1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "NativeProcessLinux.h"
10
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15
16 #include <fstream>
17 #include <mutex>
18 #include <optional>
19 #include <sstream>
20 #include <string>
21 #include <unordered_map>
22
23 #include "NativeThreadLinux.h"
24 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
25 #include "Plugins/Process/Utility/LinuxProcMaps.h"
26 #include "Procfs.h"
27 #include "lldb/Core/ModuleSpec.h"
28 #include "lldb/Host/Host.h"
29 #include "lldb/Host/HostProcess.h"
30 #include "lldb/Host/ProcessLaunchInfo.h"
31 #include "lldb/Host/PseudoTerminal.h"
32 #include "lldb/Host/ThreadLauncher.h"
33 #include "lldb/Host/common/NativeRegisterContext.h"
34 #include "lldb/Host/linux/Host.h"
35 #include "lldb/Host/linux/Ptrace.h"
36 #include "lldb/Host/linux/Uio.h"
37 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
38 #include "lldb/Symbol/ObjectFile.h"
39 #include "lldb/Target/Process.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/LLDBLog.h"
43 #include "lldb/Utility/State.h"
44 #include "lldb/Utility/Status.h"
45 #include "lldb/Utility/StringExtractor.h"
46 #include "llvm/ADT/ScopeExit.h"
47 #include "llvm/Support/Errno.h"
48 #include "llvm/Support/FileSystem.h"
49 #include "llvm/Support/Threading.h"
50
51 #include <linux/unistd.h>
52 #include <sys/socket.h>
53 #include <sys/syscall.h>
54 #include <sys/types.h>
55 #include <sys/user.h>
56 #include <sys/wait.h>
57
58 #ifdef __aarch64__
59 #include <asm/hwcap.h>
60 #include <sys/auxv.h>
61 #endif
62
63 // Support hardware breakpoints in case it has not been defined
64 #ifndef TRAP_HWBKPT
65 #define TRAP_HWBKPT 4
66 #endif
67
68 #ifndef HWCAP2_MTE
69 #define HWCAP2_MTE (1 << 18)
70 #endif
71
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace lldb_private::process_linux;
75 using namespace llvm;
76
77 // Private bits we only need internally.
78
ProcessVmReadvSupported()79 static bool ProcessVmReadvSupported() {
80 static bool is_supported;
81 static llvm::once_flag flag;
82
83 llvm::call_once(flag, [] {
84 Log *log = GetLog(POSIXLog::Process);
85
86 uint32_t source = 0x47424742;
87 uint32_t dest = 0;
88
89 struct iovec local, remote;
90 remote.iov_base = &source;
91 local.iov_base = &dest;
92 remote.iov_len = local.iov_len = sizeof source;
93
94 // We shall try if cross-process-memory reads work by attempting to read a
95 // value from our own process.
96 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
97 is_supported = (res == sizeof(source) && source == dest);
98 if (is_supported)
99 LLDB_LOG(log,
100 "Detected kernel support for process_vm_readv syscall. "
101 "Fast memory reads enabled.");
102 else
103 LLDB_LOG(log,
104 "syscall process_vm_readv failed (error: {0}). Fast memory "
105 "reads disabled.",
106 llvm::sys::StrError());
107 });
108
109 return is_supported;
110 }
111
MaybeLogLaunchInfo(const ProcessLaunchInfo & info)112 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
113 Log *log = GetLog(POSIXLog::Process);
114 if (!log)
115 return;
116
117 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
118 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
119 else
120 LLDB_LOG(log, "leaving STDIN as is");
121
122 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
123 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
124 else
125 LLDB_LOG(log, "leaving STDOUT as is");
126
127 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
128 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
129 else
130 LLDB_LOG(log, "leaving STDERR as is");
131
132 int i = 0;
133 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
134 ++args, ++i)
135 LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
136 }
137
DisplayBytes(StreamString & s,void * bytes,uint32_t count)138 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
139 uint8_t *ptr = (uint8_t *)bytes;
140 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
141 for (uint32_t i = 0; i < loop_count; i++) {
142 s.Printf("[%x]", *ptr);
143 ptr++;
144 }
145 }
146
PtraceDisplayBytes(int & req,void * data,size_t data_size)147 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
148 Log *log = GetLog(POSIXLog::Ptrace);
149 if (!log)
150 return;
151 StreamString buf;
152
153 switch (req) {
154 case PTRACE_POKETEXT: {
155 DisplayBytes(buf, &data, 8);
156 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
157 break;
158 }
159 case PTRACE_POKEDATA: {
160 DisplayBytes(buf, &data, 8);
161 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
162 break;
163 }
164 case PTRACE_POKEUSER: {
165 DisplayBytes(buf, &data, 8);
166 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
167 break;
168 }
169 case PTRACE_SETREGS: {
170 DisplayBytes(buf, data, data_size);
171 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
172 break;
173 }
174 case PTRACE_SETFPREGS: {
175 DisplayBytes(buf, data, data_size);
176 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
177 break;
178 }
179 case PTRACE_SETSIGINFO: {
180 DisplayBytes(buf, data, sizeof(siginfo_t));
181 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
182 break;
183 }
184 case PTRACE_SETREGSET: {
185 // Extract iov_base from data, which is a pointer to the struct iovec
186 DisplayBytes(buf, *(void **)data, data_size);
187 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
188 break;
189 }
190 default: {}
191 }
192 }
193
194 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
195 static_assert(sizeof(long) >= k_ptrace_word_size,
196 "Size of long must be larger than ptrace word size");
197
198 // Simple helper function to ensure flags are enabled on the given file
199 // descriptor.
EnsureFDFlags(int fd,int flags)200 static Status EnsureFDFlags(int fd, int flags) {
201 Status error;
202
203 int status = fcntl(fd, F_GETFL);
204 if (status == -1) {
205 error.SetErrorToErrno();
206 return error;
207 }
208
209 if (fcntl(fd, F_SETFL, status | flags) == -1) {
210 error.SetErrorToErrno();
211 return error;
212 }
213
214 return error;
215 }
216
217 // Public Static Methods
218
219 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Launch(ProcessLaunchInfo & launch_info,NativeDelegate & native_delegate,MainLoop & mainloop) const220 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
221 NativeDelegate &native_delegate,
222 MainLoop &mainloop) const {
223 Log *log = GetLog(POSIXLog::Process);
224
225 MaybeLogLaunchInfo(launch_info);
226
227 Status status;
228 ::pid_t pid = ProcessLauncherPosixFork()
229 .LaunchProcess(launch_info, status)
230 .GetProcessId();
231 LLDB_LOG(log, "pid = {0:x}", pid);
232 if (status.Fail()) {
233 LLDB_LOG(log, "failed to launch process: {0}", status);
234 return status.ToError();
235 }
236
237 // Wait for the child process to trap on its call to execve.
238 int wstatus = 0;
239 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
240 assert(wpid == pid);
241 (void)wpid;
242 if (!WIFSTOPPED(wstatus)) {
243 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
244 WaitStatus::Decode(wstatus));
245 return llvm::make_error<StringError>("Could not sync with inferior process",
246 llvm::inconvertibleErrorCode());
247 }
248 LLDB_LOG(log, "inferior started, now in stopped state");
249
250 status = SetDefaultPtraceOpts(pid);
251 if (status.Fail()) {
252 LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
253 return status.ToError();
254 }
255
256 llvm::Expected<ArchSpec> arch_or =
257 NativeRegisterContextLinux::DetermineArchitecture(pid);
258 if (!arch_or)
259 return arch_or.takeError();
260
261 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
262 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
263 *arch_or, mainloop, {pid}));
264 }
265
266 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Attach(lldb::pid_t pid,NativeProcessProtocol::NativeDelegate & native_delegate,MainLoop & mainloop) const267 NativeProcessLinux::Factory::Attach(
268 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
269 MainLoop &mainloop) const {
270 Log *log = GetLog(POSIXLog::Process);
271 LLDB_LOG(log, "pid = {0:x}", pid);
272
273 auto tids_or = NativeProcessLinux::Attach(pid);
274 if (!tids_or)
275 return tids_or.takeError();
276 ArrayRef<::pid_t> tids = *tids_or;
277 llvm::Expected<ArchSpec> arch_or =
278 NativeRegisterContextLinux::DetermineArchitecture(tids[0]);
279 if (!arch_or)
280 return arch_or.takeError();
281
282 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
283 pid, -1, native_delegate, *arch_or, mainloop, tids));
284 }
285
286 NativeProcessLinux::Extension
GetSupportedExtensions() const287 NativeProcessLinux::Factory::GetSupportedExtensions() const {
288 NativeProcessLinux::Extension supported =
289 Extension::multiprocess | Extension::fork | Extension::vfork |
290 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 |
291 Extension::siginfo_read;
292
293 #ifdef __aarch64__
294 // At this point we do not have a process so read auxv directly.
295 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
296 supported |= Extension::memory_tagging;
297 #endif
298
299 return supported;
300 }
301
302 // Public Instance Methods
303
NativeProcessLinux(::pid_t pid,int terminal_fd,NativeDelegate & delegate,const ArchSpec & arch,MainLoop & mainloop,llvm::ArrayRef<::pid_t> tids)304 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
305 NativeDelegate &delegate,
306 const ArchSpec &arch, MainLoop &mainloop,
307 llvm::ArrayRef<::pid_t> tids)
308 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
309 m_main_loop(mainloop), m_intel_pt_collector(*this) {
310 if (m_terminal_fd != -1) {
311 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
312 assert(status.Success());
313 }
314
315 Status status;
316 m_sigchld_handle = mainloop.RegisterSignal(
317 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
318 assert(m_sigchld_handle && status.Success());
319
320 for (const auto &tid : tids) {
321 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
322 ThreadWasCreated(thread);
323 }
324
325 // Let our process instance know the thread has stopped.
326 SetCurrentThreadID(tids[0]);
327 SetState(StateType::eStateStopped, false);
328
329 // Proccess any signals we received before installing our handler
330 SigchldHandler();
331 }
332
Attach(::pid_t pid)333 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
334 Log *log = GetLog(POSIXLog::Process);
335
336 Status status;
337 // Use a map to keep track of the threads which we have attached/need to
338 // attach.
339 Host::TidMap tids_to_attach;
340 while (Host::FindProcessThreads(pid, tids_to_attach)) {
341 for (Host::TidMap::iterator it = tids_to_attach.begin();
342 it != tids_to_attach.end();) {
343 if (it->second == false) {
344 lldb::tid_t tid = it->first;
345
346 // Attach to the requested process.
347 // An attach will cause the thread to stop with a SIGSTOP.
348 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
349 // No such thread. The thread may have exited. More error handling
350 // may be needed.
351 if (status.GetError() == ESRCH) {
352 it = tids_to_attach.erase(it);
353 continue;
354 }
355 return status.ToError();
356 }
357
358 int wpid =
359 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
360 // Need to use __WALL otherwise we receive an error with errno=ECHLD At
361 // this point we should have a thread stopped if waitpid succeeds.
362 if (wpid < 0) {
363 // No such thread. The thread may have exited. More error handling
364 // may be needed.
365 if (errno == ESRCH) {
366 it = tids_to_attach.erase(it);
367 continue;
368 }
369 return llvm::errorCodeToError(
370 std::error_code(errno, std::generic_category()));
371 }
372
373 if ((status = SetDefaultPtraceOpts(tid)).Fail())
374 return status.ToError();
375
376 LLDB_LOG(log, "adding tid = {0}", tid);
377 it->second = true;
378 }
379
380 // move the loop forward
381 ++it;
382 }
383 }
384
385 size_t tid_count = tids_to_attach.size();
386 if (tid_count == 0)
387 return llvm::make_error<StringError>("No such process",
388 llvm::inconvertibleErrorCode());
389
390 std::vector<::pid_t> tids;
391 tids.reserve(tid_count);
392 for (const auto &p : tids_to_attach)
393 tids.push_back(p.first);
394 return std::move(tids);
395 }
396
SetDefaultPtraceOpts(lldb::pid_t pid)397 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
398 long ptrace_opts = 0;
399
400 // Have the child raise an event on exit. This is used to keep the child in
401 // limbo until it is destroyed.
402 ptrace_opts |= PTRACE_O_TRACEEXIT;
403
404 // Have the tracer trace threads which spawn in the inferior process.
405 ptrace_opts |= PTRACE_O_TRACECLONE;
406
407 // Have the tracer notify us before execve returns (needed to disable legacy
408 // SIGTRAP generation)
409 ptrace_opts |= PTRACE_O_TRACEEXEC;
410
411 // Have the tracer trace forked children.
412 ptrace_opts |= PTRACE_O_TRACEFORK;
413
414 // Have the tracer trace vforks.
415 ptrace_opts |= PTRACE_O_TRACEVFORK;
416
417 // Have the tracer trace vfork-done in order to restore breakpoints after
418 // the child finishes sharing memory.
419 ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
420
421 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
422 }
423
424 // Handles all waitpid events from the inferior process.
MonitorCallback(NativeThreadLinux & thread,WaitStatus status)425 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread,
426 WaitStatus status) {
427 Log *log = GetLog(LLDBLog::Process);
428
429 // Certain activities differ based on whether the pid is the tid of the main
430 // thread.
431 const bool is_main_thread = (thread.GetID() == GetID());
432
433 // Handle when the thread exits.
434 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
435 LLDB_LOG(log,
436 "got exit status({0}) , tid = {1} ({2} main thread), process "
437 "state = {3}",
438 status, thread.GetID(), is_main_thread ? "is" : "is not",
439 GetState());
440
441 // This is a thread that exited. Ensure we're not tracking it anymore.
442 StopTrackingThread(thread);
443
444 assert(!is_main_thread && "Main thread exits handled elsewhere");
445 return;
446 }
447
448 siginfo_t info;
449 const auto info_err = GetSignalInfo(thread.GetID(), &info);
450
451 // Get details on the signal raised.
452 if (info_err.Success()) {
453 // We have retrieved the signal info. Dispatch appropriately.
454 if (info.si_signo == SIGTRAP)
455 MonitorSIGTRAP(info, thread);
456 else
457 MonitorSignal(info, thread);
458 } else {
459 if (info_err.GetError() == EINVAL) {
460 // This is a group stop reception for this tid. We can reach here if we
461 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
462 // triggering the group-stop mechanism. Normally receiving these would
463 // stop the process, pending a SIGCONT. Simulating this state in a
464 // debugger is hard and is generally not needed (one use case is
465 // debugging background task being managed by a shell). For general use,
466 // it is sufficient to stop the process in a signal-delivery stop which
467 // happens before the group stop. This done by MonitorSignal and works
468 // correctly for all signals.
469 LLDB_LOG(log,
470 "received a group stop for pid {0} tid {1}. Transparent "
471 "handling of group stops not supported, resuming the "
472 "thread.",
473 GetID(), thread.GetID());
474 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
475 } else {
476 // ptrace(GETSIGINFO) failed (but not due to group-stop).
477
478 // A return value of ESRCH means the thread/process has died in the mean
479 // time. This can (e.g.) happen when another thread does an exit_group(2)
480 // or the entire process get SIGKILLed.
481 // We can't do anything with this thread anymore, but we keep it around
482 // until we get the WIFEXITED event.
483
484 LLDB_LOG(log,
485 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = "
486 "{3}. Expecting WIFEXITED soon.",
487 thread.GetID(), info_err, status, is_main_thread);
488 }
489 }
490 }
491
WaitForCloneNotification(::pid_t pid)492 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
493 Log *log = GetLog(POSIXLog::Process);
494
495 // The PID is not tracked yet, let's wait for it to appear.
496 int status = -1;
497 LLDB_LOG(log,
498 "received clone event for pid {0}. pid not tracked yet, "
499 "waiting for it to appear...",
500 pid);
501 ::pid_t wait_pid =
502 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
503
504 // It's theoretically possible to get other events if the entire process was
505 // SIGKILLed before we got a chance to check this. In that case, we'll just
506 // clean everything up when we get the process exit event.
507
508 LLDB_LOG(log,
509 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})",
510 pid, wait_pid, errno, WaitStatus::Decode(status));
511 }
512
MonitorSIGTRAP(const siginfo_t & info,NativeThreadLinux & thread)513 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
514 NativeThreadLinux &thread) {
515 Log *log = GetLog(POSIXLog::Process);
516 const bool is_main_thread = (thread.GetID() == GetID());
517
518 assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
519
520 switch (info.si_code) {
521 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
522 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
523 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
524 // This can either mean a new thread or a new process spawned via
525 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2)
526 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
527 // of these flags are passed.
528
529 unsigned long event_message = 0;
530 if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
531 LLDB_LOG(log,
532 "pid {0} received clone() event but GetEventMessage failed "
533 "so we don't know the new pid/tid",
534 thread.GetID());
535 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
536 } else {
537 MonitorClone(thread, event_message, info.si_code >> 8);
538 }
539
540 break;
541 }
542
543 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
544 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
545
546 // Exec clears any pending notifications.
547 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
548
549 // Remove all but the main thread here. Linux fork creates a new process
550 // which only copies the main thread.
551 LLDB_LOG(log, "exec received, stop tracking all but main thread");
552
553 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
554 return t->GetID() != GetID();
555 });
556 assert(m_threads.size() == 1);
557 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
558
559 SetCurrentThreadID(main_thread->GetID());
560 main_thread->SetStoppedByExec();
561
562 // Tell coordinator about about the "new" (since exec) stopped main thread.
563 ThreadWasCreated(*main_thread);
564
565 // Let our delegate know we have just exec'd.
566 NotifyDidExec();
567
568 // Let the process know we're stopped.
569 StopRunningThreads(main_thread->GetID());
570
571 break;
572 }
573
574 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
575 // The inferior process or one of its threads is about to exit. We don't
576 // want to do anything with the thread so we just resume it. In case we
577 // want to implement "break on thread exit" functionality, we would need to
578 // stop here.
579
580 unsigned long data = 0;
581 if (GetEventMessage(thread.GetID(), &data).Fail())
582 data = -1;
583
584 LLDB_LOG(log,
585 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
586 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
587 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
588 is_main_thread);
589
590
591 StateType state = thread.GetState();
592 if (!StateIsRunningState(state)) {
593 // Due to a kernel bug, we may sometimes get this stop after the inferior
594 // gets a SIGKILL. This confuses our state tracking logic in
595 // ResumeThread(), since normally, we should not be receiving any ptrace
596 // events while the inferior is stopped. This makes sure that the
597 // inferior is resumed and exits normally.
598 state = eStateRunning;
599 }
600 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
601
602 if (is_main_thread) {
603 // Main thread report the read (WIFEXITED) event only after all threads in
604 // the process exit, so we need to stop tracking it here instead of in
605 // MonitorCallback
606 StopTrackingThread(thread);
607 }
608
609 break;
610 }
611
612 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
613 if (bool(m_enabled_extensions & Extension::vfork)) {
614 thread.SetStoppedByVForkDone();
615 StopRunningThreads(thread.GetID());
616 }
617 else
618 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
619 break;
620 }
621
622 case 0:
623 case TRAP_TRACE: // We receive this on single stepping.
624 case TRAP_HWBKPT: // We receive this on watchpoint hit
625 {
626 // If a watchpoint was hit, report it
627 uint32_t wp_index;
628 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
629 wp_index, (uintptr_t)info.si_addr);
630 if (error.Fail())
631 LLDB_LOG(log,
632 "received error while checking for watchpoint hits, pid = "
633 "{0}, error = {1}",
634 thread.GetID(), error);
635 if (wp_index != LLDB_INVALID_INDEX32) {
636 MonitorWatchpoint(thread, wp_index);
637 break;
638 }
639
640 // If a breakpoint was hit, report it
641 uint32_t bp_index;
642 error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
643 bp_index, (uintptr_t)info.si_addr);
644 if (error.Fail())
645 LLDB_LOG(log, "received error while checking for hardware "
646 "breakpoint hits, pid = {0}, error = {1}",
647 thread.GetID(), error);
648 if (bp_index != LLDB_INVALID_INDEX32) {
649 MonitorBreakpoint(thread);
650 break;
651 }
652
653 // Otherwise, report step over
654 MonitorTrace(thread);
655 break;
656 }
657
658 case SI_KERNEL:
659 #if defined __mips__
660 // For mips there is no special signal for watchpoint So we check for
661 // watchpoint in kernel trap
662 {
663 // If a watchpoint was hit, report it
664 uint32_t wp_index;
665 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
666 wp_index, LLDB_INVALID_ADDRESS);
667 if (error.Fail())
668 LLDB_LOG(log,
669 "received error while checking for watchpoint hits, pid = "
670 "{0}, error = {1}",
671 thread.GetID(), error);
672 if (wp_index != LLDB_INVALID_INDEX32) {
673 MonitorWatchpoint(thread, wp_index);
674 break;
675 }
676 }
677 // NO BREAK
678 #endif
679 case TRAP_BRKPT:
680 MonitorBreakpoint(thread);
681 break;
682
683 case SIGTRAP:
684 case (SIGTRAP | 0x80):
685 LLDB_LOG(
686 log,
687 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
688 info.si_code, GetID(), thread.GetID());
689
690 // Ignore these signals until we know more about them.
691 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
692 break;
693
694 default:
695 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
696 info.si_code, GetID(), thread.GetID());
697 MonitorSignal(info, thread);
698 break;
699 }
700 }
701
MonitorTrace(NativeThreadLinux & thread)702 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
703 Log *log = GetLog(POSIXLog::Process);
704 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
705
706 // This thread is currently stopped.
707 thread.SetStoppedByTrace();
708
709 StopRunningThreads(thread.GetID());
710 }
711
MonitorBreakpoint(NativeThreadLinux & thread)712 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
713 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
714 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
715
716 // Mark the thread as stopped at breakpoint.
717 thread.SetStoppedByBreakpoint();
718 FixupBreakpointPCAsNeeded(thread);
719
720 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
721 m_threads_stepping_with_breakpoint.end())
722 thread.SetStoppedByTrace();
723
724 StopRunningThreads(thread.GetID());
725 }
726
MonitorWatchpoint(NativeThreadLinux & thread,uint32_t wp_index)727 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
728 uint32_t wp_index) {
729 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints);
730 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
731 thread.GetID(), wp_index);
732
733 // Mark the thread as stopped at watchpoint. The address is at
734 // (lldb::addr_t)info->si_addr if we need it.
735 thread.SetStoppedByWatchpoint(wp_index);
736
737 // We need to tell all other running threads before we notify the delegate
738 // about this stop.
739 StopRunningThreads(thread.GetID());
740 }
741
MonitorSignal(const siginfo_t & info,NativeThreadLinux & thread)742 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
743 NativeThreadLinux &thread) {
744 const int signo = info.si_signo;
745 const bool is_from_llgs = info.si_pid == getpid();
746
747 Log *log = GetLog(POSIXLog::Process);
748
749 // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
750 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
751 // or raise(3). Similarly for tgkill(2) on Linux.
752 //
753 // IOW, user generated signals never generate what we consider to be a
754 // "crash".
755 //
756 // Similarly, ACK signals generated by this monitor.
757
758 // Handle the signal.
759 LLDB_LOG(log,
760 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
761 "waitpid pid = {4})",
762 Host::GetSignalAsCString(signo), signo, info.si_code,
763 thread.GetID());
764
765 // Check for thread stop notification.
766 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
767 // This is a tgkill()-based stop.
768 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
769
770 // Check that we're not already marked with a stop reason. Note this thread
771 // really shouldn't already be marked as stopped - if we were, that would
772 // imply that the kernel signaled us with the thread stopping which we
773 // handled and marked as stopped, and that, without an intervening resume,
774 // we received another stop. It is more likely that we are missing the
775 // marking of a run state somewhere if we find that the thread was marked
776 // as stopped.
777 const StateType thread_state = thread.GetState();
778 if (!StateIsStoppedState(thread_state, false)) {
779 // An inferior thread has stopped because of a SIGSTOP we have sent it.
780 // Generally, these are not important stops and we don't want to report
781 // them as they are just used to stop other threads when one thread (the
782 // one with the *real* stop reason) hits a breakpoint (watchpoint,
783 // etc...). However, in the case of an asynchronous Interrupt(), this
784 // *is* the real stop reason, so we leave the signal intact if this is
785 // the thread that was chosen as the triggering thread.
786 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
787 if (m_pending_notification_tid == thread.GetID())
788 thread.SetStoppedBySignal(SIGSTOP, &info);
789 else
790 thread.SetStoppedWithNoReason();
791
792 SetCurrentThreadID(thread.GetID());
793 SignalIfAllThreadsStopped();
794 } else {
795 // We can end up here if stop was initiated by LLGS but by this time a
796 // thread stop has occurred - maybe initiated by another event.
797 Status error = ResumeThread(thread, thread.GetState(), 0);
798 if (error.Fail())
799 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
800 error);
801 }
802 } else {
803 LLDB_LOG(log,
804 "pid {0} tid {1}, thread was already marked as a stopped "
805 "state (state={2}), leaving stop signal as is",
806 GetID(), thread.GetID(), thread_state);
807 SignalIfAllThreadsStopped();
808 }
809
810 // Done handling.
811 return;
812 }
813
814 // Check if debugger should stop at this signal or just ignore it and resume
815 // the inferior.
816 if (m_signals_to_ignore.contains(signo)) {
817 ResumeThread(thread, thread.GetState(), signo);
818 return;
819 }
820
821 // This thread is stopped.
822 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
823 thread.SetStoppedBySignal(signo, &info);
824
825 // Send a stop to the debugger after we get all other threads to stop.
826 StopRunningThreads(thread.GetID());
827 }
828
MonitorClone(NativeThreadLinux & parent,lldb::pid_t child_pid,int event)829 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
830 lldb::pid_t child_pid, int event) {
831 Log *log = GetLog(POSIXLog::Process);
832 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(),
833 child_pid, event);
834
835 WaitForCloneNotification(child_pid);
836
837 switch (event) {
838 case PTRACE_EVENT_CLONE: {
839 // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
840 // Try to grab the new process' PGID to figure out which one it is.
841 // If PGID is the same as the PID, then it's a new process. Otherwise,
842 // it's a thread.
843 auto tgid_ret = getPIDForTID(child_pid);
844 if (tgid_ret != child_pid) {
845 // A new thread should have PGID matching our process' PID.
846 assert(!tgid_ret || *tgid_ret == GetID());
847
848 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
849 ThreadWasCreated(child_thread);
850
851 // Resume the parent.
852 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
853 break;
854 }
855 }
856 [[fallthrough]];
857 case PTRACE_EVENT_FORK:
858 case PTRACE_EVENT_VFORK: {
859 bool is_vfork = event == PTRACE_EVENT_VFORK;
860 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
861 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
862 m_main_loop, {static_cast<::pid_t>(child_pid)})};
863 if (!is_vfork)
864 child_process->m_software_breakpoints = m_software_breakpoints;
865
866 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
867 if (bool(m_enabled_extensions & expected_ext)) {
868 m_delegate.NewSubprocess(this, std::move(child_process));
869 // NB: non-vfork clone() is reported as fork
870 parent.SetStoppedByFork(is_vfork, child_pid);
871 StopRunningThreads(parent.GetID());
872 } else {
873 child_process->Detach();
874 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
875 }
876 break;
877 }
878 default:
879 llvm_unreachable("unknown clone_info.event");
880 }
881
882 return true;
883 }
884
SupportHardwareSingleStepping() const885 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
886 if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm ||
887 m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch())
888 return false;
889 return true;
890 }
891
Resume(const ResumeActionList & resume_actions)892 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
893 Log *log = GetLog(POSIXLog::Process);
894 LLDB_LOG(log, "pid {0}", GetID());
895
896 NotifyTracersProcessWillResume();
897
898 bool software_single_step = !SupportHardwareSingleStepping();
899
900 if (software_single_step) {
901 for (const auto &thread : m_threads) {
902 assert(thread && "thread list should not contain NULL threads");
903
904 const ResumeAction *const action =
905 resume_actions.GetActionForThread(thread->GetID(), true);
906 if (action == nullptr)
907 continue;
908
909 if (action->state == eStateStepping) {
910 Status error = SetupSoftwareSingleStepping(
911 static_cast<NativeThreadLinux &>(*thread));
912 if (error.Fail())
913 return error;
914 }
915 }
916 }
917
918 for (const auto &thread : m_threads) {
919 assert(thread && "thread list should not contain NULL threads");
920
921 const ResumeAction *const action =
922 resume_actions.GetActionForThread(thread->GetID(), true);
923
924 if (action == nullptr) {
925 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
926 thread->GetID());
927 continue;
928 }
929
930 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
931 action->state, GetID(), thread->GetID());
932
933 switch (action->state) {
934 case eStateRunning:
935 case eStateStepping: {
936 // Run the thread, possibly feeding it the signal.
937 const int signo = action->signal;
938 Status error = ResumeThread(static_cast<NativeThreadLinux &>(*thread),
939 action->state, signo);
940 if (error.Fail())
941 return Status("NativeProcessLinux::%s: failed to resume thread "
942 "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s",
943 __FUNCTION__, GetID(), thread->GetID(),
944 error.AsCString());
945
946 break;
947 }
948
949 case eStateSuspended:
950 case eStateStopped:
951 break;
952
953 default:
954 return Status("NativeProcessLinux::%s (): unexpected state %s specified "
955 "for pid %" PRIu64 ", tid %" PRIu64,
956 __FUNCTION__, StateAsCString(action->state), GetID(),
957 thread->GetID());
958 }
959 }
960
961 return Status();
962 }
963
Halt()964 Status NativeProcessLinux::Halt() {
965 Status error;
966
967 if (kill(GetID(), SIGSTOP) != 0)
968 error.SetErrorToErrno();
969
970 return error;
971 }
972
Detach()973 Status NativeProcessLinux::Detach() {
974 Status error;
975
976 // Stop monitoring the inferior.
977 m_sigchld_handle.reset();
978
979 // Tell ptrace to detach from the process.
980 if (GetID() == LLDB_INVALID_PROCESS_ID)
981 return error;
982
983 for (const auto &thread : m_threads) {
984 Status e = Detach(thread->GetID());
985 if (e.Fail())
986 error =
987 e; // Save the error, but still attempt to detach from other threads.
988 }
989
990 m_intel_pt_collector.Clear();
991
992 return error;
993 }
994
Signal(int signo)995 Status NativeProcessLinux::Signal(int signo) {
996 Status error;
997
998 Log *log = GetLog(POSIXLog::Process);
999 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1000 Host::GetSignalAsCString(signo), GetID());
1001
1002 if (kill(GetID(), signo))
1003 error.SetErrorToErrno();
1004
1005 return error;
1006 }
1007
Interrupt()1008 Status NativeProcessLinux::Interrupt() {
1009 // Pick a running thread (or if none, a not-dead stopped thread) as the
1010 // chosen thread that will be the stop-reason thread.
1011 Log *log = GetLog(POSIXLog::Process);
1012
1013 NativeThreadProtocol *running_thread = nullptr;
1014 NativeThreadProtocol *stopped_thread = nullptr;
1015
1016 LLDB_LOG(log, "selecting running thread for interrupt target");
1017 for (const auto &thread : m_threads) {
1018 // If we have a running or stepping thread, we'll call that the target of
1019 // the interrupt.
1020 const auto thread_state = thread->GetState();
1021 if (thread_state == eStateRunning || thread_state == eStateStepping) {
1022 running_thread = thread.get();
1023 break;
1024 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1025 // Remember the first non-dead stopped thread. We'll use that as a
1026 // backup if there are no running threads.
1027 stopped_thread = thread.get();
1028 }
1029 }
1030
1031 if (!running_thread && !stopped_thread) {
1032 Status error("found no running/stepping or live stopped threads as target "
1033 "for interrupt");
1034 LLDB_LOG(log, "skipping due to error: {0}", error);
1035
1036 return error;
1037 }
1038
1039 NativeThreadProtocol *deferred_signal_thread =
1040 running_thread ? running_thread : stopped_thread;
1041
1042 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1043 running_thread ? "running" : "stopped",
1044 deferred_signal_thread->GetID());
1045
1046 StopRunningThreads(deferred_signal_thread->GetID());
1047
1048 return Status();
1049 }
1050
Kill()1051 Status NativeProcessLinux::Kill() {
1052 Log *log = GetLog(POSIXLog::Process);
1053 LLDB_LOG(log, "pid {0}", GetID());
1054
1055 Status error;
1056
1057 switch (m_state) {
1058 case StateType::eStateInvalid:
1059 case StateType::eStateExited:
1060 case StateType::eStateCrashed:
1061 case StateType::eStateDetached:
1062 case StateType::eStateUnloaded:
1063 // Nothing to do - the process is already dead.
1064 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1065 m_state);
1066 return error;
1067
1068 case StateType::eStateConnected:
1069 case StateType::eStateAttaching:
1070 case StateType::eStateLaunching:
1071 case StateType::eStateStopped:
1072 case StateType::eStateRunning:
1073 case StateType::eStateStepping:
1074 case StateType::eStateSuspended:
1075 // We can try to kill a process in these states.
1076 break;
1077 }
1078
1079 if (kill(GetID(), SIGKILL) != 0) {
1080 error.SetErrorToErrno();
1081 return error;
1082 }
1083
1084 return error;
1085 }
1086
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)1087 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1088 MemoryRegionInfo &range_info) {
1089 // FIXME review that the final memory region returned extends to the end of
1090 // the virtual address space,
1091 // with no perms if it is not mapped.
1092
1093 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1094 // proc maps entries are in ascending order.
1095 // FIXME assert if we find differently.
1096
1097 if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1098 // We're done.
1099 return Status("unsupported");
1100 }
1101
1102 Status error = PopulateMemoryRegionCache();
1103 if (error.Fail()) {
1104 return error;
1105 }
1106
1107 lldb::addr_t prev_base_address = 0;
1108
1109 // FIXME start by finding the last region that is <= target address using
1110 // binary search. Data is sorted.
1111 // There can be a ton of regions on pthreads apps with lots of threads.
1112 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1113 ++it) {
1114 MemoryRegionInfo &proc_entry_info = it->first;
1115
1116 // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1117 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1118 "descending /proc/pid/maps entries detected, unexpected");
1119 prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1120 UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1121
1122 // If the target address comes before this entry, indicate distance to next
1123 // region.
1124 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1125 range_info.GetRange().SetRangeBase(load_addr);
1126 range_info.GetRange().SetByteSize(
1127 proc_entry_info.GetRange().GetRangeBase() - load_addr);
1128 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1129 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1130 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1131 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1132
1133 return error;
1134 } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1135 // The target address is within the memory region we're processing here.
1136 range_info = proc_entry_info;
1137 return error;
1138 }
1139
1140 // The target memory address comes somewhere after the region we just
1141 // parsed.
1142 }
1143
1144 // If we made it here, we didn't find an entry that contained the given
1145 // address. Return the load_addr as start and the amount of bytes betwwen
1146 // load address and the end of the memory as size.
1147 range_info.GetRange().SetRangeBase(load_addr);
1148 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1149 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1150 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1151 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1152 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1153 return error;
1154 }
1155
PopulateMemoryRegionCache()1156 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1157 Log *log = GetLog(POSIXLog::Process);
1158
1159 // If our cache is empty, pull the latest. There should always be at least
1160 // one memory region if memory region handling is supported.
1161 if (!m_mem_region_cache.empty()) {
1162 LLDB_LOG(log, "reusing {0} cached memory region entries",
1163 m_mem_region_cache.size());
1164 return Status();
1165 }
1166
1167 Status Result;
1168 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1169 if (Info) {
1170 FileSpec file_spec(Info->GetName().GetCString());
1171 FileSystem::Instance().Resolve(file_spec);
1172 m_mem_region_cache.emplace_back(*Info, file_spec);
1173 return true;
1174 }
1175
1176 Result = Info.takeError();
1177 m_supports_mem_region = LazyBool::eLazyBoolNo;
1178 LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1179 return false;
1180 };
1181
1182 // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1183 // if CONFIG_PROC_PAGE_MONITOR is enabled
1184 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps");
1185 if (BufferOrError)
1186 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1187 else {
1188 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps");
1189 if (!BufferOrError) {
1190 m_supports_mem_region = LazyBool::eLazyBoolNo;
1191 return BufferOrError.getError();
1192 }
1193
1194 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1195 }
1196
1197 if (Result.Fail())
1198 return Result;
1199
1200 if (m_mem_region_cache.empty()) {
1201 // No entries after attempting to read them. This shouldn't happen if
1202 // /proc/{pid}/maps is supported. Assume we don't support map entries via
1203 // procfs.
1204 m_supports_mem_region = LazyBool::eLazyBoolNo;
1205 LLDB_LOG(log,
1206 "failed to find any procfs maps entries, assuming no support "
1207 "for memory region metadata retrieval");
1208 return Status("not supported");
1209 }
1210
1211 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1212 m_mem_region_cache.size(), GetID());
1213
1214 // We support memory retrieval, remember that.
1215 m_supports_mem_region = LazyBool::eLazyBoolYes;
1216 return Status();
1217 }
1218
DoStopIDBumped(uint32_t newBumpId)1219 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1220 Log *log = GetLog(POSIXLog::Process);
1221 LLDB_LOG(log, "newBumpId={0}", newBumpId);
1222 LLDB_LOG(log, "clearing {0} entries from memory region cache",
1223 m_mem_region_cache.size());
1224 m_mem_region_cache.clear();
1225 }
1226
1227 llvm::Expected<uint64_t>
Syscall(llvm::ArrayRef<uint64_t> args)1228 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1229 PopulateMemoryRegionCache();
1230 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1231 return pair.first.GetExecutable() == MemoryRegionInfo::eYes &&
1232 pair.first.GetShared() != MemoryRegionInfo::eYes;
1233 });
1234 if (region_it == m_mem_region_cache.end())
1235 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1236 "No executable memory region found!");
1237
1238 addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1239
1240 NativeThreadLinux &thread = *GetCurrentThread();
1241 assert(thread.GetState() == eStateStopped);
1242 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext();
1243
1244 NativeRegisterContextLinux::SyscallData syscall_data =
1245 *reg_ctx.GetSyscallData();
1246
1247 WritableDataBufferSP registers_sp;
1248 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1249 return std::move(Err);
1250 auto restore_regs = llvm::make_scope_exit(
1251 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1252
1253 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1254 size_t bytes_read;
1255 if (llvm::Error Err =
1256 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1257 .ToError()) {
1258 return std::move(Err);
1259 }
1260
1261 auto restore_mem = llvm::make_scope_exit(
1262 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1263
1264 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1265 return std::move(Err);
1266
1267 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1268 if (llvm::Error Err =
1269 reg_ctx
1270 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1271 .ToError()) {
1272 return std::move(Err);
1273 }
1274 }
1275 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1276 syscall_data.Insn.size(), bytes_read)
1277 .ToError())
1278 return std::move(Err);
1279
1280 m_mem_region_cache.clear();
1281
1282 // With software single stepping the syscall insn buffer must also include a
1283 // trap instruction to stop the process.
1284 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1285 if (llvm::Error Err =
1286 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1287 return std::move(Err);
1288
1289 int status;
1290 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1291 &status, __WALL);
1292 if (wait_pid == -1) {
1293 return llvm::errorCodeToError(
1294 std::error_code(errno, std::generic_category()));
1295 }
1296 assert((unsigned)wait_pid == thread.GetID());
1297
1298 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1299
1300 // Values larger than this are actually negative errno numbers.
1301 uint64_t errno_threshold =
1302 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1303 if (result > errno_threshold) {
1304 return llvm::errorCodeToError(
1305 std::error_code(-result & 0xfff, std::generic_category()));
1306 }
1307
1308 return result;
1309 }
1310
1311 llvm::Expected<addr_t>
AllocateMemory(size_t size,uint32_t permissions)1312 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1313
1314 std::optional<NativeRegisterContextLinux::MmapData> mmap_data =
1315 GetCurrentThread()->GetRegisterContext().GetMmapData();
1316 if (!mmap_data)
1317 return llvm::make_error<UnimplementedError>();
1318
1319 unsigned prot = PROT_NONE;
1320 assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1321 ePermissionsExecutable)) == permissions &&
1322 "Unknown permission!");
1323 if (permissions & ePermissionsReadable)
1324 prot |= PROT_READ;
1325 if (permissions & ePermissionsWritable)
1326 prot |= PROT_WRITE;
1327 if (permissions & ePermissionsExecutable)
1328 prot |= PROT_EXEC;
1329
1330 llvm::Expected<uint64_t> Result =
1331 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1332 uint64_t(-1), 0});
1333 if (Result)
1334 m_allocated_memory.try_emplace(*Result, size);
1335 return Result;
1336 }
1337
DeallocateMemory(lldb::addr_t addr)1338 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1339 std::optional<NativeRegisterContextLinux::MmapData> mmap_data =
1340 GetCurrentThread()->GetRegisterContext().GetMmapData();
1341 if (!mmap_data)
1342 return llvm::make_error<UnimplementedError>();
1343
1344 auto it = m_allocated_memory.find(addr);
1345 if (it == m_allocated_memory.end())
1346 return llvm::createStringError(llvm::errc::invalid_argument,
1347 "Memory not allocated by the debugger.");
1348
1349 llvm::Expected<uint64_t> Result =
1350 Syscall({mmap_data->SysMunmap, addr, it->second});
1351 if (!Result)
1352 return Result.takeError();
1353
1354 m_allocated_memory.erase(it);
1355 return llvm::Error::success();
1356 }
1357
ReadMemoryTags(int32_t type,lldb::addr_t addr,size_t len,std::vector<uint8_t> & tags)1358 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1359 size_t len,
1360 std::vector<uint8_t> &tags) {
1361 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1362 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1363 if (!details)
1364 return Status(details.takeError());
1365
1366 // Ignore 0 length read
1367 if (!len)
1368 return Status();
1369
1370 // lldb will align the range it requests but it is not required to by
1371 // the protocol so we'll do it again just in case.
1372 // Remove tag bits too. Ptrace calls may work regardless but that
1373 // is not a guarantee.
1374 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1375 range = details->manager->ExpandToGranule(range);
1376
1377 // Allocate enough space for all tags to be read
1378 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1379 tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1380
1381 struct iovec tags_iovec;
1382 uint8_t *dest = tags.data();
1383 lldb::addr_t read_addr = range.GetRangeBase();
1384
1385 // This call can return partial data so loop until we error or
1386 // get all tags back.
1387 while (num_tags) {
1388 tags_iovec.iov_base = dest;
1389 tags_iovec.iov_len = num_tags;
1390
1391 Status error = NativeProcessLinux::PtraceWrapper(
1392 details->ptrace_read_req, GetCurrentThreadID(),
1393 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec),
1394 0, nullptr);
1395
1396 if (error.Fail()) {
1397 // Discard partial reads
1398 tags.resize(0);
1399 return error;
1400 }
1401
1402 size_t tags_read = tags_iovec.iov_len;
1403 assert(tags_read && (tags_read <= num_tags));
1404
1405 dest += tags_read * details->manager->GetTagSizeInBytes();
1406 read_addr += details->manager->GetGranuleSize() * tags_read;
1407 num_tags -= tags_read;
1408 }
1409
1410 return Status();
1411 }
1412
WriteMemoryTags(int32_t type,lldb::addr_t addr,size_t len,const std::vector<uint8_t> & tags)1413 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1414 size_t len,
1415 const std::vector<uint8_t> &tags) {
1416 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1417 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1418 if (!details)
1419 return Status(details.takeError());
1420
1421 // Ignore 0 length write
1422 if (!len)
1423 return Status();
1424
1425 // lldb will align the range it requests but it is not required to by
1426 // the protocol so we'll do it again just in case.
1427 // Remove tag bits too. Ptrace calls may work regardless but that
1428 // is not a guarantee.
1429 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1430 range = details->manager->ExpandToGranule(range);
1431
1432 // Not checking number of tags here, we may repeat them below
1433 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1434 details->manager->UnpackTagsData(tags);
1435 if (!unpacked_tags_or_err)
1436 return Status(unpacked_tags_or_err.takeError());
1437
1438 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1439 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1440 if (!repeated_tags_or_err)
1441 return Status(repeated_tags_or_err.takeError());
1442
1443 // Repack them for ptrace to use
1444 llvm::Expected<std::vector<uint8_t>> final_tag_data =
1445 details->manager->PackTags(*repeated_tags_or_err);
1446 if (!final_tag_data)
1447 return Status(final_tag_data.takeError());
1448
1449 struct iovec tags_vec;
1450 uint8_t *src = final_tag_data->data();
1451 lldb::addr_t write_addr = range.GetRangeBase();
1452 // unpacked tags size because the number of bytes per tag might not be 1
1453 size_t num_tags = repeated_tags_or_err->size();
1454
1455 // This call can partially write tags, so we loop until we
1456 // error or all tags have been written.
1457 while (num_tags > 0) {
1458 tags_vec.iov_base = src;
1459 tags_vec.iov_len = num_tags;
1460
1461 Status error = NativeProcessLinux::PtraceWrapper(
1462 details->ptrace_write_req, GetCurrentThreadID(),
1463 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1464 nullptr);
1465
1466 if (error.Fail()) {
1467 // Don't attempt to restore the original values in the case of a partial
1468 // write
1469 return error;
1470 }
1471
1472 size_t tags_written = tags_vec.iov_len;
1473 assert(tags_written && (tags_written <= num_tags));
1474
1475 src += tags_written * details->manager->GetTagSizeInBytes();
1476 write_addr += details->manager->GetGranuleSize() * tags_written;
1477 num_tags -= tags_written;
1478 }
1479
1480 return Status();
1481 }
1482
UpdateThreads()1483 size_t NativeProcessLinux::UpdateThreads() {
1484 // The NativeProcessLinux monitoring threads are always up to date with
1485 // respect to thread state and they keep the thread list populated properly.
1486 // All this method needs to do is return the thread count.
1487 return m_threads.size();
1488 }
1489
SetBreakpoint(lldb::addr_t addr,uint32_t size,bool hardware)1490 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1491 bool hardware) {
1492 if (hardware)
1493 return SetHardwareBreakpoint(addr, size);
1494 else
1495 return SetSoftwareBreakpoint(addr, size);
1496 }
1497
RemoveBreakpoint(lldb::addr_t addr,bool hardware)1498 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1499 if (hardware)
1500 return RemoveHardwareBreakpoint(addr);
1501 else
1502 return NativeProcessProtocol::RemoveBreakpoint(addr);
1503 }
1504
1505 llvm::Expected<llvm::ArrayRef<uint8_t>>
GetSoftwareBreakpointTrapOpcode(size_t size_hint)1506 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1507 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1508 // linux kernel does otherwise.
1509 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1510 static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1511
1512 switch (GetArchitecture().GetMachine()) {
1513 case llvm::Triple::arm:
1514 switch (size_hint) {
1515 case 2:
1516 return llvm::ArrayRef(g_thumb_opcode);
1517 case 4:
1518 return llvm::ArrayRef(g_arm_opcode);
1519 default:
1520 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1521 "Unrecognised trap opcode size hint!");
1522 }
1523 default:
1524 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1525 }
1526 }
1527
ReadMemory(lldb::addr_t addr,void * buf,size_t size,size_t & bytes_read)1528 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1529 size_t &bytes_read) {
1530 if (ProcessVmReadvSupported()) {
1531 // The process_vm_readv path is about 50 times faster than ptrace api. We
1532 // want to use this syscall if it is supported.
1533
1534 struct iovec local_iov, remote_iov;
1535 local_iov.iov_base = buf;
1536 local_iov.iov_len = size;
1537 remote_iov.iov_base = reinterpret_cast<void *>(addr);
1538 remote_iov.iov_len = size;
1539
1540 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1,
1541 &remote_iov, 1, 0);
1542 const bool success = bytes_read == size;
1543
1544 Log *log = GetLog(POSIXLog::Process);
1545 LLDB_LOG(log,
1546 "using process_vm_readv to read {0} bytes from inferior "
1547 "address {1:x}: {2}",
1548 size, addr, success ? "Success" : llvm::sys::StrError(errno));
1549
1550 if (success)
1551 return Status();
1552 // else the call failed for some reason, let's retry the read using ptrace
1553 // api.
1554 }
1555
1556 unsigned char *dst = static_cast<unsigned char *>(buf);
1557 size_t remainder;
1558 long data;
1559
1560 Log *log = GetLog(POSIXLog::Memory);
1561 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1562
1563 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1564 Status error = NativeProcessLinux::PtraceWrapper(
1565 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data);
1566 if (error.Fail())
1567 return error;
1568
1569 remainder = size - bytes_read;
1570 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1571
1572 // Copy the data into our buffer
1573 memcpy(dst, &data, remainder);
1574
1575 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1576 addr += k_ptrace_word_size;
1577 dst += k_ptrace_word_size;
1578 }
1579 return Status();
1580 }
1581
WriteMemory(lldb::addr_t addr,const void * buf,size_t size,size_t & bytes_written)1582 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1583 size_t size, size_t &bytes_written) {
1584 const unsigned char *src = static_cast<const unsigned char *>(buf);
1585 size_t remainder;
1586 Status error;
1587
1588 Log *log = GetLog(POSIXLog::Memory);
1589 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1590
1591 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1592 remainder = size - bytes_written;
1593 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1594
1595 if (remainder == k_ptrace_word_size) {
1596 unsigned long data = 0;
1597 memcpy(&data, src, k_ptrace_word_size);
1598
1599 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1600 error = NativeProcessLinux::PtraceWrapper(
1601 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data);
1602 if (error.Fail())
1603 return error;
1604 } else {
1605 unsigned char buff[8];
1606 size_t bytes_read;
1607 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1608 if (error.Fail())
1609 return error;
1610
1611 memcpy(buff, src, remainder);
1612
1613 size_t bytes_written_rec;
1614 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1615 if (error.Fail())
1616 return error;
1617
1618 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1619 *(unsigned long *)buff);
1620 }
1621
1622 addr += k_ptrace_word_size;
1623 src += k_ptrace_word_size;
1624 }
1625 return error;
1626 }
1627
GetSignalInfo(lldb::tid_t tid,void * siginfo) const1628 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const {
1629 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1630 }
1631
GetEventMessage(lldb::tid_t tid,unsigned long * message)1632 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1633 unsigned long *message) {
1634 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1635 }
1636
Detach(lldb::tid_t tid)1637 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1638 if (tid == LLDB_INVALID_THREAD_ID)
1639 return Status();
1640
1641 return PtraceWrapper(PTRACE_DETACH, tid);
1642 }
1643
HasThreadNoLock(lldb::tid_t thread_id)1644 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1645 for (const auto &thread : m_threads) {
1646 assert(thread && "thread list should not contain NULL threads");
1647 if (thread->GetID() == thread_id) {
1648 // We have this thread.
1649 return true;
1650 }
1651 }
1652
1653 // We don't have this thread.
1654 return false;
1655 }
1656
StopTrackingThread(NativeThreadLinux & thread)1657 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) {
1658 Log *const log = GetLog(POSIXLog::Thread);
1659 lldb::tid_t thread_id = thread.GetID();
1660 LLDB_LOG(log, "tid: {0}", thread_id);
1661
1662 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) {
1663 return thread_up.get() == &thread;
1664 });
1665 assert(it != m_threads.end());
1666 m_threads.erase(it);
1667
1668 NotifyTracersOfThreadDestroyed(thread_id);
1669 SignalIfAllThreadsStopped();
1670 }
1671
NotifyTracersProcessDidStop()1672 void NativeProcessLinux::NotifyTracersProcessDidStop() {
1673 m_intel_pt_collector.ProcessDidStop();
1674 }
1675
NotifyTracersProcessWillResume()1676 void NativeProcessLinux::NotifyTracersProcessWillResume() {
1677 m_intel_pt_collector.ProcessWillResume();
1678 }
1679
NotifyTracersOfNewThread(lldb::tid_t tid)1680 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1681 Log *log = GetLog(POSIXLog::Thread);
1682 Status error(m_intel_pt_collector.OnThreadCreated(tid));
1683 if (error.Fail())
1684 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1685 tid, error.AsCString());
1686 return error;
1687 }
1688
NotifyTracersOfThreadDestroyed(lldb::tid_t tid)1689 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1690 Log *log = GetLog(POSIXLog::Thread);
1691 Status error(m_intel_pt_collector.OnThreadDestroyed(tid));
1692 if (error.Fail())
1693 LLDB_LOG(log,
1694 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1695 tid, error.AsCString());
1696 return error;
1697 }
1698
AddThread(lldb::tid_t thread_id,bool resume)1699 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1700 bool resume) {
1701 Log *log = GetLog(POSIXLog::Thread);
1702 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1703
1704 assert(!HasThreadNoLock(thread_id) &&
1705 "attempted to add a thread by id that already exists");
1706
1707 // If this is the first thread, save it as the current thread
1708 if (m_threads.empty())
1709 SetCurrentThreadID(thread_id);
1710
1711 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1712 NativeThreadLinux &thread =
1713 static_cast<NativeThreadLinux &>(*m_threads.back());
1714
1715 Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1716 if (tracing_error.Fail()) {
1717 thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1718 StopRunningThreads(thread.GetID());
1719 } else if (resume)
1720 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1721 else
1722 thread.SetStoppedBySignal(SIGSTOP);
1723
1724 return thread;
1725 }
1726
GetLoadedModuleFileSpec(const char * module_path,FileSpec & file_spec)1727 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1728 FileSpec &file_spec) {
1729 Status error = PopulateMemoryRegionCache();
1730 if (error.Fail())
1731 return error;
1732
1733 FileSpec module_file_spec(module_path);
1734 FileSystem::Instance().Resolve(module_file_spec);
1735
1736 file_spec.Clear();
1737 for (const auto &it : m_mem_region_cache) {
1738 if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1739 file_spec = it.second;
1740 return Status();
1741 }
1742 }
1743 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1744 module_file_spec.GetFilename().AsCString(), GetID());
1745 }
1746
GetFileLoadAddress(const llvm::StringRef & file_name,lldb::addr_t & load_addr)1747 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1748 lldb::addr_t &load_addr) {
1749 load_addr = LLDB_INVALID_ADDRESS;
1750 Status error = PopulateMemoryRegionCache();
1751 if (error.Fail())
1752 return error;
1753
1754 FileSpec file(file_name);
1755 for (const auto &it : m_mem_region_cache) {
1756 if (it.second == file) {
1757 load_addr = it.first.GetRange().GetRangeBase();
1758 return Status();
1759 }
1760 }
1761 return Status("No load address found for specified file.");
1762 }
1763
GetThreadByID(lldb::tid_t tid)1764 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1765 return static_cast<NativeThreadLinux *>(
1766 NativeProcessProtocol::GetThreadByID(tid));
1767 }
1768
GetCurrentThread()1769 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1770 return static_cast<NativeThreadLinux *>(
1771 NativeProcessProtocol::GetCurrentThread());
1772 }
1773
ResumeThread(NativeThreadLinux & thread,lldb::StateType state,int signo)1774 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1775 lldb::StateType state, int signo) {
1776 Log *const log = GetLog(POSIXLog::Thread);
1777 LLDB_LOG(log, "tid: {0}", thread.GetID());
1778
1779 // Before we do the resume below, first check if we have a pending stop
1780 // notification that is currently waiting for all threads to stop. This is
1781 // potentially a buggy situation since we're ostensibly waiting for threads
1782 // to stop before we send out the pending notification, and here we are
1783 // resuming one before we send out the pending stop notification.
1784 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1785 LLDB_LOG(log,
1786 "about to resume tid {0} per explicit request but we have a "
1787 "pending stop notification (tid {1}) that is actively "
1788 "waiting for this thread to stop. Valid sequence of events?",
1789 thread.GetID(), m_pending_notification_tid);
1790 }
1791
1792 // Request a resume. We expect this to be synchronous and the system to
1793 // reflect it is running after this completes.
1794 switch (state) {
1795 case eStateRunning: {
1796 const auto resume_result = thread.Resume(signo);
1797 if (resume_result.Success())
1798 SetState(eStateRunning, true);
1799 return resume_result;
1800 }
1801 case eStateStepping: {
1802 const auto step_result = thread.SingleStep(signo);
1803 if (step_result.Success())
1804 SetState(eStateRunning, true);
1805 return step_result;
1806 }
1807 default:
1808 LLDB_LOG(log, "Unhandled state {0}.", state);
1809 llvm_unreachable("Unhandled state for resume");
1810 }
1811 }
1812
1813 //===----------------------------------------------------------------------===//
1814
StopRunningThreads(const lldb::tid_t triggering_tid)1815 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1816 Log *const log = GetLog(POSIXLog::Thread);
1817 LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1818 triggering_tid);
1819
1820 m_pending_notification_tid = triggering_tid;
1821
1822 // Request a stop for all the thread stops that need to be stopped and are
1823 // not already known to be stopped.
1824 for (const auto &thread : m_threads) {
1825 if (StateIsRunningState(thread->GetState()))
1826 static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1827 }
1828
1829 SignalIfAllThreadsStopped();
1830 LLDB_LOG(log, "event processing done");
1831 }
1832
SignalIfAllThreadsStopped()1833 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1834 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1835 return; // No pending notification. Nothing to do.
1836
1837 for (const auto &thread_sp : m_threads) {
1838 if (StateIsRunningState(thread_sp->GetState()))
1839 return; // Some threads are still running. Don't signal yet.
1840 }
1841
1842 // We have a pending notification and all threads have stopped.
1843 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
1844
1845 // Clear any temporary breakpoints we used to implement software single
1846 // stepping.
1847 for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1848 Status error = RemoveBreakpoint(thread_info.second);
1849 if (error.Fail())
1850 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1851 thread_info.first, error);
1852 }
1853 m_threads_stepping_with_breakpoint.clear();
1854
1855 // Notify the delegate about the stop
1856 SetCurrentThreadID(m_pending_notification_tid);
1857 SetState(StateType::eStateStopped, true);
1858 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1859 }
1860
ThreadWasCreated(NativeThreadLinux & thread)1861 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1862 Log *const log = GetLog(POSIXLog::Thread);
1863 LLDB_LOG(log, "tid: {0}", thread.GetID());
1864
1865 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1866 StateIsRunningState(thread.GetState())) {
1867 // We will need to wait for this new thread to stop as well before firing
1868 // the notification.
1869 thread.RequestStop();
1870 }
1871 }
1872
HandlePid(::pid_t pid)1873 static std::optional<WaitStatus> HandlePid(::pid_t pid) {
1874 Log *log = GetLog(POSIXLog::Process);
1875
1876 int status;
1877 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(
1878 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG);
1879
1880 if (wait_pid == 0)
1881 return std::nullopt;
1882
1883 if (wait_pid == -1) {
1884 Status error(errno, eErrorTypePOSIX);
1885 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid,
1886 error);
1887 return std::nullopt;
1888 }
1889
1890 assert(wait_pid == pid);
1891
1892 WaitStatus wait_status = WaitStatus::Decode(status);
1893
1894 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status);
1895 return wait_status;
1896 }
1897
SigchldHandler()1898 void NativeProcessLinux::SigchldHandler() {
1899 Log *log = GetLog(POSIXLog::Process);
1900
1901 // Threads can appear or disappear as a result of event processing, so gather
1902 // the events upfront.
1903 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events;
1904 bool checked_main_thread = false;
1905 for (const auto &thread_up : m_threads) {
1906 if (thread_up->GetID() == GetID())
1907 checked_main_thread = true;
1908
1909 if (std::optional<WaitStatus> status = HandlePid(thread_up->GetID()))
1910 tid_events.try_emplace(thread_up->GetID(), *status);
1911 }
1912 // Check the main thread even when we're not tracking it as process exit
1913 // events are reported that way.
1914 if (!checked_main_thread) {
1915 if (std::optional<WaitStatus> status = HandlePid(GetID()))
1916 tid_events.try_emplace(GetID(), *status);
1917 }
1918
1919 for (auto &KV : tid_events) {
1920 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second);
1921 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit ||
1922 KV.second.type == WaitStatus::Signal)) {
1923
1924 // The process exited. We're done monitoring. Report to delegate.
1925 SetExitStatus(KV.second, true);
1926 return;
1927 }
1928 NativeThreadLinux *thread = GetThreadByID(KV.first);
1929 assert(thread && "Why did this thread disappear?");
1930 MonitorCallback(*thread, KV.second);
1931 }
1932 }
1933
1934 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1935 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
PtraceWrapper(int req,lldb::pid_t pid,void * addr,void * data,size_t data_size,long * result)1936 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1937 void *data, size_t data_size,
1938 long *result) {
1939 Status error;
1940 long int ret;
1941
1942 Log *log = GetLog(POSIXLog::Ptrace);
1943
1944 PtraceDisplayBytes(req, data, data_size);
1945
1946 errno = 0;
1947 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1948 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1949 *(unsigned int *)addr, data);
1950 else
1951 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1952 addr, data);
1953
1954 if (ret == -1)
1955 error.SetErrorToErrno();
1956
1957 if (result)
1958 *result = ret;
1959
1960 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1961 data_size, ret);
1962
1963 PtraceDisplayBytes(req, data, data_size);
1964
1965 if (error.Fail())
1966 LLDB_LOG(log, "ptrace() failed: {0}", error);
1967
1968 return error;
1969 }
1970
TraceSupported()1971 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1972 if (IntelPTCollector::IsSupported())
1973 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1974 return NativeProcessProtocol::TraceSupported();
1975 }
1976
TraceStart(StringRef json_request,StringRef type)1977 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1978 if (type == "intel-pt") {
1979 if (Expected<TraceIntelPTStartRequest> request =
1980 json::parse<TraceIntelPTStartRequest>(json_request,
1981 "TraceIntelPTStartRequest")) {
1982 return m_intel_pt_collector.TraceStart(*request);
1983 } else
1984 return request.takeError();
1985 }
1986
1987 return NativeProcessProtocol::TraceStart(json_request, type);
1988 }
1989
TraceStop(const TraceStopRequest & request)1990 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1991 if (request.type == "intel-pt")
1992 return m_intel_pt_collector.TraceStop(request);
1993 return NativeProcessProtocol::TraceStop(request);
1994 }
1995
TraceGetState(StringRef type)1996 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1997 if (type == "intel-pt")
1998 return m_intel_pt_collector.GetState();
1999 return NativeProcessProtocol::TraceGetState(type);
2000 }
2001
TraceGetBinaryData(const TraceGetBinaryDataRequest & request)2002 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
2003 const TraceGetBinaryDataRequest &request) {
2004 if (request.type == "intel-pt")
2005 return m_intel_pt_collector.GetBinaryData(request);
2006 return NativeProcessProtocol::TraceGetBinaryData(request);
2007 }
2008