1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Bitcode/BitcodeCommon.h"
23 #include "llvm/Bitcode/LLVMBitCodes.h"
24 #include "llvm/Bitstream/BitstreamReader.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <optional>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89
90 using namespace llvm;
91
92 static cl::opt<bool> PrintSummaryGUIDs(
93 "print-summary-global-ids", cl::init(false), cl::Hidden,
94 cl::desc(
95 "Print the global id for each value when reading the module summary"));
96
97 static cl::opt<bool> ExpandConstantExprs(
98 "expand-constant-exprs", cl::Hidden,
99 cl::desc(
100 "Expand constant expressions to instructions for testing purposes"));
101
102 namespace {
103
104 enum {
105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
106 };
107
108 } // end anonymous namespace
109
error(const Twine & Message)110 static Error error(const Twine &Message) {
111 return make_error<StringError>(
112 Message, make_error_code(BitcodeError::CorruptedBitcode));
113 }
114
hasInvalidBitcodeHeader(BitstreamCursor & Stream)115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
116 if (!Stream.canSkipToPos(4))
117 return createStringError(std::errc::illegal_byte_sequence,
118 "file too small to contain bitcode header");
119 for (unsigned C : {'B', 'C'})
120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
121 if (Res.get() != C)
122 return createStringError(std::errc::illegal_byte_sequence,
123 "file doesn't start with bitcode header");
124 } else
125 return Res.takeError();
126 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
128 if (Res.get() != C)
129 return createStringError(std::errc::illegal_byte_sequence,
130 "file doesn't start with bitcode header");
131 } else
132 return Res.takeError();
133 return Error::success();
134 }
135
initStream(MemoryBufferRef Buffer)136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
139
140 if (Buffer.getBufferSize() & 3)
141 return error("Invalid bitcode signature");
142
143 // If we have a wrapper header, parse it and ignore the non-bc file contents.
144 // The magic number is 0x0B17C0DE stored in little endian.
145 if (isBitcodeWrapper(BufPtr, BufEnd))
146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
147 return error("Invalid bitcode wrapper header");
148
149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
150 if (Error Err = hasInvalidBitcodeHeader(Stream))
151 return std::move(Err);
152
153 return std::move(Stream);
154 }
155
156 /// Convert a string from a record into an std::string, return true on failure.
157 template <typename StrTy>
convertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
159 StrTy &Result) {
160 if (Idx > Record.size())
161 return true;
162
163 Result.append(Record.begin() + Idx, Record.end());
164 return false;
165 }
166
167 // Strip all the TBAA attachment for the module.
stripTBAA(Module * M)168 static void stripTBAA(Module *M) {
169 for (auto &F : *M) {
170 if (F.isMaterializable())
171 continue;
172 for (auto &I : instructions(F))
173 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
174 }
175 }
176
177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
178 /// "epoch" encoded in the bitcode, and return the producer name if any.
readIdentificationBlock(BitstreamCursor & Stream)179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
181 return std::move(Err);
182
183 // Read all the records.
184 SmallVector<uint64_t, 64> Record;
185
186 std::string ProducerIdentification;
187
188 while (true) {
189 BitstreamEntry Entry;
190 if (Error E = Stream.advance().moveInto(Entry))
191 return std::move(E);
192
193 switch (Entry.Kind) {
194 default:
195 case BitstreamEntry::Error:
196 return error("Malformed block");
197 case BitstreamEntry::EndBlock:
198 return ProducerIdentification;
199 case BitstreamEntry::Record:
200 // The interesting case.
201 break;
202 }
203
204 // Read a record.
205 Record.clear();
206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
207 if (!MaybeBitCode)
208 return MaybeBitCode.takeError();
209 switch (MaybeBitCode.get()) {
210 default: // Default behavior: reject
211 return error("Invalid value");
212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
213 convertToString(Record, 0, ProducerIdentification);
214 break;
215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
216 unsigned epoch = (unsigned)Record[0];
217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
218 return error(
219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
221 }
222 }
223 }
224 }
225 }
226
readIdentificationCode(BitstreamCursor & Stream)227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
228 // We expect a number of well-defined blocks, though we don't necessarily
229 // need to understand them all.
230 while (true) {
231 if (Stream.AtEndOfStream())
232 return "";
233
234 BitstreamEntry Entry;
235 if (Error E = Stream.advance().moveInto(Entry))
236 return std::move(E);
237
238 switch (Entry.Kind) {
239 case BitstreamEntry::EndBlock:
240 case BitstreamEntry::Error:
241 return error("Malformed block");
242
243 case BitstreamEntry::SubBlock:
244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
245 return readIdentificationBlock(Stream);
246
247 // Ignore other sub-blocks.
248 if (Error Err = Stream.SkipBlock())
249 return std::move(Err);
250 continue;
251 case BitstreamEntry::Record:
252 if (Error E = Stream.skipRecord(Entry.ID).takeError())
253 return std::move(E);
254 continue;
255 }
256 }
257 }
258
hasObjCCategoryInModule(BitstreamCursor & Stream)259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
261 return std::move(Err);
262
263 SmallVector<uint64_t, 64> Record;
264 // Read all the records for this module.
265
266 while (true) {
267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
268 if (!MaybeEntry)
269 return MaybeEntry.takeError();
270 BitstreamEntry Entry = MaybeEntry.get();
271
272 switch (Entry.Kind) {
273 case BitstreamEntry::SubBlock: // Handled for us already.
274 case BitstreamEntry::Error:
275 return error("Malformed block");
276 case BitstreamEntry::EndBlock:
277 return false;
278 case BitstreamEntry::Record:
279 // The interesting case.
280 break;
281 }
282
283 // Read a record.
284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
285 if (!MaybeRecord)
286 return MaybeRecord.takeError();
287 switch (MaybeRecord.get()) {
288 default:
289 break; // Default behavior, ignore unknown content.
290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
291 std::string S;
292 if (convertToString(Record, 0, S))
293 return error("Invalid section name record");
294 // Check for the i386 and other (x86_64, ARM) conventions
295 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
296 S.find("__OBJC,__category") != std::string::npos)
297 return true;
298 break;
299 }
300 }
301 Record.clear();
302 }
303 llvm_unreachable("Exit infinite loop");
304 }
305
hasObjCCategory(BitstreamCursor & Stream)306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
307 // We expect a number of well-defined blocks, though we don't necessarily
308 // need to understand them all.
309 while (true) {
310 BitstreamEntry Entry;
311 if (Error E = Stream.advance().moveInto(Entry))
312 return std::move(E);
313
314 switch (Entry.Kind) {
315 case BitstreamEntry::Error:
316 return error("Malformed block");
317 case BitstreamEntry::EndBlock:
318 return false;
319
320 case BitstreamEntry::SubBlock:
321 if (Entry.ID == bitc::MODULE_BLOCK_ID)
322 return hasObjCCategoryInModule(Stream);
323
324 // Ignore other sub-blocks.
325 if (Error Err = Stream.SkipBlock())
326 return std::move(Err);
327 continue;
328
329 case BitstreamEntry::Record:
330 if (Error E = Stream.skipRecord(Entry.ID).takeError())
331 return std::move(E);
332 continue;
333 }
334 }
335 }
336
readModuleTriple(BitstreamCursor & Stream)337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339 return std::move(Err);
340
341 SmallVector<uint64_t, 64> Record;
342
343 std::string Triple;
344
345 // Read all the records for this module.
346 while (true) {
347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348 if (!MaybeEntry)
349 return MaybeEntry.takeError();
350 BitstreamEntry Entry = MaybeEntry.get();
351
352 switch (Entry.Kind) {
353 case BitstreamEntry::SubBlock: // Handled for us already.
354 case BitstreamEntry::Error:
355 return error("Malformed block");
356 case BitstreamEntry::EndBlock:
357 return Triple;
358 case BitstreamEntry::Record:
359 // The interesting case.
360 break;
361 }
362
363 // Read a record.
364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365 if (!MaybeRecord)
366 return MaybeRecord.takeError();
367 switch (MaybeRecord.get()) {
368 default: break; // Default behavior, ignore unknown content.
369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
370 std::string S;
371 if (convertToString(Record, 0, S))
372 return error("Invalid triple record");
373 Triple = S;
374 break;
375 }
376 }
377 Record.clear();
378 }
379 llvm_unreachable("Exit infinite loop");
380 }
381
readTriple(BitstreamCursor & Stream)382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383 // We expect a number of well-defined blocks, though we don't necessarily
384 // need to understand them all.
385 while (true) {
386 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387 if (!MaybeEntry)
388 return MaybeEntry.takeError();
389 BitstreamEntry Entry = MaybeEntry.get();
390
391 switch (Entry.Kind) {
392 case BitstreamEntry::Error:
393 return error("Malformed block");
394 case BitstreamEntry::EndBlock:
395 return "";
396
397 case BitstreamEntry::SubBlock:
398 if (Entry.ID == bitc::MODULE_BLOCK_ID)
399 return readModuleTriple(Stream);
400
401 // Ignore other sub-blocks.
402 if (Error Err = Stream.SkipBlock())
403 return std::move(Err);
404 continue;
405
406 case BitstreamEntry::Record:
407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408 continue;
409 else
410 return Skipped.takeError();
411 }
412 }
413 }
414
415 namespace {
416
417 class BitcodeReaderBase {
418 protected:
BitcodeReaderBase(BitstreamCursor Stream,StringRef Strtab)419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420 : Stream(std::move(Stream)), Strtab(Strtab) {
421 this->Stream.setBlockInfo(&BlockInfo);
422 }
423
424 BitstreamBlockInfo BlockInfo;
425 BitstreamCursor Stream;
426 StringRef Strtab;
427
428 /// In version 2 of the bitcode we store names of global values and comdats in
429 /// a string table rather than in the VST.
430 bool UseStrtab = false;
431
432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433
434 /// If this module uses a string table, pop the reference to the string table
435 /// and return the referenced string and the rest of the record. Otherwise
436 /// just return the record itself.
437 std::pair<StringRef, ArrayRef<uint64_t>>
438 readNameFromStrtab(ArrayRef<uint64_t> Record);
439
440 Error readBlockInfo();
441
442 // Contains an arbitrary and optional string identifying the bitcode producer
443 std::string ProducerIdentification;
444
445 Error error(const Twine &Message);
446 };
447
448 } // end anonymous namespace
449
error(const Twine & Message)450 Error BitcodeReaderBase::error(const Twine &Message) {
451 std::string FullMsg = Message.str();
452 if (!ProducerIdentification.empty())
453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454 LLVM_VERSION_STRING "')";
455 return ::error(FullMsg);
456 }
457
458 Expected<unsigned>
parseVersionRecord(ArrayRef<uint64_t> Record)459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460 if (Record.empty())
461 return error("Invalid version record");
462 unsigned ModuleVersion = Record[0];
463 if (ModuleVersion > 2)
464 return error("Invalid value");
465 UseStrtab = ModuleVersion >= 2;
466 return ModuleVersion;
467 }
468
469 std::pair<StringRef, ArrayRef<uint64_t>>
readNameFromStrtab(ArrayRef<uint64_t> Record)470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471 if (!UseStrtab)
472 return {"", Record};
473 // Invalid reference. Let the caller complain about the record being empty.
474 if (Record[0] + Record[1] > Strtab.size())
475 return {"", {}};
476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478
479 namespace {
480
481 /// This represents a constant expression or constant aggregate using a custom
482 /// structure internal to the bitcode reader. Later, this structure will be
483 /// expanded by materializeValue() either into a constant expression/aggregate,
484 /// or into an instruction sequence at the point of use. This allows us to
485 /// upgrade bitcode using constant expressions even if this kind of constant
486 /// expression is no longer supported.
487 class BitcodeConstant final : public Value,
488 TrailingObjects<BitcodeConstant, unsigned> {
489 friend TrailingObjects;
490
491 // Value subclass ID: Pick largest possible value to avoid any clashes.
492 static constexpr uint8_t SubclassID = 255;
493
494 public:
495 // Opcodes used for non-expressions. This includes constant aggregates
496 // (struct, array, vector) that might need expansion, as well as non-leaf
497 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
498 // but still go through BitcodeConstant to avoid different uselist orders
499 // between the two cases.
500 static constexpr uint8_t ConstantStructOpcode = 255;
501 static constexpr uint8_t ConstantArrayOpcode = 254;
502 static constexpr uint8_t ConstantVectorOpcode = 253;
503 static constexpr uint8_t NoCFIOpcode = 252;
504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
505 static constexpr uint8_t BlockAddressOpcode = 250;
506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
507
508 // Separate struct to make passing different number of parameters to
509 // BitcodeConstant::create() more convenient.
510 struct ExtraInfo {
511 uint8_t Opcode;
512 uint8_t Flags;
513 unsigned Extra;
514 Type *SrcElemTy;
515
ExtraInfo__anonbda00ad50411::BitcodeConstant::ExtraInfo516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
517 Type *SrcElemTy = nullptr)
518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
519 };
520
521 uint8_t Opcode;
522 uint8_t Flags;
523 unsigned NumOperands;
524 unsigned Extra; // GEP inrange index or blockaddress BB id.
525 Type *SrcElemTy; // GEP source element type.
526
527 private:
BitcodeConstant(Type * Ty,const ExtraInfo & Info,ArrayRef<unsigned> OpIDs)528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
530 NumOperands(OpIDs.size()), Extra(Info.Extra),
531 SrcElemTy(Info.SrcElemTy) {
532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
533 getTrailingObjects<unsigned>());
534 }
535
536 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
537
538 public:
create(BumpPtrAllocator & A,Type * Ty,const ExtraInfo & Info,ArrayRef<unsigned> OpIDs)539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
540 const ExtraInfo &Info,
541 ArrayRef<unsigned> OpIDs) {
542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
543 alignof(BitcodeConstant));
544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
545 }
546
classof(const Value * V)547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
548
getOperandIDs() const549 ArrayRef<unsigned> getOperandIDs() const {
550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
551 }
552
getInRangeIndex() const553 std::optional<unsigned> getInRangeIndex() const {
554 assert(Opcode == Instruction::GetElementPtr);
555 if (Extra == (unsigned)-1)
556 return std::nullopt;
557 return Extra;
558 }
559
getOpcodeName() const560 const char *getOpcodeName() const {
561 return Instruction::getOpcodeName(Opcode);
562 }
563 };
564
565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
566 LLVMContext &Context;
567 Module *TheModule = nullptr;
568 // Next offset to start scanning for lazy parsing of function bodies.
569 uint64_t NextUnreadBit = 0;
570 // Last function offset found in the VST.
571 uint64_t LastFunctionBlockBit = 0;
572 bool SeenValueSymbolTable = false;
573 uint64_t VSTOffset = 0;
574
575 std::vector<std::string> SectionTable;
576 std::vector<std::string> GCTable;
577
578 std::vector<Type *> TypeList;
579 /// Track type IDs of contained types. Order is the same as the contained
580 /// types of a Type*. This is used during upgrades of typed pointer IR in
581 /// opaque pointer mode.
582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
583 /// In some cases, we need to create a type ID for a type that was not
584 /// explicitly encoded in the bitcode, or we don't know about at the current
585 /// point. For example, a global may explicitly encode the value type ID, but
586 /// not have a type ID for the pointer to value type, for which we create a
587 /// virtual type ID instead. This map stores the new type ID that was created
588 /// for the given pair of Type and contained type ID.
589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
590 DenseMap<Function *, unsigned> FunctionTypeIDs;
591 /// Allocator for BitcodeConstants. This should come before ValueList,
592 /// because the ValueList might hold ValueHandles to these constants, so
593 /// ValueList must be destroyed before Alloc.
594 BumpPtrAllocator Alloc;
595 BitcodeReaderValueList ValueList;
596 std::optional<MetadataLoader> MDLoader;
597 std::vector<Comdat *> ComdatList;
598 DenseSet<GlobalObject *> ImplicitComdatObjects;
599 SmallVector<Instruction *, 64> InstructionList;
600
601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
603
604 struct FunctionOperandInfo {
605 Function *F;
606 unsigned PersonalityFn;
607 unsigned Prefix;
608 unsigned Prologue;
609 };
610 std::vector<FunctionOperandInfo> FunctionOperands;
611
612 /// The set of attributes by index. Index zero in the file is for null, and
613 /// is thus not represented here. As such all indices are off by one.
614 std::vector<AttributeList> MAttributes;
615
616 /// The set of attribute groups.
617 std::map<unsigned, AttributeList> MAttributeGroups;
618
619 /// While parsing a function body, this is a list of the basic blocks for the
620 /// function.
621 std::vector<BasicBlock*> FunctionBBs;
622
623 // When reading the module header, this list is populated with functions that
624 // have bodies later in the file.
625 std::vector<Function*> FunctionsWithBodies;
626
627 // When intrinsic functions are encountered which require upgrading they are
628 // stored here with their replacement function.
629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
630 UpdatedIntrinsicMap UpgradedIntrinsics;
631
632 // Several operations happen after the module header has been read, but
633 // before function bodies are processed. This keeps track of whether
634 // we've done this yet.
635 bool SeenFirstFunctionBody = false;
636
637 /// When function bodies are initially scanned, this map contains info about
638 /// where to find deferred function body in the stream.
639 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
640
641 /// When Metadata block is initially scanned when parsing the module, we may
642 /// choose to defer parsing of the metadata. This vector contains info about
643 /// which Metadata blocks are deferred.
644 std::vector<uint64_t> DeferredMetadataInfo;
645
646 /// These are basic blocks forward-referenced by block addresses. They are
647 /// inserted lazily into functions when they're loaded. The basic block ID is
648 /// its index into the vector.
649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
650 std::deque<Function *> BasicBlockFwdRefQueue;
651
652 /// These are Functions that contain BlockAddresses which refer a different
653 /// Function. When parsing the different Function, queue Functions that refer
654 /// to the different Function. Those Functions must be materialized in order
655 /// to resolve their BlockAddress constants before the different Function
656 /// gets moved into another Module.
657 std::vector<Function *> BackwardRefFunctions;
658
659 /// Indicates that we are using a new encoding for instruction operands where
660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
661 /// instruction number, for a more compact encoding. Some instruction
662 /// operands are not relative to the instruction ID: basic block numbers, and
663 /// types. Once the old style function blocks have been phased out, we would
664 /// not need this flag.
665 bool UseRelativeIDs = false;
666
667 /// True if all functions will be materialized, negating the need to process
668 /// (e.g.) blockaddress forward references.
669 bool WillMaterializeAllForwardRefs = false;
670
671 bool StripDebugInfo = false;
672 TBAAVerifier TBAAVerifyHelper;
673
674 std::vector<std::string> BundleTags;
675 SmallVector<SyncScope::ID, 8> SSIDs;
676
677 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
678
679 public:
680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
681 StringRef ProducerIdentification, LLVMContext &Context);
682
683 Error materializeForwardReferencedFunctions();
684
685 Error materialize(GlobalValue *GV) override;
686 Error materializeModule() override;
687 std::vector<StructType *> getIdentifiedStructTypes() const override;
688
689 /// Main interface to parsing a bitcode buffer.
690 /// \returns true if an error occurred.
691 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
692 bool IsImporting, ParserCallbacks Callbacks = {});
693
694 static uint64_t decodeSignRotatedValue(uint64_t V);
695
696 /// Materialize any deferred Metadata block.
697 Error materializeMetadata() override;
698
699 void setStripDebugInfo() override;
700
701 private:
702 std::vector<StructType *> IdentifiedStructTypes;
703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704 StructType *createIdentifiedStructType(LLVMContext &Context);
705
706 static constexpr unsigned InvalidTypeID = ~0u;
707
708 Type *getTypeByID(unsigned ID);
709 Type *getPtrElementTypeByID(unsigned ID);
710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712
713 void callValueTypeCallback(Value *F, unsigned TypeID);
714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
715 Expected<Constant *> getValueForInitializer(unsigned ID);
716
getFnValueByID(unsigned ID,Type * Ty,unsigned TyID,BasicBlock * ConstExprInsertBB)717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
718 BasicBlock *ConstExprInsertBB) {
719 if (Ty && Ty->isMetadataTy())
720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
722 }
723
getFnMetadataByID(unsigned ID)724 Metadata *getFnMetadataByID(unsigned ID) {
725 return MDLoader->getMetadataFwdRefOrLoad(ID);
726 }
727
getBasicBlock(unsigned ID) const728 BasicBlock *getBasicBlock(unsigned ID) const {
729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
730 return FunctionBBs[ID];
731 }
732
getAttributes(unsigned i) const733 AttributeList getAttributes(unsigned i) const {
734 if (i-1 < MAttributes.size())
735 return MAttributes[i-1];
736 return AttributeList();
737 }
738
739 /// Read a value/type pair out of the specified record from slot 'Slot'.
740 /// Increment Slot past the number of slots used in the record. Return true on
741 /// failure.
getValueTypePair(const SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal,unsigned & TypeID,BasicBlock * ConstExprInsertBB)742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
743 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
744 BasicBlock *ConstExprInsertBB) {
745 if (Slot == Record.size()) return true;
746 unsigned ValNo = (unsigned)Record[Slot++];
747 // Adjust the ValNo, if it was encoded relative to the InstNum.
748 if (UseRelativeIDs)
749 ValNo = InstNum - ValNo;
750 if (ValNo < InstNum) {
751 // If this is not a forward reference, just return the value we already
752 // have.
753 TypeID = ValueList.getTypeID(ValNo);
754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
756 "Incorrect type ID stored for value");
757 return ResVal == nullptr;
758 }
759 if (Slot == Record.size())
760 return true;
761
762 TypeID = (unsigned)Record[Slot++];
763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
764 ConstExprInsertBB);
765 return ResVal == nullptr;
766 }
767
768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
769 /// past the number of slots used by the value in the record. Return true if
770 /// there is an error.
popValue(const SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Type * Ty,unsigned TyID,Value * & ResVal,BasicBlock * ConstExprInsertBB)771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
773 BasicBlock *ConstExprInsertBB) {
774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
775 return true;
776 // All values currently take a single record slot.
777 ++Slot;
778 return false;
779 }
780
781 /// Like popValue, but does not increment the Slot number.
getValue(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,unsigned TyID,Value * & ResVal,BasicBlock * ConstExprInsertBB)782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
784 BasicBlock *ConstExprInsertBB) {
785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
786 return ResVal == nullptr;
787 }
788
789 /// Version of getValue that returns ResVal directly, or 0 if there is an
790 /// error.
getValue(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,unsigned TyID,BasicBlock * ConstExprInsertBB)791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
792 unsigned InstNum, Type *Ty, unsigned TyID,
793 BasicBlock *ConstExprInsertBB) {
794 if (Slot == Record.size()) return nullptr;
795 unsigned ValNo = (unsigned)Record[Slot];
796 // Adjust the ValNo, if it was encoded relative to the InstNum.
797 if (UseRelativeIDs)
798 ValNo = InstNum - ValNo;
799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
800 }
801
802 /// Like getValue, but decodes signed VBRs.
getValueSigned(const SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,unsigned TyID,BasicBlock * ConstExprInsertBB)803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
804 unsigned InstNum, Type *Ty, unsigned TyID,
805 BasicBlock *ConstExprInsertBB) {
806 if (Slot == Record.size()) return nullptr;
807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
808 // Adjust the ValNo, if it was encoded relative to the InstNum.
809 if (UseRelativeIDs)
810 ValNo = InstNum - ValNo;
811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
812 }
813
814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
815 /// corresponding argument's pointee type. Also upgrades intrinsics that now
816 /// require an elementtype attribute.
817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
818
819 /// Converts alignment exponent (i.e. power of two (or zero)) to the
820 /// corresponding alignment to use. If alignment is too large, returns
821 /// a corresponding error code.
822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
824 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825 ParserCallbacks Callbacks = {});
826
827 Error parseComdatRecord(ArrayRef<uint64_t> Record);
828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831 ArrayRef<uint64_t> Record);
832
833 Error parseAttributeBlock();
834 Error parseAttributeGroupBlock();
835 Error parseTypeTable();
836 Error parseTypeTableBody();
837 Error parseOperandBundleTags();
838 Error parseSyncScopeNames();
839
840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841 unsigned NameIndex, Triple &TT);
842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843 ArrayRef<uint64_t> Record);
844 Error parseValueSymbolTable(uint64_t Offset = 0);
845 Error parseGlobalValueSymbolTable();
846 Error parseConstants();
847 Error rememberAndSkipFunctionBodies();
848 Error rememberAndSkipFunctionBody();
849 /// Save the positions of the Metadata blocks and skip parsing the blocks.
850 Error rememberAndSkipMetadata();
851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852 Error parseFunctionBody(Function *F);
853 Error globalCleanup();
854 Error resolveGlobalAndIndirectSymbolInits();
855 Error parseUseLists();
856 Error findFunctionInStream(
857 Function *F,
858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859
860 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861 };
862
863 /// Class to manage reading and parsing function summary index bitcode
864 /// files/sections.
865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866 /// The module index built during parsing.
867 ModuleSummaryIndex &TheIndex;
868
869 /// Indicates whether we have encountered a global value summary section
870 /// yet during parsing.
871 bool SeenGlobalValSummary = false;
872
873 /// Indicates whether we have already parsed the VST, used for error checking.
874 bool SeenValueSymbolTable = false;
875
876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877 /// Used to enable on-demand parsing of the VST.
878 uint64_t VSTOffset = 0;
879
880 // Map to save ValueId to ValueInfo association that was recorded in the
881 // ValueSymbolTable. It is used after the VST is parsed to convert
882 // call graph edges read from the function summary from referencing
883 // callees by their ValueId to using the ValueInfo instead, which is how
884 // they are recorded in the summary index being built.
885 // We save a GUID which refers to the same global as the ValueInfo, but
886 // ignoring the linkage, i.e. for values other than local linkage they are
887 // identical (this is the second tuple member).
888 // The third tuple member is the real GUID of the ValueInfo.
889 DenseMap<unsigned,
890 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
891 ValueIdToValueInfoMap;
892
893 /// Map populated during module path string table parsing, from the
894 /// module ID to a string reference owned by the index's module
895 /// path string table, used to correlate with combined index
896 /// summary records.
897 DenseMap<uint64_t, StringRef> ModuleIdMap;
898
899 /// Original source file name recorded in a bitcode record.
900 std::string SourceFileName;
901
902 /// The string identifier given to this module by the client, normally the
903 /// path to the bitcode file.
904 StringRef ModulePath;
905
906 /// For per-module summary indexes, the unique numerical identifier given to
907 /// this module by the client.
908 unsigned ModuleId;
909
910 /// Callback to ask whether a symbol is the prevailing copy when invoked
911 /// during combined index building.
912 std::function<bool(GlobalValue::GUID)> IsPrevailing;
913
914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
915 /// ids from the lists in the callsite and alloc entries to the index.
916 std::vector<uint64_t> StackIds;
917
918 public:
919 ModuleSummaryIndexBitcodeReader(
920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
921 StringRef ModulePath, unsigned ModuleId,
922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
923
924 Error parseModule();
925
926 private:
927 void setValueGUID(uint64_t ValueID, StringRef ValueName,
928 GlobalValue::LinkageTypes Linkage,
929 StringRef SourceFileName);
930 Error parseValueSymbolTable(
931 uint64_t Offset,
932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
935 bool IsOldProfileFormat,
936 bool HasProfile,
937 bool HasRelBF);
938 Error parseEntireSummary(unsigned ID);
939 Error parseModuleStringTable();
940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
942 TypeIdCompatibleVtableInfo &TypeId);
943 std::vector<FunctionSummary::ParamAccess>
944 parseParamAccesses(ArrayRef<uint64_t> Record);
945
946 template <bool AllowNullValueInfo = false>
947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
948 getValueInfoFromValueId(unsigned ValueId);
949
950 void addThisModule();
951 ModuleSummaryIndex::ModuleInfo *getThisModule();
952 };
953
954 } // end anonymous namespace
955
errorToErrorCodeAndEmitErrors(LLVMContext & Ctx,Error Err)956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
957 Error Err) {
958 if (Err) {
959 std::error_code EC;
960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
961 EC = EIB.convertToErrorCode();
962 Ctx.emitError(EIB.message());
963 });
964 return EC;
965 }
966 return std::error_code();
967 }
968
BitcodeReader(BitstreamCursor Stream,StringRef Strtab,StringRef ProducerIdentification,LLVMContext & Context)969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
970 StringRef ProducerIdentification,
971 LLVMContext &Context)
972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
973 ValueList(this->Stream.SizeInBytes(),
974 [this](unsigned ValID, BasicBlock *InsertBB) {
975 return materializeValue(ValID, InsertBB);
976 }) {
977 this->ProducerIdentification = std::string(ProducerIdentification);
978 }
979
materializeForwardReferencedFunctions()980 Error BitcodeReader::materializeForwardReferencedFunctions() {
981 if (WillMaterializeAllForwardRefs)
982 return Error::success();
983
984 // Prevent recursion.
985 WillMaterializeAllForwardRefs = true;
986
987 while (!BasicBlockFwdRefQueue.empty()) {
988 Function *F = BasicBlockFwdRefQueue.front();
989 BasicBlockFwdRefQueue.pop_front();
990 assert(F && "Expected valid function");
991 if (!BasicBlockFwdRefs.count(F))
992 // Already materialized.
993 continue;
994
995 // Check for a function that isn't materializable to prevent an infinite
996 // loop. When parsing a blockaddress stored in a global variable, there
997 // isn't a trivial way to check if a function will have a body without a
998 // linear search through FunctionsWithBodies, so just check it here.
999 if (!F->isMaterializable())
1000 return error("Never resolved function from blockaddress");
1001
1002 // Try to materialize F.
1003 if (Error Err = materialize(F))
1004 return Err;
1005 }
1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1007
1008 for (Function *F : BackwardRefFunctions)
1009 if (Error Err = materialize(F))
1010 return Err;
1011 BackwardRefFunctions.clear();
1012
1013 // Reset state.
1014 WillMaterializeAllForwardRefs = false;
1015 return Error::success();
1016 }
1017
1018 //===----------------------------------------------------------------------===//
1019 // Helper functions to implement forward reference resolution, etc.
1020 //===----------------------------------------------------------------------===//
1021
hasImplicitComdat(size_t Val)1022 static bool hasImplicitComdat(size_t Val) {
1023 switch (Val) {
1024 default:
1025 return false;
1026 case 1: // Old WeakAnyLinkage
1027 case 4: // Old LinkOnceAnyLinkage
1028 case 10: // Old WeakODRLinkage
1029 case 11: // Old LinkOnceODRLinkage
1030 return true;
1031 }
1032 }
1033
getDecodedLinkage(unsigned Val)1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1035 switch (Val) {
1036 default: // Map unknown/new linkages to external
1037 case 0:
1038 return GlobalValue::ExternalLinkage;
1039 case 2:
1040 return GlobalValue::AppendingLinkage;
1041 case 3:
1042 return GlobalValue::InternalLinkage;
1043 case 5:
1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1045 case 6:
1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1047 case 7:
1048 return GlobalValue::ExternalWeakLinkage;
1049 case 8:
1050 return GlobalValue::CommonLinkage;
1051 case 9:
1052 return GlobalValue::PrivateLinkage;
1053 case 12:
1054 return GlobalValue::AvailableExternallyLinkage;
1055 case 13:
1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1057 case 14:
1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1059 case 15:
1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1061 case 1: // Old value with implicit comdat.
1062 case 16:
1063 return GlobalValue::WeakAnyLinkage;
1064 case 10: // Old value with implicit comdat.
1065 case 17:
1066 return GlobalValue::WeakODRLinkage;
1067 case 4: // Old value with implicit comdat.
1068 case 18:
1069 return GlobalValue::LinkOnceAnyLinkage;
1070 case 11: // Old value with implicit comdat.
1071 case 19:
1072 return GlobalValue::LinkOnceODRLinkage;
1073 }
1074 }
1075
getDecodedFFlags(uint64_t RawFlags)1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1077 FunctionSummary::FFlags Flags;
1078 Flags.ReadNone = RawFlags & 0x1;
1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1082 Flags.NoInline = (RawFlags >> 4) & 0x1;
1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1085 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1088 return Flags;
1089 }
1090
1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1092 //
1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1094 // visibility: [8, 10).
getDecodedGVSummaryFlags(uint64_t RawFlags,uint64_t Version)1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1096 uint64_t Version) {
1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1098 // like getDecodedLinkage() above. Any future change to the linkage enum and
1099 // to getDecodedLinkage() will need to be taken into account here as above.
1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1102 RawFlags = RawFlags >> 4;
1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1104 // The Live flag wasn't introduced until version 3. For dead stripping
1105 // to work correctly on earlier versions, we must conservatively treat all
1106 // values as live.
1107 bool Live = (RawFlags & 0x2) || Version < 3;
1108 bool Local = (RawFlags & 0x4);
1109 bool AutoHide = (RawFlags & 0x8);
1110
1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1112 Live, Local, AutoHide);
1113 }
1114
1115 // Decode the flags for GlobalVariable in the summary
getDecodedGVarFlags(uint64_t RawFlags)1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1117 return GlobalVarSummary::GVarFlags(
1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1119 (RawFlags & 0x4) ? true : false,
1120 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1121 }
1122
getDecodedVisibility(unsigned Val)1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1124 switch (Val) {
1125 default: // Map unknown visibilities to default.
1126 case 0: return GlobalValue::DefaultVisibility;
1127 case 1: return GlobalValue::HiddenVisibility;
1128 case 2: return GlobalValue::ProtectedVisibility;
1129 }
1130 }
1131
1132 static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val)1133 getDecodedDLLStorageClass(unsigned Val) {
1134 switch (Val) {
1135 default: // Map unknown values to default.
1136 case 0: return GlobalValue::DefaultStorageClass;
1137 case 1: return GlobalValue::DLLImportStorageClass;
1138 case 2: return GlobalValue::DLLExportStorageClass;
1139 }
1140 }
1141
getDecodedDSOLocal(unsigned Val)1142 static bool getDecodedDSOLocal(unsigned Val) {
1143 switch(Val) {
1144 default: // Map unknown values to preemptable.
1145 case 0: return false;
1146 case 1: return true;
1147 }
1148 }
1149
getDecodedThreadLocalMode(unsigned Val)1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1151 switch (Val) {
1152 case 0: return GlobalVariable::NotThreadLocal;
1153 default: // Map unknown non-zero value to general dynamic.
1154 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1155 case 2: return GlobalVariable::LocalDynamicTLSModel;
1156 case 3: return GlobalVariable::InitialExecTLSModel;
1157 case 4: return GlobalVariable::LocalExecTLSModel;
1158 }
1159 }
1160
getDecodedUnnamedAddrType(unsigned Val)1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1162 switch (Val) {
1163 default: // Map unknown to UnnamedAddr::None.
1164 case 0: return GlobalVariable::UnnamedAddr::None;
1165 case 1: return GlobalVariable::UnnamedAddr::Global;
1166 case 2: return GlobalVariable::UnnamedAddr::Local;
1167 }
1168 }
1169
getDecodedCastOpcode(unsigned Val)1170 static int getDecodedCastOpcode(unsigned Val) {
1171 switch (Val) {
1172 default: return -1;
1173 case bitc::CAST_TRUNC : return Instruction::Trunc;
1174 case bitc::CAST_ZEXT : return Instruction::ZExt;
1175 case bitc::CAST_SEXT : return Instruction::SExt;
1176 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1177 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1178 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1179 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1180 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1181 case bitc::CAST_FPEXT : return Instruction::FPExt;
1182 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1183 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1184 case bitc::CAST_BITCAST : return Instruction::BitCast;
1185 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1186 }
1187 }
1188
getDecodedUnaryOpcode(unsigned Val,Type * Ty)1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1190 bool IsFP = Ty->isFPOrFPVectorTy();
1191 // UnOps are only valid for int/fp or vector of int/fp types
1192 if (!IsFP && !Ty->isIntOrIntVectorTy())
1193 return -1;
1194
1195 switch (Val) {
1196 default:
1197 return -1;
1198 case bitc::UNOP_FNEG:
1199 return IsFP ? Instruction::FNeg : -1;
1200 }
1201 }
1202
getDecodedBinaryOpcode(unsigned Val,Type * Ty)1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1204 bool IsFP = Ty->isFPOrFPVectorTy();
1205 // BinOps are only valid for int/fp or vector of int/fp types
1206 if (!IsFP && !Ty->isIntOrIntVectorTy())
1207 return -1;
1208
1209 switch (Val) {
1210 default:
1211 return -1;
1212 case bitc::BINOP_ADD:
1213 return IsFP ? Instruction::FAdd : Instruction::Add;
1214 case bitc::BINOP_SUB:
1215 return IsFP ? Instruction::FSub : Instruction::Sub;
1216 case bitc::BINOP_MUL:
1217 return IsFP ? Instruction::FMul : Instruction::Mul;
1218 case bitc::BINOP_UDIV:
1219 return IsFP ? -1 : Instruction::UDiv;
1220 case bitc::BINOP_SDIV:
1221 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1222 case bitc::BINOP_UREM:
1223 return IsFP ? -1 : Instruction::URem;
1224 case bitc::BINOP_SREM:
1225 return IsFP ? Instruction::FRem : Instruction::SRem;
1226 case bitc::BINOP_SHL:
1227 return IsFP ? -1 : Instruction::Shl;
1228 case bitc::BINOP_LSHR:
1229 return IsFP ? -1 : Instruction::LShr;
1230 case bitc::BINOP_ASHR:
1231 return IsFP ? -1 : Instruction::AShr;
1232 case bitc::BINOP_AND:
1233 return IsFP ? -1 : Instruction::And;
1234 case bitc::BINOP_OR:
1235 return IsFP ? -1 : Instruction::Or;
1236 case bitc::BINOP_XOR:
1237 return IsFP ? -1 : Instruction::Xor;
1238 }
1239 }
1240
getDecodedRMWOperation(unsigned Val)1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1242 switch (Val) {
1243 default: return AtomicRMWInst::BAD_BINOP;
1244 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1245 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1246 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1247 case bitc::RMW_AND: return AtomicRMWInst::And;
1248 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1249 case bitc::RMW_OR: return AtomicRMWInst::Or;
1250 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1251 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1252 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1253 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1254 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1255 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1256 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1257 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1258 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1259 case bitc::RMW_UINC_WRAP:
1260 return AtomicRMWInst::UIncWrap;
1261 case bitc::RMW_UDEC_WRAP:
1262 return AtomicRMWInst::UDecWrap;
1263 }
1264 }
1265
getDecodedOrdering(unsigned Val)1266 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1267 switch (Val) {
1268 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1269 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1270 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1271 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1272 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1273 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1274 default: // Map unknown orderings to sequentially-consistent.
1275 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1276 }
1277 }
1278
getDecodedComdatSelectionKind(unsigned Val)1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1280 switch (Val) {
1281 default: // Map unknown selection kinds to any.
1282 case bitc::COMDAT_SELECTION_KIND_ANY:
1283 return Comdat::Any;
1284 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1285 return Comdat::ExactMatch;
1286 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1287 return Comdat::Largest;
1288 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1289 return Comdat::NoDeduplicate;
1290 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1291 return Comdat::SameSize;
1292 }
1293 }
1294
getDecodedFastMathFlags(unsigned Val)1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1296 FastMathFlags FMF;
1297 if (0 != (Val & bitc::UnsafeAlgebra))
1298 FMF.setFast();
1299 if (0 != (Val & bitc::AllowReassoc))
1300 FMF.setAllowReassoc();
1301 if (0 != (Val & bitc::NoNaNs))
1302 FMF.setNoNaNs();
1303 if (0 != (Val & bitc::NoInfs))
1304 FMF.setNoInfs();
1305 if (0 != (Val & bitc::NoSignedZeros))
1306 FMF.setNoSignedZeros();
1307 if (0 != (Val & bitc::AllowReciprocal))
1308 FMF.setAllowReciprocal();
1309 if (0 != (Val & bitc::AllowContract))
1310 FMF.setAllowContract(true);
1311 if (0 != (Val & bitc::ApproxFunc))
1312 FMF.setApproxFunc();
1313 return FMF;
1314 }
1315
upgradeDLLImportExportLinkage(GlobalValue * GV,unsigned Val)1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1317 // A GlobalValue with local linkage cannot have a DLL storage class.
1318 if (GV->hasLocalLinkage())
1319 return;
1320 switch (Val) {
1321 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1322 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1323 }
1324 }
1325
getTypeByID(unsigned ID)1326 Type *BitcodeReader::getTypeByID(unsigned ID) {
1327 // The type table size is always specified correctly.
1328 if (ID >= TypeList.size())
1329 return nullptr;
1330
1331 if (Type *Ty = TypeList[ID])
1332 return Ty;
1333
1334 // If we have a forward reference, the only possible case is when it is to a
1335 // named struct. Just create a placeholder for now.
1336 return TypeList[ID] = createIdentifiedStructType(Context);
1337 }
1338
getContainedTypeID(unsigned ID,unsigned Idx)1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1340 auto It = ContainedTypeIDs.find(ID);
1341 if (It == ContainedTypeIDs.end())
1342 return InvalidTypeID;
1343
1344 if (Idx >= It->second.size())
1345 return InvalidTypeID;
1346
1347 return It->second[Idx];
1348 }
1349
getPtrElementTypeByID(unsigned ID)1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1351 if (ID >= TypeList.size())
1352 return nullptr;
1353
1354 Type *Ty = TypeList[ID];
1355 if (!Ty->isPointerTy())
1356 return nullptr;
1357
1358 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1359 if (!ElemTy)
1360 return nullptr;
1361
1362 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1363 "Incorrect element type");
1364 return ElemTy;
1365 }
1366
getVirtualTypeID(Type * Ty,ArrayRef<unsigned> ChildTypeIDs)1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1368 ArrayRef<unsigned> ChildTypeIDs) {
1369 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1370 auto CacheKey = std::make_pair(Ty, ChildTypeID);
1371 auto It = VirtualTypeIDs.find(CacheKey);
1372 if (It != VirtualTypeIDs.end()) {
1373 // The cmpxchg return value is the only place we need more than one
1374 // contained type ID, however the second one will always be the same (i1),
1375 // so we don't need to include it in the cache key. This asserts that the
1376 // contained types are indeed as expected and there are no collisions.
1377 assert((ChildTypeIDs.empty() ||
1378 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1379 "Incorrect cached contained type IDs");
1380 return It->second;
1381 }
1382
1383 #ifndef NDEBUG
1384 if (!Ty->isOpaquePointerTy()) {
1385 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1386 "Wrong number of contained types");
1387 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1388 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1389 "Incorrect contained type ID");
1390 }
1391 }
1392 #endif
1393
1394 unsigned TypeID = TypeList.size();
1395 TypeList.push_back(Ty);
1396 if (!ChildTypeIDs.empty())
1397 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1398 VirtualTypeIDs.insert({CacheKey, TypeID});
1399 return TypeID;
1400 }
1401
isConstExprSupported(uint8_t Opcode)1402 static bool isConstExprSupported(uint8_t Opcode) {
1403 // These are not real constant expressions, always consider them supported.
1404 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1405 return true;
1406
1407 // If -expand-constant-exprs is set, we want to consider all expressions
1408 // as unsupported.
1409 if (ExpandConstantExprs)
1410 return false;
1411
1412 if (Instruction::isBinaryOp(Opcode))
1413 return ConstantExpr::isSupportedBinOp(Opcode);
1414
1415 return Opcode != Instruction::FNeg;
1416 }
1417
materializeValue(unsigned StartValID,BasicBlock * InsertBB)1418 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1419 BasicBlock *InsertBB) {
1420 // Quickly handle the case where there is no BitcodeConstant to resolve.
1421 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1422 !isa<BitcodeConstant>(ValueList[StartValID]))
1423 return ValueList[StartValID];
1424
1425 SmallDenseMap<unsigned, Value *> MaterializedValues;
1426 SmallVector<unsigned> Worklist;
1427 Worklist.push_back(StartValID);
1428 while (!Worklist.empty()) {
1429 unsigned ValID = Worklist.back();
1430 if (MaterializedValues.count(ValID)) {
1431 // Duplicate expression that was already handled.
1432 Worklist.pop_back();
1433 continue;
1434 }
1435
1436 if (ValID >= ValueList.size() || !ValueList[ValID])
1437 return error("Invalid value ID");
1438
1439 Value *V = ValueList[ValID];
1440 auto *BC = dyn_cast<BitcodeConstant>(V);
1441 if (!BC) {
1442 MaterializedValues.insert({ValID, V});
1443 Worklist.pop_back();
1444 continue;
1445 }
1446
1447 // Iterate in reverse, so values will get popped from the worklist in
1448 // expected order.
1449 SmallVector<Value *> Ops;
1450 for (unsigned OpID : reverse(BC->getOperandIDs())) {
1451 auto It = MaterializedValues.find(OpID);
1452 if (It != MaterializedValues.end())
1453 Ops.push_back(It->second);
1454 else
1455 Worklist.push_back(OpID);
1456 }
1457
1458 // Some expressions have not been resolved yet, handle them first and then
1459 // revisit this one.
1460 if (Ops.size() != BC->getOperandIDs().size())
1461 continue;
1462 std::reverse(Ops.begin(), Ops.end());
1463
1464 SmallVector<Constant *> ConstOps;
1465 for (Value *Op : Ops)
1466 if (auto *C = dyn_cast<Constant>(Op))
1467 ConstOps.push_back(C);
1468
1469 // Materialize as constant expression if possible.
1470 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
1471 Constant *C;
1472 if (Instruction::isCast(BC->Opcode)) {
1473 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1474 if (!C)
1475 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1476 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1477 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1478 } else {
1479 switch (BC->Opcode) {
1480 case BitcodeConstant::NoCFIOpcode: {
1481 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1482 if (!GV)
1483 return error("no_cfi operand must be GlobalValue");
1484 C = NoCFIValue::get(GV);
1485 break;
1486 }
1487 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1488 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1489 if (!GV)
1490 return error("dso_local operand must be GlobalValue");
1491 C = DSOLocalEquivalent::get(GV);
1492 break;
1493 }
1494 case BitcodeConstant::BlockAddressOpcode: {
1495 Function *Fn = dyn_cast<Function>(ConstOps[0]);
1496 if (!Fn)
1497 return error("blockaddress operand must be a function");
1498
1499 // If the function is already parsed we can insert the block address
1500 // right away.
1501 BasicBlock *BB;
1502 unsigned BBID = BC->Extra;
1503 if (!BBID)
1504 // Invalid reference to entry block.
1505 return error("Invalid ID");
1506 if (!Fn->empty()) {
1507 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1508 for (size_t I = 0, E = BBID; I != E; ++I) {
1509 if (BBI == BBE)
1510 return error("Invalid ID");
1511 ++BBI;
1512 }
1513 BB = &*BBI;
1514 } else {
1515 // Otherwise insert a placeholder and remember it so it can be
1516 // inserted when the function is parsed.
1517 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1518 if (FwdBBs.empty())
1519 BasicBlockFwdRefQueue.push_back(Fn);
1520 if (FwdBBs.size() < BBID + 1)
1521 FwdBBs.resize(BBID + 1);
1522 if (!FwdBBs[BBID])
1523 FwdBBs[BBID] = BasicBlock::Create(Context);
1524 BB = FwdBBs[BBID];
1525 }
1526 C = BlockAddress::get(Fn, BB);
1527 break;
1528 }
1529 case BitcodeConstant::ConstantStructOpcode:
1530 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1531 break;
1532 case BitcodeConstant::ConstantArrayOpcode:
1533 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1534 break;
1535 case BitcodeConstant::ConstantVectorOpcode:
1536 C = ConstantVector::get(ConstOps);
1537 break;
1538 case Instruction::ICmp:
1539 case Instruction::FCmp:
1540 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1541 break;
1542 case Instruction::GetElementPtr:
1543 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1544 ArrayRef(ConstOps).drop_front(),
1545 BC->Flags, BC->getInRangeIndex());
1546 break;
1547 case Instruction::Select:
1548 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1549 break;
1550 case Instruction::ExtractElement:
1551 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1552 break;
1553 case Instruction::InsertElement:
1554 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1555 ConstOps[2]);
1556 break;
1557 case Instruction::ShuffleVector: {
1558 SmallVector<int, 16> Mask;
1559 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1560 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1561 break;
1562 }
1563 default:
1564 llvm_unreachable("Unhandled bitcode constant");
1565 }
1566 }
1567
1568 // Cache resolved constant.
1569 ValueList.replaceValueWithoutRAUW(ValID, C);
1570 MaterializedValues.insert({ValID, C});
1571 Worklist.pop_back();
1572 continue;
1573 }
1574
1575 if (!InsertBB)
1576 return error(Twine("Value referenced by initializer is an unsupported "
1577 "constant expression of type ") +
1578 BC->getOpcodeName());
1579
1580 // Materialize as instructions if necessary.
1581 Instruction *I;
1582 if (Instruction::isCast(BC->Opcode)) {
1583 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1584 BC->getType(), "constexpr", InsertBB);
1585 } else if (Instruction::isUnaryOp(BC->Opcode)) {
1586 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1587 "constexpr", InsertBB);
1588 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1589 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1590 Ops[1], "constexpr", InsertBB);
1591 if (isa<OverflowingBinaryOperator>(I)) {
1592 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1593 I->setHasNoSignedWrap();
1594 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1595 I->setHasNoUnsignedWrap();
1596 }
1597 if (isa<PossiblyExactOperator>(I) &&
1598 (BC->Flags & PossiblyExactOperator::IsExact))
1599 I->setIsExact();
1600 } else {
1601 switch (BC->Opcode) {
1602 case BitcodeConstant::ConstantVectorOpcode: {
1603 Type *IdxTy = Type::getInt32Ty(BC->getContext());
1604 Value *V = PoisonValue::get(BC->getType());
1605 for (auto Pair : enumerate(Ops)) {
1606 Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1607 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1608 InsertBB);
1609 }
1610 I = cast<Instruction>(V);
1611 break;
1612 }
1613 case BitcodeConstant::ConstantStructOpcode:
1614 case BitcodeConstant::ConstantArrayOpcode: {
1615 Value *V = PoisonValue::get(BC->getType());
1616 for (auto Pair : enumerate(Ops))
1617 V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1618 "constexpr.ins", InsertBB);
1619 I = cast<Instruction>(V);
1620 break;
1621 }
1622 case Instruction::ICmp:
1623 case Instruction::FCmp:
1624 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1625 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1626 "constexpr", InsertBB);
1627 break;
1628 case Instruction::GetElementPtr:
1629 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1630 ArrayRef(Ops).drop_front(), "constexpr",
1631 InsertBB);
1632 if (BC->Flags)
1633 cast<GetElementPtrInst>(I)->setIsInBounds();
1634 break;
1635 case Instruction::Select:
1636 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1637 break;
1638 case Instruction::ExtractElement:
1639 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1640 break;
1641 case Instruction::InsertElement:
1642 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1643 InsertBB);
1644 break;
1645 case Instruction::ShuffleVector:
1646 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1647 InsertBB);
1648 break;
1649 default:
1650 llvm_unreachable("Unhandled bitcode constant");
1651 }
1652 }
1653
1654 MaterializedValues.insert({ValID, I});
1655 Worklist.pop_back();
1656 }
1657
1658 return MaterializedValues[StartValID];
1659 }
1660
getValueForInitializer(unsigned ID)1661 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1662 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1663 if (!MaybeV)
1664 return MaybeV.takeError();
1665
1666 // Result must be Constant if InsertBB is nullptr.
1667 return cast<Constant>(MaybeV.get());
1668 }
1669
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1670 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1671 StringRef Name) {
1672 auto *Ret = StructType::create(Context, Name);
1673 IdentifiedStructTypes.push_back(Ret);
1674 return Ret;
1675 }
1676
createIdentifiedStructType(LLVMContext & Context)1677 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1678 auto *Ret = StructType::create(Context);
1679 IdentifiedStructTypes.push_back(Ret);
1680 return Ret;
1681 }
1682
1683 //===----------------------------------------------------------------------===//
1684 // Functions for parsing blocks from the bitcode file
1685 //===----------------------------------------------------------------------===//
1686
getRawAttributeMask(Attribute::AttrKind Val)1687 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1688 switch (Val) {
1689 case Attribute::EndAttrKinds:
1690 case Attribute::EmptyKey:
1691 case Attribute::TombstoneKey:
1692 llvm_unreachable("Synthetic enumerators which should never get here");
1693
1694 case Attribute::None: return 0;
1695 case Attribute::ZExt: return 1 << 0;
1696 case Attribute::SExt: return 1 << 1;
1697 case Attribute::NoReturn: return 1 << 2;
1698 case Attribute::InReg: return 1 << 3;
1699 case Attribute::StructRet: return 1 << 4;
1700 case Attribute::NoUnwind: return 1 << 5;
1701 case Attribute::NoAlias: return 1 << 6;
1702 case Attribute::ByVal: return 1 << 7;
1703 case Attribute::Nest: return 1 << 8;
1704 case Attribute::ReadNone: return 1 << 9;
1705 case Attribute::ReadOnly: return 1 << 10;
1706 case Attribute::NoInline: return 1 << 11;
1707 case Attribute::AlwaysInline: return 1 << 12;
1708 case Attribute::OptimizeForSize: return 1 << 13;
1709 case Attribute::StackProtect: return 1 << 14;
1710 case Attribute::StackProtectReq: return 1 << 15;
1711 case Attribute::Alignment: return 31 << 16;
1712 case Attribute::NoCapture: return 1 << 21;
1713 case Attribute::NoRedZone: return 1 << 22;
1714 case Attribute::NoImplicitFloat: return 1 << 23;
1715 case Attribute::Naked: return 1 << 24;
1716 case Attribute::InlineHint: return 1 << 25;
1717 case Attribute::StackAlignment: return 7 << 26;
1718 case Attribute::ReturnsTwice: return 1 << 29;
1719 case Attribute::UWTable: return 1 << 30;
1720 case Attribute::NonLazyBind: return 1U << 31;
1721 case Attribute::SanitizeAddress: return 1ULL << 32;
1722 case Attribute::MinSize: return 1ULL << 33;
1723 case Attribute::NoDuplicate: return 1ULL << 34;
1724 case Attribute::StackProtectStrong: return 1ULL << 35;
1725 case Attribute::SanitizeThread: return 1ULL << 36;
1726 case Attribute::SanitizeMemory: return 1ULL << 37;
1727 case Attribute::NoBuiltin: return 1ULL << 38;
1728 case Attribute::Returned: return 1ULL << 39;
1729 case Attribute::Cold: return 1ULL << 40;
1730 case Attribute::Builtin: return 1ULL << 41;
1731 case Attribute::OptimizeNone: return 1ULL << 42;
1732 case Attribute::InAlloca: return 1ULL << 43;
1733 case Attribute::NonNull: return 1ULL << 44;
1734 case Attribute::JumpTable: return 1ULL << 45;
1735 case Attribute::Convergent: return 1ULL << 46;
1736 case Attribute::SafeStack: return 1ULL << 47;
1737 case Attribute::NoRecurse: return 1ULL << 48;
1738 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1739 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1740 case Attribute::SwiftSelf: return 1ULL << 51;
1741 case Attribute::SwiftError: return 1ULL << 52;
1742 case Attribute::WriteOnly: return 1ULL << 53;
1743 case Attribute::Speculatable: return 1ULL << 54;
1744 case Attribute::StrictFP: return 1ULL << 55;
1745 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1746 case Attribute::NoCfCheck: return 1ULL << 57;
1747 case Attribute::OptForFuzzing: return 1ULL << 58;
1748 case Attribute::ShadowCallStack: return 1ULL << 59;
1749 case Attribute::SpeculativeLoadHardening:
1750 return 1ULL << 60;
1751 case Attribute::ImmArg:
1752 return 1ULL << 61;
1753 case Attribute::WillReturn:
1754 return 1ULL << 62;
1755 case Attribute::NoFree:
1756 return 1ULL << 63;
1757 default:
1758 // Other attributes are not supported in the raw format,
1759 // as we ran out of space.
1760 return 0;
1761 }
1762 llvm_unreachable("Unsupported attribute type");
1763 }
1764
addRawAttributeValue(AttrBuilder & B,uint64_t Val)1765 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1766 if (!Val) return;
1767
1768 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1769 I = Attribute::AttrKind(I + 1)) {
1770 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1771 if (I == Attribute::Alignment)
1772 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1773 else if (I == Attribute::StackAlignment)
1774 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1775 else if (Attribute::isTypeAttrKind(I))
1776 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1777 else
1778 B.addAttribute(I);
1779 }
1780 }
1781 }
1782
1783 /// This fills an AttrBuilder object with the LLVM attributes that have
1784 /// been decoded from the given integer. This function must stay in sync with
1785 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs,uint64_t AttrIdx)1786 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1787 uint64_t EncodedAttrs,
1788 uint64_t AttrIdx) {
1789 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1790 // the bits above 31 down by 11 bits.
1791 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1792 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1793 "Alignment must be a power of two.");
1794
1795 if (Alignment)
1796 B.addAlignmentAttr(Alignment);
1797
1798 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1799 (EncodedAttrs & 0xffff);
1800
1801 if (AttrIdx == AttributeList::FunctionIndex) {
1802 // Upgrade old memory attributes.
1803 MemoryEffects ME = MemoryEffects::unknown();
1804 if (Attrs & (1ULL << 9)) {
1805 // ReadNone
1806 Attrs &= ~(1ULL << 9);
1807 ME &= MemoryEffects::none();
1808 }
1809 if (Attrs & (1ULL << 10)) {
1810 // ReadOnly
1811 Attrs &= ~(1ULL << 10);
1812 ME &= MemoryEffects::readOnly();
1813 }
1814 if (Attrs & (1ULL << 49)) {
1815 // InaccessibleMemOnly
1816 Attrs &= ~(1ULL << 49);
1817 ME &= MemoryEffects::inaccessibleMemOnly();
1818 }
1819 if (Attrs & (1ULL << 50)) {
1820 // InaccessibleMemOrArgMemOnly
1821 Attrs &= ~(1ULL << 50);
1822 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1823 }
1824 if (Attrs & (1ULL << 53)) {
1825 // WriteOnly
1826 Attrs &= ~(1ULL << 53);
1827 ME &= MemoryEffects::writeOnly();
1828 }
1829 if (ME != MemoryEffects::unknown())
1830 B.addMemoryAttr(ME);
1831 }
1832
1833 addRawAttributeValue(B, Attrs);
1834 }
1835
parseAttributeBlock()1836 Error BitcodeReader::parseAttributeBlock() {
1837 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1838 return Err;
1839
1840 if (!MAttributes.empty())
1841 return error("Invalid multiple blocks");
1842
1843 SmallVector<uint64_t, 64> Record;
1844
1845 SmallVector<AttributeList, 8> Attrs;
1846
1847 // Read all the records.
1848 while (true) {
1849 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1850 if (!MaybeEntry)
1851 return MaybeEntry.takeError();
1852 BitstreamEntry Entry = MaybeEntry.get();
1853
1854 switch (Entry.Kind) {
1855 case BitstreamEntry::SubBlock: // Handled for us already.
1856 case BitstreamEntry::Error:
1857 return error("Malformed block");
1858 case BitstreamEntry::EndBlock:
1859 return Error::success();
1860 case BitstreamEntry::Record:
1861 // The interesting case.
1862 break;
1863 }
1864
1865 // Read a record.
1866 Record.clear();
1867 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1868 if (!MaybeRecord)
1869 return MaybeRecord.takeError();
1870 switch (MaybeRecord.get()) {
1871 default: // Default behavior: ignore.
1872 break;
1873 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1874 // Deprecated, but still needed to read old bitcode files.
1875 if (Record.size() & 1)
1876 return error("Invalid parameter attribute record");
1877
1878 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1879 AttrBuilder B(Context);
1880 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1881 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1882 }
1883
1884 MAttributes.push_back(AttributeList::get(Context, Attrs));
1885 Attrs.clear();
1886 break;
1887 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1888 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1889 Attrs.push_back(MAttributeGroups[Record[i]]);
1890
1891 MAttributes.push_back(AttributeList::get(Context, Attrs));
1892 Attrs.clear();
1893 break;
1894 }
1895 }
1896 }
1897
1898 // Returns Attribute::None on unrecognized codes.
getAttrFromCode(uint64_t Code)1899 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1900 switch (Code) {
1901 default:
1902 return Attribute::None;
1903 case bitc::ATTR_KIND_ALIGNMENT:
1904 return Attribute::Alignment;
1905 case bitc::ATTR_KIND_ALWAYS_INLINE:
1906 return Attribute::AlwaysInline;
1907 case bitc::ATTR_KIND_BUILTIN:
1908 return Attribute::Builtin;
1909 case bitc::ATTR_KIND_BY_VAL:
1910 return Attribute::ByVal;
1911 case bitc::ATTR_KIND_IN_ALLOCA:
1912 return Attribute::InAlloca;
1913 case bitc::ATTR_KIND_COLD:
1914 return Attribute::Cold;
1915 case bitc::ATTR_KIND_CONVERGENT:
1916 return Attribute::Convergent;
1917 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1918 return Attribute::DisableSanitizerInstrumentation;
1919 case bitc::ATTR_KIND_ELEMENTTYPE:
1920 return Attribute::ElementType;
1921 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1922 return Attribute::FnRetThunkExtern;
1923 case bitc::ATTR_KIND_INLINE_HINT:
1924 return Attribute::InlineHint;
1925 case bitc::ATTR_KIND_IN_REG:
1926 return Attribute::InReg;
1927 case bitc::ATTR_KIND_JUMP_TABLE:
1928 return Attribute::JumpTable;
1929 case bitc::ATTR_KIND_MEMORY:
1930 return Attribute::Memory;
1931 case bitc::ATTR_KIND_MIN_SIZE:
1932 return Attribute::MinSize;
1933 case bitc::ATTR_KIND_NAKED:
1934 return Attribute::Naked;
1935 case bitc::ATTR_KIND_NEST:
1936 return Attribute::Nest;
1937 case bitc::ATTR_KIND_NO_ALIAS:
1938 return Attribute::NoAlias;
1939 case bitc::ATTR_KIND_NO_BUILTIN:
1940 return Attribute::NoBuiltin;
1941 case bitc::ATTR_KIND_NO_CALLBACK:
1942 return Attribute::NoCallback;
1943 case bitc::ATTR_KIND_NO_CAPTURE:
1944 return Attribute::NoCapture;
1945 case bitc::ATTR_KIND_NO_DUPLICATE:
1946 return Attribute::NoDuplicate;
1947 case bitc::ATTR_KIND_NOFREE:
1948 return Attribute::NoFree;
1949 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1950 return Attribute::NoImplicitFloat;
1951 case bitc::ATTR_KIND_NO_INLINE:
1952 return Attribute::NoInline;
1953 case bitc::ATTR_KIND_NO_RECURSE:
1954 return Attribute::NoRecurse;
1955 case bitc::ATTR_KIND_NO_MERGE:
1956 return Attribute::NoMerge;
1957 case bitc::ATTR_KIND_NON_LAZY_BIND:
1958 return Attribute::NonLazyBind;
1959 case bitc::ATTR_KIND_NON_NULL:
1960 return Attribute::NonNull;
1961 case bitc::ATTR_KIND_DEREFERENCEABLE:
1962 return Attribute::Dereferenceable;
1963 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1964 return Attribute::DereferenceableOrNull;
1965 case bitc::ATTR_KIND_ALLOC_ALIGN:
1966 return Attribute::AllocAlign;
1967 case bitc::ATTR_KIND_ALLOC_KIND:
1968 return Attribute::AllocKind;
1969 case bitc::ATTR_KIND_ALLOC_SIZE:
1970 return Attribute::AllocSize;
1971 case bitc::ATTR_KIND_ALLOCATED_POINTER:
1972 return Attribute::AllocatedPointer;
1973 case bitc::ATTR_KIND_NO_RED_ZONE:
1974 return Attribute::NoRedZone;
1975 case bitc::ATTR_KIND_NO_RETURN:
1976 return Attribute::NoReturn;
1977 case bitc::ATTR_KIND_NOSYNC:
1978 return Attribute::NoSync;
1979 case bitc::ATTR_KIND_NOCF_CHECK:
1980 return Attribute::NoCfCheck;
1981 case bitc::ATTR_KIND_NO_PROFILE:
1982 return Attribute::NoProfile;
1983 case bitc::ATTR_KIND_SKIP_PROFILE:
1984 return Attribute::SkipProfile;
1985 case bitc::ATTR_KIND_NO_UNWIND:
1986 return Attribute::NoUnwind;
1987 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1988 return Attribute::NoSanitizeBounds;
1989 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1990 return Attribute::NoSanitizeCoverage;
1991 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1992 return Attribute::NullPointerIsValid;
1993 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1994 return Attribute::OptForFuzzing;
1995 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1996 return Attribute::OptimizeForSize;
1997 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1998 return Attribute::OptimizeNone;
1999 case bitc::ATTR_KIND_READ_NONE:
2000 return Attribute::ReadNone;
2001 case bitc::ATTR_KIND_READ_ONLY:
2002 return Attribute::ReadOnly;
2003 case bitc::ATTR_KIND_RETURNED:
2004 return Attribute::Returned;
2005 case bitc::ATTR_KIND_RETURNS_TWICE:
2006 return Attribute::ReturnsTwice;
2007 case bitc::ATTR_KIND_S_EXT:
2008 return Attribute::SExt;
2009 case bitc::ATTR_KIND_SPECULATABLE:
2010 return Attribute::Speculatable;
2011 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2012 return Attribute::StackAlignment;
2013 case bitc::ATTR_KIND_STACK_PROTECT:
2014 return Attribute::StackProtect;
2015 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2016 return Attribute::StackProtectReq;
2017 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2018 return Attribute::StackProtectStrong;
2019 case bitc::ATTR_KIND_SAFESTACK:
2020 return Attribute::SafeStack;
2021 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2022 return Attribute::ShadowCallStack;
2023 case bitc::ATTR_KIND_STRICT_FP:
2024 return Attribute::StrictFP;
2025 case bitc::ATTR_KIND_STRUCT_RET:
2026 return Attribute::StructRet;
2027 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2028 return Attribute::SanitizeAddress;
2029 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2030 return Attribute::SanitizeHWAddress;
2031 case bitc::ATTR_KIND_SANITIZE_THREAD:
2032 return Attribute::SanitizeThread;
2033 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2034 return Attribute::SanitizeMemory;
2035 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2036 return Attribute::SpeculativeLoadHardening;
2037 case bitc::ATTR_KIND_SWIFT_ERROR:
2038 return Attribute::SwiftError;
2039 case bitc::ATTR_KIND_SWIFT_SELF:
2040 return Attribute::SwiftSelf;
2041 case bitc::ATTR_KIND_SWIFT_ASYNC:
2042 return Attribute::SwiftAsync;
2043 case bitc::ATTR_KIND_UW_TABLE:
2044 return Attribute::UWTable;
2045 case bitc::ATTR_KIND_VSCALE_RANGE:
2046 return Attribute::VScaleRange;
2047 case bitc::ATTR_KIND_WILLRETURN:
2048 return Attribute::WillReturn;
2049 case bitc::ATTR_KIND_WRITEONLY:
2050 return Attribute::WriteOnly;
2051 case bitc::ATTR_KIND_Z_EXT:
2052 return Attribute::ZExt;
2053 case bitc::ATTR_KIND_IMMARG:
2054 return Attribute::ImmArg;
2055 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2056 return Attribute::SanitizeMemTag;
2057 case bitc::ATTR_KIND_PREALLOCATED:
2058 return Attribute::Preallocated;
2059 case bitc::ATTR_KIND_NOUNDEF:
2060 return Attribute::NoUndef;
2061 case bitc::ATTR_KIND_BYREF:
2062 return Attribute::ByRef;
2063 case bitc::ATTR_KIND_MUSTPROGRESS:
2064 return Attribute::MustProgress;
2065 case bitc::ATTR_KIND_HOT:
2066 return Attribute::Hot;
2067 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2068 return Attribute::PresplitCoroutine;
2069 }
2070 }
2071
parseAlignmentValue(uint64_t Exponent,MaybeAlign & Alignment)2072 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2073 MaybeAlign &Alignment) {
2074 // Note: Alignment in bitcode files is incremented by 1, so that zero
2075 // can be used for default alignment.
2076 if (Exponent > Value::MaxAlignmentExponent + 1)
2077 return error("Invalid alignment value");
2078 Alignment = decodeMaybeAlign(Exponent);
2079 return Error::success();
2080 }
2081
parseAttrKind(uint64_t Code,Attribute::AttrKind * Kind)2082 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2083 *Kind = getAttrFromCode(Code);
2084 if (*Kind == Attribute::None)
2085 return error("Unknown attribute kind (" + Twine(Code) + ")");
2086 return Error::success();
2087 }
2088
upgradeOldMemoryAttribute(MemoryEffects & ME,uint64_t EncodedKind)2089 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2090 switch (EncodedKind) {
2091 case bitc::ATTR_KIND_READ_NONE:
2092 ME &= MemoryEffects::none();
2093 return true;
2094 case bitc::ATTR_KIND_READ_ONLY:
2095 ME &= MemoryEffects::readOnly();
2096 return true;
2097 case bitc::ATTR_KIND_WRITEONLY:
2098 ME &= MemoryEffects::writeOnly();
2099 return true;
2100 case bitc::ATTR_KIND_ARGMEMONLY:
2101 ME &= MemoryEffects::argMemOnly();
2102 return true;
2103 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2104 ME &= MemoryEffects::inaccessibleMemOnly();
2105 return true;
2106 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2107 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2108 return true;
2109 default:
2110 return false;
2111 }
2112 }
2113
parseAttributeGroupBlock()2114 Error BitcodeReader::parseAttributeGroupBlock() {
2115 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2116 return Err;
2117
2118 if (!MAttributeGroups.empty())
2119 return error("Invalid multiple blocks");
2120
2121 SmallVector<uint64_t, 64> Record;
2122
2123 // Read all the records.
2124 while (true) {
2125 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2126 if (!MaybeEntry)
2127 return MaybeEntry.takeError();
2128 BitstreamEntry Entry = MaybeEntry.get();
2129
2130 switch (Entry.Kind) {
2131 case BitstreamEntry::SubBlock: // Handled for us already.
2132 case BitstreamEntry::Error:
2133 return error("Malformed block");
2134 case BitstreamEntry::EndBlock:
2135 return Error::success();
2136 case BitstreamEntry::Record:
2137 // The interesting case.
2138 break;
2139 }
2140
2141 // Read a record.
2142 Record.clear();
2143 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2144 if (!MaybeRecord)
2145 return MaybeRecord.takeError();
2146 switch (MaybeRecord.get()) {
2147 default: // Default behavior: ignore.
2148 break;
2149 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2150 if (Record.size() < 3)
2151 return error("Invalid grp record");
2152
2153 uint64_t GrpID = Record[0];
2154 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2155
2156 AttrBuilder B(Context);
2157 MemoryEffects ME = MemoryEffects::unknown();
2158 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2159 if (Record[i] == 0) { // Enum attribute
2160 Attribute::AttrKind Kind;
2161 uint64_t EncodedKind = Record[++i];
2162 if (Idx == AttributeList::FunctionIndex &&
2163 upgradeOldMemoryAttribute(ME, EncodedKind))
2164 continue;
2165
2166 if (Error Err = parseAttrKind(EncodedKind, &Kind))
2167 return Err;
2168
2169 // Upgrade old-style byval attribute to one with a type, even if it's
2170 // nullptr. We will have to insert the real type when we associate
2171 // this AttributeList with a function.
2172 if (Kind == Attribute::ByVal)
2173 B.addByValAttr(nullptr);
2174 else if (Kind == Attribute::StructRet)
2175 B.addStructRetAttr(nullptr);
2176 else if (Kind == Attribute::InAlloca)
2177 B.addInAllocaAttr(nullptr);
2178 else if (Kind == Attribute::UWTable)
2179 B.addUWTableAttr(UWTableKind::Default);
2180 else if (Attribute::isEnumAttrKind(Kind))
2181 B.addAttribute(Kind);
2182 else
2183 return error("Not an enum attribute");
2184 } else if (Record[i] == 1) { // Integer attribute
2185 Attribute::AttrKind Kind;
2186 if (Error Err = parseAttrKind(Record[++i], &Kind))
2187 return Err;
2188 if (!Attribute::isIntAttrKind(Kind))
2189 return error("Not an int attribute");
2190 if (Kind == Attribute::Alignment)
2191 B.addAlignmentAttr(Record[++i]);
2192 else if (Kind == Attribute::StackAlignment)
2193 B.addStackAlignmentAttr(Record[++i]);
2194 else if (Kind == Attribute::Dereferenceable)
2195 B.addDereferenceableAttr(Record[++i]);
2196 else if (Kind == Attribute::DereferenceableOrNull)
2197 B.addDereferenceableOrNullAttr(Record[++i]);
2198 else if (Kind == Attribute::AllocSize)
2199 B.addAllocSizeAttrFromRawRepr(Record[++i]);
2200 else if (Kind == Attribute::VScaleRange)
2201 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2202 else if (Kind == Attribute::UWTable)
2203 B.addUWTableAttr(UWTableKind(Record[++i]));
2204 else if (Kind == Attribute::AllocKind)
2205 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2206 else if (Kind == Attribute::Memory)
2207 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2208 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2209 bool HasValue = (Record[i++] == 4);
2210 SmallString<64> KindStr;
2211 SmallString<64> ValStr;
2212
2213 while (Record[i] != 0 && i != e)
2214 KindStr += Record[i++];
2215 assert(Record[i] == 0 && "Kind string not null terminated");
2216
2217 if (HasValue) {
2218 // Has a value associated with it.
2219 ++i; // Skip the '0' that terminates the "kind" string.
2220 while (Record[i] != 0 && i != e)
2221 ValStr += Record[i++];
2222 assert(Record[i] == 0 && "Value string not null terminated");
2223 }
2224
2225 B.addAttribute(KindStr.str(), ValStr.str());
2226 } else if (Record[i] == 5 || Record[i] == 6) {
2227 bool HasType = Record[i] == 6;
2228 Attribute::AttrKind Kind;
2229 if (Error Err = parseAttrKind(Record[++i], &Kind))
2230 return Err;
2231 if (!Attribute::isTypeAttrKind(Kind))
2232 return error("Not a type attribute");
2233
2234 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2235 } else {
2236 return error("Invalid attribute group entry");
2237 }
2238 }
2239
2240 if (ME != MemoryEffects::unknown())
2241 B.addMemoryAttr(ME);
2242
2243 UpgradeAttributes(B);
2244 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2245 break;
2246 }
2247 }
2248 }
2249 }
2250
parseTypeTable()2251 Error BitcodeReader::parseTypeTable() {
2252 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2253 return Err;
2254
2255 return parseTypeTableBody();
2256 }
2257
parseTypeTableBody()2258 Error BitcodeReader::parseTypeTableBody() {
2259 if (!TypeList.empty())
2260 return error("Invalid multiple blocks");
2261
2262 SmallVector<uint64_t, 64> Record;
2263 unsigned NumRecords = 0;
2264
2265 SmallString<64> TypeName;
2266
2267 // Read all the records for this type table.
2268 while (true) {
2269 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2270 if (!MaybeEntry)
2271 return MaybeEntry.takeError();
2272 BitstreamEntry Entry = MaybeEntry.get();
2273
2274 switch (Entry.Kind) {
2275 case BitstreamEntry::SubBlock: // Handled for us already.
2276 case BitstreamEntry::Error:
2277 return error("Malformed block");
2278 case BitstreamEntry::EndBlock:
2279 if (NumRecords != TypeList.size())
2280 return error("Malformed block");
2281 return Error::success();
2282 case BitstreamEntry::Record:
2283 // The interesting case.
2284 break;
2285 }
2286
2287 // Read a record.
2288 Record.clear();
2289 Type *ResultTy = nullptr;
2290 SmallVector<unsigned> ContainedIDs;
2291 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2292 if (!MaybeRecord)
2293 return MaybeRecord.takeError();
2294 switch (MaybeRecord.get()) {
2295 default:
2296 return error("Invalid value");
2297 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2298 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2299 // type list. This allows us to reserve space.
2300 if (Record.empty())
2301 return error("Invalid numentry record");
2302 TypeList.resize(Record[0]);
2303 continue;
2304 case bitc::TYPE_CODE_VOID: // VOID
2305 ResultTy = Type::getVoidTy(Context);
2306 break;
2307 case bitc::TYPE_CODE_HALF: // HALF
2308 ResultTy = Type::getHalfTy(Context);
2309 break;
2310 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2311 ResultTy = Type::getBFloatTy(Context);
2312 break;
2313 case bitc::TYPE_CODE_FLOAT: // FLOAT
2314 ResultTy = Type::getFloatTy(Context);
2315 break;
2316 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2317 ResultTy = Type::getDoubleTy(Context);
2318 break;
2319 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2320 ResultTy = Type::getX86_FP80Ty(Context);
2321 break;
2322 case bitc::TYPE_CODE_FP128: // FP128
2323 ResultTy = Type::getFP128Ty(Context);
2324 break;
2325 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2326 ResultTy = Type::getPPC_FP128Ty(Context);
2327 break;
2328 case bitc::TYPE_CODE_LABEL: // LABEL
2329 ResultTy = Type::getLabelTy(Context);
2330 break;
2331 case bitc::TYPE_CODE_METADATA: // METADATA
2332 ResultTy = Type::getMetadataTy(Context);
2333 break;
2334 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2335 ResultTy = Type::getX86_MMXTy(Context);
2336 break;
2337 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2338 ResultTy = Type::getX86_AMXTy(Context);
2339 break;
2340 case bitc::TYPE_CODE_TOKEN: // TOKEN
2341 ResultTy = Type::getTokenTy(Context);
2342 break;
2343 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2344 if (Record.empty())
2345 return error("Invalid integer record");
2346
2347 uint64_t NumBits = Record[0];
2348 if (NumBits < IntegerType::MIN_INT_BITS ||
2349 NumBits > IntegerType::MAX_INT_BITS)
2350 return error("Bitwidth for integer type out of range");
2351 ResultTy = IntegerType::get(Context, NumBits);
2352 break;
2353 }
2354 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2355 // [pointee type, address space]
2356 if (Record.empty())
2357 return error("Invalid pointer record");
2358 unsigned AddressSpace = 0;
2359 if (Record.size() == 2)
2360 AddressSpace = Record[1];
2361 ResultTy = getTypeByID(Record[0]);
2362 if (!ResultTy ||
2363 !PointerType::isValidElementType(ResultTy))
2364 return error("Invalid type");
2365 ContainedIDs.push_back(Record[0]);
2366 ResultTy = PointerType::get(ResultTy, AddressSpace);
2367 break;
2368 }
2369 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2370 if (Record.size() != 1)
2371 return error("Invalid opaque pointer record");
2372 if (Context.supportsTypedPointers())
2373 return error(
2374 "Opaque pointers are only supported in -opaque-pointers mode");
2375 unsigned AddressSpace = Record[0];
2376 ResultTy = PointerType::get(Context, AddressSpace);
2377 break;
2378 }
2379 case bitc::TYPE_CODE_FUNCTION_OLD: {
2380 // Deprecated, but still needed to read old bitcode files.
2381 // FUNCTION: [vararg, attrid, retty, paramty x N]
2382 if (Record.size() < 3)
2383 return error("Invalid function record");
2384 SmallVector<Type*, 8> ArgTys;
2385 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2386 if (Type *T = getTypeByID(Record[i]))
2387 ArgTys.push_back(T);
2388 else
2389 break;
2390 }
2391
2392 ResultTy = getTypeByID(Record[2]);
2393 if (!ResultTy || ArgTys.size() < Record.size()-3)
2394 return error("Invalid type");
2395
2396 ContainedIDs.append(Record.begin() + 2, Record.end());
2397 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2398 break;
2399 }
2400 case bitc::TYPE_CODE_FUNCTION: {
2401 // FUNCTION: [vararg, retty, paramty x N]
2402 if (Record.size() < 2)
2403 return error("Invalid function record");
2404 SmallVector<Type*, 8> ArgTys;
2405 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2406 if (Type *T = getTypeByID(Record[i])) {
2407 if (!FunctionType::isValidArgumentType(T))
2408 return error("Invalid function argument type");
2409 ArgTys.push_back(T);
2410 }
2411 else
2412 break;
2413 }
2414
2415 ResultTy = getTypeByID(Record[1]);
2416 if (!ResultTy || ArgTys.size() < Record.size()-2)
2417 return error("Invalid type");
2418
2419 ContainedIDs.append(Record.begin() + 1, Record.end());
2420 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2421 break;
2422 }
2423 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2424 if (Record.empty())
2425 return error("Invalid anon struct record");
2426 SmallVector<Type*, 8> EltTys;
2427 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2428 if (Type *T = getTypeByID(Record[i]))
2429 EltTys.push_back(T);
2430 else
2431 break;
2432 }
2433 if (EltTys.size() != Record.size()-1)
2434 return error("Invalid type");
2435 ContainedIDs.append(Record.begin() + 1, Record.end());
2436 ResultTy = StructType::get(Context, EltTys, Record[0]);
2437 break;
2438 }
2439 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2440 if (convertToString(Record, 0, TypeName))
2441 return error("Invalid struct name record");
2442 continue;
2443
2444 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2445 if (Record.empty())
2446 return error("Invalid named struct record");
2447
2448 if (NumRecords >= TypeList.size())
2449 return error("Invalid TYPE table");
2450
2451 // Check to see if this was forward referenced, if so fill in the temp.
2452 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2453 if (Res) {
2454 Res->setName(TypeName);
2455 TypeList[NumRecords] = nullptr;
2456 } else // Otherwise, create a new struct.
2457 Res = createIdentifiedStructType(Context, TypeName);
2458 TypeName.clear();
2459
2460 SmallVector<Type*, 8> EltTys;
2461 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2462 if (Type *T = getTypeByID(Record[i]))
2463 EltTys.push_back(T);
2464 else
2465 break;
2466 }
2467 if (EltTys.size() != Record.size()-1)
2468 return error("Invalid named struct record");
2469 Res->setBody(EltTys, Record[0]);
2470 ContainedIDs.append(Record.begin() + 1, Record.end());
2471 ResultTy = Res;
2472 break;
2473 }
2474 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2475 if (Record.size() != 1)
2476 return error("Invalid opaque type record");
2477
2478 if (NumRecords >= TypeList.size())
2479 return error("Invalid TYPE table");
2480
2481 // Check to see if this was forward referenced, if so fill in the temp.
2482 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2483 if (Res) {
2484 Res->setName(TypeName);
2485 TypeList[NumRecords] = nullptr;
2486 } else // Otherwise, create a new struct with no body.
2487 Res = createIdentifiedStructType(Context, TypeName);
2488 TypeName.clear();
2489 ResultTy = Res;
2490 break;
2491 }
2492 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2493 if (Record.size() < 1)
2494 return error("Invalid target extension type record");
2495
2496 if (NumRecords >= TypeList.size())
2497 return error("Invalid TYPE table");
2498
2499 if (Record[0] >= Record.size())
2500 return error("Too many type parameters");
2501
2502 unsigned NumTys = Record[0];
2503 SmallVector<Type *, 4> TypeParams;
2504 SmallVector<unsigned, 8> IntParams;
2505 for (unsigned i = 0; i < NumTys; i++) {
2506 if (Type *T = getTypeByID(Record[i + 1]))
2507 TypeParams.push_back(T);
2508 else
2509 return error("Invalid type");
2510 }
2511
2512 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2513 if (Record[i] > UINT_MAX)
2514 return error("Integer parameter too large");
2515 IntParams.push_back(Record[i]);
2516 }
2517 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2518 TypeName.clear();
2519 break;
2520 }
2521 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2522 if (Record.size() < 2)
2523 return error("Invalid array type record");
2524 ResultTy = getTypeByID(Record[1]);
2525 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2526 return error("Invalid type");
2527 ContainedIDs.push_back(Record[1]);
2528 ResultTy = ArrayType::get(ResultTy, Record[0]);
2529 break;
2530 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2531 // [numelts, eltty, scalable]
2532 if (Record.size() < 2)
2533 return error("Invalid vector type record");
2534 if (Record[0] == 0)
2535 return error("Invalid vector length");
2536 ResultTy = getTypeByID(Record[1]);
2537 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2538 return error("Invalid type");
2539 bool Scalable = Record.size() > 2 ? Record[2] : false;
2540 ContainedIDs.push_back(Record[1]);
2541 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2542 break;
2543 }
2544
2545 if (NumRecords >= TypeList.size())
2546 return error("Invalid TYPE table");
2547 if (TypeList[NumRecords])
2548 return error(
2549 "Invalid TYPE table: Only named structs can be forward referenced");
2550 assert(ResultTy && "Didn't read a type?");
2551 TypeList[NumRecords] = ResultTy;
2552 if (!ContainedIDs.empty())
2553 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2554 ++NumRecords;
2555 }
2556 }
2557
parseOperandBundleTags()2558 Error BitcodeReader::parseOperandBundleTags() {
2559 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2560 return Err;
2561
2562 if (!BundleTags.empty())
2563 return error("Invalid multiple blocks");
2564
2565 SmallVector<uint64_t, 64> Record;
2566
2567 while (true) {
2568 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2569 if (!MaybeEntry)
2570 return MaybeEntry.takeError();
2571 BitstreamEntry Entry = MaybeEntry.get();
2572
2573 switch (Entry.Kind) {
2574 case BitstreamEntry::SubBlock: // Handled for us already.
2575 case BitstreamEntry::Error:
2576 return error("Malformed block");
2577 case BitstreamEntry::EndBlock:
2578 return Error::success();
2579 case BitstreamEntry::Record:
2580 // The interesting case.
2581 break;
2582 }
2583
2584 // Tags are implicitly mapped to integers by their order.
2585
2586 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2587 if (!MaybeRecord)
2588 return MaybeRecord.takeError();
2589 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2590 return error("Invalid operand bundle record");
2591
2592 // OPERAND_BUNDLE_TAG: [strchr x N]
2593 BundleTags.emplace_back();
2594 if (convertToString(Record, 0, BundleTags.back()))
2595 return error("Invalid operand bundle record");
2596 Record.clear();
2597 }
2598 }
2599
parseSyncScopeNames()2600 Error BitcodeReader::parseSyncScopeNames() {
2601 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2602 return Err;
2603
2604 if (!SSIDs.empty())
2605 return error("Invalid multiple synchronization scope names blocks");
2606
2607 SmallVector<uint64_t, 64> Record;
2608 while (true) {
2609 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2610 if (!MaybeEntry)
2611 return MaybeEntry.takeError();
2612 BitstreamEntry Entry = MaybeEntry.get();
2613
2614 switch (Entry.Kind) {
2615 case BitstreamEntry::SubBlock: // Handled for us already.
2616 case BitstreamEntry::Error:
2617 return error("Malformed block");
2618 case BitstreamEntry::EndBlock:
2619 if (SSIDs.empty())
2620 return error("Invalid empty synchronization scope names block");
2621 return Error::success();
2622 case BitstreamEntry::Record:
2623 // The interesting case.
2624 break;
2625 }
2626
2627 // Synchronization scope names are implicitly mapped to synchronization
2628 // scope IDs by their order.
2629
2630 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2631 if (!MaybeRecord)
2632 return MaybeRecord.takeError();
2633 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2634 return error("Invalid sync scope record");
2635
2636 SmallString<16> SSN;
2637 if (convertToString(Record, 0, SSN))
2638 return error("Invalid sync scope record");
2639
2640 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2641 Record.clear();
2642 }
2643 }
2644
2645 /// Associate a value with its name from the given index in the provided record.
recordValue(SmallVectorImpl<uint64_t> & Record,unsigned NameIndex,Triple & TT)2646 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2647 unsigned NameIndex, Triple &TT) {
2648 SmallString<128> ValueName;
2649 if (convertToString(Record, NameIndex, ValueName))
2650 return error("Invalid record");
2651 unsigned ValueID = Record[0];
2652 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2653 return error("Invalid record");
2654 Value *V = ValueList[ValueID];
2655
2656 StringRef NameStr(ValueName.data(), ValueName.size());
2657 if (NameStr.find_first_of(0) != StringRef::npos)
2658 return error("Invalid value name");
2659 V->setName(NameStr);
2660 auto *GO = dyn_cast<GlobalObject>(V);
2661 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2662 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2663 return V;
2664 }
2665
2666 /// Helper to note and return the current location, and jump to the given
2667 /// offset.
jumpToValueSymbolTable(uint64_t Offset,BitstreamCursor & Stream)2668 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2669 BitstreamCursor &Stream) {
2670 // Save the current parsing location so we can jump back at the end
2671 // of the VST read.
2672 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2673 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2674 return std::move(JumpFailed);
2675 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2676 if (!MaybeEntry)
2677 return MaybeEntry.takeError();
2678 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2679 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2680 return error("Expected value symbol table subblock");
2681 return CurrentBit;
2682 }
2683
setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,Function * F,ArrayRef<uint64_t> Record)2684 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2685 Function *F,
2686 ArrayRef<uint64_t> Record) {
2687 // Note that we subtract 1 here because the offset is relative to one word
2688 // before the start of the identification or module block, which was
2689 // historically always the start of the regular bitcode header.
2690 uint64_t FuncWordOffset = Record[1] - 1;
2691 uint64_t FuncBitOffset = FuncWordOffset * 32;
2692 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2693 // Set the LastFunctionBlockBit to point to the last function block.
2694 // Later when parsing is resumed after function materialization,
2695 // we can simply skip that last function block.
2696 if (FuncBitOffset > LastFunctionBlockBit)
2697 LastFunctionBlockBit = FuncBitOffset;
2698 }
2699
2700 /// Read a new-style GlobalValue symbol table.
parseGlobalValueSymbolTable()2701 Error BitcodeReader::parseGlobalValueSymbolTable() {
2702 unsigned FuncBitcodeOffsetDelta =
2703 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2704
2705 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2706 return Err;
2707
2708 SmallVector<uint64_t, 64> Record;
2709 while (true) {
2710 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2711 if (!MaybeEntry)
2712 return MaybeEntry.takeError();
2713 BitstreamEntry Entry = MaybeEntry.get();
2714
2715 switch (Entry.Kind) {
2716 case BitstreamEntry::SubBlock:
2717 case BitstreamEntry::Error:
2718 return error("Malformed block");
2719 case BitstreamEntry::EndBlock:
2720 return Error::success();
2721 case BitstreamEntry::Record:
2722 break;
2723 }
2724
2725 Record.clear();
2726 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2727 if (!MaybeRecord)
2728 return MaybeRecord.takeError();
2729 switch (MaybeRecord.get()) {
2730 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2731 unsigned ValueID = Record[0];
2732 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2733 return error("Invalid value reference in symbol table");
2734 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2735 cast<Function>(ValueList[ValueID]), Record);
2736 break;
2737 }
2738 }
2739 }
2740 }
2741
2742 /// Parse the value symbol table at either the current parsing location or
2743 /// at the given bit offset if provided.
parseValueSymbolTable(uint64_t Offset)2744 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2745 uint64_t CurrentBit;
2746 // Pass in the Offset to distinguish between calling for the module-level
2747 // VST (where we want to jump to the VST offset) and the function-level
2748 // VST (where we don't).
2749 if (Offset > 0) {
2750 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2751 if (!MaybeCurrentBit)
2752 return MaybeCurrentBit.takeError();
2753 CurrentBit = MaybeCurrentBit.get();
2754 // If this module uses a string table, read this as a module-level VST.
2755 if (UseStrtab) {
2756 if (Error Err = parseGlobalValueSymbolTable())
2757 return Err;
2758 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2759 return JumpFailed;
2760 return Error::success();
2761 }
2762 // Otherwise, the VST will be in a similar format to a function-level VST,
2763 // and will contain symbol names.
2764 }
2765
2766 // Compute the delta between the bitcode indices in the VST (the word offset
2767 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2768 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2769 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2770 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2771 // just before entering the VST subblock because: 1) the EnterSubBlock
2772 // changes the AbbrevID width; 2) the VST block is nested within the same
2773 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2774 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2775 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2776 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2777 unsigned FuncBitcodeOffsetDelta =
2778 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2779
2780 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2781 return Err;
2782
2783 SmallVector<uint64_t, 64> Record;
2784
2785 Triple TT(TheModule->getTargetTriple());
2786
2787 // Read all the records for this value table.
2788 SmallString<128> ValueName;
2789
2790 while (true) {
2791 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2792 if (!MaybeEntry)
2793 return MaybeEntry.takeError();
2794 BitstreamEntry Entry = MaybeEntry.get();
2795
2796 switch (Entry.Kind) {
2797 case BitstreamEntry::SubBlock: // Handled for us already.
2798 case BitstreamEntry::Error:
2799 return error("Malformed block");
2800 case BitstreamEntry::EndBlock:
2801 if (Offset > 0)
2802 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2803 return JumpFailed;
2804 return Error::success();
2805 case BitstreamEntry::Record:
2806 // The interesting case.
2807 break;
2808 }
2809
2810 // Read a record.
2811 Record.clear();
2812 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2813 if (!MaybeRecord)
2814 return MaybeRecord.takeError();
2815 switch (MaybeRecord.get()) {
2816 default: // Default behavior: unknown type.
2817 break;
2818 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2819 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2820 if (Error Err = ValOrErr.takeError())
2821 return Err;
2822 ValOrErr.get();
2823 break;
2824 }
2825 case bitc::VST_CODE_FNENTRY: {
2826 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2827 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2828 if (Error Err = ValOrErr.takeError())
2829 return Err;
2830 Value *V = ValOrErr.get();
2831
2832 // Ignore function offsets emitted for aliases of functions in older
2833 // versions of LLVM.
2834 if (auto *F = dyn_cast<Function>(V))
2835 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2836 break;
2837 }
2838 case bitc::VST_CODE_BBENTRY: {
2839 if (convertToString(Record, 1, ValueName))
2840 return error("Invalid bbentry record");
2841 BasicBlock *BB = getBasicBlock(Record[0]);
2842 if (!BB)
2843 return error("Invalid bbentry record");
2844
2845 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2846 ValueName.clear();
2847 break;
2848 }
2849 }
2850 }
2851 }
2852
2853 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2854 /// encoding.
decodeSignRotatedValue(uint64_t V)2855 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2856 if ((V & 1) == 0)
2857 return V >> 1;
2858 if (V != 1)
2859 return -(V >> 1);
2860 // There is no such thing as -0 with integers. "-0" really means MININT.
2861 return 1ULL << 63;
2862 }
2863
2864 /// Resolve all of the initializers for global values and aliases that we can.
resolveGlobalAndIndirectSymbolInits()2865 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2866 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2867 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2868 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2869
2870 GlobalInitWorklist.swap(GlobalInits);
2871 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2872 FunctionOperandWorklist.swap(FunctionOperands);
2873
2874 while (!GlobalInitWorklist.empty()) {
2875 unsigned ValID = GlobalInitWorklist.back().second;
2876 if (ValID >= ValueList.size()) {
2877 // Not ready to resolve this yet, it requires something later in the file.
2878 GlobalInits.push_back(GlobalInitWorklist.back());
2879 } else {
2880 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2881 if (!MaybeC)
2882 return MaybeC.takeError();
2883 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2884 }
2885 GlobalInitWorklist.pop_back();
2886 }
2887
2888 while (!IndirectSymbolInitWorklist.empty()) {
2889 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2890 if (ValID >= ValueList.size()) {
2891 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2892 } else {
2893 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2894 if (!MaybeC)
2895 return MaybeC.takeError();
2896 Constant *C = MaybeC.get();
2897 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2898 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2899 if (C->getType() != GV->getType())
2900 return error("Alias and aliasee types don't match");
2901 GA->setAliasee(C);
2902 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2903 Type *ResolverFTy =
2904 GlobalIFunc::getResolverFunctionType(GI->getValueType());
2905 // Transparently fix up the type for compatibility with older bitcode
2906 GI->setResolver(ConstantExpr::getBitCast(
2907 C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2908 } else {
2909 return error("Expected an alias or an ifunc");
2910 }
2911 }
2912 IndirectSymbolInitWorklist.pop_back();
2913 }
2914
2915 while (!FunctionOperandWorklist.empty()) {
2916 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2917 if (Info.PersonalityFn) {
2918 unsigned ValID = Info.PersonalityFn - 1;
2919 if (ValID < ValueList.size()) {
2920 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2921 if (!MaybeC)
2922 return MaybeC.takeError();
2923 Info.F->setPersonalityFn(MaybeC.get());
2924 Info.PersonalityFn = 0;
2925 }
2926 }
2927 if (Info.Prefix) {
2928 unsigned ValID = Info.Prefix - 1;
2929 if (ValID < ValueList.size()) {
2930 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2931 if (!MaybeC)
2932 return MaybeC.takeError();
2933 Info.F->setPrefixData(MaybeC.get());
2934 Info.Prefix = 0;
2935 }
2936 }
2937 if (Info.Prologue) {
2938 unsigned ValID = Info.Prologue - 1;
2939 if (ValID < ValueList.size()) {
2940 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2941 if (!MaybeC)
2942 return MaybeC.takeError();
2943 Info.F->setPrologueData(MaybeC.get());
2944 Info.Prologue = 0;
2945 }
2946 }
2947 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2948 FunctionOperands.push_back(Info);
2949 FunctionOperandWorklist.pop_back();
2950 }
2951
2952 return Error::success();
2953 }
2954
readWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)2955 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2956 SmallVector<uint64_t, 8> Words(Vals.size());
2957 transform(Vals, Words.begin(),
2958 BitcodeReader::decodeSignRotatedValue);
2959
2960 return APInt(TypeBits, Words);
2961 }
2962
parseConstants()2963 Error BitcodeReader::parseConstants() {
2964 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2965 return Err;
2966
2967 SmallVector<uint64_t, 64> Record;
2968
2969 // Read all the records for this value table.
2970 Type *CurTy = Type::getInt32Ty(Context);
2971 unsigned Int32TyID = getVirtualTypeID(CurTy);
2972 unsigned CurTyID = Int32TyID;
2973 Type *CurElemTy = nullptr;
2974 unsigned NextCstNo = ValueList.size();
2975
2976 while (true) {
2977 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2978 if (!MaybeEntry)
2979 return MaybeEntry.takeError();
2980 BitstreamEntry Entry = MaybeEntry.get();
2981
2982 switch (Entry.Kind) {
2983 case BitstreamEntry::SubBlock: // Handled for us already.
2984 case BitstreamEntry::Error:
2985 return error("Malformed block");
2986 case BitstreamEntry::EndBlock:
2987 if (NextCstNo != ValueList.size())
2988 return error("Invalid constant reference");
2989 return Error::success();
2990 case BitstreamEntry::Record:
2991 // The interesting case.
2992 break;
2993 }
2994
2995 // Read a record.
2996 Record.clear();
2997 Type *VoidType = Type::getVoidTy(Context);
2998 Value *V = nullptr;
2999 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3000 if (!MaybeBitCode)
3001 return MaybeBitCode.takeError();
3002 switch (unsigned BitCode = MaybeBitCode.get()) {
3003 default: // Default behavior: unknown constant
3004 case bitc::CST_CODE_UNDEF: // UNDEF
3005 V = UndefValue::get(CurTy);
3006 break;
3007 case bitc::CST_CODE_POISON: // POISON
3008 V = PoisonValue::get(CurTy);
3009 break;
3010 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3011 if (Record.empty())
3012 return error("Invalid settype record");
3013 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3014 return error("Invalid settype record");
3015 if (TypeList[Record[0]] == VoidType)
3016 return error("Invalid constant type");
3017 CurTyID = Record[0];
3018 CurTy = TypeList[CurTyID];
3019 CurElemTy = getPtrElementTypeByID(CurTyID);
3020 continue; // Skip the ValueList manipulation.
3021 case bitc::CST_CODE_NULL: // NULL
3022 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3023 return error("Invalid type for a constant null value");
3024 if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3025 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3026 return error("Invalid type for a constant null value");
3027 V = Constant::getNullValue(CurTy);
3028 break;
3029 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3030 if (!CurTy->isIntegerTy() || Record.empty())
3031 return error("Invalid integer const record");
3032 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3033 break;
3034 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3035 if (!CurTy->isIntegerTy() || Record.empty())
3036 return error("Invalid wide integer const record");
3037
3038 APInt VInt =
3039 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3040 V = ConstantInt::get(Context, VInt);
3041
3042 break;
3043 }
3044 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3045 if (Record.empty())
3046 return error("Invalid float const record");
3047 if (CurTy->isHalfTy())
3048 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3049 APInt(16, (uint16_t)Record[0])));
3050 else if (CurTy->isBFloatTy())
3051 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3052 APInt(16, (uint32_t)Record[0])));
3053 else if (CurTy->isFloatTy())
3054 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3055 APInt(32, (uint32_t)Record[0])));
3056 else if (CurTy->isDoubleTy())
3057 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3058 APInt(64, Record[0])));
3059 else if (CurTy->isX86_FP80Ty()) {
3060 // Bits are not stored the same way as a normal i80 APInt, compensate.
3061 uint64_t Rearrange[2];
3062 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3063 Rearrange[1] = Record[0] >> 48;
3064 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3065 APInt(80, Rearrange)));
3066 } else if (CurTy->isFP128Ty())
3067 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3068 APInt(128, Record)));
3069 else if (CurTy->isPPC_FP128Ty())
3070 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3071 APInt(128, Record)));
3072 else
3073 V = UndefValue::get(CurTy);
3074 break;
3075 }
3076
3077 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3078 if (Record.empty())
3079 return error("Invalid aggregate record");
3080
3081 unsigned Size = Record.size();
3082 SmallVector<unsigned, 16> Elts;
3083 for (unsigned i = 0; i != Size; ++i)
3084 Elts.push_back(Record[i]);
3085
3086 if (isa<StructType>(CurTy)) {
3087 V = BitcodeConstant::create(
3088 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3089 } else if (isa<ArrayType>(CurTy)) {
3090 V = BitcodeConstant::create(Alloc, CurTy,
3091 BitcodeConstant::ConstantArrayOpcode, Elts);
3092 } else if (isa<VectorType>(CurTy)) {
3093 V = BitcodeConstant::create(
3094 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3095 } else {
3096 V = UndefValue::get(CurTy);
3097 }
3098 break;
3099 }
3100 case bitc::CST_CODE_STRING: // STRING: [values]
3101 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3102 if (Record.empty())
3103 return error("Invalid string record");
3104
3105 SmallString<16> Elts(Record.begin(), Record.end());
3106 V = ConstantDataArray::getString(Context, Elts,
3107 BitCode == bitc::CST_CODE_CSTRING);
3108 break;
3109 }
3110 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3111 if (Record.empty())
3112 return error("Invalid data record");
3113
3114 Type *EltTy;
3115 if (auto *Array = dyn_cast<ArrayType>(CurTy))
3116 EltTy = Array->getElementType();
3117 else
3118 EltTy = cast<VectorType>(CurTy)->getElementType();
3119 if (EltTy->isIntegerTy(8)) {
3120 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3121 if (isa<VectorType>(CurTy))
3122 V = ConstantDataVector::get(Context, Elts);
3123 else
3124 V = ConstantDataArray::get(Context, Elts);
3125 } else if (EltTy->isIntegerTy(16)) {
3126 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3127 if (isa<VectorType>(CurTy))
3128 V = ConstantDataVector::get(Context, Elts);
3129 else
3130 V = ConstantDataArray::get(Context, Elts);
3131 } else if (EltTy->isIntegerTy(32)) {
3132 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3133 if (isa<VectorType>(CurTy))
3134 V = ConstantDataVector::get(Context, Elts);
3135 else
3136 V = ConstantDataArray::get(Context, Elts);
3137 } else if (EltTy->isIntegerTy(64)) {
3138 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3139 if (isa<VectorType>(CurTy))
3140 V = ConstantDataVector::get(Context, Elts);
3141 else
3142 V = ConstantDataArray::get(Context, Elts);
3143 } else if (EltTy->isHalfTy()) {
3144 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3145 if (isa<VectorType>(CurTy))
3146 V = ConstantDataVector::getFP(EltTy, Elts);
3147 else
3148 V = ConstantDataArray::getFP(EltTy, Elts);
3149 } else if (EltTy->isBFloatTy()) {
3150 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3151 if (isa<VectorType>(CurTy))
3152 V = ConstantDataVector::getFP(EltTy, Elts);
3153 else
3154 V = ConstantDataArray::getFP(EltTy, Elts);
3155 } else if (EltTy->isFloatTy()) {
3156 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3157 if (isa<VectorType>(CurTy))
3158 V = ConstantDataVector::getFP(EltTy, Elts);
3159 else
3160 V = ConstantDataArray::getFP(EltTy, Elts);
3161 } else if (EltTy->isDoubleTy()) {
3162 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3163 if (isa<VectorType>(CurTy))
3164 V = ConstantDataVector::getFP(EltTy, Elts);
3165 else
3166 V = ConstantDataArray::getFP(EltTy, Elts);
3167 } else {
3168 return error("Invalid type for value");
3169 }
3170 break;
3171 }
3172 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3173 if (Record.size() < 2)
3174 return error("Invalid unary op constexpr record");
3175 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3176 if (Opc < 0) {
3177 V = UndefValue::get(CurTy); // Unknown unop.
3178 } else {
3179 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3180 }
3181 break;
3182 }
3183 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3184 if (Record.size() < 3)
3185 return error("Invalid binary op constexpr record");
3186 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3187 if (Opc < 0) {
3188 V = UndefValue::get(CurTy); // Unknown binop.
3189 } else {
3190 uint8_t Flags = 0;
3191 if (Record.size() >= 4) {
3192 if (Opc == Instruction::Add ||
3193 Opc == Instruction::Sub ||
3194 Opc == Instruction::Mul ||
3195 Opc == Instruction::Shl) {
3196 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3197 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3198 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3199 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3200 } else if (Opc == Instruction::SDiv ||
3201 Opc == Instruction::UDiv ||
3202 Opc == Instruction::LShr ||
3203 Opc == Instruction::AShr) {
3204 if (Record[3] & (1 << bitc::PEO_EXACT))
3205 Flags |= SDivOperator::IsExact;
3206 }
3207 }
3208 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3209 {(unsigned)Record[1], (unsigned)Record[2]});
3210 }
3211 break;
3212 }
3213 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3214 if (Record.size() < 3)
3215 return error("Invalid cast constexpr record");
3216 int Opc = getDecodedCastOpcode(Record[0]);
3217 if (Opc < 0) {
3218 V = UndefValue::get(CurTy); // Unknown cast.
3219 } else {
3220 unsigned OpTyID = Record[1];
3221 Type *OpTy = getTypeByID(OpTyID);
3222 if (!OpTy)
3223 return error("Invalid cast constexpr record");
3224 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3225 }
3226 break;
3227 }
3228 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3229 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3230 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3231 // operands]
3232 if (Record.size() < 2)
3233 return error("Constant GEP record must have at least two elements");
3234 unsigned OpNum = 0;
3235 Type *PointeeType = nullptr;
3236 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3237 Record.size() % 2)
3238 PointeeType = getTypeByID(Record[OpNum++]);
3239
3240 bool InBounds = false;
3241 std::optional<unsigned> InRangeIndex;
3242 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3243 uint64_t Op = Record[OpNum++];
3244 InBounds = Op & 1;
3245 InRangeIndex = Op >> 1;
3246 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3247 InBounds = true;
3248
3249 SmallVector<unsigned, 16> Elts;
3250 unsigned BaseTypeID = Record[OpNum];
3251 while (OpNum != Record.size()) {
3252 unsigned ElTyID = Record[OpNum++];
3253 Type *ElTy = getTypeByID(ElTyID);
3254 if (!ElTy)
3255 return error("Invalid getelementptr constexpr record");
3256 Elts.push_back(Record[OpNum++]);
3257 }
3258
3259 if (Elts.size() < 1)
3260 return error("Invalid gep with no operands");
3261
3262 Type *BaseType = getTypeByID(BaseTypeID);
3263 if (isa<VectorType>(BaseType)) {
3264 BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3265 BaseType = getTypeByID(BaseTypeID);
3266 }
3267
3268 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3269 if (!OrigPtrTy)
3270 return error("GEP base operand must be pointer or vector of pointer");
3271
3272 if (!PointeeType) {
3273 PointeeType = getPtrElementTypeByID(BaseTypeID);
3274 if (!PointeeType)
3275 return error("Missing element type for old-style constant GEP");
3276 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3277 return error("Explicit gep operator type does not match pointee type "
3278 "of pointer operand");
3279
3280 V = BitcodeConstant::create(Alloc, CurTy,
3281 {Instruction::GetElementPtr, InBounds,
3282 InRangeIndex.value_or(-1), PointeeType},
3283 Elts);
3284 break;
3285 }
3286 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3287 if (Record.size() < 3)
3288 return error("Invalid select constexpr record");
3289
3290 V = BitcodeConstant::create(
3291 Alloc, CurTy, Instruction::Select,
3292 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3293 break;
3294 }
3295 case bitc::CST_CODE_CE_EXTRACTELT
3296 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3297 if (Record.size() < 3)
3298 return error("Invalid extractelement constexpr record");
3299 unsigned OpTyID = Record[0];
3300 VectorType *OpTy =
3301 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3302 if (!OpTy)
3303 return error("Invalid extractelement constexpr record");
3304 unsigned IdxRecord;
3305 if (Record.size() == 4) {
3306 unsigned IdxTyID = Record[2];
3307 Type *IdxTy = getTypeByID(IdxTyID);
3308 if (!IdxTy)
3309 return error("Invalid extractelement constexpr record");
3310 IdxRecord = Record[3];
3311 } else {
3312 // Deprecated, but still needed to read old bitcode files.
3313 IdxRecord = Record[2];
3314 }
3315 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3316 {(unsigned)Record[1], IdxRecord});
3317 break;
3318 }
3319 case bitc::CST_CODE_CE_INSERTELT
3320 : { // CE_INSERTELT: [opval, opval, opty, opval]
3321 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3322 if (Record.size() < 3 || !OpTy)
3323 return error("Invalid insertelement constexpr record");
3324 unsigned IdxRecord;
3325 if (Record.size() == 4) {
3326 unsigned IdxTyID = Record[2];
3327 Type *IdxTy = getTypeByID(IdxTyID);
3328 if (!IdxTy)
3329 return error("Invalid insertelement constexpr record");
3330 IdxRecord = Record[3];
3331 } else {
3332 // Deprecated, but still needed to read old bitcode files.
3333 IdxRecord = Record[2];
3334 }
3335 V = BitcodeConstant::create(
3336 Alloc, CurTy, Instruction::InsertElement,
3337 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3338 break;
3339 }
3340 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3341 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3342 if (Record.size() < 3 || !OpTy)
3343 return error("Invalid shufflevector constexpr record");
3344 V = BitcodeConstant::create(
3345 Alloc, CurTy, Instruction::ShuffleVector,
3346 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3347 break;
3348 }
3349 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3350 VectorType *RTy = dyn_cast<VectorType>(CurTy);
3351 VectorType *OpTy =
3352 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3353 if (Record.size() < 4 || !RTy || !OpTy)
3354 return error("Invalid shufflevector constexpr record");
3355 V = BitcodeConstant::create(
3356 Alloc, CurTy, Instruction::ShuffleVector,
3357 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3358 break;
3359 }
3360 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3361 if (Record.size() < 4)
3362 return error("Invalid cmp constexpt record");
3363 unsigned OpTyID = Record[0];
3364 Type *OpTy = getTypeByID(OpTyID);
3365 if (!OpTy)
3366 return error("Invalid cmp constexpr record");
3367 V = BitcodeConstant::create(
3368 Alloc, CurTy,
3369 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3370 : Instruction::ICmp),
3371 (uint8_t)Record[3]},
3372 {(unsigned)Record[1], (unsigned)Record[2]});
3373 break;
3374 }
3375 // This maintains backward compatibility, pre-asm dialect keywords.
3376 // Deprecated, but still needed to read old bitcode files.
3377 case bitc::CST_CODE_INLINEASM_OLD: {
3378 if (Record.size() < 2)
3379 return error("Invalid inlineasm record");
3380 std::string AsmStr, ConstrStr;
3381 bool HasSideEffects = Record[0] & 1;
3382 bool IsAlignStack = Record[0] >> 1;
3383 unsigned AsmStrSize = Record[1];
3384 if (2+AsmStrSize >= Record.size())
3385 return error("Invalid inlineasm record");
3386 unsigned ConstStrSize = Record[2+AsmStrSize];
3387 if (3+AsmStrSize+ConstStrSize > Record.size())
3388 return error("Invalid inlineasm record");
3389
3390 for (unsigned i = 0; i != AsmStrSize; ++i)
3391 AsmStr += (char)Record[2+i];
3392 for (unsigned i = 0; i != ConstStrSize; ++i)
3393 ConstrStr += (char)Record[3+AsmStrSize+i];
3394 UpgradeInlineAsmString(&AsmStr);
3395 if (!CurElemTy)
3396 return error("Missing element type for old-style inlineasm");
3397 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3398 HasSideEffects, IsAlignStack);
3399 break;
3400 }
3401 // This version adds support for the asm dialect keywords (e.g.,
3402 // inteldialect).
3403 case bitc::CST_CODE_INLINEASM_OLD2: {
3404 if (Record.size() < 2)
3405 return error("Invalid inlineasm record");
3406 std::string AsmStr, ConstrStr;
3407 bool HasSideEffects = Record[0] & 1;
3408 bool IsAlignStack = (Record[0] >> 1) & 1;
3409 unsigned AsmDialect = Record[0] >> 2;
3410 unsigned AsmStrSize = Record[1];
3411 if (2+AsmStrSize >= Record.size())
3412 return error("Invalid inlineasm record");
3413 unsigned ConstStrSize = Record[2+AsmStrSize];
3414 if (3+AsmStrSize+ConstStrSize > Record.size())
3415 return error("Invalid inlineasm record");
3416
3417 for (unsigned i = 0; i != AsmStrSize; ++i)
3418 AsmStr += (char)Record[2+i];
3419 for (unsigned i = 0; i != ConstStrSize; ++i)
3420 ConstrStr += (char)Record[3+AsmStrSize+i];
3421 UpgradeInlineAsmString(&AsmStr);
3422 if (!CurElemTy)
3423 return error("Missing element type for old-style inlineasm");
3424 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3425 HasSideEffects, IsAlignStack,
3426 InlineAsm::AsmDialect(AsmDialect));
3427 break;
3428 }
3429 // This version adds support for the unwind keyword.
3430 case bitc::CST_CODE_INLINEASM_OLD3: {
3431 if (Record.size() < 2)
3432 return error("Invalid inlineasm record");
3433 unsigned OpNum = 0;
3434 std::string AsmStr, ConstrStr;
3435 bool HasSideEffects = Record[OpNum] & 1;
3436 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3437 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3438 bool CanThrow = (Record[OpNum] >> 3) & 1;
3439 ++OpNum;
3440 unsigned AsmStrSize = Record[OpNum];
3441 ++OpNum;
3442 if (OpNum + AsmStrSize >= Record.size())
3443 return error("Invalid inlineasm record");
3444 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3445 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3446 return error("Invalid inlineasm record");
3447
3448 for (unsigned i = 0; i != AsmStrSize; ++i)
3449 AsmStr += (char)Record[OpNum + i];
3450 ++OpNum;
3451 for (unsigned i = 0; i != ConstStrSize; ++i)
3452 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3453 UpgradeInlineAsmString(&AsmStr);
3454 if (!CurElemTy)
3455 return error("Missing element type for old-style inlineasm");
3456 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3457 HasSideEffects, IsAlignStack,
3458 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3459 break;
3460 }
3461 // This version adds explicit function type.
3462 case bitc::CST_CODE_INLINEASM: {
3463 if (Record.size() < 3)
3464 return error("Invalid inlineasm record");
3465 unsigned OpNum = 0;
3466 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3467 ++OpNum;
3468 if (!FnTy)
3469 return error("Invalid inlineasm record");
3470 std::string AsmStr, ConstrStr;
3471 bool HasSideEffects = Record[OpNum] & 1;
3472 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3473 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3474 bool CanThrow = (Record[OpNum] >> 3) & 1;
3475 ++OpNum;
3476 unsigned AsmStrSize = Record[OpNum];
3477 ++OpNum;
3478 if (OpNum + AsmStrSize >= Record.size())
3479 return error("Invalid inlineasm record");
3480 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3481 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3482 return error("Invalid inlineasm record");
3483
3484 for (unsigned i = 0; i != AsmStrSize; ++i)
3485 AsmStr += (char)Record[OpNum + i];
3486 ++OpNum;
3487 for (unsigned i = 0; i != ConstStrSize; ++i)
3488 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3489 UpgradeInlineAsmString(&AsmStr);
3490 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3491 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3492 break;
3493 }
3494 case bitc::CST_CODE_BLOCKADDRESS:{
3495 if (Record.size() < 3)
3496 return error("Invalid blockaddress record");
3497 unsigned FnTyID = Record[0];
3498 Type *FnTy = getTypeByID(FnTyID);
3499 if (!FnTy)
3500 return error("Invalid blockaddress record");
3501 V = BitcodeConstant::create(
3502 Alloc, CurTy,
3503 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3504 Record[1]);
3505 break;
3506 }
3507 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3508 if (Record.size() < 2)
3509 return error("Invalid dso_local record");
3510 unsigned GVTyID = Record[0];
3511 Type *GVTy = getTypeByID(GVTyID);
3512 if (!GVTy)
3513 return error("Invalid dso_local record");
3514 V = BitcodeConstant::create(
3515 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3516 break;
3517 }
3518 case bitc::CST_CODE_NO_CFI_VALUE: {
3519 if (Record.size() < 2)
3520 return error("Invalid no_cfi record");
3521 unsigned GVTyID = Record[0];
3522 Type *GVTy = getTypeByID(GVTyID);
3523 if (!GVTy)
3524 return error("Invalid no_cfi record");
3525 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3526 Record[1]);
3527 break;
3528 }
3529 }
3530
3531 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3532 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3533 return Err;
3534 ++NextCstNo;
3535 }
3536 }
3537
parseUseLists()3538 Error BitcodeReader::parseUseLists() {
3539 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3540 return Err;
3541
3542 // Read all the records.
3543 SmallVector<uint64_t, 64> Record;
3544
3545 while (true) {
3546 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3547 if (!MaybeEntry)
3548 return MaybeEntry.takeError();
3549 BitstreamEntry Entry = MaybeEntry.get();
3550
3551 switch (Entry.Kind) {
3552 case BitstreamEntry::SubBlock: // Handled for us already.
3553 case BitstreamEntry::Error:
3554 return error("Malformed block");
3555 case BitstreamEntry::EndBlock:
3556 return Error::success();
3557 case BitstreamEntry::Record:
3558 // The interesting case.
3559 break;
3560 }
3561
3562 // Read a use list record.
3563 Record.clear();
3564 bool IsBB = false;
3565 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3566 if (!MaybeRecord)
3567 return MaybeRecord.takeError();
3568 switch (MaybeRecord.get()) {
3569 default: // Default behavior: unknown type.
3570 break;
3571 case bitc::USELIST_CODE_BB:
3572 IsBB = true;
3573 [[fallthrough]];
3574 case bitc::USELIST_CODE_DEFAULT: {
3575 unsigned RecordLength = Record.size();
3576 if (RecordLength < 3)
3577 // Records should have at least an ID and two indexes.
3578 return error("Invalid record");
3579 unsigned ID = Record.pop_back_val();
3580
3581 Value *V;
3582 if (IsBB) {
3583 assert(ID < FunctionBBs.size() && "Basic block not found");
3584 V = FunctionBBs[ID];
3585 } else
3586 V = ValueList[ID];
3587 unsigned NumUses = 0;
3588 SmallDenseMap<const Use *, unsigned, 16> Order;
3589 for (const Use &U : V->materialized_uses()) {
3590 if (++NumUses > Record.size())
3591 break;
3592 Order[&U] = Record[NumUses - 1];
3593 }
3594 if (Order.size() != Record.size() || NumUses > Record.size())
3595 // Mismatches can happen if the functions are being materialized lazily
3596 // (out-of-order), or a value has been upgraded.
3597 break;
3598
3599 V->sortUseList([&](const Use &L, const Use &R) {
3600 return Order.lookup(&L) < Order.lookup(&R);
3601 });
3602 break;
3603 }
3604 }
3605 }
3606 }
3607
3608 /// When we see the block for metadata, remember where it is and then skip it.
3609 /// This lets us lazily deserialize the metadata.
rememberAndSkipMetadata()3610 Error BitcodeReader::rememberAndSkipMetadata() {
3611 // Save the current stream state.
3612 uint64_t CurBit = Stream.GetCurrentBitNo();
3613 DeferredMetadataInfo.push_back(CurBit);
3614
3615 // Skip over the block for now.
3616 if (Error Err = Stream.SkipBlock())
3617 return Err;
3618 return Error::success();
3619 }
3620
materializeMetadata()3621 Error BitcodeReader::materializeMetadata() {
3622 for (uint64_t BitPos : DeferredMetadataInfo) {
3623 // Move the bit stream to the saved position.
3624 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3625 return JumpFailed;
3626 if (Error Err = MDLoader->parseModuleMetadata())
3627 return Err;
3628 }
3629
3630 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3631 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3632 // multiple times.
3633 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3634 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3635 NamedMDNode *LinkerOpts =
3636 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3637 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3638 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3639 }
3640 }
3641
3642 DeferredMetadataInfo.clear();
3643 return Error::success();
3644 }
3645
setStripDebugInfo()3646 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3647
3648 /// When we see the block for a function body, remember where it is and then
3649 /// skip it. This lets us lazily deserialize the functions.
rememberAndSkipFunctionBody()3650 Error BitcodeReader::rememberAndSkipFunctionBody() {
3651 // Get the function we are talking about.
3652 if (FunctionsWithBodies.empty())
3653 return error("Insufficient function protos");
3654
3655 Function *Fn = FunctionsWithBodies.back();
3656 FunctionsWithBodies.pop_back();
3657
3658 // Save the current stream state.
3659 uint64_t CurBit = Stream.GetCurrentBitNo();
3660 assert(
3661 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3662 "Mismatch between VST and scanned function offsets");
3663 DeferredFunctionInfo[Fn] = CurBit;
3664
3665 // Skip over the function block for now.
3666 if (Error Err = Stream.SkipBlock())
3667 return Err;
3668 return Error::success();
3669 }
3670
globalCleanup()3671 Error BitcodeReader::globalCleanup() {
3672 // Patch the initializers for globals and aliases up.
3673 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3674 return Err;
3675 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3676 return error("Malformed global initializer set");
3677
3678 // Look for intrinsic functions which need to be upgraded at some point
3679 // and functions that need to have their function attributes upgraded.
3680 for (Function &F : *TheModule) {
3681 MDLoader->upgradeDebugIntrinsics(F);
3682 Function *NewFn;
3683 if (UpgradeIntrinsicFunction(&F, NewFn))
3684 UpgradedIntrinsics[&F] = NewFn;
3685 // Look for functions that rely on old function attribute behavior.
3686 UpgradeFunctionAttributes(F);
3687 }
3688
3689 // Look for global variables which need to be renamed.
3690 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3691 for (GlobalVariable &GV : TheModule->globals())
3692 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3693 UpgradedVariables.emplace_back(&GV, Upgraded);
3694 for (auto &Pair : UpgradedVariables) {
3695 Pair.first->eraseFromParent();
3696 TheModule->getGlobalList().push_back(Pair.second);
3697 }
3698
3699 // Force deallocation of memory for these vectors to favor the client that
3700 // want lazy deserialization.
3701 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3702 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3703 return Error::success();
3704 }
3705
3706 /// Support for lazy parsing of function bodies. This is required if we
3707 /// either have an old bitcode file without a VST forward declaration record,
3708 /// or if we have an anonymous function being materialized, since anonymous
3709 /// functions do not have a name and are therefore not in the VST.
rememberAndSkipFunctionBodies()3710 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3711 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3712 return JumpFailed;
3713
3714 if (Stream.AtEndOfStream())
3715 return error("Could not find function in stream");
3716
3717 if (!SeenFirstFunctionBody)
3718 return error("Trying to materialize functions before seeing function blocks");
3719
3720 // An old bitcode file with the symbol table at the end would have
3721 // finished the parse greedily.
3722 assert(SeenValueSymbolTable);
3723
3724 SmallVector<uint64_t, 64> Record;
3725
3726 while (true) {
3727 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3728 if (!MaybeEntry)
3729 return MaybeEntry.takeError();
3730 llvm::BitstreamEntry Entry = MaybeEntry.get();
3731
3732 switch (Entry.Kind) {
3733 default:
3734 return error("Expect SubBlock");
3735 case BitstreamEntry::SubBlock:
3736 switch (Entry.ID) {
3737 default:
3738 return error("Expect function block");
3739 case bitc::FUNCTION_BLOCK_ID:
3740 if (Error Err = rememberAndSkipFunctionBody())
3741 return Err;
3742 NextUnreadBit = Stream.GetCurrentBitNo();
3743 return Error::success();
3744 }
3745 }
3746 }
3747 }
3748
readBlockInfo()3749 Error BitcodeReaderBase::readBlockInfo() {
3750 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3751 Stream.ReadBlockInfoBlock();
3752 if (!MaybeNewBlockInfo)
3753 return MaybeNewBlockInfo.takeError();
3754 std::optional<BitstreamBlockInfo> NewBlockInfo =
3755 std::move(MaybeNewBlockInfo.get());
3756 if (!NewBlockInfo)
3757 return error("Malformed block");
3758 BlockInfo = std::move(*NewBlockInfo);
3759 return Error::success();
3760 }
3761
parseComdatRecord(ArrayRef<uint64_t> Record)3762 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3763 // v1: [selection_kind, name]
3764 // v2: [strtab_offset, strtab_size, selection_kind]
3765 StringRef Name;
3766 std::tie(Name, Record) = readNameFromStrtab(Record);
3767
3768 if (Record.empty())
3769 return error("Invalid record");
3770 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3771 std::string OldFormatName;
3772 if (!UseStrtab) {
3773 if (Record.size() < 2)
3774 return error("Invalid record");
3775 unsigned ComdatNameSize = Record[1];
3776 if (ComdatNameSize > Record.size() - 2)
3777 return error("Comdat name size too large");
3778 OldFormatName.reserve(ComdatNameSize);
3779 for (unsigned i = 0; i != ComdatNameSize; ++i)
3780 OldFormatName += (char)Record[2 + i];
3781 Name = OldFormatName;
3782 }
3783 Comdat *C = TheModule->getOrInsertComdat(Name);
3784 C->setSelectionKind(SK);
3785 ComdatList.push_back(C);
3786 return Error::success();
3787 }
3788
inferDSOLocal(GlobalValue * GV)3789 static void inferDSOLocal(GlobalValue *GV) {
3790 // infer dso_local from linkage and visibility if it is not encoded.
3791 if (GV->hasLocalLinkage() ||
3792 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3793 GV->setDSOLocal(true);
3794 }
3795
deserializeSanitizerMetadata(unsigned V)3796 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3797 GlobalValue::SanitizerMetadata Meta;
3798 if (V & (1 << 0))
3799 Meta.NoAddress = true;
3800 if (V & (1 << 1))
3801 Meta.NoHWAddress = true;
3802 if (V & (1 << 2))
3803 Meta.Memtag = true;
3804 if (V & (1 << 3))
3805 Meta.IsDynInit = true;
3806 return Meta;
3807 }
3808
parseGlobalVarRecord(ArrayRef<uint64_t> Record)3809 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3810 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3811 // visibility, threadlocal, unnamed_addr, externally_initialized,
3812 // dllstorageclass, comdat, attributes, preemption specifier,
3813 // partition strtab offset, partition strtab size] (name in VST)
3814 // v2: [strtab_offset, strtab_size, v1]
3815 StringRef Name;
3816 std::tie(Name, Record) = readNameFromStrtab(Record);
3817
3818 if (Record.size() < 6)
3819 return error("Invalid record");
3820 unsigned TyID = Record[0];
3821 Type *Ty = getTypeByID(TyID);
3822 if (!Ty)
3823 return error("Invalid record");
3824 bool isConstant = Record[1] & 1;
3825 bool explicitType = Record[1] & 2;
3826 unsigned AddressSpace;
3827 if (explicitType) {
3828 AddressSpace = Record[1] >> 2;
3829 } else {
3830 if (!Ty->isPointerTy())
3831 return error("Invalid type for value");
3832 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3833 TyID = getContainedTypeID(TyID);
3834 Ty = getTypeByID(TyID);
3835 if (!Ty)
3836 return error("Missing element type for old-style global");
3837 }
3838
3839 uint64_t RawLinkage = Record[3];
3840 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3841 MaybeAlign Alignment;
3842 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3843 return Err;
3844 std::string Section;
3845 if (Record[5]) {
3846 if (Record[5] - 1 >= SectionTable.size())
3847 return error("Invalid ID");
3848 Section = SectionTable[Record[5] - 1];
3849 }
3850 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3851 // Local linkage must have default visibility.
3852 // auto-upgrade `hidden` and `protected` for old bitcode.
3853 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3854 Visibility = getDecodedVisibility(Record[6]);
3855
3856 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3857 if (Record.size() > 7)
3858 TLM = getDecodedThreadLocalMode(Record[7]);
3859
3860 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3861 if (Record.size() > 8)
3862 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3863
3864 bool ExternallyInitialized = false;
3865 if (Record.size() > 9)
3866 ExternallyInitialized = Record[9];
3867
3868 GlobalVariable *NewGV =
3869 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3870 nullptr, TLM, AddressSpace, ExternallyInitialized);
3871 NewGV->setAlignment(Alignment);
3872 if (!Section.empty())
3873 NewGV->setSection(Section);
3874 NewGV->setVisibility(Visibility);
3875 NewGV->setUnnamedAddr(UnnamedAddr);
3876
3877 if (Record.size() > 10) {
3878 // A GlobalValue with local linkage cannot have a DLL storage class.
3879 if (!NewGV->hasLocalLinkage()) {
3880 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3881 }
3882 } else {
3883 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3884 }
3885
3886 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3887
3888 // Remember which value to use for the global initializer.
3889 if (unsigned InitID = Record[2])
3890 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3891
3892 if (Record.size() > 11) {
3893 if (unsigned ComdatID = Record[11]) {
3894 if (ComdatID > ComdatList.size())
3895 return error("Invalid global variable comdat ID");
3896 NewGV->setComdat(ComdatList[ComdatID - 1]);
3897 }
3898 } else if (hasImplicitComdat(RawLinkage)) {
3899 ImplicitComdatObjects.insert(NewGV);
3900 }
3901
3902 if (Record.size() > 12) {
3903 auto AS = getAttributes(Record[12]).getFnAttrs();
3904 NewGV->setAttributes(AS);
3905 }
3906
3907 if (Record.size() > 13) {
3908 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3909 }
3910 inferDSOLocal(NewGV);
3911
3912 // Check whether we have enough values to read a partition name.
3913 if (Record.size() > 15)
3914 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3915
3916 if (Record.size() > 16 && Record[16]) {
3917 llvm::GlobalValue::SanitizerMetadata Meta =
3918 deserializeSanitizerMetadata(Record[16]);
3919 NewGV->setSanitizerMetadata(Meta);
3920 }
3921
3922 return Error::success();
3923 }
3924
callValueTypeCallback(Value * F,unsigned TypeID)3925 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3926 if (ValueTypeCallback) {
3927 (*ValueTypeCallback)(
3928 F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3929 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3930 }
3931 }
3932
parseFunctionRecord(ArrayRef<uint64_t> Record)3933 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3934 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3935 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3936 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3937 // v2: [strtab_offset, strtab_size, v1]
3938 StringRef Name;
3939 std::tie(Name, Record) = readNameFromStrtab(Record);
3940
3941 if (Record.size() < 8)
3942 return error("Invalid record");
3943 unsigned FTyID = Record[0];
3944 Type *FTy = getTypeByID(FTyID);
3945 if (!FTy)
3946 return error("Invalid record");
3947 if (isa<PointerType>(FTy)) {
3948 FTyID = getContainedTypeID(FTyID, 0);
3949 FTy = getTypeByID(FTyID);
3950 if (!FTy)
3951 return error("Missing element type for old-style function");
3952 }
3953
3954 if (!isa<FunctionType>(FTy))
3955 return error("Invalid type for value");
3956 auto CC = static_cast<CallingConv::ID>(Record[1]);
3957 if (CC & ~CallingConv::MaxID)
3958 return error("Invalid calling convention ID");
3959
3960 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3961 if (Record.size() > 16)
3962 AddrSpace = Record[16];
3963
3964 Function *Func =
3965 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3966 AddrSpace, Name, TheModule);
3967
3968 assert(Func->getFunctionType() == FTy &&
3969 "Incorrect fully specified type provided for function");
3970 FunctionTypeIDs[Func] = FTyID;
3971
3972 Func->setCallingConv(CC);
3973 bool isProto = Record[2];
3974 uint64_t RawLinkage = Record[3];
3975 Func->setLinkage(getDecodedLinkage(RawLinkage));
3976 Func->setAttributes(getAttributes(Record[4]));
3977 callValueTypeCallback(Func, FTyID);
3978
3979 // Upgrade any old-style byval or sret without a type by propagating the
3980 // argument's pointee type. There should be no opaque pointers where the byval
3981 // type is implicit.
3982 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3983 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3984 Attribute::InAlloca}) {
3985 if (!Func->hasParamAttribute(i, Kind))
3986 continue;
3987
3988 if (Func->getParamAttribute(i, Kind).getValueAsType())
3989 continue;
3990
3991 Func->removeParamAttr(i, Kind);
3992
3993 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3994 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3995 if (!PtrEltTy)
3996 return error("Missing param element type for attribute upgrade");
3997
3998 Attribute NewAttr;
3999 switch (Kind) {
4000 case Attribute::ByVal:
4001 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4002 break;
4003 case Attribute::StructRet:
4004 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4005 break;
4006 case Attribute::InAlloca:
4007 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4008 break;
4009 default:
4010 llvm_unreachable("not an upgraded type attribute");
4011 }
4012
4013 Func->addParamAttr(i, NewAttr);
4014 }
4015 }
4016
4017 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4018 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4019 unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4020 Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4021 if (!ByValTy)
4022 return error("Missing param element type for x86_intrcc upgrade");
4023 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4024 Func->addParamAttr(0, NewAttr);
4025 }
4026
4027 MaybeAlign Alignment;
4028 if (Error Err = parseAlignmentValue(Record[5], Alignment))
4029 return Err;
4030 Func->setAlignment(Alignment);
4031 if (Record[6]) {
4032 if (Record[6] - 1 >= SectionTable.size())
4033 return error("Invalid ID");
4034 Func->setSection(SectionTable[Record[6] - 1]);
4035 }
4036 // Local linkage must have default visibility.
4037 // auto-upgrade `hidden` and `protected` for old bitcode.
4038 if (!Func->hasLocalLinkage())
4039 Func->setVisibility(getDecodedVisibility(Record[7]));
4040 if (Record.size() > 8 && Record[8]) {
4041 if (Record[8] - 1 >= GCTable.size())
4042 return error("Invalid ID");
4043 Func->setGC(GCTable[Record[8] - 1]);
4044 }
4045 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4046 if (Record.size() > 9)
4047 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4048 Func->setUnnamedAddr(UnnamedAddr);
4049
4050 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4051 if (Record.size() > 10)
4052 OperandInfo.Prologue = Record[10];
4053
4054 if (Record.size() > 11) {
4055 // A GlobalValue with local linkage cannot have a DLL storage class.
4056 if (!Func->hasLocalLinkage()) {
4057 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4058 }
4059 } else {
4060 upgradeDLLImportExportLinkage(Func, RawLinkage);
4061 }
4062
4063 if (Record.size() > 12) {
4064 if (unsigned ComdatID = Record[12]) {
4065 if (ComdatID > ComdatList.size())
4066 return error("Invalid function comdat ID");
4067 Func->setComdat(ComdatList[ComdatID - 1]);
4068 }
4069 } else if (hasImplicitComdat(RawLinkage)) {
4070 ImplicitComdatObjects.insert(Func);
4071 }
4072
4073 if (Record.size() > 13)
4074 OperandInfo.Prefix = Record[13];
4075
4076 if (Record.size() > 14)
4077 OperandInfo.PersonalityFn = Record[14];
4078
4079 if (Record.size() > 15) {
4080 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4081 }
4082 inferDSOLocal(Func);
4083
4084 // Record[16] is the address space number.
4085
4086 // Check whether we have enough values to read a partition name. Also make
4087 // sure Strtab has enough values.
4088 if (Record.size() > 18 && Strtab.data() &&
4089 Record[17] + Record[18] <= Strtab.size()) {
4090 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4091 }
4092
4093 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4094
4095 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4096 FunctionOperands.push_back(OperandInfo);
4097
4098 // If this is a function with a body, remember the prototype we are
4099 // creating now, so that we can match up the body with them later.
4100 if (!isProto) {
4101 Func->setIsMaterializable(true);
4102 FunctionsWithBodies.push_back(Func);
4103 DeferredFunctionInfo[Func] = 0;
4104 }
4105 return Error::success();
4106 }
4107
parseGlobalIndirectSymbolRecord(unsigned BitCode,ArrayRef<uint64_t> Record)4108 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4109 unsigned BitCode, ArrayRef<uint64_t> Record) {
4110 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4111 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4112 // dllstorageclass, threadlocal, unnamed_addr,
4113 // preemption specifier] (name in VST)
4114 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4115 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4116 // preemption specifier] (name in VST)
4117 // v2: [strtab_offset, strtab_size, v1]
4118 StringRef Name;
4119 std::tie(Name, Record) = readNameFromStrtab(Record);
4120
4121 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4122 if (Record.size() < (3 + (unsigned)NewRecord))
4123 return error("Invalid record");
4124 unsigned OpNum = 0;
4125 unsigned TypeID = Record[OpNum++];
4126 Type *Ty = getTypeByID(TypeID);
4127 if (!Ty)
4128 return error("Invalid record");
4129
4130 unsigned AddrSpace;
4131 if (!NewRecord) {
4132 auto *PTy = dyn_cast<PointerType>(Ty);
4133 if (!PTy)
4134 return error("Invalid type for value");
4135 AddrSpace = PTy->getAddressSpace();
4136 TypeID = getContainedTypeID(TypeID);
4137 Ty = getTypeByID(TypeID);
4138 if (!Ty)
4139 return error("Missing element type for old-style indirect symbol");
4140 } else {
4141 AddrSpace = Record[OpNum++];
4142 }
4143
4144 auto Val = Record[OpNum++];
4145 auto Linkage = Record[OpNum++];
4146 GlobalValue *NewGA;
4147 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4148 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4149 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4150 TheModule);
4151 else
4152 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4153 nullptr, TheModule);
4154
4155 // Local linkage must have default visibility.
4156 // auto-upgrade `hidden` and `protected` for old bitcode.
4157 if (OpNum != Record.size()) {
4158 auto VisInd = OpNum++;
4159 if (!NewGA->hasLocalLinkage())
4160 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4161 }
4162 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4163 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4164 if (OpNum != Record.size()) {
4165 auto S = Record[OpNum++];
4166 // A GlobalValue with local linkage cannot have a DLL storage class.
4167 if (!NewGA->hasLocalLinkage())
4168 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4169 }
4170 else
4171 upgradeDLLImportExportLinkage(NewGA, Linkage);
4172 if (OpNum != Record.size())
4173 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4174 if (OpNum != Record.size())
4175 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4176 }
4177 if (OpNum != Record.size())
4178 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4179 inferDSOLocal(NewGA);
4180
4181 // Check whether we have enough values to read a partition name.
4182 if (OpNum + 1 < Record.size()) {
4183 NewGA->setPartition(
4184 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4185 OpNum += 2;
4186 }
4187
4188 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4189 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4190 return Error::success();
4191 }
4192
parseModule(uint64_t ResumeBit,bool ShouldLazyLoadMetadata,ParserCallbacks Callbacks)4193 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4194 bool ShouldLazyLoadMetadata,
4195 ParserCallbacks Callbacks) {
4196 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4197 if (ResumeBit) {
4198 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4199 return JumpFailed;
4200 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4201 return Err;
4202
4203 SmallVector<uint64_t, 64> Record;
4204
4205 // Parts of bitcode parsing depend on the datalayout. Make sure we
4206 // finalize the datalayout before we run any of that code.
4207 bool ResolvedDataLayout = false;
4208 // In order to support importing modules with illegal data layout strings,
4209 // delay parsing the data layout string until after upgrades and overrides
4210 // have been applied, allowing to fix illegal data layout strings.
4211 // Initialize to the current module's layout string in case none is specified.
4212 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4213
4214 auto ResolveDataLayout = [&]() -> Error {
4215 if (ResolvedDataLayout)
4216 return Error::success();
4217
4218 // Datalayout and triple can't be parsed after this point.
4219 ResolvedDataLayout = true;
4220
4221 // Auto-upgrade the layout string
4222 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4223 TentativeDataLayoutStr, TheModule->getTargetTriple());
4224
4225 // Apply override
4226 if (Callbacks.DataLayout) {
4227 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4228 TheModule->getTargetTriple(), TentativeDataLayoutStr))
4229 TentativeDataLayoutStr = *LayoutOverride;
4230 }
4231
4232 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4233 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4234 if (!MaybeDL)
4235 return MaybeDL.takeError();
4236
4237 TheModule->setDataLayout(MaybeDL.get());
4238 return Error::success();
4239 };
4240
4241 // Read all the records for this module.
4242 while (true) {
4243 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4244 if (!MaybeEntry)
4245 return MaybeEntry.takeError();
4246 llvm::BitstreamEntry Entry = MaybeEntry.get();
4247
4248 switch (Entry.Kind) {
4249 case BitstreamEntry::Error:
4250 return error("Malformed block");
4251 case BitstreamEntry::EndBlock:
4252 if (Error Err = ResolveDataLayout())
4253 return Err;
4254 return globalCleanup();
4255
4256 case BitstreamEntry::SubBlock:
4257 switch (Entry.ID) {
4258 default: // Skip unknown content.
4259 if (Error Err = Stream.SkipBlock())
4260 return Err;
4261 break;
4262 case bitc::BLOCKINFO_BLOCK_ID:
4263 if (Error Err = readBlockInfo())
4264 return Err;
4265 break;
4266 case bitc::PARAMATTR_BLOCK_ID:
4267 if (Error Err = parseAttributeBlock())
4268 return Err;
4269 break;
4270 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4271 if (Error Err = parseAttributeGroupBlock())
4272 return Err;
4273 break;
4274 case bitc::TYPE_BLOCK_ID_NEW:
4275 if (Error Err = parseTypeTable())
4276 return Err;
4277 break;
4278 case bitc::VALUE_SYMTAB_BLOCK_ID:
4279 if (!SeenValueSymbolTable) {
4280 // Either this is an old form VST without function index and an
4281 // associated VST forward declaration record (which would have caused
4282 // the VST to be jumped to and parsed before it was encountered
4283 // normally in the stream), or there were no function blocks to
4284 // trigger an earlier parsing of the VST.
4285 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4286 if (Error Err = parseValueSymbolTable())
4287 return Err;
4288 SeenValueSymbolTable = true;
4289 } else {
4290 // We must have had a VST forward declaration record, which caused
4291 // the parser to jump to and parse the VST earlier.
4292 assert(VSTOffset > 0);
4293 if (Error Err = Stream.SkipBlock())
4294 return Err;
4295 }
4296 break;
4297 case bitc::CONSTANTS_BLOCK_ID:
4298 if (Error Err = parseConstants())
4299 return Err;
4300 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4301 return Err;
4302 break;
4303 case bitc::METADATA_BLOCK_ID:
4304 if (ShouldLazyLoadMetadata) {
4305 if (Error Err = rememberAndSkipMetadata())
4306 return Err;
4307 break;
4308 }
4309 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4310 if (Error Err = MDLoader->parseModuleMetadata())
4311 return Err;
4312 break;
4313 case bitc::METADATA_KIND_BLOCK_ID:
4314 if (Error Err = MDLoader->parseMetadataKinds())
4315 return Err;
4316 break;
4317 case bitc::FUNCTION_BLOCK_ID:
4318 if (Error Err = ResolveDataLayout())
4319 return Err;
4320
4321 // If this is the first function body we've seen, reverse the
4322 // FunctionsWithBodies list.
4323 if (!SeenFirstFunctionBody) {
4324 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4325 if (Error Err = globalCleanup())
4326 return Err;
4327 SeenFirstFunctionBody = true;
4328 }
4329
4330 if (VSTOffset > 0) {
4331 // If we have a VST forward declaration record, make sure we
4332 // parse the VST now if we haven't already. It is needed to
4333 // set up the DeferredFunctionInfo vector for lazy reading.
4334 if (!SeenValueSymbolTable) {
4335 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4336 return Err;
4337 SeenValueSymbolTable = true;
4338 // Fall through so that we record the NextUnreadBit below.
4339 // This is necessary in case we have an anonymous function that
4340 // is later materialized. Since it will not have a VST entry we
4341 // need to fall back to the lazy parse to find its offset.
4342 } else {
4343 // If we have a VST forward declaration record, but have already
4344 // parsed the VST (just above, when the first function body was
4345 // encountered here), then we are resuming the parse after
4346 // materializing functions. The ResumeBit points to the
4347 // start of the last function block recorded in the
4348 // DeferredFunctionInfo map. Skip it.
4349 if (Error Err = Stream.SkipBlock())
4350 return Err;
4351 continue;
4352 }
4353 }
4354
4355 // Support older bitcode files that did not have the function
4356 // index in the VST, nor a VST forward declaration record, as
4357 // well as anonymous functions that do not have VST entries.
4358 // Build the DeferredFunctionInfo vector on the fly.
4359 if (Error Err = rememberAndSkipFunctionBody())
4360 return Err;
4361
4362 // Suspend parsing when we reach the function bodies. Subsequent
4363 // materialization calls will resume it when necessary. If the bitcode
4364 // file is old, the symbol table will be at the end instead and will not
4365 // have been seen yet. In this case, just finish the parse now.
4366 if (SeenValueSymbolTable) {
4367 NextUnreadBit = Stream.GetCurrentBitNo();
4368 // After the VST has been parsed, we need to make sure intrinsic name
4369 // are auto-upgraded.
4370 return globalCleanup();
4371 }
4372 break;
4373 case bitc::USELIST_BLOCK_ID:
4374 if (Error Err = parseUseLists())
4375 return Err;
4376 break;
4377 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4378 if (Error Err = parseOperandBundleTags())
4379 return Err;
4380 break;
4381 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4382 if (Error Err = parseSyncScopeNames())
4383 return Err;
4384 break;
4385 }
4386 continue;
4387
4388 case BitstreamEntry::Record:
4389 // The interesting case.
4390 break;
4391 }
4392
4393 // Read a record.
4394 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4395 if (!MaybeBitCode)
4396 return MaybeBitCode.takeError();
4397 switch (unsigned BitCode = MaybeBitCode.get()) {
4398 default: break; // Default behavior, ignore unknown content.
4399 case bitc::MODULE_CODE_VERSION: {
4400 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4401 if (!VersionOrErr)
4402 return VersionOrErr.takeError();
4403 UseRelativeIDs = *VersionOrErr >= 1;
4404 break;
4405 }
4406 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4407 if (ResolvedDataLayout)
4408 return error("target triple too late in module");
4409 std::string S;
4410 if (convertToString(Record, 0, S))
4411 return error("Invalid record");
4412 TheModule->setTargetTriple(S);
4413 break;
4414 }
4415 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4416 if (ResolvedDataLayout)
4417 return error("datalayout too late in module");
4418 if (convertToString(Record, 0, TentativeDataLayoutStr))
4419 return error("Invalid record");
4420 break;
4421 }
4422 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4423 std::string S;
4424 if (convertToString(Record, 0, S))
4425 return error("Invalid record");
4426 TheModule->setModuleInlineAsm(S);
4427 break;
4428 }
4429 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4430 // Deprecated, but still needed to read old bitcode files.
4431 std::string S;
4432 if (convertToString(Record, 0, S))
4433 return error("Invalid record");
4434 // Ignore value.
4435 break;
4436 }
4437 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4438 std::string S;
4439 if (convertToString(Record, 0, S))
4440 return error("Invalid record");
4441 SectionTable.push_back(S);
4442 break;
4443 }
4444 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4445 std::string S;
4446 if (convertToString(Record, 0, S))
4447 return error("Invalid record");
4448 GCTable.push_back(S);
4449 break;
4450 }
4451 case bitc::MODULE_CODE_COMDAT:
4452 if (Error Err = parseComdatRecord(Record))
4453 return Err;
4454 break;
4455 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4456 // written by ThinLinkBitcodeWriter. See
4457 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4458 // record
4459 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4460 case bitc::MODULE_CODE_GLOBALVAR:
4461 if (Error Err = parseGlobalVarRecord(Record))
4462 return Err;
4463 break;
4464 case bitc::MODULE_CODE_FUNCTION:
4465 if (Error Err = ResolveDataLayout())
4466 return Err;
4467 if (Error Err = parseFunctionRecord(Record))
4468 return Err;
4469 break;
4470 case bitc::MODULE_CODE_IFUNC:
4471 case bitc::MODULE_CODE_ALIAS:
4472 case bitc::MODULE_CODE_ALIAS_OLD:
4473 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4474 return Err;
4475 break;
4476 /// MODULE_CODE_VSTOFFSET: [offset]
4477 case bitc::MODULE_CODE_VSTOFFSET:
4478 if (Record.empty())
4479 return error("Invalid record");
4480 // Note that we subtract 1 here because the offset is relative to one word
4481 // before the start of the identification or module block, which was
4482 // historically always the start of the regular bitcode header.
4483 VSTOffset = Record[0] - 1;
4484 break;
4485 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4486 case bitc::MODULE_CODE_SOURCE_FILENAME:
4487 SmallString<128> ValueName;
4488 if (convertToString(Record, 0, ValueName))
4489 return error("Invalid record");
4490 TheModule->setSourceFileName(ValueName);
4491 break;
4492 }
4493 Record.clear();
4494 }
4495 this->ValueTypeCallback = std::nullopt;
4496 return Error::success();
4497 }
4498
parseBitcodeInto(Module * M,bool ShouldLazyLoadMetadata,bool IsImporting,ParserCallbacks Callbacks)4499 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4500 bool IsImporting,
4501 ParserCallbacks Callbacks) {
4502 TheModule = M;
4503 MetadataLoaderCallbacks MDCallbacks;
4504 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4505 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4506 return getContainedTypeID(I, J);
4507 };
4508 MDCallbacks.MDType = Callbacks.MDType;
4509 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4510 return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4511 }
4512
typeCheckLoadStoreInst(Type * ValType,Type * PtrType)4513 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4514 if (!isa<PointerType>(PtrType))
4515 return error("Load/Store operand is not a pointer type");
4516
4517 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4518 return error("Explicit load/store type does not match pointee "
4519 "type of pointer operand");
4520 if (!PointerType::isLoadableOrStorableType(ValType))
4521 return error("Cannot load/store from pointer");
4522 return Error::success();
4523 }
4524
propagateAttributeTypes(CallBase * CB,ArrayRef<unsigned> ArgTyIDs)4525 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4526 ArrayRef<unsigned> ArgTyIDs) {
4527 AttributeList Attrs = CB->getAttributes();
4528 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4529 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4530 Attribute::InAlloca}) {
4531 if (!Attrs.hasParamAttr(i, Kind) ||
4532 Attrs.getParamAttr(i, Kind).getValueAsType())
4533 continue;
4534
4535 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4536 if (!PtrEltTy)
4537 return error("Missing element type for typed attribute upgrade");
4538
4539 Attribute NewAttr;
4540 switch (Kind) {
4541 case Attribute::ByVal:
4542 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4543 break;
4544 case Attribute::StructRet:
4545 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4546 break;
4547 case Attribute::InAlloca:
4548 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4549 break;
4550 default:
4551 llvm_unreachable("not an upgraded type attribute");
4552 }
4553
4554 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4555 }
4556 }
4557
4558 if (CB->isInlineAsm()) {
4559 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4560 unsigned ArgNo = 0;
4561 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4562 if (!CI.hasArg())
4563 continue;
4564
4565 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4566 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4567 if (!ElemTy)
4568 return error("Missing element type for inline asm upgrade");
4569 Attrs = Attrs.addParamAttribute(
4570 Context, ArgNo,
4571 Attribute::get(Context, Attribute::ElementType, ElemTy));
4572 }
4573
4574 ArgNo++;
4575 }
4576 }
4577
4578 switch (CB->getIntrinsicID()) {
4579 case Intrinsic::preserve_array_access_index:
4580 case Intrinsic::preserve_struct_access_index:
4581 case Intrinsic::aarch64_ldaxr:
4582 case Intrinsic::aarch64_ldxr:
4583 case Intrinsic::aarch64_stlxr:
4584 case Intrinsic::aarch64_stxr:
4585 case Intrinsic::arm_ldaex:
4586 case Intrinsic::arm_ldrex:
4587 case Intrinsic::arm_stlex:
4588 case Intrinsic::arm_strex: {
4589 unsigned ArgNo;
4590 switch (CB->getIntrinsicID()) {
4591 case Intrinsic::aarch64_stlxr:
4592 case Intrinsic::aarch64_stxr:
4593 case Intrinsic::arm_stlex:
4594 case Intrinsic::arm_strex:
4595 ArgNo = 1;
4596 break;
4597 default:
4598 ArgNo = 0;
4599 break;
4600 }
4601 if (!Attrs.getParamElementType(ArgNo)) {
4602 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4603 if (!ElTy)
4604 return error("Missing element type for elementtype upgrade");
4605 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4606 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4607 }
4608 break;
4609 }
4610 default:
4611 break;
4612 }
4613
4614 CB->setAttributes(Attrs);
4615 return Error::success();
4616 }
4617
4618 /// Lazily parse the specified function body block.
parseFunctionBody(Function * F)4619 Error BitcodeReader::parseFunctionBody(Function *F) {
4620 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4621 return Err;
4622
4623 // Unexpected unresolved metadata when parsing function.
4624 if (MDLoader->hasFwdRefs())
4625 return error("Invalid function metadata: incoming forward references");
4626
4627 InstructionList.clear();
4628 unsigned ModuleValueListSize = ValueList.size();
4629 unsigned ModuleMDLoaderSize = MDLoader->size();
4630
4631 // Add all the function arguments to the value table.
4632 unsigned ArgNo = 0;
4633 unsigned FTyID = FunctionTypeIDs[F];
4634 for (Argument &I : F->args()) {
4635 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4636 assert(I.getType() == getTypeByID(ArgTyID) &&
4637 "Incorrect fully specified type for Function Argument");
4638 ValueList.push_back(&I, ArgTyID);
4639 ++ArgNo;
4640 }
4641 unsigned NextValueNo = ValueList.size();
4642 BasicBlock *CurBB = nullptr;
4643 unsigned CurBBNo = 0;
4644 // Block into which constant expressions from phi nodes are materialized.
4645 BasicBlock *PhiConstExprBB = nullptr;
4646 // Edge blocks for phi nodes into which constant expressions have been
4647 // expanded.
4648 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4649 ConstExprEdgeBBs;
4650
4651 DebugLoc LastLoc;
4652 auto getLastInstruction = [&]() -> Instruction * {
4653 if (CurBB && !CurBB->empty())
4654 return &CurBB->back();
4655 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4656 !FunctionBBs[CurBBNo - 1]->empty())
4657 return &FunctionBBs[CurBBNo - 1]->back();
4658 return nullptr;
4659 };
4660
4661 std::vector<OperandBundleDef> OperandBundles;
4662
4663 // Read all the records.
4664 SmallVector<uint64_t, 64> Record;
4665
4666 while (true) {
4667 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4668 if (!MaybeEntry)
4669 return MaybeEntry.takeError();
4670 llvm::BitstreamEntry Entry = MaybeEntry.get();
4671
4672 switch (Entry.Kind) {
4673 case BitstreamEntry::Error:
4674 return error("Malformed block");
4675 case BitstreamEntry::EndBlock:
4676 goto OutOfRecordLoop;
4677
4678 case BitstreamEntry::SubBlock:
4679 switch (Entry.ID) {
4680 default: // Skip unknown content.
4681 if (Error Err = Stream.SkipBlock())
4682 return Err;
4683 break;
4684 case bitc::CONSTANTS_BLOCK_ID:
4685 if (Error Err = parseConstants())
4686 return Err;
4687 NextValueNo = ValueList.size();
4688 break;
4689 case bitc::VALUE_SYMTAB_BLOCK_ID:
4690 if (Error Err = parseValueSymbolTable())
4691 return Err;
4692 break;
4693 case bitc::METADATA_ATTACHMENT_ID:
4694 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4695 return Err;
4696 break;
4697 case bitc::METADATA_BLOCK_ID:
4698 assert(DeferredMetadataInfo.empty() &&
4699 "Must read all module-level metadata before function-level");
4700 if (Error Err = MDLoader->parseFunctionMetadata())
4701 return Err;
4702 break;
4703 case bitc::USELIST_BLOCK_ID:
4704 if (Error Err = parseUseLists())
4705 return Err;
4706 break;
4707 }
4708 continue;
4709
4710 case BitstreamEntry::Record:
4711 // The interesting case.
4712 break;
4713 }
4714
4715 // Read a record.
4716 Record.clear();
4717 Instruction *I = nullptr;
4718 unsigned ResTypeID = InvalidTypeID;
4719 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4720 if (!MaybeBitCode)
4721 return MaybeBitCode.takeError();
4722 switch (unsigned BitCode = MaybeBitCode.get()) {
4723 default: // Default behavior: reject
4724 return error("Invalid value");
4725 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4726 if (Record.empty() || Record[0] == 0)
4727 return error("Invalid record");
4728 // Create all the basic blocks for the function.
4729 FunctionBBs.resize(Record[0]);
4730
4731 // See if anything took the address of blocks in this function.
4732 auto BBFRI = BasicBlockFwdRefs.find(F);
4733 if (BBFRI == BasicBlockFwdRefs.end()) {
4734 for (BasicBlock *&BB : FunctionBBs)
4735 BB = BasicBlock::Create(Context, "", F);
4736 } else {
4737 auto &BBRefs = BBFRI->second;
4738 // Check for invalid basic block references.
4739 if (BBRefs.size() > FunctionBBs.size())
4740 return error("Invalid ID");
4741 assert(!BBRefs.empty() && "Unexpected empty array");
4742 assert(!BBRefs.front() && "Invalid reference to entry block");
4743 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4744 ++I)
4745 if (I < RE && BBRefs[I]) {
4746 BBRefs[I]->insertInto(F);
4747 FunctionBBs[I] = BBRefs[I];
4748 } else {
4749 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4750 }
4751
4752 // Erase from the table.
4753 BasicBlockFwdRefs.erase(BBFRI);
4754 }
4755
4756 CurBB = FunctionBBs[0];
4757 continue;
4758 }
4759
4760 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4761 // The record should not be emitted if it's an empty list.
4762 if (Record.empty())
4763 return error("Invalid record");
4764 // When we have the RARE case of a BlockAddress Constant that is not
4765 // scoped to the Function it refers to, we need to conservatively
4766 // materialize the referred to Function, regardless of whether or not
4767 // that Function will ultimately be linked, otherwise users of
4768 // BitcodeReader might start splicing out Function bodies such that we
4769 // might no longer be able to materialize the BlockAddress since the
4770 // BasicBlock (and entire body of the Function) the BlockAddress refers
4771 // to may have been moved. In the case that the user of BitcodeReader
4772 // decides ultimately not to link the Function body, materializing here
4773 // could be considered wasteful, but it's better than a deserialization
4774 // failure as described. This keeps BitcodeReader unaware of complex
4775 // linkage policy decisions such as those use by LTO, leaving those
4776 // decisions "one layer up."
4777 for (uint64_t ValID : Record)
4778 if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4779 BackwardRefFunctions.push_back(F);
4780 else
4781 return error("Invalid record");
4782
4783 continue;
4784
4785 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4786 // This record indicates that the last instruction is at the same
4787 // location as the previous instruction with a location.
4788 I = getLastInstruction();
4789
4790 if (!I)
4791 return error("Invalid record");
4792 I->setDebugLoc(LastLoc);
4793 I = nullptr;
4794 continue;
4795
4796 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4797 I = getLastInstruction();
4798 if (!I || Record.size() < 4)
4799 return error("Invalid record");
4800
4801 unsigned Line = Record[0], Col = Record[1];
4802 unsigned ScopeID = Record[2], IAID = Record[3];
4803 bool isImplicitCode = Record.size() == 5 && Record[4];
4804
4805 MDNode *Scope = nullptr, *IA = nullptr;
4806 if (ScopeID) {
4807 Scope = dyn_cast_or_null<MDNode>(
4808 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4809 if (!Scope)
4810 return error("Invalid record");
4811 }
4812 if (IAID) {
4813 IA = dyn_cast_or_null<MDNode>(
4814 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4815 if (!IA)
4816 return error("Invalid record");
4817 }
4818 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4819 isImplicitCode);
4820 I->setDebugLoc(LastLoc);
4821 I = nullptr;
4822 continue;
4823 }
4824 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4825 unsigned OpNum = 0;
4826 Value *LHS;
4827 unsigned TypeID;
4828 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4829 OpNum+1 > Record.size())
4830 return error("Invalid record");
4831
4832 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4833 if (Opc == -1)
4834 return error("Invalid record");
4835 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4836 ResTypeID = TypeID;
4837 InstructionList.push_back(I);
4838 if (OpNum < Record.size()) {
4839 if (isa<FPMathOperator>(I)) {
4840 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4841 if (FMF.any())
4842 I->setFastMathFlags(FMF);
4843 }
4844 }
4845 break;
4846 }
4847 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4848 unsigned OpNum = 0;
4849 Value *LHS, *RHS;
4850 unsigned TypeID;
4851 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4852 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4853 CurBB) ||
4854 OpNum+1 > Record.size())
4855 return error("Invalid record");
4856
4857 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4858 if (Opc == -1)
4859 return error("Invalid record");
4860 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4861 ResTypeID = TypeID;
4862 InstructionList.push_back(I);
4863 if (OpNum < Record.size()) {
4864 if (Opc == Instruction::Add ||
4865 Opc == Instruction::Sub ||
4866 Opc == Instruction::Mul ||
4867 Opc == Instruction::Shl) {
4868 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4869 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4870 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4871 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4872 } else if (Opc == Instruction::SDiv ||
4873 Opc == Instruction::UDiv ||
4874 Opc == Instruction::LShr ||
4875 Opc == Instruction::AShr) {
4876 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4877 cast<BinaryOperator>(I)->setIsExact(true);
4878 } else if (isa<FPMathOperator>(I)) {
4879 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4880 if (FMF.any())
4881 I->setFastMathFlags(FMF);
4882 }
4883
4884 }
4885 break;
4886 }
4887 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4888 unsigned OpNum = 0;
4889 Value *Op;
4890 unsigned OpTypeID;
4891 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4892 OpNum+2 != Record.size())
4893 return error("Invalid record");
4894
4895 ResTypeID = Record[OpNum];
4896 Type *ResTy = getTypeByID(ResTypeID);
4897 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4898 if (Opc == -1 || !ResTy)
4899 return error("Invalid record");
4900 Instruction *Temp = nullptr;
4901 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4902 if (Temp) {
4903 InstructionList.push_back(Temp);
4904 assert(CurBB && "No current BB?");
4905 Temp->insertInto(CurBB, CurBB->end());
4906 }
4907 } else {
4908 auto CastOp = (Instruction::CastOps)Opc;
4909 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4910 return error("Invalid cast");
4911 I = CastInst::Create(CastOp, Op, ResTy);
4912 }
4913 InstructionList.push_back(I);
4914 break;
4915 }
4916 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4917 case bitc::FUNC_CODE_INST_GEP_OLD:
4918 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4919 unsigned OpNum = 0;
4920
4921 unsigned TyID;
4922 Type *Ty;
4923 bool InBounds;
4924
4925 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4926 InBounds = Record[OpNum++];
4927 TyID = Record[OpNum++];
4928 Ty = getTypeByID(TyID);
4929 } else {
4930 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4931 TyID = InvalidTypeID;
4932 Ty = nullptr;
4933 }
4934
4935 Value *BasePtr;
4936 unsigned BasePtrTypeID;
4937 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4938 CurBB))
4939 return error("Invalid record");
4940
4941 if (!Ty) {
4942 TyID = getContainedTypeID(BasePtrTypeID);
4943 if (BasePtr->getType()->isVectorTy())
4944 TyID = getContainedTypeID(TyID);
4945 Ty = getTypeByID(TyID);
4946 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4947 ->isOpaqueOrPointeeTypeMatches(Ty)) {
4948 return error(
4949 "Explicit gep type does not match pointee type of pointer operand");
4950 }
4951
4952 SmallVector<Value*, 16> GEPIdx;
4953 while (OpNum != Record.size()) {
4954 Value *Op;
4955 unsigned OpTypeID;
4956 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4957 return error("Invalid record");
4958 GEPIdx.push_back(Op);
4959 }
4960
4961 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4962
4963 ResTypeID = TyID;
4964 if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4965 auto GTI = std::next(gep_type_begin(I));
4966 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4967 unsigned SubType = 0;
4968 if (GTI.isStruct()) {
4969 ConstantInt *IdxC =
4970 Idx->getType()->isVectorTy()
4971 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4972 : cast<ConstantInt>(Idx);
4973 SubType = IdxC->getZExtValue();
4974 }
4975 ResTypeID = getContainedTypeID(ResTypeID, SubType);
4976 ++GTI;
4977 }
4978 }
4979
4980 // At this point ResTypeID is the result element type. We need a pointer
4981 // or vector of pointer to it.
4982 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4983 if (I->getType()->isVectorTy())
4984 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4985
4986 InstructionList.push_back(I);
4987 if (InBounds)
4988 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4989 break;
4990 }
4991
4992 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4993 // EXTRACTVAL: [opty, opval, n x indices]
4994 unsigned OpNum = 0;
4995 Value *Agg;
4996 unsigned AggTypeID;
4997 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4998 return error("Invalid record");
4999 Type *Ty = Agg->getType();
5000
5001 unsigned RecSize = Record.size();
5002 if (OpNum == RecSize)
5003 return error("EXTRACTVAL: Invalid instruction with 0 indices");
5004
5005 SmallVector<unsigned, 4> EXTRACTVALIdx;
5006 ResTypeID = AggTypeID;
5007 for (; OpNum != RecSize; ++OpNum) {
5008 bool IsArray = Ty->isArrayTy();
5009 bool IsStruct = Ty->isStructTy();
5010 uint64_t Index = Record[OpNum];
5011
5012 if (!IsStruct && !IsArray)
5013 return error("EXTRACTVAL: Invalid type");
5014 if ((unsigned)Index != Index)
5015 return error("Invalid value");
5016 if (IsStruct && Index >= Ty->getStructNumElements())
5017 return error("EXTRACTVAL: Invalid struct index");
5018 if (IsArray && Index >= Ty->getArrayNumElements())
5019 return error("EXTRACTVAL: Invalid array index");
5020 EXTRACTVALIdx.push_back((unsigned)Index);
5021
5022 if (IsStruct) {
5023 Ty = Ty->getStructElementType(Index);
5024 ResTypeID = getContainedTypeID(ResTypeID, Index);
5025 } else {
5026 Ty = Ty->getArrayElementType();
5027 ResTypeID = getContainedTypeID(ResTypeID);
5028 }
5029 }
5030
5031 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5032 InstructionList.push_back(I);
5033 break;
5034 }
5035
5036 case bitc::FUNC_CODE_INST_INSERTVAL: {
5037 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5038 unsigned OpNum = 0;
5039 Value *Agg;
5040 unsigned AggTypeID;
5041 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5042 return error("Invalid record");
5043 Value *Val;
5044 unsigned ValTypeID;
5045 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5046 return error("Invalid record");
5047
5048 unsigned RecSize = Record.size();
5049 if (OpNum == RecSize)
5050 return error("INSERTVAL: Invalid instruction with 0 indices");
5051
5052 SmallVector<unsigned, 4> INSERTVALIdx;
5053 Type *CurTy = Agg->getType();
5054 for (; OpNum != RecSize; ++OpNum) {
5055 bool IsArray = CurTy->isArrayTy();
5056 bool IsStruct = CurTy->isStructTy();
5057 uint64_t Index = Record[OpNum];
5058
5059 if (!IsStruct && !IsArray)
5060 return error("INSERTVAL: Invalid type");
5061 if ((unsigned)Index != Index)
5062 return error("Invalid value");
5063 if (IsStruct && Index >= CurTy->getStructNumElements())
5064 return error("INSERTVAL: Invalid struct index");
5065 if (IsArray && Index >= CurTy->getArrayNumElements())
5066 return error("INSERTVAL: Invalid array index");
5067
5068 INSERTVALIdx.push_back((unsigned)Index);
5069 if (IsStruct)
5070 CurTy = CurTy->getStructElementType(Index);
5071 else
5072 CurTy = CurTy->getArrayElementType();
5073 }
5074
5075 if (CurTy != Val->getType())
5076 return error("Inserted value type doesn't match aggregate type");
5077
5078 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5079 ResTypeID = AggTypeID;
5080 InstructionList.push_back(I);
5081 break;
5082 }
5083
5084 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5085 // obsolete form of select
5086 // handles select i1 ... in old bitcode
5087 unsigned OpNum = 0;
5088 Value *TrueVal, *FalseVal, *Cond;
5089 unsigned TypeID;
5090 Type *CondType = Type::getInt1Ty(Context);
5091 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5092 CurBB) ||
5093 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5094 FalseVal, CurBB) ||
5095 popValue(Record, OpNum, NextValueNo, CondType,
5096 getVirtualTypeID(CondType), Cond, CurBB))
5097 return error("Invalid record");
5098
5099 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5100 ResTypeID = TypeID;
5101 InstructionList.push_back(I);
5102 break;
5103 }
5104
5105 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5106 // new form of select
5107 // handles select i1 or select [N x i1]
5108 unsigned OpNum = 0;
5109 Value *TrueVal, *FalseVal, *Cond;
5110 unsigned ValTypeID, CondTypeID;
5111 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5112 CurBB) ||
5113 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5114 FalseVal, CurBB) ||
5115 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5116 return error("Invalid record");
5117
5118 // select condition can be either i1 or [N x i1]
5119 if (VectorType* vector_type =
5120 dyn_cast<VectorType>(Cond->getType())) {
5121 // expect <n x i1>
5122 if (vector_type->getElementType() != Type::getInt1Ty(Context))
5123 return error("Invalid type for value");
5124 } else {
5125 // expect i1
5126 if (Cond->getType() != Type::getInt1Ty(Context))
5127 return error("Invalid type for value");
5128 }
5129
5130 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5131 ResTypeID = ValTypeID;
5132 InstructionList.push_back(I);
5133 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5134 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5135 if (FMF.any())
5136 I->setFastMathFlags(FMF);
5137 }
5138 break;
5139 }
5140
5141 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5142 unsigned OpNum = 0;
5143 Value *Vec, *Idx;
5144 unsigned VecTypeID, IdxTypeID;
5145 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5146 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5147 return error("Invalid record");
5148 if (!Vec->getType()->isVectorTy())
5149 return error("Invalid type for value");
5150 I = ExtractElementInst::Create(Vec, Idx);
5151 ResTypeID = getContainedTypeID(VecTypeID);
5152 InstructionList.push_back(I);
5153 break;
5154 }
5155
5156 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5157 unsigned OpNum = 0;
5158 Value *Vec, *Elt, *Idx;
5159 unsigned VecTypeID, IdxTypeID;
5160 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5161 return error("Invalid record");
5162 if (!Vec->getType()->isVectorTy())
5163 return error("Invalid type for value");
5164 if (popValue(Record, OpNum, NextValueNo,
5165 cast<VectorType>(Vec->getType())->getElementType(),
5166 getContainedTypeID(VecTypeID), Elt, CurBB) ||
5167 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5168 return error("Invalid record");
5169 I = InsertElementInst::Create(Vec, Elt, Idx);
5170 ResTypeID = VecTypeID;
5171 InstructionList.push_back(I);
5172 break;
5173 }
5174
5175 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5176 unsigned OpNum = 0;
5177 Value *Vec1, *Vec2, *Mask;
5178 unsigned Vec1TypeID;
5179 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5180 CurBB) ||
5181 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5182 Vec2, CurBB))
5183 return error("Invalid record");
5184
5185 unsigned MaskTypeID;
5186 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5187 return error("Invalid record");
5188 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5189 return error("Invalid type for value");
5190
5191 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5192 ResTypeID =
5193 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5194 InstructionList.push_back(I);
5195 break;
5196 }
5197
5198 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5199 // Old form of ICmp/FCmp returning bool
5200 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5201 // both legal on vectors but had different behaviour.
5202 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5203 // FCmp/ICmp returning bool or vector of bool
5204
5205 unsigned OpNum = 0;
5206 Value *LHS, *RHS;
5207 unsigned LHSTypeID;
5208 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5209 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5210 CurBB))
5211 return error("Invalid record");
5212
5213 if (OpNum >= Record.size())
5214 return error(
5215 "Invalid record: operand number exceeded available operands");
5216
5217 unsigned PredVal = Record[OpNum];
5218 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5219 FastMathFlags FMF;
5220 if (IsFP && Record.size() > OpNum+1)
5221 FMF = getDecodedFastMathFlags(Record[++OpNum]);
5222
5223 if (OpNum+1 != Record.size())
5224 return error("Invalid record");
5225
5226 if (LHS->getType()->isFPOrFPVectorTy())
5227 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5228 else
5229 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5230
5231 ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5232 if (LHS->getType()->isVectorTy())
5233 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5234
5235 if (FMF.any())
5236 I->setFastMathFlags(FMF);
5237 InstructionList.push_back(I);
5238 break;
5239 }
5240
5241 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5242 {
5243 unsigned Size = Record.size();
5244 if (Size == 0) {
5245 I = ReturnInst::Create(Context);
5246 InstructionList.push_back(I);
5247 break;
5248 }
5249
5250 unsigned OpNum = 0;
5251 Value *Op = nullptr;
5252 unsigned OpTypeID;
5253 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5254 return error("Invalid record");
5255 if (OpNum != Record.size())
5256 return error("Invalid record");
5257
5258 I = ReturnInst::Create(Context, Op);
5259 InstructionList.push_back(I);
5260 break;
5261 }
5262 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5263 if (Record.size() != 1 && Record.size() != 3)
5264 return error("Invalid record");
5265 BasicBlock *TrueDest = getBasicBlock(Record[0]);
5266 if (!TrueDest)
5267 return error("Invalid record");
5268
5269 if (Record.size() == 1) {
5270 I = BranchInst::Create(TrueDest);
5271 InstructionList.push_back(I);
5272 }
5273 else {
5274 BasicBlock *FalseDest = getBasicBlock(Record[1]);
5275 Type *CondType = Type::getInt1Ty(Context);
5276 Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5277 getVirtualTypeID(CondType), CurBB);
5278 if (!FalseDest || !Cond)
5279 return error("Invalid record");
5280 I = BranchInst::Create(TrueDest, FalseDest, Cond);
5281 InstructionList.push_back(I);
5282 }
5283 break;
5284 }
5285 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5286 if (Record.size() != 1 && Record.size() != 2)
5287 return error("Invalid record");
5288 unsigned Idx = 0;
5289 Type *TokenTy = Type::getTokenTy(Context);
5290 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5291 getVirtualTypeID(TokenTy), CurBB);
5292 if (!CleanupPad)
5293 return error("Invalid record");
5294 BasicBlock *UnwindDest = nullptr;
5295 if (Record.size() == 2) {
5296 UnwindDest = getBasicBlock(Record[Idx++]);
5297 if (!UnwindDest)
5298 return error("Invalid record");
5299 }
5300
5301 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5302 InstructionList.push_back(I);
5303 break;
5304 }
5305 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5306 if (Record.size() != 2)
5307 return error("Invalid record");
5308 unsigned Idx = 0;
5309 Type *TokenTy = Type::getTokenTy(Context);
5310 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5311 getVirtualTypeID(TokenTy), CurBB);
5312 if (!CatchPad)
5313 return error("Invalid record");
5314 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5315 if (!BB)
5316 return error("Invalid record");
5317
5318 I = CatchReturnInst::Create(CatchPad, BB);
5319 InstructionList.push_back(I);
5320 break;
5321 }
5322 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5323 // We must have, at minimum, the outer scope and the number of arguments.
5324 if (Record.size() < 2)
5325 return error("Invalid record");
5326
5327 unsigned Idx = 0;
5328
5329 Type *TokenTy = Type::getTokenTy(Context);
5330 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5331 getVirtualTypeID(TokenTy), CurBB);
5332
5333 unsigned NumHandlers = Record[Idx++];
5334
5335 SmallVector<BasicBlock *, 2> Handlers;
5336 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5337 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5338 if (!BB)
5339 return error("Invalid record");
5340 Handlers.push_back(BB);
5341 }
5342
5343 BasicBlock *UnwindDest = nullptr;
5344 if (Idx + 1 == Record.size()) {
5345 UnwindDest = getBasicBlock(Record[Idx++]);
5346 if (!UnwindDest)
5347 return error("Invalid record");
5348 }
5349
5350 if (Record.size() != Idx)
5351 return error("Invalid record");
5352
5353 auto *CatchSwitch =
5354 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5355 for (BasicBlock *Handler : Handlers)
5356 CatchSwitch->addHandler(Handler);
5357 I = CatchSwitch;
5358 ResTypeID = getVirtualTypeID(I->getType());
5359 InstructionList.push_back(I);
5360 break;
5361 }
5362 case bitc::FUNC_CODE_INST_CATCHPAD:
5363 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5364 // We must have, at minimum, the outer scope and the number of arguments.
5365 if (Record.size() < 2)
5366 return error("Invalid record");
5367
5368 unsigned Idx = 0;
5369
5370 Type *TokenTy = Type::getTokenTy(Context);
5371 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5372 getVirtualTypeID(TokenTy), CurBB);
5373
5374 unsigned NumArgOperands = Record[Idx++];
5375
5376 SmallVector<Value *, 2> Args;
5377 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5378 Value *Val;
5379 unsigned ValTypeID;
5380 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5381 return error("Invalid record");
5382 Args.push_back(Val);
5383 }
5384
5385 if (Record.size() != Idx)
5386 return error("Invalid record");
5387
5388 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5389 I = CleanupPadInst::Create(ParentPad, Args);
5390 else
5391 I = CatchPadInst::Create(ParentPad, Args);
5392 ResTypeID = getVirtualTypeID(I->getType());
5393 InstructionList.push_back(I);
5394 break;
5395 }
5396 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5397 // Check magic
5398 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5399 // "New" SwitchInst format with case ranges. The changes to write this
5400 // format were reverted but we still recognize bitcode that uses it.
5401 // Hopefully someday we will have support for case ranges and can use
5402 // this format again.
5403
5404 unsigned OpTyID = Record[1];
5405 Type *OpTy = getTypeByID(OpTyID);
5406 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5407
5408 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5409 BasicBlock *Default = getBasicBlock(Record[3]);
5410 if (!OpTy || !Cond || !Default)
5411 return error("Invalid record");
5412
5413 unsigned NumCases = Record[4];
5414
5415 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5416 InstructionList.push_back(SI);
5417
5418 unsigned CurIdx = 5;
5419 for (unsigned i = 0; i != NumCases; ++i) {
5420 SmallVector<ConstantInt*, 1> CaseVals;
5421 unsigned NumItems = Record[CurIdx++];
5422 for (unsigned ci = 0; ci != NumItems; ++ci) {
5423 bool isSingleNumber = Record[CurIdx++];
5424
5425 APInt Low;
5426 unsigned ActiveWords = 1;
5427 if (ValueBitWidth > 64)
5428 ActiveWords = Record[CurIdx++];
5429 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5430 ValueBitWidth);
5431 CurIdx += ActiveWords;
5432
5433 if (!isSingleNumber) {
5434 ActiveWords = 1;
5435 if (ValueBitWidth > 64)
5436 ActiveWords = Record[CurIdx++];
5437 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5438 ValueBitWidth);
5439 CurIdx += ActiveWords;
5440
5441 // FIXME: It is not clear whether values in the range should be
5442 // compared as signed or unsigned values. The partially
5443 // implemented changes that used this format in the past used
5444 // unsigned comparisons.
5445 for ( ; Low.ule(High); ++Low)
5446 CaseVals.push_back(ConstantInt::get(Context, Low));
5447 } else
5448 CaseVals.push_back(ConstantInt::get(Context, Low));
5449 }
5450 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5451 for (ConstantInt *Cst : CaseVals)
5452 SI->addCase(Cst, DestBB);
5453 }
5454 I = SI;
5455 break;
5456 }
5457
5458 // Old SwitchInst format without case ranges.
5459
5460 if (Record.size() < 3 || (Record.size() & 1) == 0)
5461 return error("Invalid record");
5462 unsigned OpTyID = Record[0];
5463 Type *OpTy = getTypeByID(OpTyID);
5464 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5465 BasicBlock *Default = getBasicBlock(Record[2]);
5466 if (!OpTy || !Cond || !Default)
5467 return error("Invalid record");
5468 unsigned NumCases = (Record.size()-3)/2;
5469 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5470 InstructionList.push_back(SI);
5471 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5472 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5473 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5474 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5475 if (!CaseVal || !DestBB) {
5476 delete SI;
5477 return error("Invalid record");
5478 }
5479 SI->addCase(CaseVal, DestBB);
5480 }
5481 I = SI;
5482 break;
5483 }
5484 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5485 if (Record.size() < 2)
5486 return error("Invalid record");
5487 unsigned OpTyID = Record[0];
5488 Type *OpTy = getTypeByID(OpTyID);
5489 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5490 if (!OpTy || !Address)
5491 return error("Invalid record");
5492 unsigned NumDests = Record.size()-2;
5493 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5494 InstructionList.push_back(IBI);
5495 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5496 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5497 IBI->addDestination(DestBB);
5498 } else {
5499 delete IBI;
5500 return error("Invalid record");
5501 }
5502 }
5503 I = IBI;
5504 break;
5505 }
5506
5507 case bitc::FUNC_CODE_INST_INVOKE: {
5508 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5509 if (Record.size() < 4)
5510 return error("Invalid record");
5511 unsigned OpNum = 0;
5512 AttributeList PAL = getAttributes(Record[OpNum++]);
5513 unsigned CCInfo = Record[OpNum++];
5514 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5515 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5516
5517 unsigned FTyID = InvalidTypeID;
5518 FunctionType *FTy = nullptr;
5519 if ((CCInfo >> 13) & 1) {
5520 FTyID = Record[OpNum++];
5521 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5522 if (!FTy)
5523 return error("Explicit invoke type is not a function type");
5524 }
5525
5526 Value *Callee;
5527 unsigned CalleeTypeID;
5528 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5529 CurBB))
5530 return error("Invalid record");
5531
5532 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5533 if (!CalleeTy)
5534 return error("Callee is not a pointer");
5535 if (!FTy) {
5536 FTyID = getContainedTypeID(CalleeTypeID);
5537 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5538 if (!FTy)
5539 return error("Callee is not of pointer to function type");
5540 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5541 return error("Explicit invoke type does not match pointee type of "
5542 "callee operand");
5543 if (Record.size() < FTy->getNumParams() + OpNum)
5544 return error("Insufficient operands to call");
5545
5546 SmallVector<Value*, 16> Ops;
5547 SmallVector<unsigned, 16> ArgTyIDs;
5548 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5549 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5550 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5551 ArgTyID, CurBB));
5552 ArgTyIDs.push_back(ArgTyID);
5553 if (!Ops.back())
5554 return error("Invalid record");
5555 }
5556
5557 if (!FTy->isVarArg()) {
5558 if (Record.size() != OpNum)
5559 return error("Invalid record");
5560 } else {
5561 // Read type/value pairs for varargs params.
5562 while (OpNum != Record.size()) {
5563 Value *Op;
5564 unsigned OpTypeID;
5565 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5566 return error("Invalid record");
5567 Ops.push_back(Op);
5568 ArgTyIDs.push_back(OpTypeID);
5569 }
5570 }
5571
5572 // Upgrade the bundles if needed.
5573 if (!OperandBundles.empty())
5574 UpgradeOperandBundles(OperandBundles);
5575
5576 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5577 OperandBundles);
5578 ResTypeID = getContainedTypeID(FTyID);
5579 OperandBundles.clear();
5580 InstructionList.push_back(I);
5581 cast<InvokeInst>(I)->setCallingConv(
5582 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5583 cast<InvokeInst>(I)->setAttributes(PAL);
5584 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5585 I->deleteValue();
5586 return Err;
5587 }
5588
5589 break;
5590 }
5591 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5592 unsigned Idx = 0;
5593 Value *Val = nullptr;
5594 unsigned ValTypeID;
5595 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5596 return error("Invalid record");
5597 I = ResumeInst::Create(Val);
5598 InstructionList.push_back(I);
5599 break;
5600 }
5601 case bitc::FUNC_CODE_INST_CALLBR: {
5602 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5603 unsigned OpNum = 0;
5604 AttributeList PAL = getAttributes(Record[OpNum++]);
5605 unsigned CCInfo = Record[OpNum++];
5606
5607 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5608 unsigned NumIndirectDests = Record[OpNum++];
5609 SmallVector<BasicBlock *, 16> IndirectDests;
5610 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5611 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5612
5613 unsigned FTyID = InvalidTypeID;
5614 FunctionType *FTy = nullptr;
5615 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5616 FTyID = Record[OpNum++];
5617 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5618 if (!FTy)
5619 return error("Explicit call type is not a function type");
5620 }
5621
5622 Value *Callee;
5623 unsigned CalleeTypeID;
5624 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5625 CurBB))
5626 return error("Invalid record");
5627
5628 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5629 if (!OpTy)
5630 return error("Callee is not a pointer type");
5631 if (!FTy) {
5632 FTyID = getContainedTypeID(CalleeTypeID);
5633 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5634 if (!FTy)
5635 return error("Callee is not of pointer to function type");
5636 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5637 return error("Explicit call type does not match pointee type of "
5638 "callee operand");
5639 if (Record.size() < FTy->getNumParams() + OpNum)
5640 return error("Insufficient operands to call");
5641
5642 SmallVector<Value*, 16> Args;
5643 SmallVector<unsigned, 16> ArgTyIDs;
5644 // Read the fixed params.
5645 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5646 Value *Arg;
5647 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5648 if (FTy->getParamType(i)->isLabelTy())
5649 Arg = getBasicBlock(Record[OpNum]);
5650 else
5651 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5652 ArgTyID, CurBB);
5653 if (!Arg)
5654 return error("Invalid record");
5655 Args.push_back(Arg);
5656 ArgTyIDs.push_back(ArgTyID);
5657 }
5658
5659 // Read type/value pairs for varargs params.
5660 if (!FTy->isVarArg()) {
5661 if (OpNum != Record.size())
5662 return error("Invalid record");
5663 } else {
5664 while (OpNum != Record.size()) {
5665 Value *Op;
5666 unsigned OpTypeID;
5667 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5668 return error("Invalid record");
5669 Args.push_back(Op);
5670 ArgTyIDs.push_back(OpTypeID);
5671 }
5672 }
5673
5674 // Upgrade the bundles if needed.
5675 if (!OperandBundles.empty())
5676 UpgradeOperandBundles(OperandBundles);
5677
5678 if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5679 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5680 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5681 return CI.Type == InlineAsm::isLabel;
5682 };
5683 if (none_of(ConstraintInfo, IsLabelConstraint)) {
5684 // Upgrade explicit blockaddress arguments to label constraints.
5685 // Verify that the last arguments are blockaddress arguments that
5686 // match the indirect destinations. Clang always generates callbr
5687 // in this form. We could support reordering with more effort.
5688 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5689 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5690 unsigned LabelNo = ArgNo - FirstBlockArg;
5691 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5692 if (!BA || BA->getFunction() != F ||
5693 LabelNo > IndirectDests.size() ||
5694 BA->getBasicBlock() != IndirectDests[LabelNo])
5695 return error("callbr argument does not match indirect dest");
5696 }
5697
5698 // Remove blockaddress arguments.
5699 Args.erase(Args.begin() + FirstBlockArg, Args.end());
5700 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5701
5702 // Recreate the function type with less arguments.
5703 SmallVector<Type *> ArgTys;
5704 for (Value *Arg : Args)
5705 ArgTys.push_back(Arg->getType());
5706 FTy =
5707 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5708
5709 // Update constraint string to use label constraints.
5710 std::string Constraints = IA->getConstraintString();
5711 unsigned ArgNo = 0;
5712 size_t Pos = 0;
5713 for (const auto &CI : ConstraintInfo) {
5714 if (CI.hasArg()) {
5715 if (ArgNo >= FirstBlockArg)
5716 Constraints.insert(Pos, "!");
5717 ++ArgNo;
5718 }
5719
5720 // Go to next constraint in string.
5721 Pos = Constraints.find(',', Pos);
5722 if (Pos == std::string::npos)
5723 break;
5724 ++Pos;
5725 }
5726
5727 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5728 IA->hasSideEffects(), IA->isAlignStack(),
5729 IA->getDialect(), IA->canThrow());
5730 }
5731 }
5732
5733 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5734 OperandBundles);
5735 ResTypeID = getContainedTypeID(FTyID);
5736 OperandBundles.clear();
5737 InstructionList.push_back(I);
5738 cast<CallBrInst>(I)->setCallingConv(
5739 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5740 cast<CallBrInst>(I)->setAttributes(PAL);
5741 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5742 I->deleteValue();
5743 return Err;
5744 }
5745 break;
5746 }
5747 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5748 I = new UnreachableInst(Context);
5749 InstructionList.push_back(I);
5750 break;
5751 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5752 if (Record.empty())
5753 return error("Invalid phi record");
5754 // The first record specifies the type.
5755 unsigned TyID = Record[0];
5756 Type *Ty = getTypeByID(TyID);
5757 if (!Ty)
5758 return error("Invalid phi record");
5759
5760 // Phi arguments are pairs of records of [value, basic block].
5761 // There is an optional final record for fast-math-flags if this phi has a
5762 // floating-point type.
5763 size_t NumArgs = (Record.size() - 1) / 2;
5764 PHINode *PN = PHINode::Create(Ty, NumArgs);
5765 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5766 PN->deleteValue();
5767 return error("Invalid phi record");
5768 }
5769 InstructionList.push_back(PN);
5770
5771 SmallDenseMap<BasicBlock *, Value *> Args;
5772 for (unsigned i = 0; i != NumArgs; i++) {
5773 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5774 if (!BB) {
5775 PN->deleteValue();
5776 return error("Invalid phi BB");
5777 }
5778
5779 // Phi nodes may contain the same predecessor multiple times, in which
5780 // case the incoming value must be identical. Directly reuse the already
5781 // seen value here, to avoid expanding a constant expression multiple
5782 // times.
5783 auto It = Args.find(BB);
5784 if (It != Args.end()) {
5785 PN->addIncoming(It->second, BB);
5786 continue;
5787 }
5788
5789 // If there already is a block for this edge (from a different phi),
5790 // use it.
5791 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5792 if (!EdgeBB) {
5793 // Otherwise, use a temporary block (that we will discard if it
5794 // turns out to be unnecessary).
5795 if (!PhiConstExprBB)
5796 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5797 EdgeBB = PhiConstExprBB;
5798 }
5799
5800 // With the new function encoding, it is possible that operands have
5801 // negative IDs (for forward references). Use a signed VBR
5802 // representation to keep the encoding small.
5803 Value *V;
5804 if (UseRelativeIDs)
5805 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5806 else
5807 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5808 if (!V) {
5809 PN->deleteValue();
5810 PhiConstExprBB->eraseFromParent();
5811 return error("Invalid phi record");
5812 }
5813
5814 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5815 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5816 PhiConstExprBB = nullptr;
5817 }
5818 PN->addIncoming(V, BB);
5819 Args.insert({BB, V});
5820 }
5821 I = PN;
5822 ResTypeID = TyID;
5823
5824 // If there are an even number of records, the final record must be FMF.
5825 if (Record.size() % 2 == 0) {
5826 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5827 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5828 if (FMF.any())
5829 I->setFastMathFlags(FMF);
5830 }
5831
5832 break;
5833 }
5834
5835 case bitc::FUNC_CODE_INST_LANDINGPAD:
5836 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5837 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5838 unsigned Idx = 0;
5839 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5840 if (Record.size() < 3)
5841 return error("Invalid record");
5842 } else {
5843 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5844 if (Record.size() < 4)
5845 return error("Invalid record");
5846 }
5847 ResTypeID = Record[Idx++];
5848 Type *Ty = getTypeByID(ResTypeID);
5849 if (!Ty)
5850 return error("Invalid record");
5851 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5852 Value *PersFn = nullptr;
5853 unsigned PersFnTypeID;
5854 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5855 nullptr))
5856 return error("Invalid record");
5857
5858 if (!F->hasPersonalityFn())
5859 F->setPersonalityFn(cast<Constant>(PersFn));
5860 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5861 return error("Personality function mismatch");
5862 }
5863
5864 bool IsCleanup = !!Record[Idx++];
5865 unsigned NumClauses = Record[Idx++];
5866 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5867 LP->setCleanup(IsCleanup);
5868 for (unsigned J = 0; J != NumClauses; ++J) {
5869 LandingPadInst::ClauseType CT =
5870 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5871 Value *Val;
5872 unsigned ValTypeID;
5873
5874 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5875 nullptr)) {
5876 delete LP;
5877 return error("Invalid record");
5878 }
5879
5880 assert((CT != LandingPadInst::Catch ||
5881 !isa<ArrayType>(Val->getType())) &&
5882 "Catch clause has a invalid type!");
5883 assert((CT != LandingPadInst::Filter ||
5884 isa<ArrayType>(Val->getType())) &&
5885 "Filter clause has invalid type!");
5886 LP->addClause(cast<Constant>(Val));
5887 }
5888
5889 I = LP;
5890 InstructionList.push_back(I);
5891 break;
5892 }
5893
5894 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5895 if (Record.size() != 4 && Record.size() != 5)
5896 return error("Invalid record");
5897 using APV = AllocaPackedValues;
5898 const uint64_t Rec = Record[3];
5899 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5900 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5901 unsigned TyID = Record[0];
5902 Type *Ty = getTypeByID(TyID);
5903 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5904 TyID = getContainedTypeID(TyID);
5905 Ty = getTypeByID(TyID);
5906 if (!Ty)
5907 return error("Missing element type for old-style alloca");
5908 }
5909 unsigned OpTyID = Record[1];
5910 Type *OpTy = getTypeByID(OpTyID);
5911 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5912 MaybeAlign Align;
5913 uint64_t AlignExp =
5914 Bitfield::get<APV::AlignLower>(Rec) |
5915 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5916 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5917 return Err;
5918 }
5919 if (!Ty || !Size)
5920 return error("Invalid record");
5921
5922 const DataLayout &DL = TheModule->getDataLayout();
5923 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5924
5925 SmallPtrSet<Type *, 4> Visited;
5926 if (!Align && !Ty->isSized(&Visited))
5927 return error("alloca of unsized type");
5928 if (!Align)
5929 Align = DL.getPrefTypeAlign(Ty);
5930
5931 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5932 AI->setUsedWithInAlloca(InAlloca);
5933 AI->setSwiftError(SwiftError);
5934 I = AI;
5935 ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5936 InstructionList.push_back(I);
5937 break;
5938 }
5939 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5940 unsigned OpNum = 0;
5941 Value *Op;
5942 unsigned OpTypeID;
5943 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5944 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5945 return error("Invalid record");
5946
5947 if (!isa<PointerType>(Op->getType()))
5948 return error("Load operand is not a pointer type");
5949
5950 Type *Ty = nullptr;
5951 if (OpNum + 3 == Record.size()) {
5952 ResTypeID = Record[OpNum++];
5953 Ty = getTypeByID(ResTypeID);
5954 } else {
5955 ResTypeID = getContainedTypeID(OpTypeID);
5956 Ty = getTypeByID(ResTypeID);
5957 if (!Ty)
5958 return error("Missing element type for old-style load");
5959 }
5960
5961 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5962 return Err;
5963
5964 MaybeAlign Align;
5965 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5966 return Err;
5967 SmallPtrSet<Type *, 4> Visited;
5968 if (!Align && !Ty->isSized(&Visited))
5969 return error("load of unsized type");
5970 if (!Align)
5971 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5972 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5973 InstructionList.push_back(I);
5974 break;
5975 }
5976 case bitc::FUNC_CODE_INST_LOADATOMIC: {
5977 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5978 unsigned OpNum = 0;
5979 Value *Op;
5980 unsigned OpTypeID;
5981 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5982 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5983 return error("Invalid record");
5984
5985 if (!isa<PointerType>(Op->getType()))
5986 return error("Load operand is not a pointer type");
5987
5988 Type *Ty = nullptr;
5989 if (OpNum + 5 == Record.size()) {
5990 ResTypeID = Record[OpNum++];
5991 Ty = getTypeByID(ResTypeID);
5992 } else {
5993 ResTypeID = getContainedTypeID(OpTypeID);
5994 Ty = getTypeByID(ResTypeID);
5995 if (!Ty)
5996 return error("Missing element type for old style atomic load");
5997 }
5998
5999 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6000 return Err;
6001
6002 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6003 if (Ordering == AtomicOrdering::NotAtomic ||
6004 Ordering == AtomicOrdering::Release ||
6005 Ordering == AtomicOrdering::AcquireRelease)
6006 return error("Invalid record");
6007 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6008 return error("Invalid record");
6009 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6010
6011 MaybeAlign Align;
6012 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6013 return Err;
6014 if (!Align)
6015 return error("Alignment missing from atomic load");
6016 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6017 InstructionList.push_back(I);
6018 break;
6019 }
6020 case bitc::FUNC_CODE_INST_STORE:
6021 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6022 unsigned OpNum = 0;
6023 Value *Val, *Ptr;
6024 unsigned PtrTypeID, ValTypeID;
6025 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6026 return error("Invalid record");
6027
6028 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6029 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6030 return error("Invalid record");
6031 } else {
6032 ValTypeID = getContainedTypeID(PtrTypeID);
6033 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6034 ValTypeID, Val, CurBB))
6035 return error("Invalid record");
6036 }
6037
6038 if (OpNum + 2 != Record.size())
6039 return error("Invalid record");
6040
6041 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6042 return Err;
6043 MaybeAlign Align;
6044 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6045 return Err;
6046 SmallPtrSet<Type *, 4> Visited;
6047 if (!Align && !Val->getType()->isSized(&Visited))
6048 return error("store of unsized type");
6049 if (!Align)
6050 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6051 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6052 InstructionList.push_back(I);
6053 break;
6054 }
6055 case bitc::FUNC_CODE_INST_STOREATOMIC:
6056 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6057 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6058 unsigned OpNum = 0;
6059 Value *Val, *Ptr;
6060 unsigned PtrTypeID, ValTypeID;
6061 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6062 !isa<PointerType>(Ptr->getType()))
6063 return error("Invalid record");
6064 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6065 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6066 return error("Invalid record");
6067 } else {
6068 ValTypeID = getContainedTypeID(PtrTypeID);
6069 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6070 ValTypeID, Val, CurBB))
6071 return error("Invalid record");
6072 }
6073
6074 if (OpNum + 4 != Record.size())
6075 return error("Invalid record");
6076
6077 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6078 return Err;
6079 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6080 if (Ordering == AtomicOrdering::NotAtomic ||
6081 Ordering == AtomicOrdering::Acquire ||
6082 Ordering == AtomicOrdering::AcquireRelease)
6083 return error("Invalid record");
6084 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6085 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6086 return error("Invalid record");
6087
6088 MaybeAlign Align;
6089 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6090 return Err;
6091 if (!Align)
6092 return error("Alignment missing from atomic store");
6093 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6094 InstructionList.push_back(I);
6095 break;
6096 }
6097 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6098 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6099 // failure_ordering?, weak?]
6100 const size_t NumRecords = Record.size();
6101 unsigned OpNum = 0;
6102 Value *Ptr = nullptr;
6103 unsigned PtrTypeID;
6104 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6105 return error("Invalid record");
6106
6107 if (!isa<PointerType>(Ptr->getType()))
6108 return error("Cmpxchg operand is not a pointer type");
6109
6110 Value *Cmp = nullptr;
6111 unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6112 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6113 CmpTypeID, Cmp, CurBB))
6114 return error("Invalid record");
6115
6116 Value *New = nullptr;
6117 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6118 New, CurBB) ||
6119 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6120 return error("Invalid record");
6121
6122 const AtomicOrdering SuccessOrdering =
6123 getDecodedOrdering(Record[OpNum + 1]);
6124 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6125 SuccessOrdering == AtomicOrdering::Unordered)
6126 return error("Invalid record");
6127
6128 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6129
6130 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6131 return Err;
6132
6133 const AtomicOrdering FailureOrdering =
6134 NumRecords < 7
6135 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6136 : getDecodedOrdering(Record[OpNum + 3]);
6137
6138 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6139 FailureOrdering == AtomicOrdering::Unordered)
6140 return error("Invalid record");
6141
6142 const Align Alignment(
6143 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6144
6145 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6146 FailureOrdering, SSID);
6147 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6148
6149 if (NumRecords < 8) {
6150 // Before weak cmpxchgs existed, the instruction simply returned the
6151 // value loaded from memory, so bitcode files from that era will be
6152 // expecting the first component of a modern cmpxchg.
6153 I->insertInto(CurBB, CurBB->end());
6154 I = ExtractValueInst::Create(I, 0);
6155 ResTypeID = CmpTypeID;
6156 } else {
6157 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6158 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6159 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6160 }
6161
6162 InstructionList.push_back(I);
6163 break;
6164 }
6165 case bitc::FUNC_CODE_INST_CMPXCHG: {
6166 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6167 // failure_ordering, weak, align?]
6168 const size_t NumRecords = Record.size();
6169 unsigned OpNum = 0;
6170 Value *Ptr = nullptr;
6171 unsigned PtrTypeID;
6172 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6173 return error("Invalid record");
6174
6175 if (!isa<PointerType>(Ptr->getType()))
6176 return error("Cmpxchg operand is not a pointer type");
6177
6178 Value *Cmp = nullptr;
6179 unsigned CmpTypeID;
6180 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6181 return error("Invalid record");
6182
6183 Value *Val = nullptr;
6184 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6185 CurBB))
6186 return error("Invalid record");
6187
6188 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6189 return error("Invalid record");
6190
6191 const bool IsVol = Record[OpNum];
6192
6193 const AtomicOrdering SuccessOrdering =
6194 getDecodedOrdering(Record[OpNum + 1]);
6195 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6196 return error("Invalid cmpxchg success ordering");
6197
6198 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6199
6200 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6201 return Err;
6202
6203 const AtomicOrdering FailureOrdering =
6204 getDecodedOrdering(Record[OpNum + 3]);
6205 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6206 return error("Invalid cmpxchg failure ordering");
6207
6208 const bool IsWeak = Record[OpNum + 4];
6209
6210 MaybeAlign Alignment;
6211
6212 if (NumRecords == (OpNum + 6)) {
6213 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6214 return Err;
6215 }
6216 if (!Alignment)
6217 Alignment =
6218 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6219
6220 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6221 FailureOrdering, SSID);
6222 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6223 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6224
6225 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6226 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6227
6228 InstructionList.push_back(I);
6229 break;
6230 }
6231 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6232 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6233 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6234 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6235 const size_t NumRecords = Record.size();
6236 unsigned OpNum = 0;
6237
6238 Value *Ptr = nullptr;
6239 unsigned PtrTypeID;
6240 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6241 return error("Invalid record");
6242
6243 if (!isa<PointerType>(Ptr->getType()))
6244 return error("Invalid record");
6245
6246 Value *Val = nullptr;
6247 unsigned ValTypeID = InvalidTypeID;
6248 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6249 ValTypeID = getContainedTypeID(PtrTypeID);
6250 if (popValue(Record, OpNum, NextValueNo,
6251 getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6252 return error("Invalid record");
6253 } else {
6254 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6255 return error("Invalid record");
6256 }
6257
6258 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6259 return error("Invalid record");
6260
6261 const AtomicRMWInst::BinOp Operation =
6262 getDecodedRMWOperation(Record[OpNum]);
6263 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6264 Operation > AtomicRMWInst::LAST_BINOP)
6265 return error("Invalid record");
6266
6267 const bool IsVol = Record[OpNum + 1];
6268
6269 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6270 if (Ordering == AtomicOrdering::NotAtomic ||
6271 Ordering == AtomicOrdering::Unordered)
6272 return error("Invalid record");
6273
6274 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6275
6276 MaybeAlign Alignment;
6277
6278 if (NumRecords == (OpNum + 5)) {
6279 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6280 return Err;
6281 }
6282
6283 if (!Alignment)
6284 Alignment =
6285 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6286
6287 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6288 ResTypeID = ValTypeID;
6289 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6290
6291 InstructionList.push_back(I);
6292 break;
6293 }
6294 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6295 if (2 != Record.size())
6296 return error("Invalid record");
6297 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6298 if (Ordering == AtomicOrdering::NotAtomic ||
6299 Ordering == AtomicOrdering::Unordered ||
6300 Ordering == AtomicOrdering::Monotonic)
6301 return error("Invalid record");
6302 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6303 I = new FenceInst(Context, Ordering, SSID);
6304 InstructionList.push_back(I);
6305 break;
6306 }
6307 case bitc::FUNC_CODE_INST_CALL: {
6308 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6309 if (Record.size() < 3)
6310 return error("Invalid record");
6311
6312 unsigned OpNum = 0;
6313 AttributeList PAL = getAttributes(Record[OpNum++]);
6314 unsigned CCInfo = Record[OpNum++];
6315
6316 FastMathFlags FMF;
6317 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6318 FMF = getDecodedFastMathFlags(Record[OpNum++]);
6319 if (!FMF.any())
6320 return error("Fast math flags indicator set for call with no FMF");
6321 }
6322
6323 unsigned FTyID = InvalidTypeID;
6324 FunctionType *FTy = nullptr;
6325 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6326 FTyID = Record[OpNum++];
6327 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6328 if (!FTy)
6329 return error("Explicit call type is not a function type");
6330 }
6331
6332 Value *Callee;
6333 unsigned CalleeTypeID;
6334 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6335 CurBB))
6336 return error("Invalid record");
6337
6338 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6339 if (!OpTy)
6340 return error("Callee is not a pointer type");
6341 if (!FTy) {
6342 FTyID = getContainedTypeID(CalleeTypeID);
6343 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6344 if (!FTy)
6345 return error("Callee is not of pointer to function type");
6346 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6347 return error("Explicit call type does not match pointee type of "
6348 "callee operand");
6349 if (Record.size() < FTy->getNumParams() + OpNum)
6350 return error("Insufficient operands to call");
6351
6352 SmallVector<Value*, 16> Args;
6353 SmallVector<unsigned, 16> ArgTyIDs;
6354 // Read the fixed params.
6355 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6356 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6357 if (FTy->getParamType(i)->isLabelTy())
6358 Args.push_back(getBasicBlock(Record[OpNum]));
6359 else
6360 Args.push_back(getValue(Record, OpNum, NextValueNo,
6361 FTy->getParamType(i), ArgTyID, CurBB));
6362 ArgTyIDs.push_back(ArgTyID);
6363 if (!Args.back())
6364 return error("Invalid record");
6365 }
6366
6367 // Read type/value pairs for varargs params.
6368 if (!FTy->isVarArg()) {
6369 if (OpNum != Record.size())
6370 return error("Invalid record");
6371 } else {
6372 while (OpNum != Record.size()) {
6373 Value *Op;
6374 unsigned OpTypeID;
6375 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6376 return error("Invalid record");
6377 Args.push_back(Op);
6378 ArgTyIDs.push_back(OpTypeID);
6379 }
6380 }
6381
6382 // Upgrade the bundles if needed.
6383 if (!OperandBundles.empty())
6384 UpgradeOperandBundles(OperandBundles);
6385
6386 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6387 ResTypeID = getContainedTypeID(FTyID);
6388 OperandBundles.clear();
6389 InstructionList.push_back(I);
6390 cast<CallInst>(I)->setCallingConv(
6391 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6392 CallInst::TailCallKind TCK = CallInst::TCK_None;
6393 if (CCInfo & 1 << bitc::CALL_TAIL)
6394 TCK = CallInst::TCK_Tail;
6395 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6396 TCK = CallInst::TCK_MustTail;
6397 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6398 TCK = CallInst::TCK_NoTail;
6399 cast<CallInst>(I)->setTailCallKind(TCK);
6400 cast<CallInst>(I)->setAttributes(PAL);
6401 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6402 I->deleteValue();
6403 return Err;
6404 }
6405 if (FMF.any()) {
6406 if (!isa<FPMathOperator>(I))
6407 return error("Fast-math-flags specified for call without "
6408 "floating-point scalar or vector return type");
6409 I->setFastMathFlags(FMF);
6410 }
6411 break;
6412 }
6413 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6414 if (Record.size() < 3)
6415 return error("Invalid record");
6416 unsigned OpTyID = Record[0];
6417 Type *OpTy = getTypeByID(OpTyID);
6418 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6419 ResTypeID = Record[2];
6420 Type *ResTy = getTypeByID(ResTypeID);
6421 if (!OpTy || !Op || !ResTy)
6422 return error("Invalid record");
6423 I = new VAArgInst(Op, ResTy);
6424 InstructionList.push_back(I);
6425 break;
6426 }
6427
6428 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6429 // A call or an invoke can be optionally prefixed with some variable
6430 // number of operand bundle blocks. These blocks are read into
6431 // OperandBundles and consumed at the next call or invoke instruction.
6432
6433 if (Record.empty() || Record[0] >= BundleTags.size())
6434 return error("Invalid record");
6435
6436 std::vector<Value *> Inputs;
6437
6438 unsigned OpNum = 1;
6439 while (OpNum != Record.size()) {
6440 Value *Op;
6441 unsigned OpTypeID;
6442 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6443 return error("Invalid record");
6444 Inputs.push_back(Op);
6445 }
6446
6447 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6448 continue;
6449 }
6450
6451 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6452 unsigned OpNum = 0;
6453 Value *Op = nullptr;
6454 unsigned OpTypeID;
6455 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6456 return error("Invalid record");
6457 if (OpNum != Record.size())
6458 return error("Invalid record");
6459
6460 I = new FreezeInst(Op);
6461 ResTypeID = OpTypeID;
6462 InstructionList.push_back(I);
6463 break;
6464 }
6465 }
6466
6467 // Add instruction to end of current BB. If there is no current BB, reject
6468 // this file.
6469 if (!CurBB) {
6470 I->deleteValue();
6471 return error("Invalid instruction with no BB");
6472 }
6473 if (!OperandBundles.empty()) {
6474 I->deleteValue();
6475 return error("Operand bundles found with no consumer");
6476 }
6477 I->insertInto(CurBB, CurBB->end());
6478
6479 // If this was a terminator instruction, move to the next block.
6480 if (I->isTerminator()) {
6481 ++CurBBNo;
6482 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6483 }
6484
6485 // Non-void values get registered in the value table for future use.
6486 if (!I->getType()->isVoidTy()) {
6487 assert(I->getType() == getTypeByID(ResTypeID) &&
6488 "Incorrect result type ID");
6489 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6490 return Err;
6491 }
6492 }
6493
6494 OutOfRecordLoop:
6495
6496 if (!OperandBundles.empty())
6497 return error("Operand bundles found with no consumer");
6498
6499 // Check the function list for unresolved values.
6500 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6501 if (!A->getParent()) {
6502 // We found at least one unresolved value. Nuke them all to avoid leaks.
6503 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6504 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6505 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6506 delete A;
6507 }
6508 }
6509 return error("Never resolved value found in function");
6510 }
6511 }
6512
6513 // Unexpected unresolved metadata about to be dropped.
6514 if (MDLoader->hasFwdRefs())
6515 return error("Invalid function metadata: outgoing forward refs");
6516
6517 if (PhiConstExprBB)
6518 PhiConstExprBB->eraseFromParent();
6519
6520 for (const auto &Pair : ConstExprEdgeBBs) {
6521 BasicBlock *From = Pair.first.first;
6522 BasicBlock *To = Pair.first.second;
6523 BasicBlock *EdgeBB = Pair.second;
6524 BranchInst::Create(To, EdgeBB);
6525 From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6526 To->replacePhiUsesWith(From, EdgeBB);
6527 EdgeBB->moveBefore(To);
6528 }
6529
6530 // Trim the value list down to the size it was before we parsed this function.
6531 ValueList.shrinkTo(ModuleValueListSize);
6532 MDLoader->shrinkTo(ModuleMDLoaderSize);
6533 std::vector<BasicBlock*>().swap(FunctionBBs);
6534 return Error::success();
6535 }
6536
6537 /// Find the function body in the bitcode stream
findFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)6538 Error BitcodeReader::findFunctionInStream(
6539 Function *F,
6540 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6541 while (DeferredFunctionInfoIterator->second == 0) {
6542 // This is the fallback handling for the old format bitcode that
6543 // didn't contain the function index in the VST, or when we have
6544 // an anonymous function which would not have a VST entry.
6545 // Assert that we have one of those two cases.
6546 assert(VSTOffset == 0 || !F->hasName());
6547 // Parse the next body in the stream and set its position in the
6548 // DeferredFunctionInfo map.
6549 if (Error Err = rememberAndSkipFunctionBodies())
6550 return Err;
6551 }
6552 return Error::success();
6553 }
6554
getDecodedSyncScopeID(unsigned Val)6555 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6556 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6557 return SyncScope::ID(Val);
6558 if (Val >= SSIDs.size())
6559 return SyncScope::System; // Map unknown synchronization scopes to system.
6560 return SSIDs[Val];
6561 }
6562
6563 //===----------------------------------------------------------------------===//
6564 // GVMaterializer implementation
6565 //===----------------------------------------------------------------------===//
6566
materialize(GlobalValue * GV)6567 Error BitcodeReader::materialize(GlobalValue *GV) {
6568 Function *F = dyn_cast<Function>(GV);
6569 // If it's not a function or is already material, ignore the request.
6570 if (!F || !F->isMaterializable())
6571 return Error::success();
6572
6573 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6574 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6575 // If its position is recorded as 0, its body is somewhere in the stream
6576 // but we haven't seen it yet.
6577 if (DFII->second == 0)
6578 if (Error Err = findFunctionInStream(F, DFII))
6579 return Err;
6580
6581 // Materialize metadata before parsing any function bodies.
6582 if (Error Err = materializeMetadata())
6583 return Err;
6584
6585 // Move the bit stream to the saved position of the deferred function body.
6586 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6587 return JumpFailed;
6588 if (Error Err = parseFunctionBody(F))
6589 return Err;
6590 F->setIsMaterializable(false);
6591
6592 if (StripDebugInfo)
6593 stripDebugInfo(*F);
6594
6595 // Upgrade any old intrinsic calls in the function.
6596 for (auto &I : UpgradedIntrinsics) {
6597 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6598 if (CallInst *CI = dyn_cast<CallInst>(U))
6599 UpgradeIntrinsicCall(CI, I.second);
6600 }
6601
6602 // Finish fn->subprogram upgrade for materialized functions.
6603 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6604 F->setSubprogram(SP);
6605
6606 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6607 if (!MDLoader->isStrippingTBAA()) {
6608 for (auto &I : instructions(F)) {
6609 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6610 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6611 continue;
6612 MDLoader->setStripTBAA(true);
6613 stripTBAA(F->getParent());
6614 }
6615 }
6616
6617 for (auto &I : instructions(F)) {
6618 // "Upgrade" older incorrect branch weights by dropping them.
6619 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6620 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6621 MDString *MDS = cast<MDString>(MD->getOperand(0));
6622 StringRef ProfName = MDS->getString();
6623 // Check consistency of !prof branch_weights metadata.
6624 if (!ProfName.equals("branch_weights"))
6625 continue;
6626 unsigned ExpectedNumOperands = 0;
6627 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6628 ExpectedNumOperands = BI->getNumSuccessors();
6629 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6630 ExpectedNumOperands = SI->getNumSuccessors();
6631 else if (isa<CallInst>(&I))
6632 ExpectedNumOperands = 1;
6633 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6634 ExpectedNumOperands = IBI->getNumDestinations();
6635 else if (isa<SelectInst>(&I))
6636 ExpectedNumOperands = 2;
6637 else
6638 continue; // ignore and continue.
6639
6640 // If branch weight doesn't match, just strip branch weight.
6641 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6642 I.setMetadata(LLVMContext::MD_prof, nullptr);
6643 }
6644 }
6645
6646 // Remove incompatible attributes on function calls.
6647 if (auto *CI = dyn_cast<CallBase>(&I)) {
6648 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6649 CI->getFunctionType()->getReturnType()));
6650
6651 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6652 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6653 CI->getArgOperand(ArgNo)->getType()));
6654 }
6655 }
6656
6657 // Look for functions that rely on old function attribute behavior.
6658 UpgradeFunctionAttributes(*F);
6659
6660 // Bring in any functions that this function forward-referenced via
6661 // blockaddresses.
6662 return materializeForwardReferencedFunctions();
6663 }
6664
materializeModule()6665 Error BitcodeReader::materializeModule() {
6666 if (Error Err = materializeMetadata())
6667 return Err;
6668
6669 // Promise to materialize all forward references.
6670 WillMaterializeAllForwardRefs = true;
6671
6672 // Iterate over the module, deserializing any functions that are still on
6673 // disk.
6674 for (Function &F : *TheModule) {
6675 if (Error Err = materialize(&F))
6676 return Err;
6677 }
6678 // At this point, if there are any function bodies, parse the rest of
6679 // the bits in the module past the last function block we have recorded
6680 // through either lazy scanning or the VST.
6681 if (LastFunctionBlockBit || NextUnreadBit)
6682 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6683 ? LastFunctionBlockBit
6684 : NextUnreadBit))
6685 return Err;
6686
6687 // Check that all block address forward references got resolved (as we
6688 // promised above).
6689 if (!BasicBlockFwdRefs.empty())
6690 return error("Never resolved function from blockaddress");
6691
6692 // Upgrade any intrinsic calls that slipped through (should not happen!) and
6693 // delete the old functions to clean up. We can't do this unless the entire
6694 // module is materialized because there could always be another function body
6695 // with calls to the old function.
6696 for (auto &I : UpgradedIntrinsics) {
6697 for (auto *U : I.first->users()) {
6698 if (CallInst *CI = dyn_cast<CallInst>(U))
6699 UpgradeIntrinsicCall(CI, I.second);
6700 }
6701 if (!I.first->use_empty())
6702 I.first->replaceAllUsesWith(I.second);
6703 I.first->eraseFromParent();
6704 }
6705 UpgradedIntrinsics.clear();
6706
6707 UpgradeDebugInfo(*TheModule);
6708
6709 UpgradeModuleFlags(*TheModule);
6710
6711 UpgradeARCRuntime(*TheModule);
6712
6713 return Error::success();
6714 }
6715
getIdentifiedStructTypes() const6716 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6717 return IdentifiedStructTypes;
6718 }
6719
ModuleSummaryIndexBitcodeReader(BitstreamCursor Cursor,StringRef Strtab,ModuleSummaryIndex & TheIndex,StringRef ModulePath,unsigned ModuleId,std::function<bool (GlobalValue::GUID)> IsPrevailing)6720 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6721 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6722 StringRef ModulePath, unsigned ModuleId,
6723 std::function<bool(GlobalValue::GUID)> IsPrevailing)
6724 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6725 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {}
6726
addThisModule()6727 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6728 TheIndex.addModule(ModulePath, ModuleId);
6729 }
6730
6731 ModuleSummaryIndex::ModuleInfo *
getThisModule()6732 ModuleSummaryIndexBitcodeReader::getThisModule() {
6733 return TheIndex.getModule(ModulePath);
6734 }
6735
6736 template <bool AllowNullValueInfo>
6737 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId)6738 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6739 auto VGI = ValueIdToValueInfoMap[ValueId];
6740 // We can have a null value info for memprof callsite info records in
6741 // distributed ThinLTO index files when the callee function summary is not
6742 // included in the index. The bitcode writer records 0 in that case,
6743 // and the caller of this helper will set AllowNullValueInfo to true.
6744 assert(AllowNullValueInfo || std::get<0>(VGI));
6745 return VGI;
6746 }
6747
setValueGUID(uint64_t ValueID,StringRef ValueName,GlobalValue::LinkageTypes Linkage,StringRef SourceFileName)6748 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6749 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6750 StringRef SourceFileName) {
6751 std::string GlobalId =
6752 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6753 auto ValueGUID = GlobalValue::getGUID(GlobalId);
6754 auto OriginalNameID = ValueGUID;
6755 if (GlobalValue::isLocalLinkage(Linkage))
6756 OriginalNameID = GlobalValue::getGUID(ValueName);
6757 if (PrintSummaryGUIDs)
6758 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6759 << ValueName << "\n";
6760
6761 // UseStrtab is false for legacy summary formats and value names are
6762 // created on stack. In that case we save the name in a string saver in
6763 // the index so that the value name can be recorded.
6764 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6765 TheIndex.getOrInsertValueInfo(
6766 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6767 OriginalNameID, ValueGUID);
6768 }
6769
6770 // Specialized value symbol table parser used when reading module index
6771 // blocks where we don't actually create global values. The parsed information
6772 // is saved in the bitcode reader for use when later parsing summaries.
parseValueSymbolTable(uint64_t Offset,DenseMap<unsigned,GlobalValue::LinkageTypes> & ValueIdToLinkageMap)6773 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6774 uint64_t Offset,
6775 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6776 // With a strtab the VST is not required to parse the summary.
6777 if (UseStrtab)
6778 return Error::success();
6779
6780 assert(Offset > 0 && "Expected non-zero VST offset");
6781 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6782 if (!MaybeCurrentBit)
6783 return MaybeCurrentBit.takeError();
6784 uint64_t CurrentBit = MaybeCurrentBit.get();
6785
6786 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6787 return Err;
6788
6789 SmallVector<uint64_t, 64> Record;
6790
6791 // Read all the records for this value table.
6792 SmallString<128> ValueName;
6793
6794 while (true) {
6795 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6796 if (!MaybeEntry)
6797 return MaybeEntry.takeError();
6798 BitstreamEntry Entry = MaybeEntry.get();
6799
6800 switch (Entry.Kind) {
6801 case BitstreamEntry::SubBlock: // Handled for us already.
6802 case BitstreamEntry::Error:
6803 return error("Malformed block");
6804 case BitstreamEntry::EndBlock:
6805 // Done parsing VST, jump back to wherever we came from.
6806 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6807 return JumpFailed;
6808 return Error::success();
6809 case BitstreamEntry::Record:
6810 // The interesting case.
6811 break;
6812 }
6813
6814 // Read a record.
6815 Record.clear();
6816 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6817 if (!MaybeRecord)
6818 return MaybeRecord.takeError();
6819 switch (MaybeRecord.get()) {
6820 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6821 break;
6822 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6823 if (convertToString(Record, 1, ValueName))
6824 return error("Invalid record");
6825 unsigned ValueID = Record[0];
6826 assert(!SourceFileName.empty());
6827 auto VLI = ValueIdToLinkageMap.find(ValueID);
6828 assert(VLI != ValueIdToLinkageMap.end() &&
6829 "No linkage found for VST entry?");
6830 auto Linkage = VLI->second;
6831 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6832 ValueName.clear();
6833 break;
6834 }
6835 case bitc::VST_CODE_FNENTRY: {
6836 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6837 if (convertToString(Record, 2, ValueName))
6838 return error("Invalid record");
6839 unsigned ValueID = Record[0];
6840 assert(!SourceFileName.empty());
6841 auto VLI = ValueIdToLinkageMap.find(ValueID);
6842 assert(VLI != ValueIdToLinkageMap.end() &&
6843 "No linkage found for VST entry?");
6844 auto Linkage = VLI->second;
6845 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6846 ValueName.clear();
6847 break;
6848 }
6849 case bitc::VST_CODE_COMBINED_ENTRY: {
6850 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6851 unsigned ValueID = Record[0];
6852 GlobalValue::GUID RefGUID = Record[1];
6853 // The "original name", which is the second value of the pair will be
6854 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6855 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6856 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6857 break;
6858 }
6859 }
6860 }
6861 }
6862
6863 // Parse just the blocks needed for building the index out of the module.
6864 // At the end of this routine the module Index is populated with a map
6865 // from global value id to GlobalValueSummary objects.
parseModule()6866 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6867 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6868 return Err;
6869
6870 SmallVector<uint64_t, 64> Record;
6871 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6872 unsigned ValueId = 0;
6873
6874 // Read the index for this module.
6875 while (true) {
6876 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6877 if (!MaybeEntry)
6878 return MaybeEntry.takeError();
6879 llvm::BitstreamEntry Entry = MaybeEntry.get();
6880
6881 switch (Entry.Kind) {
6882 case BitstreamEntry::Error:
6883 return error("Malformed block");
6884 case BitstreamEntry::EndBlock:
6885 return Error::success();
6886
6887 case BitstreamEntry::SubBlock:
6888 switch (Entry.ID) {
6889 default: // Skip unknown content.
6890 if (Error Err = Stream.SkipBlock())
6891 return Err;
6892 break;
6893 case bitc::BLOCKINFO_BLOCK_ID:
6894 // Need to parse these to get abbrev ids (e.g. for VST)
6895 if (Error Err = readBlockInfo())
6896 return Err;
6897 break;
6898 case bitc::VALUE_SYMTAB_BLOCK_ID:
6899 // Should have been parsed earlier via VSTOffset, unless there
6900 // is no summary section.
6901 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6902 !SeenGlobalValSummary) &&
6903 "Expected early VST parse via VSTOffset record");
6904 if (Error Err = Stream.SkipBlock())
6905 return Err;
6906 break;
6907 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6908 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6909 // Add the module if it is a per-module index (has a source file name).
6910 if (!SourceFileName.empty())
6911 addThisModule();
6912 assert(!SeenValueSymbolTable &&
6913 "Already read VST when parsing summary block?");
6914 // We might not have a VST if there were no values in the
6915 // summary. An empty summary block generated when we are
6916 // performing ThinLTO compiles so we don't later invoke
6917 // the regular LTO process on them.
6918 if (VSTOffset > 0) {
6919 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6920 return Err;
6921 SeenValueSymbolTable = true;
6922 }
6923 SeenGlobalValSummary = true;
6924 if (Error Err = parseEntireSummary(Entry.ID))
6925 return Err;
6926 break;
6927 case bitc::MODULE_STRTAB_BLOCK_ID:
6928 if (Error Err = parseModuleStringTable())
6929 return Err;
6930 break;
6931 }
6932 continue;
6933
6934 case BitstreamEntry::Record: {
6935 Record.clear();
6936 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6937 if (!MaybeBitCode)
6938 return MaybeBitCode.takeError();
6939 switch (MaybeBitCode.get()) {
6940 default:
6941 break; // Default behavior, ignore unknown content.
6942 case bitc::MODULE_CODE_VERSION: {
6943 if (Error Err = parseVersionRecord(Record).takeError())
6944 return Err;
6945 break;
6946 }
6947 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6948 case bitc::MODULE_CODE_SOURCE_FILENAME: {
6949 SmallString<128> ValueName;
6950 if (convertToString(Record, 0, ValueName))
6951 return error("Invalid record");
6952 SourceFileName = ValueName.c_str();
6953 break;
6954 }
6955 /// MODULE_CODE_HASH: [5*i32]
6956 case bitc::MODULE_CODE_HASH: {
6957 if (Record.size() != 5)
6958 return error("Invalid hash length " + Twine(Record.size()).str());
6959 auto &Hash = getThisModule()->second.second;
6960 int Pos = 0;
6961 for (auto &Val : Record) {
6962 assert(!(Val >> 32) && "Unexpected high bits set");
6963 Hash[Pos++] = Val;
6964 }
6965 break;
6966 }
6967 /// MODULE_CODE_VSTOFFSET: [offset]
6968 case bitc::MODULE_CODE_VSTOFFSET:
6969 if (Record.empty())
6970 return error("Invalid record");
6971 // Note that we subtract 1 here because the offset is relative to one
6972 // word before the start of the identification or module block, which
6973 // was historically always the start of the regular bitcode header.
6974 VSTOffset = Record[0] - 1;
6975 break;
6976 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
6977 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
6978 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
6979 // v2: [strtab offset, strtab size, v1]
6980 case bitc::MODULE_CODE_GLOBALVAR:
6981 case bitc::MODULE_CODE_FUNCTION:
6982 case bitc::MODULE_CODE_ALIAS: {
6983 StringRef Name;
6984 ArrayRef<uint64_t> GVRecord;
6985 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6986 if (GVRecord.size() <= 3)
6987 return error("Invalid record");
6988 uint64_t RawLinkage = GVRecord[3];
6989 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6990 if (!UseStrtab) {
6991 ValueIdToLinkageMap[ValueId++] = Linkage;
6992 break;
6993 }
6994
6995 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6996 break;
6997 }
6998 }
6999 }
7000 continue;
7001 }
7002 }
7003 }
7004
7005 std::vector<ValueInfo>
makeRefList(ArrayRef<uint64_t> Record)7006 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7007 std::vector<ValueInfo> Ret;
7008 Ret.reserve(Record.size());
7009 for (uint64_t RefValueId : Record)
7010 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7011 return Ret;
7012 }
7013
7014 std::vector<FunctionSummary::EdgeTy>
makeCallList(ArrayRef<uint64_t> Record,bool IsOldProfileFormat,bool HasProfile,bool HasRelBF)7015 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7016 bool IsOldProfileFormat,
7017 bool HasProfile, bool HasRelBF) {
7018 std::vector<FunctionSummary::EdgeTy> Ret;
7019 Ret.reserve(Record.size());
7020 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7021 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7022 uint64_t RelBF = 0;
7023 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7024 if (IsOldProfileFormat) {
7025 I += 1; // Skip old callsitecount field
7026 if (HasProfile)
7027 I += 1; // Skip old profilecount field
7028 } else if (HasProfile)
7029 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7030 else if (HasRelBF)
7031 RelBF = Record[++I];
7032 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7033 }
7034 return Ret;
7035 }
7036
7037 static void
parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record,size_t & Slot,WholeProgramDevirtResolution & Wpd)7038 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7039 WholeProgramDevirtResolution &Wpd) {
7040 uint64_t ArgNum = Record[Slot++];
7041 WholeProgramDevirtResolution::ByArg &B =
7042 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7043 Slot += ArgNum;
7044
7045 B.TheKind =
7046 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7047 B.Info = Record[Slot++];
7048 B.Byte = Record[Slot++];
7049 B.Bit = Record[Slot++];
7050 }
7051
parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,StringRef Strtab,size_t & Slot,TypeIdSummary & TypeId)7052 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7053 StringRef Strtab, size_t &Slot,
7054 TypeIdSummary &TypeId) {
7055 uint64_t Id = Record[Slot++];
7056 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7057
7058 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7059 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7060 static_cast<size_t>(Record[Slot + 1])};
7061 Slot += 2;
7062
7063 uint64_t ResByArgNum = Record[Slot++];
7064 for (uint64_t I = 0; I != ResByArgNum; ++I)
7065 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7066 }
7067
parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,StringRef Strtab,ModuleSummaryIndex & TheIndex)7068 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7069 StringRef Strtab,
7070 ModuleSummaryIndex &TheIndex) {
7071 size_t Slot = 0;
7072 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7073 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7074 Slot += 2;
7075
7076 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7077 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7078 TypeId.TTRes.AlignLog2 = Record[Slot++];
7079 TypeId.TTRes.SizeM1 = Record[Slot++];
7080 TypeId.TTRes.BitMask = Record[Slot++];
7081 TypeId.TTRes.InlineBits = Record[Slot++];
7082
7083 while (Slot < Record.size())
7084 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7085 }
7086
7087 std::vector<FunctionSummary::ParamAccess>
parseParamAccesses(ArrayRef<uint64_t> Record)7088 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7089 auto ReadRange = [&]() {
7090 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7091 BitcodeReader::decodeSignRotatedValue(Record.front()));
7092 Record = Record.drop_front();
7093 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7094 BitcodeReader::decodeSignRotatedValue(Record.front()));
7095 Record = Record.drop_front();
7096 ConstantRange Range{Lower, Upper};
7097 assert(!Range.isFullSet());
7098 assert(!Range.isUpperSignWrapped());
7099 return Range;
7100 };
7101
7102 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7103 while (!Record.empty()) {
7104 PendingParamAccesses.emplace_back();
7105 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7106 ParamAccess.ParamNo = Record.front();
7107 Record = Record.drop_front();
7108 ParamAccess.Use = ReadRange();
7109 ParamAccess.Calls.resize(Record.front());
7110 Record = Record.drop_front();
7111 for (auto &Call : ParamAccess.Calls) {
7112 Call.ParamNo = Record.front();
7113 Record = Record.drop_front();
7114 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7115 Record = Record.drop_front();
7116 Call.Offsets = ReadRange();
7117 }
7118 }
7119 return PendingParamAccesses;
7120 }
7121
parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record,size_t & Slot,TypeIdCompatibleVtableInfo & TypeId)7122 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7123 ArrayRef<uint64_t> Record, size_t &Slot,
7124 TypeIdCompatibleVtableInfo &TypeId) {
7125 uint64_t Offset = Record[Slot++];
7126 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7127 TypeId.push_back({Offset, Callee});
7128 }
7129
parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record)7130 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7131 ArrayRef<uint64_t> Record) {
7132 size_t Slot = 0;
7133 TypeIdCompatibleVtableInfo &TypeId =
7134 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7135 {Strtab.data() + Record[Slot],
7136 static_cast<size_t>(Record[Slot + 1])});
7137 Slot += 2;
7138
7139 while (Slot < Record.size())
7140 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7141 }
7142
setSpecialRefs(std::vector<ValueInfo> & Refs,unsigned ROCnt,unsigned WOCnt)7143 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7144 unsigned WOCnt) {
7145 // Readonly and writeonly refs are in the end of the refs list.
7146 assert(ROCnt + WOCnt <= Refs.size());
7147 unsigned FirstWORef = Refs.size() - WOCnt;
7148 unsigned RefNo = FirstWORef - ROCnt;
7149 for (; RefNo < FirstWORef; ++RefNo)
7150 Refs[RefNo].setReadOnly();
7151 for (; RefNo < Refs.size(); ++RefNo)
7152 Refs[RefNo].setWriteOnly();
7153 }
7154
7155 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7156 // objects in the index.
parseEntireSummary(unsigned ID)7157 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7158 if (Error Err = Stream.EnterSubBlock(ID))
7159 return Err;
7160 SmallVector<uint64_t, 64> Record;
7161
7162 // Parse version
7163 {
7164 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7165 if (!MaybeEntry)
7166 return MaybeEntry.takeError();
7167 BitstreamEntry Entry = MaybeEntry.get();
7168
7169 if (Entry.Kind != BitstreamEntry::Record)
7170 return error("Invalid Summary Block: record for version expected");
7171 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7172 if (!MaybeRecord)
7173 return MaybeRecord.takeError();
7174 if (MaybeRecord.get() != bitc::FS_VERSION)
7175 return error("Invalid Summary Block: version expected");
7176 }
7177 const uint64_t Version = Record[0];
7178 const bool IsOldProfileFormat = Version == 1;
7179 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7180 return error("Invalid summary version " + Twine(Version) +
7181 ". Version should be in the range [1-" +
7182 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7183 "].");
7184 Record.clear();
7185
7186 // Keep around the last seen summary to be used when we see an optional
7187 // "OriginalName" attachement.
7188 GlobalValueSummary *LastSeenSummary = nullptr;
7189 GlobalValue::GUID LastSeenGUID = 0;
7190
7191 // We can expect to see any number of type ID information records before
7192 // each function summary records; these variables store the information
7193 // collected so far so that it can be used to create the summary object.
7194 std::vector<GlobalValue::GUID> PendingTypeTests;
7195 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7196 PendingTypeCheckedLoadVCalls;
7197 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7198 PendingTypeCheckedLoadConstVCalls;
7199 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7200
7201 std::vector<CallsiteInfo> PendingCallsites;
7202 std::vector<AllocInfo> PendingAllocs;
7203
7204 while (true) {
7205 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7206 if (!MaybeEntry)
7207 return MaybeEntry.takeError();
7208 BitstreamEntry Entry = MaybeEntry.get();
7209
7210 switch (Entry.Kind) {
7211 case BitstreamEntry::SubBlock: // Handled for us already.
7212 case BitstreamEntry::Error:
7213 return error("Malformed block");
7214 case BitstreamEntry::EndBlock:
7215 return Error::success();
7216 case BitstreamEntry::Record:
7217 // The interesting case.
7218 break;
7219 }
7220
7221 // Read a record. The record format depends on whether this
7222 // is a per-module index or a combined index file. In the per-module
7223 // case the records contain the associated value's ID for correlation
7224 // with VST entries. In the combined index the correlation is done
7225 // via the bitcode offset of the summary records (which were saved
7226 // in the combined index VST entries). The records also contain
7227 // information used for ThinLTO renaming and importing.
7228 Record.clear();
7229 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7230 if (!MaybeBitCode)
7231 return MaybeBitCode.takeError();
7232 switch (unsigned BitCode = MaybeBitCode.get()) {
7233 default: // Default behavior: ignore.
7234 break;
7235 case bitc::FS_FLAGS: { // [flags]
7236 TheIndex.setFlags(Record[0]);
7237 break;
7238 }
7239 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7240 uint64_t ValueID = Record[0];
7241 GlobalValue::GUID RefGUID = Record[1];
7242 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7243 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7244 break;
7245 }
7246 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7247 // numrefs x valueid, n x (valueid)]
7248 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7249 // numrefs x valueid,
7250 // n x (valueid, hotness)]
7251 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7252 // numrefs x valueid,
7253 // n x (valueid, relblockfreq)]
7254 case bitc::FS_PERMODULE:
7255 case bitc::FS_PERMODULE_RELBF:
7256 case bitc::FS_PERMODULE_PROFILE: {
7257 unsigned ValueID = Record[0];
7258 uint64_t RawFlags = Record[1];
7259 unsigned InstCount = Record[2];
7260 uint64_t RawFunFlags = 0;
7261 unsigned NumRefs = Record[3];
7262 unsigned NumRORefs = 0, NumWORefs = 0;
7263 int RefListStartIndex = 4;
7264 if (Version >= 4) {
7265 RawFunFlags = Record[3];
7266 NumRefs = Record[4];
7267 RefListStartIndex = 5;
7268 if (Version >= 5) {
7269 NumRORefs = Record[5];
7270 RefListStartIndex = 6;
7271 if (Version >= 7) {
7272 NumWORefs = Record[6];
7273 RefListStartIndex = 7;
7274 }
7275 }
7276 }
7277
7278 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7279 // The module path string ref set in the summary must be owned by the
7280 // index's module string table. Since we don't have a module path
7281 // string table section in the per-module index, we create a single
7282 // module path string table entry with an empty (0) ID to take
7283 // ownership.
7284 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7285 assert(Record.size() >= RefListStartIndex + NumRefs &&
7286 "Record size inconsistent with number of references");
7287 std::vector<ValueInfo> Refs = makeRefList(
7288 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7289 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7290 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7291 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7292 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7293 IsOldProfileFormat, HasProfile, HasRelBF);
7294 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7295 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7296 // In order to save memory, only record the memprof summaries if this is
7297 // the prevailing copy of a symbol. The linker doesn't resolve local
7298 // linkage values so don't check whether those are prevailing.
7299 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7300 if (IsPrevailing &&
7301 !GlobalValue::isLocalLinkage(LT) &&
7302 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7303 PendingCallsites.clear();
7304 PendingAllocs.clear();
7305 }
7306 auto FS = std::make_unique<FunctionSummary>(
7307 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7308 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7309 std::move(PendingTypeTestAssumeVCalls),
7310 std::move(PendingTypeCheckedLoadVCalls),
7311 std::move(PendingTypeTestAssumeConstVCalls),
7312 std::move(PendingTypeCheckedLoadConstVCalls),
7313 std::move(PendingParamAccesses), std::move(PendingCallsites),
7314 std::move(PendingAllocs));
7315 FS->setModulePath(getThisModule()->first());
7316 FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7317 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7318 std::move(FS));
7319 break;
7320 }
7321 // FS_ALIAS: [valueid, flags, valueid]
7322 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7323 // they expect all aliasee summaries to be available.
7324 case bitc::FS_ALIAS: {
7325 unsigned ValueID = Record[0];
7326 uint64_t RawFlags = Record[1];
7327 unsigned AliaseeID = Record[2];
7328 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7329 auto AS = std::make_unique<AliasSummary>(Flags);
7330 // The module path string ref set in the summary must be owned by the
7331 // index's module string table. Since we don't have a module path
7332 // string table section in the per-module index, we create a single
7333 // module path string table entry with an empty (0) ID to take
7334 // ownership.
7335 AS->setModulePath(getThisModule()->first());
7336
7337 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7338 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7339 if (!AliaseeInModule)
7340 return error("Alias expects aliasee summary to be parsed");
7341 AS->setAliasee(AliaseeVI, AliaseeInModule);
7342
7343 auto GUID = getValueInfoFromValueId(ValueID);
7344 AS->setOriginalName(std::get<1>(GUID));
7345 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7346 break;
7347 }
7348 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7349 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7350 unsigned ValueID = Record[0];
7351 uint64_t RawFlags = Record[1];
7352 unsigned RefArrayStart = 2;
7353 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7354 /* WriteOnly */ false,
7355 /* Constant */ false,
7356 GlobalObject::VCallVisibilityPublic);
7357 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7358 if (Version >= 5) {
7359 GVF = getDecodedGVarFlags(Record[2]);
7360 RefArrayStart = 3;
7361 }
7362 std::vector<ValueInfo> Refs =
7363 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7364 auto FS =
7365 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7366 FS->setModulePath(getThisModule()->first());
7367 auto GUID = getValueInfoFromValueId(ValueID);
7368 FS->setOriginalName(std::get<1>(GUID));
7369 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7370 break;
7371 }
7372 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7373 // numrefs, numrefs x valueid,
7374 // n x (valueid, offset)]
7375 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7376 unsigned ValueID = Record[0];
7377 uint64_t RawFlags = Record[1];
7378 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7379 unsigned NumRefs = Record[3];
7380 unsigned RefListStartIndex = 4;
7381 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7382 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7383 std::vector<ValueInfo> Refs = makeRefList(
7384 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7385 VTableFuncList VTableFuncs;
7386 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7387 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7388 uint64_t Offset = Record[++I];
7389 VTableFuncs.push_back({Callee, Offset});
7390 }
7391 auto VS =
7392 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7393 VS->setModulePath(getThisModule()->first());
7394 VS->setVTableFuncs(VTableFuncs);
7395 auto GUID = getValueInfoFromValueId(ValueID);
7396 VS->setOriginalName(std::get<1>(GUID));
7397 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7398 break;
7399 }
7400 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7401 // numrefs x valueid, n x (valueid)]
7402 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7403 // numrefs x valueid, n x (valueid, hotness)]
7404 case bitc::FS_COMBINED:
7405 case bitc::FS_COMBINED_PROFILE: {
7406 unsigned ValueID = Record[0];
7407 uint64_t ModuleId = Record[1];
7408 uint64_t RawFlags = Record[2];
7409 unsigned InstCount = Record[3];
7410 uint64_t RawFunFlags = 0;
7411 uint64_t EntryCount = 0;
7412 unsigned NumRefs = Record[4];
7413 unsigned NumRORefs = 0, NumWORefs = 0;
7414 int RefListStartIndex = 5;
7415
7416 if (Version >= 4) {
7417 RawFunFlags = Record[4];
7418 RefListStartIndex = 6;
7419 size_t NumRefsIndex = 5;
7420 if (Version >= 5) {
7421 unsigned NumRORefsOffset = 1;
7422 RefListStartIndex = 7;
7423 if (Version >= 6) {
7424 NumRefsIndex = 6;
7425 EntryCount = Record[5];
7426 RefListStartIndex = 8;
7427 if (Version >= 7) {
7428 RefListStartIndex = 9;
7429 NumWORefs = Record[8];
7430 NumRORefsOffset = 2;
7431 }
7432 }
7433 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7434 }
7435 NumRefs = Record[NumRefsIndex];
7436 }
7437
7438 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7439 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7440 assert(Record.size() >= RefListStartIndex + NumRefs &&
7441 "Record size inconsistent with number of references");
7442 std::vector<ValueInfo> Refs = makeRefList(
7443 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7444 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7445 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7446 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7447 IsOldProfileFormat, HasProfile, false);
7448 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7449 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7450 auto FS = std::make_unique<FunctionSummary>(
7451 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7452 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7453 std::move(PendingTypeTestAssumeVCalls),
7454 std::move(PendingTypeCheckedLoadVCalls),
7455 std::move(PendingTypeTestAssumeConstVCalls),
7456 std::move(PendingTypeCheckedLoadConstVCalls),
7457 std::move(PendingParamAccesses), std::move(PendingCallsites),
7458 std::move(PendingAllocs));
7459 LastSeenSummary = FS.get();
7460 LastSeenGUID = VI.getGUID();
7461 FS->setModulePath(ModuleIdMap[ModuleId]);
7462 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7463 break;
7464 }
7465 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7466 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7467 // they expect all aliasee summaries to be available.
7468 case bitc::FS_COMBINED_ALIAS: {
7469 unsigned ValueID = Record[0];
7470 uint64_t ModuleId = Record[1];
7471 uint64_t RawFlags = Record[2];
7472 unsigned AliaseeValueId = Record[3];
7473 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7474 auto AS = std::make_unique<AliasSummary>(Flags);
7475 LastSeenSummary = AS.get();
7476 AS->setModulePath(ModuleIdMap[ModuleId]);
7477
7478 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7479 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7480 AS->setAliasee(AliaseeVI, AliaseeInModule);
7481
7482 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7483 LastSeenGUID = VI.getGUID();
7484 TheIndex.addGlobalValueSummary(VI, std::move(AS));
7485 break;
7486 }
7487 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7488 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7489 unsigned ValueID = Record[0];
7490 uint64_t ModuleId = Record[1];
7491 uint64_t RawFlags = Record[2];
7492 unsigned RefArrayStart = 3;
7493 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7494 /* WriteOnly */ false,
7495 /* Constant */ false,
7496 GlobalObject::VCallVisibilityPublic);
7497 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7498 if (Version >= 5) {
7499 GVF = getDecodedGVarFlags(Record[3]);
7500 RefArrayStart = 4;
7501 }
7502 std::vector<ValueInfo> Refs =
7503 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7504 auto FS =
7505 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7506 LastSeenSummary = FS.get();
7507 FS->setModulePath(ModuleIdMap[ModuleId]);
7508 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7509 LastSeenGUID = VI.getGUID();
7510 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7511 break;
7512 }
7513 // FS_COMBINED_ORIGINAL_NAME: [original_name]
7514 case bitc::FS_COMBINED_ORIGINAL_NAME: {
7515 uint64_t OriginalName = Record[0];
7516 if (!LastSeenSummary)
7517 return error("Name attachment that does not follow a combined record");
7518 LastSeenSummary->setOriginalName(OriginalName);
7519 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7520 // Reset the LastSeenSummary
7521 LastSeenSummary = nullptr;
7522 LastSeenGUID = 0;
7523 break;
7524 }
7525 case bitc::FS_TYPE_TESTS:
7526 assert(PendingTypeTests.empty());
7527 llvm::append_range(PendingTypeTests, Record);
7528 break;
7529
7530 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7531 assert(PendingTypeTestAssumeVCalls.empty());
7532 for (unsigned I = 0; I != Record.size(); I += 2)
7533 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7534 break;
7535
7536 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7537 assert(PendingTypeCheckedLoadVCalls.empty());
7538 for (unsigned I = 0; I != Record.size(); I += 2)
7539 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7540 break;
7541
7542 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7543 PendingTypeTestAssumeConstVCalls.push_back(
7544 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7545 break;
7546
7547 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7548 PendingTypeCheckedLoadConstVCalls.push_back(
7549 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7550 break;
7551
7552 case bitc::FS_CFI_FUNCTION_DEFS: {
7553 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7554 for (unsigned I = 0; I != Record.size(); I += 2)
7555 CfiFunctionDefs.insert(
7556 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7557 break;
7558 }
7559
7560 case bitc::FS_CFI_FUNCTION_DECLS: {
7561 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7562 for (unsigned I = 0; I != Record.size(); I += 2)
7563 CfiFunctionDecls.insert(
7564 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7565 break;
7566 }
7567
7568 case bitc::FS_TYPE_ID:
7569 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7570 break;
7571
7572 case bitc::FS_TYPE_ID_METADATA:
7573 parseTypeIdCompatibleVtableSummaryRecord(Record);
7574 break;
7575
7576 case bitc::FS_BLOCK_COUNT:
7577 TheIndex.addBlockCount(Record[0]);
7578 break;
7579
7580 case bitc::FS_PARAM_ACCESS: {
7581 PendingParamAccesses = parseParamAccesses(Record);
7582 break;
7583 }
7584
7585 case bitc::FS_STACK_IDS: { // [n x stackid]
7586 // Save stack ids in the reader to consult when adding stack ids from the
7587 // lists in the stack node and alloc node entries.
7588 StackIds = ArrayRef<uint64_t>(Record);
7589 break;
7590 }
7591
7592 case bitc::FS_PERMODULE_CALLSITE_INFO: {
7593 unsigned ValueID = Record[0];
7594 SmallVector<unsigned> StackIdList;
7595 for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7596 assert(*R < StackIds.size());
7597 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7598 }
7599 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7600 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7601 break;
7602 }
7603
7604 case bitc::FS_COMBINED_CALLSITE_INFO: {
7605 auto RecordIter = Record.begin();
7606 unsigned ValueID = *RecordIter++;
7607 unsigned NumStackIds = *RecordIter++;
7608 unsigned NumVersions = *RecordIter++;
7609 assert(Record.size() == 3 + NumStackIds + NumVersions);
7610 SmallVector<unsigned> StackIdList;
7611 for (unsigned J = 0; J < NumStackIds; J++) {
7612 assert(*RecordIter < StackIds.size());
7613 StackIdList.push_back(
7614 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7615 }
7616 SmallVector<unsigned> Versions;
7617 for (unsigned J = 0; J < NumVersions; J++)
7618 Versions.push_back(*RecordIter++);
7619 ValueInfo VI = std::get<0>(
7620 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7621 PendingCallsites.push_back(
7622 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7623 break;
7624 }
7625
7626 case bitc::FS_PERMODULE_ALLOC_INFO: {
7627 unsigned I = 0;
7628 std::vector<MIBInfo> MIBs;
7629 while (I < Record.size()) {
7630 assert(Record.size() - I >= 2);
7631 AllocationType AllocType = (AllocationType)Record[I++];
7632 unsigned NumStackEntries = Record[I++];
7633 assert(Record.size() - I >= NumStackEntries);
7634 SmallVector<unsigned> StackIdList;
7635 for (unsigned J = 0; J < NumStackEntries; J++) {
7636 assert(Record[I] < StackIds.size());
7637 StackIdList.push_back(
7638 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7639 }
7640 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7641 }
7642 PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7643 break;
7644 }
7645
7646 case bitc::FS_COMBINED_ALLOC_INFO: {
7647 unsigned I = 0;
7648 std::vector<MIBInfo> MIBs;
7649 unsigned NumMIBs = Record[I++];
7650 unsigned NumVersions = Record[I++];
7651 unsigned MIBsRead = 0;
7652 while (MIBsRead++ < NumMIBs) {
7653 assert(Record.size() - I >= 2);
7654 AllocationType AllocType = (AllocationType)Record[I++];
7655 unsigned NumStackEntries = Record[I++];
7656 assert(Record.size() - I >= NumStackEntries);
7657 SmallVector<unsigned> StackIdList;
7658 for (unsigned J = 0; J < NumStackEntries; J++) {
7659 assert(Record[I] < StackIds.size());
7660 StackIdList.push_back(
7661 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7662 }
7663 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7664 }
7665 assert(Record.size() - I >= NumVersions);
7666 SmallVector<uint8_t> Versions;
7667 for (unsigned J = 0; J < NumVersions; J++)
7668 Versions.push_back(Record[I++]);
7669 PendingAllocs.push_back(
7670 AllocInfo(std::move(Versions), std::move(MIBs)));
7671 break;
7672 }
7673 }
7674 }
7675 llvm_unreachable("Exit infinite loop");
7676 }
7677
7678 // Parse the module string table block into the Index.
7679 // This populates the ModulePathStringTable map in the index.
parseModuleStringTable()7680 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7681 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7682 return Err;
7683
7684 SmallVector<uint64_t, 64> Record;
7685
7686 SmallString<128> ModulePath;
7687 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7688
7689 while (true) {
7690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7691 if (!MaybeEntry)
7692 return MaybeEntry.takeError();
7693 BitstreamEntry Entry = MaybeEntry.get();
7694
7695 switch (Entry.Kind) {
7696 case BitstreamEntry::SubBlock: // Handled for us already.
7697 case BitstreamEntry::Error:
7698 return error("Malformed block");
7699 case BitstreamEntry::EndBlock:
7700 return Error::success();
7701 case BitstreamEntry::Record:
7702 // The interesting case.
7703 break;
7704 }
7705
7706 Record.clear();
7707 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7708 if (!MaybeRecord)
7709 return MaybeRecord.takeError();
7710 switch (MaybeRecord.get()) {
7711 default: // Default behavior: ignore.
7712 break;
7713 case bitc::MST_CODE_ENTRY: {
7714 // MST_ENTRY: [modid, namechar x N]
7715 uint64_t ModuleId = Record[0];
7716
7717 if (convertToString(Record, 1, ModulePath))
7718 return error("Invalid record");
7719
7720 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7721 ModuleIdMap[ModuleId] = LastSeenModule->first();
7722
7723 ModulePath.clear();
7724 break;
7725 }
7726 /// MST_CODE_HASH: [5*i32]
7727 case bitc::MST_CODE_HASH: {
7728 if (Record.size() != 5)
7729 return error("Invalid hash length " + Twine(Record.size()).str());
7730 if (!LastSeenModule)
7731 return error("Invalid hash that does not follow a module path");
7732 int Pos = 0;
7733 for (auto &Val : Record) {
7734 assert(!(Val >> 32) && "Unexpected high bits set");
7735 LastSeenModule->second.second[Pos++] = Val;
7736 }
7737 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7738 LastSeenModule = nullptr;
7739 break;
7740 }
7741 }
7742 }
7743 llvm_unreachable("Exit infinite loop");
7744 }
7745
7746 namespace {
7747
7748 // FIXME: This class is only here to support the transition to llvm::Error. It
7749 // will be removed once this transition is complete. Clients should prefer to
7750 // deal with the Error value directly, rather than converting to error_code.
7751 class BitcodeErrorCategoryType : public std::error_category {
name() const7752 const char *name() const noexcept override {
7753 return "llvm.bitcode";
7754 }
7755
message(int IE) const7756 std::string message(int IE) const override {
7757 BitcodeError E = static_cast<BitcodeError>(IE);
7758 switch (E) {
7759 case BitcodeError::CorruptedBitcode:
7760 return "Corrupted bitcode";
7761 }
7762 llvm_unreachable("Unknown error type!");
7763 }
7764 };
7765
7766 } // end anonymous namespace
7767
BitcodeErrorCategory()7768 const std::error_category &llvm::BitcodeErrorCategory() {
7769 static BitcodeErrorCategoryType ErrorCategory;
7770 return ErrorCategory;
7771 }
7772
readBlobInRecord(BitstreamCursor & Stream,unsigned Block,unsigned RecordID)7773 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7774 unsigned Block, unsigned RecordID) {
7775 if (Error Err = Stream.EnterSubBlock(Block))
7776 return std::move(Err);
7777
7778 StringRef Strtab;
7779 while (true) {
7780 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7781 if (!MaybeEntry)
7782 return MaybeEntry.takeError();
7783 llvm::BitstreamEntry Entry = MaybeEntry.get();
7784
7785 switch (Entry.Kind) {
7786 case BitstreamEntry::EndBlock:
7787 return Strtab;
7788
7789 case BitstreamEntry::Error:
7790 return error("Malformed block");
7791
7792 case BitstreamEntry::SubBlock:
7793 if (Error Err = Stream.SkipBlock())
7794 return std::move(Err);
7795 break;
7796
7797 case BitstreamEntry::Record:
7798 StringRef Blob;
7799 SmallVector<uint64_t, 1> Record;
7800 Expected<unsigned> MaybeRecord =
7801 Stream.readRecord(Entry.ID, Record, &Blob);
7802 if (!MaybeRecord)
7803 return MaybeRecord.takeError();
7804 if (MaybeRecord.get() == RecordID)
7805 Strtab = Blob;
7806 break;
7807 }
7808 }
7809 }
7810
7811 //===----------------------------------------------------------------------===//
7812 // External interface
7813 //===----------------------------------------------------------------------===//
7814
7815 Expected<std::vector<BitcodeModule>>
getBitcodeModuleList(MemoryBufferRef Buffer)7816 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7817 auto FOrErr = getBitcodeFileContents(Buffer);
7818 if (!FOrErr)
7819 return FOrErr.takeError();
7820 return std::move(FOrErr->Mods);
7821 }
7822
7823 Expected<BitcodeFileContents>
getBitcodeFileContents(MemoryBufferRef Buffer)7824 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7825 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7826 if (!StreamOrErr)
7827 return StreamOrErr.takeError();
7828 BitstreamCursor &Stream = *StreamOrErr;
7829
7830 BitcodeFileContents F;
7831 while (true) {
7832 uint64_t BCBegin = Stream.getCurrentByteNo();
7833
7834 // We may be consuming bitcode from a client that leaves garbage at the end
7835 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7836 // the end that there cannot possibly be another module, stop looking.
7837 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7838 return F;
7839
7840 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7841 if (!MaybeEntry)
7842 return MaybeEntry.takeError();
7843 llvm::BitstreamEntry Entry = MaybeEntry.get();
7844
7845 switch (Entry.Kind) {
7846 case BitstreamEntry::EndBlock:
7847 case BitstreamEntry::Error:
7848 return error("Malformed block");
7849
7850 case BitstreamEntry::SubBlock: {
7851 uint64_t IdentificationBit = -1ull;
7852 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7853 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7854 if (Error Err = Stream.SkipBlock())
7855 return std::move(Err);
7856
7857 {
7858 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7859 if (!MaybeEntry)
7860 return MaybeEntry.takeError();
7861 Entry = MaybeEntry.get();
7862 }
7863
7864 if (Entry.Kind != BitstreamEntry::SubBlock ||
7865 Entry.ID != bitc::MODULE_BLOCK_ID)
7866 return error("Malformed block");
7867 }
7868
7869 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7870 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7871 if (Error Err = Stream.SkipBlock())
7872 return std::move(Err);
7873
7874 F.Mods.push_back({Stream.getBitcodeBytes().slice(
7875 BCBegin, Stream.getCurrentByteNo() - BCBegin),
7876 Buffer.getBufferIdentifier(), IdentificationBit,
7877 ModuleBit});
7878 continue;
7879 }
7880
7881 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7882 Expected<StringRef> Strtab =
7883 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7884 if (!Strtab)
7885 return Strtab.takeError();
7886 // This string table is used by every preceding bitcode module that does
7887 // not have its own string table. A bitcode file may have multiple
7888 // string tables if it was created by binary concatenation, for example
7889 // with "llvm-cat -b".
7890 for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7891 if (!I.Strtab.empty())
7892 break;
7893 I.Strtab = *Strtab;
7894 }
7895 // Similarly, the string table is used by every preceding symbol table;
7896 // normally there will be just one unless the bitcode file was created
7897 // by binary concatenation.
7898 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7899 F.StrtabForSymtab = *Strtab;
7900 continue;
7901 }
7902
7903 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7904 Expected<StringRef> SymtabOrErr =
7905 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7906 if (!SymtabOrErr)
7907 return SymtabOrErr.takeError();
7908
7909 // We can expect the bitcode file to have multiple symbol tables if it
7910 // was created by binary concatenation. In that case we silently
7911 // ignore any subsequent symbol tables, which is fine because this is a
7912 // low level function. The client is expected to notice that the number
7913 // of modules in the symbol table does not match the number of modules
7914 // in the input file and regenerate the symbol table.
7915 if (F.Symtab.empty())
7916 F.Symtab = *SymtabOrErr;
7917 continue;
7918 }
7919
7920 if (Error Err = Stream.SkipBlock())
7921 return std::move(Err);
7922 continue;
7923 }
7924 case BitstreamEntry::Record:
7925 if (Error E = Stream.skipRecord(Entry.ID).takeError())
7926 return std::move(E);
7927 continue;
7928 }
7929 }
7930 }
7931
7932 /// Get a lazy one-at-time loading module from bitcode.
7933 ///
7934 /// This isn't always used in a lazy context. In particular, it's also used by
7935 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
7936 /// in forward-referenced functions from block address references.
7937 ///
7938 /// \param[in] MaterializeAll Set to \c true if we should materialize
7939 /// everything.
7940 Expected<std::unique_ptr<Module>>
getModuleImpl(LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata,bool IsImporting,ParserCallbacks Callbacks)7941 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7942 bool ShouldLazyLoadMetadata, bool IsImporting,
7943 ParserCallbacks Callbacks) {
7944 BitstreamCursor Stream(Buffer);
7945
7946 std::string ProducerIdentification;
7947 if (IdentificationBit != -1ull) {
7948 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7949 return std::move(JumpFailed);
7950 if (Error E =
7951 readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7952 return std::move(E);
7953 }
7954
7955 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7956 return std::move(JumpFailed);
7957 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7958 Context);
7959
7960 std::unique_ptr<Module> M =
7961 std::make_unique<Module>(ModuleIdentifier, Context);
7962 M->setMaterializer(R);
7963
7964 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7965 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7966 IsImporting, Callbacks))
7967 return std::move(Err);
7968
7969 if (MaterializeAll) {
7970 // Read in the entire module, and destroy the BitcodeReader.
7971 if (Error Err = M->materializeAll())
7972 return std::move(Err);
7973 } else {
7974 // Resolve forward references from blockaddresses.
7975 if (Error Err = R->materializeForwardReferencedFunctions())
7976 return std::move(Err);
7977 }
7978 return std::move(M);
7979 }
7980
7981 Expected<std::unique_ptr<Module>>
getLazyModule(LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting,ParserCallbacks Callbacks)7982 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7983 bool IsImporting, ParserCallbacks Callbacks) {
7984 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7985 Callbacks);
7986 }
7987
7988 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7989 // We don't use ModuleIdentifier here because the client may need to control the
7990 // module path used in the combined summary (e.g. when reading summaries for
7991 // regular LTO modules).
readSummary(ModuleSummaryIndex & CombinedIndex,StringRef ModulePath,uint64_t ModuleId,std::function<bool (GlobalValue::GUID)> IsPrevailing)7992 Error BitcodeModule::readSummary(
7993 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId,
7994 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
7995 BitstreamCursor Stream(Buffer);
7996 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7997 return JumpFailed;
7998
7999 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8000 ModulePath, ModuleId, IsPrevailing);
8001 return R.parseModule();
8002 }
8003
8004 // Parse the specified bitcode buffer, returning the function info index.
getSummary()8005 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8006 BitstreamCursor Stream(Buffer);
8007 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8008 return std::move(JumpFailed);
8009
8010 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8011 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8012 ModuleIdentifier, 0);
8013
8014 if (Error Err = R.parseModule())
8015 return std::move(Err);
8016
8017 return std::move(Index);
8018 }
8019
getEnableSplitLTOUnitFlag(BitstreamCursor & Stream,unsigned ID)8020 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
8021 unsigned ID) {
8022 if (Error Err = Stream.EnterSubBlock(ID))
8023 return std::move(Err);
8024 SmallVector<uint64_t, 64> Record;
8025
8026 while (true) {
8027 BitstreamEntry Entry;
8028 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8029 return std::move(E);
8030
8031 switch (Entry.Kind) {
8032 case BitstreamEntry::SubBlock: // Handled for us already.
8033 case BitstreamEntry::Error:
8034 return error("Malformed block");
8035 case BitstreamEntry::EndBlock:
8036 // If no flags record found, conservatively return true to mimic
8037 // behavior before this flag was added.
8038 return true;
8039 case BitstreamEntry::Record:
8040 // The interesting case.
8041 break;
8042 }
8043
8044 // Look for the FS_FLAGS record.
8045 Record.clear();
8046 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8047 if (!MaybeBitCode)
8048 return MaybeBitCode.takeError();
8049 switch (MaybeBitCode.get()) {
8050 default: // Default behavior: ignore.
8051 break;
8052 case bitc::FS_FLAGS: { // [flags]
8053 uint64_t Flags = Record[0];
8054 // Scan flags.
8055 assert(Flags <= 0xff && "Unexpected bits in flag");
8056
8057 return Flags & 0x8;
8058 }
8059 }
8060 }
8061 llvm_unreachable("Exit infinite loop");
8062 }
8063
8064 // Check if the given bitcode buffer contains a global value summary block.
getLTOInfo()8065 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8066 BitstreamCursor Stream(Buffer);
8067 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8068 return std::move(JumpFailed);
8069
8070 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8071 return std::move(Err);
8072
8073 while (true) {
8074 llvm::BitstreamEntry Entry;
8075 if (Error E = Stream.advance().moveInto(Entry))
8076 return std::move(E);
8077
8078 switch (Entry.Kind) {
8079 case BitstreamEntry::Error:
8080 return error("Malformed block");
8081 case BitstreamEntry::EndBlock:
8082 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8083 /*EnableSplitLTOUnit=*/false};
8084
8085 case BitstreamEntry::SubBlock:
8086 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8087 Expected<bool> EnableSplitLTOUnit =
8088 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8089 if (!EnableSplitLTOUnit)
8090 return EnableSplitLTOUnit.takeError();
8091 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
8092 *EnableSplitLTOUnit};
8093 }
8094
8095 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8096 Expected<bool> EnableSplitLTOUnit =
8097 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8098 if (!EnableSplitLTOUnit)
8099 return EnableSplitLTOUnit.takeError();
8100 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
8101 *EnableSplitLTOUnit};
8102 }
8103
8104 // Ignore other sub-blocks.
8105 if (Error Err = Stream.SkipBlock())
8106 return std::move(Err);
8107 continue;
8108
8109 case BitstreamEntry::Record:
8110 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8111 continue;
8112 else
8113 return StreamFailed.takeError();
8114 }
8115 }
8116 }
8117
getSingleModule(MemoryBufferRef Buffer)8118 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8119 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8120 if (!MsOrErr)
8121 return MsOrErr.takeError();
8122
8123 if (MsOrErr->size() != 1)
8124 return error("Expected a single module");
8125
8126 return (*MsOrErr)[0];
8127 }
8128
8129 Expected<std::unique_ptr<Module>>
getLazyBitcodeModule(MemoryBufferRef Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting,ParserCallbacks Callbacks)8130 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8131 bool ShouldLazyLoadMetadata, bool IsImporting,
8132 ParserCallbacks Callbacks) {
8133 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8134 if (!BM)
8135 return BM.takeError();
8136
8137 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8138 Callbacks);
8139 }
8140
getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata,bool IsImporting,ParserCallbacks Callbacks)8141 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8142 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8143 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8144 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8145 IsImporting, Callbacks);
8146 if (MOrErr)
8147 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8148 return MOrErr;
8149 }
8150
8151 Expected<std::unique_ptr<Module>>
parseModule(LLVMContext & Context,ParserCallbacks Callbacks)8152 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8153 return getModuleImpl(Context, true, false, false, Callbacks);
8154 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8155 // written. We must defer until the Module has been fully materialized.
8156 }
8157
8158 Expected<std::unique_ptr<Module>>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,ParserCallbacks Callbacks)8159 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8160 ParserCallbacks Callbacks) {
8161 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8162 if (!BM)
8163 return BM.takeError();
8164
8165 return BM->parseModule(Context, Callbacks);
8166 }
8167
getBitcodeTargetTriple(MemoryBufferRef Buffer)8168 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8169 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8170 if (!StreamOrErr)
8171 return StreamOrErr.takeError();
8172
8173 return readTriple(*StreamOrErr);
8174 }
8175
isBitcodeContainingObjCCategory(MemoryBufferRef Buffer)8176 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8177 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8178 if (!StreamOrErr)
8179 return StreamOrErr.takeError();
8180
8181 return hasObjCCategory(*StreamOrErr);
8182 }
8183
getBitcodeProducerString(MemoryBufferRef Buffer)8184 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8185 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8186 if (!StreamOrErr)
8187 return StreamOrErr.takeError();
8188
8189 return readIdentificationCode(*StreamOrErr);
8190 }
8191
readModuleSummaryIndex(MemoryBufferRef Buffer,ModuleSummaryIndex & CombinedIndex,uint64_t ModuleId)8192 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8193 ModuleSummaryIndex &CombinedIndex,
8194 uint64_t ModuleId) {
8195 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8196 if (!BM)
8197 return BM.takeError();
8198
8199 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
8200 }
8201
8202 Expected<std::unique_ptr<ModuleSummaryIndex>>
getModuleSummaryIndex(MemoryBufferRef Buffer)8203 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8204 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8205 if (!BM)
8206 return BM.takeError();
8207
8208 return BM->getSummary();
8209 }
8210
getBitcodeLTOInfo(MemoryBufferRef Buffer)8211 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8212 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8213 if (!BM)
8214 return BM.takeError();
8215
8216 return BM->getLTOInfo();
8217 }
8218
8219 Expected<std::unique_ptr<ModuleSummaryIndex>>
getModuleSummaryIndexForFile(StringRef Path,bool IgnoreEmptyThinLTOIndexFile)8220 llvm::getModuleSummaryIndexForFile(StringRef Path,
8221 bool IgnoreEmptyThinLTOIndexFile) {
8222 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8223 MemoryBuffer::getFileOrSTDIN(Path);
8224 if (!FileOrErr)
8225 return errorCodeToError(FileOrErr.getError());
8226 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8227 return nullptr;
8228 return getModuleSummaryIndex(**FileOrErr);
8229 }
8230