1 /*
2 * PROJECT: ReactOS Kernel
3 * LICENSE: BSD - See COPYING.ARM in the top level directory
4 * FILE: ntoskrnl/mm/ARM3/virtual.c
5 * PURPOSE: ARM Memory Manager Virtual Memory Management
6 * PROGRAMMERS: ReactOS Portable Systems Group
7 */
8
9 /* INCLUDES *******************************************************************/
10
11 #include <ntoskrnl.h>
12 #define NDEBUG
13 #include <debug.h>
14
15 #define MODULE_INVOLVED_IN_ARM3
16 #include <mm/ARM3/miarm.h>
17
18 #define MI_MAPPED_COPY_PAGES 14
19 #define MI_POOL_COPY_BYTES 512
20 #define MI_MAX_TRANSFER_SIZE 64 * 1024
21
22 NTSTATUS NTAPI
23 MiProtectVirtualMemory(IN PEPROCESS Process,
24 IN OUT PVOID *BaseAddress,
25 IN OUT PSIZE_T NumberOfBytesToProtect,
26 IN ULONG NewAccessProtection,
27 OUT PULONG OldAccessProtection OPTIONAL);
28
29 VOID
30 NTAPI
31 MiFlushTbAndCapture(IN PMMVAD FoundVad,
32 IN PMMPTE PointerPte,
33 IN ULONG ProtectionMask,
34 IN PMMPFN Pfn1,
35 IN BOOLEAN CaptureDirtyBit);
36
37
38 /* PRIVATE FUNCTIONS **********************************************************/
39
40 ULONG
41 NTAPI
MiCalculatePageCommitment(IN ULONG_PTR StartingAddress,IN ULONG_PTR EndingAddress,IN PMMVAD Vad,IN PEPROCESS Process)42 MiCalculatePageCommitment(IN ULONG_PTR StartingAddress,
43 IN ULONG_PTR EndingAddress,
44 IN PMMVAD Vad,
45 IN PEPROCESS Process)
46 {
47 PMMPTE PointerPte, LastPte;
48 PMMPDE PointerPde;
49 BOOLEAN OnPdeBoundary = TRUE;
50 #if _MI_PAGING_LEVELS >= 3
51 PMMPPE PointerPpe;
52 BOOLEAN OnPpeBoundary = TRUE;
53 #if _MI_PAGING_LEVELS == 4
54 PMMPXE PointerPxe;
55 BOOLEAN OnPxeBoundary = TRUE;
56 #endif
57 #endif
58
59 /* Make sure this all makes sense */
60 ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
61 ASSERT(EndingAddress >= StartingAddress);
62 PointerPte = MiAddressToPte(StartingAddress);
63 LastPte = MiAddressToPte(EndingAddress);
64
65 /*
66 * In case this is a committed VAD, assume the whole range is committed
67 * and count the individually decommitted pages.
68 * In case it is not, assume the range is not committed and count the individually committed pages.
69 */
70 ULONG_PTR CommittedPages = Vad->u.VadFlags.MemCommit ? BYTES_TO_PAGES(EndingAddress - StartingAddress) : 0;
71
72 while (PointerPte <= LastPte)
73 {
74 #if _MI_PAGING_LEVELS == 4
75 /* Check if PXE was ever paged in. */
76 if (OnPxeBoundary)
77 {
78 PointerPxe = MiPteToPxe(PointerPte);
79
80 /* Check that this loop is sane */
81 ASSERT(OnPpeBoundary);
82 ASSERT(OnPdeBoundary);
83
84 if (PointerPxe->u.Long == 0)
85 {
86 PointerPxe++;
87 PointerPte = MiPxeToPte(PointerPde);
88 continue;
89 }
90
91 if (PointerPxe->u.Hard.Valid == 0)
92 MiMakeSystemAddressValid(MiPteToPpe(PointerPte), Process);
93 }
94 ASSERT(PointerPxe->u.Hard.Valid == 1);
95 #endif
96
97 #if _MI_PAGING_LEVELS >= 3
98 /* Now PPE */
99 if (OnPpeBoundary)
100 {
101 PointerPpe = MiPteToPpe(PointerPte);
102
103 /* Sanity again */
104 ASSERT(OnPdeBoundary);
105
106 if (PointerPpe->u.Long == 0)
107 {
108 PointerPpe++;
109 PointerPte = MiPpeToPte(PointerPpe);
110 #if _MI_PAGING_LEVELS == 4
111 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
112 #endif
113 continue;
114 }
115
116 if (PointerPpe->u.Hard.Valid == 0)
117 MiMakeSystemAddressValid(MiPteToPde(PointerPte), Process);
118 }
119 ASSERT(PointerPpe->u.Hard.Valid == 1);
120 #endif
121
122 /* Last level is the PDE */
123 if (OnPdeBoundary)
124 {
125 PointerPde = MiPteToPde(PointerPte);
126 if (PointerPde->u.Long == 0)
127 {
128 PointerPde++;
129 PointerPte = MiPdeToPte(PointerPde);
130 #if _MI_PAGING_LEVELS >= 3
131 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
132 #if _MI_PAGING_LEVELS == 4
133 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
134 #endif
135 #endif
136 continue;
137 }
138
139 if (PointerPde->u.Hard.Valid == 0)
140 MiMakeSystemAddressValid(PointerPte, Process);
141 }
142 ASSERT(PointerPde->u.Hard.Valid == 1);
143
144 /* Is this PTE demand zero? */
145 if (PointerPte->u.Long != 0)
146 {
147 /* It isn't -- is it a decommited, invalid, or faulted PTE? */
148 if ((PointerPte->u.Hard.Valid == 0) &&
149 (PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
150 ((PointerPte->u.Soft.Prototype == 0) ||
151 (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
152 {
153 /* It is, so remove it from the count of committed pages if we have to */
154 if (Vad->u.VadFlags.MemCommit)
155 CommittedPages--;
156 }
157 else if (!Vad->u.VadFlags.MemCommit)
158 {
159 /* It is a valid, non-decommited, non-paged out PTE. Count it in. */
160 CommittedPages++;
161 }
162 }
163
164 /* Move to the next PTE */
165 PointerPte++;
166 /* Manage page tables */
167 OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
168 #if _MI_PAGING_LEVELS >= 3
169 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
170 #if _MI_PAGING_LEVELS == 4
171 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
172 #endif
173 #endif
174 }
175
176 /* Make sure we didn't mess this up */
177 ASSERT(CommittedPages <= BYTES_TO_PAGES(EndingAddress - StartingAddress));
178 return CommittedPages;
179 }
180
181 ULONG
182 NTAPI
MiMakeSystemAddressValid(IN PVOID PageTableVirtualAddress,IN PEPROCESS CurrentProcess)183 MiMakeSystemAddressValid(IN PVOID PageTableVirtualAddress,
184 IN PEPROCESS CurrentProcess)
185 {
186 NTSTATUS Status;
187 BOOLEAN WsShared = FALSE, WsSafe = FALSE, LockChange = FALSE;
188 PETHREAD CurrentThread = PsGetCurrentThread();
189
190 /* Must be a non-pool page table, since those are double-mapped already */
191 ASSERT(PageTableVirtualAddress > MM_HIGHEST_USER_ADDRESS);
192 ASSERT((PageTableVirtualAddress < MmPagedPoolStart) ||
193 (PageTableVirtualAddress > MmPagedPoolEnd));
194
195 /* Working set lock or PFN lock should be held */
196 ASSERT(KeAreAllApcsDisabled() == TRUE);
197
198 /* Check if the page table is valid */
199 while (!MmIsAddressValid(PageTableVirtualAddress))
200 {
201 /* Release the working set lock */
202 MiUnlockProcessWorkingSetForFault(CurrentProcess,
203 CurrentThread,
204 &WsSafe,
205 &WsShared);
206
207 /* Fault it in */
208 Status = MmAccessFault(FALSE, PageTableVirtualAddress, KernelMode, NULL);
209 if (!NT_SUCCESS(Status))
210 {
211 /* This should not fail */
212 KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
213 1,
214 Status,
215 (ULONG_PTR)CurrentProcess,
216 (ULONG_PTR)PageTableVirtualAddress);
217 }
218
219 /* Lock the working set again */
220 MiLockProcessWorkingSetForFault(CurrentProcess,
221 CurrentThread,
222 WsSafe,
223 WsShared);
224
225 /* This flag will be useful later when we do better locking */
226 LockChange = TRUE;
227 }
228
229 /* Let caller know what the lock state is */
230 return LockChange;
231 }
232
233 ULONG
234 NTAPI
MiMakeSystemAddressValidPfn(IN PVOID VirtualAddress,IN KIRQL OldIrql)235 MiMakeSystemAddressValidPfn(IN PVOID VirtualAddress,
236 IN KIRQL OldIrql)
237 {
238 NTSTATUS Status;
239 BOOLEAN LockChange = FALSE;
240
241 /* Must be e kernel address */
242 ASSERT(VirtualAddress > MM_HIGHEST_USER_ADDRESS);
243
244 /* Check if the page is valid */
245 while (!MmIsAddressValid(VirtualAddress))
246 {
247 /* Release the PFN database */
248 MiReleasePfnLock(OldIrql);
249
250 /* Fault it in */
251 Status = MmAccessFault(FALSE, VirtualAddress, KernelMode, NULL);
252 if (!NT_SUCCESS(Status))
253 {
254 /* This should not fail */
255 KeBugCheckEx(KERNEL_DATA_INPAGE_ERROR,
256 3,
257 Status,
258 0,
259 (ULONG_PTR)VirtualAddress);
260 }
261
262 /* This flag will be useful later when we do better locking */
263 LockChange = TRUE;
264
265 /* Lock the PFN database */
266 OldIrql = MiAcquirePfnLock();
267 }
268
269 /* Let caller know what the lock state is */
270 return LockChange;
271 }
272
273 PFN_COUNT
274 NTAPI
MiDeleteSystemPageableVm(IN PMMPTE PointerPte,IN PFN_NUMBER PageCount,IN ULONG Flags,OUT PPFN_NUMBER ValidPages)275 MiDeleteSystemPageableVm(IN PMMPTE PointerPte,
276 IN PFN_NUMBER PageCount,
277 IN ULONG Flags,
278 OUT PPFN_NUMBER ValidPages)
279 {
280 PFN_COUNT ActualPages = 0;
281 PETHREAD CurrentThread = PsGetCurrentThread();
282 PMMPFN Pfn1, Pfn2;
283 PFN_NUMBER PageFrameIndex, PageTableIndex;
284 KIRQL OldIrql;
285 ASSERT(KeGetCurrentIrql() <= APC_LEVEL);
286
287 /* Lock the system working set */
288 MiLockWorkingSet(CurrentThread, &MmSystemCacheWs);
289
290 /* Loop all pages */
291 while (PageCount)
292 {
293 /* Make sure there's some data about the page */
294 if (PointerPte->u.Long)
295 {
296 /* Normally this is one possibility -- freeing a valid page */
297 if (PointerPte->u.Hard.Valid)
298 {
299 /* Get the page PFN */
300 PageFrameIndex = PFN_FROM_PTE(PointerPte);
301 Pfn1 = MiGetPfnEntry(PageFrameIndex);
302
303 /* Should not have any working set data yet */
304 ASSERT(Pfn1->u1.WsIndex == 0);
305
306 /* Actual valid, legitimate, pages */
307 if (ValidPages) (*ValidPages)++;
308
309 /* Get the page table entry */
310 PageTableIndex = Pfn1->u4.PteFrame;
311 Pfn2 = MiGetPfnEntry(PageTableIndex);
312
313 /* Lock the PFN database */
314 OldIrql = MiAcquirePfnLock();
315
316 /* Delete it the page */
317 MI_SET_PFN_DELETED(Pfn1);
318 MiDecrementShareCount(Pfn1, PageFrameIndex);
319
320 /* Decrement the page table too */
321 MiDecrementShareCount(Pfn2, PageTableIndex);
322
323 /* Release the PFN database */
324 MiReleasePfnLock(OldIrql);
325
326 /* Destroy the PTE */
327 MI_ERASE_PTE(PointerPte);
328 }
329 else
330 {
331 /* As always, only handle current ARM3 scenarios */
332 ASSERT(PointerPte->u.Soft.Prototype == 0);
333 ASSERT(PointerPte->u.Soft.Transition == 0);
334
335 /*
336 * The only other ARM3 possibility is a demand zero page, which would
337 * mean freeing some of the paged pool pages that haven't even been
338 * touched yet, as part of a larger allocation.
339 *
340 * Right now, we shouldn't expect any page file information in the PTE
341 */
342 ASSERT(PointerPte->u.Soft.PageFileHigh == 0);
343
344 /* Destroy the PTE */
345 MI_ERASE_PTE(PointerPte);
346 }
347
348 /* Actual legitimate pages */
349 ActualPages++;
350 }
351
352 /* Keep going */
353 PointerPte++;
354 PageCount--;
355 }
356
357 /* Release the working set */
358 MiUnlockWorkingSet(CurrentThread, &MmSystemCacheWs);
359
360 /* Flush the entire TLB */
361 KeFlushEntireTb(TRUE, TRUE);
362
363 /* Done */
364 return ActualPages;
365 }
366
367 VOID
368 NTAPI
MiDeletePte(IN PMMPTE PointerPte,IN PVOID VirtualAddress,IN PEPROCESS CurrentProcess,IN PMMPTE PrototypePte)369 MiDeletePte(IN PMMPTE PointerPte,
370 IN PVOID VirtualAddress,
371 IN PEPROCESS CurrentProcess,
372 IN PMMPTE PrototypePte)
373 {
374 PMMPFN Pfn1;
375 MMPTE TempPte;
376 PFN_NUMBER PageFrameIndex;
377 PMMPDE PointerPde;
378
379 /* PFN lock must be held */
380 MI_ASSERT_PFN_LOCK_HELD();
381
382 /* WorkingSet must be exclusively locked */
383 ASSERT(MM_ANY_WS_LOCK_HELD_EXCLUSIVE(PsGetCurrentThread()));
384
385 /* This must be current process. */
386 ASSERT(CurrentProcess == PsGetCurrentProcess());
387
388 /* Capture the PTE */
389 TempPte = *PointerPte;
390
391 /* See if the PTE is valid */
392 if (TempPte.u.Hard.Valid == 0)
393 {
394 /* Prototype and paged out PTEs not supported yet */
395 ASSERT(TempPte.u.Soft.Prototype == 0);
396 ASSERT((TempPte.u.Soft.PageFileHigh == 0) || (TempPte.u.Soft.Transition == 1));
397
398 if (TempPte.u.Soft.Transition)
399 {
400 /* Get the PFN entry */
401 PageFrameIndex = PFN_FROM_PTE(&TempPte);
402 Pfn1 = MiGetPfnEntry(PageFrameIndex);
403
404 DPRINT("Pte %p is transitional!\n", PointerPte);
405
406 /* Make sure the saved PTE address is valid */
407 ASSERT((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) == PointerPte);
408
409 /* Destroy the PTE */
410 MI_ERASE_PTE(PointerPte);
411
412 /* Drop the reference on the page table. */
413 MiDecrementShareCount(MiGetPfnEntry(Pfn1->u4.PteFrame), Pfn1->u4.PteFrame);
414
415 /* In case of shared page, the prototype PTE must be in transition, not the process one */
416 ASSERT(Pfn1->u3.e1.PrototypePte == 0);
417
418 /* Delete the PFN */
419 MI_SET_PFN_DELETED(Pfn1);
420
421 /* It must be either free (refcount == 0) or being written (refcount == 1) */
422 ASSERT(Pfn1->u3.e2.ReferenceCount == Pfn1->u3.e1.WriteInProgress);
423
424 /* See if we must free it ourselves, or if it will be freed once I/O is over */
425 if (Pfn1->u3.e2.ReferenceCount == 0)
426 {
427 /* And it should be in standby or modified list */
428 ASSERT((Pfn1->u3.e1.PageLocation == ModifiedPageList) || (Pfn1->u3.e1.PageLocation == StandbyPageList));
429
430 /* Unlink it and set its reference count to one */
431 MiUnlinkPageFromList(Pfn1);
432 Pfn1->u3.e2.ReferenceCount++;
433
434 /* This will put it back in free list and clean properly up */
435 MiDecrementReferenceCount(Pfn1, PageFrameIndex);
436 }
437 return;
438 }
439 }
440
441 /* Get the PFN entry */
442 PageFrameIndex = PFN_FROM_PTE(&TempPte);
443 Pfn1 = MiGetPfnEntry(PageFrameIndex);
444
445 /* Check if this is a valid, prototype PTE */
446 if (Pfn1->u3.e1.PrototypePte == 1)
447 {
448 /* Get the PDE and make sure it's faulted in */
449 PointerPde = MiPteToPde(PointerPte);
450 if (PointerPde->u.Hard.Valid == 0)
451 {
452 #if (_MI_PAGING_LEVELS == 2)
453 /* Could be paged pool access from a new process -- synchronize the page directories */
454 if (!NT_SUCCESS(MiCheckPdeForPagedPool(VirtualAddress)))
455 {
456 #endif
457 /* The PDE must be valid at this point */
458 KeBugCheckEx(MEMORY_MANAGEMENT,
459 0x61940,
460 (ULONG_PTR)PointerPte,
461 PointerPte->u.Long,
462 (ULONG_PTR)VirtualAddress);
463 }
464 #if (_MI_PAGING_LEVELS == 2)
465 }
466 #endif
467 /* Drop the share count on the page table */
468 PointerPde = MiPteToPde(PointerPte);
469 MiDecrementShareCount(MiGetPfnEntry(PointerPde->u.Hard.PageFrameNumber),
470 PointerPde->u.Hard.PageFrameNumber);
471
472 /* Drop the share count */
473 MiDecrementShareCount(Pfn1, PageFrameIndex);
474
475 /* Either a fork, or this is the shared user data page */
476 if ((PointerPte <= MiHighestUserPte) && (PrototypePte != Pfn1->PteAddress))
477 {
478 /* If it's not the shared user page, then crash, since there's no fork() yet */
479 if ((PAGE_ALIGN(VirtualAddress) != (PVOID)USER_SHARED_DATA) ||
480 (MmHighestUserAddress <= (PVOID)USER_SHARED_DATA))
481 {
482 /* Must be some sort of memory corruption */
483 KeBugCheckEx(MEMORY_MANAGEMENT,
484 0x400,
485 (ULONG_PTR)PointerPte,
486 (ULONG_PTR)PrototypePte,
487 (ULONG_PTR)Pfn1->PteAddress);
488 }
489 }
490
491 /* Erase it */
492 MI_ERASE_PTE(PointerPte);
493 }
494 else
495 {
496 /* Make sure the saved PTE address is valid */
497 if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte)
498 {
499 /* The PFN entry is illegal, or invalid */
500 KeBugCheckEx(MEMORY_MANAGEMENT,
501 0x401,
502 (ULONG_PTR)PointerPte,
503 PointerPte->u.Long,
504 (ULONG_PTR)Pfn1->PteAddress);
505 }
506
507 /* Erase the PTE */
508 MI_ERASE_PTE(PointerPte);
509
510 /* There should only be 1 shared reference count */
511 ASSERT(Pfn1->u2.ShareCount == 1);
512
513 /* Drop the reference on the page table. */
514 MiDecrementShareCount(MiGetPfnEntry(Pfn1->u4.PteFrame), Pfn1->u4.PteFrame);
515
516 /* Mark the PFN for deletion and dereference what should be the last ref */
517 MI_SET_PFN_DELETED(Pfn1);
518 MiDecrementShareCount(Pfn1, PageFrameIndex);
519
520 /* We should eventually do this */
521 //CurrentProcess->NumberOfPrivatePages--;
522 }
523
524 /* Flush the TLB */
525 KeFlushCurrentTb();
526 }
527
528 VOID
529 NTAPI
MiDeleteVirtualAddresses(IN ULONG_PTR Va,IN ULONG_PTR EndingAddress,IN PMMVAD Vad)530 MiDeleteVirtualAddresses(IN ULONG_PTR Va,
531 IN ULONG_PTR EndingAddress,
532 IN PMMVAD Vad)
533 {
534 PMMPTE PointerPte, PrototypePte, LastPrototypePte;
535 PMMPDE PointerPde;
536 #if (_MI_PAGING_LEVELS >= 3)
537 PMMPPE PointerPpe;
538 #endif
539 #if (_MI_PAGING_LEVELS >= 4)
540 PMMPPE PointerPxe;
541 #endif
542 MMPTE TempPte;
543 PEPROCESS CurrentProcess;
544 KIRQL OldIrql;
545 BOOLEAN AddressGap = FALSE;
546 PSUBSECTION Subsection;
547
548 /* Get out if this is a fake VAD, RosMm will free the marea pages */
549 if ((Vad) && (Vad->u.VadFlags.Spare == 1)) return;
550
551 /* Get the current process */
552 CurrentProcess = PsGetCurrentProcess();
553
554 /* Check if this is a section VAD or a VM VAD */
555 if (!(Vad) || (Vad->u.VadFlags.PrivateMemory) || !(Vad->FirstPrototypePte))
556 {
557 /* Don't worry about prototypes */
558 PrototypePte = LastPrototypePte = NULL;
559 }
560 else
561 {
562 /* Get the prototype PTE */
563 PrototypePte = Vad->FirstPrototypePte;
564 LastPrototypePte = Vad->FirstPrototypePte + 1;
565 }
566
567 /* In all cases, we don't support fork() yet */
568 ASSERT(CurrentProcess->CloneRoot == NULL);
569
570 /* Loop the PTE for each VA (EndingAddress is inclusive!) */
571 while (Va <= EndingAddress)
572 {
573 #if (_MI_PAGING_LEVELS >= 4)
574 /* Get the PXE and check if it's valid */
575 PointerPxe = MiAddressToPxe((PVOID)Va);
576 if (!PointerPxe->u.Hard.Valid)
577 {
578 /* Check for unmapped range and skip it */
579 if (!PointerPxe->u.Long)
580 {
581 /* There are gaps in the address space */
582 AddressGap = TRUE;
583
584 /* Update Va and continue looping */
585 Va = (ULONG_PTR)MiPxeToAddress(PointerPxe + 1);
586 continue;
587 }
588
589 /* Make the PXE valid */
590 MiMakeSystemAddressValid(MiPteToAddress(PointerPxe), CurrentProcess);
591 }
592 #endif
593 #if (_MI_PAGING_LEVELS >= 3)
594 /* Get the PPE and check if it's valid */
595 PointerPpe = MiAddressToPpe((PVOID)Va);
596 if (!PointerPpe->u.Hard.Valid)
597 {
598 /* Check for unmapped range and skip it */
599 if (!PointerPpe->u.Long)
600 {
601 /* There are gaps in the address space */
602 AddressGap = TRUE;
603
604 /* Update Va and continue looping */
605 Va = (ULONG_PTR)MiPpeToAddress(PointerPpe + 1);
606 continue;
607 }
608
609 /* Make the PPE valid */
610 MiMakeSystemAddressValid(MiPteToAddress(PointerPpe), CurrentProcess);
611 }
612 #endif
613 /* Skip invalid PDEs */
614 PointerPde = MiAddressToPde((PVOID)Va);
615 if (!PointerPde->u.Long)
616 {
617 /* There are gaps in the address space */
618 AddressGap = TRUE;
619
620 /* Check if all the PDEs are invalid, so there's nothing to free */
621 Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
622 continue;
623 }
624
625 /* Now check if the PDE is mapped in */
626 if (!PointerPde->u.Hard.Valid)
627 {
628 /* It isn't, so map it in */
629 PointerPte = MiPteToAddress(PointerPde);
630 MiMakeSystemAddressValid(PointerPte, CurrentProcess);
631 }
632
633 /* Now we should have a valid PDE, mapped in, and still have some VA */
634 ASSERT(PointerPde->u.Hard.Valid == 1);
635 ASSERT(Va <= EndingAddress);
636
637 /* Check if this is a section VAD with gaps in it */
638 if ((AddressGap) && (LastPrototypePte))
639 {
640 /* We need to skip to the next correct prototype PTE */
641 PrototypePte = MI_GET_PROTOTYPE_PTE_FOR_VPN(Vad, Va >> PAGE_SHIFT);
642
643 /* And we need the subsection to skip to the next last prototype PTE */
644 Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
645 if (Subsection)
646 {
647 /* Found it! */
648 LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
649 }
650 else
651 {
652 /* No more subsections, we are done with prototype PTEs */
653 PrototypePte = NULL;
654 }
655 }
656
657 /* Lock the PFN Database while we delete the PTEs */
658 OldIrql = MiAcquirePfnLock();
659 PointerPte = MiAddressToPte(Va);
660 do
661 {
662 /* Making sure the PDE is still valid */
663 ASSERT(PointerPde->u.Hard.Valid == 1);
664
665 /* Capture the PDE and make sure it exists */
666 TempPte = *PointerPte;
667 if (TempPte.u.Long)
668 {
669 /* Check if the PTE is actually mapped in */
670 if (MI_IS_MAPPED_PTE(&TempPte))
671 {
672 /* Are we dealing with section VAD? */
673 if ((LastPrototypePte) && (PrototypePte > LastPrototypePte))
674 {
675 /* We need to skip to the next correct prototype PTE */
676 PrototypePte = MI_GET_PROTOTYPE_PTE_FOR_VPN(Vad, Va >> PAGE_SHIFT);
677
678 /* And we need the subsection to skip to the next last prototype PTE */
679 Subsection = MiLocateSubsection(Vad, Va >> PAGE_SHIFT);
680 if (Subsection)
681 {
682 /* Found it! */
683 LastPrototypePte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
684 }
685 else
686 {
687 /* No more subsections, we are done with prototype PTEs */
688 PrototypePte = NULL;
689 }
690 }
691
692 /* Check for prototype PTE */
693 if ((TempPte.u.Hard.Valid == 0) &&
694 (TempPte.u.Soft.Prototype == 1))
695 {
696 /* Just nuke it */
697 MI_ERASE_PTE(PointerPte);
698 }
699 else
700 {
701 /* Delete the PTE proper */
702 MiDeletePte(PointerPte,
703 (PVOID)Va,
704 CurrentProcess,
705 PrototypePte);
706 }
707 }
708 else
709 {
710 /* The PTE was never mapped, just nuke it here */
711 MI_ERASE_PTE(PointerPte);
712 }
713
714 if (MiDecrementPageTableReferences((PVOID)Va) == 0)
715 {
716 ASSERT(PointerPde->u.Long != 0);
717
718 /* Delete the PDE proper */
719 MiDeletePde(PointerPde, CurrentProcess);
720
721 /* Continue with the next PDE */
722 Va = (ULONG_PTR)MiPdeToAddress(PointerPde + 1);
723
724 /* Use this to detect address gaps */
725 PointerPte++;
726
727 PrototypePte++;
728 break;
729 }
730 }
731
732 /* Update the address and PTE for it */
733 Va += PAGE_SIZE;
734 PointerPte++;
735 PrototypePte++;
736 } while ((Va & (PDE_MAPPED_VA - 1)) && (Va <= EndingAddress));
737
738 /* Release the lock */
739 MiReleasePfnLock(OldIrql);
740
741 if (Va > EndingAddress) return;
742
743 /* Check if we exited the loop regularly */
744 AddressGap = (PointerPte != MiAddressToPte(Va));
745 }
746 }
747
748 LONG
MiGetExceptionInfo(IN PEXCEPTION_POINTERS ExceptionInfo,OUT PBOOLEAN HaveBadAddress,OUT PULONG_PTR BadAddress)749 MiGetExceptionInfo(IN PEXCEPTION_POINTERS ExceptionInfo,
750 OUT PBOOLEAN HaveBadAddress,
751 OUT PULONG_PTR BadAddress)
752 {
753 PEXCEPTION_RECORD ExceptionRecord;
754 PAGED_CODE();
755
756 //
757 // Assume default
758 //
759 *HaveBadAddress = FALSE;
760
761 //
762 // Get the exception record
763 //
764 ExceptionRecord = ExceptionInfo->ExceptionRecord;
765
766 //
767 // Look at the exception code
768 //
769 if ((ExceptionRecord->ExceptionCode == STATUS_ACCESS_VIOLATION) ||
770 (ExceptionRecord->ExceptionCode == STATUS_GUARD_PAGE_VIOLATION) ||
771 (ExceptionRecord->ExceptionCode == STATUS_IN_PAGE_ERROR))
772 {
773 //
774 // We can tell the address if we have more than one parameter
775 //
776 if (ExceptionRecord->NumberParameters > 1)
777 {
778 //
779 // Return the address
780 //
781 *HaveBadAddress = TRUE;
782 *BadAddress = ExceptionRecord->ExceptionInformation[1];
783 }
784 }
785
786 //
787 // Continue executing the next handler
788 //
789 return EXCEPTION_EXECUTE_HANDLER;
790 }
791
792 NTSTATUS
793 NTAPI
MiDoMappedCopy(IN PEPROCESS SourceProcess,IN PVOID SourceAddress,IN PEPROCESS TargetProcess,OUT PVOID TargetAddress,IN SIZE_T BufferSize,IN KPROCESSOR_MODE PreviousMode,OUT PSIZE_T ReturnSize)794 MiDoMappedCopy(IN PEPROCESS SourceProcess,
795 IN PVOID SourceAddress,
796 IN PEPROCESS TargetProcess,
797 OUT PVOID TargetAddress,
798 IN SIZE_T BufferSize,
799 IN KPROCESSOR_MODE PreviousMode,
800 OUT PSIZE_T ReturnSize)
801 {
802 PFN_NUMBER MdlBuffer[(sizeof(MDL) / sizeof(PFN_NUMBER)) + MI_MAPPED_COPY_PAGES + 1];
803 PMDL Mdl = (PMDL)MdlBuffer;
804 SIZE_T TotalSize, CurrentSize, RemainingSize;
805 volatile BOOLEAN FailedInProbe = FALSE;
806 volatile BOOLEAN PagesLocked = FALSE;
807 PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
808 volatile PVOID MdlAddress = NULL;
809 KAPC_STATE ApcState;
810 BOOLEAN HaveBadAddress;
811 ULONG_PTR BadAddress;
812 NTSTATUS Status = STATUS_SUCCESS;
813 PAGED_CODE();
814
815 //
816 // Calculate the maximum amount of data to move
817 //
818 TotalSize = MI_MAPPED_COPY_PAGES * PAGE_SIZE;
819 if (BufferSize <= TotalSize) TotalSize = BufferSize;
820 CurrentSize = TotalSize;
821 RemainingSize = BufferSize;
822
823 //
824 // Loop as long as there is still data
825 //
826 while (RemainingSize > 0)
827 {
828 //
829 // Check if this transfer will finish everything off
830 //
831 if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
832
833 //
834 // Attach to the source address space
835 //
836 KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
837
838 //
839 // Check state for this pass
840 //
841 ASSERT(MdlAddress == NULL);
842 ASSERT(PagesLocked == FALSE);
843 ASSERT(FailedInProbe == FALSE);
844
845 //
846 // Protect user-mode copy
847 //
848 _SEH2_TRY
849 {
850 //
851 // If this is our first time, probe the buffer
852 //
853 if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
854 {
855 //
856 // Catch a failure here
857 //
858 FailedInProbe = TRUE;
859
860 //
861 // Do the probe
862 //
863 ProbeForRead(SourceAddress, BufferSize, sizeof(CHAR));
864
865 //
866 // Passed
867 //
868 FailedInProbe = FALSE;
869 }
870
871 //
872 // Initialize and probe and lock the MDL
873 //
874 MmInitializeMdl(Mdl, CurrentAddress, CurrentSize);
875 MmProbeAndLockPages(Mdl, PreviousMode, IoReadAccess);
876 PagesLocked = TRUE;
877 }
878 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
879 {
880 Status = _SEH2_GetExceptionCode();
881 }
882 _SEH2_END
883
884 /* Detach from source process */
885 KeUnstackDetachProcess(&ApcState);
886
887 if (Status != STATUS_SUCCESS)
888 {
889 goto Exit;
890 }
891
892 //
893 // Now map the pages
894 //
895 MdlAddress = MmMapLockedPagesSpecifyCache(Mdl,
896 KernelMode,
897 MmCached,
898 NULL,
899 FALSE,
900 HighPagePriority);
901 if (!MdlAddress)
902 {
903 Status = STATUS_INSUFFICIENT_RESOURCES;
904 goto Exit;
905 }
906
907 //
908 // Grab to the target process
909 //
910 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
911
912 _SEH2_TRY
913 {
914 //
915 // Check if this is our first time through
916 //
917 if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
918 {
919 //
920 // Catch a failure here
921 //
922 FailedInProbe = TRUE;
923
924 //
925 // Do the probe
926 //
927 ProbeForWrite(TargetAddress, BufferSize, sizeof(CHAR));
928
929 //
930 // Passed
931 //
932 FailedInProbe = FALSE;
933 }
934
935 //
936 // Now do the actual move
937 //
938 RtlCopyMemory(CurrentTargetAddress, MdlAddress, CurrentSize);
939 }
940 _SEH2_EXCEPT(MiGetExceptionInfo(_SEH2_GetExceptionInformation(),
941 &HaveBadAddress,
942 &BadAddress))
943 {
944 *ReturnSize = BufferSize - RemainingSize;
945 //
946 // Check if we failed during the probe
947 //
948 if (FailedInProbe)
949 {
950 //
951 // Exit
952 //
953 Status = _SEH2_GetExceptionCode();
954 }
955 else
956 {
957 //
958 // Othewise we failed during the move.
959 // Check if we know exactly where we stopped copying
960 //
961 if (HaveBadAddress)
962 {
963 //
964 // Return the exact number of bytes copied
965 //
966 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
967 }
968 //
969 // Return partial copy
970 //
971 Status = STATUS_PARTIAL_COPY;
972 }
973 }
974 _SEH2_END;
975
976 /* Detach from target process */
977 KeUnstackDetachProcess(&ApcState);
978
979 //
980 // Check for SEH status
981 //
982 if (Status != STATUS_SUCCESS)
983 {
984 goto Exit;
985 }
986
987 //
988 // Unmap and unlock
989 //
990 MmUnmapLockedPages(MdlAddress, Mdl);
991 MdlAddress = NULL;
992 MmUnlockPages(Mdl);
993 PagesLocked = FALSE;
994
995 //
996 // Update location and size
997 //
998 RemainingSize -= CurrentSize;
999 CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
1000 CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress + CurrentSize);
1001 }
1002
1003 Exit:
1004 if (MdlAddress != NULL)
1005 MmUnmapLockedPages(MdlAddress, Mdl);
1006 if (PagesLocked)
1007 MmUnlockPages(Mdl);
1008
1009 //
1010 // All bytes read
1011 //
1012 if (Status == STATUS_SUCCESS)
1013 *ReturnSize = BufferSize;
1014 return Status;
1015 }
1016
1017 NTSTATUS
1018 NTAPI
MiDoPoolCopy(IN PEPROCESS SourceProcess,IN PVOID SourceAddress,IN PEPROCESS TargetProcess,OUT PVOID TargetAddress,IN SIZE_T BufferSize,IN KPROCESSOR_MODE PreviousMode,OUT PSIZE_T ReturnSize)1019 MiDoPoolCopy(IN PEPROCESS SourceProcess,
1020 IN PVOID SourceAddress,
1021 IN PEPROCESS TargetProcess,
1022 OUT PVOID TargetAddress,
1023 IN SIZE_T BufferSize,
1024 IN KPROCESSOR_MODE PreviousMode,
1025 OUT PSIZE_T ReturnSize)
1026 {
1027 UCHAR StackBuffer[MI_POOL_COPY_BYTES];
1028 SIZE_T TotalSize, CurrentSize, RemainingSize;
1029 volatile BOOLEAN FailedInProbe = FALSE, HavePoolAddress = FALSE;
1030 PVOID CurrentAddress = SourceAddress, CurrentTargetAddress = TargetAddress;
1031 PVOID PoolAddress;
1032 KAPC_STATE ApcState;
1033 BOOLEAN HaveBadAddress;
1034 ULONG_PTR BadAddress;
1035 NTSTATUS Status = STATUS_SUCCESS;
1036 PAGED_CODE();
1037
1038 DPRINT("Copying %Iu bytes from process %p (address %p) to process %p (Address %p)\n",
1039 BufferSize, SourceProcess, SourceAddress, TargetProcess, TargetAddress);
1040
1041 //
1042 // Calculate the maximum amount of data to move
1043 //
1044 TotalSize = MI_MAX_TRANSFER_SIZE;
1045 if (BufferSize <= MI_MAX_TRANSFER_SIZE) TotalSize = BufferSize;
1046 CurrentSize = TotalSize;
1047 RemainingSize = BufferSize;
1048
1049 //
1050 // Check if we can use the stack
1051 //
1052 if (BufferSize <= MI_POOL_COPY_BYTES)
1053 {
1054 //
1055 // Use it
1056 //
1057 PoolAddress = (PVOID)StackBuffer;
1058 }
1059 else
1060 {
1061 //
1062 // Allocate pool
1063 //
1064 PoolAddress = ExAllocatePoolWithTag(NonPagedPool, TotalSize, 'VmRw');
1065 if (!PoolAddress) ASSERT(FALSE);
1066 HavePoolAddress = TRUE;
1067 }
1068
1069 //
1070 // Loop as long as there is still data
1071 //
1072 while (RemainingSize > 0)
1073 {
1074 //
1075 // Check if this transfer will finish everything off
1076 //
1077 if (RemainingSize < CurrentSize) CurrentSize = RemainingSize;
1078
1079 //
1080 // Attach to the source address space
1081 //
1082 KeStackAttachProcess(&SourceProcess->Pcb, &ApcState);
1083
1084 /* Check that state is sane */
1085 ASSERT(FailedInProbe == FALSE);
1086 ASSERT(Status == STATUS_SUCCESS);
1087
1088 //
1089 // Protect user-mode copy
1090 //
1091 _SEH2_TRY
1092 {
1093 //
1094 // If this is our first time, probe the buffer
1095 //
1096 if ((CurrentAddress == SourceAddress) && (PreviousMode != KernelMode))
1097 {
1098 //
1099 // Catch a failure here
1100 //
1101 FailedInProbe = TRUE;
1102
1103 //
1104 // Do the probe
1105 //
1106 ProbeForRead(SourceAddress, BufferSize, sizeof(CHAR));
1107
1108 //
1109 // Passed
1110 //
1111 FailedInProbe = FALSE;
1112 }
1113
1114 //
1115 // Do the copy
1116 //
1117 RtlCopyMemory(PoolAddress, CurrentAddress, CurrentSize);
1118 }
1119 _SEH2_EXCEPT(MiGetExceptionInfo(_SEH2_GetExceptionInformation(),
1120 &HaveBadAddress,
1121 &BadAddress))
1122 {
1123 *ReturnSize = BufferSize - RemainingSize;
1124
1125 //
1126 // Check if we failed during the probe
1127 //
1128 if (FailedInProbe)
1129 {
1130 //
1131 // Exit
1132 //
1133 Status = _SEH2_GetExceptionCode();
1134 }
1135 else
1136 {
1137 //
1138 // We failed during the move.
1139 // Check if we know exactly where we stopped copying
1140 //
1141 if (HaveBadAddress)
1142 {
1143 //
1144 // Return the exact number of bytes copied
1145 //
1146 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1147 }
1148 //
1149 // Return partial copy
1150 //
1151 Status = STATUS_PARTIAL_COPY;
1152 }
1153 }
1154 _SEH2_END
1155
1156 /* Let go of the source */
1157 KeUnstackDetachProcess(&ApcState);
1158
1159 if (Status != STATUS_SUCCESS)
1160 {
1161 goto Exit;
1162 }
1163
1164 /* Grab the target process */
1165 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1166
1167 _SEH2_TRY
1168 {
1169 //
1170 // Check if this is our first time through
1171 //
1172 if ((CurrentTargetAddress == TargetAddress) && (PreviousMode != KernelMode))
1173 {
1174 //
1175 // Catch a failure here
1176 //
1177 FailedInProbe = TRUE;
1178
1179 //
1180 // Do the probe
1181 //
1182 ProbeForWrite(TargetAddress, BufferSize, sizeof(CHAR));
1183
1184 //
1185 // Passed
1186 //
1187 FailedInProbe = FALSE;
1188 }
1189
1190 //
1191 // Now do the actual move
1192 //
1193 RtlCopyMemory(CurrentTargetAddress, PoolAddress, CurrentSize);
1194 }
1195 _SEH2_EXCEPT(MiGetExceptionInfo(_SEH2_GetExceptionInformation(),
1196 &HaveBadAddress,
1197 &BadAddress))
1198 {
1199 *ReturnSize = BufferSize - RemainingSize;
1200 //
1201 // Check if we failed during the probe
1202 //
1203 if (FailedInProbe)
1204 {
1205 //
1206 // Exit
1207 //
1208 Status = _SEH2_GetExceptionCode();
1209 }
1210 else
1211 {
1212 //
1213 // Otherwise we failed during the move.
1214 // Check if we know exactly where we stopped copying
1215 //
1216 if (HaveBadAddress)
1217 {
1218 //
1219 // Return the exact number of bytes copied
1220 //
1221 *ReturnSize = BadAddress - (ULONG_PTR)SourceAddress;
1222 }
1223 //
1224 // Return partial copy
1225 //
1226 Status = STATUS_PARTIAL_COPY;
1227 }
1228 }
1229 _SEH2_END;
1230
1231 //
1232 // Detach from target
1233 //
1234 KeUnstackDetachProcess(&ApcState);
1235
1236 //
1237 // Check for SEH status
1238 //
1239 if (Status != STATUS_SUCCESS)
1240 {
1241 goto Exit;
1242 }
1243
1244 //
1245 // Update location and size
1246 //
1247 RemainingSize -= CurrentSize;
1248 CurrentAddress = (PVOID)((ULONG_PTR)CurrentAddress + CurrentSize);
1249 CurrentTargetAddress = (PVOID)((ULONG_PTR)CurrentTargetAddress +
1250 CurrentSize);
1251 }
1252
1253 Exit:
1254 //
1255 // Check if we had allocated pool
1256 //
1257 if (HavePoolAddress)
1258 ExFreePoolWithTag(PoolAddress, 'VmRw');
1259
1260 //
1261 // All bytes read
1262 //
1263 if (Status == STATUS_SUCCESS)
1264 *ReturnSize = BufferSize;
1265 return Status;
1266 }
1267
1268 NTSTATUS
1269 NTAPI
MmCopyVirtualMemory(IN PEPROCESS SourceProcess,IN PVOID SourceAddress,IN PEPROCESS TargetProcess,OUT PVOID TargetAddress,IN SIZE_T BufferSize,IN KPROCESSOR_MODE PreviousMode,OUT PSIZE_T ReturnSize)1270 MmCopyVirtualMemory(IN PEPROCESS SourceProcess,
1271 IN PVOID SourceAddress,
1272 IN PEPROCESS TargetProcess,
1273 OUT PVOID TargetAddress,
1274 IN SIZE_T BufferSize,
1275 IN KPROCESSOR_MODE PreviousMode,
1276 OUT PSIZE_T ReturnSize)
1277 {
1278 NTSTATUS Status;
1279 PEPROCESS Process = SourceProcess;
1280
1281 //
1282 // Don't accept zero-sized buffers
1283 //
1284 if (!BufferSize) return STATUS_SUCCESS;
1285
1286 //
1287 // If we are copying from ourselves, lock the target instead
1288 //
1289 if (SourceProcess == PsGetCurrentProcess()) Process = TargetProcess;
1290
1291 //
1292 // Acquire rundown protection
1293 //
1294 if (!ExAcquireRundownProtection(&Process->RundownProtect))
1295 {
1296 //
1297 // Fail
1298 //
1299 return STATUS_PROCESS_IS_TERMINATING;
1300 }
1301
1302 //
1303 // See if we should use the pool copy
1304 //
1305 if (BufferSize > MI_POOL_COPY_BYTES)
1306 {
1307 //
1308 // Use MDL-copy
1309 //
1310 Status = MiDoMappedCopy(SourceProcess,
1311 SourceAddress,
1312 TargetProcess,
1313 TargetAddress,
1314 BufferSize,
1315 PreviousMode,
1316 ReturnSize);
1317 }
1318 else
1319 {
1320 //
1321 // Do pool copy
1322 //
1323 Status = MiDoPoolCopy(SourceProcess,
1324 SourceAddress,
1325 TargetProcess,
1326 TargetAddress,
1327 BufferSize,
1328 PreviousMode,
1329 ReturnSize);
1330 }
1331
1332 //
1333 // Release the lock
1334 //
1335 ExReleaseRundownProtection(&Process->RundownProtect);
1336 return Status;
1337 }
1338
1339 NTSTATUS
1340 NTAPI
MmFlushVirtualMemory(IN PEPROCESS Process,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T RegionSize,OUT PIO_STATUS_BLOCK IoStatusBlock)1341 MmFlushVirtualMemory(IN PEPROCESS Process,
1342 IN OUT PVOID *BaseAddress,
1343 IN OUT PSIZE_T RegionSize,
1344 OUT PIO_STATUS_BLOCK IoStatusBlock)
1345 {
1346 PAGED_CODE();
1347
1348 UNIMPLEMENTED;
1349
1350 return STATUS_NOT_IMPLEMENTED;
1351 }
1352
1353 ULONG
1354 NTAPI
MiGetPageProtection(IN PMMPTE PointerPte)1355 MiGetPageProtection(IN PMMPTE PointerPte)
1356 {
1357 MMPTE TempPte;
1358 PMMPFN Pfn;
1359 PEPROCESS CurrentProcess;
1360 PETHREAD CurrentThread;
1361 BOOLEAN WsSafe, WsShared;
1362 ULONG Protect;
1363 KIRQL OldIrql;
1364 PAGED_CODE();
1365
1366 /* Copy this PTE's contents */
1367 TempPte = *PointerPte;
1368
1369 /* Assure it's not totally zero */
1370 ASSERT(TempPte.u.Long);
1371
1372 /* Check for a special prototype format */
1373 if ((TempPte.u.Soft.Valid == 0) &&
1374 (TempPte.u.Soft.Prototype == 1))
1375 {
1376 /* Check if the prototype PTE is not yet pointing to a PTE */
1377 if (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)
1378 {
1379 /* The prototype PTE contains the protection */
1380 return MmProtectToValue[TempPte.u.Soft.Protection];
1381 }
1382
1383 /* Get a pointer to the underlying shared PTE */
1384 PointerPte = MiProtoPteToPte(&TempPte);
1385
1386 /* Since the PTE we want to read can be paged out at any time, we need
1387 to release the working set lock first, so that it can be paged in */
1388 CurrentThread = PsGetCurrentThread();
1389 CurrentProcess = PsGetCurrentProcess();
1390 MiUnlockProcessWorkingSetForFault(CurrentProcess,
1391 CurrentThread,
1392 &WsSafe,
1393 &WsShared);
1394
1395 /* Now read the PTE value */
1396 TempPte = *PointerPte;
1397
1398 /* Check if that one is invalid */
1399 if (!TempPte.u.Hard.Valid)
1400 {
1401 /* We get the protection directly from this PTE */
1402 Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1403 }
1404 else
1405 {
1406 /* The PTE is valid, so we might need to get the protection from
1407 the PFN. Lock the PFN database */
1408 OldIrql = MiAcquirePfnLock();
1409
1410 /* Check if the PDE is still valid */
1411 if (MiAddressToPte(PointerPte)->u.Hard.Valid == 0)
1412 {
1413 /* It's not, make it valid */
1414 MiMakeSystemAddressValidPfn(PointerPte, OldIrql);
1415 }
1416
1417 /* Now it's safe to read the PTE value again */
1418 TempPte = *PointerPte;
1419 ASSERT(TempPte.u.Long != 0);
1420
1421 /* Check again if the PTE is invalid */
1422 if (!TempPte.u.Hard.Valid)
1423 {
1424 /* The PTE is not valid, so we can use it's protection field */
1425 Protect = MmProtectToValue[TempPte.u.Soft.Protection];
1426 }
1427 else
1428 {
1429 /* The PTE is valid, so we can find the protection in the
1430 OriginalPte field of the PFN */
1431 Pfn = MI_PFN_ELEMENT(TempPte.u.Hard.PageFrameNumber);
1432 Protect = MmProtectToValue[Pfn->OriginalPte.u.Soft.Protection];
1433 }
1434
1435 /* Release the PFN database */
1436 MiReleasePfnLock(OldIrql);
1437 }
1438
1439 /* Lock the working set again */
1440 MiLockProcessWorkingSetForFault(CurrentProcess,
1441 CurrentThread,
1442 WsSafe,
1443 WsShared);
1444
1445 return Protect;
1446 }
1447
1448 /* In the easy case of transition or demand zero PTE just return its protection */
1449 if (!TempPte.u.Hard.Valid) return MmProtectToValue[TempPte.u.Soft.Protection];
1450
1451 /* If we get here, the PTE is valid, so look up the page in PFN database */
1452 Pfn = MiGetPfnEntry(TempPte.u.Hard.PageFrameNumber);
1453 if (!Pfn->u3.e1.PrototypePte)
1454 {
1455 /* Return protection of the original pte */
1456 ASSERT(Pfn->u4.AweAllocation == 0);
1457 return MmProtectToValue[Pfn->OriginalPte.u.Soft.Protection];
1458 }
1459
1460 /* This is software PTE */
1461 DPRINT("Prototype PTE: %lx %p\n", TempPte.u.Hard.PageFrameNumber, Pfn);
1462 DPRINT("VA: %p\n", MiPteToAddress(&TempPte));
1463 DPRINT("Mask: %lx\n", TempPte.u.Soft.Protection);
1464 DPRINT("Mask2: %lx\n", Pfn->OriginalPte.u.Soft.Protection);
1465 return MmProtectToValue[TempPte.u.Soft.Protection];
1466 }
1467
1468 ULONG
1469 NTAPI
MiQueryAddressState(IN PVOID Va,IN PMMVAD Vad,IN PEPROCESS TargetProcess,OUT PULONG ReturnedProtect,OUT PVOID * NextVa)1470 MiQueryAddressState(IN PVOID Va,
1471 IN PMMVAD Vad,
1472 IN PEPROCESS TargetProcess,
1473 OUT PULONG ReturnedProtect,
1474 OUT PVOID *NextVa)
1475 {
1476
1477 PMMPTE PointerPte, ProtoPte;
1478 PMMPDE PointerPde;
1479 #if (_MI_PAGING_LEVELS >= 3)
1480 PMMPPE PointerPpe;
1481 #endif
1482 #if (_MI_PAGING_LEVELS >= 4)
1483 PMMPXE PointerPxe;
1484 #endif
1485 MMPTE TempPte, TempProtoPte;
1486 BOOLEAN DemandZeroPte = TRUE, ValidPte = FALSE;
1487 ULONG State = MEM_RESERVE, Protect = 0;
1488 ASSERT((Vad->StartingVpn <= ((ULONG_PTR)Va >> PAGE_SHIFT)) &&
1489 (Vad->EndingVpn >= ((ULONG_PTR)Va >> PAGE_SHIFT)));
1490
1491 /* Only normal VADs supported */
1492 ASSERT(Vad->u.VadFlags.VadType == VadNone);
1493
1494 /* Get the PDE and PTE for the address */
1495 PointerPde = MiAddressToPde(Va);
1496 PointerPte = MiAddressToPte(Va);
1497 #if (_MI_PAGING_LEVELS >= 3)
1498 PointerPpe = MiAddressToPpe(Va);
1499 #endif
1500 #if (_MI_PAGING_LEVELS >= 4)
1501 PointerPxe = MiAddressToPxe(Va);
1502 #endif
1503
1504 /* Return the next range */
1505 *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1506
1507 do
1508 {
1509 #if (_MI_PAGING_LEVELS >= 4)
1510 /* Does the PXE exist? */
1511 if (PointerPxe->u.Long == 0)
1512 {
1513 /* It does not, next range starts at the next PXE */
1514 *NextVa = MiPxeToAddress(PointerPxe + 1);
1515 break;
1516 }
1517
1518 /* Is the PXE valid? */
1519 if (PointerPxe->u.Hard.Valid == 0)
1520 {
1521 /* Is isn't, fault it in (make the PPE accessible) */
1522 MiMakeSystemAddressValid(PointerPpe, TargetProcess);
1523 }
1524 #endif
1525 #if (_MI_PAGING_LEVELS >= 3)
1526 /* Does the PPE exist? */
1527 if (PointerPpe->u.Long == 0)
1528 {
1529 /* It does not, next range starts at the next PPE */
1530 *NextVa = MiPpeToAddress(PointerPpe + 1);
1531 break;
1532 }
1533
1534 /* Is the PPE valid? */
1535 if (PointerPpe->u.Hard.Valid == 0)
1536 {
1537 /* Is isn't, fault it in (make the PDE accessible) */
1538 MiMakeSystemAddressValid(PointerPde, TargetProcess);
1539 }
1540 #endif
1541
1542 /* Does the PDE exist? */
1543 if (PointerPde->u.Long == 0)
1544 {
1545 /* It does not, next range starts at the next PDE */
1546 *NextVa = MiPdeToAddress(PointerPde + 1);
1547 break;
1548 }
1549
1550 /* Is the PDE valid? */
1551 if (PointerPde->u.Hard.Valid == 0)
1552 {
1553 /* Is isn't, fault it in (make the PTE accessible) */
1554 MiMakeSystemAddressValid(PointerPte, TargetProcess);
1555 }
1556
1557 /* We have a PTE that we can access now! */
1558 ValidPte = TRUE;
1559
1560 } while (FALSE);
1561
1562 /* Is it safe to try reading the PTE? */
1563 if (ValidPte)
1564 {
1565 /* FIXME: watch out for large pages */
1566 ASSERT(PointerPde->u.Hard.LargePage == FALSE);
1567
1568 /* Capture the PTE */
1569 TempPte = *PointerPte;
1570 if (TempPte.u.Long != 0)
1571 {
1572 /* The PTE is valid, so it's not zeroed out */
1573 DemandZeroPte = FALSE;
1574
1575 /* Is it a decommited, invalid, or faulted PTE? */
1576 if ((TempPte.u.Soft.Protection == MM_DECOMMIT) &&
1577 (TempPte.u.Hard.Valid == 0) &&
1578 ((TempPte.u.Soft.Prototype == 0) ||
1579 (TempPte.u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
1580 {
1581 /* Otherwise our defaults should hold */
1582 ASSERT(Protect == 0);
1583 ASSERT(State == MEM_RESERVE);
1584 }
1585 else
1586 {
1587 /* This means it's committed */
1588 State = MEM_COMMIT;
1589
1590 /* We don't support these */
1591 ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1592 ASSERT(Vad->u.VadFlags.VadType != VadRotatePhysical);
1593 ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1594
1595 /* Get protection state of this page */
1596 Protect = MiGetPageProtection(PointerPte);
1597
1598 /* Check if this is an image-backed VAD */
1599 if ((TempPte.u.Soft.Valid == 0) &&
1600 (TempPte.u.Soft.Prototype == 1) &&
1601 (Vad->u.VadFlags.PrivateMemory == 0) &&
1602 (Vad->ControlArea))
1603 {
1604 DPRINT1("Not supported\n");
1605 ASSERT(FALSE);
1606 }
1607 }
1608 }
1609 }
1610
1611 /* Check if this was a demand-zero PTE, since we need to find the state */
1612 if (DemandZeroPte)
1613 {
1614 /* Not yet handled */
1615 ASSERT(Vad->u.VadFlags.VadType != VadDevicePhysicalMemory);
1616 ASSERT(Vad->u.VadFlags.VadType != VadAwe);
1617
1618 /* Check if this is private commited memory, or an section-backed VAD */
1619 if ((Vad->u.VadFlags.PrivateMemory == 0) && (Vad->ControlArea))
1620 {
1621 /* Tell caller about the next range */
1622 *NextVa = (PVOID)((ULONG_PTR)Va + PAGE_SIZE);
1623
1624 /* Get the prototype PTE for this VAD */
1625 ProtoPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(Vad,
1626 (ULONG_PTR)Va >> PAGE_SHIFT);
1627 if (ProtoPte)
1628 {
1629 /* We should unlock the working set, but it's not being held! */
1630
1631 /* Is the prototype PTE actually valid (committed)? */
1632 TempProtoPte = *ProtoPte;
1633 if (TempProtoPte.u.Long)
1634 {
1635 /* Unless this is a memory-mapped file, handle it like private VAD */
1636 State = MEM_COMMIT;
1637 ASSERT(Vad->u.VadFlags.VadType != VadImageMap);
1638 Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1639 }
1640
1641 /* We should re-lock the working set */
1642 }
1643 }
1644 else if (Vad->u.VadFlags.MemCommit)
1645 {
1646 /* This is committed memory */
1647 State = MEM_COMMIT;
1648
1649 /* Convert the protection */
1650 Protect = MmProtectToValue[Vad->u.VadFlags.Protection];
1651 }
1652 }
1653
1654 /* Return the protection code */
1655 *ReturnedProtect = Protect;
1656 return State;
1657 }
1658
1659 NTSTATUS
1660 NTAPI
MiQueryMemoryBasicInformation(IN HANDLE ProcessHandle,IN PVOID BaseAddress,OUT PVOID MemoryInformation,IN SIZE_T MemoryInformationLength,OUT PSIZE_T ReturnLength)1661 MiQueryMemoryBasicInformation(IN HANDLE ProcessHandle,
1662 IN PVOID BaseAddress,
1663 OUT PVOID MemoryInformation,
1664 IN SIZE_T MemoryInformationLength,
1665 OUT PSIZE_T ReturnLength)
1666 {
1667 PEPROCESS TargetProcess;
1668 NTSTATUS Status = STATUS_SUCCESS;
1669 PMMVAD Vad = NULL;
1670 PVOID Address, NextAddress;
1671 BOOLEAN Found = FALSE;
1672 ULONG NewProtect, NewState;
1673 ULONG_PTR BaseVpn;
1674 MEMORY_BASIC_INFORMATION MemoryInfo;
1675 KAPC_STATE ApcState;
1676 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
1677 PMEMORY_AREA MemoryArea;
1678 SIZE_T ResultLength;
1679
1680 /* Check for illegal addresses in user-space, or the shared memory area */
1681 if ((BaseAddress > MM_HIGHEST_VAD_ADDRESS) ||
1682 (PAGE_ALIGN(BaseAddress) == (PVOID)MM_SHARED_USER_DATA_VA))
1683 {
1684 Address = PAGE_ALIGN(BaseAddress);
1685
1686 /* Make up an info structure describing this range */
1687 MemoryInfo.BaseAddress = Address;
1688 MemoryInfo.AllocationProtect = PAGE_READONLY;
1689 MemoryInfo.Type = MEM_PRIVATE;
1690
1691 /* Special case for shared data */
1692 if (Address == (PVOID)MM_SHARED_USER_DATA_VA)
1693 {
1694 MemoryInfo.AllocationBase = (PVOID)MM_SHARED_USER_DATA_VA;
1695 MemoryInfo.State = MEM_COMMIT;
1696 MemoryInfo.Protect = PAGE_READONLY;
1697 MemoryInfo.RegionSize = PAGE_SIZE;
1698 }
1699 else
1700 {
1701 MemoryInfo.AllocationBase = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1;
1702 MemoryInfo.State = MEM_RESERVE;
1703 MemoryInfo.Protect = PAGE_NOACCESS;
1704 MemoryInfo.RegionSize = (ULONG_PTR)MM_HIGHEST_USER_ADDRESS + 1 - (ULONG_PTR)Address;
1705 }
1706
1707 /* Return the data, NtQueryInformation already probed it*/
1708 if (PreviousMode != KernelMode)
1709 {
1710 _SEH2_TRY
1711 {
1712 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1713 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1714 }
1715 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
1716 {
1717 Status = _SEH2_GetExceptionCode();
1718 }
1719 _SEH2_END;
1720 }
1721 else
1722 {
1723 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1724 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1725 }
1726
1727 return Status;
1728 }
1729
1730 /* Check if this is for a local or remote process */
1731 if (ProcessHandle == NtCurrentProcess())
1732 {
1733 TargetProcess = PsGetCurrentProcess();
1734 }
1735 else
1736 {
1737 /* Reference the target process */
1738 Status = ObReferenceObjectByHandle(ProcessHandle,
1739 PROCESS_QUERY_INFORMATION,
1740 PsProcessType,
1741 ExGetPreviousMode(),
1742 (PVOID*)&TargetProcess,
1743 NULL);
1744 if (!NT_SUCCESS(Status)) return Status;
1745
1746 /* Attach to it now */
1747 KeStackAttachProcess(&TargetProcess->Pcb, &ApcState);
1748 }
1749
1750 /* Lock the address space and make sure the process isn't already dead */
1751 MmLockAddressSpace(&TargetProcess->Vm);
1752 if (TargetProcess->VmDeleted)
1753 {
1754 /* Unlock the address space of the process */
1755 MmUnlockAddressSpace(&TargetProcess->Vm);
1756
1757 /* Check if we were attached */
1758 if (ProcessHandle != NtCurrentProcess())
1759 {
1760 /* Detach and dereference the process */
1761 KeUnstackDetachProcess(&ApcState);
1762 ObDereferenceObject(TargetProcess);
1763 }
1764
1765 /* Bail out */
1766 DPRINT1("Process is dying\n");
1767 return STATUS_PROCESS_IS_TERMINATING;
1768 }
1769
1770 /* Loop the VADs */
1771 ASSERT(TargetProcess->VadRoot.NumberGenericTableElements);
1772 if (TargetProcess->VadRoot.NumberGenericTableElements)
1773 {
1774 /* Scan on the right */
1775 Vad = (PMMVAD)TargetProcess->VadRoot.BalancedRoot.RightChild;
1776 BaseVpn = (ULONG_PTR)BaseAddress >> PAGE_SHIFT;
1777 while (Vad)
1778 {
1779 /* Check if this VAD covers the allocation range */
1780 if ((BaseVpn >= Vad->StartingVpn) &&
1781 (BaseVpn <= Vad->EndingVpn))
1782 {
1783 /* We're done */
1784 Found = TRUE;
1785 break;
1786 }
1787
1788 /* Check if this VAD is too high */
1789 if (BaseVpn < Vad->StartingVpn)
1790 {
1791 /* Stop if there is no left child */
1792 if (!Vad->LeftChild) break;
1793
1794 /* Search on the left next */
1795 Vad = Vad->LeftChild;
1796 }
1797 else
1798 {
1799 /* Then this VAD is too low, keep searching on the right */
1800 ASSERT(BaseVpn > Vad->EndingVpn);
1801
1802 /* Stop if there is no right child */
1803 if (!Vad->RightChild) break;
1804
1805 /* Search on the right next */
1806 Vad = Vad->RightChild;
1807 }
1808 }
1809 }
1810
1811 /* Was a VAD found? */
1812 if (!Found)
1813 {
1814 Address = PAGE_ALIGN(BaseAddress);
1815
1816 /* Calculate region size */
1817 if (Vad)
1818 {
1819 if (Vad->StartingVpn >= BaseVpn)
1820 {
1821 /* Region size is the free space till the start of that VAD */
1822 MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1823 }
1824 else
1825 {
1826 /* Get the next VAD */
1827 Vad = (PMMVAD)MiGetNextNode((PMMADDRESS_NODE)Vad);
1828 if (Vad)
1829 {
1830 /* Region size is the free space till the start of that VAD */
1831 MemoryInfo.RegionSize = (ULONG_PTR)(Vad->StartingVpn << PAGE_SHIFT) - (ULONG_PTR)Address;
1832 }
1833 else
1834 {
1835 /* Maximum possible region size with that base address */
1836 MemoryInfo.RegionSize = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1 - (PCHAR)Address;
1837 }
1838 }
1839 }
1840 else
1841 {
1842 /* Maximum possible region size with that base address */
1843 MemoryInfo.RegionSize = (PCHAR)MM_HIGHEST_VAD_ADDRESS + 1 - (PCHAR)Address;
1844 }
1845
1846 /* Unlock the address space of the process */
1847 MmUnlockAddressSpace(&TargetProcess->Vm);
1848
1849 /* Check if we were attached */
1850 if (ProcessHandle != NtCurrentProcess())
1851 {
1852 /* Detach and dereference the process */
1853 KeUnstackDetachProcess(&ApcState);
1854 ObDereferenceObject(TargetProcess);
1855 }
1856
1857 /* Build the rest of the initial information block */
1858 MemoryInfo.BaseAddress = Address;
1859 MemoryInfo.AllocationBase = NULL;
1860 MemoryInfo.AllocationProtect = 0;
1861 MemoryInfo.State = MEM_FREE;
1862 MemoryInfo.Protect = PAGE_NOACCESS;
1863 MemoryInfo.Type = 0;
1864
1865 /* Return the data, NtQueryInformation already probed it*/
1866 if (PreviousMode != KernelMode)
1867 {
1868 _SEH2_TRY
1869 {
1870 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1871 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1872 }
1873 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
1874 {
1875 Status = _SEH2_GetExceptionCode();
1876 }
1877 _SEH2_END;
1878 }
1879 else
1880 {
1881 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1882 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1883 }
1884
1885 return Status;
1886 }
1887
1888 /* Set the correct memory type based on what kind of VAD this is */
1889 if ((Vad->u.VadFlags.PrivateMemory) ||
1890 (Vad->u.VadFlags.VadType == VadRotatePhysical))
1891 {
1892 MemoryInfo.Type = MEM_PRIVATE;
1893 }
1894 else if (Vad->u.VadFlags.VadType == VadImageMap)
1895 {
1896 MemoryInfo.Type = MEM_IMAGE;
1897 }
1898 else
1899 {
1900 MemoryInfo.Type = MEM_MAPPED;
1901 }
1902
1903 /* Find the memory area the specified address belongs to */
1904 MemoryArea = MmLocateMemoryAreaByAddress(&TargetProcess->Vm, BaseAddress);
1905 ASSERT(MemoryArea != NULL);
1906
1907 /* Determine information dependent on the memory area type */
1908 if (MemoryArea->Type == MEMORY_AREA_SECTION_VIEW)
1909 {
1910 Status = MmQuerySectionView(MemoryArea, BaseAddress, &MemoryInfo, &ResultLength);
1911 if (!NT_SUCCESS(Status))
1912 {
1913 DPRINT1("MmQuerySectionView failed. MemoryArea=%p (%p-%p), BaseAddress=%p\n",
1914 MemoryArea, MA_GetStartingAddress(MemoryArea), MA_GetEndingAddress(MemoryArea), BaseAddress);
1915 ASSERT(NT_SUCCESS(Status));
1916 }
1917 }
1918 else
1919 {
1920 /* Build the initial information block */
1921 Address = PAGE_ALIGN(BaseAddress);
1922 MemoryInfo.BaseAddress = Address;
1923 MemoryInfo.AllocationBase = (PVOID)(Vad->StartingVpn << PAGE_SHIFT);
1924 MemoryInfo.AllocationProtect = MmProtectToValue[Vad->u.VadFlags.Protection];
1925 MemoryInfo.Type = MEM_PRIVATE;
1926
1927 /* Acquire the working set lock (shared is enough) */
1928 MiLockProcessWorkingSetShared(TargetProcess, PsGetCurrentThread());
1929
1930 /* Find the largest chunk of memory which has the same state and protection mask */
1931 MemoryInfo.State = MiQueryAddressState(Address,
1932 Vad,
1933 TargetProcess,
1934 &MemoryInfo.Protect,
1935 &NextAddress);
1936 Address = NextAddress;
1937 while (((ULONG_PTR)Address >> PAGE_SHIFT) <= Vad->EndingVpn)
1938 {
1939 /* Keep going unless the state or protection mask changed */
1940 NewState = MiQueryAddressState(Address, Vad, TargetProcess, &NewProtect, &NextAddress);
1941 if ((NewState != MemoryInfo.State) || (NewProtect != MemoryInfo.Protect)) break;
1942 Address = NextAddress;
1943 }
1944
1945 /* Release the working set lock */
1946 MiUnlockProcessWorkingSetShared(TargetProcess, PsGetCurrentThread());
1947
1948 /* Check if we went outside of the VAD */
1949 if (((ULONG_PTR)Address >> PAGE_SHIFT) > Vad->EndingVpn)
1950 {
1951 /* Set the end of the VAD as the end address */
1952 Address = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
1953 }
1954
1955 /* Now that we know the last VA address, calculate the region size */
1956 MemoryInfo.RegionSize = ((ULONG_PTR)Address - (ULONG_PTR)MemoryInfo.BaseAddress);
1957 }
1958
1959 /* Unlock the address space of the process */
1960 MmUnlockAddressSpace(&TargetProcess->Vm);
1961
1962 /* Check if we were attached */
1963 if (ProcessHandle != NtCurrentProcess())
1964 {
1965 /* Detach and dereference the process */
1966 KeUnstackDetachProcess(&ApcState);
1967 ObDereferenceObject(TargetProcess);
1968 }
1969
1970 /* Return the data, NtQueryInformation already probed it */
1971 if (PreviousMode != KernelMode)
1972 {
1973 _SEH2_TRY
1974 {
1975 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1976 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1977 }
1978 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
1979 {
1980 Status = _SEH2_GetExceptionCode();
1981 }
1982 _SEH2_END;
1983 }
1984 else
1985 {
1986 *(PMEMORY_BASIC_INFORMATION)MemoryInformation = MemoryInfo;
1987 if (ReturnLength) *ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
1988 }
1989
1990 /* All went well */
1991 DPRINT("Base: %p AllocBase: %p AllocProtect: %lx Protect: %lx "
1992 "State: %lx Type: %lx Size: %lx\n",
1993 MemoryInfo.BaseAddress, MemoryInfo.AllocationBase,
1994 MemoryInfo.AllocationProtect, MemoryInfo.Protect,
1995 MemoryInfo.State, MemoryInfo.Type, MemoryInfo.RegionSize);
1996
1997 return Status;
1998 }
1999
2000 BOOLEAN
2001 NTAPI
MiIsEntireRangeCommitted(IN ULONG_PTR StartingAddress,IN ULONG_PTR EndingAddress,IN PMMVAD Vad,IN PEPROCESS Process)2002 MiIsEntireRangeCommitted(IN ULONG_PTR StartingAddress,
2003 IN ULONG_PTR EndingAddress,
2004 IN PMMVAD Vad,
2005 IN PEPROCESS Process)
2006 {
2007 PMMPTE PointerPte, LastPte;
2008 PMMPDE PointerPde;
2009 BOOLEAN OnPdeBoundary = TRUE;
2010 #if _MI_PAGING_LEVELS >= 3
2011 PMMPPE PointerPpe;
2012 BOOLEAN OnPpeBoundary = TRUE;
2013 #if _MI_PAGING_LEVELS == 4
2014 PMMPXE PointerPxe;
2015 BOOLEAN OnPxeBoundary = TRUE;
2016 #endif
2017 #endif
2018
2019 PAGED_CODE();
2020
2021 /* Check that we hols the right locks */
2022 ASSERT(PsGetCurrentThread()->OwnsProcessWorkingSetExclusive || PsGetCurrentThread()->OwnsProcessWorkingSetShared);
2023
2024 /* Get the PTE addresses */
2025 PointerPte = MiAddressToPte(StartingAddress);
2026 LastPte = MiAddressToPte(EndingAddress);
2027
2028 /* Loop all the PTEs */
2029 while (PointerPte <= LastPte)
2030 {
2031 #if _MI_PAGING_LEVELS == 4
2032 /* Check for new PXE boundary */
2033 if (OnPxeBoundary)
2034 {
2035 PointerPxe = MiPteToPxe(PointerPte);
2036
2037 /* Check that this loop is sane */
2038 ASSERT(OnPpeBoundary);
2039 ASSERT(OnPdeBoundary);
2040
2041 if (PointerPxe->u.Long != 0)
2042 {
2043 /* Make it valid if needed */
2044 if (PointerPxe->u.Hard.Valid == 0)
2045 MiMakeSystemAddressValid(MiPteToPpe(PointerPte), Process);
2046 }
2047 else
2048 {
2049 /* Is the entire VAD committed? If not, fail */
2050 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2051
2052 PointerPxe++;
2053 PointerPte = MiPxeToPte(PointerPte);
2054 continue;
2055 }
2056 }
2057 #endif
2058
2059 #if _MI_PAGING_LEVELS >= 3
2060 /* Check for new PPE boundary */
2061 if (OnPpeBoundary)
2062 {
2063 PointerPpe = MiPteToPpe(PointerPte);
2064
2065 /* Check that this loop is sane */
2066 ASSERT(OnPdeBoundary);
2067
2068 if (PointerPpe->u.Long != 0)
2069 {
2070 /* Make it valid if needed */
2071 if (PointerPpe->u.Hard.Valid == 0)
2072 MiMakeSystemAddressValid(MiPteToPde(PointerPte), Process);
2073 }
2074 else
2075 {
2076 /* Is the entire VAD committed? If not, fail */
2077 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2078
2079 PointerPpe++;
2080 PointerPte = MiPpeToPte(PointerPpe);
2081 #if _MI_PAGING_LEVELS == 4
2082 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2083 #endif
2084 continue;
2085 }
2086 }
2087 #endif
2088 /* Check if we've hit a new PDE boundary */
2089 if (OnPdeBoundary)
2090 {
2091 /* Is this PDE demand zero? */
2092 PointerPde = MiPteToPde(PointerPte);
2093 if (PointerPde->u.Long != 0)
2094 {
2095 /* It isn't -- is it valid? */
2096 if (PointerPde->u.Hard.Valid == 0)
2097 {
2098 /* Nope, fault it in */
2099 MiMakeSystemAddressValid(PointerPte, Process);
2100 }
2101 }
2102 else
2103 {
2104 /* Is the entire VAD committed? If not, fail */
2105 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2106
2107 /* The PTE was already valid, so move to the next one */
2108 PointerPde++;
2109 PointerPte = MiPdeToPte(PointerPde);
2110 #if _MI_PAGING_LEVELS >= 3
2111 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2112 #if _MI_PAGING_LEVELS == 4
2113 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2114 #endif
2115 #endif
2116
2117 /* New loop iteration with our new, on-boundary PTE. */
2118 continue;
2119 }
2120 }
2121
2122 /* Is the PTE demand zero? */
2123 if (PointerPte->u.Long == 0)
2124 {
2125 /* Is the entire VAD committed? If not, fail */
2126 if (!Vad->u.VadFlags.MemCommit) return FALSE;
2127 }
2128 else
2129 {
2130 /* It isn't -- is it a decommited, invalid, or faulted PTE? */
2131 if ((PointerPte->u.Soft.Protection == MM_DECOMMIT) &&
2132 (PointerPte->u.Hard.Valid == 0) &&
2133 ((PointerPte->u.Soft.Prototype == 0) ||
2134 (PointerPte->u.Soft.PageFileHigh == MI_PTE_LOOKUP_NEEDED)))
2135 {
2136 /* Then part of the range is decommitted, so fail */
2137 return FALSE;
2138 }
2139 }
2140
2141 /* Move to the next PTE */
2142 PointerPte++;
2143 OnPdeBoundary = MiIsPteOnPdeBoundary(PointerPte);
2144 #if _MI_PAGING_LEVELS >= 3
2145 OnPpeBoundary = MiIsPteOnPpeBoundary(PointerPte);
2146 #if _MI_PAGING_LEVELS == 4
2147 OnPxeBoundary = MiIsPteOnPxeBoundary(PointerPte);
2148 #endif
2149 #endif
2150 }
2151
2152 /* All PTEs seem valid, and no VAD checks failed, the range is okay */
2153 return TRUE;
2154 }
2155
2156 NTSTATUS
2157 NTAPI
MiRosProtectVirtualMemory(IN PEPROCESS Process,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T NumberOfBytesToProtect,IN ULONG NewAccessProtection,OUT PULONG OldAccessProtection OPTIONAL)2158 MiRosProtectVirtualMemory(IN PEPROCESS Process,
2159 IN OUT PVOID *BaseAddress,
2160 IN OUT PSIZE_T NumberOfBytesToProtect,
2161 IN ULONG NewAccessProtection,
2162 OUT PULONG OldAccessProtection OPTIONAL)
2163 {
2164 PMEMORY_AREA MemoryArea;
2165 PMMSUPPORT AddressSpace;
2166 ULONG OldAccessProtection_;
2167 NTSTATUS Status;
2168
2169 *NumberOfBytesToProtect = PAGE_ROUND_UP((ULONG_PTR)(*BaseAddress) + (*NumberOfBytesToProtect)) - PAGE_ROUND_DOWN(*BaseAddress);
2170 *BaseAddress = (PVOID)PAGE_ROUND_DOWN(*BaseAddress);
2171
2172 AddressSpace = &Process->Vm;
2173 MmLockAddressSpace(AddressSpace);
2174 MemoryArea = MmLocateMemoryAreaByAddress(AddressSpace, *BaseAddress);
2175 if (MemoryArea == NULL || MemoryArea->DeleteInProgress)
2176 {
2177 MmUnlockAddressSpace(AddressSpace);
2178 return STATUS_UNSUCCESSFUL;
2179 }
2180
2181 if (OldAccessProtection == NULL) OldAccessProtection = &OldAccessProtection_;
2182
2183 ASSERT(MemoryArea->Type == MEMORY_AREA_SECTION_VIEW);
2184 Status = MmProtectSectionView(AddressSpace,
2185 MemoryArea,
2186 *BaseAddress,
2187 *NumberOfBytesToProtect,
2188 NewAccessProtection,
2189 OldAccessProtection);
2190
2191 MmUnlockAddressSpace(AddressSpace);
2192
2193 return Status;
2194 }
2195
2196 NTSTATUS
2197 NTAPI
MiProtectVirtualMemory(IN PEPROCESS Process,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T NumberOfBytesToProtect,IN ULONG NewAccessProtection,OUT PULONG OldAccessProtection OPTIONAL)2198 MiProtectVirtualMemory(IN PEPROCESS Process,
2199 IN OUT PVOID *BaseAddress,
2200 IN OUT PSIZE_T NumberOfBytesToProtect,
2201 IN ULONG NewAccessProtection,
2202 OUT PULONG OldAccessProtection OPTIONAL)
2203 {
2204 PMEMORY_AREA MemoryArea;
2205 PMMVAD Vad;
2206 PMMSUPPORT AddressSpace;
2207 ULONG_PTR StartingAddress, EndingAddress;
2208 PMMPTE PointerPte, LastPte;
2209 PMMPDE PointerPde;
2210 MMPTE PteContents;
2211 PMMPFN Pfn1;
2212 ULONG ProtectionMask, OldProtect;
2213 BOOLEAN Committed;
2214 NTSTATUS Status = STATUS_SUCCESS;
2215 PETHREAD Thread = PsGetCurrentThread();
2216 TABLE_SEARCH_RESULT Result;
2217
2218 /* We must be attached */
2219 ASSERT(Process == PsGetCurrentProcess());
2220
2221 /* Calculate base address for the VAD */
2222 StartingAddress = (ULONG_PTR)PAGE_ALIGN((*BaseAddress));
2223 EndingAddress = (((ULONG_PTR)*BaseAddress + *NumberOfBytesToProtect - 1) | (PAGE_SIZE - 1));
2224
2225 /* Calculate the protection mask and make sure it's valid */
2226 ProtectionMask = MiMakeProtectionMask(NewAccessProtection);
2227 if (ProtectionMask == MM_INVALID_PROTECTION)
2228 {
2229 DPRINT1("Invalid protection mask\n");
2230 return STATUS_INVALID_PAGE_PROTECTION;
2231 }
2232
2233 /* Lock the address space and make sure the process isn't already dead */
2234 AddressSpace = MmGetCurrentAddressSpace();
2235 MmLockAddressSpace(AddressSpace);
2236 if (Process->VmDeleted)
2237 {
2238 DPRINT1("Process is dying\n");
2239 Status = STATUS_PROCESS_IS_TERMINATING;
2240 goto FailPath;
2241 }
2242
2243 /* Check for ROS specific memory area */
2244 MemoryArea = MmLocateMemoryAreaByAddress(&Process->Vm, *BaseAddress);
2245 if ((MemoryArea) && (MemoryArea->Type != MEMORY_AREA_OWNED_BY_ARM3))
2246 {
2247 /* Evil hack */
2248 MmUnlockAddressSpace(AddressSpace);
2249 return MiRosProtectVirtualMemory(Process,
2250 BaseAddress,
2251 NumberOfBytesToProtect,
2252 NewAccessProtection,
2253 OldAccessProtection);
2254 }
2255
2256 /* Get the VAD for this address range, and make sure it exists */
2257 Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
2258 EndingAddress >> PAGE_SHIFT,
2259 &Process->VadRoot,
2260 (PMMADDRESS_NODE*)&Vad);
2261 if (Result != TableFoundNode)
2262 {
2263 DPRINT("Could not find a VAD for this allocation\n");
2264 Status = STATUS_CONFLICTING_ADDRESSES;
2265 goto FailPath;
2266 }
2267
2268 /* Make sure the address is within this VAD's boundaries */
2269 if ((((ULONG_PTR)StartingAddress >> PAGE_SHIFT) < Vad->StartingVpn) ||
2270 (((ULONG_PTR)EndingAddress >> PAGE_SHIFT) > Vad->EndingVpn))
2271 {
2272 Status = STATUS_CONFLICTING_ADDRESSES;
2273 goto FailPath;
2274 }
2275
2276 /* These kinds of VADs are not supported atm */
2277 if ((Vad->u.VadFlags.VadType == VadAwe) ||
2278 (Vad->u.VadFlags.VadType == VadDevicePhysicalMemory) ||
2279 (Vad->u.VadFlags.VadType == VadLargePages))
2280 {
2281 DPRINT1("Illegal VAD for attempting to set protection\n");
2282 Status = STATUS_CONFLICTING_ADDRESSES;
2283 goto FailPath;
2284 }
2285
2286 /* Check for a VAD whose protection can't be changed */
2287 if (Vad->u.VadFlags.NoChange == 1)
2288 {
2289 DPRINT1("Trying to change protection of a NoChange VAD\n");
2290 Status = STATUS_INVALID_PAGE_PROTECTION;
2291 goto FailPath;
2292 }
2293
2294 /* Is this section, or private memory? */
2295 if (Vad->u.VadFlags.PrivateMemory == 0)
2296 {
2297 /* Not yet supported */
2298 if (Vad->u.VadFlags.VadType == VadLargePageSection)
2299 {
2300 DPRINT1("Illegal VAD for attempting to set protection\n");
2301 Status = STATUS_CONFLICTING_ADDRESSES;
2302 goto FailPath;
2303 }
2304
2305 /* Rotate VADs are not yet supported */
2306 if (Vad->u.VadFlags.VadType == VadRotatePhysical)
2307 {
2308 DPRINT1("Illegal VAD for attempting to set protection\n");
2309 Status = STATUS_CONFLICTING_ADDRESSES;
2310 goto FailPath;
2311 }
2312
2313 /* Not valid on section files */
2314 if (NewAccessProtection & (PAGE_NOCACHE | PAGE_WRITECOMBINE))
2315 {
2316 /* Fail */
2317 DPRINT1("Invalid protection flags for section\n");
2318 Status = STATUS_INVALID_PARAMETER_4;
2319 goto FailPath;
2320 }
2321
2322 /* Check if data or page file mapping protection PTE is compatible */
2323 if (!Vad->ControlArea->u.Flags.Image)
2324 {
2325 /* Not yet */
2326 DPRINT1("Fixme: Not checking for valid protection\n");
2327 }
2328
2329 /* This is a section, and this is not yet supported */
2330 DPRINT1("Section protection not yet supported\n");
2331 OldProtect = 0;
2332 }
2333 else
2334 {
2335 /* Private memory, check protection flags */
2336 if ((NewAccessProtection & PAGE_WRITECOPY) ||
2337 (NewAccessProtection & PAGE_EXECUTE_WRITECOPY))
2338 {
2339 DPRINT1("Invalid protection flags for private memory\n");
2340 Status = STATUS_INVALID_PARAMETER_4;
2341 goto FailPath;
2342 }
2343
2344 /* Lock the working set */
2345 MiLockProcessWorkingSetUnsafe(Process, Thread);
2346
2347 /* Check if all pages in this range are committed */
2348 Committed = MiIsEntireRangeCommitted(StartingAddress,
2349 EndingAddress,
2350 Vad,
2351 Process);
2352 if (!Committed)
2353 {
2354 /* Fail */
2355 DPRINT1("The entire range is not committed\n");
2356 Status = STATUS_NOT_COMMITTED;
2357 MiUnlockProcessWorkingSetUnsafe(Process, Thread);
2358 goto FailPath;
2359 }
2360
2361 /* Compute starting and ending PTE and PDE addresses */
2362 PointerPde = MiAddressToPde(StartingAddress);
2363 PointerPte = MiAddressToPte(StartingAddress);
2364 LastPte = MiAddressToPte(EndingAddress);
2365
2366 /* Make this PDE valid */
2367 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
2368
2369 /* Save protection of the first page */
2370 if (PointerPte->u.Long != 0)
2371 {
2372 /* Capture the page protection and make the PDE valid */
2373 OldProtect = MiGetPageProtection(PointerPte);
2374 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
2375 }
2376 else
2377 {
2378 /* Grab the old protection from the VAD itself */
2379 OldProtect = MmProtectToValue[Vad->u.VadFlags.Protection];
2380 }
2381
2382 /* Loop all the PTEs now */
2383 while (PointerPte <= LastPte)
2384 {
2385 /* Check if we've crossed a PDE boundary and make the new PDE valid too */
2386 if (MiIsPteOnPdeBoundary(PointerPte))
2387 {
2388 PointerPde = MiPteToPde(PointerPte);
2389 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
2390 }
2391
2392 /* Capture the PTE and check if it was empty */
2393 PteContents = *PointerPte;
2394 if (PteContents.u.Long == 0)
2395 {
2396 /* This used to be a zero PTE and it no longer is, so we must add a
2397 reference to the pagetable. */
2398 MiIncrementPageTableReferences(MiPteToAddress(PointerPte));
2399 }
2400
2401 /* Check what kind of PTE we are dealing with */
2402 if (PteContents.u.Hard.Valid == 1)
2403 {
2404 /* Get the PFN entry */
2405 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(&PteContents));
2406
2407 /* We don't support this yet */
2408 ASSERT(Pfn1->u3.e1.PrototypePte == 0);
2409
2410 /* Check if the page should not be accessible at all */
2411 if ((NewAccessProtection & PAGE_NOACCESS) ||
2412 (NewAccessProtection & PAGE_GUARD))
2413 {
2414 KIRQL OldIrql = MiAcquirePfnLock();
2415
2416 /* Mark the PTE as transition and change its protection */
2417 PteContents.u.Hard.Valid = 0;
2418 PteContents.u.Soft.Transition = 1;
2419 PteContents.u.Trans.Protection = ProtectionMask;
2420 /* Decrease PFN share count and write the PTE */
2421 MiDecrementShareCount(Pfn1, PFN_FROM_PTE(&PteContents));
2422 // FIXME: remove the page from the WS
2423 MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2424 #ifdef CONFIG_SMP
2425 // FIXME: Should invalidate entry in every CPU TLB
2426 ASSERT(KeNumberProcessors == 1);
2427 #endif
2428 KeInvalidateTlbEntry(MiPteToAddress(PointerPte));
2429
2430 /* We are done for this PTE */
2431 MiReleasePfnLock(OldIrql);
2432 }
2433 else
2434 {
2435 /* Write the protection mask and write it with a TLB flush */
2436 Pfn1->OriginalPte.u.Soft.Protection = ProtectionMask;
2437 MiFlushTbAndCapture(Vad,
2438 PointerPte,
2439 ProtectionMask,
2440 Pfn1,
2441 TRUE);
2442 }
2443 }
2444 else
2445 {
2446 /* We don't support these cases yet */
2447 ASSERT(PteContents.u.Soft.Prototype == 0);
2448 //ASSERT(PteContents.u.Soft.Transition == 0);
2449
2450 /* The PTE is already demand-zero, just update the protection mask */
2451 PteContents.u.Soft.Protection = ProtectionMask;
2452 MI_WRITE_INVALID_PTE(PointerPte, PteContents);
2453 ASSERT(PointerPte->u.Long != 0);
2454 }
2455
2456 /* Move to the next PTE */
2457 PointerPte++;
2458 }
2459
2460 /* Unlock the working set */
2461 MiUnlockProcessWorkingSetUnsafe(Process, Thread);
2462 }
2463
2464 /* Unlock the address space */
2465 MmUnlockAddressSpace(AddressSpace);
2466
2467 /* Return parameters and success */
2468 *NumberOfBytesToProtect = EndingAddress - StartingAddress + 1;
2469 *BaseAddress = (PVOID)StartingAddress;
2470 *OldAccessProtection = OldProtect;
2471 return STATUS_SUCCESS;
2472
2473 FailPath:
2474 /* Unlock the address space and return the failure code */
2475 MmUnlockAddressSpace(AddressSpace);
2476 return Status;
2477 }
2478
2479 VOID
2480 NTAPI
MiMakePdeExistAndMakeValid(IN PMMPDE PointerPde,IN PEPROCESS TargetProcess,IN KIRQL OldIrql)2481 MiMakePdeExistAndMakeValid(IN PMMPDE PointerPde,
2482 IN PEPROCESS TargetProcess,
2483 IN KIRQL OldIrql)
2484 {
2485 PMMPTE PointerPte;
2486 #if _MI_PAGING_LEVELS >= 3
2487 PMMPPE PointerPpe = MiPdeToPpe(PointerPde);
2488 #if _MI_PAGING_LEVELS == 4
2489 PMMPXE PointerPxe = MiPdeToPxe(PointerPde);
2490 #endif
2491 #endif
2492
2493 //
2494 // Sanity checks. The latter is because we only use this function with the
2495 // PFN lock not held, so it may go away in the future.
2496 //
2497 ASSERT(KeAreAllApcsDisabled() == TRUE);
2498 ASSERT(OldIrql == MM_NOIRQL);
2499
2500 //
2501 // If everything is already valid, there is nothing to do.
2502 //
2503 if (
2504 #if _MI_PAGING_LEVELS == 4
2505 (PointerPxe->u.Hard.Valid) &&
2506 #endif
2507 #if _MI_PAGING_LEVELS >= 3
2508 (PointerPpe->u.Hard.Valid) &&
2509 #endif
2510 (PointerPde->u.Hard.Valid))
2511 {
2512 return;
2513 }
2514
2515 //
2516 // At least something is invalid, so begin by getting the PTE for the PDE itself
2517 // and then lookup each additional level. We must do it in this precise order
2518 // because the pagfault.c code (as well as in Windows) depends that the next
2519 // level up (higher) must be valid when faulting a lower level
2520 //
2521 PointerPte = MiPteToAddress(PointerPde);
2522 do
2523 {
2524 //
2525 // Make sure APCs continued to be disabled
2526 //
2527 ASSERT(KeAreAllApcsDisabled() == TRUE);
2528
2529 #if _MI_PAGING_LEVELS == 4
2530 //
2531 // First, make the PXE valid if needed
2532 //
2533 if (!PointerPxe->u.Hard.Valid)
2534 {
2535 MiMakeSystemAddressValid(PointerPpe, TargetProcess);
2536 ASSERT(PointerPxe->u.Hard.Valid == 1);
2537 }
2538 #endif
2539
2540 #if _MI_PAGING_LEVELS >= 3
2541 //
2542 // Next, the PPE
2543 //
2544 if (!PointerPpe->u.Hard.Valid)
2545 {
2546 MiMakeSystemAddressValid(PointerPde, TargetProcess);
2547 ASSERT(PointerPpe->u.Hard.Valid == 1);
2548 }
2549 #endif
2550
2551 //
2552 // And finally, make the PDE itself valid.
2553 //
2554 MiMakeSystemAddressValid(PointerPte, TargetProcess);
2555
2556 /* Do not increment Page table refcount here for the PDE, this must be managed by caller */
2557
2558 //
2559 // This should've worked the first time so the loop is really just for
2560 // show -- ASSERT that we're actually NOT going to be looping.
2561 //
2562 ASSERT(PointerPde->u.Hard.Valid == 1);
2563 } while (
2564 #if _MI_PAGING_LEVELS == 4
2565 !PointerPxe->u.Hard.Valid ||
2566 #endif
2567 #if _MI_PAGING_LEVELS >= 3
2568 !PointerPpe->u.Hard.Valid ||
2569 #endif
2570 !PointerPde->u.Hard.Valid);
2571 }
2572
2573 VOID
2574 NTAPI
MiProcessValidPteList(IN PMMPTE * ValidPteList,IN ULONG Count)2575 MiProcessValidPteList(IN PMMPTE *ValidPteList,
2576 IN ULONG Count)
2577 {
2578 KIRQL OldIrql;
2579 ULONG i;
2580 MMPTE TempPte;
2581 PFN_NUMBER PageFrameIndex;
2582 PMMPFN Pfn1, Pfn2;
2583
2584 //
2585 // Acquire the PFN lock and loop all the PTEs in the list
2586 //
2587 OldIrql = MiAcquirePfnLock();
2588 for (i = 0; i != Count; i++)
2589 {
2590 //
2591 // The PTE must currently be valid
2592 //
2593 TempPte = *ValidPteList[i];
2594 ASSERT(TempPte.u.Hard.Valid == 1);
2595
2596 //
2597 // Get the PFN entry for the page itself, and then for its page table
2598 //
2599 PageFrameIndex = PFN_FROM_PTE(&TempPte);
2600 Pfn1 = MiGetPfnEntry(PageFrameIndex);
2601 Pfn2 = MiGetPfnEntry(Pfn1->u4.PteFrame);
2602
2603 //
2604 // Decrement the share count on the page table, and then on the page
2605 // itself
2606 //
2607 MiDecrementShareCount(Pfn2, Pfn1->u4.PteFrame);
2608 MI_SET_PFN_DELETED(Pfn1);
2609 MiDecrementShareCount(Pfn1, PageFrameIndex);
2610
2611 //
2612 // Make the page decommitted
2613 //
2614 MI_WRITE_INVALID_PTE(ValidPteList[i], MmDecommittedPte);
2615 }
2616
2617 //
2618 // All the PTEs have been dereferenced and made invalid, flush the TLB now
2619 // and then release the PFN lock
2620 //
2621 KeFlushCurrentTb();
2622 MiReleasePfnLock(OldIrql);
2623 }
2624
2625 ULONG
2626 NTAPI
MiDecommitPages(IN PVOID StartingAddress,IN PMMPTE EndingPte,IN PEPROCESS Process,IN PMMVAD Vad)2627 MiDecommitPages(IN PVOID StartingAddress,
2628 IN PMMPTE EndingPte,
2629 IN PEPROCESS Process,
2630 IN PMMVAD Vad)
2631 {
2632 PMMPTE PointerPte, CommitPte = NULL;
2633 PMMPDE PointerPde;
2634 ULONG CommitReduction = 0;
2635 PMMPTE ValidPteList[256];
2636 ULONG PteCount = 0;
2637 PMMPFN Pfn1;
2638 MMPTE PteContents;
2639 PETHREAD CurrentThread = PsGetCurrentThread();
2640
2641 //
2642 // Get the PTE and PTE for the address, and lock the working set
2643 // If this was a VAD for a MEM_COMMIT allocation, also figure out where the
2644 // commited range ends so that we can do the right accounting.
2645 //
2646 PointerPde = MiAddressToPde(StartingAddress);
2647 PointerPte = MiAddressToPte(StartingAddress);
2648 if (Vad->u.VadFlags.MemCommit) CommitPte = MiAddressToPte(Vad->EndingVpn << PAGE_SHIFT);
2649 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
2650
2651 //
2652 // Make the PDE valid, and now loop through each page's worth of data
2653 //
2654 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
2655 while (PointerPte <= EndingPte)
2656 {
2657 //
2658 // Check if we've crossed a PDE boundary
2659 //
2660 if (MiIsPteOnPdeBoundary(PointerPte))
2661 {
2662 //
2663 // Get the new PDE and flush the valid PTEs we had built up until
2664 // now. This helps reduce the amount of TLB flushing we have to do.
2665 // Note that Windows does a much better job using timestamps and
2666 // such, and does not flush the entire TLB all the time, but right
2667 // now we have bigger problems to worry about than TLB flushing.
2668 //
2669 PointerPde = MiAddressToPde(StartingAddress);
2670 if (PteCount)
2671 {
2672 MiProcessValidPteList(ValidPteList, PteCount);
2673 PteCount = 0;
2674 }
2675
2676 //
2677 // Make this PDE valid
2678 //
2679 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
2680 }
2681
2682 //
2683 // Read this PTE. It might be active or still demand-zero.
2684 //
2685 PteContents = *PointerPte;
2686 if (PteContents.u.Long)
2687 {
2688 //
2689 // The PTE is active. It might be valid and in a working set, or
2690 // it might be a prototype PTE or paged out or even in transition.
2691 //
2692 if (PointerPte->u.Long == MmDecommittedPte.u.Long)
2693 {
2694 //
2695 // It's already decommited, so there's nothing for us to do here
2696 //
2697 CommitReduction++;
2698 }
2699 else
2700 {
2701 //
2702 // Remove it from the counters, and check if it was valid or not
2703 //
2704 //Process->NumberOfPrivatePages--;
2705 if (PteContents.u.Hard.Valid)
2706 {
2707 //
2708 // It's valid. At this point make sure that it is not a ROS
2709 // PFN. Also, we don't support ProtoPTEs in this code path.
2710 //
2711 Pfn1 = MiGetPfnEntry(PteContents.u.Hard.PageFrameNumber);
2712 ASSERT(MI_IS_ROS_PFN(Pfn1) == FALSE);
2713 ASSERT(Pfn1->u3.e1.PrototypePte == FALSE);
2714
2715 //
2716 // Flush any pending PTEs that we had not yet flushed, if our
2717 // list has gotten too big, then add this PTE to the flush list.
2718 //
2719 if (PteCount == 256)
2720 {
2721 MiProcessValidPteList(ValidPteList, PteCount);
2722 PteCount = 0;
2723 }
2724 ValidPteList[PteCount++] = PointerPte;
2725 }
2726 else
2727 {
2728 //
2729 // We do not support any of these other scenarios at the moment
2730 //
2731 ASSERT(PteContents.u.Soft.Prototype == 0);
2732 ASSERT(PteContents.u.Soft.Transition == 0);
2733 ASSERT(PteContents.u.Soft.PageFileHigh == 0);
2734
2735 //
2736 // So the only other possibility is that it is still a demand
2737 // zero PTE, in which case we undo the accounting we did
2738 // earlier and simply make the page decommitted.
2739 //
2740 //Process->NumberOfPrivatePages++;
2741 MI_WRITE_INVALID_PTE(PointerPte, MmDecommittedPte);
2742 }
2743 }
2744 }
2745 else
2746 {
2747 //
2748 // This used to be a zero PTE and it no longer is, so we must add a
2749 // reference to the pagetable.
2750 //
2751 MiIncrementPageTableReferences(StartingAddress);
2752
2753 //
2754 // Next, we account for decommitted PTEs and make the PTE as such
2755 //
2756 if (PointerPte > CommitPte) CommitReduction++;
2757 MI_WRITE_INVALID_PTE(PointerPte, MmDecommittedPte);
2758 }
2759
2760 //
2761 // Move to the next PTE and the next address
2762 //
2763 PointerPte++;
2764 StartingAddress = (PVOID)((ULONG_PTR)StartingAddress + PAGE_SIZE);
2765 }
2766
2767 //
2768 // Flush any dangling PTEs from the loop in the last page table, and then
2769 // release the working set and return the commit reduction accounting.
2770 //
2771 if (PteCount) MiProcessValidPteList(ValidPteList, PteCount);
2772 MiUnlockProcessWorkingSetUnsafe(Process, CurrentThread);
2773 return CommitReduction;
2774 }
2775
2776 /* PUBLIC FUNCTIONS ***********************************************************/
2777
2778 /*
2779 * @unimplemented
2780 */
2781 PVOID
2782 NTAPI
MmGetVirtualForPhysical(IN PHYSICAL_ADDRESS PhysicalAddress)2783 MmGetVirtualForPhysical(IN PHYSICAL_ADDRESS PhysicalAddress)
2784 {
2785 UNIMPLEMENTED;
2786 return 0;
2787 }
2788
2789 /*
2790 * @unimplemented
2791 */
2792 PVOID
2793 NTAPI
MmSecureVirtualMemory(IN PVOID Address,IN SIZE_T Length,IN ULONG Mode)2794 MmSecureVirtualMemory(IN PVOID Address,
2795 IN SIZE_T Length,
2796 IN ULONG Mode)
2797 {
2798 static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2799 return Address;
2800 }
2801
2802 /*
2803 * @unimplemented
2804 */
2805 VOID
2806 NTAPI
MmUnsecureVirtualMemory(IN PVOID SecureMem)2807 MmUnsecureVirtualMemory(IN PVOID SecureMem)
2808 {
2809 static ULONG Warn; if (!Warn++) UNIMPLEMENTED;
2810 }
2811
2812 /* SYSTEM CALLS ***************************************************************/
2813
2814 NTSTATUS
2815 NTAPI
NtReadVirtualMemory(IN HANDLE ProcessHandle,IN PVOID BaseAddress,OUT PVOID Buffer,IN SIZE_T NumberOfBytesToRead,OUT PSIZE_T NumberOfBytesRead OPTIONAL)2816 NtReadVirtualMemory(IN HANDLE ProcessHandle,
2817 IN PVOID BaseAddress,
2818 OUT PVOID Buffer,
2819 IN SIZE_T NumberOfBytesToRead,
2820 OUT PSIZE_T NumberOfBytesRead OPTIONAL)
2821 {
2822 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
2823 PEPROCESS Process;
2824 NTSTATUS Status = STATUS_SUCCESS;
2825 SIZE_T BytesRead = 0;
2826 PAGED_CODE();
2827
2828 //
2829 // Check if we came from user mode
2830 //
2831 if (PreviousMode != KernelMode)
2832 {
2833 //
2834 // Validate the read addresses
2835 //
2836 if ((((ULONG_PTR)BaseAddress + NumberOfBytesToRead) < (ULONG_PTR)BaseAddress) ||
2837 (((ULONG_PTR)Buffer + NumberOfBytesToRead) < (ULONG_PTR)Buffer) ||
2838 (((ULONG_PTR)BaseAddress + NumberOfBytesToRead) > MmUserProbeAddress) ||
2839 (((ULONG_PTR)Buffer + NumberOfBytesToRead) > MmUserProbeAddress))
2840 {
2841 //
2842 // Don't allow to write into kernel space
2843 //
2844 return STATUS_ACCESS_VIOLATION;
2845 }
2846
2847 //
2848 // Enter SEH for probe
2849 //
2850 _SEH2_TRY
2851 {
2852 //
2853 // Probe the output value
2854 //
2855 if (NumberOfBytesRead) ProbeForWriteSize_t(NumberOfBytesRead);
2856 }
2857 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
2858 {
2859 //
2860 // Get exception code
2861 //
2862 _SEH2_YIELD(return _SEH2_GetExceptionCode());
2863 }
2864 _SEH2_END;
2865 }
2866
2867 //
2868 // Don't do zero-byte transfers
2869 //
2870 if (NumberOfBytesToRead)
2871 {
2872 //
2873 // Reference the process
2874 //
2875 Status = ObReferenceObjectByHandle(ProcessHandle,
2876 PROCESS_VM_READ,
2877 PsProcessType,
2878 PreviousMode,
2879 (PVOID*)(&Process),
2880 NULL);
2881 if (NT_SUCCESS(Status))
2882 {
2883 //
2884 // Do the copy
2885 //
2886 Status = MmCopyVirtualMemory(Process,
2887 BaseAddress,
2888 PsGetCurrentProcess(),
2889 Buffer,
2890 NumberOfBytesToRead,
2891 PreviousMode,
2892 &BytesRead);
2893
2894 //
2895 // Dereference the process
2896 //
2897 ObDereferenceObject(Process);
2898 }
2899 }
2900
2901 //
2902 // Check if the caller sent this parameter
2903 //
2904 if (NumberOfBytesRead)
2905 {
2906 //
2907 // Enter SEH to guard write
2908 //
2909 _SEH2_TRY
2910 {
2911 //
2912 // Return the number of bytes read
2913 //
2914 *NumberOfBytesRead = BytesRead;
2915 }
2916 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
2917 {
2918 }
2919 _SEH2_END;
2920 }
2921
2922 //
2923 // Return status
2924 //
2925 return Status;
2926 }
2927
2928 NTSTATUS
2929 NTAPI
NtWriteVirtualMemory(IN HANDLE ProcessHandle,IN PVOID BaseAddress,IN PVOID Buffer,IN SIZE_T NumberOfBytesToWrite,OUT PSIZE_T NumberOfBytesWritten OPTIONAL)2930 NtWriteVirtualMemory(IN HANDLE ProcessHandle,
2931 IN PVOID BaseAddress,
2932 IN PVOID Buffer,
2933 IN SIZE_T NumberOfBytesToWrite,
2934 OUT PSIZE_T NumberOfBytesWritten OPTIONAL)
2935 {
2936 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
2937 PEPROCESS Process;
2938 NTSTATUS Status = STATUS_SUCCESS;
2939 SIZE_T BytesWritten = 0;
2940 PAGED_CODE();
2941
2942 //
2943 // Check if we came from user mode
2944 //
2945 if (PreviousMode != KernelMode)
2946 {
2947 //
2948 // Validate the read addresses
2949 //
2950 if ((((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) < (ULONG_PTR)BaseAddress) ||
2951 (((ULONG_PTR)Buffer + NumberOfBytesToWrite) < (ULONG_PTR)Buffer) ||
2952 (((ULONG_PTR)BaseAddress + NumberOfBytesToWrite) > MmUserProbeAddress) ||
2953 (((ULONG_PTR)Buffer + NumberOfBytesToWrite) > MmUserProbeAddress))
2954 {
2955 //
2956 // Don't allow to write into kernel space
2957 //
2958 return STATUS_ACCESS_VIOLATION;
2959 }
2960
2961 //
2962 // Enter SEH for probe
2963 //
2964 _SEH2_TRY
2965 {
2966 //
2967 // Probe the output value
2968 //
2969 if (NumberOfBytesWritten) ProbeForWriteSize_t(NumberOfBytesWritten);
2970 }
2971 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
2972 {
2973 //
2974 // Get exception code
2975 //
2976 _SEH2_YIELD(return _SEH2_GetExceptionCode());
2977 }
2978 _SEH2_END;
2979 }
2980
2981 //
2982 // Don't do zero-byte transfers
2983 //
2984 if (NumberOfBytesToWrite)
2985 {
2986 //
2987 // Reference the process
2988 //
2989 Status = ObReferenceObjectByHandle(ProcessHandle,
2990 PROCESS_VM_WRITE,
2991 PsProcessType,
2992 PreviousMode,
2993 (PVOID*)&Process,
2994 NULL);
2995 if (NT_SUCCESS(Status))
2996 {
2997 //
2998 // Do the copy
2999 //
3000 Status = MmCopyVirtualMemory(PsGetCurrentProcess(),
3001 Buffer,
3002 Process,
3003 BaseAddress,
3004 NumberOfBytesToWrite,
3005 PreviousMode,
3006 &BytesWritten);
3007
3008 //
3009 // Dereference the process
3010 //
3011 ObDereferenceObject(Process);
3012 }
3013 }
3014
3015 //
3016 // Check if the caller sent this parameter
3017 //
3018 if (NumberOfBytesWritten)
3019 {
3020 //
3021 // Enter SEH to guard write
3022 //
3023 _SEH2_TRY
3024 {
3025 //
3026 // Return the number of bytes written
3027 //
3028 *NumberOfBytesWritten = BytesWritten;
3029 }
3030 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3031 {
3032 }
3033 _SEH2_END;
3034 }
3035
3036 //
3037 // Return status
3038 //
3039 return Status;
3040 }
3041
3042 NTSTATUS
3043 NTAPI
NtFlushInstructionCache(_In_ HANDLE ProcessHandle,_In_opt_ PVOID BaseAddress,_In_ SIZE_T FlushSize)3044 NtFlushInstructionCache(_In_ HANDLE ProcessHandle,
3045 _In_opt_ PVOID BaseAddress,
3046 _In_ SIZE_T FlushSize)
3047 {
3048 KAPC_STATE ApcState;
3049 PKPROCESS Process;
3050 NTSTATUS Status;
3051 PAGED_CODE();
3052
3053 /* Is a base address given? */
3054 if (BaseAddress != NULL)
3055 {
3056 /* If the requested size is 0, there is nothing to do */
3057 if (FlushSize == 0)
3058 {
3059 return STATUS_SUCCESS;
3060 }
3061
3062 /* Is this a user mode call? */
3063 if (ExGetPreviousMode() != KernelMode)
3064 {
3065 /* Make sure the base address is in user space */
3066 if (BaseAddress > MmHighestUserAddress)
3067 {
3068 DPRINT1("Invalid BaseAddress 0x%p\n", BaseAddress);
3069 return STATUS_ACCESS_VIOLATION;
3070 }
3071 }
3072 }
3073
3074 /* Is another process requested? */
3075 if (ProcessHandle != NtCurrentProcess())
3076 {
3077 /* Reference the process */
3078 Status = ObReferenceObjectByHandle(ProcessHandle,
3079 PROCESS_VM_WRITE,
3080 PsProcessType,
3081 ExGetPreviousMode(),
3082 (PVOID*)&Process,
3083 NULL);
3084 if (!NT_SUCCESS(Status))
3085 {
3086 DPRINT1("Failed to reference the process %p\n", ProcessHandle);
3087 return Status;
3088 }
3089
3090 /* Attach to the process */
3091 KeStackAttachProcess(Process, &ApcState);
3092 }
3093
3094 /* Forward to Ke */
3095 KeSweepICache(BaseAddress, FlushSize);
3096
3097 /* Check if we attached */
3098 if (ProcessHandle != NtCurrentProcess())
3099 {
3100 /* Detach from the process and dereference it */
3101 KeUnstackDetachProcess(&ApcState);
3102 ObDereferenceObject(Process);
3103 }
3104
3105 /* All done, return to caller */
3106 return STATUS_SUCCESS;
3107 }
3108
3109 NTSTATUS
3110 NTAPI
NtProtectVirtualMemory(IN HANDLE ProcessHandle,IN OUT PVOID * UnsafeBaseAddress,IN OUT SIZE_T * UnsafeNumberOfBytesToProtect,IN ULONG NewAccessProtection,OUT PULONG UnsafeOldAccessProtection)3111 NtProtectVirtualMemory(IN HANDLE ProcessHandle,
3112 IN OUT PVOID *UnsafeBaseAddress,
3113 IN OUT SIZE_T *UnsafeNumberOfBytesToProtect,
3114 IN ULONG NewAccessProtection,
3115 OUT PULONG UnsafeOldAccessProtection)
3116 {
3117 PEPROCESS Process;
3118 ULONG OldAccessProtection;
3119 ULONG Protection;
3120 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3121 PVOID BaseAddress = NULL;
3122 SIZE_T NumberOfBytesToProtect = 0;
3123 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
3124 NTSTATUS Status;
3125 BOOLEAN Attached = FALSE;
3126 KAPC_STATE ApcState;
3127 PAGED_CODE();
3128
3129 //
3130 // Check for valid protection flags
3131 //
3132 Protection = NewAccessProtection & ~(PAGE_GUARD|PAGE_NOCACHE);
3133 if (Protection != PAGE_NOACCESS &&
3134 Protection != PAGE_READONLY &&
3135 Protection != PAGE_READWRITE &&
3136 Protection != PAGE_WRITECOPY &&
3137 Protection != PAGE_EXECUTE &&
3138 Protection != PAGE_EXECUTE_READ &&
3139 Protection != PAGE_EXECUTE_READWRITE &&
3140 Protection != PAGE_EXECUTE_WRITECOPY)
3141 {
3142 //
3143 // Fail
3144 //
3145 return STATUS_INVALID_PAGE_PROTECTION;
3146 }
3147
3148 //
3149 // Check if we came from user mode
3150 //
3151 if (PreviousMode != KernelMode)
3152 {
3153 //
3154 // Enter SEH for probing
3155 //
3156 _SEH2_TRY
3157 {
3158 //
3159 // Validate all outputs
3160 //
3161 ProbeForWritePointer(UnsafeBaseAddress);
3162 ProbeForWriteSize_t(UnsafeNumberOfBytesToProtect);
3163 ProbeForWriteUlong(UnsafeOldAccessProtection);
3164
3165 //
3166 // Capture them
3167 //
3168 BaseAddress = *UnsafeBaseAddress;
3169 NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3170 }
3171 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3172 {
3173 //
3174 // Get exception code
3175 //
3176 _SEH2_YIELD(return _SEH2_GetExceptionCode());
3177 }
3178 _SEH2_END;
3179 }
3180 else
3181 {
3182 //
3183 // Capture directly
3184 //
3185 BaseAddress = *UnsafeBaseAddress;
3186 NumberOfBytesToProtect = *UnsafeNumberOfBytesToProtect;
3187 }
3188
3189 //
3190 // Catch illegal base address
3191 //
3192 if (BaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER_2;
3193
3194 //
3195 // Catch illegal region size
3196 //
3197 if ((MmUserProbeAddress - (ULONG_PTR)BaseAddress) < NumberOfBytesToProtect)
3198 {
3199 //
3200 // Fail
3201 //
3202 return STATUS_INVALID_PARAMETER_3;
3203 }
3204
3205 //
3206 // 0 is also illegal
3207 //
3208 if (!NumberOfBytesToProtect) return STATUS_INVALID_PARAMETER_3;
3209
3210 //
3211 // Get a reference to the process
3212 //
3213 Status = ObReferenceObjectByHandle(ProcessHandle,
3214 PROCESS_VM_OPERATION,
3215 PsProcessType,
3216 PreviousMode,
3217 (PVOID*)(&Process),
3218 NULL);
3219 if (!NT_SUCCESS(Status)) return Status;
3220
3221 //
3222 // Check if we should attach
3223 //
3224 if (CurrentProcess != Process)
3225 {
3226 //
3227 // Do it
3228 //
3229 KeStackAttachProcess(&Process->Pcb, &ApcState);
3230 Attached = TRUE;
3231 }
3232
3233 //
3234 // Do the actual work
3235 //
3236 Status = MiProtectVirtualMemory(Process,
3237 &BaseAddress,
3238 &NumberOfBytesToProtect,
3239 NewAccessProtection,
3240 &OldAccessProtection);
3241
3242 //
3243 // Detach if needed
3244 //
3245 if (Attached) KeUnstackDetachProcess(&ApcState);
3246
3247 //
3248 // Release reference
3249 //
3250 ObDereferenceObject(Process);
3251
3252 //
3253 // Enter SEH to return data
3254 //
3255 _SEH2_TRY
3256 {
3257 //
3258 // Return data to user
3259 //
3260 *UnsafeOldAccessProtection = OldAccessProtection;
3261 *UnsafeBaseAddress = BaseAddress;
3262 *UnsafeNumberOfBytesToProtect = NumberOfBytesToProtect;
3263 }
3264 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3265 {
3266 }
3267 _SEH2_END;
3268
3269 //
3270 // Return status
3271 //
3272 return Status;
3273 }
3274
3275 FORCEINLINE
3276 BOOLEAN
MI_IS_LOCKED_VA(PMMPFN Pfn1,ULONG LockType)3277 MI_IS_LOCKED_VA(
3278 PMMPFN Pfn1,
3279 ULONG LockType)
3280 {
3281 // HACK until we have proper WSLIST support
3282 PMMWSLE Wsle = &Pfn1->Wsle;
3283
3284 if ((LockType & MAP_PROCESS) && (Wsle->u1.e1.LockedInWs))
3285 return TRUE;
3286 if ((LockType & MAP_SYSTEM) && (Wsle->u1.e1.LockedInMemory))
3287 return TRUE;
3288
3289 return FALSE;
3290 }
3291
3292 FORCEINLINE
3293 VOID
MI_LOCK_VA(PMMPFN Pfn1,ULONG LockType)3294 MI_LOCK_VA(
3295 PMMPFN Pfn1,
3296 ULONG LockType)
3297 {
3298 // HACK until we have proper WSLIST support
3299 PMMWSLE Wsle = &Pfn1->Wsle;
3300
3301 if (!Wsle->u1.e1.LockedInWs &&
3302 !Wsle->u1.e1.LockedInMemory)
3303 {
3304 MiReferenceProbedPageAndBumpLockCount(Pfn1);
3305 }
3306
3307 if (LockType & MAP_PROCESS)
3308 Wsle->u1.e1.LockedInWs = 1;
3309 if (LockType & MAP_SYSTEM)
3310 Wsle->u1.e1.LockedInMemory = 1;
3311 }
3312
3313 FORCEINLINE
3314 VOID
MI_UNLOCK_VA(PMMPFN Pfn1,ULONG LockType)3315 MI_UNLOCK_VA(
3316 PMMPFN Pfn1,
3317 ULONG LockType)
3318 {
3319 // HACK until we have proper WSLIST support
3320 PMMWSLE Wsle = &Pfn1->Wsle;
3321
3322 if (LockType & MAP_PROCESS)
3323 Wsle->u1.e1.LockedInWs = 0;
3324 if (LockType & MAP_SYSTEM)
3325 Wsle->u1.e1.LockedInMemory = 0;
3326
3327 if (!Wsle->u1.e1.LockedInWs &&
3328 !Wsle->u1.e1.LockedInMemory)
3329 {
3330 MiDereferencePfnAndDropLockCount(Pfn1);
3331 }
3332 }
3333
3334 static
3335 NTSTATUS
MiCheckVadsForLockOperation(_Inout_ PVOID * BaseAddress,_Inout_ PSIZE_T RegionSize,_Inout_ PVOID * EndAddress)3336 MiCheckVadsForLockOperation(
3337 _Inout_ PVOID *BaseAddress,
3338 _Inout_ PSIZE_T RegionSize,
3339 _Inout_ PVOID *EndAddress)
3340
3341 {
3342 PMMVAD Vad;
3343 PVOID CurrentVa;
3344
3345 /* Get the base address and align the start address */
3346 *EndAddress = (PUCHAR)*BaseAddress + *RegionSize;
3347 *EndAddress = ALIGN_UP_POINTER_BY(*EndAddress, PAGE_SIZE);
3348 *BaseAddress = ALIGN_DOWN_POINTER_BY(*BaseAddress, PAGE_SIZE);
3349
3350 /* First loop and check all VADs */
3351 CurrentVa = *BaseAddress;
3352 while (CurrentVa < *EndAddress)
3353 {
3354 /* Get VAD */
3355 Vad = MiLocateAddress(CurrentVa);
3356 if (Vad == NULL)
3357 {
3358 /// FIXME: this might be a memory area for a section view...
3359 return STATUS_ACCESS_VIOLATION;
3360 }
3361
3362 /* Check VAD type */
3363 if ((Vad->u.VadFlags.VadType != VadNone) &&
3364 (Vad->u.VadFlags.VadType != VadImageMap) &&
3365 (Vad->u.VadFlags.VadType != VadWriteWatch))
3366 {
3367 *EndAddress = CurrentVa;
3368 *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3369 return STATUS_INCOMPATIBLE_FILE_MAP;
3370 }
3371
3372 CurrentVa = (PVOID)((Vad->EndingVpn + 1) << PAGE_SHIFT);
3373 }
3374
3375 *RegionSize = (PUCHAR)*EndAddress - (PUCHAR)*BaseAddress;
3376 return STATUS_SUCCESS;
3377 }
3378
3379 static
3380 NTSTATUS
MiLockVirtualMemory(IN OUT PVOID * BaseAddress,IN OUT PSIZE_T RegionSize,IN ULONG MapType)3381 MiLockVirtualMemory(
3382 IN OUT PVOID *BaseAddress,
3383 IN OUT PSIZE_T RegionSize,
3384 IN ULONG MapType)
3385 {
3386 PEPROCESS CurrentProcess;
3387 PMMSUPPORT AddressSpace;
3388 PVOID CurrentVa, EndAddress;
3389 PMMPTE PointerPte, LastPte;
3390 PMMPDE PointerPde;
3391 #if (_MI_PAGING_LEVELS >= 3)
3392 PMMPDE PointerPpe;
3393 #endif
3394 #if (_MI_PAGING_LEVELS == 4)
3395 PMMPDE PointerPxe;
3396 #endif
3397 PMMPFN Pfn1;
3398 NTSTATUS Status, TempStatus;
3399
3400 /* Lock the address space */
3401 AddressSpace = MmGetCurrentAddressSpace();
3402 MmLockAddressSpace(AddressSpace);
3403
3404 /* Make sure we still have an address space */
3405 CurrentProcess = PsGetCurrentProcess();
3406 if (CurrentProcess->VmDeleted)
3407 {
3408 Status = STATUS_PROCESS_IS_TERMINATING;
3409 goto Cleanup;
3410 }
3411
3412 /* Check the VADs in the requested range */
3413 Status = MiCheckVadsForLockOperation(BaseAddress, RegionSize, &EndAddress);
3414 if (!NT_SUCCESS(Status))
3415 {
3416 goto Cleanup;
3417 }
3418
3419 /* Enter SEH for probing */
3420 _SEH2_TRY
3421 {
3422 /* Loop all pages and probe them */
3423 CurrentVa = *BaseAddress;
3424 while (CurrentVa < EndAddress)
3425 {
3426 (void)(*(volatile CHAR*)CurrentVa);
3427 CurrentVa = (PUCHAR)CurrentVa + PAGE_SIZE;
3428 }
3429 }
3430 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3431 {
3432 Status = _SEH2_GetExceptionCode();
3433 goto Cleanup;
3434 }
3435 _SEH2_END;
3436
3437 /* All pages were accessible, since we hold the address space lock, nothing
3438 can be de-committed. Assume success for now. */
3439 Status = STATUS_SUCCESS;
3440
3441 /* Get the PTE and PDE */
3442 PointerPte = MiAddressToPte(*BaseAddress);
3443 PointerPde = MiAddressToPde(*BaseAddress);
3444 #if (_MI_PAGING_LEVELS >= 3)
3445 PointerPpe = MiAddressToPpe(*BaseAddress);
3446 #endif
3447 #if (_MI_PAGING_LEVELS == 4)
3448 PointerPxe = MiAddressToPxe(*BaseAddress);
3449 #endif
3450
3451 /* Get the last PTE */
3452 LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3453
3454 /* Lock the process working set */
3455 MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3456
3457 /* Loop the pages */
3458 do
3459 {
3460 /* Check for a page that is not accessible */
3461 while (
3462 #if (_MI_PAGING_LEVELS == 4)
3463 (PointerPxe->u.Hard.Valid == 0) ||
3464 #endif
3465 #if (_MI_PAGING_LEVELS >= 3)
3466 (PointerPpe->u.Hard.Valid == 0) ||
3467 #endif
3468 (PointerPde->u.Hard.Valid == 0) ||
3469 (PointerPte->u.Hard.Valid == 0))
3470 {
3471 /* Release process working set */
3472 MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3473
3474 /* Access the page */
3475 CurrentVa = MiPteToAddress(PointerPte);
3476
3477 //HACK: Pass a placeholder TrapInformation so the fault handler knows we're unlocked
3478 TempStatus = MmAccessFault(TRUE, CurrentVa, KernelMode, (PVOID)(ULONG_PTR)0xBADBADA3BADBADA3ULL);
3479 if (!NT_SUCCESS(TempStatus))
3480 {
3481 // This should only happen, when remote backing storage is not accessible
3482 ASSERT(FALSE);
3483 Status = TempStatus;
3484 goto Cleanup;
3485 }
3486
3487 /* Lock the process working set */
3488 MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3489 }
3490
3491 /* Get the PFN */
3492 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3493 ASSERT(Pfn1 != NULL);
3494
3495 /* Check the previous lock status */
3496 if (MI_IS_LOCKED_VA(Pfn1, MapType))
3497 {
3498 Status = STATUS_WAS_LOCKED;
3499 }
3500
3501 /* Lock it */
3502 MI_LOCK_VA(Pfn1, MapType);
3503
3504 /* Go to the next PTE */
3505 PointerPte++;
3506
3507 /* Check if we're on a PDE boundary */
3508 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3509 #if (_MI_PAGING_LEVELS >= 3)
3510 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3511 #endif
3512 #if (_MI_PAGING_LEVELS == 4)
3513 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3514 #endif
3515 } while (PointerPte <= LastPte);
3516
3517 /* Release process working set */
3518 MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3519
3520 Cleanup:
3521 /* Unlock address space */
3522 MmUnlockAddressSpace(AddressSpace);
3523
3524 return Status;
3525 }
3526
3527 NTSTATUS
3528 NTAPI
NtLockVirtualMemory(IN HANDLE ProcessHandle,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T NumberOfBytesToLock,IN ULONG MapType)3529 NtLockVirtualMemory(IN HANDLE ProcessHandle,
3530 IN OUT PVOID *BaseAddress,
3531 IN OUT PSIZE_T NumberOfBytesToLock,
3532 IN ULONG MapType)
3533 {
3534 PEPROCESS Process;
3535 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3536 NTSTATUS Status;
3537 BOOLEAN Attached = FALSE;
3538 KAPC_STATE ApcState;
3539 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
3540 PVOID CapturedBaseAddress;
3541 SIZE_T CapturedBytesToLock;
3542 PAGED_CODE();
3543
3544 //
3545 // Validate flags
3546 //
3547 if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3548 {
3549 //
3550 // Invalid set of flags
3551 //
3552 return STATUS_INVALID_PARAMETER;
3553 }
3554
3555 //
3556 // At least one flag must be specified
3557 //
3558 if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3559 {
3560 //
3561 // No flag given
3562 //
3563 return STATUS_INVALID_PARAMETER;
3564 }
3565
3566 //
3567 // Enter SEH for probing
3568 //
3569 _SEH2_TRY
3570 {
3571 //
3572 // Validate output data
3573 //
3574 ProbeForWritePointer(BaseAddress);
3575 ProbeForWriteSize_t(NumberOfBytesToLock);
3576
3577 //
3578 // Capture it
3579 //
3580 CapturedBaseAddress = *BaseAddress;
3581 CapturedBytesToLock = *NumberOfBytesToLock;
3582 }
3583 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3584 {
3585 //
3586 // Get exception code
3587 //
3588 _SEH2_YIELD(return _SEH2_GetExceptionCode());
3589 }
3590 _SEH2_END;
3591
3592 //
3593 // Catch illegal base address
3594 //
3595 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3596
3597 //
3598 // Catch illegal region size
3599 //
3600 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToLock)
3601 {
3602 //
3603 // Fail
3604 //
3605 return STATUS_INVALID_PARAMETER;
3606 }
3607
3608 //
3609 // 0 is also illegal
3610 //
3611 if (!CapturedBytesToLock) return STATUS_INVALID_PARAMETER;
3612
3613 //
3614 // Get a reference to the process
3615 //
3616 Status = ObReferenceObjectByHandle(ProcessHandle,
3617 PROCESS_VM_OPERATION,
3618 PsProcessType,
3619 PreviousMode,
3620 (PVOID*)(&Process),
3621 NULL);
3622 if (!NT_SUCCESS(Status)) return Status;
3623
3624 //
3625 // Check if this is is system-mapped
3626 //
3627 if (MapType & MAP_SYSTEM)
3628 {
3629 //
3630 // Check for required privilege
3631 //
3632 if (!SeSinglePrivilegeCheck(SeLockMemoryPrivilege, PreviousMode))
3633 {
3634 //
3635 // Fail: Don't have it
3636 //
3637 ObDereferenceObject(Process);
3638 return STATUS_PRIVILEGE_NOT_HELD;
3639 }
3640 }
3641
3642 //
3643 // Check if we should attach
3644 //
3645 if (CurrentProcess != Process)
3646 {
3647 //
3648 // Do it
3649 //
3650 KeStackAttachProcess(&Process->Pcb, &ApcState);
3651 Attached = TRUE;
3652 }
3653
3654 //
3655 // Call the internal function
3656 //
3657 Status = MiLockVirtualMemory(&CapturedBaseAddress,
3658 &CapturedBytesToLock,
3659 MapType);
3660
3661 //
3662 // Detach if needed
3663 //
3664 if (Attached) KeUnstackDetachProcess(&ApcState);
3665
3666 //
3667 // Release reference
3668 //
3669 ObDereferenceObject(Process);
3670
3671 //
3672 // Enter SEH to return data
3673 //
3674 _SEH2_TRY
3675 {
3676 //
3677 // Return data to user
3678 //
3679 *BaseAddress = CapturedBaseAddress;
3680 *NumberOfBytesToLock = CapturedBytesToLock;
3681 }
3682 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3683 {
3684 //
3685 // Get exception code
3686 //
3687 _SEH2_YIELD(return _SEH2_GetExceptionCode());
3688 }
3689 _SEH2_END;
3690
3691 //
3692 // Return status
3693 //
3694 return Status;
3695 }
3696
3697
3698 static
3699 NTSTATUS
MiUnlockVirtualMemory(IN OUT PVOID * BaseAddress,IN OUT PSIZE_T RegionSize,IN ULONG MapType)3700 MiUnlockVirtualMemory(
3701 IN OUT PVOID *BaseAddress,
3702 IN OUT PSIZE_T RegionSize,
3703 IN ULONG MapType)
3704 {
3705 PEPROCESS CurrentProcess;
3706 PMMSUPPORT AddressSpace;
3707 PVOID EndAddress;
3708 PMMPTE PointerPte, LastPte;
3709 PMMPDE PointerPde;
3710 #if (_MI_PAGING_LEVELS >= 3)
3711 PMMPDE PointerPpe;
3712 #endif
3713 #if (_MI_PAGING_LEVELS == 4)
3714 PMMPDE PointerPxe;
3715 #endif
3716 PMMPFN Pfn1;
3717 NTSTATUS Status;
3718
3719 /* Lock the address space */
3720 AddressSpace = MmGetCurrentAddressSpace();
3721 MmLockAddressSpace(AddressSpace);
3722
3723 /* Make sure we still have an address space */
3724 CurrentProcess = PsGetCurrentProcess();
3725 if (CurrentProcess->VmDeleted)
3726 {
3727 Status = STATUS_PROCESS_IS_TERMINATING;
3728 goto Cleanup;
3729 }
3730
3731 /* Check the VADs in the requested range */
3732 Status = MiCheckVadsForLockOperation(BaseAddress, RegionSize, &EndAddress);
3733
3734 /* Note: only bail out, if we hit an area without a VAD. If we hit an
3735 incompatible VAD we continue, like Windows does */
3736 if (Status == STATUS_ACCESS_VIOLATION)
3737 {
3738 Status = STATUS_NOT_LOCKED;
3739 goto Cleanup;
3740 }
3741
3742 /* Get the PTE and PDE */
3743 PointerPte = MiAddressToPte(*BaseAddress);
3744 PointerPde = MiAddressToPde(*BaseAddress);
3745 #if (_MI_PAGING_LEVELS >= 3)
3746 PointerPpe = MiAddressToPpe(*BaseAddress);
3747 #endif
3748 #if (_MI_PAGING_LEVELS == 4)
3749 PointerPxe = MiAddressToPxe(*BaseAddress);
3750 #endif
3751
3752 /* Get the last PTE */
3753 LastPte = MiAddressToPte((PVOID)((ULONG_PTR)EndAddress - 1));
3754
3755 /* Lock the process working set */
3756 MiLockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3757
3758 /* Loop the pages */
3759 do
3760 {
3761 /* Check for a page that is not present */
3762 if (
3763 #if (_MI_PAGING_LEVELS == 4)
3764 (PointerPxe->u.Hard.Valid == 0) ||
3765 #endif
3766 #if (_MI_PAGING_LEVELS >= 3)
3767 (PointerPpe->u.Hard.Valid == 0) ||
3768 #endif
3769 (PointerPde->u.Hard.Valid == 0) ||
3770 (PointerPte->u.Hard.Valid == 0))
3771 {
3772 /* Remember it, but keep going */
3773 Status = STATUS_NOT_LOCKED;
3774 }
3775 else
3776 {
3777 /* Get the PFN */
3778 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3779 ASSERT(Pfn1 != NULL);
3780
3781 /* Check if all of the requested locks are present */
3782 if (((MapType & MAP_SYSTEM) && !MI_IS_LOCKED_VA(Pfn1, MAP_SYSTEM)) ||
3783 ((MapType & MAP_PROCESS) && !MI_IS_LOCKED_VA(Pfn1, MAP_PROCESS)))
3784 {
3785 /* Remember it, but keep going */
3786 Status = STATUS_NOT_LOCKED;
3787
3788 /* Check if no lock is present */
3789 if (!MI_IS_LOCKED_VA(Pfn1, MAP_PROCESS | MAP_SYSTEM))
3790 {
3791 DPRINT1("FIXME: Should remove the page from WS\n");
3792 }
3793 }
3794 }
3795
3796 /* Go to the next PTE */
3797 PointerPte++;
3798
3799 /* Check if we're on a PDE boundary */
3800 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3801 #if (_MI_PAGING_LEVELS >= 3)
3802 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3803 #endif
3804 #if (_MI_PAGING_LEVELS == 4)
3805 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3806 #endif
3807 } while (PointerPte <= LastPte);
3808
3809 /* Check if we hit a page that was not locked */
3810 if (Status == STATUS_NOT_LOCKED)
3811 {
3812 goto CleanupWithWsLock;
3813 }
3814
3815 /* All pages in the region were locked, so unlock them all */
3816
3817 /* Get the PTE and PDE */
3818 PointerPte = MiAddressToPte(*BaseAddress);
3819 PointerPde = MiAddressToPde(*BaseAddress);
3820 #if (_MI_PAGING_LEVELS >= 3)
3821 PointerPpe = MiAddressToPpe(*BaseAddress);
3822 #endif
3823 #if (_MI_PAGING_LEVELS == 4)
3824 PointerPxe = MiAddressToPxe(*BaseAddress);
3825 #endif
3826
3827 /* Loop the pages */
3828 do
3829 {
3830 /* Unlock it */
3831 Pfn1 = MiGetPfnEntry(PFN_FROM_PTE(PointerPte));
3832 MI_UNLOCK_VA(Pfn1, MapType);
3833
3834 /* Go to the next PTE */
3835 PointerPte++;
3836
3837 /* Check if we're on a PDE boundary */
3838 if (MiIsPteOnPdeBoundary(PointerPte)) PointerPde++;
3839 #if (_MI_PAGING_LEVELS >= 3)
3840 if (MiIsPteOnPpeBoundary(PointerPte)) PointerPpe++;
3841 #endif
3842 #if (_MI_PAGING_LEVELS == 4)
3843 if (MiIsPteOnPxeBoundary(PointerPte)) PointerPxe++;
3844 #endif
3845 } while (PointerPte <= LastPte);
3846
3847 /* Everything is done */
3848 Status = STATUS_SUCCESS;
3849
3850 CleanupWithWsLock:
3851
3852 /* Release process working set */
3853 MiUnlockProcessWorkingSet(CurrentProcess, PsGetCurrentThread());
3854
3855 Cleanup:
3856 /* Unlock address space */
3857 MmUnlockAddressSpace(AddressSpace);
3858
3859 return Status;
3860 }
3861
3862
3863 NTSTATUS
3864 NTAPI
NtUnlockVirtualMemory(IN HANDLE ProcessHandle,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T NumberOfBytesToUnlock,IN ULONG MapType)3865 NtUnlockVirtualMemory(IN HANDLE ProcessHandle,
3866 IN OUT PVOID *BaseAddress,
3867 IN OUT PSIZE_T NumberOfBytesToUnlock,
3868 IN ULONG MapType)
3869 {
3870 PEPROCESS Process;
3871 PEPROCESS CurrentProcess = PsGetCurrentProcess();
3872 NTSTATUS Status;
3873 BOOLEAN Attached = FALSE;
3874 KAPC_STATE ApcState;
3875 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
3876 PVOID CapturedBaseAddress;
3877 SIZE_T CapturedBytesToUnlock;
3878 PAGED_CODE();
3879
3880 //
3881 // Validate flags
3882 //
3883 if ((MapType & ~(MAP_PROCESS | MAP_SYSTEM)))
3884 {
3885 //
3886 // Invalid set of flags
3887 //
3888 return STATUS_INVALID_PARAMETER;
3889 }
3890
3891 //
3892 // At least one flag must be specified
3893 //
3894 if (!(MapType & (MAP_PROCESS | MAP_SYSTEM)))
3895 {
3896 //
3897 // No flag given
3898 //
3899 return STATUS_INVALID_PARAMETER;
3900 }
3901
3902 //
3903 // Enter SEH for probing
3904 //
3905 _SEH2_TRY
3906 {
3907 //
3908 // Validate output data
3909 //
3910 ProbeForWritePointer(BaseAddress);
3911 ProbeForWriteSize_t(NumberOfBytesToUnlock);
3912
3913 //
3914 // Capture it
3915 //
3916 CapturedBaseAddress = *BaseAddress;
3917 CapturedBytesToUnlock = *NumberOfBytesToUnlock;
3918 }
3919 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
3920 {
3921 //
3922 // Get exception code
3923 //
3924 _SEH2_YIELD(return _SEH2_GetExceptionCode());
3925 }
3926 _SEH2_END;
3927
3928 //
3929 // Catch illegal base address
3930 //
3931 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
3932
3933 //
3934 // Catch illegal region size
3935 //
3936 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToUnlock)
3937 {
3938 //
3939 // Fail
3940 //
3941 return STATUS_INVALID_PARAMETER;
3942 }
3943
3944 //
3945 // 0 is also illegal
3946 //
3947 if (!CapturedBytesToUnlock) return STATUS_INVALID_PARAMETER;
3948
3949 //
3950 // Get a reference to the process
3951 //
3952 Status = ObReferenceObjectByHandle(ProcessHandle,
3953 PROCESS_VM_OPERATION,
3954 PsProcessType,
3955 PreviousMode,
3956 (PVOID*)(&Process),
3957 NULL);
3958 if (!NT_SUCCESS(Status)) return Status;
3959
3960 //
3961 // Check if this is is system-mapped
3962 //
3963 if (MapType & MAP_SYSTEM)
3964 {
3965 //
3966 // Check for required privilege
3967 //
3968 if (!SeSinglePrivilegeCheck(SeLockMemoryPrivilege, PreviousMode))
3969 {
3970 //
3971 // Fail: Don't have it
3972 //
3973 ObDereferenceObject(Process);
3974 return STATUS_PRIVILEGE_NOT_HELD;
3975 }
3976 }
3977
3978 //
3979 // Check if we should attach
3980 //
3981 if (CurrentProcess != Process)
3982 {
3983 //
3984 // Do it
3985 //
3986 KeStackAttachProcess(&Process->Pcb, &ApcState);
3987 Attached = TRUE;
3988 }
3989
3990 //
3991 // Call the internal function
3992 //
3993 Status = MiUnlockVirtualMemory(&CapturedBaseAddress,
3994 &CapturedBytesToUnlock,
3995 MapType);
3996
3997 //
3998 // Detach if needed
3999 //
4000 if (Attached) KeUnstackDetachProcess(&ApcState);
4001
4002 //
4003 // Release reference
4004 //
4005 ObDereferenceObject(Process);
4006
4007 //
4008 // Enter SEH to return data
4009 //
4010 _SEH2_TRY
4011 {
4012 //
4013 // Return data to user
4014 //
4015 *BaseAddress = CapturedBaseAddress;
4016 *NumberOfBytesToUnlock = CapturedBytesToUnlock;
4017 }
4018 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4019 {
4020 //
4021 // Get exception code
4022 //
4023 _SEH2_YIELD(return _SEH2_GetExceptionCode());
4024 }
4025 _SEH2_END;
4026
4027 //
4028 // Return status
4029 //
4030 return STATUS_SUCCESS;
4031 }
4032
4033 NTSTATUS
4034 NTAPI
NtFlushVirtualMemory(IN HANDLE ProcessHandle,IN OUT PVOID * BaseAddress,IN OUT PSIZE_T NumberOfBytesToFlush,OUT PIO_STATUS_BLOCK IoStatusBlock)4035 NtFlushVirtualMemory(IN HANDLE ProcessHandle,
4036 IN OUT PVOID *BaseAddress,
4037 IN OUT PSIZE_T NumberOfBytesToFlush,
4038 OUT PIO_STATUS_BLOCK IoStatusBlock)
4039 {
4040 PEPROCESS Process;
4041 NTSTATUS Status;
4042 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
4043 PVOID CapturedBaseAddress;
4044 SIZE_T CapturedBytesToFlush;
4045 IO_STATUS_BLOCK LocalStatusBlock;
4046 PAGED_CODE();
4047
4048 //
4049 // Check if we came from user mode
4050 //
4051 if (PreviousMode != KernelMode)
4052 {
4053 //
4054 // Enter SEH for probing
4055 //
4056 _SEH2_TRY
4057 {
4058 //
4059 // Validate all outputs
4060 //
4061 ProbeForWritePointer(BaseAddress);
4062 ProbeForWriteSize_t(NumberOfBytesToFlush);
4063 ProbeForWriteIoStatusBlock(IoStatusBlock);
4064
4065 //
4066 // Capture them
4067 //
4068 CapturedBaseAddress = *BaseAddress;
4069 CapturedBytesToFlush = *NumberOfBytesToFlush;
4070 }
4071 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4072 {
4073 //
4074 // Get exception code
4075 //
4076 _SEH2_YIELD(return _SEH2_GetExceptionCode());
4077 }
4078 _SEH2_END;
4079 }
4080 else
4081 {
4082 //
4083 // Capture directly
4084 //
4085 CapturedBaseAddress = *BaseAddress;
4086 CapturedBytesToFlush = *NumberOfBytesToFlush;
4087 }
4088
4089 //
4090 // Catch illegal base address
4091 //
4092 if (CapturedBaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
4093
4094 //
4095 // Catch illegal region size
4096 //
4097 if ((MmUserProbeAddress - (ULONG_PTR)CapturedBaseAddress) < CapturedBytesToFlush)
4098 {
4099 //
4100 // Fail
4101 //
4102 return STATUS_INVALID_PARAMETER;
4103 }
4104
4105 //
4106 // Get a reference to the process
4107 //
4108 Status = ObReferenceObjectByHandle(ProcessHandle,
4109 PROCESS_VM_OPERATION,
4110 PsProcessType,
4111 PreviousMode,
4112 (PVOID*)(&Process),
4113 NULL);
4114 if (!NT_SUCCESS(Status)) return Status;
4115
4116 //
4117 // Do it
4118 //
4119 Status = MmFlushVirtualMemory(Process,
4120 &CapturedBaseAddress,
4121 &CapturedBytesToFlush,
4122 &LocalStatusBlock);
4123
4124 //
4125 // Release reference
4126 //
4127 ObDereferenceObject(Process);
4128
4129 //
4130 // Enter SEH to return data
4131 //
4132 _SEH2_TRY
4133 {
4134 //
4135 // Return data to user
4136 //
4137 *BaseAddress = PAGE_ALIGN(CapturedBaseAddress);
4138 *NumberOfBytesToFlush = 0;
4139 *IoStatusBlock = LocalStatusBlock;
4140 }
4141 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4142 {
4143 }
4144 _SEH2_END;
4145
4146 //
4147 // Return status
4148 //
4149 return Status;
4150 }
4151
4152 /*
4153 * @unimplemented
4154 */
4155 NTSTATUS
4156 NTAPI
NtGetWriteWatch(IN HANDLE ProcessHandle,IN ULONG Flags,IN PVOID BaseAddress,IN SIZE_T RegionSize,IN PVOID * UserAddressArray,OUT PULONG_PTR EntriesInUserAddressArray,OUT PULONG Granularity)4157 NtGetWriteWatch(IN HANDLE ProcessHandle,
4158 IN ULONG Flags,
4159 IN PVOID BaseAddress,
4160 IN SIZE_T RegionSize,
4161 IN PVOID *UserAddressArray,
4162 OUT PULONG_PTR EntriesInUserAddressArray,
4163 OUT PULONG Granularity)
4164 {
4165 PEPROCESS Process;
4166 NTSTATUS Status;
4167 PVOID EndAddress;
4168 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
4169 ULONG_PTR CapturedEntryCount;
4170 PAGED_CODE();
4171
4172 //
4173 // Check if we came from user mode
4174 //
4175 if (PreviousMode != KernelMode)
4176 {
4177 //
4178 // Enter SEH for probing
4179 //
4180 _SEH2_TRY
4181 {
4182 //
4183 // Catch illegal base address
4184 //
4185 if (BaseAddress > MM_HIGHEST_USER_ADDRESS) _SEH2_YIELD(return STATUS_INVALID_PARAMETER_2);
4186
4187 //
4188 // Catch illegal region size
4189 //
4190 if ((MmUserProbeAddress - (ULONG_PTR)BaseAddress) < RegionSize)
4191 {
4192 //
4193 // Fail
4194 //
4195 _SEH2_YIELD(return STATUS_INVALID_PARAMETER_3);
4196 }
4197
4198 //
4199 // Validate all data
4200 //
4201 ProbeForWriteSize_t(EntriesInUserAddressArray);
4202 ProbeForWriteUlong(Granularity);
4203
4204 //
4205 // Capture them
4206 //
4207 CapturedEntryCount = *EntriesInUserAddressArray;
4208
4209 //
4210 // Must have a count
4211 //
4212 if (CapturedEntryCount == 0) _SEH2_YIELD(return STATUS_INVALID_PARAMETER_5);
4213
4214 //
4215 // Can't be larger than the maximum
4216 //
4217 if (CapturedEntryCount > (MAXULONG_PTR / sizeof(ULONG_PTR)))
4218 {
4219 //
4220 // Fail
4221 //
4222 _SEH2_YIELD(return STATUS_INVALID_PARAMETER_5);
4223 }
4224
4225 //
4226 // Probe the actual array
4227 //
4228 ProbeForWrite(UserAddressArray,
4229 CapturedEntryCount * sizeof(PVOID),
4230 sizeof(PVOID));
4231 }
4232 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4233 {
4234 //
4235 // Get exception code
4236 //
4237 _SEH2_YIELD(return _SEH2_GetExceptionCode());
4238 }
4239 _SEH2_END;
4240 }
4241 else
4242 {
4243 //
4244 // Capture directly
4245 //
4246 CapturedEntryCount = *EntriesInUserAddressArray;
4247 ASSERT(CapturedEntryCount != 0);
4248 }
4249
4250 //
4251 // Check if this is a local request
4252 //
4253 if (ProcessHandle == NtCurrentProcess())
4254 {
4255 //
4256 // No need to reference the process
4257 //
4258 Process = PsGetCurrentProcess();
4259 }
4260 else
4261 {
4262 //
4263 // Reference the target
4264 //
4265 Status = ObReferenceObjectByHandle(ProcessHandle,
4266 PROCESS_VM_OPERATION,
4267 PsProcessType,
4268 PreviousMode,
4269 (PVOID *)&Process,
4270 NULL);
4271 if (!NT_SUCCESS(Status)) return Status;
4272 }
4273
4274 //
4275 // Compute the last address and validate it
4276 //
4277 EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4278 if (BaseAddress > EndAddress)
4279 {
4280 //
4281 // Fail
4282 //
4283 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
4284 return STATUS_INVALID_PARAMETER_4;
4285 }
4286
4287 //
4288 // Oops :(
4289 //
4290 UNIMPLEMENTED;
4291
4292 //
4293 // Dereference if needed
4294 //
4295 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
4296
4297 //
4298 // Enter SEH to return data
4299 //
4300 _SEH2_TRY
4301 {
4302 //
4303 // Return data to user
4304 //
4305 *EntriesInUserAddressArray = 0;
4306 *Granularity = PAGE_SIZE;
4307 }
4308 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4309 {
4310 //
4311 // Get exception code
4312 //
4313 Status = _SEH2_GetExceptionCode();
4314 }
4315 _SEH2_END;
4316
4317 //
4318 // Return success
4319 //
4320 return STATUS_SUCCESS;
4321 }
4322
4323 /*
4324 * @unimplemented
4325 */
4326 NTSTATUS
4327 NTAPI
NtResetWriteWatch(IN HANDLE ProcessHandle,IN PVOID BaseAddress,IN SIZE_T RegionSize)4328 NtResetWriteWatch(IN HANDLE ProcessHandle,
4329 IN PVOID BaseAddress,
4330 IN SIZE_T RegionSize)
4331 {
4332 PVOID EndAddress;
4333 PEPROCESS Process;
4334 NTSTATUS Status;
4335 KPROCESSOR_MODE PreviousMode = ExGetPreviousMode();
4336 ASSERT (KeGetCurrentIrql() == PASSIVE_LEVEL);
4337
4338 //
4339 // Catch illegal base address
4340 //
4341 if (BaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER_2;
4342
4343 //
4344 // Catch illegal region size
4345 //
4346 if ((MmUserProbeAddress - (ULONG_PTR)BaseAddress) < RegionSize)
4347 {
4348 //
4349 // Fail
4350 //
4351 return STATUS_INVALID_PARAMETER_3;
4352 }
4353
4354 //
4355 // Check if this is a local request
4356 //
4357 if (ProcessHandle == NtCurrentProcess())
4358 {
4359 //
4360 // No need to reference the process
4361 //
4362 Process = PsGetCurrentProcess();
4363 }
4364 else
4365 {
4366 //
4367 // Reference the target
4368 //
4369 Status = ObReferenceObjectByHandle(ProcessHandle,
4370 PROCESS_VM_OPERATION,
4371 PsProcessType,
4372 PreviousMode,
4373 (PVOID *)&Process,
4374 NULL);
4375 if (!NT_SUCCESS(Status)) return Status;
4376 }
4377
4378 //
4379 // Compute the last address and validate it
4380 //
4381 EndAddress = (PVOID)((ULONG_PTR)BaseAddress + RegionSize - 1);
4382 if (BaseAddress > EndAddress)
4383 {
4384 //
4385 // Fail
4386 //
4387 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
4388 return STATUS_INVALID_PARAMETER_3;
4389 }
4390
4391 //
4392 // Oops :(
4393 //
4394 UNIMPLEMENTED;
4395
4396 //
4397 // Dereference if needed
4398 //
4399 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
4400
4401 //
4402 // Return success
4403 //
4404 return STATUS_SUCCESS;
4405 }
4406
4407 NTSTATUS
4408 NTAPI
NtQueryVirtualMemory(IN HANDLE ProcessHandle,IN PVOID BaseAddress,IN MEMORY_INFORMATION_CLASS MemoryInformationClass,OUT PVOID MemoryInformation,IN SIZE_T MemoryInformationLength,OUT PSIZE_T ReturnLength)4409 NtQueryVirtualMemory(IN HANDLE ProcessHandle,
4410 IN PVOID BaseAddress,
4411 IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
4412 OUT PVOID MemoryInformation,
4413 IN SIZE_T MemoryInformationLength,
4414 OUT PSIZE_T ReturnLength)
4415 {
4416 NTSTATUS Status = STATUS_SUCCESS;
4417 KPROCESSOR_MODE PreviousMode;
4418
4419 DPRINT("Querying class %d about address: %p\n", MemoryInformationClass, BaseAddress);
4420
4421 /* Bail out if the address is invalid */
4422 if (BaseAddress > MM_HIGHEST_USER_ADDRESS) return STATUS_INVALID_PARAMETER;
4423
4424 /* Probe return buffer */
4425 PreviousMode = ExGetPreviousMode();
4426 if (PreviousMode != KernelMode)
4427 {
4428 _SEH2_TRY
4429 {
4430 ProbeForWrite(MemoryInformation,
4431 MemoryInformationLength,
4432 sizeof(ULONG_PTR));
4433
4434 if (ReturnLength) ProbeForWriteSize_t(ReturnLength);
4435 }
4436 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4437 {
4438 Status = _SEH2_GetExceptionCode();
4439 }
4440 _SEH2_END;
4441
4442 if (!NT_SUCCESS(Status))
4443 {
4444 return Status;
4445 }
4446 }
4447
4448 switch(MemoryInformationClass)
4449 {
4450 case MemoryBasicInformation:
4451 /* Validate the size information of the class */
4452 if (MemoryInformationLength < sizeof(MEMORY_BASIC_INFORMATION))
4453 {
4454 /* The size is invalid */
4455 return STATUS_INFO_LENGTH_MISMATCH;
4456 }
4457 Status = MiQueryMemoryBasicInformation(ProcessHandle,
4458 BaseAddress,
4459 MemoryInformation,
4460 MemoryInformationLength,
4461 ReturnLength);
4462 break;
4463
4464 case MemorySectionName:
4465 /* Validate the size information of the class */
4466 if (MemoryInformationLength < sizeof(MEMORY_SECTION_NAME))
4467 {
4468 /* The size is invalid */
4469 return STATUS_INFO_LENGTH_MISMATCH;
4470 }
4471 Status = MiQueryMemorySectionName(ProcessHandle,
4472 BaseAddress,
4473 MemoryInformation,
4474 MemoryInformationLength,
4475 ReturnLength);
4476 break;
4477 case MemoryWorkingSetList:
4478 case MemoryBasicVlmInformation:
4479 default:
4480 DPRINT1("Unhandled memory information class %d\n", MemoryInformationClass);
4481 break;
4482 }
4483
4484 return Status;
4485 }
4486
4487 /*
4488 * @implemented
4489 */
4490 NTSTATUS
4491 NTAPI
NtAllocateVirtualMemory(IN HANDLE ProcessHandle,IN OUT PVOID * UBaseAddress,IN ULONG_PTR ZeroBits,IN OUT PSIZE_T URegionSize,IN ULONG AllocationType,IN ULONG Protect)4492 NtAllocateVirtualMemory(IN HANDLE ProcessHandle,
4493 IN OUT PVOID* UBaseAddress,
4494 IN ULONG_PTR ZeroBits,
4495 IN OUT PSIZE_T URegionSize,
4496 IN ULONG AllocationType,
4497 IN ULONG Protect)
4498 {
4499 PEPROCESS Process;
4500 PMEMORY_AREA MemoryArea;
4501 PMMVAD Vad = NULL, FoundVad;
4502 NTSTATUS Status;
4503 PMMSUPPORT AddressSpace;
4504 PVOID PBaseAddress;
4505 ULONG_PTR PRegionSize, StartingAddress, EndingAddress;
4506 ULONG_PTR HighestAddress = (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS;
4507 PEPROCESS CurrentProcess = PsGetCurrentProcess();
4508 KPROCESSOR_MODE PreviousMode = KeGetPreviousMode();
4509 PETHREAD CurrentThread = PsGetCurrentThread();
4510 KAPC_STATE ApcState;
4511 ULONG ProtectionMask, QuotaCharge = 0, QuotaFree = 0;
4512 BOOLEAN Attached = FALSE, ChangeProtection = FALSE, QuotaCharged = FALSE;
4513 MMPTE TempPte;
4514 PMMPTE PointerPte, LastPte;
4515 PMMPDE PointerPde;
4516 TABLE_SEARCH_RESULT Result;
4517 PAGED_CODE();
4518
4519 /* Check for valid Zero bits */
4520 if (ZeroBits > MI_MAX_ZERO_BITS)
4521 {
4522 DPRINT1("Too many zero bits\n");
4523 return STATUS_INVALID_PARAMETER_3;
4524 }
4525
4526 /* Check for valid Allocation Types */
4527 if ((AllocationType & ~(MEM_COMMIT | MEM_RESERVE | MEM_RESET | MEM_PHYSICAL |
4528 MEM_TOP_DOWN | MEM_WRITE_WATCH | MEM_LARGE_PAGES)))
4529 {
4530 DPRINT1("Invalid Allocation Type\n");
4531 return STATUS_INVALID_PARAMETER_5;
4532 }
4533
4534 /* Check for at least one of these Allocation Types to be set */
4535 if (!(AllocationType & (MEM_COMMIT | MEM_RESERVE | MEM_RESET)))
4536 {
4537 DPRINT1("No memory allocation base type\n");
4538 return STATUS_INVALID_PARAMETER_5;
4539 }
4540
4541 /* MEM_RESET is an exclusive flag, make sure that is valid too */
4542 if ((AllocationType & MEM_RESET) && (AllocationType != MEM_RESET))
4543 {
4544 DPRINT1("Invalid use of MEM_RESET\n");
4545 return STATUS_INVALID_PARAMETER_5;
4546 }
4547
4548 /* Check if large pages are being used */
4549 if (AllocationType & MEM_LARGE_PAGES)
4550 {
4551 /* Large page allocations MUST be committed */
4552 if (!(AllocationType & MEM_COMMIT))
4553 {
4554 DPRINT1("Must supply MEM_COMMIT with MEM_LARGE_PAGES\n");
4555 return STATUS_INVALID_PARAMETER_5;
4556 }
4557
4558 /* These flags are not allowed with large page allocations */
4559 if (AllocationType & (MEM_PHYSICAL | MEM_RESET | MEM_WRITE_WATCH))
4560 {
4561 DPRINT1("Using illegal flags with MEM_LARGE_PAGES\n");
4562 return STATUS_INVALID_PARAMETER_5;
4563 }
4564 }
4565
4566 /* MEM_WRITE_WATCH can only be used if MEM_RESERVE is also used */
4567 if ((AllocationType & MEM_WRITE_WATCH) && !(AllocationType & MEM_RESERVE))
4568 {
4569 DPRINT1("MEM_WRITE_WATCH used without MEM_RESERVE\n");
4570 return STATUS_INVALID_PARAMETER_5;
4571 }
4572
4573 /* Check for valid MEM_PHYSICAL usage */
4574 if (AllocationType & MEM_PHYSICAL)
4575 {
4576 /* MEM_PHYSICAL can only be used if MEM_RESERVE is also used */
4577 if (!(AllocationType & MEM_RESERVE))
4578 {
4579 DPRINT1("MEM_PHYSICAL used without MEM_RESERVE\n");
4580 return STATUS_INVALID_PARAMETER_5;
4581 }
4582
4583 /* Only these flags are allowed with MEM_PHYSIAL */
4584 if (AllocationType & ~(MEM_RESERVE | MEM_TOP_DOWN | MEM_PHYSICAL))
4585 {
4586 DPRINT1("Using illegal flags with MEM_PHYSICAL\n");
4587 return STATUS_INVALID_PARAMETER_5;
4588 }
4589
4590 /* Then make sure PAGE_READWRITE is used */
4591 if (Protect != PAGE_READWRITE)
4592 {
4593 DPRINT1("MEM_PHYSICAL used without PAGE_READWRITE\n");
4594 return STATUS_INVALID_PARAMETER_6;
4595 }
4596 }
4597
4598 /* Calculate the protection mask and make sure it's valid */
4599 ProtectionMask = MiMakeProtectionMask(Protect);
4600 if (ProtectionMask == MM_INVALID_PROTECTION)
4601 {
4602 DPRINT1("Invalid protection mask\n");
4603 return STATUS_INVALID_PAGE_PROTECTION;
4604 }
4605
4606 /* Enter SEH */
4607 _SEH2_TRY
4608 {
4609 /* Check for user-mode parameters */
4610 if (PreviousMode != KernelMode)
4611 {
4612 /* Make sure they are writable */
4613 ProbeForWritePointer(UBaseAddress);
4614 ProbeForWriteSize_t(URegionSize);
4615 }
4616
4617 /* Capture their values */
4618 PBaseAddress = *UBaseAddress;
4619 PRegionSize = *URegionSize;
4620 }
4621 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4622 {
4623 /* Return the exception code */
4624 _SEH2_YIELD(return _SEH2_GetExceptionCode());
4625 }
4626 _SEH2_END;
4627
4628 /* Make sure the allocation isn't past the VAD area */
4629 if (PBaseAddress > MM_HIGHEST_VAD_ADDRESS)
4630 {
4631 DPRINT1("Virtual allocation base above User Space\n");
4632 return STATUS_INVALID_PARAMETER_2;
4633 }
4634
4635 /* Make sure the allocation wouldn't overflow past the VAD area */
4636 if ((((ULONG_PTR)MM_HIGHEST_VAD_ADDRESS + 1) - (ULONG_PTR)PBaseAddress) < PRegionSize)
4637 {
4638 DPRINT1("Region size would overflow into kernel-memory\n");
4639 return STATUS_INVALID_PARAMETER_4;
4640 }
4641
4642 /* Make sure there's a size specified */
4643 if (!PRegionSize)
4644 {
4645 DPRINT1("Region size is invalid (zero)\n");
4646 return STATUS_INVALID_PARAMETER_4;
4647 }
4648
4649 //
4650 // If this is for the current process, just use PsGetCurrentProcess
4651 //
4652 if (ProcessHandle == NtCurrentProcess())
4653 {
4654 Process = CurrentProcess;
4655 }
4656 else
4657 {
4658 //
4659 // Otherwise, reference the process with VM rights and attach to it if
4660 // this isn't the current process. We must attach because we'll be touching
4661 // PTEs and PDEs that belong to user-mode memory, and also touching the
4662 // Working Set which is stored in Hyperspace.
4663 //
4664 Status = ObReferenceObjectByHandle(ProcessHandle,
4665 PROCESS_VM_OPERATION,
4666 PsProcessType,
4667 PreviousMode,
4668 (PVOID*)&Process,
4669 NULL);
4670 if (!NT_SUCCESS(Status)) return Status;
4671 if (CurrentProcess != Process)
4672 {
4673 KeStackAttachProcess(&Process->Pcb, &ApcState);
4674 Attached = TRUE;
4675 }
4676 }
4677
4678 DPRINT("NtAllocateVirtualMemory: Process 0x%p, Address 0x%p, Zerobits %lu , RegionSize 0x%x, Allocation type 0x%x, Protect 0x%x.\n",
4679 Process, PBaseAddress, ZeroBits, PRegionSize, AllocationType, Protect);
4680
4681 //
4682 // Check for large page allocations and make sure that the required privilege
4683 // is being held, before attempting to handle them.
4684 //
4685 if ((AllocationType & MEM_LARGE_PAGES) &&
4686 !(SeSinglePrivilegeCheck(SeLockMemoryPrivilege, PreviousMode)))
4687 {
4688 /* Fail without it */
4689 DPRINT1("Privilege not held for MEM_LARGE_PAGES\n");
4690 Status = STATUS_PRIVILEGE_NOT_HELD;
4691 goto FailPathNoLock;
4692 }
4693
4694 //
4695 // Fail on the things we don't yet support
4696 //
4697 if ((AllocationType & MEM_LARGE_PAGES) == MEM_LARGE_PAGES)
4698 {
4699 DPRINT1("MEM_LARGE_PAGES not supported\n");
4700 Status = STATUS_INVALID_PARAMETER;
4701 goto FailPathNoLock;
4702 }
4703 if ((AllocationType & MEM_PHYSICAL) == MEM_PHYSICAL)
4704 {
4705 DPRINT1("MEM_PHYSICAL not supported\n");
4706 Status = STATUS_INVALID_PARAMETER;
4707 goto FailPathNoLock;
4708 }
4709 if ((AllocationType & MEM_WRITE_WATCH) == MEM_WRITE_WATCH)
4710 {
4711 DPRINT1("MEM_WRITE_WATCH not supported\n");
4712 Status = STATUS_INVALID_PARAMETER;
4713 goto FailPathNoLock;
4714 }
4715
4716 //
4717 // Check if the caller is reserving memory, or committing memory and letting
4718 // us pick the base address
4719 //
4720 if (!(PBaseAddress) || (AllocationType & MEM_RESERVE))
4721 {
4722 //
4723 // Do not allow COPY_ON_WRITE through this API
4724 //
4725 if (Protect & (PAGE_WRITECOPY | PAGE_EXECUTE_WRITECOPY))
4726 {
4727 DPRINT1("Copy on write not allowed through this path\n");
4728 Status = STATUS_INVALID_PAGE_PROTECTION;
4729 goto FailPathNoLock;
4730 }
4731
4732 //
4733 // Does the caller have an address in mind, or is this a blind commit?
4734 //
4735 if (!PBaseAddress)
4736 {
4737 //
4738 // This is a blind commit, all we need is the region size
4739 //
4740 PRegionSize = ROUND_TO_PAGES(PRegionSize);
4741 EndingAddress = 0;
4742 StartingAddress = 0;
4743
4744 //
4745 // Check if ZeroBits were specified
4746 //
4747 if (ZeroBits != 0)
4748 {
4749 //
4750 // Calculate the highest address and check if it's valid
4751 //
4752 HighestAddress = MAXULONG_PTR >> ZeroBits;
4753 if (HighestAddress > (ULONG_PTR)MM_HIGHEST_VAD_ADDRESS)
4754 {
4755 Status = STATUS_INVALID_PARAMETER_3;
4756 goto FailPathNoLock;
4757 }
4758 }
4759 }
4760 else
4761 {
4762 //
4763 // This is a reservation, so compute the starting address on the
4764 // expected 64KB granularity, and see where the ending address will
4765 // fall based on the aligned address and the passed in region size
4766 //
4767 EndingAddress = ((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1);
4768 PRegionSize = EndingAddress + 1 - ROUND_DOWN((ULONG_PTR)PBaseAddress, _64K);
4769 StartingAddress = (ULONG_PTR)PBaseAddress;
4770 }
4771
4772 // Charge quotas for the VAD
4773 Status = PsChargeProcessNonPagedPoolQuota(Process, sizeof(MMVAD_LONG));
4774 if (!NT_SUCCESS(Status))
4775 {
4776 DPRINT1("Quota exceeded.\n");
4777 goto FailPathNoLock;
4778 }
4779
4780 QuotaCharged = TRUE;
4781
4782 //
4783 // Allocate and initialize the VAD
4784 //
4785 Vad = ExAllocatePoolWithTag(NonPagedPool, sizeof(MMVAD_LONG), 'SdaV');
4786 if (Vad == NULL)
4787 {
4788 DPRINT1("Failed to allocate a VAD!\n");
4789 Status = STATUS_INSUFFICIENT_RESOURCES;
4790 goto FailPathNoLock;
4791 }
4792
4793 RtlZeroMemory(Vad, sizeof(MMVAD_LONG));
4794 if (AllocationType & MEM_COMMIT) Vad->u.VadFlags.MemCommit = 1;
4795 Vad->u.VadFlags.Protection = ProtectionMask;
4796 Vad->u.VadFlags.PrivateMemory = 1;
4797 Vad->ControlArea = NULL; // For Memory-Area hack
4798
4799 //
4800 // Insert the VAD
4801 //
4802 Status = MiInsertVadEx(Vad,
4803 &StartingAddress,
4804 PRegionSize,
4805 HighestAddress,
4806 MM_VIRTMEM_GRANULARITY,
4807 AllocationType);
4808 if (!NT_SUCCESS(Status))
4809 {
4810 DPRINT1("Failed to insert the VAD!\n");
4811 ExFreePoolWithTag(Vad, 'SdaV');
4812 goto FailPathNoLock;
4813 }
4814
4815 //
4816 // Detach and dereference the target process if
4817 // it was different from the current process
4818 //
4819 if (Attached) KeUnstackDetachProcess(&ApcState);
4820 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
4821
4822 //
4823 // Use SEH to write back the base address and the region size. In the case
4824 // of an exception, we do not return back the exception code, as the memory
4825 // *has* been allocated. The caller would now have to call VirtualQuery
4826 // or do some other similar trick to actually find out where its memory
4827 // allocation ended up
4828 //
4829 _SEH2_TRY
4830 {
4831 *URegionSize = PRegionSize;
4832 *UBaseAddress = (PVOID)StartingAddress;
4833 }
4834 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
4835 {
4836 //
4837 // Ignore exception!
4838 //
4839 }
4840 _SEH2_END;
4841 DPRINT("Reserved %x bytes at %p.\n", PRegionSize, StartingAddress);
4842 return STATUS_SUCCESS;
4843 }
4844
4845 //
4846 // This is a MEM_COMMIT on top of an existing address which must have been
4847 // MEM_RESERVED already. Compute the start and ending base addresses based
4848 // on the user input, and then compute the actual region size once all the
4849 // alignments have been done.
4850 //
4851 EndingAddress = (((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1));
4852 StartingAddress = (ULONG_PTR)PAGE_ALIGN(PBaseAddress);
4853 PRegionSize = EndingAddress - StartingAddress + 1;
4854
4855 //
4856 // Lock the address space and make sure the process isn't already dead
4857 //
4858 AddressSpace = MmGetCurrentAddressSpace();
4859 MmLockAddressSpace(AddressSpace);
4860 if (Process->VmDeleted)
4861 {
4862 DPRINT1("Process is dying\n");
4863 Status = STATUS_PROCESS_IS_TERMINATING;
4864 goto FailPath;
4865 }
4866
4867 //
4868 // Get the VAD for this address range, and make sure it exists
4869 //
4870 Result = MiCheckForConflictingNode(StartingAddress >> PAGE_SHIFT,
4871 EndingAddress >> PAGE_SHIFT,
4872 &Process->VadRoot,
4873 (PMMADDRESS_NODE*)&FoundVad);
4874 if (Result != TableFoundNode)
4875 {
4876 DPRINT1("Could not find a VAD for this allocation\n");
4877 Status = STATUS_CONFLICTING_ADDRESSES;
4878 goto FailPath;
4879 }
4880
4881 if ((AllocationType & MEM_RESET) == MEM_RESET)
4882 {
4883 /// @todo HACK: pretend success
4884 DPRINT("MEM_RESET not supported\n");
4885 Status = STATUS_SUCCESS;
4886 goto FailPath;
4887 }
4888
4889 //
4890 // These kinds of VADs are illegal for this Windows function when trying to
4891 // commit an existing range
4892 //
4893 if ((FoundVad->u.VadFlags.VadType == VadAwe) ||
4894 (FoundVad->u.VadFlags.VadType == VadDevicePhysicalMemory) ||
4895 (FoundVad->u.VadFlags.VadType == VadLargePages))
4896 {
4897 DPRINT1("Illegal VAD for attempting a MEM_COMMIT\n");
4898 Status = STATUS_CONFLICTING_ADDRESSES;
4899 goto FailPath;
4900 }
4901
4902 //
4903 // Make sure that this address range actually fits within the VAD for it
4904 //
4905 if (((StartingAddress >> PAGE_SHIFT) < FoundVad->StartingVpn) ||
4906 ((EndingAddress >> PAGE_SHIFT) > FoundVad->EndingVpn))
4907 {
4908 DPRINT1("Address range does not fit into the VAD\n");
4909 Status = STATUS_CONFLICTING_ADDRESSES;
4910 goto FailPath;
4911 }
4912
4913 //
4914 // Make sure this is an ARM3 section
4915 //
4916 MemoryArea = MmLocateMemoryAreaByAddress(AddressSpace, (PVOID)PAGE_ROUND_DOWN(PBaseAddress));
4917 ASSERT(MemoryArea != NULL);
4918 if (MemoryArea->Type != MEMORY_AREA_OWNED_BY_ARM3)
4919 {
4920 DPRINT1("Illegal commit of non-ARM3 section!\n");
4921 Status = STATUS_ALREADY_COMMITTED;
4922 goto FailPath;
4923 }
4924
4925 // Is this a previously reserved section being committed? If so, enter the
4926 // special section path
4927 //
4928 if (FoundVad->u.VadFlags.PrivateMemory == FALSE)
4929 {
4930 //
4931 // You cannot commit large page sections through this API
4932 //
4933 if (FoundVad->u.VadFlags.VadType == VadLargePageSection)
4934 {
4935 DPRINT1("Large page sections cannot be VirtualAlloc'd\n");
4936 Status = STATUS_INVALID_PAGE_PROTECTION;
4937 goto FailPath;
4938 }
4939
4940 //
4941 // You can only use caching flags on a rotate VAD
4942 //
4943 if ((Protect & (PAGE_NOCACHE | PAGE_WRITECOMBINE)) &&
4944 (FoundVad->u.VadFlags.VadType != VadRotatePhysical))
4945 {
4946 DPRINT1("Cannot use caching flags with anything but rotate VADs\n");
4947 Status = STATUS_INVALID_PAGE_PROTECTION;
4948 goto FailPath;
4949 }
4950
4951 //
4952 // We should make sure that the section's permissions aren't being
4953 // messed with
4954 //
4955 if (FoundVad->u.VadFlags.NoChange)
4956 {
4957 //
4958 // Make sure it's okay to touch it
4959 // Note: The Windows 2003 kernel has a bug here, passing the
4960 // unaligned base address together with the aligned size,
4961 // potentially covering a region larger than the actual allocation.
4962 // Might be exposed through NtGdiCreateDIBSection w/ section handle
4963 // For now we keep this behavior.
4964 // TODO: analyze possible implications, create test case
4965 //
4966 Status = MiCheckSecuredVad(FoundVad,
4967 PBaseAddress,
4968 PRegionSize,
4969 ProtectionMask);
4970 if (!NT_SUCCESS(Status))
4971 {
4972 DPRINT1("Secured VAD being messed around with\n");
4973 goto FailPath;
4974 }
4975 }
4976
4977 //
4978 // ARM3 does not support file-backed sections, only shared memory
4979 //
4980 ASSERT(FoundVad->ControlArea->FilePointer == NULL);
4981
4982 //
4983 // Rotate VADs cannot be guard pages or inaccessible, nor copy on write
4984 //
4985 if ((FoundVad->u.VadFlags.VadType == VadRotatePhysical) &&
4986 (Protect & (PAGE_WRITECOPY | PAGE_EXECUTE_WRITECOPY | PAGE_NOACCESS | PAGE_GUARD)))
4987 {
4988 DPRINT1("Invalid page protection for rotate VAD\n");
4989 Status = STATUS_INVALID_PAGE_PROTECTION;
4990 goto FailPath;
4991 }
4992
4993 //
4994 // Compute PTE addresses and the quota charge, then grab the commit lock
4995 //
4996 PointerPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(FoundVad, StartingAddress >> PAGE_SHIFT);
4997 LastPte = MI_GET_PROTOTYPE_PTE_FOR_VPN(FoundVad, EndingAddress >> PAGE_SHIFT);
4998 QuotaCharge = (ULONG)(LastPte - PointerPte + 1);
4999 KeAcquireGuardedMutexUnsafe(&MmSectionCommitMutex);
5000
5001 //
5002 // Get the segment template PTE and start looping each page
5003 //
5004 TempPte = FoundVad->ControlArea->Segment->SegmentPteTemplate;
5005 ASSERT(TempPte.u.Long != 0);
5006 while (PointerPte <= LastPte)
5007 {
5008 //
5009 // For each non-already-committed page, write the invalid template PTE
5010 //
5011 if (PointerPte->u.Long == 0)
5012 {
5013 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5014 }
5015 else
5016 {
5017 QuotaFree++;
5018 }
5019 PointerPte++;
5020 }
5021
5022 //
5023 // Now do the commit accounting and release the lock
5024 //
5025 ASSERT(QuotaCharge >= QuotaFree);
5026 QuotaCharge -= QuotaFree;
5027 FoundVad->ControlArea->Segment->NumberOfCommittedPages += QuotaCharge;
5028 KeReleaseGuardedMutexUnsafe(&MmSectionCommitMutex);
5029
5030 //
5031 // We are done with committing the section pages
5032 //
5033 Status = STATUS_SUCCESS;
5034 goto FailPath;
5035 }
5036
5037 //
5038 // This is a specific ReactOS check because we only use normal VADs
5039 //
5040 ASSERT(FoundVad->u.VadFlags.VadType == VadNone);
5041
5042 //
5043 // While this is an actual Windows check
5044 //
5045 ASSERT(FoundVad->u.VadFlags.VadType != VadRotatePhysical);
5046
5047 //
5048 // Throw out attempts to use copy-on-write through this API path
5049 //
5050 if ((Protect & PAGE_WRITECOPY) || (Protect & PAGE_EXECUTE_WRITECOPY))
5051 {
5052 DPRINT1("Write copy attempted when not allowed\n");
5053 Status = STATUS_INVALID_PAGE_PROTECTION;
5054 goto FailPath;
5055 }
5056
5057 //
5058 // Initialize a demand-zero PTE
5059 //
5060 TempPte.u.Long = 0;
5061 TempPte.u.Soft.Protection = ProtectionMask;
5062 ASSERT(TempPte.u.Long != 0);
5063
5064 //
5065 // Get the PTE, PDE and the last PTE for this address range
5066 //
5067 PointerPde = MiAddressToPde(StartingAddress);
5068 PointerPte = MiAddressToPte(StartingAddress);
5069 LastPte = MiAddressToPte(EndingAddress);
5070
5071 //
5072 // Update the commit charge in the VAD as well as in the process, and check
5073 // if this commit charge was now higher than the last recorded peak, in which
5074 // case we also update the peak
5075 //
5076 FoundVad->u.VadFlags.CommitCharge += (1 + LastPte - PointerPte);
5077 Process->CommitCharge += (1 + LastPte - PointerPte);
5078 if (Process->CommitCharge > Process->CommitChargePeak)
5079 {
5080 Process->CommitChargePeak = Process->CommitCharge;
5081 }
5082
5083 //
5084 // Lock the working set while we play with user pages and page tables
5085 //
5086 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5087
5088 //
5089 // Make the current page table valid, and then loop each page within it
5090 //
5091 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
5092 while (PointerPte <= LastPte)
5093 {
5094 //
5095 // Have we crossed into a new page table?
5096 //
5097 if (MiIsPteOnPdeBoundary(PointerPte))
5098 {
5099 //
5100 // Get the PDE and now make it valid too
5101 //
5102 PointerPde = MiPteToPde(PointerPte);
5103 MiMakePdeExistAndMakeValid(PointerPde, Process, MM_NOIRQL);
5104 }
5105
5106 //
5107 // Is this a zero PTE as expected?
5108 //
5109 if (PointerPte->u.Long == 0)
5110 {
5111 //
5112 // First increment the count of pages in the page table for this
5113 // process
5114 //
5115 MiIncrementPageTableReferences(MiPteToAddress(PointerPte));
5116
5117 //
5118 // And now write the invalid demand-zero PTE as requested
5119 //
5120 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5121 }
5122 else if (PointerPte->u.Long == MmDecommittedPte.u.Long)
5123 {
5124 //
5125 // If the PTE was already decommitted, there is nothing else to do
5126 // but to write the new demand-zero PTE
5127 //
5128 MI_WRITE_INVALID_PTE(PointerPte, TempPte);
5129 }
5130 else if (!(ChangeProtection) && (Protect != MiGetPageProtection(PointerPte)))
5131 {
5132 //
5133 // We don't handle these scenarios yet
5134 //
5135 if (PointerPte->u.Soft.Valid == 0)
5136 {
5137 ASSERT(PointerPte->u.Soft.Prototype == 0);
5138 ASSERT((PointerPte->u.Soft.PageFileHigh == 0) || (PointerPte->u.Soft.Transition == 1));
5139 }
5140
5141 //
5142 // There's a change in protection, remember this for later, but do
5143 // not yet handle it.
5144 //
5145 ChangeProtection = TRUE;
5146 }
5147
5148 //
5149 // Move to the next PTE
5150 //
5151 PointerPte++;
5152 }
5153
5154 //
5155 // Release the working set lock, unlock the address space, and detach from
5156 // the target process if it was not the current process. Also dereference the
5157 // target process if this wasn't the case.
5158 //
5159 MiUnlockProcessWorkingSetUnsafe(Process, CurrentThread);
5160 Status = STATUS_SUCCESS;
5161 FailPath:
5162 MmUnlockAddressSpace(AddressSpace);
5163
5164 if (!NT_SUCCESS(Status))
5165 {
5166 if (Vad != NULL)
5167 {
5168 ExFreePoolWithTag(Vad, 'SdaV');
5169 }
5170 }
5171
5172 //
5173 // Check if we need to update the protection
5174 //
5175 if (ChangeProtection)
5176 {
5177 PVOID ProtectBaseAddress = (PVOID)StartingAddress;
5178 SIZE_T ProtectSize = PRegionSize;
5179 ULONG OldProtection;
5180
5181 //
5182 // Change the protection of the region
5183 //
5184 MiProtectVirtualMemory(Process,
5185 &ProtectBaseAddress,
5186 &ProtectSize,
5187 Protect,
5188 &OldProtection);
5189 }
5190
5191 FailPathNoLock:
5192 if (Attached) KeUnstackDetachProcess(&ApcState);
5193 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
5194
5195 //
5196 // Only write back results on success
5197 //
5198 if (NT_SUCCESS(Status))
5199 {
5200 //
5201 // Use SEH to write back the base address and the region size. In the case
5202 // of an exception, we strangely do return back the exception code, even
5203 // though the memory *has* been allocated. This mimics Windows behavior and
5204 // there is not much we can do about it.
5205 //
5206 _SEH2_TRY
5207 {
5208 *URegionSize = PRegionSize;
5209 *UBaseAddress = (PVOID)StartingAddress;
5210 }
5211 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
5212 {
5213 Status = _SEH2_GetExceptionCode();
5214 }
5215 _SEH2_END;
5216 }
5217 else if (QuotaCharged)
5218 {
5219 PsReturnProcessNonPagedPoolQuota(Process, sizeof(MMVAD_LONG));
5220 }
5221
5222 return Status;
5223 }
5224
5225 /*
5226 * @implemented
5227 */
5228 NTSTATUS
5229 NTAPI
NtFreeVirtualMemory(IN HANDLE ProcessHandle,IN PVOID * UBaseAddress,IN PSIZE_T URegionSize,IN ULONG FreeType)5230 NtFreeVirtualMemory(IN HANDLE ProcessHandle,
5231 IN PVOID* UBaseAddress,
5232 IN PSIZE_T URegionSize,
5233 IN ULONG FreeType)
5234 {
5235 PMEMORY_AREA MemoryArea;
5236 SIZE_T PRegionSize;
5237 PVOID PBaseAddress;
5238 LONG_PTR AlreadyDecommitted, CommitReduction = 0;
5239 LONG_PTR FirstCommit;
5240 ULONG_PTR StartingAddress, EndingAddress;
5241 PMMVAD Vad;
5242 PMMVAD NewVad;
5243 NTSTATUS Status;
5244 PEPROCESS Process;
5245 PMMSUPPORT AddressSpace;
5246 PETHREAD CurrentThread = PsGetCurrentThread();
5247 PEPROCESS CurrentProcess = PsGetCurrentProcess();
5248 KPROCESSOR_MODE PreviousMode = KeGetPreviousMode();
5249 KAPC_STATE ApcState;
5250 BOOLEAN Attached = FALSE;
5251 PAGED_CODE();
5252
5253 //
5254 // Only two flags are supported, exclusively.
5255 //
5256 if (FreeType != MEM_RELEASE && FreeType != MEM_DECOMMIT)
5257 {
5258 DPRINT1("Invalid FreeType (0x%08lx)\n", FreeType);
5259 return STATUS_INVALID_PARAMETER_4;
5260 }
5261
5262 //
5263 // Enter SEH for probe and capture. On failure, return back to the caller
5264 // with an exception violation.
5265 //
5266 _SEH2_TRY
5267 {
5268 //
5269 // Check for user-mode parameters and make sure that they are writeable
5270 //
5271 if (PreviousMode != KernelMode)
5272 {
5273 ProbeForWritePointer(UBaseAddress);
5274 ProbeForWriteUlong(URegionSize);
5275 }
5276
5277 //
5278 // Capture the current values
5279 //
5280 PBaseAddress = *UBaseAddress;
5281 PRegionSize = *URegionSize;
5282 }
5283 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
5284 {
5285 _SEH2_YIELD(return _SEH2_GetExceptionCode());
5286 }
5287 _SEH2_END;
5288
5289 //
5290 // Make sure the allocation isn't past the user area
5291 //
5292 if (PBaseAddress >= MM_HIGHEST_USER_ADDRESS)
5293 {
5294 DPRINT1("Virtual free base above User Space\n");
5295 return STATUS_INVALID_PARAMETER_2;
5296 }
5297
5298 //
5299 // Make sure the allocation wouldn't overflow past the user area
5300 //
5301 if (((ULONG_PTR)MM_HIGHEST_USER_ADDRESS - (ULONG_PTR)PBaseAddress) < PRegionSize)
5302 {
5303 DPRINT1("Region size would overflow into kernel-memory\n");
5304 return STATUS_INVALID_PARAMETER_3;
5305 }
5306
5307 //
5308 // If this is for the current process, just use PsGetCurrentProcess
5309 //
5310 if (ProcessHandle == NtCurrentProcess())
5311 {
5312 Process = CurrentProcess;
5313 }
5314 else
5315 {
5316 //
5317 // Otherwise, reference the process with VM rights and attach to it if
5318 // this isn't the current process. We must attach because we'll be touching
5319 // PTEs and PDEs that belong to user-mode memory, and also touching the
5320 // Working Set which is stored in Hyperspace.
5321 //
5322 Status = ObReferenceObjectByHandle(ProcessHandle,
5323 PROCESS_VM_OPERATION,
5324 PsProcessType,
5325 PreviousMode,
5326 (PVOID*)&Process,
5327 NULL);
5328 if (!NT_SUCCESS(Status)) return Status;
5329 if (CurrentProcess != Process)
5330 {
5331 KeStackAttachProcess(&Process->Pcb, &ApcState);
5332 Attached = TRUE;
5333 }
5334 }
5335
5336 DPRINT("NtFreeVirtualMemory: Process 0x%p, Address 0x%p, Size 0x%Ix, FreeType 0x%08lx\n",
5337 Process, PBaseAddress, PRegionSize, FreeType);
5338
5339 //
5340 // Lock the address space
5341 //
5342 AddressSpace = MmGetCurrentAddressSpace();
5343 MmLockAddressSpace(AddressSpace);
5344
5345 //
5346 // If the address space is being deleted, fail the de-allocation since it's
5347 // too late to do anything about it
5348 //
5349 if (Process->VmDeleted)
5350 {
5351 DPRINT1("Process is dead\n");
5352 Status = STATUS_PROCESS_IS_TERMINATING;
5353 goto FailPath;
5354 }
5355
5356 //
5357 // Compute start and end addresses, and locate the VAD
5358 //
5359 StartingAddress = (ULONG_PTR)PAGE_ALIGN(PBaseAddress);
5360 EndingAddress = ((ULONG_PTR)PBaseAddress + PRegionSize - 1) | (PAGE_SIZE - 1);
5361 Vad = MiLocateAddress((PVOID)StartingAddress);
5362 if (!Vad)
5363 {
5364 DPRINT1("Unable to find VAD for address 0x%p\n", StartingAddress);
5365 Status = STATUS_MEMORY_NOT_ALLOCATED;
5366 goto FailPath;
5367 }
5368
5369 //
5370 // If the range exceeds the VAD's ending VPN, fail this request
5371 //
5372 if (Vad->EndingVpn < (EndingAddress >> PAGE_SHIFT))
5373 {
5374 DPRINT1("Address 0x%p is beyond the VAD\n", EndingAddress);
5375 Status = STATUS_UNABLE_TO_FREE_VM;
5376 goto FailPath;
5377 }
5378
5379 //
5380 // Only private memory (except rotate VADs) can be freed through here */
5381 //
5382 if ((!(Vad->u.VadFlags.PrivateMemory) &&
5383 (Vad->u.VadFlags.VadType != VadRotatePhysical)) ||
5384 (Vad->u.VadFlags.VadType == VadDevicePhysicalMemory))
5385 {
5386 DPRINT("Attempt to free section memory\n");
5387 Status = STATUS_UNABLE_TO_DELETE_SECTION;
5388 goto FailPath;
5389 }
5390
5391 //
5392 // ARM3 does not yet handle protected VM
5393 //
5394 ASSERT(Vad->u.VadFlags.NoChange == 0);
5395
5396 //
5397 // Finally, make sure there is a ReactOS Mm MEMORY_AREA for this allocation
5398 // and that is is an ARM3 memory area, and not a section view, as we currently
5399 // don't support freeing those though this interface.
5400 //
5401 MemoryArea = MmLocateMemoryAreaByAddress(AddressSpace, (PVOID)StartingAddress);
5402 ASSERT(MemoryArea);
5403 ASSERT(MemoryArea->Type == MEMORY_AREA_OWNED_BY_ARM3);
5404
5405 //
5406 // Now we can try the operation. First check if this is a RELEASE or a DECOMMIT
5407 //
5408 if (FreeType & MEM_RELEASE)
5409 {
5410 //
5411 // ARM3 only supports this VAD in this path
5412 //
5413 ASSERT(Vad->u.VadFlags.VadType == VadNone);
5414
5415 //
5416 // Is the caller trying to remove the whole VAD, or remove only a portion
5417 // of it? If no region size is specified, then the assumption is that the
5418 // whole VAD is to be destroyed
5419 //
5420 if (!PRegionSize)
5421 {
5422 //
5423 // The caller must specify the base address identically to the range
5424 // that is stored in the VAD.
5425 //
5426 if (((ULONG_PTR)PBaseAddress >> PAGE_SHIFT) != Vad->StartingVpn)
5427 {
5428 DPRINT1("Address 0x%p does not match the VAD\n", PBaseAddress);
5429 Status = STATUS_FREE_VM_NOT_AT_BASE;
5430 goto FailPath;
5431 }
5432
5433 //
5434 // Now compute the actual start/end addresses based on the VAD
5435 //
5436 StartingAddress = Vad->StartingVpn << PAGE_SHIFT;
5437 EndingAddress = (Vad->EndingVpn << PAGE_SHIFT) | (PAGE_SIZE - 1);
5438
5439 //
5440 // Finally lock the working set and remove the VAD from the VAD tree
5441 //
5442 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5443 ASSERT(Process->VadRoot.NumberGenericTableElements >= 1);
5444 MiRemoveNode((PMMADDRESS_NODE)Vad, &Process->VadRoot);
5445 PsReturnProcessNonPagedPoolQuota(Process, sizeof(MMVAD_LONG));
5446 }
5447 else
5448 {
5449 //
5450 // This means the caller wants to release a specific region within
5451 // the range. We have to find out which range this is -- the following
5452 // possibilities exist plus their union (CASE D):
5453 //
5454 // STARTING ADDRESS ENDING ADDRESS
5455 // [<========][========================================][=========>]
5456 // CASE A CASE B CASE C
5457 //
5458 //
5459 // First, check for case A or D
5460 //
5461 if ((StartingAddress >> PAGE_SHIFT) == Vad->StartingVpn)
5462 {
5463 //
5464 // Check for case D
5465 //
5466 if ((EndingAddress >> PAGE_SHIFT) == Vad->EndingVpn)
5467 {
5468 //
5469 // Case D (freeing the entire region)
5470 //
5471 // This is the easiest one to handle -- it is identical to
5472 // the code path above when the caller sets a zero region size
5473 // and the whole VAD is destroyed
5474 //
5475 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5476 ASSERT(Process->VadRoot.NumberGenericTableElements >= 1);
5477 MiRemoveNode((PMMADDRESS_NODE)Vad, &Process->VadRoot);
5478 PsReturnProcessNonPagedPoolQuota(Process, sizeof(MMVAD_LONG));
5479 }
5480 else
5481 {
5482 //
5483 // Case A (freeing a part at the beginning)
5484 //
5485 // This case is pretty easy too -- we compute a bunch of
5486 // pages to decommit, and then push the VAD's starting address
5487 // a bit further down, then decrement the commit charge
5488 //
5489 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5490 CommitReduction = MiCalculatePageCommitment(StartingAddress,
5491 EndingAddress,
5492 Vad,
5493 Process);
5494 Vad->u.VadFlags.CommitCharge -= CommitReduction;
5495 // For ReactOS: shrink the corresponding memory area
5496 ASSERT(Vad->StartingVpn == MemoryArea->VadNode.StartingVpn);
5497 ASSERT(Vad->EndingVpn == MemoryArea->VadNode.EndingVpn);
5498 Vad->StartingVpn = (EndingAddress + 1) >> PAGE_SHIFT;
5499 MemoryArea->VadNode.StartingVpn = Vad->StartingVpn;
5500
5501 //
5502 // After analyzing the VAD, set it to NULL so that we don't
5503 // free it in the exit path
5504 //
5505 Vad = NULL;
5506 }
5507 }
5508 else
5509 {
5510 //
5511 // This is case B or case C. First check for case C
5512 //
5513 if ((EndingAddress >> PAGE_SHIFT) == Vad->EndingVpn)
5514 {
5515 //
5516 // Case C (freeing a part at the end)
5517 //
5518 // This is pretty easy and similar to case A. We compute the
5519 // amount of pages to decommit, update the VAD's commit charge
5520 // and then change the ending address of the VAD to be a bit
5521 // smaller.
5522 //
5523 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5524 CommitReduction = MiCalculatePageCommitment(StartingAddress,
5525 EndingAddress,
5526 Vad,
5527 Process);
5528 Vad->u.VadFlags.CommitCharge -= CommitReduction;
5529 // For ReactOS: shrink the corresponding memory area
5530 ASSERT(Vad->StartingVpn == MemoryArea->VadNode.StartingVpn);
5531 ASSERT(Vad->EndingVpn == MemoryArea->VadNode.EndingVpn);
5532 Vad->EndingVpn = (StartingAddress - 1) >> PAGE_SHIFT;
5533 MemoryArea->VadNode.EndingVpn = Vad->EndingVpn;
5534 }
5535 else
5536 {
5537 //
5538 // Case B (freeing a part in the middle)
5539 //
5540 // This is the hardest one. Because we are removing a chunk
5541 // of memory from the very middle of the VAD, we must actually
5542 // split the VAD into two new VADs and compute the commit
5543 // charges for each of them, and reinsert new charges.
5544 //
5545 NewVad = ExAllocatePoolZero(NonPagedPool, sizeof(MMVAD_LONG), 'SdaV');
5546 if (NewVad == NULL)
5547 {
5548 DPRINT1("Failed to allocate a VAD!\n");
5549 Status = STATUS_INSUFFICIENT_RESOURCES;
5550 goto FailPath;
5551 }
5552
5553 // Charge quota for the new VAD
5554 Status = PsChargeProcessNonPagedPoolQuota(Process, sizeof(MMVAD_LONG));
5555
5556 if (!NT_SUCCESS(Status))
5557 {
5558 DPRINT1("Ran out of process quota whilst creating new VAD!\n");
5559 ExFreePoolWithTag(NewVad, 'SdaV');
5560 Status = STATUS_QUOTA_EXCEEDED;
5561 goto FailPath;
5562 }
5563
5564 //
5565 // This new VAD describes the second chunk, so we keep the end
5566 // address of the original and adjust the start to point past
5567 // the released region.
5568 // The commit charge will be calculated below.
5569 //
5570 NewVad->StartingVpn = (EndingAddress + 1) >> PAGE_SHIFT;
5571 NewVad->EndingVpn = Vad->EndingVpn;
5572 NewVad->u.LongFlags = Vad->u.LongFlags;
5573 NewVad->u.VadFlags.CommitCharge = 0;
5574 ASSERT(NewVad->EndingVpn >= NewVad->StartingVpn);
5575
5576 //
5577 // Get the commit charge for the released region
5578 //
5579 MiLockProcessWorkingSetUnsafe(Process, CurrentThread);
5580 CommitReduction = MiCalculatePageCommitment(StartingAddress,
5581 EndingAddress,
5582 Vad,
5583 Process);
5584
5585 //
5586 // Adjust the end of the original VAD (first chunk).
5587 // For ReactOS: shrink the corresponding memory area
5588 //
5589 ASSERT(Vad->StartingVpn == MemoryArea->VadNode.StartingVpn);
5590 ASSERT(Vad->EndingVpn == MemoryArea->VadNode.EndingVpn);
5591 Vad->EndingVpn = (StartingAddress - 1) >> PAGE_SHIFT;
5592 MemoryArea->VadNode.EndingVpn = Vad->EndingVpn;
5593
5594 //
5595 // Now the addresses for both VADs are consistent,
5596 // so insert the new one.
5597 // ReactOS: This will take care of creating a second MEMORY_AREA.
5598 //
5599 MiInsertVad(NewVad, &Process->VadRoot);
5600
5601 //
5602 // Calculate the commit charge for the first split.
5603 // The second chunk's size is the original size, minus the
5604 // released region's size, minus this first chunk.
5605 //
5606 FirstCommit = MiCalculatePageCommitment(Vad->StartingVpn << PAGE_SHIFT,
5607 StartingAddress - 1,
5608 Vad,
5609 Process);
5610 NewVad->u.VadFlags.CommitCharge = Vad->u.VadFlags.CommitCharge - CommitReduction - FirstCommit;
5611 Vad->u.VadFlags.CommitCharge = FirstCommit;
5612 }
5613
5614 //
5615 // After analyzing the VAD, set it to NULL so that we don't
5616 // free it in the exit path
5617 //
5618 Vad = NULL;
5619 }
5620 }
5621
5622 //
5623 // Now we have a range of pages to dereference, so call the right API
5624 // to do that and then release the working set, since we're done messing
5625 // around with process pages.
5626 //
5627 MiDeleteVirtualAddresses(StartingAddress, EndingAddress, NULL);
5628 MiUnlockProcessWorkingSetUnsafe(Process, CurrentThread);
5629 Status = STATUS_SUCCESS;
5630
5631 FinalPath:
5632 //
5633 // Update the process counters
5634 //
5635 PRegionSize = EndingAddress - StartingAddress + 1;
5636 Process->CommitCharge -= CommitReduction;
5637 if (FreeType & MEM_RELEASE) Process->VirtualSize -= PRegionSize;
5638
5639 //
5640 // Unlock the address space and free the VAD in failure cases. Next,
5641 // detach from the target process so we can write the region size and the
5642 // base address to the correct source process, and dereference the target
5643 // process.
5644 //
5645 MmUnlockAddressSpace(AddressSpace);
5646 if (Vad) ExFreePool(Vad);
5647 if (Attached) KeUnstackDetachProcess(&ApcState);
5648 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
5649
5650 //
5651 // Use SEH to safely return the region size and the base address of the
5652 // deallocation. If we get an access violation, don't return a failure code
5653 // as the deallocation *has* happened. The caller will just have to figure
5654 // out another way to find out where it is (such as VirtualQuery).
5655 //
5656 _SEH2_TRY
5657 {
5658 *URegionSize = PRegionSize;
5659 *UBaseAddress = (PVOID)StartingAddress;
5660 }
5661 _SEH2_EXCEPT(EXCEPTION_EXECUTE_HANDLER)
5662 {
5663 }
5664 _SEH2_END;
5665 return Status;
5666 }
5667
5668 //
5669 // This is the decommit path. You cannot decommit from the following VADs in
5670 // Windows, so fail the vall
5671 //
5672 if ((Vad->u.VadFlags.VadType == VadAwe) ||
5673 (Vad->u.VadFlags.VadType == VadLargePages) ||
5674 (Vad->u.VadFlags.VadType == VadRotatePhysical))
5675 {
5676 DPRINT1("Trying to decommit from invalid VAD\n");
5677 Status = STATUS_MEMORY_NOT_ALLOCATED;
5678 goto FailPath;
5679 }
5680
5681 //
5682 // If the caller did not specify a region size, first make sure that this
5683 // region is actually committed. If it is, then compute the ending address
5684 // based on the VAD.
5685 //
5686 if (!PRegionSize)
5687 {
5688 if (((ULONG_PTR)PBaseAddress >> PAGE_SHIFT) != Vad->StartingVpn)
5689 {
5690 DPRINT1("Decomitting non-committed memory\n");
5691 Status = STATUS_FREE_VM_NOT_AT_BASE;
5692 goto FailPath;
5693 }
5694 EndingAddress = (Vad->EndingVpn << PAGE_SHIFT) | (PAGE_SIZE - 1);
5695 }
5696
5697 //
5698 // Decommit the PTEs for the range plus the actual backing pages for the
5699 // range, then reduce that amount from the commit charge in the VAD
5700 //
5701 AlreadyDecommitted = MiDecommitPages((PVOID)StartingAddress,
5702 MiAddressToPte(EndingAddress),
5703 Process,
5704 Vad);
5705 CommitReduction = MiAddressToPte(EndingAddress) -
5706 MiAddressToPte(StartingAddress) +
5707 1 -
5708 AlreadyDecommitted;
5709
5710 ASSERT(CommitReduction >= 0);
5711 ASSERT(Vad->u.VadFlags.CommitCharge >= CommitReduction);
5712 Vad->u.VadFlags.CommitCharge -= CommitReduction;
5713
5714 //
5715 // We are done, go to the exit path without freeing the VAD as it remains
5716 // valid since we have not released the allocation.
5717 //
5718 Vad = NULL;
5719 Status = STATUS_SUCCESS;
5720 goto FinalPath;
5721
5722 //
5723 // In the failure path, we detach and dereference the target process, and
5724 // return whatever failure code was sent.
5725 //
5726 FailPath:
5727 MmUnlockAddressSpace(AddressSpace);
5728 if (Attached) KeUnstackDetachProcess(&ApcState);
5729 if (ProcessHandle != NtCurrentProcess()) ObDereferenceObject(Process);
5730 return Status;
5731 }
5732
5733
5734 PHYSICAL_ADDRESS
5735 NTAPI
MmGetPhysicalAddress(PVOID Address)5736 MmGetPhysicalAddress(PVOID Address)
5737 {
5738 PHYSICAL_ADDRESS PhysicalAddress;
5739 MMPDE TempPde;
5740 MMPTE TempPte;
5741
5742 /* Check if the PXE/PPE/PDE is valid */
5743 if (
5744 #if (_MI_PAGING_LEVELS == 4)
5745 (MiAddressToPxe(Address)->u.Hard.Valid) &&
5746 #endif
5747 #if (_MI_PAGING_LEVELS >= 3)
5748 (MiAddressToPpe(Address)->u.Hard.Valid) &&
5749 #endif
5750 (MiAddressToPde(Address)->u.Hard.Valid))
5751 {
5752 /* Check for large pages */
5753 TempPde = *MiAddressToPde(Address);
5754 if (TempPde.u.Hard.LargePage)
5755 {
5756 /* Physical address is base page + large page offset */
5757 PhysicalAddress.QuadPart = (ULONG64)TempPde.u.Hard.PageFrameNumber << PAGE_SHIFT;
5758 PhysicalAddress.QuadPart += ((ULONG_PTR)Address & (PAGE_SIZE * PTE_PER_PAGE - 1));
5759 return PhysicalAddress;
5760 }
5761
5762 /* Check if the PTE is valid */
5763 TempPte = *MiAddressToPte(Address);
5764 if (TempPte.u.Hard.Valid)
5765 {
5766 /* Physical address is base page + page offset */
5767 PhysicalAddress.QuadPart = (ULONG64)TempPte.u.Hard.PageFrameNumber << PAGE_SHIFT;
5768 PhysicalAddress.QuadPart += ((ULONG_PTR)Address & (PAGE_SIZE - 1));
5769 return PhysicalAddress;
5770 }
5771 }
5772
5773 KeRosDumpStackFrames(NULL, 20);
5774 DPRINT1("MM:MmGetPhysicalAddressFailed base address was %p\n", Address);
5775 PhysicalAddress.QuadPart = 0;
5776 return PhysicalAddress;
5777 }
5778
5779
5780 /* EOF */
5781