prefer an integral conversion to a
4111   // floating-to-integral conversion if the integral conversion
4112   // is between types of the same size.
4113   // For example:
4114   // void f(float);
4115   // void f(int);
4116   // int main {
4117   //    long a;
4118   //    f(a);
4119   // }
4120   // Here, MSVC will call f(int) instead of generating a compile error
4121   // as clang will do in standard mode.
4122   if (S.getLangOpts().MSVCCompat &&
4123       !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) &&
4124       SCS1.Second == ICK_Integral_Conversion &&
4125       SCS2.Second == ICK_Floating_Integral &&
4126       S.Context.getTypeSize(SCS1.getFromType()) ==
4127           S.Context.getTypeSize(SCS1.getToType(2)))
4128     return ImplicitConversionSequence::Better;
4129 
4130   // Prefer a compatible vector conversion over a lax vector conversion
4131   // For example:
4132   //
4133   // typedef float __v4sf __attribute__((__vector_size__(16)));
4134   // void f(vector float);
4135   // void f(vector signed int);
4136   // int main() {
4137   //   __v4sf a;
4138   //   f(a);
4139   // }
4140   // Here, we'd like to choose f(vector float) and not
4141   // report an ambiguous call error
4142   if (SCS1.Second == ICK_Vector_Conversion &&
4143       SCS2.Second == ICK_Vector_Conversion) {
4144     bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4145         SCS1.getFromType(), SCS1.getToType(2));
4146     bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4147         SCS2.getFromType(), SCS2.getToType(2));
4148 
4149     if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4150       return SCS1IsCompatibleVectorConversion
4151                  ? ImplicitConversionSequence::Better
4152                  : ImplicitConversionSequence::Worse;
4153   }
4154 
4155   if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4156       SCS2.Second == ICK_SVE_Vector_Conversion) {
4157     bool SCS1IsCompatibleSVEVectorConversion =
4158         S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4159     bool SCS2IsCompatibleSVEVectorConversion =
4160         S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4161 
4162     if (SCS1IsCompatibleSVEVectorConversion !=
4163         SCS2IsCompatibleSVEVectorConversion)
4164       return SCS1IsCompatibleSVEVectorConversion
4165                  ? ImplicitConversionSequence::Better
4166                  : ImplicitConversionSequence::Worse;
4167   }
4168 
4169   return ImplicitConversionSequence::Indistinguishable;
4170 }
4171 
4172 /// CompareQualificationConversions - Compares two standard conversion
4173 /// sequences to determine whether they can be ranked based on their
4174 /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4175 static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4176 CompareQualificationConversions(Sema &S,
4177                                 const StandardConversionSequence& SCS1,
4178                                 const StandardConversionSequence& SCS2) {
4179   // C++ 13.3.3.2p3:
4180   //  -- S1 and S2 differ only in their qualification conversion and
4181   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
4182   //     cv-qualification signature of type T1 is a proper subset of
4183   //     the cv-qualification signature of type T2, and S1 is not the
4184   //     deprecated string literal array-to-pointer conversion (4.2).
4185   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4186       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4187     return ImplicitConversionSequence::Indistinguishable;
4188 
4189   // FIXME: the example in the standard doesn't use a qualification
4190   // conversion (!)
4191   QualType T1 = SCS1.getToType(2);
4192   QualType T2 = SCS2.getToType(2);
4193   T1 = S.Context.getCanonicalType(T1);
4194   T2 = S.Context.getCanonicalType(T2);
4195   assert(!T1->isReferenceType() && !T2->isReferenceType());
4196   Qualifiers T1Quals, T2Quals;
4197   QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4198   QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4199 
4200   // If the types are the same, we won't learn anything by unwrapping
4201   // them.
4202   if (UnqualT1 == UnqualT2)
4203     return ImplicitConversionSequence::Indistinguishable;
4204 
4205   ImplicitConversionSequence::CompareKind Result
4206     = ImplicitConversionSequence::Indistinguishable;
4207 
4208   // Objective-C++ ARC:
4209   //   Prefer qualification conversions not involving a change in lifetime
4210   //   to qualification conversions that do not change lifetime.
4211   if (SCS1.QualificationIncludesObjCLifetime !=
4212                                       SCS2.QualificationIncludesObjCLifetime) {
4213     Result = SCS1.QualificationIncludesObjCLifetime
4214                ? ImplicitConversionSequence::Worse
4215                : ImplicitConversionSequence::Better;
4216   }
4217 
4218   while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4219     // Within each iteration of the loop, we check the qualifiers to
4220     // determine if this still looks like a qualification
4221     // conversion. Then, if all is well, we unwrap one more level of
4222     // pointers or pointers-to-members and do it all again
4223     // until there are no more pointers or pointers-to-members left
4224     // to unwrap. This essentially mimics what
4225     // IsQualificationConversion does, but here we're checking for a
4226     // strict subset of qualifiers.
4227     if (T1.getQualifiers().withoutObjCLifetime() ==
4228         T2.getQualifiers().withoutObjCLifetime())
4229       // The qualifiers are the same, so this doesn't tell us anything
4230       // about how the sequences rank.
4231       // ObjC ownership quals are omitted above as they interfere with
4232       // the ARC overload rule.
4233       ;
4234     else if (T2.isMoreQualifiedThan(T1)) {
4235       // T1 has fewer qualifiers, so it could be the better sequence.
4236       if (Result == ImplicitConversionSequence::Worse)
4237         // Neither has qualifiers that are a subset of the other's
4238         // qualifiers.
4239         return ImplicitConversionSequence::Indistinguishable;
4240 
4241       Result = ImplicitConversionSequence::Better;
4242     } else if (T1.isMoreQualifiedThan(T2)) {
4243       // T2 has fewer qualifiers, so it could be the better sequence.
4244       if (Result == ImplicitConversionSequence::Better)
4245         // Neither has qualifiers that are a subset of the other's
4246         // qualifiers.
4247         return ImplicitConversionSequence::Indistinguishable;
4248 
4249       Result = ImplicitConversionSequence::Worse;
4250     } else {
4251       // Qualifiers are disjoint.
4252       return ImplicitConversionSequence::Indistinguishable;
4253     }
4254 
4255     // If the types after this point are equivalent, we're done.
4256     if (S.Context.hasSameUnqualifiedType(T1, T2))
4257       break;
4258   }
4259 
4260   // Check that the winning standard conversion sequence isn't using
4261   // the deprecated string literal array to pointer conversion.
4262   switch (Result) {
4263   case ImplicitConversionSequence::Better:
4264     if (SCS1.DeprecatedStringLiteralToCharPtr)
4265       Result = ImplicitConversionSequence::Indistinguishable;
4266     break;
4267 
4268   case ImplicitConversionSequence::Indistinguishable:
4269     break;
4270 
4271   case ImplicitConversionSequence::Worse:
4272     if (SCS2.DeprecatedStringLiteralToCharPtr)
4273       Result = ImplicitConversionSequence::Indistinguishable;
4274     break;
4275   }
4276 
4277   return Result;
4278 }
4279 
4280 /// CompareDerivedToBaseConversions - Compares two standard conversion
4281 /// sequences to determine whether they can be ranked based on their
4282 /// various kinds of derived-to-base conversions (C++
4283 /// [over.ics.rank]p4b3).  As part of these checks, we also look at
4284 /// conversions between Objective-C interface types.
4285 static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)4286 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4287                                 const StandardConversionSequence& SCS1,
4288                                 const StandardConversionSequence& SCS2) {
4289   QualType FromType1 = SCS1.getFromType();
4290   QualType ToType1 = SCS1.getToType(1);
4291   QualType FromType2 = SCS2.getFromType();
4292   QualType ToType2 = SCS2.getToType(1);
4293 
4294   // Adjust the types we're converting from via the array-to-pointer
4295   // conversion, if we need to.
4296   if (SCS1.First == ICK_Array_To_Pointer)
4297     FromType1 = S.Context.getArrayDecayedType(FromType1);
4298   if (SCS2.First == ICK_Array_To_Pointer)
4299     FromType2 = S.Context.getArrayDecayedType(FromType2);
4300 
4301   // Canonicalize all of the types.
4302   FromType1 = S.Context.getCanonicalType(FromType1);
4303   ToType1 = S.Context.getCanonicalType(ToType1);
4304   FromType2 = S.Context.getCanonicalType(FromType2);
4305   ToType2 = S.Context.getCanonicalType(ToType2);
4306 
4307   // C++ [over.ics.rank]p4b3:
4308   //
4309   //   If class B is derived directly or indirectly from class A and
4310   //   class C is derived directly or indirectly from B,
4311   //
4312   // Compare based on pointer conversions.
4313   if (SCS1.Second == ICK_Pointer_Conversion &&
4314       SCS2.Second == ICK_Pointer_Conversion &&
4315       /*FIXME: Remove if Objective-C id conversions get their own rank*/
4316       FromType1->isPointerType() && FromType2->isPointerType() &&
4317       ToType1->isPointerType() && ToType2->isPointerType()) {
4318     QualType FromPointee1 =
4319         FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4320     QualType ToPointee1 =
4321         ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4322     QualType FromPointee2 =
4323         FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4324     QualType ToPointee2 =
4325         ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4326 
4327     //   -- conversion of C* to B* is better than conversion of C* to A*,
4328     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4329       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4330         return ImplicitConversionSequence::Better;
4331       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4332         return ImplicitConversionSequence::Worse;
4333     }
4334 
4335     //   -- conversion of B* to A* is better than conversion of C* to A*,
4336     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4337       if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4338         return ImplicitConversionSequence::Better;
4339       else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4340         return ImplicitConversionSequence::Worse;
4341     }
4342   } else if (SCS1.Second == ICK_Pointer_Conversion &&
4343              SCS2.Second == ICK_Pointer_Conversion) {
4344     const ObjCObjectPointerType *FromPtr1
4345       = FromType1->getAs<ObjCObjectPointerType>();
4346     const ObjCObjectPointerType *FromPtr2
4347       = FromType2->getAs<ObjCObjectPointerType>();
4348     const ObjCObjectPointerType *ToPtr1
4349       = ToType1->getAs<ObjCObjectPointerType>();
4350     const ObjCObjectPointerType *ToPtr2
4351       = ToType2->getAs<ObjCObjectPointerType>();
4352 
4353     if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4354       // Apply the same conversion ranking rules for Objective-C pointer types
4355       // that we do for C++ pointers to class types. However, we employ the
4356       // Objective-C pseudo-subtyping relationship used for assignment of
4357       // Objective-C pointer types.
4358       bool FromAssignLeft
4359         = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4360       bool FromAssignRight
4361         = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4362       bool ToAssignLeft
4363         = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4364       bool ToAssignRight
4365         = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4366 
4367       // A conversion to an a non-id object pointer type or qualified 'id'
4368       // type is better than a conversion to 'id'.
4369       if (ToPtr1->isObjCIdType() &&
4370           (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4371         return ImplicitConversionSequence::Worse;
4372       if (ToPtr2->isObjCIdType() &&
4373           (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4374         return ImplicitConversionSequence::Better;
4375 
4376       // A conversion to a non-id object pointer type is better than a
4377       // conversion to a qualified 'id' type
4378       if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4379         return ImplicitConversionSequence::Worse;
4380       if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4381         return ImplicitConversionSequence::Better;
4382 
4383       // A conversion to an a non-Class object pointer type or qualified 'Class'
4384       // type is better than a conversion to 'Class'.
4385       if (ToPtr1->isObjCClassType() &&
4386           (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4387         return ImplicitConversionSequence::Worse;
4388       if (ToPtr2->isObjCClassType() &&
4389           (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4390         return ImplicitConversionSequence::Better;
4391 
4392       // A conversion to a non-Class object pointer type is better than a
4393       // conversion to a qualified 'Class' type.
4394       if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4395         return ImplicitConversionSequence::Worse;
4396       if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4397         return ImplicitConversionSequence::Better;
4398 
4399       //   -- "conversion of C* to B* is better than conversion of C* to A*,"
4400       if (S.Context.hasSameType(FromType1, FromType2) &&
4401           !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4402           (ToAssignLeft != ToAssignRight)) {
4403         if (FromPtr1->isSpecialized()) {
4404           // "conversion of B<A> * to B * is better than conversion of B * to
4405           // C *.
4406           bool IsFirstSame =
4407               FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4408           bool IsSecondSame =
4409               FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4410           if (IsFirstSame) {
4411             if (!IsSecondSame)
4412               return ImplicitConversionSequence::Better;
4413           } else if (IsSecondSame)
4414             return ImplicitConversionSequence::Worse;
4415         }
4416         return ToAssignLeft? ImplicitConversionSequence::Worse
4417                            : ImplicitConversionSequence::Better;
4418       }
4419 
4420       //   -- "conversion of B* to A* is better than conversion of C* to A*,"
4421       if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4422           (FromAssignLeft != FromAssignRight))
4423         return FromAssignLeft? ImplicitConversionSequence::Better
4424         : ImplicitConversionSequence::Worse;
4425     }
4426   }
4427 
4428   // Ranking of member-pointer types.
4429   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4430       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4431       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4432     const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4433     const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4434     const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4435     const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4436     const Type *FromPointeeType1 = FromMemPointer1->getClass();
4437     const Type *ToPointeeType1 = ToMemPointer1->getClass();
4438     const Type *FromPointeeType2 = FromMemPointer2->getClass();
4439     const Type *ToPointeeType2 = ToMemPointer2->getClass();
4440     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4441     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4442     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4443     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4444     // conversion of A::* to B::* is better than conversion of A::* to C::*,
4445     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4446       if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4447         return ImplicitConversionSequence::Worse;
4448       else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4449         return ImplicitConversionSequence::Better;
4450     }
4451     // conversion of B::* to C::* is better than conversion of A::* to C::*
4452     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4453       if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4454         return ImplicitConversionSequence::Better;
4455       else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4456         return ImplicitConversionSequence::Worse;
4457     }
4458   }
4459 
4460   if (SCS1.Second == ICK_Derived_To_Base) {
4461     //   -- conversion of C to B is better than conversion of C to A,
4462     //   -- binding of an expression of type C to a reference of type
4463     //      B& is better than binding an expression of type C to a
4464     //      reference of type A&,
4465     if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4466         !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4467       if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4468         return ImplicitConversionSequence::Better;
4469       else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4470         return ImplicitConversionSequence::Worse;
4471     }
4472 
4473     //   -- conversion of B to A is better than conversion of C to A.
4474     //   -- binding of an expression of type B to a reference of type
4475     //      A& is better than binding an expression of type C to a
4476     //      reference of type A&,
4477     if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4478         S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4479       if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4480         return ImplicitConversionSequence::Better;
4481       else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4482         return ImplicitConversionSequence::Worse;
4483     }
4484   }
4485 
4486   return ImplicitConversionSequence::Indistinguishable;
4487 }
4488 
4489 /// Determine whether the given type is valid, e.g., it is not an invalid
4490 /// C++ class.
isTypeValid(QualType T)4491 static bool isTypeValid(QualType T) {
4492   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4493     return !Record->isInvalidDecl();
4494 
4495   return true;
4496 }
4497 
withoutUnaligned(ASTContext & Ctx,QualType T)4498 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4499   if (!T.getQualifiers().hasUnaligned())
4500     return T;
4501 
4502   Qualifiers Q;
4503   T = Ctx.getUnqualifiedArrayType(T, Q);
4504   Q.removeUnaligned();
4505   return Ctx.getQualifiedType(T, Q);
4506 }
4507 
4508 /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4509 /// determine whether they are reference-compatible,
4510 /// reference-related, or incompatible, for use in C++ initialization by
4511 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4512 /// type, and the first type (T1) is the pointee type of the reference
4513 /// type being initialized.
4514 Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,ReferenceConversions * ConvOut)4515 Sema::CompareReferenceRelationship(SourceLocation Loc,
4516                                    QualType OrigT1, QualType OrigT2,
4517                                    ReferenceConversions *ConvOut) {
4518   assert(!OrigT1->isReferenceType() &&
4519     "T1 must be the pointee type of the reference type");
4520   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4521 
4522   QualType T1 = Context.getCanonicalType(OrigT1);
4523   QualType T2 = Context.getCanonicalType(OrigT2);
4524   Qualifiers T1Quals, T2Quals;
4525   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4526   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4527 
4528   ReferenceConversions ConvTmp;
4529   ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4530   Conv = ReferenceConversions();
4531 
4532   // C++2a [dcl.init.ref]p4:
4533   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4534   //   reference-related to "cv2 T2" if T1 is similar to T2, or
4535   //   T1 is a base class of T2.
4536   //   "cv1 T1" is reference-compatible with "cv2 T2" if
4537   //   a prvalue of type "pointer to cv2 T2" can be converted to the type
4538   //   "pointer to cv1 T1" via a standard conversion sequence.
4539 
4540   // Check for standard conversions we can apply to pointers: derived-to-base
4541   // conversions, ObjC pointer conversions, and function pointer conversions.
4542   // (Qualification conversions are checked last.)
4543   QualType ConvertedT2;
4544   if (UnqualT1 == UnqualT2) {
4545     // Nothing to do.
4546   } else if (isCompleteType(Loc, OrigT2) &&
4547              isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4548              IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4549     Conv |= ReferenceConversions::DerivedToBase;
4550   else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4551            UnqualT2->isObjCObjectOrInterfaceType() &&
4552            Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4553     Conv |= ReferenceConversions::ObjC;
4554   else if (UnqualT2->isFunctionType() &&
4555            IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4556     Conv |= ReferenceConversions::Function;
4557     // No need to check qualifiers; function types don't have them.
4558     return Ref_Compatible;
4559   }
4560   bool ConvertedReferent = Conv != 0;
4561 
4562   // We can have a qualification conversion. Compute whether the types are
4563   // similar at the same time.
4564   bool PreviousToQualsIncludeConst = true;
4565   bool TopLevel = true;
4566   do {
4567     if (T1 == T2)
4568       break;
4569 
4570     // We will need a qualification conversion.
4571     Conv |= ReferenceConversions::Qualification;
4572 
4573     // Track whether we performed a qualification conversion anywhere other
4574     // than the top level. This matters for ranking reference bindings in
4575     // overload resolution.
4576     if (!TopLevel)
4577       Conv |= ReferenceConversions::NestedQualification;
4578 
4579     // MS compiler ignores __unaligned qualifier for references; do the same.
4580     T1 = withoutUnaligned(Context, T1);
4581     T2 = withoutUnaligned(Context, T2);
4582 
4583     // If we find a qualifier mismatch, the types are not reference-compatible,
4584     // but are still be reference-related if they're similar.
4585     bool ObjCLifetimeConversion = false;
4586     if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4587                                        PreviousToQualsIncludeConst,
4588                                        ObjCLifetimeConversion))
4589       return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4590                  ? Ref_Related
4591                  : Ref_Incompatible;
4592 
4593     // FIXME: Should we track this for any level other than the first?
4594     if (ObjCLifetimeConversion)
4595       Conv |= ReferenceConversions::ObjCLifetime;
4596 
4597     TopLevel = false;
4598   } while (Context.UnwrapSimilarTypes(T1, T2));
4599 
4600   // At this point, if the types are reference-related, we must either have the
4601   // same inner type (ignoring qualifiers), or must have already worked out how
4602   // to convert the referent.
4603   return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4604              ? Ref_Compatible
4605              : Ref_Incompatible;
4606 }
4607 
4608 /// Look for a user-defined conversion to a value reference-compatible
4609 ///        with DeclType. Return true if something definite is found.
4610 static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)4611 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4612                          QualType DeclType, SourceLocation DeclLoc,
4613                          Expr *Init, QualType T2, bool AllowRvalues,
4614                          bool AllowExplicit) {
4615   assert(T2->isRecordType() && "Can only find conversions of record types.");
4616   auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4617 
4618   OverloadCandidateSet CandidateSet(
4619       DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4620   const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4621   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4622     NamedDecl *D = *I;
4623     CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4624     if (isa<UsingShadowDecl>(D))
4625       D = cast<UsingShadowDecl>(D)->getTargetDecl();
4626 
4627     FunctionTemplateDecl *ConvTemplate
4628       = dyn_cast<FunctionTemplateDecl>(D);
4629     CXXConversionDecl *Conv;
4630     if (ConvTemplate)
4631       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4632     else
4633       Conv = cast<CXXConversionDecl>(D);
4634 
4635     if (AllowRvalues) {
4636       // If we are initializing an rvalue reference, don't permit conversion
4637       // functions that return lvalues.
4638       if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4639         const ReferenceType *RefType
4640           = Conv->getConversionType()->getAs<LValueReferenceType>();
4641         if (RefType && !RefType->getPointeeType()->isFunctionType())
4642           continue;
4643       }
4644 
4645       if (!ConvTemplate &&
4646           S.CompareReferenceRelationship(
4647               DeclLoc,
4648               Conv->getConversionType()
4649                   .getNonReferenceType()
4650                   .getUnqualifiedType(),
4651               DeclType.getNonReferenceType().getUnqualifiedType()) ==
4652               Sema::Ref_Incompatible)
4653         continue;
4654     } else {
4655       // If the conversion function doesn't return a reference type,
4656       // it can't be considered for this conversion. An rvalue reference
4657       // is only acceptable if its referencee is a function type.
4658 
4659       const ReferenceType *RefType =
4660         Conv->getConversionType()->getAs<ReferenceType>();
4661       if (!RefType ||
4662           (!RefType->isLValueReferenceType() &&
4663            !RefType->getPointeeType()->isFunctionType()))
4664         continue;
4665     }
4666 
4667     if (ConvTemplate)
4668       S.AddTemplateConversionCandidate(
4669           ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4670           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4671     else
4672       S.AddConversionCandidate(
4673           Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4674           /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4675   }
4676 
4677   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4678 
4679   OverloadCandidateSet::iterator Best;
4680   switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4681   case OR_Success:
4682     // C++ [over.ics.ref]p1:
4683     //
4684     //   [...] If the parameter binds directly to the result of
4685     //   applying a conversion function to the argument
4686     //   expression, the implicit conversion sequence is a
4687     //   user-defined conversion sequence (13.3.3.1.2), with the
4688     //   second standard conversion sequence either an identity
4689     //   conversion or, if the conversion function returns an
4690     //   entity of a type that is a derived class of the parameter
4691     //   type, a derived-to-base Conversion.
4692     if (!Best->FinalConversion.DirectBinding)
4693       return false;
4694 
4695     ICS.setUserDefined();
4696     ICS.UserDefined.Before = Best->Conversions[0].Standard;
4697     ICS.UserDefined.After = Best->FinalConversion;
4698     ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4699     ICS.UserDefined.ConversionFunction = Best->Function;
4700     ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4701     ICS.UserDefined.EllipsisConversion = false;
4702     assert(ICS.UserDefined.After.ReferenceBinding &&
4703            ICS.UserDefined.After.DirectBinding &&
4704            "Expected a direct reference binding!");
4705     return true;
4706 
4707   case OR_Ambiguous:
4708     ICS.setAmbiguous();
4709     for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4710          Cand != CandidateSet.end(); ++Cand)
4711       if (Cand->Best)
4712         ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4713     return true;
4714 
4715   case OR_No_Viable_Function:
4716   case OR_Deleted:
4717     // There was no suitable conversion, or we found a deleted
4718     // conversion; continue with other checks.
4719     return false;
4720   }
4721 
4722   llvm_unreachable("Invalid OverloadResult!");
4723 }
4724 
4725 /// Compute an implicit conversion sequence for reference
4726 /// initialization.
4727 static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4728 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4729                  SourceLocation DeclLoc,
4730                  bool SuppressUserConversions,
4731                  bool AllowExplicit) {
4732   assert(DeclType->isReferenceType() && "Reference init needs a reference");
4733 
4734   // Most paths end in a failed conversion.
4735   ImplicitConversionSequence ICS;
4736   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4737 
4738   QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4739   QualType T2 = Init->getType();
4740 
4741   // If the initializer is the address of an overloaded function, try
4742   // to resolve the overloaded function. If all goes well, T2 is the
4743   // type of the resulting function.
4744   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4745     DeclAccessPair Found;
4746     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4747                                                                 false, Found))
4748       T2 = Fn->getType();
4749   }
4750 
4751   // Compute some basic properties of the types and the initializer.
4752   bool isRValRef = DeclType->isRValueReferenceType();
4753   Expr::Classification InitCategory = Init->Classify(S.Context);
4754 
4755   Sema::ReferenceConversions RefConv;
4756   Sema::ReferenceCompareResult RefRelationship =
4757       S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4758 
4759   auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4760     ICS.setStandard();
4761     ICS.Standard.First = ICK_Identity;
4762     // FIXME: A reference binding can be a function conversion too. We should
4763     // consider that when ordering reference-to-function bindings.
4764     ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4765                               ? ICK_Derived_To_Base
4766                               : (RefConv & Sema::ReferenceConversions::ObjC)
4767                                     ? ICK_Compatible_Conversion
4768                                     : ICK_Identity;
4769     // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4770     // a reference binding that performs a non-top-level qualification
4771     // conversion as a qualification conversion, not as an identity conversion.
4772     ICS.Standard.Third = (RefConv &
4773                               Sema::ReferenceConversions::NestedQualification)
4774                              ? ICK_Qualification
4775                              : ICK_Identity;
4776     ICS.Standard.setFromType(T2);
4777     ICS.Standard.setToType(0, T2);
4778     ICS.Standard.setToType(1, T1);
4779     ICS.Standard.setToType(2, T1);
4780     ICS.Standard.ReferenceBinding = true;
4781     ICS.Standard.DirectBinding = BindsDirectly;
4782     ICS.Standard.IsLvalueReference = !isRValRef;
4783     ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4784     ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4785     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4786     ICS.Standard.ObjCLifetimeConversionBinding =
4787         (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4788     ICS.Standard.CopyConstructor = nullptr;
4789     ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4790   };
4791 
4792   // C++0x [dcl.init.ref]p5:
4793   //   A reference to type "cv1 T1" is initialized by an expression
4794   //   of type "cv2 T2" as follows:
4795 
4796   //     -- If reference is an lvalue reference and the initializer expression
4797   if (!isRValRef) {
4798     //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4799     //        reference-compatible with "cv2 T2," or
4800     //
4801     // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4802     if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4803       // C++ [over.ics.ref]p1:
4804       //   When a parameter of reference type binds directly (8.5.3)
4805       //   to an argument expression, the implicit conversion sequence
4806       //   is the identity conversion, unless the argument expression
4807       //   has a type that is a derived class of the parameter type,
4808       //   in which case the implicit conversion sequence is a
4809       //   derived-to-base Conversion (13.3.3.1).
4810       SetAsReferenceBinding(/*BindsDirectly=*/true);
4811 
4812       // Nothing more to do: the inaccessibility/ambiguity check for
4813       // derived-to-base conversions is suppressed when we're
4814       // computing the implicit conversion sequence (C++
4815       // [over.best.ics]p2).
4816       return ICS;
4817     }
4818 
4819     //       -- has a class type (i.e., T2 is a class type), where T1 is
4820     //          not reference-related to T2, and can be implicitly
4821     //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
4822     //          is reference-compatible with "cv3 T3" 92) (this
4823     //          conversion is selected by enumerating the applicable
4824     //          conversion functions (13.3.1.6) and choosing the best
4825     //          one through overload resolution (13.3)),
4826     if (!SuppressUserConversions && T2->isRecordType() &&
4827         S.isCompleteType(DeclLoc, T2) &&
4828         RefRelationship == Sema::Ref_Incompatible) {
4829       if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4830                                    Init, T2, /*AllowRvalues=*/false,
4831                                    AllowExplicit))
4832         return ICS;
4833     }
4834   }
4835 
4836   //     -- Otherwise, the reference shall be an lvalue reference to a
4837   //        non-volatile const type (i.e., cv1 shall be const), or the reference
4838   //        shall be an rvalue reference.
4839   if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) {
4840     if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible)
4841       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4842     return ICS;
4843   }
4844 
4845   //       -- If the initializer expression
4846   //
4847   //            -- is an xvalue, class prvalue, array prvalue or function
4848   //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4849   if (RefRelationship == Sema::Ref_Compatible &&
4850       (InitCategory.isXValue() ||
4851        (InitCategory.isPRValue() &&
4852           (T2->isRecordType() || T2->isArrayType())) ||
4853        (InitCategory.isLValue() && T2->isFunctionType()))) {
4854     // In C++11, this is always a direct binding. In C++98/03, it's a direct
4855     // binding unless we're binding to a class prvalue.
4856     // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4857     // allow the use of rvalue references in C++98/03 for the benefit of
4858     // standard library implementors; therefore, we need the xvalue check here.
4859     SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4860                           !(InitCategory.isPRValue() || T2->isRecordType()));
4861     return ICS;
4862   }
4863 
4864   //            -- has a class type (i.e., T2 is a class type), where T1 is not
4865   //               reference-related to T2, and can be implicitly converted to
4866   //               an xvalue, class prvalue, or function lvalue of type
4867   //               "cv3 T3", where "cv1 T1" is reference-compatible with
4868   //               "cv3 T3",
4869   //
4870   //          then the reference is bound to the value of the initializer
4871   //          expression in the first case and to the result of the conversion
4872   //          in the second case (or, in either case, to an appropriate base
4873   //          class subobject).
4874   if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4875       T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4876       FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4877                                Init, T2, /*AllowRvalues=*/true,
4878                                AllowExplicit)) {
4879     // In the second case, if the reference is an rvalue reference
4880     // and the second standard conversion sequence of the
4881     // user-defined conversion sequence includes an lvalue-to-rvalue
4882     // conversion, the program is ill-formed.
4883     if (ICS.isUserDefined() && isRValRef &&
4884         ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4885       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4886 
4887     return ICS;
4888   }
4889 
4890   // A temporary of function type cannot be created; don't even try.
4891   if (T1->isFunctionType())
4892     return ICS;
4893 
4894   //       -- Otherwise, a temporary of type "cv1 T1" is created and
4895   //          initialized from the initializer expression using the
4896   //          rules for a non-reference copy initialization (8.5). The
4897   //          reference is then bound to the temporary. If T1 is
4898   //          reference-related to T2, cv1 must be the same
4899   //          cv-qualification as, or greater cv-qualification than,
4900   //          cv2; otherwise, the program is ill-formed.
4901   if (RefRelationship == Sema::Ref_Related) {
4902     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4903     // we would be reference-compatible or reference-compatible with
4904     // added qualification. But that wasn't the case, so the reference
4905     // initialization fails.
4906     //
4907     // Note that we only want to check address spaces and cvr-qualifiers here.
4908     // ObjC GC, lifetime and unaligned qualifiers aren't important.
4909     Qualifiers T1Quals = T1.getQualifiers();
4910     Qualifiers T2Quals = T2.getQualifiers();
4911     T1Quals.removeObjCGCAttr();
4912     T1Quals.removeObjCLifetime();
4913     T2Quals.removeObjCGCAttr();
4914     T2Quals.removeObjCLifetime();
4915     // MS compiler ignores __unaligned qualifier for references; do the same.
4916     T1Quals.removeUnaligned();
4917     T2Quals.removeUnaligned();
4918     if (!T1Quals.compatiblyIncludes(T2Quals))
4919       return ICS;
4920   }
4921 
4922   // If at least one of the types is a class type, the types are not
4923   // related, and we aren't allowed any user conversions, the
4924   // reference binding fails. This case is important for breaking
4925   // recursion, since TryImplicitConversion below will attempt to
4926   // create a temporary through the use of a copy constructor.
4927   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4928       (T1->isRecordType() || T2->isRecordType()))
4929     return ICS;
4930 
4931   // If T1 is reference-related to T2 and the reference is an rvalue
4932   // reference, the initializer expression shall not be an lvalue.
4933   if (RefRelationship >= Sema::Ref_Related && isRValRef &&
4934       Init->Classify(S.Context).isLValue()) {
4935     ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType);
4936     return ICS;
4937   }
4938 
4939   // C++ [over.ics.ref]p2:
4940   //   When a parameter of reference type is not bound directly to
4941   //   an argument expression, the conversion sequence is the one
4942   //   required to convert the argument expression to the
4943   //   underlying type of the reference according to
4944   //   13.3.3.1. Conceptually, this conversion sequence corresponds
4945   //   to copy-initializing a temporary of the underlying type with
4946   //   the argument expression. Any difference in top-level
4947   //   cv-qualification is subsumed by the initialization itself
4948   //   and does not constitute a conversion.
4949   ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4950                               AllowedExplicit::None,
4951                               /*InOverloadResolution=*/false,
4952                               /*CStyle=*/false,
4953                               /*AllowObjCWritebackConversion=*/false,
4954                               /*AllowObjCConversionOnExplicit=*/false);
4955 
4956   // Of course, that's still a reference binding.
4957   if (ICS.isStandard()) {
4958     ICS.Standard.ReferenceBinding = true;
4959     ICS.Standard.IsLvalueReference = !isRValRef;
4960     ICS.Standard.BindsToFunctionLvalue = false;
4961     ICS.Standard.BindsToRvalue = true;
4962     ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4963     ICS.Standard.ObjCLifetimeConversionBinding = false;
4964   } else if (ICS.isUserDefined()) {
4965     const ReferenceType *LValRefType =
4966         ICS.UserDefined.ConversionFunction->getReturnType()
4967             ->getAs<LValueReferenceType>();
4968 
4969     // C++ [over.ics.ref]p3:
4970     //   Except for an implicit object parameter, for which see 13.3.1, a
4971     //   standard conversion sequence cannot be formed if it requires [...]
4972     //   binding an rvalue reference to an lvalue other than a function
4973     //   lvalue.
4974     // Note that the function case is not possible here.
4975     if (isRValRef && LValRefType) {
4976       ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4977       return ICS;
4978     }
4979 
4980     ICS.UserDefined.After.ReferenceBinding = true;
4981     ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4982     ICS.UserDefined.After.BindsToFunctionLvalue = false;
4983     ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4984     ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4985     ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4986   }
4987 
4988   return ICS;
4989 }
4990 
4991 static ImplicitConversionSequence
4992 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4993                       bool SuppressUserConversions,
4994                       bool InOverloadResolution,
4995                       bool AllowObjCWritebackConversion,
4996                       bool AllowExplicit = false);
4997 
4998 /// TryListConversion - Try to copy-initialize a value of type ToType from the
4999 /// initializer list From.
5000 static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)5001 TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
5002                   bool SuppressUserConversions,
5003                   bool InOverloadResolution,
5004                   bool AllowObjCWritebackConversion) {
5005   // C++11 [over.ics.list]p1:
5006   //   When an argument is an initializer list, it is not an expression and
5007   //   special rules apply for converting it to a parameter type.
5008 
5009   ImplicitConversionSequence Result;
5010   Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5011 
5012   // We need a complete type for what follows. Incomplete types can never be
5013   // initialized from init lists.
5014   if (!S.isCompleteType(From->getBeginLoc(), ToType))
5015     return Result;
5016 
5017   // Per DR1467:
5018   //   If the parameter type is a class X and the initializer list has a single
5019   //   element of type cv U, where U is X or a class derived from X, the
5020   //   implicit conversion sequence is the one required to convert the element
5021   //   to the parameter type.
5022   //
5023   //   Otherwise, if the parameter type is a character array [... ]
5024   //   and the initializer list has a single element that is an
5025   //   appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5026   //   implicit conversion sequence is the identity conversion.
5027   if (From->getNumInits() == 1) {
5028     if (ToType->isRecordType()) {
5029       QualType InitType = From->getInit(0)->getType();
5030       if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5031           S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5032         return TryCopyInitialization(S, From->getInit(0), ToType,
5033                                      SuppressUserConversions,
5034                                      InOverloadResolution,
5035                                      AllowObjCWritebackConversion);
5036     }
5037 
5038     if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5039       if (S.IsStringInit(From->getInit(0), AT)) {
5040         InitializedEntity Entity =
5041           InitializedEntity::InitializeParameter(S.Context, ToType,
5042                                                  /*Consumed=*/false);
5043         if (S.CanPerformCopyInitialization(Entity, From)) {
5044           Result.setStandard();
5045           Result.Standard.setAsIdentityConversion();
5046           Result.Standard.setFromType(ToType);
5047           Result.Standard.setAllToTypes(ToType);
5048           return Result;
5049         }
5050       }
5051     }
5052   }
5053 
5054   // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5055   // C++11 [over.ics.list]p2:
5056   //   If the parameter type is std::initializer_list<X> or "array of X" and
5057   //   all the elements can be implicitly converted to X, the implicit
5058   //   conversion sequence is the worst conversion necessary to convert an
5059   //   element of the list to X.
5060   //
5061   // C++14 [over.ics.list]p3:
5062   //   Otherwise, if the parameter type is "array of N X", if the initializer
5063   //   list has exactly N elements or if it has fewer than N elements and X is
5064   //   default-constructible, and if all the elements of the initializer list
5065   //   can be implicitly converted to X, the implicit conversion sequence is
5066   //   the worst conversion necessary to convert an element of the list to X.
5067   //
5068   // FIXME: We're missing a lot of these checks.
5069   bool toStdInitializerList = false;
5070   QualType X;
5071   if (ToType->isArrayType())
5072     X = S.Context.getAsArrayType(ToType)->getElementType();
5073   else
5074     toStdInitializerList = S.isStdInitializerList(ToType, &X);
5075   if (!X.isNull()) {
5076     for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5077       Expr *Init = From->getInit(i);
5078       ImplicitConversionSequence ICS =
5079           TryCopyInitialization(S, Init, X, SuppressUserConversions,
5080                                 InOverloadResolution,
5081                                 AllowObjCWritebackConversion);
5082       // If a single element isn't convertible, fail.
5083       if (ICS.isBad()) {
5084         Result = ICS;
5085         break;
5086       }
5087       // Otherwise, look for the worst conversion.
5088       if (Result.isBad() || CompareImplicitConversionSequences(
5089                                 S, From->getBeginLoc(), ICS, Result) ==
5090                                 ImplicitConversionSequence::Worse)
5091         Result = ICS;
5092     }
5093 
5094     // For an empty list, we won't have computed any conversion sequence.
5095     // Introduce the identity conversion sequence.
5096     if (From->getNumInits() == 0) {
5097       Result.setStandard();
5098       Result.Standard.setAsIdentityConversion();
5099       Result.Standard.setFromType(ToType);
5100       Result.Standard.setAllToTypes(ToType);
5101     }
5102 
5103     Result.setStdInitializerListElement(toStdInitializerList);
5104     return Result;
5105   }
5106 
5107   // C++14 [over.ics.list]p4:
5108   // C++11 [over.ics.list]p3:
5109   //   Otherwise, if the parameter is a non-aggregate class X and overload
5110   //   resolution chooses a single best constructor [...] the implicit
5111   //   conversion sequence is a user-defined conversion sequence. If multiple
5112   //   constructors are viable but none is better than the others, the
5113   //   implicit conversion sequence is a user-defined conversion sequence.
5114   if (ToType->isRecordType() && !ToType->isAggregateType()) {
5115     // This function can deal with initializer lists.
5116     return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5117                                     AllowedExplicit::None,
5118                                     InOverloadResolution, /*CStyle=*/false,
5119                                     AllowObjCWritebackConversion,
5120                                     /*AllowObjCConversionOnExplicit=*/false);
5121   }
5122 
5123   // C++14 [over.ics.list]p5:
5124   // C++11 [over.ics.list]p4:
5125   //   Otherwise, if the parameter has an aggregate type which can be
5126   //   initialized from the initializer list [...] the implicit conversion
5127   //   sequence is a user-defined conversion sequence.
5128   if (ToType->isAggregateType()) {
5129     // Type is an aggregate, argument is an init list. At this point it comes
5130     // down to checking whether the initialization works.
5131     // FIXME: Find out whether this parameter is consumed or not.
5132     InitializedEntity Entity =
5133         InitializedEntity::InitializeParameter(S.Context, ToType,
5134                                                /*Consumed=*/false);
5135     if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5136                                                                  From)) {
5137       Result.setUserDefined();
5138       Result.UserDefined.Before.setAsIdentityConversion();
5139       // Initializer lists don't have a type.
5140       Result.UserDefined.Before.setFromType(QualType());
5141       Result.UserDefined.Before.setAllToTypes(QualType());
5142 
5143       Result.UserDefined.After.setAsIdentityConversion();
5144       Result.UserDefined.After.setFromType(ToType);
5145       Result.UserDefined.After.setAllToTypes(ToType);
5146       Result.UserDefined.ConversionFunction = nullptr;
5147     }
5148     return Result;
5149   }
5150 
5151   // C++14 [over.ics.list]p6:
5152   // C++11 [over.ics.list]p5:
5153   //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5154   if (ToType->isReferenceType()) {
5155     // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5156     // mention initializer lists in any way. So we go by what list-
5157     // initialization would do and try to extrapolate from that.
5158 
5159     QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5160 
5161     // If the initializer list has a single element that is reference-related
5162     // to the parameter type, we initialize the reference from that.
5163     if (From->getNumInits() == 1) {
5164       Expr *Init = From->getInit(0);
5165 
5166       QualType T2 = Init->getType();
5167 
5168       // If the initializer is the address of an overloaded function, try
5169       // to resolve the overloaded function. If all goes well, T2 is the
5170       // type of the resulting function.
5171       if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5172         DeclAccessPair Found;
5173         if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5174                                    Init, ToType, false, Found))
5175           T2 = Fn->getType();
5176       }
5177 
5178       // Compute some basic properties of the types and the initializer.
5179       Sema::ReferenceCompareResult RefRelationship =
5180           S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5181 
5182       if (RefRelationship >= Sema::Ref_Related) {
5183         return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5184                                 SuppressUserConversions,
5185                                 /*AllowExplicit=*/false);
5186       }
5187     }
5188 
5189     // Otherwise, we bind the reference to a temporary created from the
5190     // initializer list.
5191     Result = TryListConversion(S, From, T1, SuppressUserConversions,
5192                                InOverloadResolution,
5193                                AllowObjCWritebackConversion);
5194     if (Result.isFailure())
5195       return Result;
5196     assert(!Result.isEllipsis() &&
5197            "Sub-initialization cannot result in ellipsis conversion.");
5198 
5199     // Can we even bind to a temporary?
5200     if (ToType->isRValueReferenceType() ||
5201         (T1.isConstQualified() && !T1.isVolatileQualified())) {
5202       StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5203                                             Result.UserDefined.After;
5204       SCS.ReferenceBinding = true;
5205       SCS.IsLvalueReference = ToType->isLValueReferenceType();
5206       SCS.BindsToRvalue = true;
5207       SCS.BindsToFunctionLvalue = false;
5208       SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5209       SCS.ObjCLifetimeConversionBinding = false;
5210     } else
5211       Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5212                     From, ToType);
5213     return Result;
5214   }
5215 
5216   // C++14 [over.ics.list]p7:
5217   // C++11 [over.ics.list]p6:
5218   //   Otherwise, if the parameter type is not a class:
5219   if (!ToType->isRecordType()) {
5220     //    - if the initializer list has one element that is not itself an
5221     //      initializer list, the implicit conversion sequence is the one
5222     //      required to convert the element to the parameter type.
5223     unsigned NumInits = From->getNumInits();
5224     if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5225       Result = TryCopyInitialization(S, From->getInit(0), ToType,
5226                                      SuppressUserConversions,
5227                                      InOverloadResolution,
5228                                      AllowObjCWritebackConversion);
5229     //    - if the initializer list has no elements, the implicit conversion
5230     //      sequence is the identity conversion.
5231     else if (NumInits == 0) {
5232       Result.setStandard();
5233       Result.Standard.setAsIdentityConversion();
5234       Result.Standard.setFromType(ToType);
5235       Result.Standard.setAllToTypes(ToType);
5236     }
5237     return Result;
5238   }
5239 
5240   // C++14 [over.ics.list]p8:
5241   // C++11 [over.ics.list]p7:
5242   //   In all cases other than those enumerated above, no conversion is possible
5243   return Result;
5244 }
5245 
5246 /// TryCopyInitialization - Try to copy-initialize a value of type
5247 /// ToType from the expression From. Return the implicit conversion
5248 /// sequence required to pass this argument, which may be a bad
5249 /// conversion sequence (meaning that the argument cannot be passed to
5250 /// a parameter of this type). If @p SuppressUserConversions, then we
5251 /// do not permit any user-defined conversion sequences.
5252 static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)5253 TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5254                       bool SuppressUserConversions,
5255                       bool InOverloadResolution,
5256                       bool AllowObjCWritebackConversion,
5257                       bool AllowExplicit) {
5258   if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5259     return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5260                              InOverloadResolution,AllowObjCWritebackConversion);
5261 
5262   if (ToType->isReferenceType())
5263     return TryReferenceInit(S, From, ToType,
5264                             /*FIXME:*/ From->getBeginLoc(),
5265                             SuppressUserConversions, AllowExplicit);
5266 
5267   return TryImplicitConversion(S, From, ToType,
5268                                SuppressUserConversions,
5269                                AllowedExplicit::None,
5270                                InOverloadResolution,
5271                                /*CStyle=*/false,
5272                                AllowObjCWritebackConversion,
5273                                /*AllowObjCConversionOnExplicit=*/false);
5274 }
5275 
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)5276 static bool TryCopyInitialization(const CanQualType FromQTy,
5277                                   const CanQualType ToQTy,
5278                                   Sema &S,
5279                                   SourceLocation Loc,
5280                                   ExprValueKind FromVK) {
5281   OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5282   ImplicitConversionSequence ICS =
5283     TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5284 
5285   return !ICS.isBad();
5286 }
5287 
5288 /// TryObjectArgumentInitialization - Try to initialize the object
5289 /// parameter of the given member function (@c Method) from the
5290 /// expression @p From.
5291 static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,SourceLocation Loc,QualType FromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)5292 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5293                                 Expr::Classification FromClassification,
5294                                 CXXMethodDecl *Method,
5295                                 CXXRecordDecl *ActingContext) {
5296   QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5297   // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5298   //                 const volatile object.
5299   Qualifiers Quals = Method->getMethodQualifiers();
5300   if (isa<CXXDestructorDecl>(Method)) {
5301     Quals.addConst();
5302     Quals.addVolatile();
5303   }
5304 
5305   QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5306 
5307   // Set up the conversion sequence as a "bad" conversion, to allow us
5308   // to exit early.
5309   ImplicitConversionSequence ICS;
5310 
5311   // We need to have an object of class type.
5312   if (const PointerType *PT = FromType->getAs<PointerType>()) {
5313     FromType = PT->getPointeeType();
5314 
5315     // When we had a pointer, it's implicitly dereferenced, so we
5316     // better have an lvalue.
5317     assert(FromClassification.isLValue());
5318   }
5319 
5320   assert(FromType->isRecordType());
5321 
5322   // C++0x [over.match.funcs]p4:
5323   //   For non-static member functions, the type of the implicit object
5324   //   parameter is
5325   //
5326   //     - "lvalue reference to cv X" for functions declared without a
5327   //        ref-qualifier or with the & ref-qualifier
5328   //     - "rvalue reference to cv X" for functions declared with the &&
5329   //        ref-qualifier
5330   //
5331   // where X is the class of which the function is a member and cv is the
5332   // cv-qualification on the member function declaration.
5333   //
5334   // However, when finding an implicit conversion sequence for the argument, we
5335   // are not allowed to perform user-defined conversions
5336   // (C++ [over.match.funcs]p5). We perform a simplified version of
5337   // reference binding here, that allows class rvalues to bind to
5338   // non-constant references.
5339 
5340   // First check the qualifiers.
5341   QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5342   if (ImplicitParamType.getCVRQualifiers()
5343                                     != FromTypeCanon.getLocalCVRQualifiers() &&
5344       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5345     ICS.setBad(BadConversionSequence::bad_qualifiers,
5346                FromType, ImplicitParamType);
5347     return ICS;
5348   }
5349 
5350   if (FromTypeCanon.hasAddressSpace()) {
5351     Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5352     Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5353     if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5354       ICS.setBad(BadConversionSequence::bad_qualifiers,
5355                  FromType, ImplicitParamType);
5356       return ICS;
5357     }
5358   }
5359 
5360   // Check that we have either the same type or a derived type. It
5361   // affects the conversion rank.
5362   QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5363   ImplicitConversionKind SecondKind;
5364   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5365     SecondKind = ICK_Identity;
5366   } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5367     SecondKind = ICK_Derived_To_Base;
5368   else {
5369     ICS.setBad(BadConversionSequence::unrelated_class,
5370                FromType, ImplicitParamType);
5371     return ICS;
5372   }
5373 
5374   // Check the ref-qualifier.
5375   switch (Method->getRefQualifier()) {
5376   case RQ_None:
5377     // Do nothing; we don't care about lvalueness or rvalueness.
5378     break;
5379 
5380   case RQ_LValue:
5381     if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5382       // non-const lvalue reference cannot bind to an rvalue
5383       ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5384                  ImplicitParamType);
5385       return ICS;
5386     }
5387     break;
5388 
5389   case RQ_RValue:
5390     if (!FromClassification.isRValue()) {
5391       // rvalue reference cannot bind to an lvalue
5392       ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5393                  ImplicitParamType);
5394       return ICS;
5395     }
5396     break;
5397   }
5398 
5399   // Success. Mark this as a reference binding.
5400   ICS.setStandard();
5401   ICS.Standard.setAsIdentityConversion();
5402   ICS.Standard.Second = SecondKind;
5403   ICS.Standard.setFromType(FromType);
5404   ICS.Standard.setAllToTypes(ImplicitParamType);
5405   ICS.Standard.ReferenceBinding = true;
5406   ICS.Standard.DirectBinding = true;
5407   ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5408   ICS.Standard.BindsToFunctionLvalue = false;
5409   ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5410   ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5411     = (Method->getRefQualifier() == RQ_None);
5412   return ICS;
5413 }
5414 
5415 /// PerformObjectArgumentInitialization - Perform initialization of
5416 /// the implicit object parameter for the given Method with the given
5417 /// expression.
5418 ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)5419 Sema::PerformObjectArgumentInitialization(Expr *From,
5420                                           NestedNameSpecifier *Qualifier,
5421                                           NamedDecl *FoundDecl,
5422                                           CXXMethodDecl *Method) {
5423   QualType FromRecordType, DestType;
5424   QualType ImplicitParamRecordType  =
5425     Method->getThisType()->castAs<PointerType>()->getPointeeType();
5426 
5427   Expr::Classification FromClassification;
5428   if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5429     FromRecordType = PT->getPointeeType();
5430     DestType = Method->getThisType();
5431     FromClassification = Expr::Classification::makeSimpleLValue();
5432   } else {
5433     FromRecordType = From->getType();
5434     DestType = ImplicitParamRecordType;
5435     FromClassification = From->Classify(Context);
5436 
5437     // When performing member access on an rvalue, materialize a temporary.
5438     if (From->isRValue()) {
5439       From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5440                                             Method->getRefQualifier() !=
5441                                                 RefQualifierKind::RQ_RValue);
5442     }
5443   }
5444 
5445   // Note that we always use the true parent context when performing
5446   // the actual argument initialization.
5447   ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5448       *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5449       Method->getParent());
5450   if (ICS.isBad()) {
5451     switch (ICS.Bad.Kind) {
5452     case BadConversionSequence::bad_qualifiers: {
5453       Qualifiers FromQs = FromRecordType.getQualifiers();
5454       Qualifiers ToQs = DestType.getQualifiers();
5455       unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5456       if (CVR) {
5457         Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5458             << Method->getDeclName() << FromRecordType << (CVR - 1)
5459             << From->getSourceRange();
5460         Diag(Method->getLocation(), diag::note_previous_decl)
5461           << Method->getDeclName();
5462         return ExprError();
5463       }
5464       break;
5465     }
5466 
5467     case BadConversionSequence::lvalue_ref_to_rvalue:
5468     case BadConversionSequence::rvalue_ref_to_lvalue: {
5469       bool IsRValueQualified =
5470         Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5471       Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5472           << Method->getDeclName() << FromClassification.isRValue()
5473           << IsRValueQualified;
5474       Diag(Method->getLocation(), diag::note_previous_decl)
5475         << Method->getDeclName();
5476       return ExprError();
5477     }
5478 
5479     case BadConversionSequence::no_conversion:
5480     case BadConversionSequence::unrelated_class:
5481       break;
5482     }
5483 
5484     return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5485            << ImplicitParamRecordType << FromRecordType
5486            << From->getSourceRange();
5487   }
5488 
5489   if (ICS.Standard.Second == ICK_Derived_To_Base) {
5490     ExprResult FromRes =
5491       PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5492     if (FromRes.isInvalid())
5493       return ExprError();
5494     From = FromRes.get();
5495   }
5496 
5497   if (!Context.hasSameType(From->getType(), DestType)) {
5498     CastKind CK;
5499     QualType PteeTy = DestType->getPointeeType();
5500     LangAS DestAS =
5501         PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5502     if (FromRecordType.getAddressSpace() != DestAS)
5503       CK = CK_AddressSpaceConversion;
5504     else
5505       CK = CK_NoOp;
5506     From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5507   }
5508   return From;
5509 }
5510 
5511 /// TryContextuallyConvertToBool - Attempt to contextually convert the
5512 /// expression From to bool (C++0x [conv]p3).
5513 static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)5514 TryContextuallyConvertToBool(Sema &S, Expr *From) {
5515   // C++ [dcl.init]/17.8:
5516   //   - Otherwise, if the initialization is direct-initialization, the source
5517   //     type is std::nullptr_t, and the destination type is bool, the initial
5518   //     value of the object being initialized is false.
5519   if (From->getType()->isNullPtrType())
5520     return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5521                                                         S.Context.BoolTy,
5522                                                         From->isGLValue());
5523 
5524   // All other direct-initialization of bool is equivalent to an implicit
5525   // conversion to bool in which explicit conversions are permitted.
5526   return TryImplicitConversion(S, From, S.Context.BoolTy,
5527                                /*SuppressUserConversions=*/false,
5528                                AllowedExplicit::Conversions,
5529                                /*InOverloadResolution=*/false,
5530                                /*CStyle=*/false,
5531                                /*AllowObjCWritebackConversion=*/false,
5532                                /*AllowObjCConversionOnExplicit=*/false);
5533 }
5534 
5535 /// PerformContextuallyConvertToBool - Perform a contextual conversion
5536 /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)5537 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5538   if (checkPlaceholderForOverload(*this, From))
5539     return ExprError();
5540 
5541   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5542   if (!ICS.isBad())
5543     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5544 
5545   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5546     return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5547            << From->getType() << From->getSourceRange();
5548   return ExprError();
5549 }
5550 
5551 /// Check that the specified conversion is permitted in a converted constant
5552 /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5553 /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)5554 static bool CheckConvertedConstantConversions(Sema &S,
5555                                               StandardConversionSequence &SCS) {
5556   // Since we know that the target type is an integral or unscoped enumeration
5557   // type, most conversion kinds are impossible. All possible First and Third
5558   // conversions are fine.
5559   switch (SCS.Second) {
5560   case ICK_Identity:
5561   case ICK_Integral_Promotion:
5562   case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5563   case ICK_Zero_Queue_Conversion:
5564     return true;
5565 
5566   case ICK_Boolean_Conversion:
5567     // Conversion from an integral or unscoped enumeration type to bool is
5568     // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5569     // conversion, so we allow it in a converted constant expression.
5570     //
5571     // FIXME: Per core issue 1407, we should not allow this, but that breaks
5572     // a lot of popular code. We should at least add a warning for this
5573     // (non-conforming) extension.
5574     return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5575            SCS.getToType(2)->isBooleanType();
5576 
5577   case ICK_Pointer_Conversion:
5578   case ICK_Pointer_Member:
5579     // C++1z: null pointer conversions and null member pointer conversions are
5580     // only permitted if the source type is std::nullptr_t.
5581     return SCS.getFromType()->isNullPtrType();
5582 
5583   case ICK_Floating_Promotion:
5584   case ICK_Complex_Promotion:
5585   case ICK_Floating_Conversion:
5586   case ICK_Complex_Conversion:
5587   case ICK_Floating_Integral:
5588   case ICK_Compatible_Conversion:
5589   case ICK_Derived_To_Base:
5590   case ICK_Vector_Conversion:
5591   case ICK_SVE_Vector_Conversion:
5592   case ICK_Vector_Splat:
5593   case ICK_Complex_Real:
5594   case ICK_Block_Pointer_Conversion:
5595   case ICK_TransparentUnionConversion:
5596   case ICK_Writeback_Conversion:
5597   case ICK_Zero_Event_Conversion:
5598   case ICK_C_Only_Conversion:
5599   case ICK_Incompatible_Pointer_Conversion:
5600     return false;
5601 
5602   case ICK_Lvalue_To_Rvalue:
5603   case ICK_Array_To_Pointer:
5604   case ICK_Function_To_Pointer:
5605     llvm_unreachable("found a first conversion kind in Second");
5606 
5607   case ICK_Function_Conversion:
5608   case ICK_Qualification:
5609     llvm_unreachable("found a third conversion kind in Second");
5610 
5611   case ICK_Num_Conversion_Kinds:
5612     break;
5613   }
5614 
5615   llvm_unreachable("unknown conversion kind");
5616 }
5617 
5618 /// CheckConvertedConstantExpression - Check that the expression From is a
5619 /// converted constant expression of type T, perform the conversion and produce
5620 /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Sema & S,Expr * From,QualType T,APValue & Value,Sema::CCEKind CCE,bool RequireInt,NamedDecl * Dest)5621 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5622                                                    QualType T, APValue &Value,
5623                                                    Sema::CCEKind CCE,
5624                                                    bool RequireInt,
5625                                                    NamedDecl *Dest) {
5626   assert(S.getLangOpts().CPlusPlus11 &&
5627          "converted constant expression outside C++11");
5628 
5629   if (checkPlaceholderForOverload(S, From))
5630     return ExprError();
5631 
5632   // C++1z [expr.const]p3:
5633   //  A converted constant expression of type T is an expression,
5634   //  implicitly converted to type T, where the converted
5635   //  expression is a constant expression and the implicit conversion
5636   //  sequence contains only [... list of conversions ...].
5637   // C++1z [stmt.if]p2:
5638   //  If the if statement is of the form if constexpr, the value of the
5639   //  condition shall be a contextually converted constant expression of type
5640   //  bool.
5641   ImplicitConversionSequence ICS =
5642       CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5643           ? TryContextuallyConvertToBool(S, From)
5644           : TryCopyInitialization(S, From, T,
5645                                   /*SuppressUserConversions=*/false,
5646                                   /*InOverloadResolution=*/false,
5647                                   /*AllowObjCWritebackConversion=*/false,
5648                                   /*AllowExplicit=*/false);
5649   StandardConversionSequence *SCS = nullptr;
5650   switch (ICS.getKind()) {
5651   case ImplicitConversionSequence::StandardConversion:
5652     SCS = &ICS.Standard;
5653     break;
5654   case ImplicitConversionSequence::UserDefinedConversion:
5655     if (T->isRecordType())
5656       SCS = &ICS.UserDefined.Before;
5657     else
5658       SCS = &ICS.UserDefined.After;
5659     break;
5660   case ImplicitConversionSequence::AmbiguousConversion:
5661   case ImplicitConversionSequence::BadConversion:
5662     if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5663       return S.Diag(From->getBeginLoc(),
5664                     diag::err_typecheck_converted_constant_expression)
5665              << From->getType() << From->getSourceRange() << T;
5666     return ExprError();
5667 
5668   case ImplicitConversionSequence::EllipsisConversion:
5669     llvm_unreachable("ellipsis conversion in converted constant expression");
5670   }
5671 
5672   // Check that we would only use permitted conversions.
5673   if (!CheckConvertedConstantConversions(S, *SCS)) {
5674     return S.Diag(From->getBeginLoc(),
5675                   diag::err_typecheck_converted_constant_expression_disallowed)
5676            << From->getType() << From->getSourceRange() << T;
5677   }
5678   // [...] and where the reference binding (if any) binds directly.
5679   if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5680     return S.Diag(From->getBeginLoc(),
5681                   diag::err_typecheck_converted_constant_expression_indirect)
5682            << From->getType() << From->getSourceRange() << T;
5683   }
5684 
5685   // Usually we can simply apply the ImplicitConversionSequence we formed
5686   // earlier, but that's not guaranteed to work when initializing an object of
5687   // class type.
5688   ExprResult Result;
5689   if (T->isRecordType()) {
5690     assert(CCE == Sema::CCEK_TemplateArg &&
5691            "unexpected class type converted constant expr");
5692     Result = S.PerformCopyInitialization(
5693         InitializedEntity::InitializeTemplateParameter(
5694             T, cast<NonTypeTemplateParmDecl>(Dest)),
5695         SourceLocation(), From);
5696   } else {
5697     Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5698   }
5699   if (Result.isInvalid())
5700     return Result;
5701 
5702   // C++2a [intro.execution]p5:
5703   //   A full-expression is [...] a constant-expression [...]
5704   Result =
5705       S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5706                             /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5707   if (Result.isInvalid())
5708     return Result;
5709 
5710   // Check for a narrowing implicit conversion.
5711   bool ReturnPreNarrowingValue = false;
5712   APValue PreNarrowingValue;
5713   QualType PreNarrowingType;
5714   switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5715                                 PreNarrowingType)) {
5716   case NK_Dependent_Narrowing:
5717     // Implicit conversion to a narrower type, but the expression is
5718     // value-dependent so we can't tell whether it's actually narrowing.
5719   case NK_Variable_Narrowing:
5720     // Implicit conversion to a narrower type, and the value is not a constant
5721     // expression. We'll diagnose this in a moment.
5722   case NK_Not_Narrowing:
5723     break;
5724 
5725   case NK_Constant_Narrowing:
5726     if (CCE == Sema::CCEK_ArrayBound &&
5727         PreNarrowingType->isIntegralOrEnumerationType() &&
5728         PreNarrowingValue.isInt()) {
5729       // Don't diagnose array bound narrowing here; we produce more precise
5730       // errors by allowing the un-narrowed value through.
5731       ReturnPreNarrowingValue = true;
5732       break;
5733     }
5734     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5735         << CCE << /*Constant*/ 1
5736         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5737     break;
5738 
5739   case NK_Type_Narrowing:
5740     // FIXME: It would be better to diagnose that the expression is not a
5741     // constant expression.
5742     S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5743         << CCE << /*Constant*/ 0 << From->getType() << T;
5744     break;
5745   }
5746 
5747   if (Result.get()->isValueDependent()) {
5748     Value = APValue();
5749     return Result;
5750   }
5751 
5752   // Check the expression is a constant expression.
5753   SmallVector<PartialDiagnosticAt, 8> Notes;
5754   Expr::EvalResult Eval;
5755   Eval.Diag = &Notes;
5756 
5757   ConstantExprKind Kind;
5758   if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5759     Kind = ConstantExprKind::ClassTemplateArgument;
5760   else if (CCE == Sema::CCEK_TemplateArg)
5761     Kind = ConstantExprKind::NonClassTemplateArgument;
5762   else
5763     Kind = ConstantExprKind::Normal;
5764 
5765   if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5766       (RequireInt && !Eval.Val.isInt())) {
5767     // The expression can't be folded, so we can't keep it at this position in
5768     // the AST.
5769     Result = ExprError();
5770   } else {
5771     Value = Eval.Val;
5772 
5773     if (Notes.empty()) {
5774       // It's a constant expression.
5775       Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5776       if (ReturnPreNarrowingValue)
5777         Value = std::move(PreNarrowingValue);
5778       return E;
5779     }
5780   }
5781 
5782   // It's not a constant expression. Produce an appropriate diagnostic.
5783   if (Notes.size() == 1 &&
5784       Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5785     S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5786   } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5787                                    diag::note_constexpr_invalid_template_arg) {
5788     Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5789     for (unsigned I = 0; I < Notes.size(); ++I)
5790       S.Diag(Notes[I].first, Notes[I].second);
5791   } else {
5792     S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5793         << CCE << From->getSourceRange();
5794     for (unsigned I = 0; I < Notes.size(); ++I)
5795       S.Diag(Notes[I].first, Notes[I].second);
5796   }
5797   return ExprError();
5798 }
5799 
CheckConvertedConstantExpression(Expr * From,QualType T,APValue & Value,CCEKind CCE,NamedDecl * Dest)5800 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5801                                                   APValue &Value, CCEKind CCE,
5802                                                   NamedDecl *Dest) {
5803   return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5804                                             Dest);
5805 }
5806 
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)5807 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5808                                                   llvm::APSInt &Value,
5809                                                   CCEKind CCE) {
5810   assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5811 
5812   APValue V;
5813   auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5814                                               /*Dest=*/nullptr);
5815   if (!R.isInvalid() && !R.get()->isValueDependent())
5816     Value = V.getInt();
5817   return R;
5818 }
5819 
5820 
5821 /// dropPointerConversions - If the given standard conversion sequence
5822 /// involves any pointer conversions, remove them.  This may change
5823 /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)5824 static void dropPointerConversion(StandardConversionSequence &SCS) {
5825   if (SCS.Second == ICK_Pointer_Conversion) {
5826     SCS.Second = ICK_Identity;
5827     SCS.Third = ICK_Identity;
5828     SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5829   }
5830 }
5831 
5832 /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5833 /// convert the expression From to an Objective-C pointer type.
5834 static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)5835 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5836   // Do an implicit conversion to 'id'.
5837   QualType Ty = S.Context.getObjCIdType();
5838   ImplicitConversionSequence ICS
5839     = TryImplicitConversion(S, From, Ty,
5840                             // FIXME: Are these flags correct?
5841                             /*SuppressUserConversions=*/false,
5842                             AllowedExplicit::Conversions,
5843                             /*InOverloadResolution=*/false,
5844                             /*CStyle=*/false,
5845                             /*AllowObjCWritebackConversion=*/false,
5846                             /*AllowObjCConversionOnExplicit=*/true);
5847 
5848   // Strip off any final conversions to 'id'.
5849   switch (ICS.getKind()) {
5850   case ImplicitConversionSequence::BadConversion:
5851   case ImplicitConversionSequence::AmbiguousConversion:
5852   case ImplicitConversionSequence::EllipsisConversion:
5853     break;
5854 
5855   case ImplicitConversionSequence::UserDefinedConversion:
5856     dropPointerConversion(ICS.UserDefined.After);
5857     break;
5858 
5859   case ImplicitConversionSequence::StandardConversion:
5860     dropPointerConversion(ICS.Standard);
5861     break;
5862   }
5863 
5864   return ICS;
5865 }
5866 
5867 /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5868 /// conversion of the expression From to an Objective-C pointer type.
5869 /// Returns a valid but null ExprResult if no conversion sequence exists.
PerformContextuallyConvertToObjCPointer(Expr * From)5870 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5871   if (checkPlaceholderForOverload(*this, From))
5872     return ExprError();
5873 
5874   QualType Ty = Context.getObjCIdType();
5875   ImplicitConversionSequence ICS =
5876     TryContextuallyConvertToObjCPointer(*this, From);
5877   if (!ICS.isBad())
5878     return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5879   return ExprResult();
5880 }
5881 
5882 /// Determine whether the provided type is an integral type, or an enumeration
5883 /// type of a permitted flavor.
match(QualType T)5884 bool Sema::ICEConvertDiagnoser::match(QualType T) {
5885   return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5886                                  : T->isIntegralOrUnscopedEnumerationType();
5887 }
5888 
5889 static ExprResult
diagnoseAmbiguousConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter,QualType T,UnresolvedSetImpl & ViableConversions)5890 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5891                             Sema::ContextualImplicitConverter &Converter,
5892                             QualType T, UnresolvedSetImpl &ViableConversions) {
5893 
5894   if (Converter.Suppress)
5895     return ExprError();
5896 
5897   Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5898   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5899     CXXConversionDecl *Conv =
5900         cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5901     QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5902     Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5903   }
5904   return From;
5905 }
5906 
5907 static bool
diagnoseNoViableConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,UnresolvedSetImpl & ExplicitConversions)5908 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5909                            Sema::ContextualImplicitConverter &Converter,
5910                            QualType T, bool HadMultipleCandidates,
5911                            UnresolvedSetImpl &ExplicitConversions) {
5912   if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5913     DeclAccessPair Found = ExplicitConversions[0];
5914     CXXConversionDecl *Conversion =
5915         cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5916 
5917     // The user probably meant to invoke the given explicit
5918     // conversion; use it.
5919     QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5920     std::string TypeStr;
5921     ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5922 
5923     Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5924         << FixItHint::CreateInsertion(From->getBeginLoc(),
5925                                       "static_cast<" + TypeStr + ">(")
5926         << FixItHint::CreateInsertion(
5927                SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5928     Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5929 
5930     // If we aren't in a SFINAE context, build a call to the
5931     // explicit conversion function.
5932     if (SemaRef.isSFINAEContext())
5933       return true;
5934 
5935     SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5936     ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5937                                                        HadMultipleCandidates);
5938     if (Result.isInvalid())
5939       return true;
5940     // Record usage of conversion in an implicit cast.
5941     From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5942                                     CK_UserDefinedConversion, Result.get(),
5943                                     nullptr, Result.get()->getValueKind(),
5944                                     SemaRef.CurFPFeatureOverrides());
5945   }
5946   return false;
5947 }
5948 
recordConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,DeclAccessPair & Found)5949 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5950                              Sema::ContextualImplicitConverter &Converter,
5951                              QualType T, bool HadMultipleCandidates,
5952                              DeclAccessPair &Found) {
5953   CXXConversionDecl *Conversion =
5954       cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5955   SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5956 
5957   QualType ToType = Conversion->getConversionType().getNonReferenceType();
5958   if (!Converter.SuppressConversion) {
5959     if (SemaRef.isSFINAEContext())
5960       return true;
5961 
5962     Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5963         << From->getSourceRange();
5964   }
5965 
5966   ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5967                                                      HadMultipleCandidates);
5968   if (Result.isInvalid())
5969     return true;
5970   // Record usage of conversion in an implicit cast.
5971   From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5972                                   CK_UserDefinedConversion, Result.get(),
5973                                   nullptr, Result.get()->getValueKind(),
5974                                   SemaRef.CurFPFeatureOverrides());
5975   return false;
5976 }
5977 
finishContextualImplicitConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter)5978 static ExprResult finishContextualImplicitConversion(
5979     Sema &SemaRef, SourceLocation Loc, Expr *From,
5980     Sema::ContextualImplicitConverter &Converter) {
5981   if (!Converter.match(From->getType()) && !Converter.Suppress)
5982     Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5983         << From->getSourceRange();
5984 
5985   return SemaRef.DefaultLvalueConversion(From);
5986 }
5987 
5988 static void
collectViableConversionCandidates(Sema & SemaRef,Expr * From,QualType ToType,UnresolvedSetImpl & ViableConversions,OverloadCandidateSet & CandidateSet)5989 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5990                                   UnresolvedSetImpl &ViableConversions,
5991                                   OverloadCandidateSet &CandidateSet) {
5992   for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5993     DeclAccessPair FoundDecl = ViableConversions[I];
5994     NamedDecl *D = FoundDecl.getDecl();
5995     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5996     if (isa<UsingShadowDecl>(D))
5997       D = cast<UsingShadowDecl>(D)->getTargetDecl();
5998 
5999     CXXConversionDecl *Conv;
6000     FunctionTemplateDecl *ConvTemplate;
6001     if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
6002       Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6003     else
6004       Conv = cast<CXXConversionDecl>(D);
6005 
6006     if (ConvTemplate)
6007       SemaRef.AddTemplateConversionCandidate(
6008           ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6009           /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6010     else
6011       SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6012                                      ToType, CandidateSet,
6013                                      /*AllowObjCConversionOnExplicit=*/false,
6014                                      /*AllowExplicit*/ true);
6015   }
6016 }
6017 
6018 /// Attempt to convert the given expression to a type which is accepted
6019 /// by the given converter.
6020 ///
6021 /// This routine will attempt to convert an expression of class type to a
6022 /// type accepted by the specified converter. In C++11 and before, the class
6023 /// must have a single non-explicit conversion function converting to a matching
6024 /// type. In C++1y, there can be multiple such conversion functions, but only
6025 /// one target type.
6026 ///
6027 /// \param Loc The source location of the construct that requires the
6028 /// conversion.
6029 ///
6030 /// \param From The expression we're converting from.
6031 ///
6032 /// \param Converter Used to control and diagnose the conversion process.
6033 ///
6034 /// \returns The expression, converted to an integral or enumeration type if
6035 /// successful.
PerformContextualImplicitConversion(SourceLocation Loc,Expr * From,ContextualImplicitConverter & Converter)6036 ExprResult Sema::PerformContextualImplicitConversion(
6037     SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6038   // We can't perform any more checking for type-dependent expressions.
6039   if (From->isTypeDependent())
6040     return From;
6041 
6042   // Process placeholders immediately.
6043   if (From->hasPlaceholderType()) {
6044     ExprResult result = CheckPlaceholderExpr(From);
6045     if (result.isInvalid())
6046       return result;
6047     From = result.get();
6048   }
6049 
6050   // If the expression already has a matching type, we're golden.
6051   QualType T = From->getType();
6052   if (Converter.match(T))
6053     return DefaultLvalueConversion(From);
6054 
6055   // FIXME: Check for missing '()' if T is a function type?
6056 
6057   // We can only perform contextual implicit conversions on objects of class
6058   // type.
6059   const RecordType *RecordTy = T->getAs<RecordType>();
6060   if (!RecordTy || !getLangOpts().CPlusPlus) {
6061     if (!Converter.Suppress)
6062       Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6063     return From;
6064   }
6065 
6066   // We must have a complete class type.
6067   struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6068     ContextualImplicitConverter &Converter;
6069     Expr *From;
6070 
6071     TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6072         : Converter(Converter), From(From) {}
6073 
6074     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6075       Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6076     }
6077   } IncompleteDiagnoser(Converter, From);
6078 
6079   if (Converter.Suppress ? !isCompleteType(Loc, T)
6080                          : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6081     return From;
6082 
6083   // Look for a conversion to an integral or enumeration type.
6084   UnresolvedSet<4>
6085       ViableConversions; // These are *potentially* viable in C++1y.
6086   UnresolvedSet<4> ExplicitConversions;
6087   const auto &Conversions =
6088       cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6089 
6090   bool HadMultipleCandidates =
6091       (std::distance(Conversions.begin(), Conversions.end()) > 1);
6092 
6093   // To check that there is only one target type, in C++1y:
6094   QualType ToType;
6095   bool HasUniqueTargetType = true;
6096 
6097   // Collect explicit or viable (potentially in C++1y) conversions.
6098   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6099     NamedDecl *D = (*I)->getUnderlyingDecl();
6100     CXXConversionDecl *Conversion;
6101     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6102     if (ConvTemplate) {
6103       if (getLangOpts().CPlusPlus14)
6104         Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6105       else
6106         continue; // C++11 does not consider conversion operator templates(?).
6107     } else
6108       Conversion = cast<CXXConversionDecl>(D);
6109 
6110     assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
6111            "Conversion operator templates are considered potentially "
6112            "viable in C++1y");
6113 
6114     QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6115     if (Converter.match(CurToType) || ConvTemplate) {
6116 
6117       if (Conversion->isExplicit()) {
6118         // FIXME: For C++1y, do we need this restriction?
6119         // cf. diagnoseNoViableConversion()
6120         if (!ConvTemplate)
6121           ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6122       } else {
6123         if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6124           if (ToType.isNull())
6125             ToType = CurToType.getUnqualifiedType();
6126           else if (HasUniqueTargetType &&
6127                    (CurToType.getUnqualifiedType() != ToType))
6128             HasUniqueTargetType = false;
6129         }
6130         ViableConversions.addDecl(I.getDecl(), I.getAccess());
6131       }
6132     }
6133   }
6134 
6135   if (getLangOpts().CPlusPlus14) {
6136     // C++1y [conv]p6:
6137     // ... An expression e of class type E appearing in such a context
6138     // is said to be contextually implicitly converted to a specified
6139     // type T and is well-formed if and only if e can be implicitly
6140     // converted to a type T that is determined as follows: E is searched
6141     // for conversion functions whose return type is cv T or reference to
6142     // cv T such that T is allowed by the context. There shall be
6143     // exactly one such T.
6144 
6145     // If no unique T is found:
6146     if (ToType.isNull()) {
6147       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6148                                      HadMultipleCandidates,
6149                                      ExplicitConversions))
6150         return ExprError();
6151       return finishContextualImplicitConversion(*this, Loc, From, Converter);
6152     }
6153 
6154     // If more than one unique Ts are found:
6155     if (!HasUniqueTargetType)
6156       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6157                                          ViableConversions);
6158 
6159     // If one unique T is found:
6160     // First, build a candidate set from the previously recorded
6161     // potentially viable conversions.
6162     OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6163     collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6164                                       CandidateSet);
6165 
6166     // Then, perform overload resolution over the candidate set.
6167     OverloadCandidateSet::iterator Best;
6168     switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6169     case OR_Success: {
6170       // Apply this conversion.
6171       DeclAccessPair Found =
6172           DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6173       if (recordConversion(*this, Loc, From, Converter, T,
6174                            HadMultipleCandidates, Found))
6175         return ExprError();
6176       break;
6177     }
6178     case OR_Ambiguous:
6179       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6180                                          ViableConversions);
6181     case OR_No_Viable_Function:
6182       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6183                                      HadMultipleCandidates,
6184                                      ExplicitConversions))
6185         return ExprError();
6186       LLVM_FALLTHROUGH;
6187     case OR_Deleted:
6188       // We'll complain below about a non-integral condition type.
6189       break;
6190     }
6191   } else {
6192     switch (ViableConversions.size()) {
6193     case 0: {
6194       if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6195                                      HadMultipleCandidates,
6196                                      ExplicitConversions))
6197         return ExprError();
6198 
6199       // We'll complain below about a non-integral condition type.
6200       break;
6201     }
6202     case 1: {
6203       // Apply this conversion.
6204       DeclAccessPair Found = ViableConversions[0];
6205       if (recordConversion(*this, Loc, From, Converter, T,
6206                            HadMultipleCandidates, Found))
6207         return ExprError();
6208       break;
6209     }
6210     default:
6211       return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6212                                          ViableConversions);
6213     }
6214   }
6215 
6216   return finishContextualImplicitConversion(*this, Loc, From, Converter);
6217 }
6218 
6219 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6220 /// an acceptable non-member overloaded operator for a call whose
6221 /// arguments have types T1 (and, if non-empty, T2). This routine
6222 /// implements the check in C++ [over.match.oper]p3b2 concerning
6223 /// enumeration types.
IsAcceptableNonMemberOperatorCandidate(ASTContext & Context,FunctionDecl * Fn,ArrayRef<Expr * > Args)6224 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6225                                                    FunctionDecl *Fn,
6226                                                    ArrayRef<Expr *> Args) {
6227   QualType T1 = Args[0]->getType();
6228   QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6229 
6230   if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6231     return true;
6232 
6233   if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6234     return true;
6235 
6236   const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6237   if (Proto->getNumParams() < 1)
6238     return false;
6239 
6240   if (T1->isEnumeralType()) {
6241     QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6242     if (Context.hasSameUnqualifiedType(T1, ArgType))
6243       return true;
6244   }
6245 
6246   if (Proto->getNumParams() < 2)
6247     return false;
6248 
6249   if (!T2.isNull() && T2->isEnumeralType()) {
6250     QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6251     if (Context.hasSameUnqualifiedType(T2, ArgType))
6252       return true;
6253   }
6254 
6255   return false;
6256 }
6257 
6258 /// AddOverloadCandidate - Adds the given function to the set of
6259 /// candidate functions, using the given function call arguments.  If
6260 /// @p SuppressUserConversions, then don't allow user-defined
6261 /// conversions via constructors or conversion operators.
6262 ///
6263 /// \param PartialOverloading true if we are performing "partial" overloading
6264 /// based on an incomplete set of function arguments. This feature is used by
6265 /// code completion.
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,bool AllowExplicitConversions,ADLCallKind IsADLCandidate,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)6266 void Sema::AddOverloadCandidate(
6267     FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6268     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6269     bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6270     ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6271     OverloadCandidateParamOrder PO) {
6272   const FunctionProtoType *Proto
6273     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6274   assert(Proto && "Functions without a prototype cannot be overloaded");
6275   assert(!Function->getDescribedFunctionTemplate() &&
6276          "Use AddTemplateOverloadCandidate for function templates");
6277 
6278   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6279     if (!isa<CXXConstructorDecl>(Method)) {
6280       // If we get here, it's because we're calling a member function
6281       // that is named without a member access expression (e.g.,
6282       // "this->f") that was either written explicitly or created
6283       // implicitly. This can happen with a qualified call to a member
6284       // function, e.g., X::f(). We use an empty type for the implied
6285       // object argument (C++ [over.call.func]p3), and the acting context
6286       // is irrelevant.
6287       AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6288                          Expr::Classification::makeSimpleLValue(), Args,
6289                          CandidateSet, SuppressUserConversions,
6290                          PartialOverloading, EarlyConversions, PO);
6291       return;
6292     }
6293     // We treat a constructor like a non-member function, since its object
6294     // argument doesn't participate in overload resolution.
6295   }
6296 
6297   if (!CandidateSet.isNewCandidate(Function, PO))
6298     return;
6299 
6300   // C++11 [class.copy]p11: [DR1402]
6301   //   A defaulted move constructor that is defined as deleted is ignored by
6302   //   overload resolution.
6303   CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6304   if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6305       Constructor->isMoveConstructor())
6306     return;
6307 
6308   // Overload resolution is always an unevaluated context.
6309   EnterExpressionEvaluationContext Unevaluated(
6310       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6311 
6312   // C++ [over.match.oper]p3:
6313   //   if no operand has a class type, only those non-member functions in the
6314   //   lookup set that have a first parameter of type T1 or "reference to
6315   //   (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6316   //   is a right operand) a second parameter of type T2 or "reference to
6317   //   (possibly cv-qualified) T2", when T2 is an enumeration type, are
6318   //   candidate functions.
6319   if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6320       !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6321     return;
6322 
6323   // Add this candidate
6324   OverloadCandidate &Candidate =
6325       CandidateSet.addCandidate(Args.size(), EarlyConversions);
6326   Candidate.FoundDecl = FoundDecl;
6327   Candidate.Function = Function;
6328   Candidate.Viable = true;
6329   Candidate.RewriteKind =
6330       CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6331   Candidate.IsSurrogate = false;
6332   Candidate.IsADLCandidate = IsADLCandidate;
6333   Candidate.IgnoreObjectArgument = false;
6334   Candidate.ExplicitCallArguments = Args.size();
6335 
6336   // Explicit functions are not actually candidates at all if we're not
6337   // allowing them in this context, but keep them around so we can point
6338   // to them in diagnostics.
6339   if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6340     Candidate.Viable = false;
6341     Candidate.FailureKind = ovl_fail_explicit;
6342     return;
6343   }
6344 
6345   if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6346       !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6347     Candidate.Viable = false;
6348     Candidate.FailureKind = ovl_non_default_multiversion_function;
6349     return;
6350   }
6351 
6352   if (Constructor) {
6353     // C++ [class.copy]p3:
6354     //   A member function template is never instantiated to perform the copy
6355     //   of a class object to an object of its class type.
6356     QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6357     if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6358         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6359          IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6360                        ClassType))) {
6361       Candidate.Viable = false;
6362       Candidate.FailureKind = ovl_fail_illegal_constructor;
6363       return;
6364     }
6365 
6366     // C++ [over.match.funcs]p8: (proposed DR resolution)
6367     //   A constructor inherited from class type C that has a first parameter
6368     //   of type "reference to P" (including such a constructor instantiated
6369     //   from a template) is excluded from the set of candidate functions when
6370     //   constructing an object of type cv D if the argument list has exactly
6371     //   one argument and D is reference-related to P and P is reference-related
6372     //   to C.
6373     auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6374     if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6375         Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6376       QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6377       QualType C = Context.getRecordType(Constructor->getParent());
6378       QualType D = Context.getRecordType(Shadow->getParent());
6379       SourceLocation Loc = Args.front()->getExprLoc();
6380       if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6381           (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6382         Candidate.Viable = false;
6383         Candidate.FailureKind = ovl_fail_inhctor_slice;
6384         return;
6385       }
6386     }
6387 
6388     // Check that the constructor is capable of constructing an object in the
6389     // destination address space.
6390     if (!Qualifiers::isAddressSpaceSupersetOf(
6391             Constructor->getMethodQualifiers().getAddressSpace(),
6392             CandidateSet.getDestAS())) {
6393       Candidate.Viable = false;
6394       Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6395     }
6396   }
6397 
6398   unsigned NumParams = Proto->getNumParams();
6399 
6400   // (C++ 13.3.2p2): A candidate function having fewer than m
6401   // parameters is viable only if it has an ellipsis in its parameter
6402   // list (8.3.5).
6403   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6404       !Proto->isVariadic()) {
6405     Candidate.Viable = false;
6406     Candidate.FailureKind = ovl_fail_too_many_arguments;
6407     return;
6408   }
6409 
6410   // (C++ 13.3.2p2): A candidate function having more than m parameters
6411   // is viable only if the (m+1)st parameter has a default argument
6412   // (8.3.6). For the purposes of overload resolution, the
6413   // parameter list is truncated on the right, so that there are
6414   // exactly m parameters.
6415   unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6416   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6417     // Not enough arguments.
6418     Candidate.Viable = false;
6419     Candidate.FailureKind = ovl_fail_too_few_arguments;
6420     return;
6421   }
6422 
6423   // (CUDA B.1): Check for invalid calls between targets.
6424   if (getLangOpts().CUDA)
6425     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6426       // Skip the check for callers that are implicit members, because in this
6427       // case we may not yet know what the member's target is; the target is
6428       // inferred for the member automatically, based on the bases and fields of
6429       // the class.
6430       if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6431         Candidate.Viable = false;
6432         Candidate.FailureKind = ovl_fail_bad_target;
6433         return;
6434       }
6435 
6436   if (Function->getTrailingRequiresClause()) {
6437     ConstraintSatisfaction Satisfaction;
6438     if (CheckFunctionConstraints(Function, Satisfaction) ||
6439         !Satisfaction.IsSatisfied) {
6440       Candidate.Viable = false;
6441       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6442       return;
6443     }
6444   }
6445 
6446   // Determine the implicit conversion sequences for each of the
6447   // arguments.
6448   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6449     unsigned ConvIdx =
6450         PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6451     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6452       // We already formed a conversion sequence for this parameter during
6453       // template argument deduction.
6454     } else if (ArgIdx < NumParams) {
6455       // (C++ 13.3.2p3): for F to be a viable function, there shall
6456       // exist for each argument an implicit conversion sequence
6457       // (13.3.3.1) that converts that argument to the corresponding
6458       // parameter of F.
6459       QualType ParamType = Proto->getParamType(ArgIdx);
6460       Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6461           *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6462           /*InOverloadResolution=*/true,
6463           /*AllowObjCWritebackConversion=*/
6464           getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6465       if (Candidate.Conversions[ConvIdx].isBad()) {
6466         Candidate.Viable = false;
6467         Candidate.FailureKind = ovl_fail_bad_conversion;
6468         return;
6469       }
6470     } else {
6471       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6472       // argument for which there is no corresponding parameter is
6473       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6474       Candidate.Conversions[ConvIdx].setEllipsis();
6475     }
6476   }
6477 
6478   if (EnableIfAttr *FailedAttr =
6479           CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6480     Candidate.Viable = false;
6481     Candidate.FailureKind = ovl_fail_enable_if;
6482     Candidate.DeductionFailure.Data = FailedAttr;
6483     return;
6484   }
6485 }
6486 
6487 ObjCMethodDecl *
SelectBestMethod(Selector Sel,MultiExprArg Args,bool IsInstance,SmallVectorImpl<ObjCMethodDecl * > & Methods)6488 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6489                        SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6490   if (Methods.size() <= 1)
6491     return nullptr;
6492 
6493   for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6494     bool Match = true;
6495     ObjCMethodDecl *Method = Methods[b];
6496     unsigned NumNamedArgs = Sel.getNumArgs();
6497     // Method might have more arguments than selector indicates. This is due
6498     // to addition of c-style arguments in method.
6499     if (Method->param_size() > NumNamedArgs)
6500       NumNamedArgs = Method->param_size();
6501     if (Args.size() < NumNamedArgs)
6502       continue;
6503 
6504     for (unsigned i = 0; i < NumNamedArgs; i++) {
6505       // We can't do any type-checking on a type-dependent argument.
6506       if (Args[i]->isTypeDependent()) {
6507         Match = false;
6508         break;
6509       }
6510 
6511       ParmVarDecl *param = Method->parameters()[i];
6512       Expr *argExpr = Args[i];
6513       assert(argExpr && "SelectBestMethod(): missing expression");
6514 
6515       // Strip the unbridged-cast placeholder expression off unless it's
6516       // a consumed argument.
6517       if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6518           !param->hasAttr<CFConsumedAttr>())
6519         argExpr = stripARCUnbridgedCast(argExpr);
6520 
6521       // If the parameter is __unknown_anytype, move on to the next method.
6522       if (param->getType() == Context.UnknownAnyTy) {
6523         Match = false;
6524         break;
6525       }
6526 
6527       ImplicitConversionSequence ConversionState
6528         = TryCopyInitialization(*this, argExpr, param->getType(),
6529                                 /*SuppressUserConversions*/false,
6530                                 /*InOverloadResolution=*/true,
6531                                 /*AllowObjCWritebackConversion=*/
6532                                 getLangOpts().ObjCAutoRefCount,
6533                                 /*AllowExplicit*/false);
6534       // This function looks for a reasonably-exact match, so we consider
6535       // incompatible pointer conversions to be a failure here.
6536       if (ConversionState.isBad() ||
6537           (ConversionState.isStandard() &&
6538            ConversionState.Standard.Second ==
6539                ICK_Incompatible_Pointer_Conversion)) {
6540         Match = false;
6541         break;
6542       }
6543     }
6544     // Promote additional arguments to variadic methods.
6545     if (Match && Method->isVariadic()) {
6546       for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6547         if (Args[i]->isTypeDependent()) {
6548           Match = false;
6549           break;
6550         }
6551         ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6552                                                           nullptr);
6553         if (Arg.isInvalid()) {
6554           Match = false;
6555           break;
6556         }
6557       }
6558     } else {
6559       // Check for extra arguments to non-variadic methods.
6560       if (Args.size() != NumNamedArgs)
6561         Match = false;
6562       else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6563         // Special case when selectors have no argument. In this case, select
6564         // one with the most general result type of 'id'.
6565         for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6566           QualType ReturnT = Methods[b]->getReturnType();
6567           if (ReturnT->isObjCIdType())
6568             return Methods[b];
6569         }
6570       }
6571     }
6572 
6573     if (Match)
6574       return Method;
6575   }
6576   return nullptr;
6577 }
6578 
convertArgsForAvailabilityChecks(Sema & S,FunctionDecl * Function,Expr * ThisArg,SourceLocation CallLoc,ArrayRef<Expr * > Args,Sema::SFINAETrap & Trap,bool MissingImplicitThis,Expr * & ConvertedThis,SmallVectorImpl<Expr * > & ConvertedArgs)6579 static bool convertArgsForAvailabilityChecks(
6580     Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6581     ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6582     Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6583   if (ThisArg) {
6584     CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6585     assert(!isa<CXXConstructorDecl>(Method) &&
6586            "Shouldn't have `this` for ctors!");
6587     assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
6588     ExprResult R = S.PerformObjectArgumentInitialization(
6589         ThisArg, /*Qualifier=*/nullptr, Method, Method);
6590     if (R.isInvalid())
6591       return false;
6592     ConvertedThis = R.get();
6593   } else {
6594     if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6595       (void)MD;
6596       assert((MissingImplicitThis || MD->isStatic() ||
6597               isa<CXXConstructorDecl>(MD)) &&
6598              "Expected `this` for non-ctor instance methods");
6599     }
6600     ConvertedThis = nullptr;
6601   }
6602 
6603   // Ignore any variadic arguments. Converting them is pointless, since the
6604   // user can't refer to them in the function condition.
6605   unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6606 
6607   // Convert the arguments.
6608   for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6609     ExprResult R;
6610     R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6611                                         S.Context, Function->getParamDecl(I)),
6612                                     SourceLocation(), Args[I]);
6613 
6614     if (R.isInvalid())
6615       return false;
6616 
6617     ConvertedArgs.push_back(R.get());
6618   }
6619 
6620   if (Trap.hasErrorOccurred())
6621     return false;
6622 
6623   // Push default arguments if needed.
6624   if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6625     for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6626       ParmVarDecl *P = Function->getParamDecl(i);
6627       if (!P->hasDefaultArg())
6628         return false;
6629       ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6630       if (R.isInvalid())
6631         return false;
6632       ConvertedArgs.push_back(R.get());
6633     }
6634 
6635     if (Trap.hasErrorOccurred())
6636       return false;
6637   }
6638   return true;
6639 }
6640 
CheckEnableIf(FunctionDecl * Function,SourceLocation CallLoc,ArrayRef<Expr * > Args,bool MissingImplicitThis)6641 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6642                                   SourceLocation CallLoc,
6643                                   ArrayRef<Expr *> Args,
6644                                   bool MissingImplicitThis) {
6645   auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6646   if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6647     return nullptr;
6648 
6649   SFINAETrap Trap(*this);
6650   SmallVector<Expr *, 16> ConvertedArgs;
6651   // FIXME: We should look into making enable_if late-parsed.
6652   Expr *DiscardedThis;
6653   if (!convertArgsForAvailabilityChecks(
6654           *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6655           /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6656     return *EnableIfAttrs.begin();
6657 
6658   for (auto *EIA : EnableIfAttrs) {
6659     APValue Result;
6660     // FIXME: This doesn't consider value-dependent cases, because doing so is
6661     // very difficult. Ideally, we should handle them more gracefully.
6662     if (EIA->getCond()->isValueDependent() ||
6663         !EIA->getCond()->EvaluateWithSubstitution(
6664             Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6665       return EIA;
6666 
6667     if (!Result.isInt() || !Result.getInt().getBoolValue())
6668       return EIA;
6669   }
6670   return nullptr;
6671 }
6672 
6673 template <typename CheckFn>
diagnoseDiagnoseIfAttrsWith(Sema & S,const NamedDecl * ND,bool ArgDependent,SourceLocation Loc,CheckFn && IsSuccessful)6674 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6675                                         bool ArgDependent, SourceLocation Loc,
6676                                         CheckFn &&IsSuccessful) {
6677   SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6678   for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6679     if (ArgDependent == DIA->getArgDependent())
6680       Attrs.push_back(DIA);
6681   }
6682 
6683   // Common case: No diagnose_if attributes, so we can quit early.
6684   if (Attrs.empty())
6685     return false;
6686 
6687   auto WarningBegin = std::stable_partition(
6688       Attrs.begin(), Attrs.end(),
6689       [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6690 
6691   // Note that diagnose_if attributes are late-parsed, so they appear in the
6692   // correct order (unlike enable_if attributes).
6693   auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6694                                IsSuccessful);
6695   if (ErrAttr != WarningBegin) {
6696     const DiagnoseIfAttr *DIA = *ErrAttr;
6697     S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6698     S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6699         << DIA->getParent() << DIA->getCond()->getSourceRange();
6700     return true;
6701   }
6702 
6703   for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6704     if (IsSuccessful(DIA)) {
6705       S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6706       S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6707           << DIA->getParent() << DIA->getCond()->getSourceRange();
6708     }
6709 
6710   return false;
6711 }
6712 
diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl * Function,const Expr * ThisArg,ArrayRef<const Expr * > Args,SourceLocation Loc)6713 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6714                                                const Expr *ThisArg,
6715                                                ArrayRef<const Expr *> Args,
6716                                                SourceLocation Loc) {
6717   return diagnoseDiagnoseIfAttrsWith(
6718       *this, Function, /*ArgDependent=*/true, Loc,
6719       [&](const DiagnoseIfAttr *DIA) {
6720         APValue Result;
6721         // It's sane to use the same Args for any redecl of this function, since
6722         // EvaluateWithSubstitution only cares about the position of each
6723         // argument in the arg list, not the ParmVarDecl* it maps to.
6724         if (!DIA->getCond()->EvaluateWithSubstitution(
6725                 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6726           return false;
6727         return Result.isInt() && Result.getInt().getBoolValue();
6728       });
6729 }
6730 
diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl * ND,SourceLocation Loc)6731 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6732                                                  SourceLocation Loc) {
6733   return diagnoseDiagnoseIfAttrsWith(
6734       *this, ND, /*ArgDependent=*/false, Loc,
6735       [&](const DiagnoseIfAttr *DIA) {
6736         bool Result;
6737         return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6738                Result;
6739       });
6740 }
6741 
6742 /// Add all of the function declarations in the given function set to
6743 /// the overload candidate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs,bool SuppressUserConversions,bool PartialOverloading,bool FirstArgumentIsBase)6744 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6745                                  ArrayRef<Expr *> Args,
6746                                  OverloadCandidateSet &CandidateSet,
6747                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
6748                                  bool SuppressUserConversions,
6749                                  bool PartialOverloading,
6750                                  bool FirstArgumentIsBase) {
6751   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6752     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6753     ArrayRef<Expr *> FunctionArgs = Args;
6754 
6755     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6756     FunctionDecl *FD =
6757         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6758 
6759     if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6760       QualType ObjectType;
6761       Expr::Classification ObjectClassification;
6762       if (Args.size() > 0) {
6763         if (Expr *E = Args[0]) {
6764           // Use the explicit base to restrict the lookup:
6765           ObjectType = E->getType();
6766           // Pointers in the object arguments are implicitly dereferenced, so we
6767           // always classify them as l-values.
6768           if (!ObjectType.isNull() && ObjectType->isPointerType())
6769             ObjectClassification = Expr::Classification::makeSimpleLValue();
6770           else
6771             ObjectClassification = E->Classify(Context);
6772         } // .. else there is an implicit base.
6773         FunctionArgs = Args.slice(1);
6774       }
6775       if (FunTmpl) {
6776         AddMethodTemplateCandidate(
6777             FunTmpl, F.getPair(),
6778             cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6779             ExplicitTemplateArgs, ObjectType, ObjectClassification,
6780             FunctionArgs, CandidateSet, SuppressUserConversions,
6781             PartialOverloading);
6782       } else {
6783         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6784                            cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6785                            ObjectClassification, FunctionArgs, CandidateSet,
6786                            SuppressUserConversions, PartialOverloading);
6787       }
6788     } else {
6789       // This branch handles both standalone functions and static methods.
6790 
6791       // Slice the first argument (which is the base) when we access
6792       // static method as non-static.
6793       if (Args.size() > 0 &&
6794           (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6795                         !isa<CXXConstructorDecl>(FD)))) {
6796         assert(cast<CXXMethodDecl>(FD)->isStatic());
6797         FunctionArgs = Args.slice(1);
6798       }
6799       if (FunTmpl) {
6800         AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6801                                      ExplicitTemplateArgs, FunctionArgs,
6802                                      CandidateSet, SuppressUserConversions,
6803                                      PartialOverloading);
6804       } else {
6805         AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6806                              SuppressUserConversions, PartialOverloading);
6807       }
6808     }
6809   }
6810 }
6811 
6812 /// AddMethodCandidate - Adds a named decl (which is some kind of
6813 /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,OverloadCandidateParamOrder PO)6814 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6815                               Expr::Classification ObjectClassification,
6816                               ArrayRef<Expr *> Args,
6817                               OverloadCandidateSet &CandidateSet,
6818                               bool SuppressUserConversions,
6819                               OverloadCandidateParamOrder PO) {
6820   NamedDecl *Decl = FoundDecl.getDecl();
6821   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6822 
6823   if (isa<UsingShadowDecl>(Decl))
6824     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6825 
6826   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6827     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6828            "Expected a member function template");
6829     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6830                                /*ExplicitArgs*/ nullptr, ObjectType,
6831                                ObjectClassification, Args, CandidateSet,
6832                                SuppressUserConversions, false, PO);
6833   } else {
6834     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6835                        ObjectType, ObjectClassification, Args, CandidateSet,
6836                        SuppressUserConversions, false, None, PO);
6837   }
6838 }
6839 
6840 /// AddMethodCandidate - Adds the given C++ member function to the set
6841 /// of candidate functions, using the given function call arguments
6842 /// and the object argument (@c Object). For example, in a call
6843 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6844 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6845 /// allow user-defined conversions via constructors or conversion
6846 /// operators.
6847 void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,ConversionSequenceList EarlyConversions,OverloadCandidateParamOrder PO)6848 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6849                          CXXRecordDecl *ActingContext, QualType ObjectType,
6850                          Expr::Classification ObjectClassification,
6851                          ArrayRef<Expr *> Args,
6852                          OverloadCandidateSet &CandidateSet,
6853                          bool SuppressUserConversions,
6854                          bool PartialOverloading,
6855                          ConversionSequenceList EarlyConversions,
6856                          OverloadCandidateParamOrder PO) {
6857   const FunctionProtoType *Proto
6858     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6859   assert(Proto && "Methods without a prototype cannot be overloaded");
6860   assert(!isa<CXXConstructorDecl>(Method) &&
6861          "Use AddOverloadCandidate for constructors");
6862 
6863   if (!CandidateSet.isNewCandidate(Method, PO))
6864     return;
6865 
6866   // C++11 [class.copy]p23: [DR1402]
6867   //   A defaulted move assignment operator that is defined as deleted is
6868   //   ignored by overload resolution.
6869   if (Method->isDefaulted() && Method->isDeleted() &&
6870       Method->isMoveAssignmentOperator())
6871     return;
6872 
6873   // Overload resolution is always an unevaluated context.
6874   EnterExpressionEvaluationContext Unevaluated(
6875       *this, Sema::ExpressionEvaluationContext::Unevaluated);
6876 
6877   // Add this candidate
6878   OverloadCandidate &Candidate =
6879       CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6880   Candidate.FoundDecl = FoundDecl;
6881   Candidate.Function = Method;
6882   Candidate.RewriteKind =
6883       CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6884   Candidate.IsSurrogate = false;
6885   Candidate.IgnoreObjectArgument = false;
6886   Candidate.ExplicitCallArguments = Args.size();
6887 
6888   unsigned NumParams = Proto->getNumParams();
6889 
6890   // (C++ 13.3.2p2): A candidate function having fewer than m
6891   // parameters is viable only if it has an ellipsis in its parameter
6892   // list (8.3.5).
6893   if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6894       !Proto->isVariadic()) {
6895     Candidate.Viable = false;
6896     Candidate.FailureKind = ovl_fail_too_many_arguments;
6897     return;
6898   }
6899 
6900   // (C++ 13.3.2p2): A candidate function having more than m parameters
6901   // is viable only if the (m+1)st parameter has a default argument
6902   // (8.3.6). For the purposes of overload resolution, the
6903   // parameter list is truncated on the right, so that there are
6904   // exactly m parameters.
6905   unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6906   if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6907     // Not enough arguments.
6908     Candidate.Viable = false;
6909     Candidate.FailureKind = ovl_fail_too_few_arguments;
6910     return;
6911   }
6912 
6913   Candidate.Viable = true;
6914 
6915   if (Method->isStatic() || ObjectType.isNull())
6916     // The implicit object argument is ignored.
6917     Candidate.IgnoreObjectArgument = true;
6918   else {
6919     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6920     // Determine the implicit conversion sequence for the object
6921     // parameter.
6922     Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6923         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6924         Method, ActingContext);
6925     if (Candidate.Conversions[ConvIdx].isBad()) {
6926       Candidate.Viable = false;
6927       Candidate.FailureKind = ovl_fail_bad_conversion;
6928       return;
6929     }
6930   }
6931 
6932   // (CUDA B.1): Check for invalid calls between targets.
6933   if (getLangOpts().CUDA)
6934     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6935       if (!IsAllowedCUDACall(Caller, Method)) {
6936         Candidate.Viable = false;
6937         Candidate.FailureKind = ovl_fail_bad_target;
6938         return;
6939       }
6940 
6941   if (Method->getTrailingRequiresClause()) {
6942     ConstraintSatisfaction Satisfaction;
6943     if (CheckFunctionConstraints(Method, Satisfaction) ||
6944         !Satisfaction.IsSatisfied) {
6945       Candidate.Viable = false;
6946       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6947       return;
6948     }
6949   }
6950 
6951   // Determine the implicit conversion sequences for each of the
6952   // arguments.
6953   for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6954     unsigned ConvIdx =
6955         PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6956     if (Candidate.Conversions[ConvIdx].isInitialized()) {
6957       // We already formed a conversion sequence for this parameter during
6958       // template argument deduction.
6959     } else if (ArgIdx < NumParams) {
6960       // (C++ 13.3.2p3): for F to be a viable function, there shall
6961       // exist for each argument an implicit conversion sequence
6962       // (13.3.3.1) that converts that argument to the corresponding
6963       // parameter of F.
6964       QualType ParamType = Proto->getParamType(ArgIdx);
6965       Candidate.Conversions[ConvIdx]
6966         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6967                                 SuppressUserConversions,
6968                                 /*InOverloadResolution=*/true,
6969                                 /*AllowObjCWritebackConversion=*/
6970                                   getLangOpts().ObjCAutoRefCount);
6971       if (Candidate.Conversions[ConvIdx].isBad()) {
6972         Candidate.Viable = false;
6973         Candidate.FailureKind = ovl_fail_bad_conversion;
6974         return;
6975       }
6976     } else {
6977       // (C++ 13.3.2p2): For the purposes of overload resolution, any
6978       // argument for which there is no corresponding parameter is
6979       // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6980       Candidate.Conversions[ConvIdx].setEllipsis();
6981     }
6982   }
6983 
6984   if (EnableIfAttr *FailedAttr =
6985           CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
6986     Candidate.Viable = false;
6987     Candidate.FailureKind = ovl_fail_enable_if;
6988     Candidate.DeductionFailure.Data = FailedAttr;
6989     return;
6990   }
6991 
6992   if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6993       !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6994     Candidate.Viable = false;
6995     Candidate.FailureKind = ovl_non_default_multiversion_function;
6996   }
6997 }
6998 
6999 /// Add a C++ member function template as a candidate to the candidate
7000 /// set, using template argument deduction to produce an appropriate member
7001 /// function template specialization.
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,OverloadCandidateParamOrder PO)7002 void Sema::AddMethodTemplateCandidate(
7003     FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7004     CXXRecordDecl *ActingContext,
7005     TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7006     Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7007     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7008     bool PartialOverloading, OverloadCandidateParamOrder PO) {
7009   if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7010     return;
7011 
7012   // C++ [over.match.funcs]p7:
7013   //   In each case where a candidate is a function template, candidate
7014   //   function template specializations are generated using template argument
7015   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7016   //   candidate functions in the usual way.113) A given name can refer to one
7017   //   or more function templates and also to a set of overloaded non-template
7018   //   functions. In such a case, the candidate functions generated from each
7019   //   function template are combined with the set of non-template candidate
7020   //   functions.
7021   TemplateDeductionInfo Info(CandidateSet.getLocation());
7022   FunctionDecl *Specialization = nullptr;
7023   ConversionSequenceList Conversions;
7024   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7025           MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7026           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7027             return CheckNonDependentConversions(
7028                 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7029                 SuppressUserConversions, ActingContext, ObjectType,
7030                 ObjectClassification, PO);
7031           })) {
7032     OverloadCandidate &Candidate =
7033         CandidateSet.addCandidate(Conversions.size(), Conversions);
7034     Candidate.FoundDecl = FoundDecl;
7035     Candidate.Function = MethodTmpl->getTemplatedDecl();
7036     Candidate.Viable = false;
7037     Candidate.RewriteKind =
7038       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7039     Candidate.IsSurrogate = false;
7040     Candidate.IgnoreObjectArgument =
7041         cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7042         ObjectType.isNull();
7043     Candidate.ExplicitCallArguments = Args.size();
7044     if (Result == TDK_NonDependentConversionFailure)
7045       Candidate.FailureKind = ovl_fail_bad_conversion;
7046     else {
7047       Candidate.FailureKind = ovl_fail_bad_deduction;
7048       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7049                                                             Info);
7050     }
7051     return;
7052   }
7053 
7054   // Add the function template specialization produced by template argument
7055   // deduction as a candidate.
7056   assert(Specialization && "Missing member function template specialization?");
7057   assert(isa<CXXMethodDecl>(Specialization) &&
7058          "Specialization is not a member function?");
7059   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7060                      ActingContext, ObjectType, ObjectClassification, Args,
7061                      CandidateSet, SuppressUserConversions, PartialOverloading,
7062                      Conversions, PO);
7063 }
7064 
7065 /// Determine whether a given function template has a simple explicit specifier
7066 /// or a non-value-dependent explicit-specification that evaluates to true.
isNonDependentlyExplicit(FunctionTemplateDecl * FTD)7067 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7068   return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7069 }
7070 
7071 /// Add a C++ function template specialization as a candidate
7072 /// in the candidate set, using template argument deduction to produce
7073 /// an appropriate function template specialization.
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit,ADLCallKind IsADLCandidate,OverloadCandidateParamOrder PO)7074 void Sema::AddTemplateOverloadCandidate(
7075     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7076     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7077     OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7078     bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7079     OverloadCandidateParamOrder PO) {
7080   if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7081     return;
7082 
7083   // If the function template has a non-dependent explicit specification,
7084   // exclude it now if appropriate; we are not permitted to perform deduction
7085   // and substitution in this case.
7086   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7087     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7088     Candidate.FoundDecl = FoundDecl;
7089     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7090     Candidate.Viable = false;
7091     Candidate.FailureKind = ovl_fail_explicit;
7092     return;
7093   }
7094 
7095   // C++ [over.match.funcs]p7:
7096   //   In each case where a candidate is a function template, candidate
7097   //   function template specializations are generated using template argument
7098   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
7099   //   candidate functions in the usual way.113) A given name can refer to one
7100   //   or more function templates and also to a set of overloaded non-template
7101   //   functions. In such a case, the candidate functions generated from each
7102   //   function template are combined with the set of non-template candidate
7103   //   functions.
7104   TemplateDeductionInfo Info(CandidateSet.getLocation());
7105   FunctionDecl *Specialization = nullptr;
7106   ConversionSequenceList Conversions;
7107   if (TemplateDeductionResult Result = DeduceTemplateArguments(
7108           FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7109           PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7110             return CheckNonDependentConversions(
7111                 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7112                 SuppressUserConversions, nullptr, QualType(), {}, PO);
7113           })) {
7114     OverloadCandidate &Candidate =
7115         CandidateSet.addCandidate(Conversions.size(), Conversions);
7116     Candidate.FoundDecl = FoundDecl;
7117     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7118     Candidate.Viable = false;
7119     Candidate.RewriteKind =
7120       CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7121     Candidate.IsSurrogate = false;
7122     Candidate.IsADLCandidate = IsADLCandidate;
7123     // Ignore the object argument if there is one, since we don't have an object
7124     // type.
7125     Candidate.IgnoreObjectArgument =
7126         isa<CXXMethodDecl>(Candidate.Function) &&
7127         !isa<CXXConstructorDecl>(Candidate.Function);
7128     Candidate.ExplicitCallArguments = Args.size();
7129     if (Result == TDK_NonDependentConversionFailure)
7130       Candidate.FailureKind = ovl_fail_bad_conversion;
7131     else {
7132       Candidate.FailureKind = ovl_fail_bad_deduction;
7133       Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7134                                                             Info);
7135     }
7136     return;
7137   }
7138 
7139   // Add the function template specialization produced by template argument
7140   // deduction as a candidate.
7141   assert(Specialization && "Missing function template specialization?");
7142   AddOverloadCandidate(
7143       Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7144       PartialOverloading, AllowExplicit,
7145       /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7146 }
7147 
7148 /// Check that implicit conversion sequences can be formed for each argument
7149 /// whose corresponding parameter has a non-dependent type, per DR1391's
7150 /// [temp.deduct.call]p10.
CheckNonDependentConversions(FunctionTemplateDecl * FunctionTemplate,ArrayRef<QualType> ParamTypes,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,ConversionSequenceList & Conversions,bool SuppressUserConversions,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,OverloadCandidateParamOrder PO)7151 bool Sema::CheckNonDependentConversions(
7152     FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7153     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7154     ConversionSequenceList &Conversions, bool SuppressUserConversions,
7155     CXXRecordDecl *ActingContext, QualType ObjectType,
7156     Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7157   // FIXME: The cases in which we allow explicit conversions for constructor
7158   // arguments never consider calling a constructor template. It's not clear
7159   // that is correct.
7160   const bool AllowExplicit = false;
7161 
7162   auto *FD = FunctionTemplate->getTemplatedDecl();
7163   auto *Method = dyn_cast<CXXMethodDecl>(FD);
7164   bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7165   unsigned ThisConversions = HasThisConversion ? 1 : 0;
7166 
7167   Conversions =
7168       CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7169 
7170   // Overload resolution is always an unevaluated context.
7171   EnterExpressionEvaluationContext Unevaluated(
7172       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7173 
7174   // For a method call, check the 'this' conversion here too. DR1391 doesn't
7175   // require that, but this check should never result in a hard error, and
7176   // overload resolution is permitted to sidestep instantiations.
7177   if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7178       !ObjectType.isNull()) {
7179     unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7180     Conversions[ConvIdx] = TryObjectArgumentInitialization(
7181         *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7182         Method, ActingContext);
7183     if (Conversions[ConvIdx].isBad())
7184       return true;
7185   }
7186 
7187   for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7188        ++I) {
7189     QualType ParamType = ParamTypes[I];
7190     if (!ParamType->isDependentType()) {
7191       unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7192                              ? 0
7193                              : (ThisConversions + I);
7194       Conversions[ConvIdx]
7195         = TryCopyInitialization(*this, Args[I], ParamType,
7196                                 SuppressUserConversions,
7197                                 /*InOverloadResolution=*/true,
7198                                 /*AllowObjCWritebackConversion=*/
7199                                   getLangOpts().ObjCAutoRefCount,
7200                                 AllowExplicit);
7201       if (Conversions[ConvIdx].isBad())
7202         return true;
7203     }
7204   }
7205 
7206   return false;
7207 }
7208 
7209 /// Determine whether this is an allowable conversion from the result
7210 /// of an explicit conversion operator to the expected type, per C++
7211 /// [over.match.conv]p1 and [over.match.ref]p1.
7212 ///
7213 /// \param ConvType The return type of the conversion function.
7214 ///
7215 /// \param ToType The type we are converting to.
7216 ///
7217 /// \param AllowObjCPointerConversion Allow a conversion from one
7218 /// Objective-C pointer to another.
7219 ///
7220 /// \returns true if the conversion is allowable, false otherwise.
isAllowableExplicitConversion(Sema & S,QualType ConvType,QualType ToType,bool AllowObjCPointerConversion)7221 static bool isAllowableExplicitConversion(Sema &S,
7222                                           QualType ConvType, QualType ToType,
7223                                           bool AllowObjCPointerConversion) {
7224   QualType ToNonRefType = ToType.getNonReferenceType();
7225 
7226   // Easy case: the types are the same.
7227   if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7228     return true;
7229 
7230   // Allow qualification conversions.
7231   bool ObjCLifetimeConversion;
7232   if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7233                                   ObjCLifetimeConversion))
7234     return true;
7235 
7236   // If we're not allowed to consider Objective-C pointer conversions,
7237   // we're done.
7238   if (!AllowObjCPointerConversion)
7239     return false;
7240 
7241   // Is this an Objective-C pointer conversion?
7242   bool IncompatibleObjC = false;
7243   QualType ConvertedType;
7244   return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7245                                    IncompatibleObjC);
7246 }
7247 
7248 /// AddConversionCandidate - Add a C++ conversion function as a
7249 /// candidate in the candidate set (C++ [over.match.conv],
7250 /// C++ [over.match.copy]). From is the expression we're converting from,
7251 /// and ToType is the type that we're eventually trying to convert to
7252 /// (which may or may not be the same type as the type that the
7253 /// conversion function produces).
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7254 void Sema::AddConversionCandidate(
7255     CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7256     CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7257     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7258     bool AllowExplicit, bool AllowResultConversion) {
7259   assert(!Conversion->getDescribedFunctionTemplate() &&
7260          "Conversion function templates use AddTemplateConversionCandidate");
7261   QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7262   if (!CandidateSet.isNewCandidate(Conversion))
7263     return;
7264 
7265   // If the conversion function has an undeduced return type, trigger its
7266   // deduction now.
7267   if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7268     if (DeduceReturnType(Conversion, From->getExprLoc()))
7269       return;
7270     ConvType = Conversion->getConversionType().getNonReferenceType();
7271   }
7272 
7273   // If we don't allow any conversion of the result type, ignore conversion
7274   // functions that don't convert to exactly (possibly cv-qualified) T.
7275   if (!AllowResultConversion &&
7276       !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7277     return;
7278 
7279   // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7280   // operator is only a candidate if its return type is the target type or
7281   // can be converted to the target type with a qualification conversion.
7282   //
7283   // FIXME: Include such functions in the candidate list and explain why we
7284   // can't select them.
7285   if (Conversion->isExplicit() &&
7286       !isAllowableExplicitConversion(*this, ConvType, ToType,
7287                                      AllowObjCConversionOnExplicit))
7288     return;
7289 
7290   // Overload resolution is always an unevaluated context.
7291   EnterExpressionEvaluationContext Unevaluated(
7292       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7293 
7294   // Add this candidate
7295   OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7296   Candidate.FoundDecl = FoundDecl;
7297   Candidate.Function = Conversion;
7298   Candidate.IsSurrogate = false;
7299   Candidate.IgnoreObjectArgument = false;
7300   Candidate.FinalConversion.setAsIdentityConversion();
7301   Candidate.FinalConversion.setFromType(ConvType);
7302   Candidate.FinalConversion.setAllToTypes(ToType);
7303   Candidate.Viable = true;
7304   Candidate.ExplicitCallArguments = 1;
7305 
7306   // Explicit functions are not actually candidates at all if we're not
7307   // allowing them in this context, but keep them around so we can point
7308   // to them in diagnostics.
7309   if (!AllowExplicit && Conversion->isExplicit()) {
7310     Candidate.Viable = false;
7311     Candidate.FailureKind = ovl_fail_explicit;
7312     return;
7313   }
7314 
7315   // C++ [over.match.funcs]p4:
7316   //   For conversion functions, the function is considered to be a member of
7317   //   the class of the implicit implied object argument for the purpose of
7318   //   defining the type of the implicit object parameter.
7319   //
7320   // Determine the implicit conversion sequence for the implicit
7321   // object parameter.
7322   QualType ImplicitParamType = From->getType();
7323   if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7324     ImplicitParamType = FromPtrType->getPointeeType();
7325   CXXRecordDecl *ConversionContext
7326     = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7327 
7328   Candidate.Conversions[0] = TryObjectArgumentInitialization(
7329       *this, CandidateSet.getLocation(), From->getType(),
7330       From->Classify(Context), Conversion, ConversionContext);
7331 
7332   if (Candidate.Conversions[0].isBad()) {
7333     Candidate.Viable = false;
7334     Candidate.FailureKind = ovl_fail_bad_conversion;
7335     return;
7336   }
7337 
7338   if (Conversion->getTrailingRequiresClause()) {
7339     ConstraintSatisfaction Satisfaction;
7340     if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7341         !Satisfaction.IsSatisfied) {
7342       Candidate.Viable = false;
7343       Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7344       return;
7345     }
7346   }
7347 
7348   // We won't go through a user-defined type conversion function to convert a
7349   // derived to base as such conversions are given Conversion Rank. They only
7350   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7351   QualType FromCanon
7352     = Context.getCanonicalType(From->getType().getUnqualifiedType());
7353   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7354   if (FromCanon == ToCanon ||
7355       IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7356     Candidate.Viable = false;
7357     Candidate.FailureKind = ovl_fail_trivial_conversion;
7358     return;
7359   }
7360 
7361   // To determine what the conversion from the result of calling the
7362   // conversion function to the type we're eventually trying to
7363   // convert to (ToType), we need to synthesize a call to the
7364   // conversion function and attempt copy initialization from it. This
7365   // makes sure that we get the right semantics with respect to
7366   // lvalues/rvalues and the type. Fortunately, we can allocate this
7367   // call on the stack and we don't need its arguments to be
7368   // well-formed.
7369   DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7370                             VK_LValue, From->getBeginLoc());
7371   ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7372                                 Context.getPointerType(Conversion->getType()),
7373                                 CK_FunctionToPointerDecay, &ConversionRef,
7374                                 VK_RValue, FPOptionsOverride());
7375 
7376   QualType ConversionType = Conversion->getConversionType();
7377   if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7378     Candidate.Viable = false;
7379     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7380     return;
7381   }
7382 
7383   ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7384 
7385   // Note that it is safe to allocate CallExpr on the stack here because
7386   // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7387   // allocator).
7388   QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7389 
7390   alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7391   CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7392       Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7393 
7394   ImplicitConversionSequence ICS =
7395       TryCopyInitialization(*this, TheTemporaryCall, ToType,
7396                             /*SuppressUserConversions=*/true,
7397                             /*InOverloadResolution=*/false,
7398                             /*AllowObjCWritebackConversion=*/false);
7399 
7400   switch (ICS.getKind()) {
7401   case ImplicitConversionSequence::StandardConversion:
7402     Candidate.FinalConversion = ICS.Standard;
7403 
7404     // C++ [over.ics.user]p3:
7405     //   If the user-defined conversion is specified by a specialization of a
7406     //   conversion function template, the second standard conversion sequence
7407     //   shall have exact match rank.
7408     if (Conversion->getPrimaryTemplate() &&
7409         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7410       Candidate.Viable = false;
7411       Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7412       return;
7413     }
7414 
7415     // C++0x [dcl.init.ref]p5:
7416     //    In the second case, if the reference is an rvalue reference and
7417     //    the second standard conversion sequence of the user-defined
7418     //    conversion sequence includes an lvalue-to-rvalue conversion, the
7419     //    program is ill-formed.
7420     if (ToType->isRValueReferenceType() &&
7421         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7422       Candidate.Viable = false;
7423       Candidate.FailureKind = ovl_fail_bad_final_conversion;
7424       return;
7425     }
7426     break;
7427 
7428   case ImplicitConversionSequence::BadConversion:
7429     Candidate.Viable = false;
7430     Candidate.FailureKind = ovl_fail_bad_final_conversion;
7431     return;
7432 
7433   default:
7434     llvm_unreachable(
7435            "Can only end up with a standard conversion sequence or failure");
7436   }
7437 
7438   if (EnableIfAttr *FailedAttr =
7439           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7440     Candidate.Viable = false;
7441     Candidate.FailureKind = ovl_fail_enable_if;
7442     Candidate.DeductionFailure.Data = FailedAttr;
7443     return;
7444   }
7445 
7446   if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7447       !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7448     Candidate.Viable = false;
7449     Candidate.FailureKind = ovl_non_default_multiversion_function;
7450   }
7451 }
7452 
7453 /// Adds a conversion function template specialization
7454 /// candidate to the overload set, using template argument deduction
7455 /// to deduce the template arguments of the conversion function
7456 /// template from the type that we are converting to (C++
7457 /// [temp.deduct.conv]).
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit,bool AllowExplicit,bool AllowResultConversion)7458 void Sema::AddTemplateConversionCandidate(
7459     FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7460     CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7461     OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7462     bool AllowExplicit, bool AllowResultConversion) {
7463   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
7464          "Only conversion function templates permitted here");
7465 
7466   if (!CandidateSet.isNewCandidate(FunctionTemplate))
7467     return;
7468 
7469   // If the function template has a non-dependent explicit specification,
7470   // exclude it now if appropriate; we are not permitted to perform deduction
7471   // and substitution in this case.
7472   if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7473     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7474     Candidate.FoundDecl = FoundDecl;
7475     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7476     Candidate.Viable = false;
7477     Candidate.FailureKind = ovl_fail_explicit;
7478     return;
7479   }
7480 
7481   TemplateDeductionInfo Info(CandidateSet.getLocation());
7482   CXXConversionDecl *Specialization = nullptr;
7483   if (TemplateDeductionResult Result
7484         = DeduceTemplateArguments(FunctionTemplate, ToType,
7485                                   Specialization, Info)) {
7486     OverloadCandidate &Candidate = CandidateSet.addCandidate();
7487     Candidate.FoundDecl = FoundDecl;
7488     Candidate.Function = FunctionTemplate->getTemplatedDecl();
7489     Candidate.Viable = false;
7490     Candidate.FailureKind = ovl_fail_bad_deduction;
7491     Candidate.IsSurrogate = false;
7492     Candidate.IgnoreObjectArgument = false;
7493     Candidate.ExplicitCallArguments = 1;
7494     Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7495                                                           Info);
7496     return;
7497   }
7498 
7499   // Add the conversion function template specialization produced by
7500   // template argument deduction as a candidate.
7501   assert(Specialization && "Missing function template specialization?");
7502   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7503                          CandidateSet, AllowObjCConversionOnExplicit,
7504                          AllowExplicit, AllowResultConversion);
7505 }
7506 
7507 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7508 /// converts the given @c Object to a function pointer via the
7509 /// conversion function @c Conversion, and then attempts to call it
7510 /// with the given arguments (C++ [over.call.object]p2-4). Proto is
7511 /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)7512 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7513                                  DeclAccessPair FoundDecl,
7514                                  CXXRecordDecl *ActingContext,
7515                                  const FunctionProtoType *Proto,
7516                                  Expr *Object,
7517                                  ArrayRef<Expr *> Args,
7518                                  OverloadCandidateSet& CandidateSet) {
7519   if (!CandidateSet.isNewCandidate(Conversion))
7520     return;
7521 
7522   // Overload resolution is always an unevaluated context.
7523   EnterExpressionEvaluationContext Unevaluated(
7524       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7525 
7526   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7527   Candidate.FoundDecl = FoundDecl;
7528   Candidate.Function = nullptr;
7529   Candidate.Surrogate = Conversion;
7530   Candidate.Viable = true;
7531   Candidate.IsSurrogate = true;
7532   Candidate.IgnoreObjectArgument = false;
7533   Candidate.ExplicitCallArguments = Args.size();
7534 
7535   // Determine the implicit conversion sequence for the implicit
7536   // object parameter.
7537   ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7538       *this, CandidateSet.getLocation(), Object->getType(),
7539       Object->Classify(Context), Conversion, ActingContext);
7540   if (ObjectInit.isBad()) {
7541     Candidate.Viable = false;
7542     Candidate.FailureKind = ovl_fail_bad_conversion;
7543     Candidate.Conversions[0] = ObjectInit;
7544     return;
7545   }
7546 
7547   // The first conversion is actually a user-defined conversion whose
7548   // first conversion is ObjectInit's standard conversion (which is
7549   // effectively a reference binding). Record it as such.
7550   Candidate.Conversions[0].setUserDefined();
7551   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7552   Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7553   Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7554   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7555   Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7556   Candidate.Conversions[0].UserDefined.After
7557     = Candidate.Conversions[0].UserDefined.Before;
7558   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7559 
7560   // Find the
7561   unsigned NumParams = Proto->getNumParams();
7562 
7563   // (C++ 13.3.2p2): A candidate function having fewer than m
7564   // parameters is viable only if it has an ellipsis in its parameter
7565   // list (8.3.5).
7566   if (Args.size() > NumParams && !Proto->isVariadic()) {
7567     Candidate.Viable = false;
7568     Candidate.FailureKind = ovl_fail_too_many_arguments;
7569     return;
7570   }
7571 
7572   // Function types don't have any default arguments, so just check if
7573   // we have enough arguments.
7574   if (Args.size() < NumParams) {
7575     // Not enough arguments.
7576     Candidate.Viable = false;
7577     Candidate.FailureKind = ovl_fail_too_few_arguments;
7578     return;
7579   }
7580 
7581   // Determine the implicit conversion sequences for each of the
7582   // arguments.
7583   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7584     if (ArgIdx < NumParams) {
7585       // (C++ 13.3.2p3): for F to be a viable function, there shall
7586       // exist for each argument an implicit conversion sequence
7587       // (13.3.3.1) that converts that argument to the corresponding
7588       // parameter of F.
7589       QualType ParamType = Proto->getParamType(ArgIdx);
7590       Candidate.Conversions[ArgIdx + 1]
7591         = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7592                                 /*SuppressUserConversions=*/false,
7593                                 /*InOverloadResolution=*/false,
7594                                 /*AllowObjCWritebackConversion=*/
7595                                   getLangOpts().ObjCAutoRefCount);
7596       if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7597         Candidate.Viable = false;
7598         Candidate.FailureKind = ovl_fail_bad_conversion;
7599         return;
7600       }
7601     } else {
7602       // (C++ 13.3.2p2): For the purposes of overload resolution, any
7603       // argument for which there is no corresponding parameter is
7604       // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7605       Candidate.Conversions[ArgIdx + 1].setEllipsis();
7606     }
7607   }
7608 
7609   if (EnableIfAttr *FailedAttr =
7610           CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7611     Candidate.Viable = false;
7612     Candidate.FailureKind = ovl_fail_enable_if;
7613     Candidate.DeductionFailure.Data = FailedAttr;
7614     return;
7615   }
7616 }
7617 
7618 /// Add all of the non-member operator function declarations in the given
7619 /// function set to the overload candidate set.
AddNonMemberOperatorCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs)7620 void Sema::AddNonMemberOperatorCandidates(
7621     const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7622     OverloadCandidateSet &CandidateSet,
7623     TemplateArgumentListInfo *ExplicitTemplateArgs) {
7624   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7625     NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7626     ArrayRef<Expr *> FunctionArgs = Args;
7627 
7628     FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7629     FunctionDecl *FD =
7630         FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7631 
7632     // Don't consider rewritten functions if we're not rewriting.
7633     if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7634       continue;
7635 
7636     assert(!isa<CXXMethodDecl>(FD) &&
7637            "unqualified operator lookup found a member function");
7638 
7639     if (FunTmpl) {
7640       AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7641                                    FunctionArgs, CandidateSet);
7642       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7643         AddTemplateOverloadCandidate(
7644             FunTmpl, F.getPair(), ExplicitTemplateArgs,
7645             {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7646             true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7647     } else {
7648       if (ExplicitTemplateArgs)
7649         continue;
7650       AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7651       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7652         AddOverloadCandidate(FD, F.getPair(),
7653                              {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7654                              false, false, true, false, ADLCallKind::NotADL,
7655                              None, OverloadCandidateParamOrder::Reversed);
7656     }
7657   }
7658 }
7659 
7660 /// Add overload candidates for overloaded operators that are
7661 /// member functions.
7662 ///
7663 /// Add the overloaded operator candidates that are member functions
7664 /// for the operator Op that was used in an operator expression such
7665 /// as "x Op y". , Args/NumArgs provides the operator arguments, and
7666 /// CandidateSet will store the added overload candidates. (C++
7667 /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,OverloadCandidateParamOrder PO)7668 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7669                                        SourceLocation OpLoc,
7670                                        ArrayRef<Expr *> Args,
7671                                        OverloadCandidateSet &CandidateSet,
7672                                        OverloadCandidateParamOrder PO) {
7673   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7674 
7675   // C++ [over.match.oper]p3:
7676   //   For a unary operator @ with an operand of a type whose
7677   //   cv-unqualified version is T1, and for a binary operator @ with
7678   //   a left operand of a type whose cv-unqualified version is T1 and
7679   //   a right operand of a type whose cv-unqualified version is T2,
7680   //   three sets of candidate functions, designated member
7681   //   candidates, non-member candidates and built-in candidates, are
7682   //   constructed as follows:
7683   QualType T1 = Args[0]->getType();
7684 
7685   //     -- If T1 is a complete class type or a class currently being
7686   //        defined, the set of member candidates is the result of the
7687   //        qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7688   //        the set of member candidates is empty.
7689   if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7690     // Complete the type if it can be completed.
7691     if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7692       return;
7693     // If the type is neither complete nor being defined, bail out now.
7694     if (!T1Rec->getDecl()->getDefinition())
7695       return;
7696 
7697     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7698     LookupQualifiedName(Operators, T1Rec->getDecl());
7699     Operators.suppressDiagnostics();
7700 
7701     for (LookupResult::iterator Oper = Operators.begin(),
7702                              OperEnd = Operators.end();
7703          Oper != OperEnd;
7704          ++Oper)
7705       AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7706                          Args[0]->Classify(Context), Args.slice(1),
7707                          CandidateSet, /*SuppressUserConversion=*/false, PO);
7708   }
7709 }
7710 
7711 /// AddBuiltinCandidate - Add a candidate for a built-in
7712 /// operator. ResultTy and ParamTys are the result and parameter types
7713 /// of the built-in candidate, respectively. Args and NumArgs are the
7714 /// arguments being passed to the candidate. IsAssignmentOperator
7715 /// should be true when this built-in candidate is an assignment
7716 /// operator. NumContextualBoolArguments is the number of arguments
7717 /// (at the beginning of the argument list) that will be contextually
7718 /// converted to bool.
AddBuiltinCandidate(QualType * ParamTys,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)7719 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7720                                OverloadCandidateSet& CandidateSet,
7721                                bool IsAssignmentOperator,
7722                                unsigned NumContextualBoolArguments) {
7723   // Overload resolution is always an unevaluated context.
7724   EnterExpressionEvaluationContext Unevaluated(
7725       *this, Sema::ExpressionEvaluationContext::Unevaluated);
7726 
7727   // Add this candidate
7728   OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7729   Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7730   Candidate.Function = nullptr;
7731   Candidate.IsSurrogate = false;
7732   Candidate.IgnoreObjectArgument = false;
7733   std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7734 
7735   // Determine the implicit conversion sequences for each of the
7736   // arguments.
7737   Candidate.Viable = true;
7738   Candidate.ExplicitCallArguments = Args.size();
7739   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7740     // C++ [over.match.oper]p4:
7741     //   For the built-in assignment operators, conversions of the
7742     //   left operand are restricted as follows:
7743     //     -- no temporaries are introduced to hold the left operand, and
7744     //     -- no user-defined conversions are applied to the left
7745     //        operand to achieve a type match with the left-most
7746     //        parameter of a built-in candidate.
7747     //
7748     // We block these conversions by turning off user-defined
7749     // conversions, since that is the only way that initialization of
7750     // a reference to a non-class type can occur from something that
7751     // is not of the same type.
7752     if (ArgIdx < NumContextualBoolArguments) {
7753       assert(ParamTys[ArgIdx] == Context.BoolTy &&
7754              "Contextual conversion to bool requires bool type");
7755       Candidate.Conversions[ArgIdx]
7756         = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7757     } else {
7758       Candidate.Conversions[ArgIdx]
7759         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7760                                 ArgIdx == 0 && IsAssignmentOperator,
7761                                 /*InOverloadResolution=*/false,
7762                                 /*AllowObjCWritebackConversion=*/
7763                                   getLangOpts().ObjCAutoRefCount);
7764     }
7765     if (Candidate.Conversions[ArgIdx].isBad()) {
7766       Candidate.Viable = false;
7767       Candidate.FailureKind = ovl_fail_bad_conversion;
7768       break;
7769     }
7770   }
7771 }
7772 
7773 namespace {
7774 
7775 /// BuiltinCandidateTypeSet - A set of types that will be used for the
7776 /// candidate operator functions for built-in operators (C++
7777 /// [over.built]). The types are separated into pointer types and
7778 /// enumeration types.
7779 class BuiltinCandidateTypeSet  {
7780   /// TypeSet - A set of types.
7781   typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7782                           llvm::SmallPtrSet<QualType, 8>> TypeSet;
7783 
7784   /// PointerTypes - The set of pointer types that will be used in the
7785   /// built-in candidates.
7786   TypeSet PointerTypes;
7787 
7788   /// MemberPointerTypes - The set of member pointer types that will be
7789   /// used in the built-in candidates.
7790   TypeSet MemberPointerTypes;
7791 
7792   /// EnumerationTypes - The set of enumeration types that will be
7793   /// used in the built-in candidates.
7794   TypeSet EnumerationTypes;
7795 
7796   /// The set of vector types that will be used in the built-in
7797   /// candidates.
7798   TypeSet VectorTypes;
7799 
7800   /// The set of matrix types that will be used in the built-in
7801   /// candidates.
7802   TypeSet MatrixTypes;
7803 
7804   /// A flag indicating non-record types are viable candidates
7805   bool HasNonRecordTypes;
7806 
7807   /// A flag indicating whether either arithmetic or enumeration types
7808   /// were present in the candidate set.
7809   bool HasArithmeticOrEnumeralTypes;
7810 
7811   /// A flag indicating whether the nullptr type was present in the
7812   /// candidate set.
7813   bool HasNullPtrType;
7814 
7815   /// Sema - The semantic analysis instance where we are building the
7816   /// candidate type set.
7817   Sema &SemaRef;
7818 
7819   /// Context - The AST context in which we will build the type sets.
7820   ASTContext &Context;
7821 
7822   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7823                                                const Qualifiers &VisibleQuals);
7824   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7825 
7826 public:
7827   /// iterator - Iterates through the types that are part of the set.
7828   typedef TypeSet::iterator iterator;
7829 
BuiltinCandidateTypeSet(Sema & SemaRef)7830   BuiltinCandidateTypeSet(Sema &SemaRef)
7831     : HasNonRecordTypes(false),
7832       HasArithmeticOrEnumeralTypes(false),
7833       HasNullPtrType(false),
7834       SemaRef(SemaRef),
7835       Context(SemaRef.Context) { }
7836 
7837   void AddTypesConvertedFrom(QualType Ty,
7838                              SourceLocation Loc,
7839                              bool AllowUserConversions,
7840                              bool AllowExplicitConversions,
7841                              const Qualifiers &VisibleTypeConversionsQuals);
7842 
pointer_types()7843   llvm::iterator_range<iterator> pointer_types() { return PointerTypes; }
member_pointer_types()7844   llvm::iterator_range<iterator> member_pointer_types() {
7845     return MemberPointerTypes;
7846   }
enumeration_types()7847   llvm::iterator_range<iterator> enumeration_types() {
7848     return EnumerationTypes;
7849   }
vector_types()7850   llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
matrix_types()7851   llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7852 
containsMatrixType(QualType Ty) const7853   bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
hasNonRecordTypes()7854   bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()7855   bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const7856   bool hasNullPtrType() const { return HasNullPtrType; }
7857 };
7858 
7859 } // end anonymous namespace
7860 
7861 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7862 /// the set of pointer types along with any more-qualified variants of
7863 /// that type. For example, if @p Ty is "int const *", this routine
7864 /// will add "int const *", "int const volatile *", "int const
7865 /// restrict *", and "int const volatile restrict *" to the set of
7866 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7867 /// false otherwise.
7868 ///
7869 /// FIXME: what to do about extended qualifiers?
7870 bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)7871 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7872                                              const Qualifiers &VisibleQuals) {
7873 
7874   // Insert this type.
7875   if (!PointerTypes.insert(Ty))
7876     return false;
7877 
7878   QualType PointeeTy;
7879   const PointerType *PointerTy = Ty->getAs<PointerType>();
7880   bool buildObjCPtr = false;
7881   if (!PointerTy) {
7882     const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7883     PointeeTy = PTy->getPointeeType();
7884     buildObjCPtr = true;
7885   } else {
7886     PointeeTy = PointerTy->getPointeeType();
7887   }
7888 
7889   // Don't add qualified variants of arrays. For one, they're not allowed
7890   // (the qualifier would sink to the element type), and for another, the
7891   // only overload situation where it matters is subscript or pointer +- int,
7892   // and those shouldn't have qualifier variants anyway.
7893   if (PointeeTy->isArrayType())
7894     return true;
7895 
7896   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7897   bool hasVolatile = VisibleQuals.hasVolatile();
7898   bool hasRestrict = VisibleQuals.hasRestrict();
7899 
7900   // Iterate through all strict supersets of BaseCVR.
7901   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7902     if ((CVR | BaseCVR) != CVR) continue;
7903     // Skip over volatile if no volatile found anywhere in the types.
7904     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7905 
7906     // Skip over restrict if no restrict found anywhere in the types, or if
7907     // the type cannot be restrict-qualified.
7908     if ((CVR & Qualifiers::Restrict) &&
7909         (!hasRestrict ||
7910          (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7911       continue;
7912 
7913     // Build qualified pointee type.
7914     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7915 
7916     // Build qualified pointer type.
7917     QualType QPointerTy;
7918     if (!buildObjCPtr)
7919       QPointerTy = Context.getPointerType(QPointeeTy);
7920     else
7921       QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7922 
7923     // Insert qualified pointer type.
7924     PointerTypes.insert(QPointerTy);
7925   }
7926 
7927   return true;
7928 }
7929 
7930 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7931 /// to the set of pointer types along with any more-qualified variants of
7932 /// that type. For example, if @p Ty is "int const *", this routine
7933 /// will add "int const *", "int const volatile *", "int const
7934 /// restrict *", and "int const volatile restrict *" to the set of
7935 /// pointer types. Returns true if the add of @p Ty itself succeeded,
7936 /// false otherwise.
7937 ///
7938 /// FIXME: what to do about extended qualifiers?
7939 bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)7940 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7941     QualType Ty) {
7942   // Insert this type.
7943   if (!MemberPointerTypes.insert(Ty))
7944     return false;
7945 
7946   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7947   assert(PointerTy && "type was not a member pointer type!");
7948 
7949   QualType PointeeTy = PointerTy->getPointeeType();
7950   // Don't add qualified variants of arrays. For one, they're not allowed
7951   // (the qualifier would sink to the element type), and for another, the
7952   // only overload situation where it matters is subscript or pointer +- int,
7953   // and those shouldn't have qualifier variants anyway.
7954   if (PointeeTy->isArrayType())
7955     return true;
7956   const Type *ClassTy = PointerTy->getClass();
7957 
7958   // Iterate through all strict supersets of the pointee type's CVR
7959   // qualifiers.
7960   unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7961   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7962     if ((CVR | BaseCVR) != CVR) continue;
7963 
7964     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7965     MemberPointerTypes.insert(
7966       Context.getMemberPointerType(QPointeeTy, ClassTy));
7967   }
7968 
7969   return true;
7970 }
7971 
7972 /// AddTypesConvertedFrom - Add each of the types to which the type @p
7973 /// Ty can be implicit converted to the given set of @p Types. We're
7974 /// primarily interested in pointer types and enumeration types. We also
7975 /// take member pointer types, for the conditional operator.
7976 /// AllowUserConversions is true if we should look at the conversion
7977 /// functions of a class type, and AllowExplicitConversions if we
7978 /// should also include the explicit conversion functions of a class
7979 /// type.
7980 void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)7981 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7982                                                SourceLocation Loc,
7983                                                bool AllowUserConversions,
7984                                                bool AllowExplicitConversions,
7985                                                const Qualifiers &VisibleQuals) {
7986   // Only deal with canonical types.
7987   Ty = Context.getCanonicalType(Ty);
7988 
7989   // Look through reference types; they aren't part of the type of an
7990   // expression for the purposes of conversions.
7991   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7992     Ty = RefTy->getPointeeType();
7993 
7994   // If we're dealing with an array type, decay to the pointer.
7995   if (Ty->isArrayType())
7996     Ty = SemaRef.Context.getArrayDecayedType(Ty);
7997 
7998   // Otherwise, we don't care about qualifiers on the type.
7999   Ty = Ty.getLocalUnqualifiedType();
8000 
8001   // Flag if we ever add a non-record type.
8002   const RecordType *TyRec = Ty->getAs<RecordType>();
8003   HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8004 
8005   // Flag if we encounter an arithmetic type.
8006   HasArithmeticOrEnumeralTypes =
8007     HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8008 
8009   if (Ty->isObjCIdType() || Ty->isObjCClassType())
8010     PointerTypes.insert(Ty);
8011   else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8012     // Insert our type, and its more-qualified variants, into the set
8013     // of types.
8014     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8015       return;
8016   } else if (Ty->isMemberPointerType()) {
8017     // Member pointers are far easier, since the pointee can't be converted.
8018     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8019       return;
8020   } else if (Ty->isEnumeralType()) {
8021     HasArithmeticOrEnumeralTypes = true;
8022     EnumerationTypes.insert(Ty);
8023   } else if (Ty->isVectorType()) {
8024     // We treat vector types as arithmetic types in many contexts as an
8025     // extension.
8026     HasArithmeticOrEnumeralTypes = true;
8027     VectorTypes.insert(Ty);
8028   } else if (Ty->isMatrixType()) {
8029     // Similar to vector types, we treat vector types as arithmetic types in
8030     // many contexts as an extension.
8031     HasArithmeticOrEnumeralTypes = true;
8032     MatrixTypes.insert(Ty);
8033   } else if (Ty->isNullPtrType()) {
8034     HasNullPtrType = true;
8035   } else if (AllowUserConversions && TyRec) {
8036     // No conversion functions in incomplete types.
8037     if (!SemaRef.isCompleteType(Loc, Ty))
8038       return;
8039 
8040     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8041     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8042       if (isa<UsingShadowDecl>(D))
8043         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8044 
8045       // Skip conversion function templates; they don't tell us anything
8046       // about which builtin types we can convert to.
8047       if (isa<FunctionTemplateDecl>(D))
8048         continue;
8049 
8050       CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8051       if (AllowExplicitConversions || !Conv->isExplicit()) {
8052         AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8053                               VisibleQuals);
8054       }
8055     }
8056   }
8057 }
8058 /// Helper function for adjusting address spaces for the pointer or reference
8059 /// operands of builtin operators depending on the argument.
AdjustAddressSpaceForBuiltinOperandType(Sema & S,QualType T,Expr * Arg)8060 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8061                                                         Expr *Arg) {
8062   return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8063 }
8064 
8065 /// Helper function for AddBuiltinOperatorCandidates() that adds
8066 /// the volatile- and non-volatile-qualified assignment operators for the
8067 /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)8068 static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8069                                                    QualType T,
8070                                                    ArrayRef<Expr *> Args,
8071                                     OverloadCandidateSet &CandidateSet) {
8072   QualType ParamTypes[2];
8073 
8074   // T& operator=(T&, T)
8075   ParamTypes[0] = S.Context.getLValueReferenceType(
8076       AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8077   ParamTypes[1] = T;
8078   S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8079                         /*IsAssignmentOperator=*/true);
8080 
8081   if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8082     // volatile T& operator=(volatile T&, T)
8083     ParamTypes[0] = S.Context.getLValueReferenceType(
8084         AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8085                                                 Args[0]));
8086     ParamTypes[1] = T;
8087     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8088                           /*IsAssignmentOperator=*/true);
8089   }
8090 }
8091 
8092 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8093 /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)8094 static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8095     Qualifiers VRQuals;
8096     const RecordType *TyRec;
8097     if (const MemberPointerType *RHSMPType =
8098         ArgExpr->getType()->getAs<MemberPointerType>())
8099       TyRec = RHSMPType->getClass()->getAs<RecordType>();
8100     else
8101       TyRec = ArgExpr->getType()->getAs<RecordType>();
8102     if (!TyRec) {
8103       // Just to be safe, assume the worst case.
8104       VRQuals.addVolatile();
8105       VRQuals.addRestrict();
8106       return VRQuals;
8107     }
8108 
8109     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8110     if (!ClassDecl->hasDefinition())
8111       return VRQuals;
8112 
8113     for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8114       if (isa<UsingShadowDecl>(D))
8115         D = cast<UsingShadowDecl>(D)->getTargetDecl();
8116       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8117         QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8118         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8119           CanTy = ResTypeRef->getPointeeType();
8120         // Need to go down the pointer/mempointer chain and add qualifiers
8121         // as see them.
8122         bool done = false;
8123         while (!done) {
8124           if (CanTy.isRestrictQualified())
8125             VRQuals.addRestrict();
8126           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8127             CanTy = ResTypePtr->getPointeeType();
8128           else if (const MemberPointerType *ResTypeMPtr =
8129                 CanTy->getAs<MemberPointerType>())
8130             CanTy = ResTypeMPtr->getPointeeType();
8131           else
8132             done = true;
8133           if (CanTy.isVolatileQualified())
8134             VRQuals.addVolatile();
8135           if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8136             return VRQuals;
8137         }
8138       }
8139     }
8140     return VRQuals;
8141 }
8142 
8143 namespace {
8144 
8145 /// Helper class to manage the addition of builtin operator overload
8146 /// candidates. It provides shared state and utility methods used throughout
8147 /// the process, as well as a helper method to add each group of builtin
8148 /// operator overloads from the standard to a candidate set.
8149 class BuiltinOperatorOverloadBuilder {
8150   // Common instance state available to all overload candidate addition methods.
8151   Sema &S;
8152   ArrayRef<Expr *> Args;
8153   Qualifiers VisibleTypeConversionsQuals;
8154   bool HasArithmeticOrEnumeralCandidateType;
8155   SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8156   OverloadCandidateSet &CandidateSet;
8157 
8158   static constexpr int ArithmeticTypesCap = 24;
8159   SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8160 
8161   // Define some indices used to iterate over the arithmetic types in
8162   // ArithmeticTypes.  The "promoted arithmetic types" are the arithmetic
8163   // types are that preserved by promotion (C++ [over.built]p2).
8164   unsigned FirstIntegralType,
8165            LastIntegralType;
8166   unsigned FirstPromotedIntegralType,
8167            LastPromotedIntegralType;
8168   unsigned FirstPromotedArithmeticType,
8169            LastPromotedArithmeticType;
8170   unsigned NumArithmeticTypes;
8171 
InitArithmeticTypes()8172   void InitArithmeticTypes() {
8173     // Start of promoted types.
8174     FirstPromotedArithmeticType = 0;
8175     ArithmeticTypes.push_back(S.Context.FloatTy);
8176     ArithmeticTypes.push_back(S.Context.DoubleTy);
8177     ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8178     if (S.Context.getTargetInfo().hasFloat128Type())
8179       ArithmeticTypes.push_back(S.Context.Float128Ty);
8180 
8181     // Start of integral types.
8182     FirstIntegralType = ArithmeticTypes.size();
8183     FirstPromotedIntegralType = ArithmeticTypes.size();
8184     ArithmeticTypes.push_back(S.Context.IntTy);
8185     ArithmeticTypes.push_back(S.Context.LongTy);
8186     ArithmeticTypes.push_back(S.Context.LongLongTy);
8187     if (S.Context.getTargetInfo().hasInt128Type() ||
8188         (S.Context.getAuxTargetInfo() &&
8189          S.Context.getAuxTargetInfo()->hasInt128Type()))
8190       ArithmeticTypes.push_back(S.Context.Int128Ty);
8191     ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8192     ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8193     ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8194     if (S.Context.getTargetInfo().hasInt128Type() ||
8195         (S.Context.getAuxTargetInfo() &&
8196          S.Context.getAuxTargetInfo()->hasInt128Type()))
8197       ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8198     LastPromotedIntegralType = ArithmeticTypes.size();
8199     LastPromotedArithmeticType = ArithmeticTypes.size();
8200     // End of promoted types.
8201 
8202     ArithmeticTypes.push_back(S.Context.BoolTy);
8203     ArithmeticTypes.push_back(S.Context.CharTy);
8204     ArithmeticTypes.push_back(S.Context.WCharTy);
8205     if (S.Context.getLangOpts().Char8)
8206       ArithmeticTypes.push_back(S.Context.Char8Ty);
8207     ArithmeticTypes.push_back(S.Context.Char16Ty);
8208     ArithmeticTypes.push_back(S.Context.Char32Ty);
8209     ArithmeticTypes.push_back(S.Context.SignedCharTy);
8210     ArithmeticTypes.push_back(S.Context.ShortTy);
8211     ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8212     ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8213     LastIntegralType = ArithmeticTypes.size();
8214     NumArithmeticTypes = ArithmeticTypes.size();
8215     // End of integral types.
8216     // FIXME: What about complex? What about half?
8217 
8218     assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
8219            "Enough inline storage for all arithmetic types.");
8220   }
8221 
8222   /// Helper method to factor out the common pattern of adding overloads
8223   /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)8224   void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8225                                            bool HasVolatile,
8226                                            bool HasRestrict) {
8227     QualType ParamTypes[2] = {
8228       S.Context.getLValueReferenceType(CandidateTy),
8229       S.Context.IntTy
8230     };
8231 
8232     // Non-volatile version.
8233     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8234 
8235     // Use a heuristic to reduce number of builtin candidates in the set:
8236     // add volatile version only if there are conversions to a volatile type.
8237     if (HasVolatile) {
8238       ParamTypes[0] =
8239         S.Context.getLValueReferenceType(
8240           S.Context.getVolatileType(CandidateTy));
8241       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8242     }
8243 
8244     // Add restrict version only if there are conversions to a restrict type
8245     // and our candidate type is a non-restrict-qualified pointer.
8246     if (HasRestrict && CandidateTy->isAnyPointerType() &&
8247         !CandidateTy.isRestrictQualified()) {
8248       ParamTypes[0]
8249         = S.Context.getLValueReferenceType(
8250             S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8251       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8252 
8253       if (HasVolatile) {
8254         ParamTypes[0]
8255           = S.Context.getLValueReferenceType(
8256               S.Context.getCVRQualifiedType(CandidateTy,
8257                                             (Qualifiers::Volatile |
8258                                              Qualifiers::Restrict)));
8259         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8260       }
8261     }
8262 
8263   }
8264 
8265   /// Helper to add an overload candidate for a binary builtin with types \p L
8266   /// and \p R.
AddCandidate(QualType L,QualType R)8267   void AddCandidate(QualType L, QualType R) {
8268     QualType LandR[2] = {L, R};
8269     S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8270   }
8271 
8272 public:
BuiltinOperatorOverloadBuilder(Sema & S,ArrayRef<Expr * > Args,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)8273   BuiltinOperatorOverloadBuilder(
8274     Sema &S, ArrayRef<Expr *> Args,
8275     Qualifiers VisibleTypeConversionsQuals,
8276     bool HasArithmeticOrEnumeralCandidateType,
8277     SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8278     OverloadCandidateSet &CandidateSet)
8279     : S(S), Args(Args),
8280       VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8281       HasArithmeticOrEnumeralCandidateType(
8282         HasArithmeticOrEnumeralCandidateType),
8283       CandidateTypes(CandidateTypes),
8284       CandidateSet(CandidateSet) {
8285 
8286     InitArithmeticTypes();
8287   }
8288 
8289   // Increment is deprecated for bool since C++17.
8290   //
8291   // C++ [over.built]p3:
8292   //
8293   //   For every pair (T, VQ), where T is an arithmetic type other
8294   //   than bool, and VQ is either volatile or empty, there exist
8295   //   candidate operator functions of the form
8296   //
8297   //       VQ T&      operator++(VQ T&);
8298   //       T          operator++(VQ T&, int);
8299   //
8300   // C++ [over.built]p4:
8301   //
8302   //   For every pair (T, VQ), where T is an arithmetic type other
8303   //   than bool, and VQ is either volatile or empty, there exist
8304   //   candidate operator functions of the form
8305   //
8306   //       VQ T&      operator--(VQ T&);
8307   //       T          operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)8308   void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8309     if (!HasArithmeticOrEnumeralCandidateType)
8310       return;
8311 
8312     for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8313       const auto TypeOfT = ArithmeticTypes[Arith];
8314       if (TypeOfT == S.Context.BoolTy) {
8315         if (Op == OO_MinusMinus)
8316           continue;
8317         if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8318           continue;
8319       }
8320       addPlusPlusMinusMinusStyleOverloads(
8321         TypeOfT,
8322         VisibleTypeConversionsQuals.hasVolatile(),
8323         VisibleTypeConversionsQuals.hasRestrict());
8324     }
8325   }
8326 
8327   // C++ [over.built]p5:
8328   //
8329   //   For every pair (T, VQ), where T is a cv-qualified or
8330   //   cv-unqualified object type, and VQ is either volatile or
8331   //   empty, there exist candidate operator functions of the form
8332   //
8333   //       T*VQ&      operator++(T*VQ&);
8334   //       T*VQ&      operator--(T*VQ&);
8335   //       T*         operator++(T*VQ&, int);
8336   //       T*         operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()8337   void addPlusPlusMinusMinusPointerOverloads() {
8338     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8339       // Skip pointer types that aren't pointers to object types.
8340       if (!PtrTy->getPointeeType()->isObjectType())
8341         continue;
8342 
8343       addPlusPlusMinusMinusStyleOverloads(
8344           PtrTy,
8345           (!PtrTy.isVolatileQualified() &&
8346            VisibleTypeConversionsQuals.hasVolatile()),
8347           (!PtrTy.isRestrictQualified() &&
8348            VisibleTypeConversionsQuals.hasRestrict()));
8349     }
8350   }
8351 
8352   // C++ [over.built]p6:
8353   //   For every cv-qualified or cv-unqualified object type T, there
8354   //   exist candidate operator functions of the form
8355   //
8356   //       T&         operator*(T*);
8357   //
8358   // C++ [over.built]p7:
8359   //   For every function type T that does not have cv-qualifiers or a
8360   //   ref-qualifier, there exist candidate operator functions of the form
8361   //       T&         operator*(T*);
addUnaryStarPointerOverloads()8362   void addUnaryStarPointerOverloads() {
8363     for (QualType ParamTy : CandidateTypes[0].pointer_types()) {
8364       QualType PointeeTy = ParamTy->getPointeeType();
8365       if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8366         continue;
8367 
8368       if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8369         if (Proto->getMethodQuals() || Proto->getRefQualifier())
8370           continue;
8371 
8372       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8373     }
8374   }
8375 
8376   // C++ [over.built]p9:
8377   //  For every promoted arithmetic type T, there exist candidate
8378   //  operator functions of the form
8379   //
8380   //       T         operator+(T);
8381   //       T         operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()8382   void addUnaryPlusOrMinusArithmeticOverloads() {
8383     if (!HasArithmeticOrEnumeralCandidateType)
8384       return;
8385 
8386     for (unsigned Arith = FirstPromotedArithmeticType;
8387          Arith < LastPromotedArithmeticType; ++Arith) {
8388       QualType ArithTy = ArithmeticTypes[Arith];
8389       S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8390     }
8391 
8392     // Extension: We also add these operators for vector types.
8393     for (QualType VecTy : CandidateTypes[0].vector_types())
8394       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8395   }
8396 
8397   // C++ [over.built]p8:
8398   //   For every type T, there exist candidate operator functions of
8399   //   the form
8400   //
8401   //       T*         operator+(T*);
addUnaryPlusPointerOverloads()8402   void addUnaryPlusPointerOverloads() {
8403     for (QualType ParamTy : CandidateTypes[0].pointer_types())
8404       S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8405   }
8406 
8407   // C++ [over.built]p10:
8408   //   For every promoted integral type T, there exist candidate
8409   //   operator functions of the form
8410   //
8411   //        T         operator~(T);
addUnaryTildePromotedIntegralOverloads()8412   void addUnaryTildePromotedIntegralOverloads() {
8413     if (!HasArithmeticOrEnumeralCandidateType)
8414       return;
8415 
8416     for (unsigned Int = FirstPromotedIntegralType;
8417          Int < LastPromotedIntegralType; ++Int) {
8418       QualType IntTy = ArithmeticTypes[Int];
8419       S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8420     }
8421 
8422     // Extension: We also add this operator for vector types.
8423     for (QualType VecTy : CandidateTypes[0].vector_types())
8424       S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8425   }
8426 
8427   // C++ [over.match.oper]p16:
8428   //   For every pointer to member type T or type std::nullptr_t, there
8429   //   exist candidate operator functions of the form
8430   //
8431   //        bool operator==(T,T);
8432   //        bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads()8433   void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8434     /// Set of (canonical) types that we've already handled.
8435     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8436 
8437     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8438       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8439         // Don't add the same builtin candidate twice.
8440         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8441           continue;
8442 
8443         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
8444         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8445       }
8446 
8447       if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8448         CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8449         if (AddedTypes.insert(NullPtrTy).second) {
8450           QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8451           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8452         }
8453       }
8454     }
8455   }
8456 
8457   // C++ [over.built]p15:
8458   //
8459   //   For every T, where T is an enumeration type or a pointer type,
8460   //   there exist candidate operator functions of the form
8461   //
8462   //        bool       operator<(T, T);
8463   //        bool       operator>(T, T);
8464   //        bool       operator<=(T, T);
8465   //        bool       operator>=(T, T);
8466   //        bool       operator==(T, T);
8467   //        bool       operator!=(T, T);
8468   //           R       operator<=>(T, T)
addGenericBinaryPointerOrEnumeralOverloads()8469   void addGenericBinaryPointerOrEnumeralOverloads() {
8470     // C++ [over.match.oper]p3:
8471     //   [...]the built-in candidates include all of the candidate operator
8472     //   functions defined in 13.6 that, compared to the given operator, [...]
8473     //   do not have the same parameter-type-list as any non-template non-member
8474     //   candidate.
8475     //
8476     // Note that in practice, this only affects enumeration types because there
8477     // aren't any built-in candidates of record type, and a user-defined operator
8478     // must have an operand of record or enumeration type. Also, the only other
8479     // overloaded operator with enumeration arguments, operator=,
8480     // cannot be overloaded for enumeration types, so this is the only place
8481     // where we must suppress candidates like this.
8482     llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8483       UserDefinedBinaryOperators;
8484 
8485     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8486       if (!CandidateTypes[ArgIdx].enumeration_types().empty()) {
8487         for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8488                                          CEnd = CandidateSet.end();
8489              C != CEnd; ++C) {
8490           if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8491             continue;
8492 
8493           if (C->Function->isFunctionTemplateSpecialization())
8494             continue;
8495 
8496           // We interpret "same parameter-type-list" as applying to the
8497           // "synthesized candidate, with the order of the two parameters
8498           // reversed", not to the original function.
8499           bool Reversed = C->isReversed();
8500           QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8501                                         ->getType()
8502                                         .getUnqualifiedType();
8503           QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8504                                          ->getType()
8505                                          .getUnqualifiedType();
8506 
8507           // Skip if either parameter isn't of enumeral type.
8508           if (!FirstParamType->isEnumeralType() ||
8509               !SecondParamType->isEnumeralType())
8510             continue;
8511 
8512           // Add this operator to the set of known user-defined operators.
8513           UserDefinedBinaryOperators.insert(
8514             std::make_pair(S.Context.getCanonicalType(FirstParamType),
8515                            S.Context.getCanonicalType(SecondParamType)));
8516         }
8517       }
8518     }
8519 
8520     /// Set of (canonical) types that we've already handled.
8521     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8522 
8523     for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8524       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
8525         // Don't add the same builtin candidate twice.
8526         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8527           continue;
8528 
8529         QualType ParamTypes[2] = {PtrTy, PtrTy};
8530         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8531       }
8532       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8533         CanQualType CanonType = S.Context.getCanonicalType(EnumTy);
8534 
8535         // Don't add the same builtin candidate twice, or if a user defined
8536         // candidate exists.
8537         if (!AddedTypes.insert(CanonType).second ||
8538             UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8539                                                             CanonType)))
8540           continue;
8541         QualType ParamTypes[2] = {EnumTy, EnumTy};
8542         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8543       }
8544     }
8545   }
8546 
8547   // C++ [over.built]p13:
8548   //
8549   //   For every cv-qualified or cv-unqualified object type T
8550   //   there exist candidate operator functions of the form
8551   //
8552   //      T*         operator+(T*, ptrdiff_t);
8553   //      T&         operator[](T*, ptrdiff_t);    [BELOW]
8554   //      T*         operator-(T*, ptrdiff_t);
8555   //      T*         operator+(ptrdiff_t, T*);
8556   //      T&         operator[](ptrdiff_t, T*);    [BELOW]
8557   //
8558   // C++ [over.built]p14:
8559   //
8560   //   For every T, where T is a pointer to object type, there
8561   //   exist candidate operator functions of the form
8562   //
8563   //      ptrdiff_t  operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)8564   void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8565     /// Set of (canonical) types that we've already handled.
8566     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8567 
8568     for (int Arg = 0; Arg < 2; ++Arg) {
8569       QualType AsymmetricParamTypes[2] = {
8570         S.Context.getPointerDiffType(),
8571         S.Context.getPointerDiffType(),
8572       };
8573       for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) {
8574         QualType PointeeTy = PtrTy->getPointeeType();
8575         if (!PointeeTy->isObjectType())
8576           continue;
8577 
8578         AsymmetricParamTypes[Arg] = PtrTy;
8579         if (Arg == 0 || Op == OO_Plus) {
8580           // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8581           // T* operator+(ptrdiff_t, T*);
8582           S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8583         }
8584         if (Op == OO_Minus) {
8585           // ptrdiff_t operator-(T, T);
8586           if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8587             continue;
8588 
8589           QualType ParamTypes[2] = {PtrTy, PtrTy};
8590           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8591         }
8592       }
8593     }
8594   }
8595 
8596   // C++ [over.built]p12:
8597   //
8598   //   For every pair of promoted arithmetic types L and R, there
8599   //   exist candidate operator functions of the form
8600   //
8601   //        LR         operator*(L, R);
8602   //        LR         operator/(L, R);
8603   //        LR         operator+(L, R);
8604   //        LR         operator-(L, R);
8605   //        bool       operator<(L, R);
8606   //        bool       operator>(L, R);
8607   //        bool       operator<=(L, R);
8608   //        bool       operator>=(L, R);
8609   //        bool       operator==(L, R);
8610   //        bool       operator!=(L, R);
8611   //
8612   //   where LR is the result of the usual arithmetic conversions
8613   //   between types L and R.
8614   //
8615   // C++ [over.built]p24:
8616   //
8617   //   For every pair of promoted arithmetic types L and R, there exist
8618   //   candidate operator functions of the form
8619   //
8620   //        LR       operator?(bool, L, R);
8621   //
8622   //   where LR is the result of the usual arithmetic conversions
8623   //   between types L and R.
8624   // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads()8625   void addGenericBinaryArithmeticOverloads() {
8626     if (!HasArithmeticOrEnumeralCandidateType)
8627       return;
8628 
8629     for (unsigned Left = FirstPromotedArithmeticType;
8630          Left < LastPromotedArithmeticType; ++Left) {
8631       for (unsigned Right = FirstPromotedArithmeticType;
8632            Right < LastPromotedArithmeticType; ++Right) {
8633         QualType LandR[2] = { ArithmeticTypes[Left],
8634                               ArithmeticTypes[Right] };
8635         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8636       }
8637     }
8638 
8639     // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8640     // conditional operator for vector types.
8641     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8642       for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8643         QualType LandR[2] = {Vec1Ty, Vec2Ty};
8644         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8645       }
8646   }
8647 
8648   /// Add binary operator overloads for each candidate matrix type M1, M2:
8649   ///  * (M1, M1) -> M1
8650   ///  * (M1, M1.getElementType()) -> M1
8651   ///  * (M2.getElementType(), M2) -> M2
8652   ///  * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
addMatrixBinaryArithmeticOverloads()8653   void addMatrixBinaryArithmeticOverloads() {
8654     if (!HasArithmeticOrEnumeralCandidateType)
8655       return;
8656 
8657     for (QualType M1 : CandidateTypes[0].matrix_types()) {
8658       AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8659       AddCandidate(M1, M1);
8660     }
8661 
8662     for (QualType M2 : CandidateTypes[1].matrix_types()) {
8663       AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8664       if (!CandidateTypes[0].containsMatrixType(M2))
8665         AddCandidate(M2, M2);
8666     }
8667   }
8668 
8669   // C++2a [over.built]p14:
8670   //
8671   //   For every integral type T there exists a candidate operator function
8672   //   of the form
8673   //
8674   //        std::strong_ordering operator<=>(T, T)
8675   //
8676   // C++2a [over.built]p15:
8677   //
8678   //   For every pair of floating-point types L and R, there exists a candidate
8679   //   operator function of the form
8680   //
8681   //       std::partial_ordering operator<=>(L, R);
8682   //
8683   // FIXME: The current specification for integral types doesn't play nice with
8684   // the direction of p0946r0, which allows mixed integral and unscoped-enum
8685   // comparisons. Under the current spec this can lead to ambiguity during
8686   // overload resolution. For example:
8687   //
8688   //   enum A : int {a};
8689   //   auto x = (a <=> (long)42);
8690   //
8691   //   error: call is ambiguous for arguments 'A' and 'long'.
8692   //   note: candidate operator<=>(int, int)
8693   //   note: candidate operator<=>(long, long)
8694   //
8695   // To avoid this error, this function deviates from the specification and adds
8696   // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8697   // arithmetic types (the same as the generic relational overloads).
8698   //
8699   // For now this function acts as a placeholder.
addThreeWayArithmeticOverloads()8700   void addThreeWayArithmeticOverloads() {
8701     addGenericBinaryArithmeticOverloads();
8702   }
8703 
8704   // C++ [over.built]p17:
8705   //
8706   //   For every pair of promoted integral types L and R, there
8707   //   exist candidate operator functions of the form
8708   //
8709   //      LR         operator%(L, R);
8710   //      LR         operator&(L, R);
8711   //      LR         operator^(L, R);
8712   //      LR         operator|(L, R);
8713   //      L          operator<<(L, R);
8714   //      L          operator>>(L, R);
8715   //
8716   //   where LR is the result of the usual arithmetic conversions
8717   //   between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)8718   void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8719     if (!HasArithmeticOrEnumeralCandidateType)
8720       return;
8721 
8722     for (unsigned Left = FirstPromotedIntegralType;
8723          Left < LastPromotedIntegralType; ++Left) {
8724       for (unsigned Right = FirstPromotedIntegralType;
8725            Right < LastPromotedIntegralType; ++Right) {
8726         QualType LandR[2] = { ArithmeticTypes[Left],
8727                               ArithmeticTypes[Right] };
8728         S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8729       }
8730     }
8731   }
8732 
8733   // C++ [over.built]p20:
8734   //
8735   //   For every pair (T, VQ), where T is an enumeration or
8736   //   pointer to member type and VQ is either volatile or
8737   //   empty, there exist candidate operator functions of the form
8738   //
8739   //        VQ T&      operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()8740   void addAssignmentMemberPointerOrEnumeralOverloads() {
8741     /// Set of (canonical) types that we've already handled.
8742     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8743 
8744     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8745       for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
8746         if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
8747           continue;
8748 
8749         AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet);
8750       }
8751 
8752       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
8753         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
8754           continue;
8755 
8756         AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet);
8757       }
8758     }
8759   }
8760 
8761   // C++ [over.built]p19:
8762   //
8763   //   For every pair (T, VQ), where T is any type and VQ is either
8764   //   volatile or empty, there exist candidate operator functions
8765   //   of the form
8766   //
8767   //        T*VQ&      operator=(T*VQ&, T*);
8768   //
8769   // C++ [over.built]p21:
8770   //
8771   //   For every pair (T, VQ), where T is a cv-qualified or
8772   //   cv-unqualified object type and VQ is either volatile or
8773   //   empty, there exist candidate operator functions of the form
8774   //
8775   //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
8776   //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)8777   void addAssignmentPointerOverloads(bool isEqualOp) {
8778     /// Set of (canonical) types that we've already handled.
8779     llvm::SmallPtrSet<QualType, 8> AddedTypes;
8780 
8781     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8782       // If this is operator=, keep track of the builtin candidates we added.
8783       if (isEqualOp)
8784         AddedTypes.insert(S.Context.getCanonicalType(PtrTy));
8785       else if (!PtrTy->getPointeeType()->isObjectType())
8786         continue;
8787 
8788       // non-volatile version
8789       QualType ParamTypes[2] = {
8790           S.Context.getLValueReferenceType(PtrTy),
8791           isEqualOp ? PtrTy : S.Context.getPointerDiffType(),
8792       };
8793       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8794                             /*IsAssignmentOperator=*/ isEqualOp);
8795 
8796       bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8797                           VisibleTypeConversionsQuals.hasVolatile();
8798       if (NeedVolatile) {
8799         // volatile version
8800         ParamTypes[0] =
8801             S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy));
8802         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8803                               /*IsAssignmentOperator=*/isEqualOp);
8804       }
8805 
8806       if (!PtrTy.isRestrictQualified() &&
8807           VisibleTypeConversionsQuals.hasRestrict()) {
8808         // restrict version
8809         ParamTypes[0] =
8810             S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy));
8811         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8812                               /*IsAssignmentOperator=*/isEqualOp);
8813 
8814         if (NeedVolatile) {
8815           // volatile restrict version
8816           ParamTypes[0] =
8817               S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8818                   PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8819           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8820                                 /*IsAssignmentOperator=*/isEqualOp);
8821         }
8822       }
8823     }
8824 
8825     if (isEqualOp) {
8826       for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
8827         // Make sure we don't add the same candidate twice.
8828         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
8829           continue;
8830 
8831         QualType ParamTypes[2] = {
8832             S.Context.getLValueReferenceType(PtrTy),
8833             PtrTy,
8834         };
8835 
8836         // non-volatile version
8837         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8838                               /*IsAssignmentOperator=*/true);
8839 
8840         bool NeedVolatile = !PtrTy.isVolatileQualified() &&
8841                             VisibleTypeConversionsQuals.hasVolatile();
8842         if (NeedVolatile) {
8843           // volatile version
8844           ParamTypes[0] = S.Context.getLValueReferenceType(
8845               S.Context.getVolatileType(PtrTy));
8846           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8847                                 /*IsAssignmentOperator=*/true);
8848         }
8849 
8850         if (!PtrTy.isRestrictQualified() &&
8851             VisibleTypeConversionsQuals.hasRestrict()) {
8852           // restrict version
8853           ParamTypes[0] = S.Context.getLValueReferenceType(
8854               S.Context.getRestrictType(PtrTy));
8855           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8856                                 /*IsAssignmentOperator=*/true);
8857 
8858           if (NeedVolatile) {
8859             // volatile restrict version
8860             ParamTypes[0] =
8861                 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType(
8862                     PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict)));
8863             S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8864                                   /*IsAssignmentOperator=*/true);
8865           }
8866         }
8867       }
8868     }
8869   }
8870 
8871   // C++ [over.built]p18:
8872   //
8873   //   For every triple (L, VQ, R), where L is an arithmetic type,
8874   //   VQ is either volatile or empty, and R is a promoted
8875   //   arithmetic type, there exist candidate operator functions of
8876   //   the form
8877   //
8878   //        VQ L&      operator=(VQ L&, R);
8879   //        VQ L&      operator*=(VQ L&, R);
8880   //        VQ L&      operator/=(VQ L&, R);
8881   //        VQ L&      operator+=(VQ L&, R);
8882   //        VQ L&      operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)8883   void addAssignmentArithmeticOverloads(bool isEqualOp) {
8884     if (!HasArithmeticOrEnumeralCandidateType)
8885       return;
8886 
8887     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8888       for (unsigned Right = FirstPromotedArithmeticType;
8889            Right < LastPromotedArithmeticType; ++Right) {
8890         QualType ParamTypes[2];
8891         ParamTypes[1] = ArithmeticTypes[Right];
8892         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8893             S, ArithmeticTypes[Left], Args[0]);
8894         // Add this built-in operator as a candidate (VQ is empty).
8895         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8896         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8897                               /*IsAssignmentOperator=*/isEqualOp);
8898 
8899         // Add this built-in operator as a candidate (VQ is 'volatile').
8900         if (VisibleTypeConversionsQuals.hasVolatile()) {
8901           ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8902           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8903           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8904                                 /*IsAssignmentOperator=*/isEqualOp);
8905         }
8906       }
8907     }
8908 
8909     // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8910     for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8911       for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8912         QualType ParamTypes[2];
8913         ParamTypes[1] = Vec2Ty;
8914         // Add this built-in operator as a candidate (VQ is empty).
8915         ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8916         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8917                               /*IsAssignmentOperator=*/isEqualOp);
8918 
8919         // Add this built-in operator as a candidate (VQ is 'volatile').
8920         if (VisibleTypeConversionsQuals.hasVolatile()) {
8921           ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8922           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8923           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8924                                 /*IsAssignmentOperator=*/isEqualOp);
8925         }
8926       }
8927   }
8928 
8929   // C++ [over.built]p22:
8930   //
8931   //   For every triple (L, VQ, R), where L is an integral type, VQ
8932   //   is either volatile or empty, and R is a promoted integral
8933   //   type, there exist candidate operator functions of the form
8934   //
8935   //        VQ L&       operator%=(VQ L&, R);
8936   //        VQ L&       operator<<=(VQ L&, R);
8937   //        VQ L&       operator>>=(VQ L&, R);
8938   //        VQ L&       operator&=(VQ L&, R);
8939   //        VQ L&       operator^=(VQ L&, R);
8940   //        VQ L&       operator|=(VQ L&, R);
addAssignmentIntegralOverloads()8941   void addAssignmentIntegralOverloads() {
8942     if (!HasArithmeticOrEnumeralCandidateType)
8943       return;
8944 
8945     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8946       for (unsigned Right = FirstPromotedIntegralType;
8947            Right < LastPromotedIntegralType; ++Right) {
8948         QualType ParamTypes[2];
8949         ParamTypes[1] = ArithmeticTypes[Right];
8950         auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8951             S, ArithmeticTypes[Left], Args[0]);
8952         // Add this built-in operator as a candidate (VQ is empty).
8953         ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8954         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8955         if (VisibleTypeConversionsQuals.hasVolatile()) {
8956           // Add this built-in operator as a candidate (VQ is 'volatile').
8957           ParamTypes[0] = LeftBaseTy;
8958           ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8959           ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8960           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8961         }
8962       }
8963     }
8964   }
8965 
8966   // C++ [over.operator]p23:
8967   //
8968   //   There also exist candidate operator functions of the form
8969   //
8970   //        bool        operator!(bool);
8971   //        bool        operator&&(bool, bool);
8972   //        bool        operator||(bool, bool);
addExclaimOverload()8973   void addExclaimOverload() {
8974     QualType ParamTy = S.Context.BoolTy;
8975     S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8976                           /*IsAssignmentOperator=*/false,
8977                           /*NumContextualBoolArguments=*/1);
8978   }
addAmpAmpOrPipePipeOverload()8979   void addAmpAmpOrPipePipeOverload() {
8980     QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8981     S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8982                           /*IsAssignmentOperator=*/false,
8983                           /*NumContextualBoolArguments=*/2);
8984   }
8985 
8986   // C++ [over.built]p13:
8987   //
8988   //   For every cv-qualified or cv-unqualified object type T there
8989   //   exist candidate operator functions of the form
8990   //
8991   //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
8992   //        T&         operator[](T*, ptrdiff_t);
8993   //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
8994   //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
8995   //        T&         operator[](ptrdiff_t, T*);
addSubscriptOverloads()8996   void addSubscriptOverloads() {
8997     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
8998       QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()};
8999       QualType PointeeType = PtrTy->getPointeeType();
9000       if (!PointeeType->isObjectType())
9001         continue;
9002 
9003       // T& operator[](T*, ptrdiff_t)
9004       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9005     }
9006 
9007     for (QualType PtrTy : CandidateTypes[1].pointer_types()) {
9008       QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy};
9009       QualType PointeeType = PtrTy->getPointeeType();
9010       if (!PointeeType->isObjectType())
9011         continue;
9012 
9013       // T& operator[](ptrdiff_t, T*)
9014       S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9015     }
9016   }
9017 
9018   // C++ [over.built]p11:
9019   //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9020   //    C1 is the same type as C2 or is a derived class of C2, T is an object
9021   //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9022   //    there exist candidate operator functions of the form
9023   //
9024   //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9025   //
9026   //    where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()9027   void addArrowStarOverloads() {
9028     for (QualType PtrTy : CandidateTypes[0].pointer_types()) {
9029       QualType C1Ty = PtrTy;
9030       QualType C1;
9031       QualifierCollector Q1;
9032       C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9033       if (!isa<RecordType>(C1))
9034         continue;
9035       // heuristic to reduce number of builtin candidates in the set.
9036       // Add volatile/restrict version only if there are conversions to a
9037       // volatile/restrict type.
9038       if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9039         continue;
9040       if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9041         continue;
9042       for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) {
9043         const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy);
9044         QualType C2 = QualType(mptr->getClass(), 0);
9045         C2 = C2.getUnqualifiedType();
9046         if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9047           break;
9048         QualType ParamTypes[2] = {PtrTy, MemPtrTy};
9049         // build CV12 T&
9050         QualType T = mptr->getPointeeType();
9051         if (!VisibleTypeConversionsQuals.hasVolatile() &&
9052             T.isVolatileQualified())
9053           continue;
9054         if (!VisibleTypeConversionsQuals.hasRestrict() &&
9055             T.isRestrictQualified())
9056           continue;
9057         T = Q1.apply(S.Context, T);
9058         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9059       }
9060     }
9061   }
9062 
9063   // Note that we don't consider the first argument, since it has been
9064   // contextually converted to bool long ago. The candidates below are
9065   // therefore added as binary.
9066   //
9067   // C++ [over.built]p25:
9068   //   For every type T, where T is a pointer, pointer-to-member, or scoped
9069   //   enumeration type, there exist candidate operator functions of the form
9070   //
9071   //        T        operator?(bool, T, T);
9072   //
addConditionalOperatorOverloads()9073   void addConditionalOperatorOverloads() {
9074     /// Set of (canonical) types that we've already handled.
9075     llvm::SmallPtrSet<QualType, 8> AddedTypes;
9076 
9077     for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9078       for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) {
9079         if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second)
9080           continue;
9081 
9082         QualType ParamTypes[2] = {PtrTy, PtrTy};
9083         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9084       }
9085 
9086       for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) {
9087         if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second)
9088           continue;
9089 
9090         QualType ParamTypes[2] = {MemPtrTy, MemPtrTy};
9091         S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9092       }
9093 
9094       if (S.getLangOpts().CPlusPlus11) {
9095         for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) {
9096           if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped())
9097             continue;
9098 
9099           if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second)
9100             continue;
9101 
9102           QualType ParamTypes[2] = {EnumTy, EnumTy};
9103           S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9104         }
9105       }
9106     }
9107   }
9108 };
9109 
9110 } // end anonymous namespace
9111 
9112 /// AddBuiltinOperatorCandidates - Add the appropriate built-in
9113 /// operator overloads to the candidate set (C++ [over.built]), based
9114 /// on the operator @p Op and the arguments given. For example, if the
9115 /// operator is a binary '+', this routine might add "int
9116 /// operator+(int, int)" to cover integer addition.
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)9117 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9118                                         SourceLocation OpLoc,
9119                                         ArrayRef<Expr *> Args,
9120                                         OverloadCandidateSet &CandidateSet) {
9121   // Find all of the types that the arguments can convert to, but only
9122   // if the operator we're looking at has built-in operator candidates
9123   // that make use of these types. Also record whether we encounter non-record
9124   // candidate types or either arithmetic or enumeral candidate types.
9125   Qualifiers VisibleTypeConversionsQuals;
9126   VisibleTypeConversionsQuals.addConst();
9127   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9128     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9129 
9130   bool HasNonRecordCandidateType = false;
9131   bool HasArithmeticOrEnumeralCandidateType = false;
9132   SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9133   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9134     CandidateTypes.emplace_back(*this);
9135     CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9136                                                  OpLoc,
9137                                                  true,
9138                                                  (Op == OO_Exclaim ||
9139                                                   Op == OO_AmpAmp ||
9140                                                   Op == OO_PipePipe),
9141                                                  VisibleTypeConversionsQuals);
9142     HasNonRecordCandidateType = HasNonRecordCandidateType ||
9143         CandidateTypes[ArgIdx].hasNonRecordTypes();
9144     HasArithmeticOrEnumeralCandidateType =
9145         HasArithmeticOrEnumeralCandidateType ||
9146         CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9147   }
9148 
9149   // Exit early when no non-record types have been added to the candidate set
9150   // for any of the arguments to the operator.
9151   //
9152   // We can't exit early for !, ||, or &&, since there we have always have
9153   // 'bool' overloads.
9154   if (!HasNonRecordCandidateType &&
9155       !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9156     return;
9157 
9158   // Setup an object to manage the common state for building overloads.
9159   BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9160                                            VisibleTypeConversionsQuals,
9161                                            HasArithmeticOrEnumeralCandidateType,
9162                                            CandidateTypes, CandidateSet);
9163 
9164   // Dispatch over the operation to add in only those overloads which apply.
9165   switch (Op) {
9166   case OO_None:
9167   case NUM_OVERLOADED_OPERATORS:
9168     llvm_unreachable("Expected an overloaded operator");
9169 
9170   case OO_New:
9171   case OO_Delete:
9172   case OO_Array_New:
9173   case OO_Array_Delete:
9174   case OO_Call:
9175     llvm_unreachable(
9176                     "Special operators don't use AddBuiltinOperatorCandidates");
9177 
9178   case OO_Comma:
9179   case OO_Arrow:
9180   case OO_Coawait:
9181     // C++ [over.match.oper]p3:
9182     //   -- For the operator ',', the unary operator '&', the
9183     //      operator '->', or the operator 'co_await', the
9184     //      built-in candidates set is empty.
9185     break;
9186 
9187   case OO_Plus: // '+' is either unary or binary
9188     if (Args.size() == 1)
9189       OpBuilder.addUnaryPlusPointerOverloads();
9190     LLVM_FALLTHROUGH;
9191 
9192   case OO_Minus: // '-' is either unary or binary
9193     if (Args.size() == 1) {
9194       OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9195     } else {
9196       OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9197       OpBuilder.addGenericBinaryArithmeticOverloads();
9198       OpBuilder.addMatrixBinaryArithmeticOverloads();
9199     }
9200     break;
9201 
9202   case OO_Star: // '*' is either unary or binary
9203     if (Args.size() == 1)
9204       OpBuilder.addUnaryStarPointerOverloads();
9205     else {
9206       OpBuilder.addGenericBinaryArithmeticOverloads();
9207       OpBuilder.addMatrixBinaryArithmeticOverloads();
9208     }
9209     break;
9210 
9211   case OO_Slash:
9212     OpBuilder.addGenericBinaryArithmeticOverloads();
9213     break;
9214 
9215   case OO_PlusPlus:
9216   case OO_MinusMinus:
9217     OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9218     OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9219     break;
9220 
9221   case OO_EqualEqual:
9222   case OO_ExclaimEqual:
9223     OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9224     LLVM_FALLTHROUGH;
9225 
9226   case OO_Less:
9227   case OO_Greater:
9228   case OO_LessEqual:
9229   case OO_GreaterEqual:
9230     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9231     OpBuilder.addGenericBinaryArithmeticOverloads();
9232     break;
9233 
9234   case OO_Spaceship:
9235     OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9236     OpBuilder.addThreeWayArithmeticOverloads();
9237     break;
9238 
9239   case OO_Percent:
9240   case OO_Caret:
9241   case OO_Pipe:
9242   case OO_LessLess:
9243   case OO_GreaterGreater:
9244     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9245     break;
9246 
9247   case OO_Amp: // '&' is either unary or binary
9248     if (Args.size() == 1)
9249       // C++ [over.match.oper]p3:
9250       //   -- For the operator ',', the unary operator '&', or the
9251       //      operator '->', the built-in candidates set is empty.
9252       break;
9253 
9254     OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9255     break;
9256 
9257   case OO_Tilde:
9258     OpBuilder.addUnaryTildePromotedIntegralOverloads();
9259     break;
9260 
9261   case OO_Equal:
9262     OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9263     LLVM_FALLTHROUGH;
9264 
9265   case OO_PlusEqual:
9266   case OO_MinusEqual:
9267     OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9268     LLVM_FALLTHROUGH;
9269 
9270   case OO_StarEqual:
9271   case OO_SlashEqual:
9272     OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9273     break;
9274 
9275   case OO_PercentEqual:
9276   case OO_LessLessEqual:
9277   case OO_GreaterGreaterEqual:
9278   case OO_AmpEqual:
9279   case OO_CaretEqual:
9280   case OO_PipeEqual:
9281     OpBuilder.addAssignmentIntegralOverloads();
9282     break;
9283 
9284   case OO_Exclaim:
9285     OpBuilder.addExclaimOverload();
9286     break;
9287 
9288   case OO_AmpAmp:
9289   case OO_PipePipe:
9290     OpBuilder.addAmpAmpOrPipePipeOverload();
9291     break;
9292 
9293   case OO_Subscript:
9294     OpBuilder.addSubscriptOverloads();
9295     break;
9296 
9297   case OO_ArrowStar:
9298     OpBuilder.addArrowStarOverloads();
9299     break;
9300 
9301   case OO_Conditional:
9302     OpBuilder.addConditionalOperatorOverloads();
9303     OpBuilder.addGenericBinaryArithmeticOverloads();
9304     break;
9305   }
9306 }
9307 
9308 /// Add function candidates found via argument-dependent lookup
9309 /// to the set of overloading candidates.
9310 ///
9311 /// This routine performs argument-dependent name lookup based on the
9312 /// given function name (which may also be an operator name) and adds
9313 /// all of the overload candidates found by ADL to the overload
9314 /// candidate set (C++ [basic.lookup.argdep]).
9315 void
AddArgumentDependentLookupCandidates(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)9316 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9317                                            SourceLocation Loc,
9318                                            ArrayRef<Expr *> Args,
9319                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
9320                                            OverloadCandidateSet& CandidateSet,
9321                                            bool PartialOverloading) {
9322   ADLResult Fns;
9323 
9324   // FIXME: This approach for uniquing ADL results (and removing
9325   // redundant candidates from the set) relies on pointer-equality,
9326   // which means we need to key off the canonical decl.  However,
9327   // always going back to the canonical decl might not get us the
9328   // right set of default arguments.  What default arguments are
9329   // we supposed to consider on ADL candidates, anyway?
9330 
9331   // FIXME: Pass in the explicit template arguments?
9332   ArgumentDependentLookup(Name, Loc, Args, Fns);
9333 
9334   // Erase all of the candidates we already knew about.
9335   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9336                                    CandEnd = CandidateSet.end();
9337        Cand != CandEnd; ++Cand)
9338     if (Cand->Function) {
9339       Fns.erase(Cand->Function);
9340       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9341         Fns.erase(FunTmpl);
9342     }
9343 
9344   // For each of the ADL candidates we found, add it to the overload
9345   // set.
9346   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9347     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9348 
9349     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9350       if (ExplicitTemplateArgs)
9351         continue;
9352 
9353       AddOverloadCandidate(
9354           FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9355           PartialOverloading, /*AllowExplicit=*/true,
9356           /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
9357       if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9358         AddOverloadCandidate(
9359             FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9360             /*SuppressUserConversions=*/false, PartialOverloading,
9361             /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
9362             ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9363       }
9364     } else {
9365       auto *FTD = cast<FunctionTemplateDecl>(*I);
9366       AddTemplateOverloadCandidate(
9367           FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9368           /*SuppressUserConversions=*/false, PartialOverloading,
9369           /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9370       if (CandidateSet.getRewriteInfo().shouldAddReversed(
9371               Context, FTD->getTemplatedDecl())) {
9372         AddTemplateOverloadCandidate(
9373             FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9374             CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9375             /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9376             OverloadCandidateParamOrder::Reversed);
9377       }
9378     }
9379   }
9380 }
9381 
9382 namespace {
9383 enum class Comparison { Equal, Better, Worse };
9384 }
9385 
9386 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9387 /// overload resolution.
9388 ///
9389 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9390 /// Cand1's first N enable_if attributes have precisely the same conditions as
9391 /// Cand2's first N enable_if attributes (where N = the number of enable_if
9392 /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9393 ///
9394 /// Note that you can have a pair of candidates such that Cand1's enable_if
9395 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9396 /// worse than Cand1's.
compareEnableIfAttrs(const Sema & S,const FunctionDecl * Cand1,const FunctionDecl * Cand2)9397 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9398                                        const FunctionDecl *Cand2) {
9399   // Common case: One (or both) decls don't have enable_if attrs.
9400   bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9401   bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9402   if (!Cand1Attr || !Cand2Attr) {
9403     if (Cand1Attr == Cand2Attr)
9404       return Comparison::Equal;
9405     return Cand1Attr ? Comparison::Better : Comparison::Worse;
9406   }
9407 
9408   auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9409   auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9410 
9411   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9412   for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9413     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9414     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9415 
9416     // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9417     // has fewer enable_if attributes than Cand2, and vice versa.
9418     if (!Cand1A)
9419       return Comparison::Worse;
9420     if (!Cand2A)
9421       return Comparison::Better;
9422 
9423     Cand1ID.clear();
9424     Cand2ID.clear();
9425 
9426     (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9427     (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9428     if (Cand1ID != Cand2ID)
9429       return Comparison::Worse;
9430   }
9431 
9432   return Comparison::Equal;
9433 }
9434 
9435 static Comparison
isBetterMultiversionCandidate(const OverloadCandidate & Cand1,const OverloadCandidate & Cand2)9436 isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9437                               const OverloadCandidate &Cand2) {
9438   if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9439       !Cand2.Function->isMultiVersion())
9440     return Comparison::Equal;
9441 
9442   // If both are invalid, they are equal. If one of them is invalid, the other
9443   // is better.
9444   if (Cand1.Function->isInvalidDecl()) {
9445     if (Cand2.Function->isInvalidDecl())
9446       return Comparison::Equal;
9447     return Comparison::Worse;
9448   }
9449   if (Cand2.Function->isInvalidDecl())
9450     return Comparison::Better;
9451 
9452   // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9453   // cpu_dispatch, else arbitrarily based on the identifiers.
9454   bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9455   bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9456   const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9457   const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9458 
9459   if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9460     return Comparison::Equal;
9461 
9462   if (Cand1CPUDisp && !Cand2CPUDisp)
9463     return Comparison::Better;
9464   if (Cand2CPUDisp && !Cand1CPUDisp)
9465     return Comparison::Worse;
9466 
9467   if (Cand1CPUSpec && Cand2CPUSpec) {
9468     if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9469       return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9470                  ? Comparison::Better
9471                  : Comparison::Worse;
9472 
9473     std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9474         FirstDiff = std::mismatch(
9475             Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9476             Cand2CPUSpec->cpus_begin(),
9477             [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9478               return LHS->getName() == RHS->getName();
9479             });
9480 
9481     assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
9482            "Two different cpu-specific versions should not have the same "
9483            "identifier list, otherwise they'd be the same decl!");
9484     return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9485                ? Comparison::Better
9486                : Comparison::Worse;
9487   }
9488   llvm_unreachable("No way to get here unless both had cpu_dispatch");
9489 }
9490 
9491 /// Compute the type of the implicit object parameter for the given function,
9492 /// if any. Returns None if there is no implicit object parameter, and a null
9493 /// QualType if there is a 'matches anything' implicit object parameter.
getImplicitObjectParamType(ASTContext & Context,const FunctionDecl * F)9494 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9495                                                      const FunctionDecl *F) {
9496   if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9497     return llvm::None;
9498 
9499   auto *M = cast<CXXMethodDecl>(F);
9500   // Static member functions' object parameters match all types.
9501   if (M->isStatic())
9502     return QualType();
9503 
9504   QualType T = M->getThisObjectType();
9505   if (M->getRefQualifier() == RQ_RValue)
9506     return Context.getRValueReferenceType(T);
9507   return Context.getLValueReferenceType(T);
9508 }
9509 
haveSameParameterTypes(ASTContext & Context,const FunctionDecl * F1,const FunctionDecl * F2,unsigned NumParams)9510 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9511                                    const FunctionDecl *F2, unsigned NumParams) {
9512   if (declaresSameEntity(F1, F2))
9513     return true;
9514 
9515   auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9516     if (First) {
9517       if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9518         return *T;
9519     }
9520     assert(I < F->getNumParams());
9521     return F->getParamDecl(I++)->getType();
9522   };
9523 
9524   unsigned I1 = 0, I2 = 0;
9525   for (unsigned I = 0; I != NumParams; ++I) {
9526     QualType T1 = NextParam(F1, I1, I == 0);
9527     QualType T2 = NextParam(F2, I2, I == 0);
9528     if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2))
9529       return false;
9530   }
9531   return true;
9532 }
9533 
9534 /// isBetterOverloadCandidate - Determines whether the first overload
9535 /// candidate is a better candidate than the second (C++ 13.3.3p1).
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,OverloadCandidateSet::CandidateSetKind Kind)9536 bool clang::isBetterOverloadCandidate(
9537     Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9538     SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9539   // Define viable functions to be better candidates than non-viable
9540   // functions.
9541   if (!Cand2.Viable)
9542     return Cand1.Viable;
9543   else if (!Cand1.Viable)
9544     return false;
9545 
9546   // [CUDA] A function with 'never' preference is marked not viable, therefore
9547   // is never shown up here. The worst preference shown up here is 'wrong side',
9548   // e.g. an H function called by a HD function in device compilation. This is
9549   // valid AST as long as the HD function is not emitted, e.g. it is an inline
9550   // function which is called only by an H function. A deferred diagnostic will
9551   // be triggered if it is emitted. However a wrong-sided function is still
9552   // a viable candidate here.
9553   //
9554   // If Cand1 can be emitted and Cand2 cannot be emitted in the current
9555   // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2
9556   // can be emitted, Cand1 is not better than Cand2. This rule should have
9557   // precedence over other rules.
9558   //
9559   // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then
9560   // other rules should be used to determine which is better. This is because
9561   // host/device based overloading resolution is mostly for determining
9562   // viability of a function. If two functions are both viable, other factors
9563   // should take precedence in preference, e.g. the standard-defined preferences
9564   // like argument conversion ranks or enable_if partial-ordering. The
9565   // preference for pass-object-size parameters is probably most similar to a
9566   // type-based-overloading decision and so should take priority.
9567   //
9568   // If other rules cannot determine which is better, CUDA preference will be
9569   // used again to determine which is better.
9570   //
9571   // TODO: Currently IdentifyCUDAPreference does not return correct values
9572   // for functions called in global variable initializers due to missing
9573   // correct context about device/host. Therefore we can only enforce this
9574   // rule when there is a caller. We should enforce this rule for functions
9575   // in global variable initializers once proper context is added.
9576   //
9577   // TODO: We can only enable the hostness based overloading resolution when
9578   // -fgpu-exclude-wrong-side-overloads is on since this requires deferring
9579   // overloading resolution diagnostics.
9580   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function &&
9581       S.getLangOpts().GPUExcludeWrongSideOverloads) {
9582     if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) {
9583       bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller);
9584       bool IsCand1ImplicitHD =
9585           Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function);
9586       bool IsCand2ImplicitHD =
9587           Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function);
9588       auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function);
9589       auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function);
9590       assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never);
9591       // The implicit HD function may be a function in a system header which
9592       // is forced by pragma. In device compilation, if we prefer HD candidates
9593       // over wrong-sided candidates, overloading resolution may change, which
9594       // may result in non-deferrable diagnostics. As a workaround, we let
9595       // implicit HD candidates take equal preference as wrong-sided candidates.
9596       // This will preserve the overloading resolution.
9597       // TODO: We still need special handling of implicit HD functions since
9598       // they may incur other diagnostics to be deferred. We should make all
9599       // host/device related diagnostics deferrable and remove special handling
9600       // of implicit HD functions.
9601       auto EmitThreshold =
9602           (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD &&
9603            (IsCand1ImplicitHD || IsCand2ImplicitHD))
9604               ? Sema::CFP_Never
9605               : Sema::CFP_WrongSide;
9606       auto Cand1Emittable = P1 > EmitThreshold;
9607       auto Cand2Emittable = P2 > EmitThreshold;
9608       if (Cand1Emittable && !Cand2Emittable)
9609         return true;
9610       if (!Cand1Emittable && Cand2Emittable)
9611         return false;
9612     }
9613   }
9614 
9615   // C++ [over.match.best]p1:
9616   //
9617   //   -- if F is a static member function, ICS1(F) is defined such
9618   //      that ICS1(F) is neither better nor worse than ICS1(G) for
9619   //      any function G, and, symmetrically, ICS1(G) is neither
9620   //      better nor worse than ICS1(F).
9621   unsigned StartArg = 0;
9622   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9623     StartArg = 1;
9624 
9625   auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9626     // We don't allow incompatible pointer conversions in C++.
9627     if (!S.getLangOpts().CPlusPlus)
9628       return ICS.isStandard() &&
9629              ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9630 
9631     // The only ill-formed conversion we allow in C++ is the string literal to
9632     // char* conversion, which is only considered ill-formed after C++11.
9633     return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9634            hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9635   };
9636 
9637   // Define functions that don't require ill-formed conversions for a given
9638   // argument to be better candidates than functions that do.
9639   unsigned NumArgs = Cand1.Conversions.size();
9640   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
9641   bool HasBetterConversion = false;
9642   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9643     bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9644     bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9645     if (Cand1Bad != Cand2Bad) {
9646       if (Cand1Bad)
9647         return false;
9648       HasBetterConversion = true;
9649     }
9650   }
9651 
9652   if (HasBetterConversion)
9653     return true;
9654 
9655   // C++ [over.match.best]p1:
9656   //   A viable function F1 is defined to be a better function than another
9657   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
9658   //   conversion sequence than ICSi(F2), and then...
9659   bool HasWorseConversion = false;
9660   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9661     switch (CompareImplicitConversionSequences(S, Loc,
9662                                                Cand1.Conversions[ArgIdx],
9663                                                Cand2.Conversions[ArgIdx])) {
9664     case ImplicitConversionSequence::Better:
9665       // Cand1 has a better conversion sequence.
9666       HasBetterConversion = true;
9667       break;
9668 
9669     case ImplicitConversionSequence::Worse:
9670       if (Cand1.Function && Cand2.Function &&
9671           Cand1.isReversed() != Cand2.isReversed() &&
9672           haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9673                                  NumArgs)) {
9674         // Work around large-scale breakage caused by considering reversed
9675         // forms of operator== in C++20:
9676         //
9677         // When comparing a function against a reversed function with the same
9678         // parameter types, if we have a better conversion for one argument and
9679         // a worse conversion for the other, the implicit conversion sequences
9680         // are treated as being equally good.
9681         //
9682         // This prevents a comparison function from being considered ambiguous
9683         // with a reversed form that is written in the same way.
9684         //
9685         // We diagnose this as an extension from CreateOverloadedBinOp.
9686         HasWorseConversion = true;
9687         break;
9688       }
9689 
9690       // Cand1 can't be better than Cand2.
9691       return false;
9692 
9693     case ImplicitConversionSequence::Indistinguishable:
9694       // Do nothing.
9695       break;
9696     }
9697   }
9698 
9699   //    -- for some argument j, ICSj(F1) is a better conversion sequence than
9700   //       ICSj(F2), or, if not that,
9701   if (HasBetterConversion && !HasWorseConversion)
9702     return true;
9703 
9704   //   -- the context is an initialization by user-defined conversion
9705   //      (see 8.5, 13.3.1.5) and the standard conversion sequence
9706   //      from the return type of F1 to the destination type (i.e.,
9707   //      the type of the entity being initialized) is a better
9708   //      conversion sequence than the standard conversion sequence
9709   //      from the return type of F2 to the destination type.
9710   if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9711       Cand1.Function && Cand2.Function &&
9712       isa<CXXConversionDecl>(Cand1.Function) &&
9713       isa<CXXConversionDecl>(Cand2.Function)) {
9714     // First check whether we prefer one of the conversion functions over the
9715     // other. This only distinguishes the results in non-standard, extension
9716     // cases such as the conversion from a lambda closure type to a function
9717     // pointer or block.
9718     ImplicitConversionSequence::CompareKind Result =
9719         compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9720     if (Result == ImplicitConversionSequence::Indistinguishable)
9721       Result = CompareStandardConversionSequences(S, Loc,
9722                                                   Cand1.FinalConversion,
9723                                                   Cand2.FinalConversion);
9724 
9725     if (Result != ImplicitConversionSequence::Indistinguishable)
9726       return Result == ImplicitConversionSequence::Better;
9727 
9728     // FIXME: Compare kind of reference binding if conversion functions
9729     // convert to a reference type used in direct reference binding, per
9730     // C++14 [over.match.best]p1 section 2 bullet 3.
9731   }
9732 
9733   // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9734   // as combined with the resolution to CWG issue 243.
9735   //
9736   // When the context is initialization by constructor ([over.match.ctor] or
9737   // either phase of [over.match.list]), a constructor is preferred over
9738   // a conversion function.
9739   if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9740       Cand1.Function && Cand2.Function &&
9741       isa<CXXConstructorDecl>(Cand1.Function) !=
9742           isa<CXXConstructorDecl>(Cand2.Function))
9743     return isa<CXXConstructorDecl>(Cand1.Function);
9744 
9745   //    -- F1 is a non-template function and F2 is a function template
9746   //       specialization, or, if not that,
9747   bool Cand1IsSpecialization = Cand1.Function &&
9748                                Cand1.Function->getPrimaryTemplate();
9749   bool Cand2IsSpecialization = Cand2.Function &&
9750                                Cand2.Function->getPrimaryTemplate();
9751   if (Cand1IsSpecialization != Cand2IsSpecialization)
9752     return Cand2IsSpecialization;
9753 
9754   //   -- F1 and F2 are function template specializations, and the function
9755   //      template for F1 is more specialized than the template for F2
9756   //      according to the partial ordering rules described in 14.5.5.2, or,
9757   //      if not that,
9758   if (Cand1IsSpecialization && Cand2IsSpecialization) {
9759     if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9760             Cand1.Function->getPrimaryTemplate(),
9761             Cand2.Function->getPrimaryTemplate(), Loc,
9762             isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9763                                                    : TPOC_Call,
9764             Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9765             Cand1.isReversed() ^ Cand2.isReversed()))
9766       return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9767   }
9768 
9769   //   -— F1 and F2 are non-template functions with the same
9770   //      parameter-type-lists, and F1 is more constrained than F2 [...],
9771   if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9772       !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9773       Cand2.Function->hasPrototype()) {
9774     auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9775     auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9776     if (PT1->getNumParams() == PT2->getNumParams() &&
9777         PT1->isVariadic() == PT2->isVariadic() &&
9778         S.FunctionParamTypesAreEqual(PT1, PT2)) {
9779       Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9780       Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9781       if (RC1 && RC2) {
9782         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9783         if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9784                                      {RC2}, AtLeastAsConstrained1) ||
9785             S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9786                                      {RC1}, AtLeastAsConstrained2))
9787           return false;
9788         if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9789           return AtLeastAsConstrained1;
9790       } else if (RC1 || RC2) {
9791         return RC1 != nullptr;
9792       }
9793     }
9794   }
9795 
9796   //   -- F1 is a constructor for a class D, F2 is a constructor for a base
9797   //      class B of D, and for all arguments the corresponding parameters of
9798   //      F1 and F2 have the same type.
9799   // FIXME: Implement the "all parameters have the same type" check.
9800   bool Cand1IsInherited =
9801       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9802   bool Cand2IsInherited =
9803       dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9804   if (Cand1IsInherited != Cand2IsInherited)
9805     return Cand2IsInherited;
9806   else if (Cand1IsInherited) {
9807     assert(Cand2IsInherited);
9808     auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9809     auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9810     if (Cand1Class->isDerivedFrom(Cand2Class))
9811       return true;
9812     if (Cand2Class->isDerivedFrom(Cand1Class))
9813       return false;
9814     // Inherited from sibling base classes: still ambiguous.
9815   }
9816 
9817   //   -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9818   //   -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9819   //      with reversed order of parameters and F1 is not
9820   //
9821   // We rank reversed + different operator as worse than just reversed, but
9822   // that comparison can never happen, because we only consider reversing for
9823   // the maximally-rewritten operator (== or <=>).
9824   if (Cand1.RewriteKind != Cand2.RewriteKind)
9825     return Cand1.RewriteKind < Cand2.RewriteKind;
9826 
9827   // Check C++17 tie-breakers for deduction guides.
9828   {
9829     auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9830     auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9831     if (Guide1 && Guide2) {
9832       //  -- F1 is generated from a deduction-guide and F2 is not
9833       if (Guide1->isImplicit() != Guide2->isImplicit())
9834         return Guide2->isImplicit();
9835 
9836       //  -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9837       if (Guide1->isCopyDeductionCandidate())
9838         return true;
9839     }
9840   }
9841 
9842   // Check for enable_if value-based overload resolution.
9843   if (Cand1.Function && Cand2.Function) {
9844     Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9845     if (Cmp != Comparison::Equal)
9846       return Cmp == Comparison::Better;
9847   }
9848 
9849   bool HasPS1 = Cand1.Function != nullptr &&
9850                 functionHasPassObjectSizeParams(Cand1.Function);
9851   bool HasPS2 = Cand2.Function != nullptr &&
9852                 functionHasPassObjectSizeParams(Cand2.Function);
9853   if (HasPS1 != HasPS2 && HasPS1)
9854     return true;
9855 
9856   auto MV = isBetterMultiversionCandidate(Cand1, Cand2);
9857   if (MV == Comparison::Better)
9858     return true;
9859   if (MV == Comparison::Worse)
9860     return false;
9861 
9862   // If other rules cannot determine which is better, CUDA preference is used
9863   // to determine which is better.
9864   if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9865     FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9866     return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9867            S.IdentifyCUDAPreference(Caller, Cand2.Function);
9868   }
9869 
9870   return false;
9871 }
9872 
9873 /// Determine whether two declarations are "equivalent" for the purposes of
9874 /// name lookup and overload resolution. This applies when the same internal/no
9875 /// linkage entity is defined by two modules (probably by textually including
9876 /// the same header). In such a case, we don't consider the declarations to
9877 /// declare the same entity, but we also don't want lookups with both
9878 /// declarations visible to be ambiguous in some cases (this happens when using
9879 /// a modularized libstdc++).
isEquivalentInternalLinkageDeclaration(const NamedDecl * A,const NamedDecl * B)9880 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9881                                                   const NamedDecl *B) {
9882   auto *VA = dyn_cast_or_null<ValueDecl>(A);
9883   auto *VB = dyn_cast_or_null<ValueDecl>(B);
9884   if (!VA || !VB)
9885     return false;
9886 
9887   // The declarations must be declaring the same name as an internal linkage
9888   // entity in different modules.
9889   if (!VA->getDeclContext()->getRedeclContext()->Equals(
9890           VB->getDeclContext()->getRedeclContext()) ||
9891       getOwningModule(VA) == getOwningModule(VB) ||
9892       VA->isExternallyVisible() || VB->isExternallyVisible())
9893     return false;
9894 
9895   // Check that the declarations appear to be equivalent.
9896   //
9897   // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9898   // For constants and functions, we should check the initializer or body is
9899   // the same. For non-constant variables, we shouldn't allow it at all.
9900   if (Context.hasSameType(VA->getType(), VB->getType()))
9901     return true;
9902 
9903   // Enum constants within unnamed enumerations will have different types, but
9904   // may still be similar enough to be interchangeable for our purposes.
9905   if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9906     if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9907       // Only handle anonymous enums. If the enumerations were named and
9908       // equivalent, they would have been merged to the same type.
9909       auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9910       auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9911       if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9912           !Context.hasSameType(EnumA->getIntegerType(),
9913                                EnumB->getIntegerType()))
9914         return false;
9915       // Allow this only if the value is the same for both enumerators.
9916       return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9917     }
9918   }
9919 
9920   // Nothing else is sufficiently similar.
9921   return false;
9922 }
9923 
diagnoseEquivalentInternalLinkageDeclarations(SourceLocation Loc,const NamedDecl * D,ArrayRef<const NamedDecl * > Equiv)9924 void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9925     SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9926   assert(D && "Unknown declaration");
9927   Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9928 
9929   Module *M = getOwningModule(D);
9930   Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9931       << !M << (M ? M->getFullModuleName() : "");
9932 
9933   for (auto *E : Equiv) {
9934     Module *M = getOwningModule(E);
9935     Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9936         << !M << (M ? M->getFullModuleName() : "");
9937   }
9938 }
9939 
9940 /// Computes the best viable function (C++ 13.3.3)
9941 /// within an overload candidate set.
9942 ///
9943 /// \param Loc The location of the function name (or operator symbol) for
9944 /// which overload resolution occurs.
9945 ///
9946 /// \param Best If overload resolution was successful or found a deleted
9947 /// function, \p Best points to the candidate function found.
9948 ///
9949 /// \returns The result of overload resolution.
9950 OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best)9951 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9952                                          iterator &Best) {
9953   llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9954   std::transform(begin(), end(), std::back_inserter(Candidates),
9955                  [](OverloadCandidate &Cand) { return &Cand; });
9956 
9957   // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9958   // are accepted by both clang and NVCC. However, during a particular
9959   // compilation mode only one call variant is viable. We need to
9960   // exclude non-viable overload candidates from consideration based
9961   // only on their host/device attributes. Specifically, if one
9962   // candidate call is WrongSide and the other is SameSide, we ignore
9963   // the WrongSide candidate.
9964   // We only need to remove wrong-sided candidates here if
9965   // -fgpu-exclude-wrong-side-overloads is off. When
9966   // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared
9967   // uniformly in isBetterOverloadCandidate.
9968   if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) {
9969     const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9970     bool ContainsSameSideCandidate =
9971         llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9972           // Check viable function only.
9973           return Cand->Viable && Cand->Function &&
9974                  S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9975                      Sema::CFP_SameSide;
9976         });
9977     if (ContainsSameSideCandidate) {
9978       auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9979         // Check viable function only to avoid unnecessary data copying/moving.
9980         return Cand->Viable && Cand->Function &&
9981                S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9982                    Sema::CFP_WrongSide;
9983       };
9984       llvm::erase_if(Candidates, IsWrongSideCandidate);
9985     }
9986   }
9987 
9988   // Find the best viable function.
9989   Best = end();
9990   for (auto *Cand : Candidates) {
9991     Cand->Best = false;
9992     if (Cand->Viable)
9993       if (Best == end() ||
9994           isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9995         Best = Cand;
9996   }
9997 
9998   // If we didn't find any viable functions, abort.
9999   if (Best == end())
10000     return OR_No_Viable_Function;
10001 
10002   llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
10003 
10004   llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
10005   PendingBest.push_back(&*Best);
10006   Best->Best = true;
10007 
10008   // Make sure that this function is better than every other viable
10009   // function. If not, we have an ambiguity.
10010   while (!PendingBest.empty()) {
10011     auto *Curr = PendingBest.pop_back_val();
10012     for (auto *Cand : Candidates) {
10013       if (Cand->Viable && !Cand->Best &&
10014           !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10015         PendingBest.push_back(Cand);
10016         Cand->Best = true;
10017 
10018         if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10019                                                      Curr->Function))
10020           EquivalentCands.push_back(Cand->Function);
10021         else
10022           Best = end();
10023       }
10024     }
10025   }
10026 
10027   // If we found more than one best candidate, this is ambiguous.
10028   if (Best == end())
10029     return OR_Ambiguous;
10030 
10031   // Best is the best viable function.
10032   if (Best->Function && Best->Function->isDeleted())
10033     return OR_Deleted;
10034 
10035   if (!EquivalentCands.empty())
10036     S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10037                                                     EquivalentCands);
10038 
10039   return OR_Success;
10040 }
10041 
10042 namespace {
10043 
10044 enum OverloadCandidateKind {
10045   oc_function,
10046   oc_method,
10047   oc_reversed_binary_operator,
10048   oc_constructor,
10049   oc_implicit_default_constructor,
10050   oc_implicit_copy_constructor,
10051   oc_implicit_move_constructor,
10052   oc_implicit_copy_assignment,
10053   oc_implicit_move_assignment,
10054   oc_implicit_equality_comparison,
10055   oc_inherited_constructor
10056 };
10057 
10058 enum OverloadCandidateSelect {
10059   ocs_non_template,
10060   ocs_template,
10061   ocs_described_template,
10062 };
10063 
10064 static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
ClassifyOverloadCandidate(Sema & S,NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind CRK,std::string & Description)10065 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10066                           OverloadCandidateRewriteKind CRK,
10067                           std::string &Description) {
10068 
10069   bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10070   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10071     isTemplate = true;
10072     Description = S.getTemplateArgumentBindingsText(
10073         FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10074   }
10075 
10076   OverloadCandidateSelect Select = [&]() {
10077     if (!Description.empty())
10078       return ocs_described_template;
10079     return isTemplate ? ocs_template : ocs_non_template;
10080   }();
10081 
10082   OverloadCandidateKind Kind = [&]() {
10083     if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10084       return oc_implicit_equality_comparison;
10085 
10086     if (CRK & CRK_Reversed)
10087       return oc_reversed_binary_operator;
10088 
10089     if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10090       if (!Ctor->isImplicit()) {
10091         if (isa<ConstructorUsingShadowDecl>(Found))
10092           return oc_inherited_constructor;
10093         else
10094           return oc_constructor;
10095       }
10096 
10097       if (Ctor->isDefaultConstructor())
10098         return oc_implicit_default_constructor;
10099 
10100       if (Ctor->isMoveConstructor())
10101         return oc_implicit_move_constructor;
10102 
10103       assert(Ctor->isCopyConstructor() &&
10104              "unexpected sort of implicit constructor");
10105       return oc_implicit_copy_constructor;
10106     }
10107 
10108     if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10109       // This actually gets spelled 'candidate function' for now, but
10110       // it doesn't hurt to split it out.
10111       if (!Meth->isImplicit())
10112         return oc_method;
10113 
10114       if (Meth->isMoveAssignmentOperator())
10115         return oc_implicit_move_assignment;
10116 
10117       if (Meth->isCopyAssignmentOperator())
10118         return oc_implicit_copy_assignment;
10119 
10120       assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
10121       return oc_method;
10122     }
10123 
10124     return oc_function;
10125   }();
10126 
10127   return std::make_pair(Kind, Select);
10128 }
10129 
MaybeEmitInheritedConstructorNote(Sema & S,Decl * FoundDecl)10130 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10131   // FIXME: It'd be nice to only emit a note once per using-decl per overload
10132   // set.
10133   if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10134     S.Diag(FoundDecl->getLocation(),
10135            diag::note_ovl_candidate_inherited_constructor)
10136       << Shadow->getNominatedBaseClass();
10137 }
10138 
10139 } // end anonymous namespace
10140 
isFunctionAlwaysEnabled(const ASTContext & Ctx,const FunctionDecl * FD)10141 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10142                                     const FunctionDecl *FD) {
10143   for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10144     bool AlwaysTrue;
10145     if (EnableIf->getCond()->isValueDependent() ||
10146         !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10147       return false;
10148     if (!AlwaysTrue)
10149       return false;
10150   }
10151   return true;
10152 }
10153 
10154 /// Returns true if we can take the address of the function.
10155 ///
10156 /// \param Complain - If true, we'll emit a diagnostic
10157 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10158 ///   we in overload resolution?
10159 /// \param Loc - The location of the statement we're complaining about. Ignored
10160 ///   if we're not complaining, or if we're in overload resolution.
checkAddressOfFunctionIsAvailable(Sema & S,const FunctionDecl * FD,bool Complain,bool InOverloadResolution,SourceLocation Loc)10161 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10162                                               bool Complain,
10163                                               bool InOverloadResolution,
10164                                               SourceLocation Loc) {
10165   if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10166     if (Complain) {
10167       if (InOverloadResolution)
10168         S.Diag(FD->getBeginLoc(),
10169                diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10170       else
10171         S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10172     }
10173     return false;
10174   }
10175 
10176   if (FD->getTrailingRequiresClause()) {
10177     ConstraintSatisfaction Satisfaction;
10178     if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10179       return false;
10180     if (!Satisfaction.IsSatisfied) {
10181       if (Complain) {
10182         if (InOverloadResolution)
10183           S.Diag(FD->getBeginLoc(),
10184                  diag::note_ovl_candidate_unsatisfied_constraints);
10185         else
10186           S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10187               << FD;
10188         S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10189       }
10190       return false;
10191     }
10192   }
10193 
10194   auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10195     return P->hasAttr<PassObjectSizeAttr>();
10196   });
10197   if (I == FD->param_end())
10198     return true;
10199 
10200   if (Complain) {
10201     // Add one to ParamNo because it's user-facing
10202     unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10203     if (InOverloadResolution)
10204       S.Diag(FD->getLocation(),
10205              diag::note_ovl_candidate_has_pass_object_size_params)
10206           << ParamNo;
10207     else
10208       S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10209           << FD << ParamNo;
10210   }
10211   return false;
10212 }
10213 
checkAddressOfCandidateIsAvailable(Sema & S,const FunctionDecl * FD)10214 static bool checkAddressOfCandidateIsAvailable(Sema &S,
10215                                                const FunctionDecl *FD) {
10216   return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10217                                            /*InOverloadResolution=*/true,
10218                                            /*Loc=*/SourceLocation());
10219 }
10220 
checkAddressOfFunctionIsAvailable(const FunctionDecl * Function,bool Complain,SourceLocation Loc)10221 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10222                                              bool Complain,
10223                                              SourceLocation Loc) {
10224   return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10225                                              /*InOverloadResolution=*/false,
10226                                              Loc);
10227 }
10228 
10229 // Don't print candidates other than the one that matches the calling
10230 // convention of the call operator, since that is guaranteed to exist.
shouldSkipNotingLambdaConversionDecl(FunctionDecl * Fn)10231 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) {
10232   const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn);
10233 
10234   if (!ConvD)
10235     return false;
10236   const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
10237   if (!RD->isLambda())
10238     return false;
10239 
10240   CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10241   CallingConv CallOpCC =
10242       CallOp->getType()->castAs<FunctionType>()->getCallConv();
10243   QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType();
10244   CallingConv ConvToCC =
10245       ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv();
10246 
10247   return ConvToCC != CallOpCC;
10248 }
10249 
10250 // Notes the location of an overload candidate.
NoteOverloadCandidate(NamedDecl * Found,FunctionDecl * Fn,OverloadCandidateRewriteKind RewriteKind,QualType DestType,bool TakingAddress)10251 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10252                                  OverloadCandidateRewriteKind RewriteKind,
10253                                  QualType DestType, bool TakingAddress) {
10254   if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
10255     return;
10256   if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
10257       !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10258     return;
10259   if (shouldSkipNotingLambdaConversionDecl(Fn))
10260     return;
10261 
10262   std::string FnDesc;
10263   std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10264       ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10265   PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10266                          << (unsigned)KSPair.first << (unsigned)KSPair.second
10267                          << Fn << FnDesc;
10268 
10269   HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10270   Diag(Fn->getLocation(), PD);
10271   MaybeEmitInheritedConstructorNote(*this, Found);
10272 }
10273 
10274 static void
MaybeDiagnoseAmbiguousConstraints(Sema & S,ArrayRef<OverloadCandidate> Cands)10275 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10276   // Perhaps the ambiguity was caused by two atomic constraints that are
10277   // 'identical' but not equivalent:
10278   //
10279   // void foo() requires (sizeof(T) > 4) { } // #1
10280   // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10281   //
10282   // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10283   // #2 to subsume #1, but these constraint are not considered equivalent
10284   // according to the subsumption rules because they are not the same
10285   // source-level construct. This behavior is quite confusing and we should try
10286   // to help the user figure out what happened.
10287 
10288   SmallVector<const Expr *, 3> FirstAC, SecondAC;
10289   FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10290   for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10291     if (!I->Function)
10292       continue;
10293     SmallVector<const Expr *, 3> AC;
10294     if (auto *Template = I->Function->getPrimaryTemplate())
10295       Template->getAssociatedConstraints(AC);
10296     else
10297       I->Function->getAssociatedConstraints(AC);
10298     if (AC.empty())
10299       continue;
10300     if (FirstCand == nullptr) {
10301       FirstCand = I->Function;
10302       FirstAC = AC;
10303     } else if (SecondCand == nullptr) {
10304       SecondCand = I->Function;
10305       SecondAC = AC;
10306     } else {
10307       // We have more than one pair of constrained functions - this check is
10308       // expensive and we'd rather not try to diagnose it.
10309       return;
10310     }
10311   }
10312   if (!SecondCand)
10313     return;
10314   // The diagnostic can only happen if there are associated constraints on
10315   // both sides (there needs to be some identical atomic constraint).
10316   if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10317                                                       SecondCand, SecondAC))
10318     // Just show the user one diagnostic, they'll probably figure it out
10319     // from here.
10320     return;
10321 }
10322 
10323 // Notes the location of all overload candidates designated through
10324 // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType,bool TakingAddress)10325 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10326                                      bool TakingAddress) {
10327   assert(OverloadedExpr->getType() == Context.OverloadTy);
10328 
10329   OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10330   OverloadExpr *OvlExpr = Ovl.Expression;
10331 
10332   for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10333                             IEnd = OvlExpr->decls_end();
10334        I != IEnd; ++I) {
10335     if (FunctionTemplateDecl *FunTmpl =
10336                 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
10337       NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
10338                             TakingAddress);
10339     } else if (FunctionDecl *Fun
10340                       = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10341       NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10342     }
10343   }
10344 }
10345 
10346 /// Diagnoses an ambiguous conversion.  The partial diagnostic is the
10347 /// "lead" diagnostic; it will be given two arguments, the source and
10348 /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const10349 void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10350                                  Sema &S,
10351                                  SourceLocation CaretLoc,
10352                                  const PartialDiagnostic &PDiag) const {
10353   S.Diag(CaretLoc, PDiag)
10354     << Ambiguous.getFromType() << Ambiguous.getToType();
10355   unsigned CandsShown = 0;
10356   AmbiguousConversionSequence::const_iterator I, E;
10357   for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10358     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow())
10359       break;
10360     ++CandsShown;
10361     S.NoteOverloadCandidate(I->first, I->second);
10362   }
10363   S.Diags.overloadCandidatesShown(CandsShown);
10364   if (I != E)
10365     S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10366 }
10367 
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I,bool TakingCandidateAddress)10368 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10369                                   unsigned I, bool TakingCandidateAddress) {
10370   const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10371   assert(Conv.isBad());
10372   assert(Cand->Function && "for now, candidate must be a function");
10373   FunctionDecl *Fn = Cand->Function;
10374 
10375   // There's a conversion slot for the object argument if this is a
10376   // non-constructor method.  Note that 'I' corresponds the
10377   // conversion-slot index.
10378   bool isObjectArgument = false;
10379   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10380     if (I == 0)
10381       isObjectArgument = true;
10382     else
10383       I--;
10384   }
10385 
10386   std::string FnDesc;
10387   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10388       ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10389                                 FnDesc);
10390 
10391   Expr *FromExpr = Conv.Bad.FromExpr;
10392   QualType FromTy = Conv.Bad.getFromType();
10393   QualType ToTy = Conv.Bad.getToType();
10394 
10395   if (FromTy == S.Context.OverloadTy) {
10396     assert(FromExpr && "overload set argument came from implicit argument?");
10397     Expr *E = FromExpr->IgnoreParens();
10398     if (isa<UnaryOperator>(E))
10399       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10400     DeclarationName Name = cast<OverloadExpr>(E)->getName();
10401 
10402     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10403         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10404         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10405         << Name << I + 1;
10406     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10407     return;
10408   }
10409 
10410   // Do some hand-waving analysis to see if the non-viability is due
10411   // to a qualifier mismatch.
10412   CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10413   CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10414   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10415     CToTy = RT->getPointeeType();
10416   else {
10417     // TODO: detect and diagnose the full richness of const mismatches.
10418     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10419       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10420         CFromTy = FromPT->getPointeeType();
10421         CToTy = ToPT->getPointeeType();
10422       }
10423   }
10424 
10425   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10426       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10427     Qualifiers FromQs = CFromTy.getQualifiers();
10428     Qualifiers ToQs = CToTy.getQualifiers();
10429 
10430     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10431       if (isObjectArgument)
10432         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10433             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10434             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10435             << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10436       else
10437         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10438             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10439             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10440             << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10441             << ToTy->isReferenceType() << I + 1;
10442       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10443       return;
10444     }
10445 
10446     if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10447       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10448           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10449           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10450           << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10451           << (unsigned)isObjectArgument << I + 1;
10452       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10453       return;
10454     }
10455 
10456     if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10457       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10458           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10459           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10460           << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10461           << (unsigned)isObjectArgument << I + 1;
10462       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10463       return;
10464     }
10465 
10466     if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10467       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10468           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10469           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10470           << FromQs.hasUnaligned() << I + 1;
10471       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10472       return;
10473     }
10474 
10475     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10476     assert(CVR && "expected qualifiers mismatch");
10477 
10478     if (isObjectArgument) {
10479       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10480           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10481           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10482           << (CVR - 1);
10483     } else {
10484       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10485           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10486           << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10487           << (CVR - 1) << I + 1;
10488     }
10489     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10490     return;
10491   }
10492 
10493   if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue ||
10494       Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) {
10495     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category)
10496         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10497         << (unsigned)isObjectArgument << I + 1
10498         << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue)
10499         << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10500     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10501     return;
10502   }
10503 
10504   // Special diagnostic for failure to convert an initializer list, since
10505   // telling the user that it has type void is not useful.
10506   if (FromExpr && isa<InitListExpr>(FromExpr)) {
10507     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10508         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10509         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10510         << ToTy << (unsigned)isObjectArgument << I + 1;
10511     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10512     return;
10513   }
10514 
10515   // Diagnose references or pointers to incomplete types differently,
10516   // since it's far from impossible that the incompleteness triggered
10517   // the failure.
10518   QualType TempFromTy = FromTy.getNonReferenceType();
10519   if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10520     TempFromTy = PTy->getPointeeType();
10521   if (TempFromTy->isIncompleteType()) {
10522     // Emit the generic diagnostic and, optionally, add the hints to it.
10523     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10524         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10525         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10526         << ToTy << (unsigned)isObjectArgument << I + 1
10527         << (unsigned)(Cand->Fix.Kind);
10528 
10529     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10530     return;
10531   }
10532 
10533   // Diagnose base -> derived pointer conversions.
10534   unsigned BaseToDerivedConversion = 0;
10535   if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10536     if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10537       if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10538                                                FromPtrTy->getPointeeType()) &&
10539           !FromPtrTy->getPointeeType()->isIncompleteType() &&
10540           !ToPtrTy->getPointeeType()->isIncompleteType() &&
10541           S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10542                           FromPtrTy->getPointeeType()))
10543         BaseToDerivedConversion = 1;
10544     }
10545   } else if (const ObjCObjectPointerType *FromPtrTy
10546                                     = FromTy->getAs<ObjCObjectPointerType>()) {
10547     if (const ObjCObjectPointerType *ToPtrTy
10548                                         = ToTy->getAs<ObjCObjectPointerType>())
10549       if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10550         if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10551           if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10552                                                 FromPtrTy->getPointeeType()) &&
10553               FromIface->isSuperClassOf(ToIface))
10554             BaseToDerivedConversion = 2;
10555   } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10556     if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10557         !FromTy->isIncompleteType() &&
10558         !ToRefTy->getPointeeType()->isIncompleteType() &&
10559         S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10560       BaseToDerivedConversion = 3;
10561     }
10562   }
10563 
10564   if (BaseToDerivedConversion) {
10565     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10566         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10567         << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10568         << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10569     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10570     return;
10571   }
10572 
10573   if (isa<ObjCObjectPointerType>(CFromTy) &&
10574       isa<PointerType>(CToTy)) {
10575       Qualifiers FromQs = CFromTy.getQualifiers();
10576       Qualifiers ToQs = CToTy.getQualifiers();
10577       if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10578         S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10579             << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10580             << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10581             << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10582         MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10583         return;
10584       }
10585   }
10586 
10587   if (TakingCandidateAddress &&
10588       !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10589     return;
10590 
10591   // Emit the generic diagnostic and, optionally, add the hints to it.
10592   PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10593   FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10594         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10595         << ToTy << (unsigned)isObjectArgument << I + 1
10596         << (unsigned)(Cand->Fix.Kind);
10597 
10598   // If we can fix the conversion, suggest the FixIts.
10599   for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10600        HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10601     FDiag << *HI;
10602   S.Diag(Fn->getLocation(), FDiag);
10603 
10604   MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10605 }
10606 
10607 /// Additional arity mismatch diagnosis specific to a function overload
10608 /// candidates. This is not covered by the more general DiagnoseArityMismatch()
10609 /// over a candidate in any candidate set.
CheckArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)10610 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10611                                unsigned NumArgs) {
10612   FunctionDecl *Fn = Cand->Function;
10613   unsigned MinParams = Fn->getMinRequiredArguments();
10614 
10615   // With invalid overloaded operators, it's possible that we think we
10616   // have an arity mismatch when in fact it looks like we have the
10617   // right number of arguments, because only overloaded operators have
10618   // the weird behavior of overloading member and non-member functions.
10619   // Just don't report anything.
10620   if (Fn->isInvalidDecl() &&
10621       Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10622     return true;
10623 
10624   if (NumArgs < MinParams) {
10625     assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
10626            (Cand->FailureKind == ovl_fail_bad_deduction &&
10627             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
10628   } else {
10629     assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
10630            (Cand->FailureKind == ovl_fail_bad_deduction &&
10631             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
10632   }
10633 
10634   return false;
10635 }
10636 
10637 /// General arity mismatch diagnosis over a candidate in a candidate set.
DiagnoseArityMismatch(Sema & S,NamedDecl * Found,Decl * D,unsigned NumFormalArgs)10638 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10639                                   unsigned NumFormalArgs) {
10640   assert(isa<FunctionDecl>(D) &&
10641       "The templated declaration should at least be a function"
10642       " when diagnosing bad template argument deduction due to too many"
10643       " or too few arguments");
10644 
10645   FunctionDecl *Fn = cast<FunctionDecl>(D);
10646 
10647   // TODO: treat calls to a missing default constructor as a special case
10648   const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10649   unsigned MinParams = Fn->getMinRequiredArguments();
10650 
10651   // at least / at most / exactly
10652   unsigned mode, modeCount;
10653   if (NumFormalArgs < MinParams) {
10654     if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10655         FnTy->isTemplateVariadic())
10656       mode = 0; // "at least"
10657     else
10658       mode = 2; // "exactly"
10659     modeCount = MinParams;
10660   } else {
10661     if (MinParams != FnTy->getNumParams())
10662       mode = 1; // "at most"
10663     else
10664       mode = 2; // "exactly"
10665     modeCount = FnTy->getNumParams();
10666   }
10667 
10668   std::string Description;
10669   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10670       ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10671 
10672   if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10673     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10674         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10675         << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10676   else
10677     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10678         << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10679         << Description << mode << modeCount << NumFormalArgs;
10680 
10681   MaybeEmitInheritedConstructorNote(S, Found);
10682 }
10683 
10684 /// Arity mismatch diagnosis specific to a function overload candidate.
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)10685 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10686                                   unsigned NumFormalArgs) {
10687   if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10688     DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10689 }
10690 
getDescribedTemplate(Decl * Templated)10691 static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10692   if (TemplateDecl *TD = Templated->getDescribedTemplate())
10693     return TD;
10694   llvm_unreachable("Unsupported: Getting the described template declaration"
10695                    " for bad deduction diagnosis");
10696 }
10697 
10698 /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,NamedDecl * Found,Decl * Templated,DeductionFailureInfo & DeductionFailure,unsigned NumArgs,bool TakingCandidateAddress)10699 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10700                                  DeductionFailureInfo &DeductionFailure,
10701                                  unsigned NumArgs,
10702                                  bool TakingCandidateAddress) {
10703   TemplateParameter Param = DeductionFailure.getTemplateParameter();
10704   NamedDecl *ParamD;
10705   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10706   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10707   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10708   switch (DeductionFailure.Result) {
10709   case Sema::TDK_Success:
10710     llvm_unreachable("TDK_success while diagnosing bad deduction");
10711 
10712   case Sema::TDK_Incomplete: {
10713     assert(ParamD && "no parameter found for incomplete deduction result");
10714     S.Diag(Templated->getLocation(),
10715            diag::note_ovl_candidate_incomplete_deduction)
10716         << ParamD->getDeclName();
10717     MaybeEmitInheritedConstructorNote(S, Found);
10718     return;
10719   }
10720 
10721   case Sema::TDK_IncompletePack: {
10722     assert(ParamD && "no parameter found for incomplete deduction result");
10723     S.Diag(Templated->getLocation(),
10724            diag::note_ovl_candidate_incomplete_deduction_pack)
10725         << ParamD->getDeclName()
10726         << (DeductionFailure.getFirstArg()->pack_size() + 1)
10727         << *DeductionFailure.getFirstArg();
10728     MaybeEmitInheritedConstructorNote(S, Found);
10729     return;
10730   }
10731 
10732   case Sema::TDK_Underqualified: {
10733     assert(ParamD && "no parameter found for bad qualifiers deduction result");
10734     TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10735 
10736     QualType Param = DeductionFailure.getFirstArg()->getAsType();
10737 
10738     // Param will have been canonicalized, but it should just be a
10739     // qualified version of ParamD, so move the qualifiers to that.
10740     QualifierCollector Qs;
10741     Qs.strip(Param);
10742     QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10743     assert(S.Context.hasSameType(Param, NonCanonParam));
10744 
10745     // Arg has also been canonicalized, but there's nothing we can do
10746     // about that.  It also doesn't matter as much, because it won't
10747     // have any template parameters in it (because deduction isn't
10748     // done on dependent types).
10749     QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10750 
10751     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10752         << ParamD->getDeclName() << Arg << NonCanonParam;
10753     MaybeEmitInheritedConstructorNote(S, Found);
10754     return;
10755   }
10756 
10757   case Sema::TDK_Inconsistent: {
10758     assert(ParamD && "no parameter found for inconsistent deduction result");
10759     int which = 0;
10760     if (isa<TemplateTypeParmDecl>(ParamD))
10761       which = 0;
10762     else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10763       // Deduction might have failed because we deduced arguments of two
10764       // different types for a non-type template parameter.
10765       // FIXME: Use a different TDK value for this.
10766       QualType T1 =
10767           DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10768       QualType T2 =
10769           DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10770       if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10771         S.Diag(Templated->getLocation(),
10772                diag::note_ovl_candidate_inconsistent_deduction_types)
10773           << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10774           << *DeductionFailure.getSecondArg() << T2;
10775         MaybeEmitInheritedConstructorNote(S, Found);
10776         return;
10777       }
10778 
10779       which = 1;
10780     } else {
10781       which = 2;
10782     }
10783 
10784     // Tweak the diagnostic if the problem is that we deduced packs of
10785     // different arities. We'll print the actual packs anyway in case that
10786     // includes additional useful information.
10787     if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10788         DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10789         DeductionFailure.getFirstArg()->pack_size() !=
10790             DeductionFailure.getSecondArg()->pack_size()) {
10791       which = 3;
10792     }
10793 
10794     S.Diag(Templated->getLocation(),
10795            diag::note_ovl_candidate_inconsistent_deduction)
10796         << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10797         << *DeductionFailure.getSecondArg();
10798     MaybeEmitInheritedConstructorNote(S, Found);
10799     return;
10800   }
10801 
10802   case Sema::TDK_InvalidExplicitArguments:
10803     assert(ParamD && "no parameter found for invalid explicit arguments");
10804     if (ParamD->getDeclName())
10805       S.Diag(Templated->getLocation(),
10806              diag::note_ovl_candidate_explicit_arg_mismatch_named)
10807           << ParamD->getDeclName();
10808     else {
10809       int index = 0;
10810       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10811         index = TTP->getIndex();
10812       else if (NonTypeTemplateParmDecl *NTTP
10813                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10814         index = NTTP->getIndex();
10815       else
10816         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10817       S.Diag(Templated->getLocation(),
10818              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10819           << (index + 1);
10820     }
10821     MaybeEmitInheritedConstructorNote(S, Found);
10822     return;
10823 
10824   case Sema::TDK_ConstraintsNotSatisfied: {
10825     // Format the template argument list into the argument string.
10826     SmallString<128> TemplateArgString;
10827     TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10828     TemplateArgString = " ";
10829     TemplateArgString += S.getTemplateArgumentBindingsText(
10830         getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10831     if (TemplateArgString.size() == 1)
10832       TemplateArgString.clear();
10833     S.Diag(Templated->getLocation(),
10834            diag::note_ovl_candidate_unsatisfied_constraints)
10835         << TemplateArgString;
10836 
10837     S.DiagnoseUnsatisfiedConstraint(
10838         static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10839     return;
10840   }
10841   case Sema::TDK_TooManyArguments:
10842   case Sema::TDK_TooFewArguments:
10843     DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10844     return;
10845 
10846   case Sema::TDK_InstantiationDepth:
10847     S.Diag(Templated->getLocation(),
10848            diag::note_ovl_candidate_instantiation_depth);
10849     MaybeEmitInheritedConstructorNote(S, Found);
10850     return;
10851 
10852   case Sema::TDK_SubstitutionFailure: {
10853     // Format the template argument list into the argument string.
10854     SmallString<128> TemplateArgString;
10855     if (TemplateArgumentList *Args =
10856             DeductionFailure.getTemplateArgumentList()) {
10857       TemplateArgString = " ";
10858       TemplateArgString += S.getTemplateArgumentBindingsText(
10859           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10860       if (TemplateArgString.size() == 1)
10861         TemplateArgString.clear();
10862     }
10863 
10864     // If this candidate was disabled by enable_if, say so.
10865     PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10866     if (PDiag && PDiag->second.getDiagID() ==
10867           diag::err_typename_nested_not_found_enable_if) {
10868       // FIXME: Use the source range of the condition, and the fully-qualified
10869       //        name of the enable_if template. These are both present in PDiag.
10870       S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10871         << "'enable_if'" << TemplateArgString;
10872       return;
10873     }
10874 
10875     // We found a specific requirement that disabled the enable_if.
10876     if (PDiag && PDiag->second.getDiagID() ==
10877         diag::err_typename_nested_not_found_requirement) {
10878       S.Diag(Templated->getLocation(),
10879              diag::note_ovl_candidate_disabled_by_requirement)
10880         << PDiag->second.getStringArg(0) << TemplateArgString;
10881       return;
10882     }
10883 
10884     // Format the SFINAE diagnostic into the argument string.
10885     // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10886     //        formatted message in another diagnostic.
10887     SmallString<128> SFINAEArgString;
10888     SourceRange R;
10889     if (PDiag) {
10890       SFINAEArgString = ": ";
10891       R = SourceRange(PDiag->first, PDiag->first);
10892       PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10893     }
10894 
10895     S.Diag(Templated->getLocation(),
10896            diag::note_ovl_candidate_substitution_failure)
10897         << TemplateArgString << SFINAEArgString << R;
10898     MaybeEmitInheritedConstructorNote(S, Found);
10899     return;
10900   }
10901 
10902   case Sema::TDK_DeducedMismatch:
10903   case Sema::TDK_DeducedMismatchNested: {
10904     // Format the template argument list into the argument string.
10905     SmallString<128> TemplateArgString;
10906     if (TemplateArgumentList *Args =
10907             DeductionFailure.getTemplateArgumentList()) {
10908       TemplateArgString = " ";
10909       TemplateArgString += S.getTemplateArgumentBindingsText(
10910           getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10911       if (TemplateArgString.size() == 1)
10912         TemplateArgString.clear();
10913     }
10914 
10915     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10916         << (*DeductionFailure.getCallArgIndex() + 1)
10917         << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10918         << TemplateArgString
10919         << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10920     break;
10921   }
10922 
10923   case Sema::TDK_NonDeducedMismatch: {
10924     // FIXME: Provide a source location to indicate what we couldn't match.
10925     TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10926     TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10927     if (FirstTA.getKind() == TemplateArgument::Template &&
10928         SecondTA.getKind() == TemplateArgument::Template) {
10929       TemplateName FirstTN = FirstTA.getAsTemplate();
10930       TemplateName SecondTN = SecondTA.getAsTemplate();
10931       if (FirstTN.getKind() == TemplateName::Template &&
10932           SecondTN.getKind() == TemplateName::Template) {
10933         if (FirstTN.getAsTemplateDecl()->getName() ==
10934             SecondTN.getAsTemplateDecl()->getName()) {
10935           // FIXME: This fixes a bad diagnostic where both templates are named
10936           // the same.  This particular case is a bit difficult since:
10937           // 1) It is passed as a string to the diagnostic printer.
10938           // 2) The diagnostic printer only attempts to find a better
10939           //    name for types, not decls.
10940           // Ideally, this should folded into the diagnostic printer.
10941           S.Diag(Templated->getLocation(),
10942                  diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10943               << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10944           return;
10945         }
10946       }
10947     }
10948 
10949     if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10950         !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10951       return;
10952 
10953     // FIXME: For generic lambda parameters, check if the function is a lambda
10954     // call operator, and if so, emit a prettier and more informative
10955     // diagnostic that mentions 'auto' and lambda in addition to
10956     // (or instead of?) the canonical template type parameters.
10957     S.Diag(Templated->getLocation(),
10958            diag::note_ovl_candidate_non_deduced_mismatch)
10959         << FirstTA << SecondTA;
10960     return;
10961   }
10962   // TODO: diagnose these individually, then kill off
10963   // note_ovl_candidate_bad_deduction, which is uselessly vague.
10964   case Sema::TDK_MiscellaneousDeductionFailure:
10965     S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10966     MaybeEmitInheritedConstructorNote(S, Found);
10967     return;
10968   case Sema::TDK_CUDATargetMismatch:
10969     S.Diag(Templated->getLocation(),
10970            diag::note_cuda_ovl_candidate_target_mismatch);
10971     return;
10972   }
10973 }
10974 
10975 /// Diagnose a failed template-argument deduction, for function calls.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress)10976 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10977                                  unsigned NumArgs,
10978                                  bool TakingCandidateAddress) {
10979   unsigned TDK = Cand->DeductionFailure.Result;
10980   if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10981     if (CheckArityMismatch(S, Cand, NumArgs))
10982       return;
10983   }
10984   DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10985                        Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10986 }
10987 
10988 /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)10989 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10990   FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10991   FunctionDecl *Callee = Cand->Function;
10992 
10993   Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10994                            CalleeTarget = S.IdentifyCUDATarget(Callee);
10995 
10996   std::string FnDesc;
10997   std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10998       ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
10999                                 Cand->getRewriteKind(), FnDesc);
11000 
11001   S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
11002       << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11003       << FnDesc /* Ignored */
11004       << CalleeTarget << CallerTarget;
11005 
11006   // This could be an implicit constructor for which we could not infer the
11007   // target due to a collsion. Diagnose that case.
11008   CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
11009   if (Meth != nullptr && Meth->isImplicit()) {
11010     CXXRecordDecl *ParentClass = Meth->getParent();
11011     Sema::CXXSpecialMember CSM;
11012 
11013     switch (FnKindPair.first) {
11014     default:
11015       return;
11016     case oc_implicit_default_constructor:
11017       CSM = Sema::CXXDefaultConstructor;
11018       break;
11019     case oc_implicit_copy_constructor:
11020       CSM = Sema::CXXCopyConstructor;
11021       break;
11022     case oc_implicit_move_constructor:
11023       CSM = Sema::CXXMoveConstructor;
11024       break;
11025     case oc_implicit_copy_assignment:
11026       CSM = Sema::CXXCopyAssignment;
11027       break;
11028     case oc_implicit_move_assignment:
11029       CSM = Sema::CXXMoveAssignment;
11030       break;
11031     };
11032 
11033     bool ConstRHS = false;
11034     if (Meth->getNumParams()) {
11035       if (const ReferenceType *RT =
11036               Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11037         ConstRHS = RT->getPointeeType().isConstQualified();
11038       }
11039     }
11040 
11041     S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11042                                               /* ConstRHS */ ConstRHS,
11043                                               /* Diagnose */ true);
11044   }
11045 }
11046 
DiagnoseFailedEnableIfAttr(Sema & S,OverloadCandidate * Cand)11047 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11048   FunctionDecl *Callee = Cand->Function;
11049   EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11050 
11051   S.Diag(Callee->getLocation(),
11052          diag::note_ovl_candidate_disabled_by_function_cond_attr)
11053       << Attr->getCond()->getSourceRange() << Attr->getMessage();
11054 }
11055 
DiagnoseFailedExplicitSpec(Sema & S,OverloadCandidate * Cand)11056 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11057   ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11058   assert(ES.isExplicit() && "not an explicit candidate");
11059 
11060   unsigned Kind;
11061   switch (Cand->Function->getDeclKind()) {
11062   case Decl::Kind::CXXConstructor:
11063     Kind = 0;
11064     break;
11065   case Decl::Kind::CXXConversion:
11066     Kind = 1;
11067     break;
11068   case Decl::Kind::CXXDeductionGuide:
11069     Kind = Cand->Function->isImplicit() ? 0 : 2;
11070     break;
11071   default:
11072     llvm_unreachable("invalid Decl");
11073   }
11074 
11075   // Note the location of the first (in-class) declaration; a redeclaration
11076   // (particularly an out-of-class definition) will typically lack the
11077   // 'explicit' specifier.
11078   // FIXME: This is probably a good thing to do for all 'candidate' notes.
11079   FunctionDecl *First = Cand->Function->getFirstDecl();
11080   if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11081     First = Pattern->getFirstDecl();
11082 
11083   S.Diag(First->getLocation(),
11084          diag::note_ovl_candidate_explicit)
11085       << Kind << (ES.getExpr() ? 1 : 0)
11086       << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11087 }
11088 
11089 /// Generates a 'note' diagnostic for an overload candidate.  We've
11090 /// already generated a primary error at the call site.
11091 ///
11092 /// It really does need to be a single diagnostic with its caret
11093 /// pointed at the candidate declaration.  Yes, this creates some
11094 /// major challenges of technical writing.  Yes, this makes pointing
11095 /// out problems with specific arguments quite awkward.  It's still
11096 /// better than generating twenty screens of text for every failed
11097 /// overload.
11098 ///
11099 /// It would be great to be able to express per-candidate problems
11100 /// more richly for those diagnostic clients that cared, but we'd
11101 /// still have to be just as careful with the default diagnostics.
11102 /// \param CtorDestAS Addr space of object being constructed (for ctor
11103 /// candidates only).
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress,LangAS CtorDestAS=LangAS::Default)11104 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11105                                   unsigned NumArgs,
11106                                   bool TakingCandidateAddress,
11107                                   LangAS CtorDestAS = LangAS::Default) {
11108   FunctionDecl *Fn = Cand->Function;
11109   if (shouldSkipNotingLambdaConversionDecl(Fn))
11110     return;
11111 
11112   // Note deleted candidates, but only if they're viable.
11113   if (Cand->Viable) {
11114     if (Fn->isDeleted()) {
11115       std::string FnDesc;
11116       std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11117           ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11118                                     Cand->getRewriteKind(), FnDesc);
11119 
11120       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11121           << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11122           << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11123       MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11124       return;
11125     }
11126 
11127     // We don't really have anything else to say about viable candidates.
11128     S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11129     return;
11130   }
11131 
11132   switch (Cand->FailureKind) {
11133   case ovl_fail_too_many_arguments:
11134   case ovl_fail_too_few_arguments:
11135     return DiagnoseArityMismatch(S, Cand, NumArgs);
11136 
11137   case ovl_fail_bad_deduction:
11138     return DiagnoseBadDeduction(S, Cand, NumArgs,
11139                                 TakingCandidateAddress);
11140 
11141   case ovl_fail_illegal_constructor: {
11142     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11143       << (Fn->getPrimaryTemplate() ? 1 : 0);
11144     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11145     return;
11146   }
11147 
11148   case ovl_fail_object_addrspace_mismatch: {
11149     Qualifiers QualsForPrinting;
11150     QualsForPrinting.setAddressSpace(CtorDestAS);
11151     S.Diag(Fn->getLocation(),
11152            diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11153         << QualsForPrinting;
11154     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11155     return;
11156   }
11157 
11158   case ovl_fail_trivial_conversion:
11159   case ovl_fail_bad_final_conversion:
11160   case ovl_fail_final_conversion_not_exact:
11161     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11162 
11163   case ovl_fail_bad_conversion: {
11164     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11165     for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11166       if (Cand->Conversions[I].isBad())
11167         return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11168 
11169     // FIXME: this currently happens when we're called from SemaInit
11170     // when user-conversion overload fails.  Figure out how to handle
11171     // those conditions and diagnose them well.
11172     return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11173   }
11174 
11175   case ovl_fail_bad_target:
11176     return DiagnoseBadTarget(S, Cand);
11177 
11178   case ovl_fail_enable_if:
11179     return DiagnoseFailedEnableIfAttr(S, Cand);
11180 
11181   case ovl_fail_explicit:
11182     return DiagnoseFailedExplicitSpec(S, Cand);
11183 
11184   case ovl_fail_inhctor_slice:
11185     // It's generally not interesting to note copy/move constructors here.
11186     if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11187       return;
11188     S.Diag(Fn->getLocation(),
11189            diag::note_ovl_candidate_inherited_constructor_slice)
11190       << (Fn->getPrimaryTemplate() ? 1 : 0)
11191       << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11192     MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11193     return;
11194 
11195   case ovl_fail_addr_not_available: {
11196     bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11197     (void)Available;
11198     assert(!Available);
11199     break;
11200   }
11201   case ovl_non_default_multiversion_function:
11202     // Do nothing, these should simply be ignored.
11203     break;
11204 
11205   case ovl_fail_constraints_not_satisfied: {
11206     std::string FnDesc;
11207     std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11208         ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11209                                   Cand->getRewriteKind(), FnDesc);
11210 
11211     S.Diag(Fn->getLocation(),
11212            diag::note_ovl_candidate_constraints_not_satisfied)
11213         << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11214         << FnDesc /* Ignored */;
11215     ConstraintSatisfaction Satisfaction;
11216     if (S.CheckFunctionConstraints(Fn, Satisfaction))
11217       break;
11218     S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11219   }
11220   }
11221 }
11222 
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)11223 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11224   if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate))
11225     return;
11226 
11227   // Desugar the type of the surrogate down to a function type,
11228   // retaining as many typedefs as possible while still showing
11229   // the function type (and, therefore, its parameter types).
11230   QualType FnType = Cand->Surrogate->getConversionType();
11231   bool isLValueReference = false;
11232   bool isRValueReference = false;
11233   bool isPointer = false;
11234   if (const LValueReferenceType *FnTypeRef =
11235         FnType->getAs<LValueReferenceType>()) {
11236     FnType = FnTypeRef->getPointeeType();
11237     isLValueReference = true;
11238   } else if (const RValueReferenceType *FnTypeRef =
11239                FnType->getAs<RValueReferenceType>()) {
11240     FnType = FnTypeRef->getPointeeType();
11241     isRValueReference = true;
11242   }
11243   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11244     FnType = FnTypePtr->getPointeeType();
11245     isPointer = true;
11246   }
11247   // Desugar down to a function type.
11248   FnType = QualType(FnType->getAs<FunctionType>(), 0);
11249   // Reconstruct the pointer/reference as appropriate.
11250   if (isPointer) FnType = S.Context.getPointerType(FnType);
11251   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11252   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11253 
11254   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11255     << FnType;
11256 }
11257 
NoteBuiltinOperatorCandidate(Sema & S,StringRef Opc,SourceLocation OpLoc,OverloadCandidate * Cand)11258 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11259                                          SourceLocation OpLoc,
11260                                          OverloadCandidate *Cand) {
11261   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
11262   std::string TypeStr("operator");
11263   TypeStr += Opc;
11264   TypeStr += "(";
11265   TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11266   if (Cand->Conversions.size() == 1) {
11267     TypeStr += ")";
11268     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11269   } else {
11270     TypeStr += ", ";
11271     TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11272     TypeStr += ")";
11273     S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11274   }
11275 }
11276 
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)11277 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11278                                          OverloadCandidate *Cand) {
11279   for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11280     if (ICS.isBad()) break; // all meaningless after first invalid
11281     if (!ICS.isAmbiguous()) continue;
11282 
11283     ICS.DiagnoseAmbiguousConversion(
11284         S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11285   }
11286 }
11287 
GetLocationForCandidate(const OverloadCandidate * Cand)11288 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11289   if (Cand->Function)
11290     return Cand->Function->getLocation();
11291   if (Cand->IsSurrogate)
11292     return Cand->Surrogate->getLocation();
11293   return SourceLocation();
11294 }
11295 
RankDeductionFailure(const DeductionFailureInfo & DFI)11296 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11297   switch ((Sema::TemplateDeductionResult)DFI.Result) {
11298   case Sema::TDK_Success:
11299   case Sema::TDK_NonDependentConversionFailure:
11300     llvm_unreachable("non-deduction failure while diagnosing bad deduction");
11301 
11302   case Sema::TDK_Invalid:
11303   case Sema::TDK_Incomplete:
11304   case Sema::TDK_IncompletePack:
11305     return 1;
11306 
11307   case Sema::TDK_Underqualified:
11308   case Sema::TDK_Inconsistent:
11309     return 2;
11310 
11311   case Sema::TDK_SubstitutionFailure:
11312   case Sema::TDK_DeducedMismatch:
11313   case Sema::TDK_ConstraintsNotSatisfied:
11314   case Sema::TDK_DeducedMismatchNested:
11315   case Sema::TDK_NonDeducedMismatch:
11316   case Sema::TDK_MiscellaneousDeductionFailure:
11317   case Sema::TDK_CUDATargetMismatch:
11318     return 3;
11319 
11320   case Sema::TDK_InstantiationDepth:
11321     return 4;
11322 
11323   case Sema::TDK_InvalidExplicitArguments:
11324     return 5;
11325 
11326   case Sema::TDK_TooManyArguments:
11327   case Sema::TDK_TooFewArguments:
11328     return 6;
11329   }
11330   llvm_unreachable("Unhandled deduction result");
11331 }
11332 
11333 namespace {
11334 struct CompareOverloadCandidatesForDisplay {
11335   Sema &S;
11336   SourceLocation Loc;
11337   size_t NumArgs;
11338   OverloadCandidateSet::CandidateSetKind CSK;
11339 
CompareOverloadCandidatesForDisplay__anon9a0268b21811::CompareOverloadCandidatesForDisplay11340   CompareOverloadCandidatesForDisplay(
11341       Sema &S, SourceLocation Loc, size_t NArgs,
11342       OverloadCandidateSet::CandidateSetKind CSK)
11343       : S(S), NumArgs(NArgs), CSK(CSK) {}
11344 
EffectiveFailureKind__anon9a0268b21811::CompareOverloadCandidatesForDisplay11345   OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11346     // If there are too many or too few arguments, that's the high-order bit we
11347     // want to sort by, even if the immediate failure kind was something else.
11348     if (C->FailureKind == ovl_fail_too_many_arguments ||
11349         C->FailureKind == ovl_fail_too_few_arguments)
11350       return static_cast<OverloadFailureKind>(C->FailureKind);
11351 
11352     if (C->Function) {
11353       if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11354         return ovl_fail_too_many_arguments;
11355       if (NumArgs < C->Function->getMinRequiredArguments())
11356         return ovl_fail_too_few_arguments;
11357     }
11358 
11359     return static_cast<OverloadFailureKind>(C->FailureKind);
11360   }
11361 
operator ()__anon9a0268b21811::CompareOverloadCandidatesForDisplay11362   bool operator()(const OverloadCandidate *L,
11363                   const OverloadCandidate *R) {
11364     // Fast-path this check.
11365     if (L == R) return false;
11366 
11367     // Order first by viability.
11368     if (L->Viable) {
11369       if (!R->Viable) return true;
11370 
11371       // TODO: introduce a tri-valued comparison for overload
11372       // candidates.  Would be more worthwhile if we had a sort
11373       // that could exploit it.
11374       if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11375         return true;
11376       if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11377         return false;
11378     } else if (R->Viable)
11379       return false;
11380 
11381     assert(L->Viable == R->Viable);
11382 
11383     // Criteria by which we can sort non-viable candidates:
11384     if (!L->Viable) {
11385       OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11386       OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11387 
11388       // 1. Arity mismatches come after other candidates.
11389       if (LFailureKind == ovl_fail_too_many_arguments ||
11390           LFailureKind == ovl_fail_too_few_arguments) {
11391         if (RFailureKind == ovl_fail_too_many_arguments ||
11392             RFailureKind == ovl_fail_too_few_arguments) {
11393           int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11394           int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11395           if (LDist == RDist) {
11396             if (LFailureKind == RFailureKind)
11397               // Sort non-surrogates before surrogates.
11398               return !L->IsSurrogate && R->IsSurrogate;
11399             // Sort candidates requiring fewer parameters than there were
11400             // arguments given after candidates requiring more parameters
11401             // than there were arguments given.
11402             return LFailureKind == ovl_fail_too_many_arguments;
11403           }
11404           return LDist < RDist;
11405         }
11406         return false;
11407       }
11408       if (RFailureKind == ovl_fail_too_many_arguments ||
11409           RFailureKind == ovl_fail_too_few_arguments)
11410         return true;
11411 
11412       // 2. Bad conversions come first and are ordered by the number
11413       // of bad conversions and quality of good conversions.
11414       if (LFailureKind == ovl_fail_bad_conversion) {
11415         if (RFailureKind != ovl_fail_bad_conversion)
11416           return true;
11417 
11418         // The conversion that can be fixed with a smaller number of changes,
11419         // comes first.
11420         unsigned numLFixes = L->Fix.NumConversionsFixed;
11421         unsigned numRFixes = R->Fix.NumConversionsFixed;
11422         numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
11423         numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
11424         if (numLFixes != numRFixes) {
11425           return numLFixes < numRFixes;
11426         }
11427 
11428         // If there's any ordering between the defined conversions...
11429         // FIXME: this might not be transitive.
11430         assert(L->Conversions.size() == R->Conversions.size());
11431 
11432         int leftBetter = 0;
11433         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11434         for (unsigned E = L->Conversions.size(); I != E; ++I) {
11435           switch (CompareImplicitConversionSequences(S, Loc,
11436                                                      L->Conversions[I],
11437                                                      R->Conversions[I])) {
11438           case ImplicitConversionSequence::Better:
11439             leftBetter++;
11440             break;
11441 
11442           case ImplicitConversionSequence::Worse:
11443             leftBetter--;
11444             break;
11445 
11446           case ImplicitConversionSequence::Indistinguishable:
11447             break;
11448           }
11449         }
11450         if (leftBetter > 0) return true;
11451         if (leftBetter < 0) return false;
11452 
11453       } else if (RFailureKind == ovl_fail_bad_conversion)
11454         return false;
11455 
11456       if (LFailureKind == ovl_fail_bad_deduction) {
11457         if (RFailureKind != ovl_fail_bad_deduction)
11458           return true;
11459 
11460         if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11461           return RankDeductionFailure(L->DeductionFailure)
11462                < RankDeductionFailure(R->DeductionFailure);
11463       } else if (RFailureKind == ovl_fail_bad_deduction)
11464         return false;
11465 
11466       // TODO: others?
11467     }
11468 
11469     // Sort everything else by location.
11470     SourceLocation LLoc = GetLocationForCandidate(L);
11471     SourceLocation RLoc = GetLocationForCandidate(R);
11472 
11473     // Put candidates without locations (e.g. builtins) at the end.
11474     if (LLoc.isInvalid()) return false;
11475     if (RLoc.isInvalid()) return true;
11476 
11477     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11478   }
11479 };
11480 }
11481 
11482 /// CompleteNonViableCandidate - Normally, overload resolution only
11483 /// computes up to the first bad conversion. Produces the FixIt set if
11484 /// possible.
11485 static void
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,ArrayRef<Expr * > Args,OverloadCandidateSet::CandidateSetKind CSK)11486 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11487                            ArrayRef<Expr *> Args,
11488                            OverloadCandidateSet::CandidateSetKind CSK) {
11489   assert(!Cand->Viable);
11490 
11491   // Don't do anything on failures other than bad conversion.
11492   if (Cand->FailureKind != ovl_fail_bad_conversion)
11493     return;
11494 
11495   // We only want the FixIts if all the arguments can be corrected.
11496   bool Unfixable = false;
11497   // Use a implicit copy initialization to check conversion fixes.
11498   Cand->Fix.setConversionChecker(TryCopyInitialization);
11499 
11500   // Attempt to fix the bad conversion.
11501   unsigned ConvCount = Cand->Conversions.size();
11502   for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11503        ++ConvIdx) {
11504     assert(ConvIdx != ConvCount && "no bad conversion in candidate");
11505     if (Cand->Conversions[ConvIdx].isInitialized() &&
11506         Cand->Conversions[ConvIdx].isBad()) {
11507       Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11508       break;
11509     }
11510   }
11511 
11512   // FIXME: this should probably be preserved from the overload
11513   // operation somehow.
11514   bool SuppressUserConversions = false;
11515 
11516   unsigned ConvIdx = 0;
11517   unsigned ArgIdx = 0;
11518   ArrayRef<QualType> ParamTypes;
11519   bool Reversed = Cand->isReversed();
11520 
11521   if (Cand->IsSurrogate) {
11522     QualType ConvType
11523       = Cand->Surrogate->getConversionType().getNonReferenceType();
11524     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11525       ConvType = ConvPtrType->getPointeeType();
11526     ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11527     // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11528     ConvIdx = 1;
11529   } else if (Cand->Function) {
11530     ParamTypes =
11531         Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11532     if (isa<CXXMethodDecl>(Cand->Function) &&
11533         !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11534       // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11535       ConvIdx = 1;
11536       if (CSK == OverloadCandidateSet::CSK_Operator &&
11537           Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11538         // Argument 0 is 'this', which doesn't have a corresponding parameter.
11539         ArgIdx = 1;
11540     }
11541   } else {
11542     // Builtin operator.
11543     assert(ConvCount <= 3);
11544     ParamTypes = Cand->BuiltinParamTypes;
11545   }
11546 
11547   // Fill in the rest of the conversions.
11548   for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11549        ConvIdx != ConvCount;
11550        ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11551     assert(ArgIdx < Args.size() && "no argument for this arg conversion");
11552     if (Cand->Conversions[ConvIdx].isInitialized()) {
11553       // We've already checked this conversion.
11554     } else if (ParamIdx < ParamTypes.size()) {
11555       if (ParamTypes[ParamIdx]->isDependentType())
11556         Cand->Conversions[ConvIdx].setAsIdentityConversion(
11557             Args[ArgIdx]->getType());
11558       else {
11559         Cand->Conversions[ConvIdx] =
11560             TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11561                                   SuppressUserConversions,
11562                                   /*InOverloadResolution=*/true,
11563                                   /*AllowObjCWritebackConversion=*/
11564                                   S.getLangOpts().ObjCAutoRefCount);
11565         // Store the FixIt in the candidate if it exists.
11566         if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11567           Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11568       }
11569     } else
11570       Cand->Conversions[ConvIdx].setEllipsis();
11571   }
11572 }
11573 
CompleteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11574 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11575     Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11576     SourceLocation OpLoc,
11577     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11578   // Sort the candidates by viability and position.  Sorting directly would
11579   // be prohibitive, so we make a set of pointers and sort those.
11580   SmallVector<OverloadCandidate*, 32> Cands;
11581   if (OCD == OCD_AllCandidates) Cands.reserve(size());
11582   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11583     if (!Filter(*Cand))
11584       continue;
11585     switch (OCD) {
11586     case OCD_AllCandidates:
11587       if (!Cand->Viable) {
11588         if (!Cand->Function && !Cand->IsSurrogate) {
11589           // This a non-viable builtin candidate.  We do not, in general,
11590           // want to list every possible builtin candidate.
11591           continue;
11592         }
11593         CompleteNonViableCandidate(S, Cand, Args, Kind);
11594       }
11595       break;
11596 
11597     case OCD_ViableCandidates:
11598       if (!Cand->Viable)
11599         continue;
11600       break;
11601 
11602     case OCD_AmbiguousCandidates:
11603       if (!Cand->Best)
11604         continue;
11605       break;
11606     }
11607 
11608     Cands.push_back(Cand);
11609   }
11610 
11611   llvm::stable_sort(
11612       Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11613 
11614   return Cands;
11615 }
11616 
shouldDeferDiags(Sema & S,ArrayRef<Expr * > Args,SourceLocation OpLoc)11617 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args,
11618                                             SourceLocation OpLoc) {
11619   bool DeferHint = false;
11620   if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11621     // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or
11622     // host device candidates.
11623     auto WrongSidedCands =
11624         CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11625           return (Cand.Viable == false &&
11626                   Cand.FailureKind == ovl_fail_bad_target) ||
11627                  (Cand.Function->template hasAttr<CUDAHostAttr>() &&
11628                   Cand.Function->template hasAttr<CUDADeviceAttr>());
11629         });
11630     DeferHint = !WrongSidedCands.empty();
11631   }
11632   return DeferHint;
11633 }
11634 
11635 /// When overload resolution fails, prints diagnostic messages containing the
11636 /// candidates in the candidate set.
NoteCandidates(PartialDiagnosticAt PD,Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,StringRef Opc,SourceLocation OpLoc,llvm::function_ref<bool (OverloadCandidate &)> Filter)11637 void OverloadCandidateSet::NoteCandidates(
11638     PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD,
11639     ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc,
11640     llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11641 
11642   auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11643 
11644   S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc));
11645 
11646   NoteCandidates(S, Args, Cands, Opc, OpLoc);
11647 
11648   if (OCD == OCD_AmbiguousCandidates)
11649     MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11650 }
11651 
NoteCandidates(Sema & S,ArrayRef<Expr * > Args,ArrayRef<OverloadCandidate * > Cands,StringRef Opc,SourceLocation OpLoc)11652 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11653                                           ArrayRef<OverloadCandidate *> Cands,
11654                                           StringRef Opc, SourceLocation OpLoc) {
11655   bool ReportedAmbiguousConversions = false;
11656 
11657   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11658   unsigned CandsShown = 0;
11659   auto I = Cands.begin(), E = Cands.end();
11660   for (; I != E; ++I) {
11661     OverloadCandidate *Cand = *I;
11662 
11663     if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() &&
11664         ShowOverloads == Ovl_Best) {
11665       break;
11666     }
11667     ++CandsShown;
11668 
11669     if (Cand->Function)
11670       NoteFunctionCandidate(S, Cand, Args.size(),
11671                             /*TakingCandidateAddress=*/false, DestAS);
11672     else if (Cand->IsSurrogate)
11673       NoteSurrogateCandidate(S, Cand);
11674     else {
11675       assert(Cand->Viable &&
11676              "Non-viable built-in candidates are not added to Cands.");
11677       // Generally we only see ambiguities including viable builtin
11678       // operators if overload resolution got screwed up by an
11679       // ambiguous user-defined conversion.
11680       //
11681       // FIXME: It's quite possible for different conversions to see
11682       // different ambiguities, though.
11683       if (!ReportedAmbiguousConversions) {
11684         NoteAmbiguousUserConversions(S, OpLoc, Cand);
11685         ReportedAmbiguousConversions = true;
11686       }
11687 
11688       // If this is a viable builtin, print it.
11689       NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11690     }
11691   }
11692 
11693   // Inform S.Diags that we've shown an overload set with N elements.  This may
11694   // inform the future value of S.Diags.getNumOverloadCandidatesToShow().
11695   S.Diags.overloadCandidatesShown(CandsShown);
11696 
11697   if (I != E)
11698     S.Diag(OpLoc, diag::note_ovl_too_many_candidates,
11699            shouldDeferDiags(S, Args, OpLoc))
11700         << int(E - I);
11701 }
11702 
11703 static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate * Cand)11704 GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11705   return Cand->Specialization ? Cand->Specialization->getLocation()
11706                               : SourceLocation();
11707 }
11708 
11709 namespace {
11710 struct CompareTemplateSpecCandidatesForDisplay {
11711   Sema &S;
CompareTemplateSpecCandidatesForDisplay__anon9a0268b21a11::CompareTemplateSpecCandidatesForDisplay11712   CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11713 
operator ()__anon9a0268b21a11::CompareTemplateSpecCandidatesForDisplay11714   bool operator()(const TemplateSpecCandidate *L,
11715                   const TemplateSpecCandidate *R) {
11716     // Fast-path this check.
11717     if (L == R)
11718       return false;
11719 
11720     // Assuming that both candidates are not matches...
11721 
11722     // Sort by the ranking of deduction failures.
11723     if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11724       return RankDeductionFailure(L->DeductionFailure) <
11725              RankDeductionFailure(R->DeductionFailure);
11726 
11727     // Sort everything else by location.
11728     SourceLocation LLoc = GetLocationForCandidate(L);
11729     SourceLocation RLoc = GetLocationForCandidate(R);
11730 
11731     // Put candidates without locations (e.g. builtins) at the end.
11732     if (LLoc.isInvalid())
11733       return false;
11734     if (RLoc.isInvalid())
11735       return true;
11736 
11737     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11738   }
11739 };
11740 }
11741 
11742 /// Diagnose a template argument deduction failure.
11743 /// We are treating these failures as overload failures due to bad
11744 /// deductions.
NoteDeductionFailure(Sema & S,bool ForTakingAddress)11745 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11746                                                  bool ForTakingAddress) {
11747   DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11748                        DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11749 }
11750 
destroyCandidates()11751 void TemplateSpecCandidateSet::destroyCandidates() {
11752   for (iterator i = begin(), e = end(); i != e; ++i) {
11753     i->DeductionFailure.Destroy();
11754   }
11755 }
11756 
clear()11757 void TemplateSpecCandidateSet::clear() {
11758   destroyCandidates();
11759   Candidates.clear();
11760 }
11761 
11762 /// NoteCandidates - When no template specialization match is found, prints
11763 /// diagnostic messages containing the non-matching specializations that form
11764 /// the candidate set.
11765 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11766 /// OCD == OCD_AllCandidates and Cand->Viable == false.
NoteCandidates(Sema & S,SourceLocation Loc)11767 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11768   // Sort the candidates by position (assuming no candidate is a match).
11769   // Sorting directly would be prohibitive, so we make a set of pointers
11770   // and sort those.
11771   SmallVector<TemplateSpecCandidate *, 32> Cands;
11772   Cands.reserve(size());
11773   for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11774     if (Cand->Specialization)
11775       Cands.push_back(Cand);
11776     // Otherwise, this is a non-matching builtin candidate.  We do not,
11777     // in general, want to list every possible builtin candidate.
11778   }
11779 
11780   llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11781 
11782   // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11783   // for generalization purposes (?).
11784   const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11785 
11786   SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11787   unsigned CandsShown = 0;
11788   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11789     TemplateSpecCandidate *Cand = *I;
11790 
11791     // Set an arbitrary limit on the number of candidates we'll spam
11792     // the user with.  FIXME: This limit should depend on details of the
11793     // candidate list.
11794     if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11795       break;
11796     ++CandsShown;
11797 
11798     assert(Cand->Specialization &&
11799            "Non-matching built-in candidates are not added to Cands.");
11800     Cand->NoteDeductionFailure(S, ForTakingAddress);
11801   }
11802 
11803   if (I != E)
11804     S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11805 }
11806 
11807 // [PossiblyAFunctionType]  -->   [Return]
11808 // NonFunctionType --> NonFunctionType
11809 // R (A) --> R(A)
11810 // R (*)(A) --> R (A)
11811 // R (&)(A) --> R (A)
11812 // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)11813 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11814   QualType Ret = PossiblyAFunctionType;
11815   if (const PointerType *ToTypePtr =
11816     PossiblyAFunctionType->getAs<PointerType>())
11817     Ret = ToTypePtr->getPointeeType();
11818   else if (const ReferenceType *ToTypeRef =
11819     PossiblyAFunctionType->getAs<ReferenceType>())
11820     Ret = ToTypeRef->getPointeeType();
11821   else if (const MemberPointerType *MemTypePtr =
11822     PossiblyAFunctionType->getAs<MemberPointerType>())
11823     Ret = MemTypePtr->getPointeeType();
11824   Ret =
11825     Context.getCanonicalType(Ret).getUnqualifiedType();
11826   return Ret;
11827 }
11828 
completeFunctionType(Sema & S,FunctionDecl * FD,SourceLocation Loc,bool Complain=true)11829 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11830                                  bool Complain = true) {
11831   if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11832       S.DeduceReturnType(FD, Loc, Complain))
11833     return true;
11834 
11835   auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11836   if (S.getLangOpts().CPlusPlus17 &&
11837       isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11838       !S.ResolveExceptionSpec(Loc, FPT))
11839     return true;
11840 
11841   return false;
11842 }
11843 
11844 namespace {
11845 // A helper class to help with address of function resolution
11846 // - allows us to avoid passing around all those ugly parameters
11847 class AddressOfFunctionResolver {
11848   Sema& S;
11849   Expr* SourceExpr;
11850   const QualType& TargetType;
11851   QualType TargetFunctionType; // Extracted function type from target type
11852 
11853   bool Complain;
11854   //DeclAccessPair& ResultFunctionAccessPair;
11855   ASTContext& Context;
11856 
11857   bool TargetTypeIsNonStaticMemberFunction;
11858   bool FoundNonTemplateFunction;
11859   bool StaticMemberFunctionFromBoundPointer;
11860   bool HasComplained;
11861 
11862   OverloadExpr::FindResult OvlExprInfo;
11863   OverloadExpr *OvlExpr;
11864   TemplateArgumentListInfo OvlExplicitTemplateArgs;
11865   SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11866   TemplateSpecCandidateSet FailedCandidates;
11867 
11868 public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)11869   AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11870                             const QualType &TargetType, bool Complain)
11871       : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11872         Complain(Complain), Context(S.getASTContext()),
11873         TargetTypeIsNonStaticMemberFunction(
11874             !!TargetType->getAs<MemberPointerType>()),
11875         FoundNonTemplateFunction(false),
11876         StaticMemberFunctionFromBoundPointer(false),
11877         HasComplained(false),
11878         OvlExprInfo(OverloadExpr::find(SourceExpr)),
11879         OvlExpr(OvlExprInfo.Expression),
11880         FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11881     ExtractUnqualifiedFunctionTypeFromTargetType();
11882 
11883     if (TargetFunctionType->isFunctionType()) {
11884       if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11885         if (!UME->isImplicitAccess() &&
11886             !S.ResolveSingleFunctionTemplateSpecialization(UME))
11887           StaticMemberFunctionFromBoundPointer = true;
11888     } else if (OvlExpr->hasExplicitTemplateArgs()) {
11889       DeclAccessPair dap;
11890       if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11891               OvlExpr, false, &dap)) {
11892         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11893           if (!Method->isStatic()) {
11894             // If the target type is a non-function type and the function found
11895             // is a non-static member function, pretend as if that was the
11896             // target, it's the only possible type to end up with.
11897             TargetTypeIsNonStaticMemberFunction = true;
11898 
11899             // And skip adding the function if its not in the proper form.
11900             // We'll diagnose this due to an empty set of functions.
11901             if (!OvlExprInfo.HasFormOfMemberPointer)
11902               return;
11903           }
11904 
11905         Matches.push_back(std::make_pair(dap, Fn));
11906       }
11907       return;
11908     }
11909 
11910     if (OvlExpr->hasExplicitTemplateArgs())
11911       OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11912 
11913     if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11914       // C++ [over.over]p4:
11915       //   If more than one function is selected, [...]
11916       if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11917         if (FoundNonTemplateFunction)
11918           EliminateAllTemplateMatches();
11919         else
11920           EliminateAllExceptMostSpecializedTemplate();
11921       }
11922     }
11923 
11924     if (S.getLangOpts().CUDA && Matches.size() > 1)
11925       EliminateSuboptimalCudaMatches();
11926   }
11927 
hasComplained() const11928   bool hasComplained() const { return HasComplained; }
11929 
11930 private:
candidateHasExactlyCorrectType(const FunctionDecl * FD)11931   bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11932     QualType Discard;
11933     return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11934            S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11935   }
11936 
11937   /// \return true if A is considered a better overload candidate for the
11938   /// desired type than B.
isBetterCandidate(const FunctionDecl * A,const FunctionDecl * B)11939   bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11940     // If A doesn't have exactly the correct type, we don't want to classify it
11941     // as "better" than anything else. This way, the user is required to
11942     // disambiguate for us if there are multiple candidates and no exact match.
11943     return candidateHasExactlyCorrectType(A) &&
11944            (!candidateHasExactlyCorrectType(B) ||
11945             compareEnableIfAttrs(S, A, B) == Comparison::Better);
11946   }
11947 
11948   /// \return true if we were able to eliminate all but one overload candidate,
11949   /// false otherwise.
eliminiateSuboptimalOverloadCandidates()11950   bool eliminiateSuboptimalOverloadCandidates() {
11951     // Same algorithm as overload resolution -- one pass to pick the "best",
11952     // another pass to be sure that nothing is better than the best.
11953     auto Best = Matches.begin();
11954     for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11955       if (isBetterCandidate(I->second, Best->second))
11956         Best = I;
11957 
11958     const FunctionDecl *BestFn = Best->second;
11959     auto IsBestOrInferiorToBest = [this, BestFn](
11960         const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11961       return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11962     };
11963 
11964     // Note: We explicitly leave Matches unmodified if there isn't a clear best
11965     // option, so we can potentially give the user a better error
11966     if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11967       return false;
11968     Matches[0] = *Best;
11969     Matches.resize(1);
11970     return true;
11971   }
11972 
isTargetTypeAFunction() const11973   bool isTargetTypeAFunction() const {
11974     return TargetFunctionType->isFunctionType();
11975   }
11976 
11977   // [ToType]     [Return]
11978 
11979   // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11980   // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11981   // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()11982   void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11983     TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11984   }
11985 
11986   // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)11987   bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11988                                    const DeclAccessPair& CurAccessFunPair) {
11989     if (CXXMethodDecl *Method
11990               = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11991       // Skip non-static function templates when converting to pointer, and
11992       // static when converting to member pointer.
11993       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11994         return false;
11995     }
11996     else if (TargetTypeIsNonStaticMemberFunction)
11997       return false;
11998 
11999     // C++ [over.over]p2:
12000     //   If the name is a function template, template argument deduction is
12001     //   done (14.8.2.2), and if the argument deduction succeeds, the
12002     //   resulting template argument list is used to generate a single
12003     //   function template specialization, which is added to the set of
12004     //   overloaded functions considered.
12005     FunctionDecl *Specialization = nullptr;
12006     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12007     if (Sema::TemplateDeductionResult Result
12008           = S.DeduceTemplateArguments(FunctionTemplate,
12009                                       &OvlExplicitTemplateArgs,
12010                                       TargetFunctionType, Specialization,
12011                                       Info, /*IsAddressOfFunction*/true)) {
12012       // Make a note of the failed deduction for diagnostics.
12013       FailedCandidates.addCandidate()
12014           .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
12015                MakeDeductionFailureInfo(Context, Result, Info));
12016       return false;
12017     }
12018 
12019     // Template argument deduction ensures that we have an exact match or
12020     // compatible pointer-to-function arguments that would be adjusted by ICS.
12021     // This function template specicalization works.
12022     assert(S.isSameOrCompatibleFunctionType(
12023               Context.getCanonicalType(Specialization->getType()),
12024               Context.getCanonicalType(TargetFunctionType)));
12025 
12026     if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12027       return false;
12028 
12029     Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12030     return true;
12031   }
12032 
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)12033   bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12034                                       const DeclAccessPair& CurAccessFunPair) {
12035     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12036       // Skip non-static functions when converting to pointer, and static
12037       // when converting to member pointer.
12038       if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12039         return false;
12040     }
12041     else if (TargetTypeIsNonStaticMemberFunction)
12042       return false;
12043 
12044     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12045       if (S.getLangOpts().CUDA)
12046         if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12047           if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12048             return false;
12049       if (FunDecl->isMultiVersion()) {
12050         const auto *TA = FunDecl->getAttr<TargetAttr>();
12051         if (TA && !TA->isDefaultVersion())
12052           return false;
12053       }
12054 
12055       // If any candidate has a placeholder return type, trigger its deduction
12056       // now.
12057       if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12058                                Complain)) {
12059         HasComplained |= Complain;
12060         return false;
12061       }
12062 
12063       if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12064         return false;
12065 
12066       // If we're in C, we need to support types that aren't exactly identical.
12067       if (!S.getLangOpts().CPlusPlus ||
12068           candidateHasExactlyCorrectType(FunDecl)) {
12069         Matches.push_back(std::make_pair(
12070             CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12071         FoundNonTemplateFunction = true;
12072         return true;
12073       }
12074     }
12075 
12076     return false;
12077   }
12078 
FindAllFunctionsThatMatchTargetTypeExactly()12079   bool FindAllFunctionsThatMatchTargetTypeExactly() {
12080     bool Ret = false;
12081 
12082     // If the overload expression doesn't have the form of a pointer to
12083     // member, don't try to convert it to a pointer-to-member type.
12084     if (IsInvalidFormOfPointerToMemberFunction())
12085       return false;
12086 
12087     for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12088                                E = OvlExpr->decls_end();
12089          I != E; ++I) {
12090       // Look through any using declarations to find the underlying function.
12091       NamedDecl *Fn = (*I)->getUnderlyingDecl();
12092 
12093       // C++ [over.over]p3:
12094       //   Non-member functions and static member functions match
12095       //   targets of type "pointer-to-function" or "reference-to-function."
12096       //   Nonstatic member functions match targets of
12097       //   type "pointer-to-member-function."
12098       // Note that according to DR 247, the containing class does not matter.
12099       if (FunctionTemplateDecl *FunctionTemplate
12100                                         = dyn_cast<FunctionTemplateDecl>(Fn)) {
12101         if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12102           Ret = true;
12103       }
12104       // If we have explicit template arguments supplied, skip non-templates.
12105       else if (!OvlExpr->hasExplicitTemplateArgs() &&
12106                AddMatchingNonTemplateFunction(Fn, I.getPair()))
12107         Ret = true;
12108     }
12109     assert(Ret || Matches.empty());
12110     return Ret;
12111   }
12112 
EliminateAllExceptMostSpecializedTemplate()12113   void EliminateAllExceptMostSpecializedTemplate() {
12114     //   [...] and any given function template specialization F1 is
12115     //   eliminated if the set contains a second function template
12116     //   specialization whose function template is more specialized
12117     //   than the function template of F1 according to the partial
12118     //   ordering rules of 14.5.5.2.
12119 
12120     // The algorithm specified above is quadratic. We instead use a
12121     // two-pass algorithm (similar to the one used to identify the
12122     // best viable function in an overload set) that identifies the
12123     // best function template (if it exists).
12124 
12125     UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12126     for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12127       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12128 
12129     // TODO: It looks like FailedCandidates does not serve much purpose
12130     // here, since the no_viable diagnostic has index 0.
12131     UnresolvedSetIterator Result = S.getMostSpecialized(
12132         MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12133         SourceExpr->getBeginLoc(), S.PDiag(),
12134         S.PDiag(diag::err_addr_ovl_ambiguous)
12135             << Matches[0].second->getDeclName(),
12136         S.PDiag(diag::note_ovl_candidate)
12137             << (unsigned)oc_function << (unsigned)ocs_described_template,
12138         Complain, TargetFunctionType);
12139 
12140     if (Result != MatchesCopy.end()) {
12141       // Make it the first and only element
12142       Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12143       Matches[0].second = cast<FunctionDecl>(*Result);
12144       Matches.resize(1);
12145     } else
12146       HasComplained |= Complain;
12147   }
12148 
EliminateAllTemplateMatches()12149   void EliminateAllTemplateMatches() {
12150     //   [...] any function template specializations in the set are
12151     //   eliminated if the set also contains a non-template function, [...]
12152     for (unsigned I = 0, N = Matches.size(); I != N; ) {
12153       if (Matches[I].second->getPrimaryTemplate() == nullptr)
12154         ++I;
12155       else {
12156         Matches[I] = Matches[--N];
12157         Matches.resize(N);
12158       }
12159     }
12160   }
12161 
EliminateSuboptimalCudaMatches()12162   void EliminateSuboptimalCudaMatches() {
12163     S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12164   }
12165 
12166 public:
ComplainNoMatchesFound() const12167   void ComplainNoMatchesFound() const {
12168     assert(Matches.empty());
12169     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12170         << OvlExpr->getName() << TargetFunctionType
12171         << OvlExpr->getSourceRange();
12172     if (FailedCandidates.empty())
12173       S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12174                                   /*TakingAddress=*/true);
12175     else {
12176       // We have some deduction failure messages. Use them to diagnose
12177       // the function templates, and diagnose the non-template candidates
12178       // normally.
12179       for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12180                                  IEnd = OvlExpr->decls_end();
12181            I != IEnd; ++I)
12182         if (FunctionDecl *Fun =
12183                 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12184           if (!functionHasPassObjectSizeParams(Fun))
12185             S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12186                                     /*TakingAddress=*/true);
12187       FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12188     }
12189   }
12190 
IsInvalidFormOfPointerToMemberFunction() const12191   bool IsInvalidFormOfPointerToMemberFunction() const {
12192     return TargetTypeIsNonStaticMemberFunction &&
12193       !OvlExprInfo.HasFormOfMemberPointer;
12194   }
12195 
ComplainIsInvalidFormOfPointerToMemberFunction() const12196   void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12197       // TODO: Should we condition this on whether any functions might
12198       // have matched, or is it more appropriate to do that in callers?
12199       // TODO: a fixit wouldn't hurt.
12200       S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12201         << TargetType << OvlExpr->getSourceRange();
12202   }
12203 
IsStaticMemberFunctionFromBoundPointer() const12204   bool IsStaticMemberFunctionFromBoundPointer() const {
12205     return StaticMemberFunctionFromBoundPointer;
12206   }
12207 
ComplainIsStaticMemberFunctionFromBoundPointer() const12208   void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12209     S.Diag(OvlExpr->getBeginLoc(),
12210            diag::err_invalid_form_pointer_member_function)
12211         << OvlExpr->getSourceRange();
12212   }
12213 
ComplainOfInvalidConversion() const12214   void ComplainOfInvalidConversion() const {
12215     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12216         << OvlExpr->getName() << TargetType;
12217   }
12218 
ComplainMultipleMatchesFound() const12219   void ComplainMultipleMatchesFound() const {
12220     assert(Matches.size() > 1);
12221     S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12222         << OvlExpr->getName() << OvlExpr->getSourceRange();
12223     S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12224                                 /*TakingAddress=*/true);
12225   }
12226 
hadMultipleCandidates() const12227   bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12228 
getNumMatches() const12229   int getNumMatches() const { return Matches.size(); }
12230 
getMatchingFunctionDecl() const12231   FunctionDecl* getMatchingFunctionDecl() const {
12232     if (Matches.size() != 1) return nullptr;
12233     return Matches[0].second;
12234   }
12235 
getMatchingFunctionAccessPair() const12236   const DeclAccessPair* getMatchingFunctionAccessPair() const {
12237     if (Matches.size() != 1) return nullptr;
12238     return &Matches[0].first;
12239   }
12240 };
12241 }
12242 
12243 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12244 /// an overloaded function (C++ [over.over]), where @p From is an
12245 /// expression with overloaded function type and @p ToType is the type
12246 /// we're trying to resolve to. For example:
12247 ///
12248 /// @code
12249 /// int f(double);
12250 /// int f(int);
12251 ///
12252 /// int (*pfd)(double) = f; // selects f(double)
12253 /// @endcode
12254 ///
12255 /// This routine returns the resulting FunctionDecl if it could be
12256 /// resolved, and NULL otherwise. When @p Complain is true, this
12257 /// routine will emit diagnostics if there is an error.
12258 FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)12259 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12260                                          QualType TargetType,
12261                                          bool Complain,
12262                                          DeclAccessPair &FoundResult,
12263                                          bool *pHadMultipleCandidates) {
12264   assert(AddressOfExpr->getType() == Context.OverloadTy);
12265 
12266   AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12267                                      Complain);
12268   int NumMatches = Resolver.getNumMatches();
12269   FunctionDecl *Fn = nullptr;
12270   bool ShouldComplain = Complain && !Resolver.hasComplained();
12271   if (NumMatches == 0 && ShouldComplain) {
12272     if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12273       Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12274     else
12275       Resolver.ComplainNoMatchesFound();
12276   }
12277   else if (NumMatches > 1 && ShouldComplain)
12278     Resolver.ComplainMultipleMatchesFound();
12279   else if (NumMatches == 1) {
12280     Fn = Resolver.getMatchingFunctionDecl();
12281     assert(Fn);
12282     if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12283       ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12284     FoundResult = *Resolver.getMatchingFunctionAccessPair();
12285     if (Complain) {
12286       if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12287         Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12288       else
12289         CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12290     }
12291   }
12292 
12293   if (pHadMultipleCandidates)
12294     *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12295   return Fn;
12296 }
12297 
12298 /// Given an expression that refers to an overloaded function, try to
12299 /// resolve that function to a single function that can have its address taken.
12300 /// This will modify `Pair` iff it returns non-null.
12301 ///
12302 /// This routine can only succeed if from all of the candidates in the overload
12303 /// set for SrcExpr that can have their addresses taken, there is one candidate
12304 /// that is more constrained than the rest.
12305 FunctionDecl *
resolveAddressOfSingleOverloadCandidate(Expr * E,DeclAccessPair & Pair)12306 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12307   OverloadExpr::FindResult R = OverloadExpr::find(E);
12308   OverloadExpr *Ovl = R.Expression;
12309   bool IsResultAmbiguous = false;
12310   FunctionDecl *Result = nullptr;
12311   DeclAccessPair DAP;
12312   SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12313 
12314   auto CheckMoreConstrained =
12315       [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12316         SmallVector<const Expr *, 1> AC1, AC2;
12317         FD1->getAssociatedConstraints(AC1);
12318         FD2->getAssociatedConstraints(AC2);
12319         bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12320         if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12321           return None;
12322         if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12323           return None;
12324         if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12325           return None;
12326         return AtLeastAsConstrained1;
12327       };
12328 
12329   // Don't use the AddressOfResolver because we're specifically looking for
12330   // cases where we have one overload candidate that lacks
12331   // enable_if/pass_object_size/...
12332   for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12333     auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12334     if (!FD)
12335       return nullptr;
12336 
12337     if (!checkAddressOfFunctionIsAvailable(FD))
12338       continue;
12339 
12340     // We have more than one result - see if it is more constrained than the
12341     // previous one.
12342     if (Result) {
12343       Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12344                                                                         Result);
12345       if (!MoreConstrainedThanPrevious) {
12346         IsResultAmbiguous = true;
12347         AmbiguousDecls.push_back(FD);
12348         continue;
12349       }
12350       if (!*MoreConstrainedThanPrevious)
12351         continue;
12352       // FD is more constrained - replace Result with it.
12353     }
12354     IsResultAmbiguous = false;
12355     DAP = I.getPair();
12356     Result = FD;
12357   }
12358 
12359   if (IsResultAmbiguous)
12360     return nullptr;
12361 
12362   if (Result) {
12363     SmallVector<const Expr *, 1> ResultAC;
12364     // We skipped over some ambiguous declarations which might be ambiguous with
12365     // the selected result.
12366     for (FunctionDecl *Skipped : AmbiguousDecls)
12367       if (!CheckMoreConstrained(Skipped, Result).hasValue())
12368         return nullptr;
12369     Pair = DAP;
12370   }
12371   return Result;
12372 }
12373 
12374 /// Given an overloaded function, tries to turn it into a non-overloaded
12375 /// function reference using resolveAddressOfSingleOverloadCandidate. This
12376 /// will perform access checks, diagnose the use of the resultant decl, and, if
12377 /// requested, potentially perform a function-to-pointer decay.
12378 ///
12379 /// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12380 /// Otherwise, returns true. This may emit diagnostics and return true.
resolveAndFixAddressOfSingleOverloadCandidate(ExprResult & SrcExpr,bool DoFunctionPointerConverion)12381 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12382     ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12383   Expr *E = SrcExpr.get();
12384   assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
12385 
12386   DeclAccessPair DAP;
12387   FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12388   if (!Found || Found->isCPUDispatchMultiVersion() ||
12389       Found->isCPUSpecificMultiVersion())
12390     return false;
12391 
12392   // Emitting multiple diagnostics for a function that is both inaccessible and
12393   // unavailable is consistent with our behavior elsewhere. So, always check
12394   // for both.
12395   DiagnoseUseOfDecl(Found, E->getExprLoc());
12396   CheckAddressOfMemberAccess(E, DAP);
12397   Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12398   if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12399     SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12400   else
12401     SrcExpr = Fixed;
12402   return true;
12403 }
12404 
12405 /// Given an expression that refers to an overloaded function, try to
12406 /// resolve that overloaded function expression down to a single function.
12407 ///
12408 /// This routine can only resolve template-ids that refer to a single function
12409 /// template, where that template-id refers to a single template whose template
12410 /// arguments are either provided by the template-id or have defaults,
12411 /// as described in C++0x [temp.arg.explicit]p3.
12412 ///
12413 /// If no template-ids are found, no diagnostics are emitted and NULL is
12414 /// returned.
12415 FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)12416 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12417                                                   bool Complain,
12418                                                   DeclAccessPair *FoundResult) {
12419   // C++ [over.over]p1:
12420   //   [...] [Note: any redundant set of parentheses surrounding the
12421   //   overloaded function name is ignored (5.1). ]
12422   // C++ [over.over]p1:
12423   //   [...] The overloaded function name can be preceded by the &
12424   //   operator.
12425 
12426   // If we didn't actually find any template-ids, we're done.
12427   if (!ovl->hasExplicitTemplateArgs())
12428     return nullptr;
12429 
12430   TemplateArgumentListInfo ExplicitTemplateArgs;
12431   ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12432   TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12433 
12434   // Look through all of the overloaded functions, searching for one
12435   // whose type matches exactly.
12436   FunctionDecl *Matched = nullptr;
12437   for (UnresolvedSetIterator I = ovl->decls_begin(),
12438          E = ovl->decls_end(); I != E; ++I) {
12439     // C++0x [temp.arg.explicit]p3:
12440     //   [...] In contexts where deduction is done and fails, or in contexts
12441     //   where deduction is not done, if a template argument list is
12442     //   specified and it, along with any default template arguments,
12443     //   identifies a single function template specialization, then the
12444     //   template-id is an lvalue for the function template specialization.
12445     FunctionTemplateDecl *FunctionTemplate
12446       = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12447 
12448     // C++ [over.over]p2:
12449     //   If the name is a function template, template argument deduction is
12450     //   done (14.8.2.2), and if the argument deduction succeeds, the
12451     //   resulting template argument list is used to generate a single
12452     //   function template specialization, which is added to the set of
12453     //   overloaded functions considered.
12454     FunctionDecl *Specialization = nullptr;
12455     TemplateDeductionInfo Info(FailedCandidates.getLocation());
12456     if (TemplateDeductionResult Result
12457           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12458                                     Specialization, Info,
12459                                     /*IsAddressOfFunction*/true)) {
12460       // Make a note of the failed deduction for diagnostics.
12461       // TODO: Actually use the failed-deduction info?
12462       FailedCandidates.addCandidate()
12463           .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12464                MakeDeductionFailureInfo(Context, Result, Info));
12465       continue;
12466     }
12467 
12468     assert(Specialization && "no specialization and no error?");
12469 
12470     // Multiple matches; we can't resolve to a single declaration.
12471     if (Matched) {
12472       if (Complain) {
12473         Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12474           << ovl->getName();
12475         NoteAllOverloadCandidates(ovl);
12476       }
12477       return nullptr;
12478     }
12479 
12480     Matched = Specialization;
12481     if (FoundResult) *FoundResult = I.getPair();
12482   }
12483 
12484   if (Matched &&
12485       completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12486     return nullptr;
12487 
12488   return Matched;
12489 }
12490 
12491 // Resolve and fix an overloaded expression that can be resolved
12492 // because it identifies a single function template specialization.
12493 //
12494 // Last three arguments should only be supplied if Complain = true
12495 //
12496 // Return true if it was logically possible to so resolve the
12497 // expression, regardless of whether or not it succeeded.  Always
12498 // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,SourceRange OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)12499 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12500                       ExprResult &SrcExpr, bool doFunctionPointerConverion,
12501                       bool complain, SourceRange OpRangeForComplaining,
12502                                            QualType DestTypeForComplaining,
12503                                             unsigned DiagIDForComplaining) {
12504   assert(SrcExpr.get()->getType() == Context.OverloadTy);
12505 
12506   OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12507 
12508   DeclAccessPair found;
12509   ExprResult SingleFunctionExpression;
12510   if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12511                            ovl.Expression, /*complain*/ false, &found)) {
12512     if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12513       SrcExpr = ExprError();
12514       return true;
12515     }
12516 
12517     // It is only correct to resolve to an instance method if we're
12518     // resolving a form that's permitted to be a pointer to member.
12519     // Otherwise we'll end up making a bound member expression, which
12520     // is illegal in all the contexts we resolve like this.
12521     if (!ovl.HasFormOfMemberPointer &&
12522         isa<CXXMethodDecl>(fn) &&
12523         cast<CXXMethodDecl>(fn)->isInstance()) {
12524       if (!complain) return false;
12525 
12526       Diag(ovl.Expression->getExprLoc(),
12527            diag::err_bound_member_function)
12528         << 0 << ovl.Expression->getSourceRange();
12529 
12530       // TODO: I believe we only end up here if there's a mix of
12531       // static and non-static candidates (otherwise the expression
12532       // would have 'bound member' type, not 'overload' type).
12533       // Ideally we would note which candidate was chosen and why
12534       // the static candidates were rejected.
12535       SrcExpr = ExprError();
12536       return true;
12537     }
12538 
12539     // Fix the expression to refer to 'fn'.
12540     SingleFunctionExpression =
12541         FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12542 
12543     // If desired, do function-to-pointer decay.
12544     if (doFunctionPointerConverion) {
12545       SingleFunctionExpression =
12546         DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12547       if (SingleFunctionExpression.isInvalid()) {
12548         SrcExpr = ExprError();
12549         return true;
12550       }
12551     }
12552   }
12553 
12554   if (!SingleFunctionExpression.isUsable()) {
12555     if (complain) {
12556       Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12557         << ovl.Expression->getName()
12558         << DestTypeForComplaining
12559         << OpRangeForComplaining
12560         << ovl.Expression->getQualifierLoc().getSourceRange();
12561       NoteAllOverloadCandidates(SrcExpr.get());
12562 
12563       SrcExpr = ExprError();
12564       return true;
12565     }
12566 
12567     return false;
12568   }
12569 
12570   SrcExpr = SingleFunctionExpression;
12571   return true;
12572 }
12573 
12574 /// Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)12575 static void AddOverloadedCallCandidate(Sema &S,
12576                                        DeclAccessPair FoundDecl,
12577                                  TemplateArgumentListInfo *ExplicitTemplateArgs,
12578                                        ArrayRef<Expr *> Args,
12579                                        OverloadCandidateSet &CandidateSet,
12580                                        bool PartialOverloading,
12581                                        bool KnownValid) {
12582   NamedDecl *Callee = FoundDecl.getDecl();
12583   if (isa<UsingShadowDecl>(Callee))
12584     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12585 
12586   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12587     if (ExplicitTemplateArgs) {
12588       assert(!KnownValid && "Explicit template arguments?");
12589       return;
12590     }
12591     // Prevent ill-formed function decls to be added as overload candidates.
12592     if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12593       return;
12594 
12595     S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12596                            /*SuppressUserConversions=*/false,
12597                            PartialOverloading);
12598     return;
12599   }
12600 
12601   if (FunctionTemplateDecl *FuncTemplate
12602       = dyn_cast<FunctionTemplateDecl>(Callee)) {
12603     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12604                                    ExplicitTemplateArgs, Args, CandidateSet,
12605                                    /*SuppressUserConversions=*/false,
12606                                    PartialOverloading);
12607     return;
12608   }
12609 
12610   assert(!KnownValid && "unhandled case in overloaded call candidate");
12611 }
12612 
12613 /// Add the overload candidates named by callee and/or found by argument
12614 /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)12615 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12616                                        ArrayRef<Expr *> Args,
12617                                        OverloadCandidateSet &CandidateSet,
12618                                        bool PartialOverloading) {
12619 
12620 #ifndef NDEBUG
12621   // Verify that ArgumentDependentLookup is consistent with the rules
12622   // in C++0x [basic.lookup.argdep]p3:
12623   //
12624   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
12625   //   and let Y be the lookup set produced by argument dependent
12626   //   lookup (defined as follows). If X contains
12627   //
12628   //     -- a declaration of a class member, or
12629   //
12630   //     -- a block-scope function declaration that is not a
12631   //        using-declaration, or
12632   //
12633   //     -- a declaration that is neither a function or a function
12634   //        template
12635   //
12636   //   then Y is empty.
12637 
12638   if (ULE->requiresADL()) {
12639     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12640            E = ULE->decls_end(); I != E; ++I) {
12641       assert(!(*I)->getDeclContext()->isRecord());
12642       assert(isa<UsingShadowDecl>(*I) ||
12643              !(*I)->getDeclContext()->isFunctionOrMethod());
12644       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
12645     }
12646   }
12647 #endif
12648 
12649   // It would be nice to avoid this copy.
12650   TemplateArgumentListInfo TABuffer;
12651   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12652   if (ULE->hasExplicitTemplateArgs()) {
12653     ULE->copyTemplateArgumentsInto(TABuffer);
12654     ExplicitTemplateArgs = &TABuffer;
12655   }
12656 
12657   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12658          E = ULE->decls_end(); I != E; ++I)
12659     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12660                                CandidateSet, PartialOverloading,
12661                                /*KnownValid*/ true);
12662 
12663   if (ULE->requiresADL())
12664     AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12665                                          Args, ExplicitTemplateArgs,
12666                                          CandidateSet, PartialOverloading);
12667 }
12668 
12669 /// Add the call candidates from the given set of lookup results to the given
12670 /// overload set. Non-function lookup results are ignored.
AddOverloadedCallCandidates(LookupResult & R,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)12671 void Sema::AddOverloadedCallCandidates(
12672     LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
12673     ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) {
12674   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12675     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12676                                CandidateSet, false, /*KnownValid*/ false);
12677 }
12678 
12679 /// Determine whether a declaration with the specified name could be moved into
12680 /// a different namespace.
canBeDeclaredInNamespace(const DeclarationName & Name)12681 static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12682   switch (Name.getCXXOverloadedOperator()) {
12683   case OO_New: case OO_Array_New:
12684   case OO_Delete: case OO_Array_Delete:
12685     return false;
12686 
12687   default:
12688     return true;
12689   }
12690 }
12691 
12692 /// Attempt to recover from an ill-formed use of a non-dependent name in a
12693 /// template, where the non-dependent name was declared after the template
12694 /// was defined. This is common in code written for a compilers which do not
12695 /// correctly implement two-stage name lookup.
12696 ///
12697 /// Returns true if a viable candidate was found and a diagnostic was issued.
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,OverloadCandidateSet::CandidateSetKind CSK,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,CXXRecordDecl ** FoundInClass=nullptr)12698 static bool DiagnoseTwoPhaseLookup(
12699     Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS,
12700     LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK,
12701     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
12702     CXXRecordDecl **FoundInClass = nullptr) {
12703   if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12704     return false;
12705 
12706   for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12707     if (DC->isTransparentContext())
12708       continue;
12709 
12710     SemaRef.LookupQualifiedName(R, DC);
12711 
12712     if (!R.empty()) {
12713       R.suppressDiagnostics();
12714 
12715       OverloadCandidateSet Candidates(FnLoc, CSK);
12716       SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args,
12717                                           Candidates);
12718 
12719       OverloadCandidateSet::iterator Best;
12720       OverloadingResult OR =
12721           Candidates.BestViableFunction(SemaRef, FnLoc, Best);
12722 
12723       if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
12724         // We either found non-function declarations or a best viable function
12725         // at class scope. A class-scope lookup result disables ADL. Don't
12726         // look past this, but let the caller know that we found something that
12727         // either is, or might be, usable in this class.
12728         if (FoundInClass) {
12729           *FoundInClass = RD;
12730           if (OR == OR_Success) {
12731             R.clear();
12732             R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
12733             R.resolveKind();
12734           }
12735         }
12736         return false;
12737       }
12738 
12739       if (OR != OR_Success) {
12740         // There wasn't a unique best function or function template.
12741         return false;
12742       }
12743 
12744       // Find the namespaces where ADL would have looked, and suggest
12745       // declaring the function there instead.
12746       Sema::AssociatedNamespaceSet AssociatedNamespaces;
12747       Sema::AssociatedClassSet AssociatedClasses;
12748       SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12749                                                  AssociatedNamespaces,
12750                                                  AssociatedClasses);
12751       Sema::AssociatedNamespaceSet SuggestedNamespaces;
12752       if (canBeDeclaredInNamespace(R.getLookupName())) {
12753         DeclContext *Std = SemaRef.getStdNamespace();
12754         for (Sema::AssociatedNamespaceSet::iterator
12755                it = AssociatedNamespaces.begin(),
12756                end = AssociatedNamespaces.end(); it != end; ++it) {
12757           // Never suggest declaring a function within namespace 'std'.
12758           if (Std && Std->Encloses(*it))
12759             continue;
12760 
12761           // Never suggest declaring a function within a namespace with a
12762           // reserved name, like __gnu_cxx.
12763           NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12764           if (NS &&
12765               NS->getQualifiedNameAsString().find("__") != std::string::npos)
12766             continue;
12767 
12768           SuggestedNamespaces.insert(*it);
12769         }
12770       }
12771 
12772       SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12773         << R.getLookupName();
12774       if (SuggestedNamespaces.empty()) {
12775         SemaRef.Diag(Best->Function->getLocation(),
12776                      diag::note_not_found_by_two_phase_lookup)
12777           << R.getLookupName() << 0;
12778       } else if (SuggestedNamespaces.size() == 1) {
12779         SemaRef.Diag(Best->Function->getLocation(),
12780                      diag::note_not_found_by_two_phase_lookup)
12781           << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12782       } else {
12783         // FIXME: It would be useful to list the associated namespaces here,
12784         // but the diagnostics infrastructure doesn't provide a way to produce
12785         // a localized representation of a list of items.
12786         SemaRef.Diag(Best->Function->getLocation(),
12787                      diag::note_not_found_by_two_phase_lookup)
12788           << R.getLookupName() << 2;
12789       }
12790 
12791       // Try to recover by calling this function.
12792       return true;
12793     }
12794 
12795     R.clear();
12796   }
12797 
12798   return false;
12799 }
12800 
12801 /// Attempt to recover from ill-formed use of a non-dependent operator in a
12802 /// template, where the non-dependent operator was declared after the template
12803 /// was defined.
12804 ///
12805 /// Returns true if a viable candidate was found and a diagnostic was issued.
12806 static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args)12807 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12808                                SourceLocation OpLoc,
12809                                ArrayRef<Expr *> Args) {
12810   DeclarationName OpName =
12811     SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12812   LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12813   return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12814                                 OverloadCandidateSet::CSK_Operator,
12815                                 /*ExplicitTemplateArgs=*/nullptr, Args);
12816 }
12817 
12818 namespace {
12819 class BuildRecoveryCallExprRAII {
12820   Sema &SemaRef;
12821 public:
BuildRecoveryCallExprRAII(Sema & S)12822   BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12823     assert(SemaRef.IsBuildingRecoveryCallExpr == false);
12824     SemaRef.IsBuildingRecoveryCallExpr = true;
12825   }
12826 
~BuildRecoveryCallExprRAII()12827   ~BuildRecoveryCallExprRAII() {
12828     SemaRef.IsBuildingRecoveryCallExpr = false;
12829   }
12830 };
12831 
12832 }
12833 
12834 /// Attempts to recover from a call where no functions were found.
12835 ///
12836 /// This function will do one of three things:
12837 ///  * Diagnose, recover, and return a recovery expression.
12838 ///  * Diagnose, fail to recover, and return ExprError().
12839 ///  * Do not diagnose, do not recover, and return ExprResult(). The caller is
12840 ///    expected to diagnose as appropriate.
12841 static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)12842 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12843                       UnresolvedLookupExpr *ULE,
12844                       SourceLocation LParenLoc,
12845                       MutableArrayRef<Expr *> Args,
12846                       SourceLocation RParenLoc,
12847                       bool EmptyLookup, bool AllowTypoCorrection) {
12848   // Do not try to recover if it is already building a recovery call.
12849   // This stops infinite loops for template instantiations like
12850   //
12851   // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12852   // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12853   if (SemaRef.IsBuildingRecoveryCallExpr)
12854     return ExprResult();
12855   BuildRecoveryCallExprRAII RCE(SemaRef);
12856 
12857   CXXScopeSpec SS;
12858   SS.Adopt(ULE->getQualifierLoc());
12859   SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12860 
12861   TemplateArgumentListInfo TABuffer;
12862   TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12863   if (ULE->hasExplicitTemplateArgs()) {
12864     ULE->copyTemplateArgumentsInto(TABuffer);
12865     ExplicitTemplateArgs = &TABuffer;
12866   }
12867 
12868   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12869                  Sema::LookupOrdinaryName);
12870   CXXRecordDecl *FoundInClass = nullptr;
12871   if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
12872                              OverloadCandidateSet::CSK_Normal,
12873                              ExplicitTemplateArgs, Args, &FoundInClass)) {
12874     // OK, diagnosed a two-phase lookup issue.
12875   } else if (EmptyLookup) {
12876     // Try to recover from an empty lookup with typo correction.
12877     R.clear();
12878     NoTypoCorrectionCCC NoTypoValidator{};
12879     FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12880                                                 ExplicitTemplateArgs != nullptr,
12881                                                 dyn_cast<MemberExpr>(Fn));
12882     CorrectionCandidateCallback &Validator =
12883         AllowTypoCorrection
12884             ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12885             : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12886     if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12887                                     Args))
12888       return ExprError();
12889   } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) {
12890     // We found a usable declaration of the name in a dependent base of some
12891     // enclosing class.
12892     // FIXME: We should also explain why the candidates found by name lookup
12893     // were not viable.
12894     if (SemaRef.DiagnoseDependentMemberLookup(R))
12895       return ExprError();
12896   } else {
12897     // We had viable candidates and couldn't recover; let the caller diagnose
12898     // this.
12899     return ExprResult();
12900   }
12901 
12902   // If we get here, we should have issued a diagnostic and formed a recovery
12903   // lookup result.
12904   assert(!R.empty() && "lookup results empty despite recovery");
12905 
12906   // If recovery created an ambiguity, just bail out.
12907   if (R.isAmbiguous()) {
12908     R.suppressDiagnostics();
12909     return ExprError();
12910   }
12911 
12912   // Build an implicit member call if appropriate.  Just drop the
12913   // casts and such from the call, we don't really care.
12914   ExprResult NewFn = ExprError();
12915   if ((*R.begin())->isCXXClassMember())
12916     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12917                                                     ExplicitTemplateArgs, S);
12918   else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12919     NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12920                                         ExplicitTemplateArgs);
12921   else
12922     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12923 
12924   if (NewFn.isInvalid())
12925     return ExprError();
12926 
12927   // This shouldn't cause an infinite loop because we're giving it
12928   // an expression with viable lookup results, which should never
12929   // end up here.
12930   return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12931                                MultiExprArg(Args.data(), Args.size()),
12932                                RParenLoc);
12933 }
12934 
12935 /// Constructs and populates an OverloadedCandidateSet from
12936 /// the given function.
12937 /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,MultiExprArg Args,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)12938 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12939                                   UnresolvedLookupExpr *ULE,
12940                                   MultiExprArg Args,
12941                                   SourceLocation RParenLoc,
12942                                   OverloadCandidateSet *CandidateSet,
12943                                   ExprResult *Result) {
12944 #ifndef NDEBUG
12945   if (ULE->requiresADL()) {
12946     // To do ADL, we must have found an unqualified name.
12947     assert(!ULE->getQualifier() && "qualified name with ADL");
12948 
12949     // We don't perform ADL for implicit declarations of builtins.
12950     // Verify that this was correctly set up.
12951     FunctionDecl *F;
12952     if (ULE->decls_begin() != ULE->decls_end() &&
12953         ULE->decls_begin() + 1 == ULE->decls_end() &&
12954         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12955         F->getBuiltinID() && F->isImplicit())
12956       llvm_unreachable("performing ADL for builtin");
12957 
12958     // We don't perform ADL in C.
12959     assert(getLangOpts().CPlusPlus && "ADL enabled in C");
12960   }
12961 #endif
12962 
12963   UnbridgedCastsSet UnbridgedCasts;
12964   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12965     *Result = ExprError();
12966     return true;
12967   }
12968 
12969   // Add the functions denoted by the callee to the set of candidate
12970   // functions, including those from argument-dependent lookup.
12971   AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12972 
12973   if (getLangOpts().MSVCCompat &&
12974       CurContext->isDependentContext() && !isSFINAEContext() &&
12975       (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12976 
12977     OverloadCandidateSet::iterator Best;
12978     if (CandidateSet->empty() ||
12979         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12980             OR_No_Viable_Function) {
12981       // In Microsoft mode, if we are inside a template class member function
12982       // then create a type dependent CallExpr. The goal is to postpone name
12983       // lookup to instantiation time to be able to search into type dependent
12984       // base classes.
12985       CallExpr *CE =
12986           CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_RValue,
12987                            RParenLoc, CurFPFeatureOverrides());
12988       CE->markDependentForPostponedNameLookup();
12989       *Result = CE;
12990       return true;
12991     }
12992   }
12993 
12994   if (CandidateSet->empty())
12995     return false;
12996 
12997   UnbridgedCasts.restore();
12998   return false;
12999 }
13000 
13001 // Guess at what the return type for an unresolvable overload should be.
chooseRecoveryType(OverloadCandidateSet & CS,OverloadCandidateSet::iterator * Best)13002 static QualType chooseRecoveryType(OverloadCandidateSet &CS,
13003                                    OverloadCandidateSet::iterator *Best) {
13004   llvm::Optional<QualType> Result;
13005   // Adjust Type after seeing a candidate.
13006   auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
13007     if (!Candidate.Function)
13008       return;
13009     if (Candidate.Function->isInvalidDecl())
13010       return;
13011     QualType T = Candidate.Function->getReturnType();
13012     if (T.isNull())
13013       return;
13014     if (!Result)
13015       Result = T;
13016     else if (Result != T)
13017       Result = QualType();
13018   };
13019 
13020   // Look for an unambiguous type from a progressively larger subset.
13021   // e.g. if types disagree, but all *viable* overloads return int, choose int.
13022   //
13023   // First, consider only the best candidate.
13024   if (Best && *Best != CS.end())
13025     ConsiderCandidate(**Best);
13026   // Next, consider only viable candidates.
13027   if (!Result)
13028     for (const auto &C : CS)
13029       if (C.Viable)
13030         ConsiderCandidate(C);
13031   // Finally, consider all candidates.
13032   if (!Result)
13033     for (const auto &C : CS)
13034       ConsiderCandidate(C);
13035 
13036   if (!Result)
13037     return QualType();
13038   auto Value = Result.getValue();
13039   if (Value.isNull() || Value->isUndeducedType())
13040     return QualType();
13041   return Value;
13042 }
13043 
13044 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
13045 /// the completed call expression. If overload resolution fails, emits
13046 /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)13047 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
13048                                            UnresolvedLookupExpr *ULE,
13049                                            SourceLocation LParenLoc,
13050                                            MultiExprArg Args,
13051                                            SourceLocation RParenLoc,
13052                                            Expr *ExecConfig,
13053                                            OverloadCandidateSet *CandidateSet,
13054                                            OverloadCandidateSet::iterator *Best,
13055                                            OverloadingResult OverloadResult,
13056                                            bool AllowTypoCorrection) {
13057   switch (OverloadResult) {
13058   case OR_Success: {
13059     FunctionDecl *FDecl = (*Best)->Function;
13060     SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13061     if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13062       return ExprError();
13063     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13064     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13065                                          ExecConfig, /*IsExecConfig=*/false,
13066                                          (*Best)->IsADLCandidate);
13067   }
13068 
13069   case OR_No_Viable_Function: {
13070     // Try to recover by looking for viable functions which the user might
13071     // have meant to call.
13072     ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13073                                                 Args, RParenLoc,
13074                                                 CandidateSet->empty(),
13075                                                 AllowTypoCorrection);
13076     if (Recovery.isInvalid() || Recovery.isUsable())
13077       return Recovery;
13078 
13079     // If the user passes in a function that we can't take the address of, we
13080     // generally end up emitting really bad error messages. Here, we attempt to
13081     // emit better ones.
13082     for (const Expr *Arg : Args) {
13083       if (!Arg->getType()->isFunctionType())
13084         continue;
13085       if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13086         auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13087         if (FD &&
13088             !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13089                                                        Arg->getExprLoc()))
13090           return ExprError();
13091       }
13092     }
13093 
13094     CandidateSet->NoteCandidates(
13095         PartialDiagnosticAt(
13096             Fn->getBeginLoc(),
13097             SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13098                 << ULE->getName() << Fn->getSourceRange()),
13099         SemaRef, OCD_AllCandidates, Args);
13100     break;
13101   }
13102 
13103   case OR_Ambiguous:
13104     CandidateSet->NoteCandidates(
13105         PartialDiagnosticAt(Fn->getBeginLoc(),
13106                             SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13107                                 << ULE->getName() << Fn->getSourceRange()),
13108         SemaRef, OCD_AmbiguousCandidates, Args);
13109     break;
13110 
13111   case OR_Deleted: {
13112     CandidateSet->NoteCandidates(
13113         PartialDiagnosticAt(Fn->getBeginLoc(),
13114                             SemaRef.PDiag(diag::err_ovl_deleted_call)
13115                                 << ULE->getName() << Fn->getSourceRange()),
13116         SemaRef, OCD_AllCandidates, Args);
13117 
13118     // We emitted an error for the unavailable/deleted function call but keep
13119     // the call in the AST.
13120     FunctionDecl *FDecl = (*Best)->Function;
13121     Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13122     return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13123                                          ExecConfig, /*IsExecConfig=*/false,
13124                                          (*Best)->IsADLCandidate);
13125   }
13126   }
13127 
13128   // Overload resolution failed, try to recover.
13129   SmallVector<Expr *, 8> SubExprs = {Fn};
13130   SubExprs.append(Args.begin(), Args.end());
13131   return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13132                                     chooseRecoveryType(*CandidateSet, Best));
13133 }
13134 
markUnaddressableCandidatesUnviable(Sema & S,OverloadCandidateSet & CS)13135 static void markUnaddressableCandidatesUnviable(Sema &S,
13136                                                 OverloadCandidateSet &CS) {
13137   for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13138     if (I->Viable &&
13139         !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13140       I->Viable = false;
13141       I->FailureKind = ovl_fail_addr_not_available;
13142     }
13143   }
13144 }
13145 
13146 /// BuildOverloadedCallExpr - Given the call expression that calls Fn
13147 /// (which eventually refers to the declaration Func) and the call
13148 /// arguments Args/NumArgs, attempt to resolve the function call down
13149 /// to a specific function. If overload resolution succeeds, returns
13150 /// the call expression produced by overload resolution.
13151 /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection,bool CalleesAddressIsTaken)13152 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13153                                          UnresolvedLookupExpr *ULE,
13154                                          SourceLocation LParenLoc,
13155                                          MultiExprArg Args,
13156                                          SourceLocation RParenLoc,
13157                                          Expr *ExecConfig,
13158                                          bool AllowTypoCorrection,
13159                                          bool CalleesAddressIsTaken) {
13160   OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13161                                     OverloadCandidateSet::CSK_Normal);
13162   ExprResult result;
13163 
13164   if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13165                              &result))
13166     return result;
13167 
13168   // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13169   // functions that aren't addressible are considered unviable.
13170   if (CalleesAddressIsTaken)
13171     markUnaddressableCandidatesUnviable(*this, CandidateSet);
13172 
13173   OverloadCandidateSet::iterator Best;
13174   OverloadingResult OverloadResult =
13175       CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13176 
13177   return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13178                                   ExecConfig, &CandidateSet, &Best,
13179                                   OverloadResult, AllowTypoCorrection);
13180 }
13181 
IsOverloaded(const UnresolvedSetImpl & Functions)13182 static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13183   return Functions.size() > 1 ||
13184          (Functions.size() == 1 &&
13185           isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13186 }
13187 
CreateUnresolvedLookupExpr(CXXRecordDecl * NamingClass,NestedNameSpecifierLoc NNSLoc,DeclarationNameInfo DNI,const UnresolvedSetImpl & Fns,bool PerformADL)13188 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13189                                             NestedNameSpecifierLoc NNSLoc,
13190                                             DeclarationNameInfo DNI,
13191                                             const UnresolvedSetImpl &Fns,
13192                                             bool PerformADL) {
13193   return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13194                                       PerformADL, IsOverloaded(Fns),
13195                                       Fns.begin(), Fns.end());
13196 }
13197 
13198 /// Create a unary operation that may resolve to an overloaded
13199 /// operator.
13200 ///
13201 /// \param OpLoc The location of the operator itself (e.g., '*').
13202 ///
13203 /// \param Opc The UnaryOperatorKind that describes this operator.
13204 ///
13205 /// \param Fns The set of non-member functions that will be
13206 /// considered by overload resolution. The caller needs to build this
13207 /// set based on the context using, e.g.,
13208 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13209 /// set should not contain any member functions; those will be added
13210 /// by CreateOverloadedUnaryOp().
13211 ///
13212 /// \param Input The input argument.
13213 ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * Input,bool PerformADL)13214 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13215                               const UnresolvedSetImpl &Fns,
13216                               Expr *Input, bool PerformADL) {
13217   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13218   assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
13219   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13220   // TODO: provide better source location info.
13221   DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13222 
13223   if (checkPlaceholderForOverload(*this, Input))
13224     return ExprError();
13225 
13226   Expr *Args[2] = { Input, nullptr };
13227   unsigned NumArgs = 1;
13228 
13229   // For post-increment and post-decrement, add the implicit '0' as
13230   // the second argument, so that we know this is a post-increment or
13231   // post-decrement.
13232   if (Opc == UO_PostInc || Opc == UO_PostDec) {
13233     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13234     Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13235                                      SourceLocation());
13236     NumArgs = 2;
13237   }
13238 
13239   ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13240 
13241   if (Input->isTypeDependent()) {
13242     if (Fns.empty())
13243       return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13244                                    VK_RValue, OK_Ordinary, OpLoc, false,
13245                                    CurFPFeatureOverrides());
13246 
13247     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13248     ExprResult Fn = CreateUnresolvedLookupExpr(
13249         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13250     if (Fn.isInvalid())
13251       return ExprError();
13252     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13253                                        Context.DependentTy, VK_RValue, OpLoc,
13254                                        CurFPFeatureOverrides());
13255   }
13256 
13257   // Build an empty overload set.
13258   OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13259 
13260   // Add the candidates from the given function set.
13261   AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13262 
13263   // Add operator candidates that are member functions.
13264   AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13265 
13266   // Add candidates from ADL.
13267   if (PerformADL) {
13268     AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13269                                          /*ExplicitTemplateArgs*/nullptr,
13270                                          CandidateSet);
13271   }
13272 
13273   // Add builtin operator candidates.
13274   AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13275 
13276   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13277 
13278   // Perform overload resolution.
13279   OverloadCandidateSet::iterator Best;
13280   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13281   case OR_Success: {
13282     // We found a built-in operator or an overloaded operator.
13283     FunctionDecl *FnDecl = Best->Function;
13284 
13285     if (FnDecl) {
13286       Expr *Base = nullptr;
13287       // We matched an overloaded operator. Build a call to that
13288       // operator.
13289 
13290       // Convert the arguments.
13291       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13292         CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13293 
13294         ExprResult InputRes =
13295           PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13296                                               Best->FoundDecl, Method);
13297         if (InputRes.isInvalid())
13298           return ExprError();
13299         Base = Input = InputRes.get();
13300       } else {
13301         // Convert the arguments.
13302         ExprResult InputInit
13303           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13304                                                       Context,
13305                                                       FnDecl->getParamDecl(0)),
13306                                       SourceLocation(),
13307                                       Input);
13308         if (InputInit.isInvalid())
13309           return ExprError();
13310         Input = InputInit.get();
13311       }
13312 
13313       // Build the actual expression node.
13314       ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13315                                                 Base, HadMultipleCandidates,
13316                                                 OpLoc);
13317       if (FnExpr.isInvalid())
13318         return ExprError();
13319 
13320       // Determine the result type.
13321       QualType ResultTy = FnDecl->getReturnType();
13322       ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13323       ResultTy = ResultTy.getNonLValueExprType(Context);
13324 
13325       Args[0] = Input;
13326       CallExpr *TheCall = CXXOperatorCallExpr::Create(
13327           Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13328           CurFPFeatureOverrides(), Best->IsADLCandidate);
13329 
13330       if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13331         return ExprError();
13332 
13333       if (CheckFunctionCall(FnDecl, TheCall,
13334                             FnDecl->getType()->castAs<FunctionProtoType>()))
13335         return ExprError();
13336       return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13337     } else {
13338       // We matched a built-in operator. Convert the arguments, then
13339       // break out so that we will build the appropriate built-in
13340       // operator node.
13341       ExprResult InputRes = PerformImplicitConversion(
13342           Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13343           CCK_ForBuiltinOverloadedOp);
13344       if (InputRes.isInvalid())
13345         return ExprError();
13346       Input = InputRes.get();
13347       break;
13348     }
13349   }
13350 
13351   case OR_No_Viable_Function:
13352     // This is an erroneous use of an operator which can be overloaded by
13353     // a non-member function. Check for non-member operators which were
13354     // defined too late to be candidates.
13355     if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13356       // FIXME: Recover by calling the found function.
13357       return ExprError();
13358 
13359     // No viable function; fall through to handling this as a
13360     // built-in operator, which will produce an error message for us.
13361     break;
13362 
13363   case OR_Ambiguous:
13364     CandidateSet.NoteCandidates(
13365         PartialDiagnosticAt(OpLoc,
13366                             PDiag(diag::err_ovl_ambiguous_oper_unary)
13367                                 << UnaryOperator::getOpcodeStr(Opc)
13368                                 << Input->getType() << Input->getSourceRange()),
13369         *this, OCD_AmbiguousCandidates, ArgsArray,
13370         UnaryOperator::getOpcodeStr(Opc), OpLoc);
13371     return ExprError();
13372 
13373   case OR_Deleted:
13374     CandidateSet.NoteCandidates(
13375         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13376                                        << UnaryOperator::getOpcodeStr(Opc)
13377                                        << Input->getSourceRange()),
13378         *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13379         OpLoc);
13380     return ExprError();
13381   }
13382 
13383   // Either we found no viable overloaded operator or we matched a
13384   // built-in operator. In either case, fall through to trying to
13385   // build a built-in operation.
13386   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13387 }
13388 
13389 /// Perform lookup for an overloaded binary operator.
LookupOverloadedBinOp(OverloadCandidateSet & CandidateSet,OverloadedOperatorKind Op,const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,bool PerformADL)13390 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13391                                  OverloadedOperatorKind Op,
13392                                  const UnresolvedSetImpl &Fns,
13393                                  ArrayRef<Expr *> Args, bool PerformADL) {
13394   SourceLocation OpLoc = CandidateSet.getLocation();
13395 
13396   OverloadedOperatorKind ExtraOp =
13397       CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13398           ? getRewrittenOverloadedOperator(Op)
13399           : OO_None;
13400 
13401   // Add the candidates from the given function set. This also adds the
13402   // rewritten candidates using these functions if necessary.
13403   AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13404 
13405   // Add operator candidates that are member functions.
13406   AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13407   if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13408     AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13409                                 OverloadCandidateParamOrder::Reversed);
13410 
13411   // In C++20, also add any rewritten member candidates.
13412   if (ExtraOp) {
13413     AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13414     if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13415       AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13416                                   CandidateSet,
13417                                   OverloadCandidateParamOrder::Reversed);
13418   }
13419 
13420   // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13421   // performed for an assignment operator (nor for operator[] nor operator->,
13422   // which don't get here).
13423   if (Op != OO_Equal && PerformADL) {
13424     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13425     AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13426                                          /*ExplicitTemplateArgs*/ nullptr,
13427                                          CandidateSet);
13428     if (ExtraOp) {
13429       DeclarationName ExtraOpName =
13430           Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13431       AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13432                                            /*ExplicitTemplateArgs*/ nullptr,
13433                                            CandidateSet);
13434     }
13435   }
13436 
13437   // Add builtin operator candidates.
13438   //
13439   // FIXME: We don't add any rewritten candidates here. This is strictly
13440   // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13441   // resulting in our selecting a rewritten builtin candidate. For example:
13442   //
13443   //   enum class E { e };
13444   //   bool operator!=(E, E) requires false;
13445   //   bool k = E::e != E::e;
13446   //
13447   // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13448   // it seems unreasonable to consider rewritten builtin candidates. A core
13449   // issue has been filed proposing to removed this requirement.
13450   AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13451 }
13452 
13453 /// Create a binary operation that may resolve to an overloaded
13454 /// operator.
13455 ///
13456 /// \param OpLoc The location of the operator itself (e.g., '+').
13457 ///
13458 /// \param Opc The BinaryOperatorKind that describes this operator.
13459 ///
13460 /// \param Fns The set of non-member functions that will be
13461 /// considered by overload resolution. The caller needs to build this
13462 /// set based on the context using, e.g.,
13463 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13464 /// set should not contain any member functions; those will be added
13465 /// by CreateOverloadedBinOp().
13466 ///
13467 /// \param LHS Left-hand argument.
13468 /// \param RHS Right-hand argument.
13469 /// \param PerformADL Whether to consider operator candidates found by ADL.
13470 /// \param AllowRewrittenCandidates Whether to consider candidates found by
13471 ///        C++20 operator rewrites.
13472 /// \param DefaultedFn If we are synthesizing a defaulted operator function,
13473 ///        the function in question. Such a function is never a candidate in
13474 ///        our overload resolution. This also enables synthesizing a three-way
13475 ///        comparison from < and == as described in C++20 [class.spaceship]p1.
CreateOverloadedBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,bool PerformADL,bool AllowRewrittenCandidates,FunctionDecl * DefaultedFn)13476 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13477                                        BinaryOperatorKind Opc,
13478                                        const UnresolvedSetImpl &Fns, Expr *LHS,
13479                                        Expr *RHS, bool PerformADL,
13480                                        bool AllowRewrittenCandidates,
13481                                        FunctionDecl *DefaultedFn) {
13482   Expr *Args[2] = { LHS, RHS };
13483   LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13484 
13485   if (!getLangOpts().CPlusPlus20)
13486     AllowRewrittenCandidates = false;
13487 
13488   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13489 
13490   // If either side is type-dependent, create an appropriate dependent
13491   // expression.
13492   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13493     if (Fns.empty()) {
13494       // If there are no functions to store, just build a dependent
13495       // BinaryOperator or CompoundAssignment.
13496       if (BinaryOperator::isCompoundAssignmentOp(Opc))
13497         return CompoundAssignOperator::Create(
13498             Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13499             OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13500             Context.DependentTy);
13501       return BinaryOperator::Create(Context, Args[0], Args[1], Opc,
13502                                     Context.DependentTy, VK_RValue, OK_Ordinary,
13503                                     OpLoc, CurFPFeatureOverrides());
13504     }
13505 
13506     // FIXME: save results of ADL from here?
13507     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13508     // TODO: provide better source location info in DNLoc component.
13509     DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13510     DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13511     ExprResult Fn = CreateUnresolvedLookupExpr(
13512         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13513     if (Fn.isInvalid())
13514       return ExprError();
13515     return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13516                                        Context.DependentTy, VK_RValue, OpLoc,
13517                                        CurFPFeatureOverrides());
13518   }
13519 
13520   // Always do placeholder-like conversions on the RHS.
13521   if (checkPlaceholderForOverload(*this, Args[1]))
13522     return ExprError();
13523 
13524   // Do placeholder-like conversion on the LHS; note that we should
13525   // not get here with a PseudoObject LHS.
13526   assert(Args[0]->getObjectKind() != OK_ObjCProperty);
13527   if (checkPlaceholderForOverload(*this, Args[0]))
13528     return ExprError();
13529 
13530   // If this is the assignment operator, we only perform overload resolution
13531   // if the left-hand side is a class or enumeration type. This is actually
13532   // a hack. The standard requires that we do overload resolution between the
13533   // various built-in candidates, but as DR507 points out, this can lead to
13534   // problems. So we do it this way, which pretty much follows what GCC does.
13535   // Note that we go the traditional code path for compound assignment forms.
13536   if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13537     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13538 
13539   // If this is the .* operator, which is not overloadable, just
13540   // create a built-in binary operator.
13541   if (Opc == BO_PtrMemD)
13542     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13543 
13544   // Build the overload set.
13545   OverloadCandidateSet CandidateSet(
13546       OpLoc, OverloadCandidateSet::CSK_Operator,
13547       OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13548   if (DefaultedFn)
13549     CandidateSet.exclude(DefaultedFn);
13550   LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13551 
13552   bool HadMultipleCandidates = (CandidateSet.size() > 1);
13553 
13554   // Perform overload resolution.
13555   OverloadCandidateSet::iterator Best;
13556   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13557     case OR_Success: {
13558       // We found a built-in operator or an overloaded operator.
13559       FunctionDecl *FnDecl = Best->Function;
13560 
13561       bool IsReversed = Best->isReversed();
13562       if (IsReversed)
13563         std::swap(Args[0], Args[1]);
13564 
13565       if (FnDecl) {
13566         Expr *Base = nullptr;
13567         // We matched an overloaded operator. Build a call to that
13568         // operator.
13569 
13570         OverloadedOperatorKind ChosenOp =
13571             FnDecl->getDeclName().getCXXOverloadedOperator();
13572 
13573         // C++2a [over.match.oper]p9:
13574         //   If a rewritten operator== candidate is selected by overload
13575         //   resolution for an operator@, its return type shall be cv bool
13576         if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13577             !FnDecl->getReturnType()->isBooleanType()) {
13578           bool IsExtension =
13579               FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13580           Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13581                                   : diag::err_ovl_rewrite_equalequal_not_bool)
13582               << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13583               << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13584           Diag(FnDecl->getLocation(), diag::note_declared_at);
13585           if (!IsExtension)
13586             return ExprError();
13587         }
13588 
13589         if (AllowRewrittenCandidates && !IsReversed &&
13590             CandidateSet.getRewriteInfo().isReversible()) {
13591           // We could have reversed this operator, but didn't. Check if some
13592           // reversed form was a viable candidate, and if so, if it had a
13593           // better conversion for either parameter. If so, this call is
13594           // formally ambiguous, and allowing it is an extension.
13595           llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13596           for (OverloadCandidate &Cand : CandidateSet) {
13597             if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13598                 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13599               for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13600                 if (CompareImplicitConversionSequences(
13601                         *this, OpLoc, Cand.Conversions[ArgIdx],
13602                         Best->Conversions[ArgIdx]) ==
13603                     ImplicitConversionSequence::Better) {
13604                   AmbiguousWith.push_back(Cand.Function);
13605                   break;
13606                 }
13607               }
13608             }
13609           }
13610 
13611           if (!AmbiguousWith.empty()) {
13612             bool AmbiguousWithSelf =
13613                 AmbiguousWith.size() == 1 &&
13614                 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13615             Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13616                 << BinaryOperator::getOpcodeStr(Opc)
13617                 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13618                 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13619             if (AmbiguousWithSelf) {
13620               Diag(FnDecl->getLocation(),
13621                    diag::note_ovl_ambiguous_oper_binary_reversed_self);
13622             } else {
13623               Diag(FnDecl->getLocation(),
13624                    diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13625               for (auto *F : AmbiguousWith)
13626                 Diag(F->getLocation(),
13627                      diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13628             }
13629           }
13630         }
13631 
13632         // Convert the arguments.
13633         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13634           // Best->Access is only meaningful for class members.
13635           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13636 
13637           ExprResult Arg1 =
13638             PerformCopyInitialization(
13639               InitializedEntity::InitializeParameter(Context,
13640                                                      FnDecl->getParamDecl(0)),
13641               SourceLocation(), Args[1]);
13642           if (Arg1.isInvalid())
13643             return ExprError();
13644 
13645           ExprResult Arg0 =
13646             PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13647                                                 Best->FoundDecl, Method);
13648           if (Arg0.isInvalid())
13649             return ExprError();
13650           Base = Args[0] = Arg0.getAs<Expr>();
13651           Args[1] = RHS = Arg1.getAs<Expr>();
13652         } else {
13653           // Convert the arguments.
13654           ExprResult Arg0 = PerformCopyInitialization(
13655             InitializedEntity::InitializeParameter(Context,
13656                                                    FnDecl->getParamDecl(0)),
13657             SourceLocation(), Args[0]);
13658           if (Arg0.isInvalid())
13659             return ExprError();
13660 
13661           ExprResult Arg1 =
13662             PerformCopyInitialization(
13663               InitializedEntity::InitializeParameter(Context,
13664                                                      FnDecl->getParamDecl(1)),
13665               SourceLocation(), Args[1]);
13666           if (Arg1.isInvalid())
13667             return ExprError();
13668           Args[0] = LHS = Arg0.getAs<Expr>();
13669           Args[1] = RHS = Arg1.getAs<Expr>();
13670         }
13671 
13672         // Build the actual expression node.
13673         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13674                                                   Best->FoundDecl, Base,
13675                                                   HadMultipleCandidates, OpLoc);
13676         if (FnExpr.isInvalid())
13677           return ExprError();
13678 
13679         // Determine the result type.
13680         QualType ResultTy = FnDecl->getReturnType();
13681         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13682         ResultTy = ResultTy.getNonLValueExprType(Context);
13683 
13684         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13685             Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13686             CurFPFeatureOverrides(), Best->IsADLCandidate);
13687 
13688         if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13689                                 FnDecl))
13690           return ExprError();
13691 
13692         ArrayRef<const Expr *> ArgsArray(Args, 2);
13693         const Expr *ImplicitThis = nullptr;
13694         // Cut off the implicit 'this'.
13695         if (isa<CXXMethodDecl>(FnDecl)) {
13696           ImplicitThis = ArgsArray[0];
13697           ArgsArray = ArgsArray.slice(1);
13698         }
13699 
13700         // Check for a self move.
13701         if (Op == OO_Equal)
13702           DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13703 
13704         if (ImplicitThis) {
13705           QualType ThisType = Context.getPointerType(ImplicitThis->getType());
13706           QualType ThisTypeFromDecl = Context.getPointerType(
13707               cast<CXXMethodDecl>(FnDecl)->getThisObjectType());
13708 
13709           CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType,
13710                             ThisTypeFromDecl);
13711         }
13712 
13713         checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13714                   isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13715                   VariadicDoesNotApply);
13716 
13717         ExprResult R = MaybeBindToTemporary(TheCall);
13718         if (R.isInvalid())
13719           return ExprError();
13720 
13721         R = CheckForImmediateInvocation(R, FnDecl);
13722         if (R.isInvalid())
13723           return ExprError();
13724 
13725         // For a rewritten candidate, we've already reversed the arguments
13726         // if needed. Perform the rest of the rewrite now.
13727         if ((Best->RewriteKind & CRK_DifferentOperator) ||
13728             (Op == OO_Spaceship && IsReversed)) {
13729           if (Op == OO_ExclaimEqual) {
13730             assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
13731             R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13732           } else {
13733             assert(ChosenOp == OO_Spaceship && "unexpected operator name");
13734             llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13735             Expr *ZeroLiteral =
13736                 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13737 
13738             Sema::CodeSynthesisContext Ctx;
13739             Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13740             Ctx.Entity = FnDecl;
13741             pushCodeSynthesisContext(Ctx);
13742 
13743             R = CreateOverloadedBinOp(
13744                 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13745                 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13746                 /*AllowRewrittenCandidates=*/false);
13747 
13748             popCodeSynthesisContext();
13749           }
13750           if (R.isInvalid())
13751             return ExprError();
13752         } else {
13753           assert(ChosenOp == Op && "unexpected operator name");
13754         }
13755 
13756         // Make a note in the AST if we did any rewriting.
13757         if (Best->RewriteKind != CRK_None)
13758           R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13759 
13760         return R;
13761       } else {
13762         // We matched a built-in operator. Convert the arguments, then
13763         // break out so that we will build the appropriate built-in
13764         // operator node.
13765         ExprResult ArgsRes0 = PerformImplicitConversion(
13766             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13767             AA_Passing, CCK_ForBuiltinOverloadedOp);
13768         if (ArgsRes0.isInvalid())
13769           return ExprError();
13770         Args[0] = ArgsRes0.get();
13771 
13772         ExprResult ArgsRes1 = PerformImplicitConversion(
13773             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13774             AA_Passing, CCK_ForBuiltinOverloadedOp);
13775         if (ArgsRes1.isInvalid())
13776           return ExprError();
13777         Args[1] = ArgsRes1.get();
13778         break;
13779       }
13780     }
13781 
13782     case OR_No_Viable_Function: {
13783       // C++ [over.match.oper]p9:
13784       //   If the operator is the operator , [...] and there are no
13785       //   viable functions, then the operator is assumed to be the
13786       //   built-in operator and interpreted according to clause 5.
13787       if (Opc == BO_Comma)
13788         break;
13789 
13790       // When defaulting an 'operator<=>', we can try to synthesize a three-way
13791       // compare result using '==' and '<'.
13792       if (DefaultedFn && Opc == BO_Cmp) {
13793         ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13794                                                           Args[1], DefaultedFn);
13795         if (E.isInvalid() || E.isUsable())
13796           return E;
13797       }
13798 
13799       // For class as left operand for assignment or compound assignment
13800       // operator do not fall through to handling in built-in, but report that
13801       // no overloaded assignment operator found
13802       ExprResult Result = ExprError();
13803       StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13804       auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13805                                                    Args, OpLoc);
13806       if (Args[0]->getType()->isRecordType() &&
13807           Opc >= BO_Assign && Opc <= BO_OrAssign) {
13808         Diag(OpLoc,  diag::err_ovl_no_viable_oper)
13809              << BinaryOperator::getOpcodeStr(Opc)
13810              << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13811         if (Args[0]->getType()->isIncompleteType()) {
13812           Diag(OpLoc, diag::note_assign_lhs_incomplete)
13813             << Args[0]->getType()
13814             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13815         }
13816       } else {
13817         // This is an erroneous use of an operator which can be overloaded by
13818         // a non-member function. Check for non-member operators which were
13819         // defined too late to be candidates.
13820         if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13821           // FIXME: Recover by calling the found function.
13822           return ExprError();
13823 
13824         // No viable function; try to create a built-in operation, which will
13825         // produce an error. Then, show the non-viable candidates.
13826         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13827       }
13828       assert(Result.isInvalid() &&
13829              "C++ binary operator overloading is missing candidates!");
13830       CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13831       return Result;
13832     }
13833 
13834     case OR_Ambiguous:
13835       CandidateSet.NoteCandidates(
13836           PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13837                                          << BinaryOperator::getOpcodeStr(Opc)
13838                                          << Args[0]->getType()
13839                                          << Args[1]->getType()
13840                                          << Args[0]->getSourceRange()
13841                                          << Args[1]->getSourceRange()),
13842           *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13843           OpLoc);
13844       return ExprError();
13845 
13846     case OR_Deleted:
13847       if (isImplicitlyDeleted(Best->Function)) {
13848         FunctionDecl *DeletedFD = Best->Function;
13849         DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13850         if (DFK.isSpecialMember()) {
13851           Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13852             << Args[0]->getType() << DFK.asSpecialMember();
13853         } else {
13854           assert(DFK.isComparison());
13855           Diag(OpLoc, diag::err_ovl_deleted_comparison)
13856             << Args[0]->getType() << DeletedFD;
13857         }
13858 
13859         // The user probably meant to call this special member. Just
13860         // explain why it's deleted.
13861         NoteDeletedFunction(DeletedFD);
13862         return ExprError();
13863       }
13864       CandidateSet.NoteCandidates(
13865           PartialDiagnosticAt(
13866               OpLoc, PDiag(diag::err_ovl_deleted_oper)
13867                          << getOperatorSpelling(Best->Function->getDeclName()
13868                                                     .getCXXOverloadedOperator())
13869                          << Args[0]->getSourceRange()
13870                          << Args[1]->getSourceRange()),
13871           *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13872           OpLoc);
13873       return ExprError();
13874   }
13875 
13876   // We matched a built-in operator; build it.
13877   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13878 }
13879 
BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS,FunctionDecl * DefaultedFn)13880 ExprResult Sema::BuildSynthesizedThreeWayComparison(
13881     SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13882     FunctionDecl *DefaultedFn) {
13883   const ComparisonCategoryInfo *Info =
13884       Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13885   // If we're not producing a known comparison category type, we can't
13886   // synthesize a three-way comparison. Let the caller diagnose this.
13887   if (!Info)
13888     return ExprResult((Expr*)nullptr);
13889 
13890   // If we ever want to perform this synthesis more generally, we will need to
13891   // apply the temporary materialization conversion to the operands.
13892   assert(LHS->isGLValue() && RHS->isGLValue() &&
13893          "cannot use prvalue expressions more than once");
13894   Expr *OrigLHS = LHS;
13895   Expr *OrigRHS = RHS;
13896 
13897   // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13898   // each of them multiple times below.
13899   LHS = new (Context)
13900       OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13901                       LHS->getObjectKind(), LHS);
13902   RHS = new (Context)
13903       OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13904                       RHS->getObjectKind(), RHS);
13905 
13906   ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13907                                         DefaultedFn);
13908   if (Eq.isInvalid())
13909     return ExprError();
13910 
13911   ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13912                                           true, DefaultedFn);
13913   if (Less.isInvalid())
13914     return ExprError();
13915 
13916   ExprResult Greater;
13917   if (Info->isPartial()) {
13918     Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
13919                                     DefaultedFn);
13920     if (Greater.isInvalid())
13921       return ExprError();
13922   }
13923 
13924   // Form the list of comparisons we're going to perform.
13925   struct Comparison {
13926     ExprResult Cmp;
13927     ComparisonCategoryResult Result;
13928   } Comparisons[4] =
13929   { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
13930                           : ComparisonCategoryResult::Equivalent},
13931     {Less, ComparisonCategoryResult::Less},
13932     {Greater, ComparisonCategoryResult::Greater},
13933     {ExprResult(), ComparisonCategoryResult::Unordered},
13934   };
13935 
13936   int I = Info->isPartial() ? 3 : 2;
13937 
13938   // Combine the comparisons with suitable conditional expressions.
13939   ExprResult Result;
13940   for (; I >= 0; --I) {
13941     // Build a reference to the comparison category constant.
13942     auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
13943     // FIXME: Missing a constant for a comparison category. Diagnose this?
13944     if (!VI)
13945       return ExprResult((Expr*)nullptr);
13946     ExprResult ThisResult =
13947         BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
13948     if (ThisResult.isInvalid())
13949       return ExprError();
13950 
13951     // Build a conditional unless this is the final case.
13952     if (Result.get()) {
13953       Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
13954                                   ThisResult.get(), Result.get());
13955       if (Result.isInvalid())
13956         return ExprError();
13957     } else {
13958       Result = ThisResult;
13959     }
13960   }
13961 
13962   // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
13963   // bind the OpaqueValueExprs before they're (repeatedly) used.
13964   Expr *SyntacticForm = BinaryOperator::Create(
13965       Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
13966       Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
13967       CurFPFeatureOverrides());
13968   Expr *SemanticForm[] = {LHS, RHS, Result.get()};
13969   return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
13970 }
13971 
13972 ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)13973 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13974                                          SourceLocation RLoc,
13975                                          Expr *Base, Expr *Idx) {
13976   Expr *Args[2] = { Base, Idx };
13977   DeclarationName OpName =
13978       Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13979 
13980   // If either side is type-dependent, create an appropriate dependent
13981   // expression.
13982   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13983 
13984     CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13985     // CHECKME: no 'operator' keyword?
13986     DeclarationNameInfo OpNameInfo(OpName, LLoc);
13987     OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13988     ExprResult Fn = CreateUnresolvedLookupExpr(
13989         NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
13990     if (Fn.isInvalid())
13991       return ExprError();
13992     // Can't add any actual overloads yet
13993 
13994     return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
13995                                        Context.DependentTy, VK_RValue, RLoc,
13996                                        CurFPFeatureOverrides());
13997   }
13998 
13999   // Handle placeholders on both operands.
14000   if (checkPlaceholderForOverload(*this, Args[0]))
14001     return ExprError();
14002   if (checkPlaceholderForOverload(*this, Args[1]))
14003     return ExprError();
14004 
14005   // Build an empty overload set.
14006   OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
14007 
14008   // Subscript can only be overloaded as a member function.
14009 
14010   // Add operator candidates that are member functions.
14011   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14012 
14013   // Add builtin operator candidates.
14014   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
14015 
14016   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14017 
14018   // Perform overload resolution.
14019   OverloadCandidateSet::iterator Best;
14020   switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
14021     case OR_Success: {
14022       // We found a built-in operator or an overloaded operator.
14023       FunctionDecl *FnDecl = Best->Function;
14024 
14025       if (FnDecl) {
14026         // We matched an overloaded operator. Build a call to that
14027         // operator.
14028 
14029         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
14030 
14031         // Convert the arguments.
14032         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
14033         ExprResult Arg0 =
14034           PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
14035                                               Best->FoundDecl, Method);
14036         if (Arg0.isInvalid())
14037           return ExprError();
14038         Args[0] = Arg0.get();
14039 
14040         // Convert the arguments.
14041         ExprResult InputInit
14042           = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14043                                                       Context,
14044                                                       FnDecl->getParamDecl(0)),
14045                                       SourceLocation(),
14046                                       Args[1]);
14047         if (InputInit.isInvalid())
14048           return ExprError();
14049 
14050         Args[1] = InputInit.getAs<Expr>();
14051 
14052         // Build the actual expression node.
14053         DeclarationNameInfo OpLocInfo(OpName, LLoc);
14054         OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14055         ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14056                                                   Best->FoundDecl,
14057                                                   Base,
14058                                                   HadMultipleCandidates,
14059                                                   OpLocInfo.getLoc(),
14060                                                   OpLocInfo.getInfo());
14061         if (FnExpr.isInvalid())
14062           return ExprError();
14063 
14064         // Determine the result type
14065         QualType ResultTy = FnDecl->getReturnType();
14066         ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14067         ResultTy = ResultTy.getNonLValueExprType(Context);
14068 
14069         CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14070             Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14071             CurFPFeatureOverrides());
14072         if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14073           return ExprError();
14074 
14075         if (CheckFunctionCall(Method, TheCall,
14076                               Method->getType()->castAs<FunctionProtoType>()))
14077           return ExprError();
14078 
14079         return MaybeBindToTemporary(TheCall);
14080       } else {
14081         // We matched a built-in operator. Convert the arguments, then
14082         // break out so that we will build the appropriate built-in
14083         // operator node.
14084         ExprResult ArgsRes0 = PerformImplicitConversion(
14085             Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14086             AA_Passing, CCK_ForBuiltinOverloadedOp);
14087         if (ArgsRes0.isInvalid())
14088           return ExprError();
14089         Args[0] = ArgsRes0.get();
14090 
14091         ExprResult ArgsRes1 = PerformImplicitConversion(
14092             Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14093             AA_Passing, CCK_ForBuiltinOverloadedOp);
14094         if (ArgsRes1.isInvalid())
14095           return ExprError();
14096         Args[1] = ArgsRes1.get();
14097 
14098         break;
14099       }
14100     }
14101 
14102     case OR_No_Viable_Function: {
14103       PartialDiagnostic PD = CandidateSet.empty()
14104           ? (PDiag(diag::err_ovl_no_oper)
14105              << Args[0]->getType() << /*subscript*/ 0
14106              << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14107           : (PDiag(diag::err_ovl_no_viable_subscript)
14108              << Args[0]->getType() << Args[0]->getSourceRange()
14109              << Args[1]->getSourceRange());
14110       CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14111                                   OCD_AllCandidates, Args, "[]", LLoc);
14112       return ExprError();
14113     }
14114 
14115     case OR_Ambiguous:
14116       CandidateSet.NoteCandidates(
14117           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14118                                         << "[]" << Args[0]->getType()
14119                                         << Args[1]->getType()
14120                                         << Args[0]->getSourceRange()
14121                                         << Args[1]->getSourceRange()),
14122           *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14123       return ExprError();
14124 
14125     case OR_Deleted:
14126       CandidateSet.NoteCandidates(
14127           PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14128                                         << "[]" << Args[0]->getSourceRange()
14129                                         << Args[1]->getSourceRange()),
14130           *this, OCD_AllCandidates, Args, "[]", LLoc);
14131       return ExprError();
14132     }
14133 
14134   // We matched a built-in operator; build it.
14135   return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14136 }
14137 
14138 /// BuildCallToMemberFunction - Build a call to a member
14139 /// function. MemExpr is the expression that refers to the member
14140 /// function (and includes the object parameter), Args/NumArgs are the
14141 /// arguments to the function call (not including the object
14142 /// parameter). The caller needs to validate that the member
14143 /// expression refers to a non-static member function or an overloaded
14144 /// member function.
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,bool AllowRecovery)14145 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14146                                            SourceLocation LParenLoc,
14147                                            MultiExprArg Args,
14148                                            SourceLocation RParenLoc,
14149                                            bool AllowRecovery) {
14150   assert(MemExprE->getType() == Context.BoundMemberTy ||
14151          MemExprE->getType() == Context.OverloadTy);
14152 
14153   // Dig out the member expression. This holds both the object
14154   // argument and the member function we're referring to.
14155   Expr *NakedMemExpr = MemExprE->IgnoreParens();
14156 
14157   // Determine whether this is a call to a pointer-to-member function.
14158   if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14159     assert(op->getType() == Context.BoundMemberTy);
14160     assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
14161 
14162     QualType fnType =
14163       op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14164 
14165     const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14166     QualType resultType = proto->getCallResultType(Context);
14167     ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14168 
14169     // Check that the object type isn't more qualified than the
14170     // member function we're calling.
14171     Qualifiers funcQuals = proto->getMethodQuals();
14172 
14173     QualType objectType = op->getLHS()->getType();
14174     if (op->getOpcode() == BO_PtrMemI)
14175       objectType = objectType->castAs<PointerType>()->getPointeeType();
14176     Qualifiers objectQuals = objectType.getQualifiers();
14177 
14178     Qualifiers difference = objectQuals - funcQuals;
14179     difference.removeObjCGCAttr();
14180     difference.removeAddressSpace();
14181     if (difference) {
14182       std::string qualsString = difference.getAsString();
14183       Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14184         << fnType.getUnqualifiedType()
14185         << qualsString
14186         << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14187     }
14188 
14189     CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14190         Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14191         CurFPFeatureOverrides(), proto->getNumParams());
14192 
14193     if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14194                             call, nullptr))
14195       return ExprError();
14196 
14197     if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14198       return ExprError();
14199 
14200     if (CheckOtherCall(call, proto))
14201       return ExprError();
14202 
14203     return MaybeBindToTemporary(call);
14204   }
14205 
14206   // We only try to build a recovery expr at this level if we can preserve
14207   // the return type, otherwise we return ExprError() and let the caller
14208   // recover.
14209   auto BuildRecoveryExpr = [&](QualType Type) {
14210     if (!AllowRecovery)
14211       return ExprError();
14212     std::vector<Expr *> SubExprs = {MemExprE};
14213     llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); });
14214     return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs,
14215                               Type);
14216   };
14217   if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14218     return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
14219                             RParenLoc, CurFPFeatureOverrides());
14220 
14221   UnbridgedCastsSet UnbridgedCasts;
14222   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14223     return ExprError();
14224 
14225   MemberExpr *MemExpr;
14226   CXXMethodDecl *Method = nullptr;
14227   DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14228   NestedNameSpecifier *Qualifier = nullptr;
14229   if (isa<MemberExpr>(NakedMemExpr)) {
14230     MemExpr = cast<MemberExpr>(NakedMemExpr);
14231     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14232     FoundDecl = MemExpr->getFoundDecl();
14233     Qualifier = MemExpr->getQualifier();
14234     UnbridgedCasts.restore();
14235   } else {
14236     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14237     Qualifier = UnresExpr->getQualifier();
14238 
14239     QualType ObjectType = UnresExpr->getBaseType();
14240     Expr::Classification ObjectClassification
14241       = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14242                             : UnresExpr->getBase()->Classify(Context);
14243 
14244     // Add overload candidates
14245     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14246                                       OverloadCandidateSet::CSK_Normal);
14247 
14248     // FIXME: avoid copy.
14249     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14250     if (UnresExpr->hasExplicitTemplateArgs()) {
14251       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14252       TemplateArgs = &TemplateArgsBuffer;
14253     }
14254 
14255     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14256            E = UnresExpr->decls_end(); I != E; ++I) {
14257 
14258       NamedDecl *Func = *I;
14259       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14260       if (isa<UsingShadowDecl>(Func))
14261         Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14262 
14263 
14264       // Microsoft supports direct constructor calls.
14265       if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14266         AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14267                              CandidateSet,
14268                              /*SuppressUserConversions*/ false);
14269       } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14270         // If explicit template arguments were provided, we can't call a
14271         // non-template member function.
14272         if (TemplateArgs)
14273           continue;
14274 
14275         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14276                            ObjectClassification, Args, CandidateSet,
14277                            /*SuppressUserConversions=*/false);
14278       } else {
14279         AddMethodTemplateCandidate(
14280             cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14281             TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14282             /*SuppressUserConversions=*/false);
14283       }
14284     }
14285 
14286     DeclarationName DeclName = UnresExpr->getMemberName();
14287 
14288     UnbridgedCasts.restore();
14289 
14290     OverloadCandidateSet::iterator Best;
14291     bool Succeeded = false;
14292     switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14293                                             Best)) {
14294     case OR_Success:
14295       Method = cast<CXXMethodDecl>(Best->Function);
14296       FoundDecl = Best->FoundDecl;
14297       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14298       if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14299         break;
14300       // If FoundDecl is different from Method (such as if one is a template
14301       // and the other a specialization), make sure DiagnoseUseOfDecl is
14302       // called on both.
14303       // FIXME: This would be more comprehensively addressed by modifying
14304       // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14305       // being used.
14306       if (Method != FoundDecl.getDecl() &&
14307                       DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14308         break;
14309       Succeeded = true;
14310       break;
14311 
14312     case OR_No_Viable_Function:
14313       CandidateSet.NoteCandidates(
14314           PartialDiagnosticAt(
14315               UnresExpr->getMemberLoc(),
14316               PDiag(diag::err_ovl_no_viable_member_function_in_call)
14317                   << DeclName << MemExprE->getSourceRange()),
14318           *this, OCD_AllCandidates, Args);
14319       break;
14320     case OR_Ambiguous:
14321       CandidateSet.NoteCandidates(
14322           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14323                               PDiag(diag::err_ovl_ambiguous_member_call)
14324                                   << DeclName << MemExprE->getSourceRange()),
14325           *this, OCD_AmbiguousCandidates, Args);
14326       break;
14327     case OR_Deleted:
14328       CandidateSet.NoteCandidates(
14329           PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14330                               PDiag(diag::err_ovl_deleted_member_call)
14331                                   << DeclName << MemExprE->getSourceRange()),
14332           *this, OCD_AllCandidates, Args);
14333       break;
14334     }
14335     // Overload resolution fails, try to recover.
14336     if (!Succeeded)
14337       return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best));
14338 
14339     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14340 
14341     // If overload resolution picked a static member, build a
14342     // non-member call based on that function.
14343     if (Method->isStatic()) {
14344       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
14345                                    RParenLoc);
14346     }
14347 
14348     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14349   }
14350 
14351   QualType ResultType = Method->getReturnType();
14352   ExprValueKind VK = Expr::getValueKindForType(ResultType);
14353   ResultType = ResultType.getNonLValueExprType(Context);
14354 
14355   assert(Method && "Member call to something that isn't a method?");
14356   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14357   CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14358       Context, MemExprE, Args, ResultType, VK, RParenLoc,
14359       CurFPFeatureOverrides(), Proto->getNumParams());
14360 
14361   // Check for a valid return type.
14362   if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14363                           TheCall, Method))
14364     return BuildRecoveryExpr(ResultType);
14365 
14366   // Convert the object argument (for a non-static member function call).
14367   // We only need to do this if there was actually an overload; otherwise
14368   // it was done at lookup.
14369   if (!Method->isStatic()) {
14370     ExprResult ObjectArg =
14371       PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14372                                           FoundDecl, Method);
14373     if (ObjectArg.isInvalid())
14374       return ExprError();
14375     MemExpr->setBase(ObjectArg.get());
14376   }
14377 
14378   // Convert the rest of the arguments
14379   if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14380                               RParenLoc))
14381     return BuildRecoveryExpr(ResultType);
14382 
14383   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14384 
14385   if (CheckFunctionCall(Method, TheCall, Proto))
14386     return ExprError();
14387 
14388   // In the case the method to call was not selected by the overloading
14389   // resolution process, we still need to handle the enable_if attribute. Do
14390   // that here, so it will not hide previous -- and more relevant -- errors.
14391   if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14392     if (const EnableIfAttr *Attr =
14393             CheckEnableIf(Method, LParenLoc, Args, true)) {
14394       Diag(MemE->getMemberLoc(),
14395            diag::err_ovl_no_viable_member_function_in_call)
14396           << Method << Method->getSourceRange();
14397       Diag(Method->getLocation(),
14398            diag::note_ovl_candidate_disabled_by_function_cond_attr)
14399           << Attr->getCond()->getSourceRange() << Attr->getMessage();
14400       return ExprError();
14401     }
14402   }
14403 
14404   if ((isa<CXXConstructorDecl>(CurContext) ||
14405        isa<CXXDestructorDecl>(CurContext)) &&
14406       TheCall->getMethodDecl()->isPure()) {
14407     const CXXMethodDecl *MD = TheCall->getMethodDecl();
14408 
14409     if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14410         MemExpr->performsVirtualDispatch(getLangOpts())) {
14411       Diag(MemExpr->getBeginLoc(),
14412            diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14413           << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14414           << MD->getParent();
14415 
14416       Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14417       if (getLangOpts().AppleKext)
14418         Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14419             << MD->getParent() << MD->getDeclName();
14420     }
14421   }
14422 
14423   if (CXXDestructorDecl *DD =
14424           dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14425     // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14426     bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14427     CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14428                          CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14429                          MemExpr->getMemberLoc());
14430   }
14431 
14432   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14433                                      TheCall->getMethodDecl());
14434 }
14435 
14436 /// BuildCallToObjectOfClassType - Build a call to an object of class
14437 /// type (C++ [over.call.object]), which can end up invoking an
14438 /// overloaded function call operator (@c operator()) or performing a
14439 /// user-defined conversion on the object argument.
14440 ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)14441 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14442                                    SourceLocation LParenLoc,
14443                                    MultiExprArg Args,
14444                                    SourceLocation RParenLoc) {
14445   if (checkPlaceholderForOverload(*this, Obj))
14446     return ExprError();
14447   ExprResult Object = Obj;
14448 
14449   UnbridgedCastsSet UnbridgedCasts;
14450   if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14451     return ExprError();
14452 
14453   assert(Object.get()->getType()->isRecordType() &&
14454          "Requires object type argument");
14455 
14456   // C++ [over.call.object]p1:
14457   //  If the primary-expression E in the function call syntax
14458   //  evaluates to a class object of type "cv T", then the set of
14459   //  candidate functions includes at least the function call
14460   //  operators of T. The function call operators of T are obtained by
14461   //  ordinary lookup of the name operator() in the context of
14462   //  (E).operator().
14463   OverloadCandidateSet CandidateSet(LParenLoc,
14464                                     OverloadCandidateSet::CSK_Operator);
14465   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14466 
14467   if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14468                           diag::err_incomplete_object_call, Object.get()))
14469     return true;
14470 
14471   const auto *Record = Object.get()->getType()->castAs<RecordType>();
14472   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14473   LookupQualifiedName(R, Record->getDecl());
14474   R.suppressDiagnostics();
14475 
14476   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14477        Oper != OperEnd; ++Oper) {
14478     AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14479                        Object.get()->Classify(Context), Args, CandidateSet,
14480                        /*SuppressUserConversion=*/false);
14481   }
14482 
14483   // C++ [over.call.object]p2:
14484   //   In addition, for each (non-explicit in C++0x) conversion function
14485   //   declared in T of the form
14486   //
14487   //        operator conversion-type-id () cv-qualifier;
14488   //
14489   //   where cv-qualifier is the same cv-qualification as, or a
14490   //   greater cv-qualification than, cv, and where conversion-type-id
14491   //   denotes the type "pointer to function of (P1,...,Pn) returning
14492   //   R", or the type "reference to pointer to function of
14493   //   (P1,...,Pn) returning R", or the type "reference to function
14494   //   of (P1,...,Pn) returning R", a surrogate call function [...]
14495   //   is also considered as a candidate function. Similarly,
14496   //   surrogate call functions are added to the set of candidate
14497   //   functions for each conversion function declared in an
14498   //   accessible base class provided the function is not hidden
14499   //   within T by another intervening declaration.
14500   const auto &Conversions =
14501       cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14502   for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14503     NamedDecl *D = *I;
14504     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14505     if (isa<UsingShadowDecl>(D))
14506       D = cast<UsingShadowDecl>(D)->getTargetDecl();
14507 
14508     // Skip over templated conversion functions; they aren't
14509     // surrogates.
14510     if (isa<FunctionTemplateDecl>(D))
14511       continue;
14512 
14513     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14514     if (!Conv->isExplicit()) {
14515       // Strip the reference type (if any) and then the pointer type (if
14516       // any) to get down to what might be a function type.
14517       QualType ConvType = Conv->getConversionType().getNonReferenceType();
14518       if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14519         ConvType = ConvPtrType->getPointeeType();
14520 
14521       if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14522       {
14523         AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14524                               Object.get(), Args, CandidateSet);
14525       }
14526     }
14527   }
14528 
14529   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14530 
14531   // Perform overload resolution.
14532   OverloadCandidateSet::iterator Best;
14533   switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14534                                           Best)) {
14535   case OR_Success:
14536     // Overload resolution succeeded; we'll build the appropriate call
14537     // below.
14538     break;
14539 
14540   case OR_No_Viable_Function: {
14541     PartialDiagnostic PD =
14542         CandidateSet.empty()
14543             ? (PDiag(diag::err_ovl_no_oper)
14544                << Object.get()->getType() << /*call*/ 1
14545                << Object.get()->getSourceRange())
14546             : (PDiag(diag::err_ovl_no_viable_object_call)
14547                << Object.get()->getType() << Object.get()->getSourceRange());
14548     CandidateSet.NoteCandidates(
14549         PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14550         OCD_AllCandidates, Args);
14551     break;
14552   }
14553   case OR_Ambiguous:
14554     CandidateSet.NoteCandidates(
14555         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14556                             PDiag(diag::err_ovl_ambiguous_object_call)
14557                                 << Object.get()->getType()
14558                                 << Object.get()->getSourceRange()),
14559         *this, OCD_AmbiguousCandidates, Args);
14560     break;
14561 
14562   case OR_Deleted:
14563     CandidateSet.NoteCandidates(
14564         PartialDiagnosticAt(Object.get()->getBeginLoc(),
14565                             PDiag(diag::err_ovl_deleted_object_call)
14566                                 << Object.get()->getType()
14567                                 << Object.get()->getSourceRange()),
14568         *this, OCD_AllCandidates, Args);
14569     break;
14570   }
14571 
14572   if (Best == CandidateSet.end())
14573     return true;
14574 
14575   UnbridgedCasts.restore();
14576 
14577   if (Best->Function == nullptr) {
14578     // Since there is no function declaration, this is one of the
14579     // surrogate candidates. Dig out the conversion function.
14580     CXXConversionDecl *Conv
14581       = cast<CXXConversionDecl>(
14582                          Best->Conversions[0].UserDefined.ConversionFunction);
14583 
14584     CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14585                               Best->FoundDecl);
14586     if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14587       return ExprError();
14588     assert(Conv == Best->FoundDecl.getDecl() &&
14589              "Found Decl & conversion-to-functionptr should be same, right?!");
14590     // We selected one of the surrogate functions that converts the
14591     // object parameter to a function pointer. Perform the conversion
14592     // on the object argument, then let BuildCallExpr finish the job.
14593 
14594     // Create an implicit member expr to refer to the conversion operator.
14595     // and then call it.
14596     ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14597                                              Conv, HadMultipleCandidates);
14598     if (Call.isInvalid())
14599       return ExprError();
14600     // Record usage of conversion in an implicit cast.
14601     Call = ImplicitCastExpr::Create(
14602         Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14603         nullptr, VK_RValue, CurFPFeatureOverrides());
14604 
14605     return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14606   }
14607 
14608   CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14609 
14610   // We found an overloaded operator(). Build a CXXOperatorCallExpr
14611   // that calls this method, using Object for the implicit object
14612   // parameter and passing along the remaining arguments.
14613   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14614 
14615   // An error diagnostic has already been printed when parsing the declaration.
14616   if (Method->isInvalidDecl())
14617     return ExprError();
14618 
14619   const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14620   unsigned NumParams = Proto->getNumParams();
14621 
14622   DeclarationNameInfo OpLocInfo(
14623                Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14624   OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14625   ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14626                                            Obj, HadMultipleCandidates,
14627                                            OpLocInfo.getLoc(),
14628                                            OpLocInfo.getInfo());
14629   if (NewFn.isInvalid())
14630     return true;
14631 
14632   // The number of argument slots to allocate in the call. If we have default
14633   // arguments we need to allocate space for them as well. We additionally
14634   // need one more slot for the object parameter.
14635   unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14636 
14637   // Build the full argument list for the method call (the implicit object
14638   // parameter is placed at the beginning of the list).
14639   SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14640 
14641   bool IsError = false;
14642 
14643   // Initialize the implicit object parameter.
14644   ExprResult ObjRes =
14645     PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14646                                         Best->FoundDecl, Method);
14647   if (ObjRes.isInvalid())
14648     IsError = true;
14649   else
14650     Object = ObjRes;
14651   MethodArgs[0] = Object.get();
14652 
14653   // Check the argument types.
14654   for (unsigned i = 0; i != NumParams; i++) {
14655     Expr *Arg;
14656     if (i < Args.size()) {
14657       Arg = Args[i];
14658 
14659       // Pass the argument.
14660 
14661       ExprResult InputInit
14662         = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14663                                                     Context,
14664                                                     Method->getParamDecl(i)),
14665                                     SourceLocation(), Arg);
14666 
14667       IsError |= InputInit.isInvalid();
14668       Arg = InputInit.getAs<Expr>();
14669     } else {
14670       ExprResult DefArg
14671         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14672       if (DefArg.isInvalid()) {
14673         IsError = true;
14674         break;
14675       }
14676 
14677       Arg = DefArg.getAs<Expr>();
14678     }
14679 
14680     MethodArgs[i + 1] = Arg;
14681   }
14682 
14683   // If this is a variadic call, handle args passed through "...".
14684   if (Proto->isVariadic()) {
14685     // Promote the arguments (C99 6.5.2.2p7).
14686     for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14687       ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14688                                                         nullptr);
14689       IsError |= Arg.isInvalid();
14690       MethodArgs[i + 1] = Arg.get();
14691     }
14692   }
14693 
14694   if (IsError)
14695     return true;
14696 
14697   DiagnoseSentinelCalls(Method, LParenLoc, Args);
14698 
14699   // Once we've built TheCall, all of the expressions are properly owned.
14700   QualType ResultTy = Method->getReturnType();
14701   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14702   ResultTy = ResultTy.getNonLValueExprType(Context);
14703 
14704   CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14705       Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14706       CurFPFeatureOverrides());
14707 
14708   if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14709     return true;
14710 
14711   if (CheckFunctionCall(Method, TheCall, Proto))
14712     return true;
14713 
14714   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14715 }
14716 
14717 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14718 ///  (if one exists), where @c Base is an expression of class type and
14719 /// @c Member is the name of the member we're trying to find.
14720 ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc,bool * NoArrowOperatorFound)14721 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14722                                bool *NoArrowOperatorFound) {
14723   assert(Base->getType()->isRecordType() &&
14724          "left-hand side must have class type");
14725 
14726   if (checkPlaceholderForOverload(*this, Base))
14727     return ExprError();
14728 
14729   SourceLocation Loc = Base->getExprLoc();
14730 
14731   // C++ [over.ref]p1:
14732   //
14733   //   [...] An expression x->m is interpreted as (x.operator->())->m
14734   //   for a class object x of type T if T::operator->() exists and if
14735   //   the operator is selected as the best match function by the
14736   //   overload resolution mechanism (13.3).
14737   DeclarationName OpName =
14738     Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14739   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14740 
14741   if (RequireCompleteType(Loc, Base->getType(),
14742                           diag::err_typecheck_incomplete_tag, Base))
14743     return ExprError();
14744 
14745   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14746   LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14747   R.suppressDiagnostics();
14748 
14749   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14750        Oper != OperEnd; ++Oper) {
14751     AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14752                        None, CandidateSet, /*SuppressUserConversion=*/false);
14753   }
14754 
14755   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14756 
14757   // Perform overload resolution.
14758   OverloadCandidateSet::iterator Best;
14759   switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14760   case OR_Success:
14761     // Overload resolution succeeded; we'll build the call below.
14762     break;
14763 
14764   case OR_No_Viable_Function: {
14765     auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14766     if (CandidateSet.empty()) {
14767       QualType BaseType = Base->getType();
14768       if (NoArrowOperatorFound) {
14769         // Report this specific error to the caller instead of emitting a
14770         // diagnostic, as requested.
14771         *NoArrowOperatorFound = true;
14772         return ExprError();
14773       }
14774       Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14775         << BaseType << Base->getSourceRange();
14776       if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14777         Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14778           << FixItHint::CreateReplacement(OpLoc, ".");
14779       }
14780     } else
14781       Diag(OpLoc, diag::err_ovl_no_viable_oper)
14782         << "operator->" << Base->getSourceRange();
14783     CandidateSet.NoteCandidates(*this, Base, Cands);
14784     return ExprError();
14785   }
14786   case OR_Ambiguous:
14787     CandidateSet.NoteCandidates(
14788         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14789                                        << "->" << Base->getType()
14790                                        << Base->getSourceRange()),
14791         *this, OCD_AmbiguousCandidates, Base);
14792     return ExprError();
14793 
14794   case OR_Deleted:
14795     CandidateSet.NoteCandidates(
14796         PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14797                                        << "->" << Base->getSourceRange()),
14798         *this, OCD_AllCandidates, Base);
14799     return ExprError();
14800   }
14801 
14802   CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14803 
14804   // Convert the object parameter.
14805   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14806   ExprResult BaseResult =
14807     PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14808                                         Best->FoundDecl, Method);
14809   if (BaseResult.isInvalid())
14810     return ExprError();
14811   Base = BaseResult.get();
14812 
14813   // Build the operator call.
14814   ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14815                                             Base, HadMultipleCandidates, OpLoc);
14816   if (FnExpr.isInvalid())
14817     return ExprError();
14818 
14819   QualType ResultTy = Method->getReturnType();
14820   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14821   ResultTy = ResultTy.getNonLValueExprType(Context);
14822   CXXOperatorCallExpr *TheCall =
14823       CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14824                                   ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14825 
14826   if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14827     return ExprError();
14828 
14829   if (CheckFunctionCall(Method, TheCall,
14830                         Method->getType()->castAs<FunctionProtoType>()))
14831     return ExprError();
14832 
14833   return MaybeBindToTemporary(TheCall);
14834 }
14835 
14836 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14837 /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)14838 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14839                                           DeclarationNameInfo &SuffixInfo,
14840                                           ArrayRef<Expr*> Args,
14841                                           SourceLocation LitEndLoc,
14842                                        TemplateArgumentListInfo *TemplateArgs) {
14843   SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14844 
14845   OverloadCandidateSet CandidateSet(UDSuffixLoc,
14846                                     OverloadCandidateSet::CSK_Normal);
14847   AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14848                                  TemplateArgs);
14849 
14850   bool HadMultipleCandidates = (CandidateSet.size() > 1);
14851 
14852   // Perform overload resolution. This will usually be trivial, but might need
14853   // to perform substitutions for a literal operator template.
14854   OverloadCandidateSet::iterator Best;
14855   switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14856   case OR_Success:
14857   case OR_Deleted:
14858     break;
14859 
14860   case OR_No_Viable_Function:
14861     CandidateSet.NoteCandidates(
14862         PartialDiagnosticAt(UDSuffixLoc,
14863                             PDiag(diag::err_ovl_no_viable_function_in_call)
14864                                 << R.getLookupName()),
14865         *this, OCD_AllCandidates, Args);
14866     return ExprError();
14867 
14868   case OR_Ambiguous:
14869     CandidateSet.NoteCandidates(
14870         PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14871                                                 << R.getLookupName()),
14872         *this, OCD_AmbiguousCandidates, Args);
14873     return ExprError();
14874   }
14875 
14876   FunctionDecl *FD = Best->Function;
14877   ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14878                                         nullptr, HadMultipleCandidates,
14879                                         SuffixInfo.getLoc(),
14880                                         SuffixInfo.getInfo());
14881   if (Fn.isInvalid())
14882     return true;
14883 
14884   // Check the argument types. This should almost always be a no-op, except
14885   // that array-to-pointer decay is applied to string literals.
14886   Expr *ConvArgs[2];
14887   for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14888     ExprResult InputInit = PerformCopyInitialization(
14889       InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14890       SourceLocation(), Args[ArgIdx]);
14891     if (InputInit.isInvalid())
14892       return true;
14893     ConvArgs[ArgIdx] = InputInit.get();
14894   }
14895 
14896   QualType ResultTy = FD->getReturnType();
14897   ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14898   ResultTy = ResultTy.getNonLValueExprType(Context);
14899 
14900   UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14901       Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14902       VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14903 
14904   if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14905     return ExprError();
14906 
14907   if (CheckFunctionCall(FD, UDL, nullptr))
14908     return ExprError();
14909 
14910   return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
14911 }
14912 
14913 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14914 /// given LookupResult is non-empty, it is assumed to describe a member which
14915 /// will be invoked. Otherwise, the function will be found via argument
14916 /// dependent lookup.
14917 /// CallExpr is set to a valid expression and FRS_Success returned on success,
14918 /// otherwise CallExpr is set to ExprError() and some non-success value
14919 /// is returned.
14920 Sema::ForRangeStatus
BuildForRangeBeginEndCall(SourceLocation Loc,SourceLocation RangeLoc,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)14921 Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14922                                 SourceLocation RangeLoc,
14923                                 const DeclarationNameInfo &NameInfo,
14924                                 LookupResult &MemberLookup,
14925                                 OverloadCandidateSet *CandidateSet,
14926                                 Expr *Range, ExprResult *CallExpr) {
14927   Scope *S = nullptr;
14928 
14929   CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14930   if (!MemberLookup.empty()) {
14931     ExprResult MemberRef =
14932         BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14933                                  /*IsPtr=*/false, CXXScopeSpec(),
14934                                  /*TemplateKWLoc=*/SourceLocation(),
14935                                  /*FirstQualifierInScope=*/nullptr,
14936                                  MemberLookup,
14937                                  /*TemplateArgs=*/nullptr, S);
14938     if (MemberRef.isInvalid()) {
14939       *CallExpr = ExprError();
14940       return FRS_DiagnosticIssued;
14941     }
14942     *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14943     if (CallExpr->isInvalid()) {
14944       *CallExpr = ExprError();
14945       return FRS_DiagnosticIssued;
14946     }
14947   } else {
14948     ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
14949                                                 NestedNameSpecifierLoc(),
14950                                                 NameInfo, UnresolvedSet<0>());
14951     if (FnR.isInvalid())
14952       return FRS_DiagnosticIssued;
14953     UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
14954 
14955     bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
14956                                                     CandidateSet, CallExpr);
14957     if (CandidateSet->empty() || CandidateSetError) {
14958       *CallExpr = ExprError();
14959       return FRS_NoViableFunction;
14960     }
14961     OverloadCandidateSet::iterator Best;
14962     OverloadingResult OverloadResult =
14963         CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
14964 
14965     if (OverloadResult == OR_No_Viable_Function) {
14966       *CallExpr = ExprError();
14967       return FRS_NoViableFunction;
14968     }
14969     *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14970                                          Loc, nullptr, CandidateSet, &Best,
14971                                          OverloadResult,
14972                                          /*AllowTypoCorrection=*/false);
14973     if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14974       *CallExpr = ExprError();
14975       return FRS_DiagnosticIssued;
14976     }
14977   }
14978   return FRS_Success;
14979 }
14980 
14981 
14982 /// FixOverloadedFunctionReference - E is an expression that refers to
14983 /// a C++ overloaded function (possibly with some parentheses and
14984 /// perhaps a '&' around it). We have resolved the overloaded function
14985 /// to the function declaration Fn, so patch up the expression E to
14986 /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)14987 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
14988                                            FunctionDecl *Fn) {
14989   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
14990     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
14991                                                    Found, Fn);
14992     if (SubExpr == PE->getSubExpr())
14993       return PE;
14994 
14995     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
14996   }
14997 
14998   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
14999     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
15000                                                    Found, Fn);
15001     assert(Context.hasSameType(ICE->getSubExpr()->getType(),
15002                                SubExpr->getType()) &&
15003            "Implicit cast type cannot be determined from overload");
15004     assert(ICE->path_empty() && "fixing up hierarchy conversion?");
15005     if (SubExpr == ICE->getSubExpr())
15006       return ICE;
15007 
15008     return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
15009                                     SubExpr, nullptr, ICE->getValueKind(),
15010                                     CurFPFeatureOverrides());
15011   }
15012 
15013   if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
15014     if (!GSE->isResultDependent()) {
15015       Expr *SubExpr =
15016           FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
15017       if (SubExpr == GSE->getResultExpr())
15018         return GSE;
15019 
15020       // Replace the resulting type information before rebuilding the generic
15021       // selection expression.
15022       ArrayRef<Expr *> A = GSE->getAssocExprs();
15023       SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
15024       unsigned ResultIdx = GSE->getResultIndex();
15025       AssocExprs[ResultIdx] = SubExpr;
15026 
15027       return GenericSelectionExpr::Create(
15028           Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
15029           GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
15030           GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
15031           ResultIdx);
15032     }
15033     // Rather than fall through to the unreachable, return the original generic
15034     // selection expression.
15035     return GSE;
15036   }
15037 
15038   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
15039     assert(UnOp->getOpcode() == UO_AddrOf &&
15040            "Can only take the address of an overloaded function");
15041     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
15042       if (Method->isStatic()) {
15043         // Do nothing: static member functions aren't any different
15044         // from non-member functions.
15045       } else {
15046         // Fix the subexpression, which really has to be an
15047         // UnresolvedLookupExpr holding an overloaded member function
15048         // or template.
15049         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15050                                                        Found, Fn);
15051         if (SubExpr == UnOp->getSubExpr())
15052           return UnOp;
15053 
15054         assert(isa<DeclRefExpr>(SubExpr)
15055                && "fixed to something other than a decl ref");
15056         assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
15057                && "fixed to a member ref with no nested name qualifier");
15058 
15059         // We have taken the address of a pointer to member
15060         // function. Perform the computation here so that we get the
15061         // appropriate pointer to member type.
15062         QualType ClassType
15063           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
15064         QualType MemPtrType
15065           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15066         // Under the MS ABI, lock down the inheritance model now.
15067         if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15068           (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15069 
15070         return UnaryOperator::Create(
15071             Context, SubExpr, UO_AddrOf, MemPtrType, VK_RValue, OK_Ordinary,
15072             UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15073       }
15074     }
15075     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15076                                                    Found, Fn);
15077     if (SubExpr == UnOp->getSubExpr())
15078       return UnOp;
15079 
15080     return UnaryOperator::Create(Context, SubExpr, UO_AddrOf,
15081                                  Context.getPointerType(SubExpr->getType()),
15082                                  VK_RValue, OK_Ordinary, UnOp->getOperatorLoc(),
15083                                  false, CurFPFeatureOverrides());
15084   }
15085 
15086   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15087     // FIXME: avoid copy.
15088     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15089     if (ULE->hasExplicitTemplateArgs()) {
15090       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15091       TemplateArgs = &TemplateArgsBuffer;
15092     }
15093 
15094     DeclRefExpr *DRE =
15095         BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15096                          ULE->getQualifierLoc(), Found.getDecl(),
15097                          ULE->getTemplateKeywordLoc(), TemplateArgs);
15098     DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15099     return DRE;
15100   }
15101 
15102   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15103     // FIXME: avoid copy.
15104     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15105     if (MemExpr->hasExplicitTemplateArgs()) {
15106       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15107       TemplateArgs = &TemplateArgsBuffer;
15108     }
15109 
15110     Expr *Base;
15111 
15112     // If we're filling in a static method where we used to have an
15113     // implicit member access, rewrite to a simple decl ref.
15114     if (MemExpr->isImplicitAccess()) {
15115       if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15116         DeclRefExpr *DRE = BuildDeclRefExpr(
15117             Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15118             MemExpr->getQualifierLoc(), Found.getDecl(),
15119             MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15120         DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15121         return DRE;
15122       } else {
15123         SourceLocation Loc = MemExpr->getMemberLoc();
15124         if (MemExpr->getQualifier())
15125           Loc = MemExpr->getQualifierLoc().getBeginLoc();
15126         Base =
15127             BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15128       }
15129     } else
15130       Base = MemExpr->getBase();
15131 
15132     ExprValueKind valueKind;
15133     QualType type;
15134     if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15135       valueKind = VK_LValue;
15136       type = Fn->getType();
15137     } else {
15138       valueKind = VK_RValue;
15139       type = Context.BoundMemberTy;
15140     }
15141 
15142     return BuildMemberExpr(
15143         Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15144         MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15145         /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15146         type, valueKind, OK_Ordinary, TemplateArgs);
15147   }
15148 
15149   llvm_unreachable("Invalid reference to overloaded function");
15150 }
15151 
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)15152 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15153                                                 DeclAccessPair Found,
15154                                                 FunctionDecl *Fn) {
15155   return FixOverloadedFunctionReference(E.get(), Found, Fn);
15156 }
15157