1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/DomTreeUpdater.h"
17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
18 #include "llvm/Analysis/ProfileSummaryInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SizeOpts.h"
31 #include <optional>
32
33 using namespace llvm;
34
35 namespace llvm {
36 class TargetLowering;
37 }
38
39 #define DEBUG_TYPE "expandmemcmp"
40
41 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
42 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
43 STATISTIC(NumMemCmpGreaterThanMax,
44 "Number of memcmp calls with size greater than max size");
45 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
46
47 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
48 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
49 cl::desc("The number of loads per basic block for inline expansion of "
50 "memcmp that is only being compared against zero."));
51
52 static cl::opt<unsigned> MaxLoadsPerMemcmp(
53 "max-loads-per-memcmp", cl::Hidden,
54 cl::desc("Set maximum number of loads used in expanded memcmp"));
55
56 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
57 "max-loads-per-memcmp-opt-size", cl::Hidden,
58 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
59
60 namespace {
61
62
63 // This class provides helper functions to expand a memcmp library call into an
64 // inline expansion.
65 class MemCmpExpansion {
66 struct ResultBlock {
67 BasicBlock *BB = nullptr;
68 PHINode *PhiSrc1 = nullptr;
69 PHINode *PhiSrc2 = nullptr;
70
71 ResultBlock() = default;
72 };
73
74 CallInst *const CI;
75 ResultBlock ResBlock;
76 const uint64_t Size;
77 unsigned MaxLoadSize = 0;
78 uint64_t NumLoadsNonOneByte = 0;
79 const uint64_t NumLoadsPerBlockForZeroCmp;
80 std::vector<BasicBlock *> LoadCmpBlocks;
81 BasicBlock *EndBlock;
82 PHINode *PhiRes;
83 const bool IsUsedForZeroCmp;
84 const DataLayout &DL;
85 DomTreeUpdater *DTU;
86 IRBuilder<> Builder;
87 // Represents the decomposition in blocks of the expansion. For example,
88 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
89 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
90 struct LoadEntry {
LoadEntry__anondd4e65600111::MemCmpExpansion::LoadEntry91 LoadEntry(unsigned LoadSize, uint64_t Offset)
92 : LoadSize(LoadSize), Offset(Offset) {
93 }
94
95 // The size of the load for this block, in bytes.
96 unsigned LoadSize;
97 // The offset of this load from the base pointer, in bytes.
98 uint64_t Offset;
99 };
100 using LoadEntryVector = SmallVector<LoadEntry, 8>;
101 LoadEntryVector LoadSequence;
102
103 void createLoadCmpBlocks();
104 void createResultBlock();
105 void setupResultBlockPHINodes();
106 void setupEndBlockPHINodes();
107 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
108 void emitLoadCompareBlock(unsigned BlockIndex);
109 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
110 unsigned &LoadIndex);
111 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
112 void emitMemCmpResultBlock();
113 Value *getMemCmpExpansionZeroCase();
114 Value *getMemCmpEqZeroOneBlock();
115 Value *getMemCmpOneBlock();
116 struct LoadPair {
117 Value *Lhs = nullptr;
118 Value *Rhs = nullptr;
119 };
120 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
121 unsigned OffsetBytes);
122
123 static LoadEntryVector
124 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
125 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
126 static LoadEntryVector
127 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
128 unsigned MaxNumLoads,
129 unsigned &NumLoadsNonOneByte);
130
131 public:
132 MemCmpExpansion(CallInst *CI, uint64_t Size,
133 const TargetTransformInfo::MemCmpExpansionOptions &Options,
134 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
135 DomTreeUpdater *DTU);
136
137 unsigned getNumBlocks();
getNumLoads() const138 uint64_t getNumLoads() const { return LoadSequence.size(); }
139
140 Value *getMemCmpExpansion();
141 };
142
computeGreedyLoadSequence(uint64_t Size,llvm::ArrayRef<unsigned> LoadSizes,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)143 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
144 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
145 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
146 NumLoadsNonOneByte = 0;
147 LoadEntryVector LoadSequence;
148 uint64_t Offset = 0;
149 while (Size && !LoadSizes.empty()) {
150 const unsigned LoadSize = LoadSizes.front();
151 const uint64_t NumLoadsForThisSize = Size / LoadSize;
152 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
153 // Do not expand if the total number of loads is larger than what the
154 // target allows. Note that it's important that we exit before completing
155 // the expansion to avoid using a ton of memory to store the expansion for
156 // large sizes.
157 return {};
158 }
159 if (NumLoadsForThisSize > 0) {
160 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
161 LoadSequence.push_back({LoadSize, Offset});
162 Offset += LoadSize;
163 }
164 if (LoadSize > 1)
165 ++NumLoadsNonOneByte;
166 Size = Size % LoadSize;
167 }
168 LoadSizes = LoadSizes.drop_front();
169 }
170 return LoadSequence;
171 }
172
173 MemCmpExpansion::LoadEntryVector
computeOverlappingLoadSequence(uint64_t Size,const unsigned MaxLoadSize,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)174 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
175 const unsigned MaxLoadSize,
176 const unsigned MaxNumLoads,
177 unsigned &NumLoadsNonOneByte) {
178 // These are already handled by the greedy approach.
179 if (Size < 2 || MaxLoadSize < 2)
180 return {};
181
182 // We try to do as many non-overlapping loads as possible starting from the
183 // beginning.
184 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
185 assert(NumNonOverlappingLoads && "there must be at least one load");
186 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
187 // an overlapping load.
188 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
189 // Bail if we do not need an overloapping store, this is already handled by
190 // the greedy approach.
191 if (Size == 0)
192 return {};
193 // Bail if the number of loads (non-overlapping + potential overlapping one)
194 // is larger than the max allowed.
195 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
196 return {};
197
198 // Add non-overlapping loads.
199 LoadEntryVector LoadSequence;
200 uint64_t Offset = 0;
201 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
202 LoadSequence.push_back({MaxLoadSize, Offset});
203 Offset += MaxLoadSize;
204 }
205
206 // Add the last overlapping load.
207 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
208 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
209 NumLoadsNonOneByte = 1;
210 return LoadSequence;
211 }
212
213 // Initialize the basic block structure required for expansion of memcmp call
214 // with given maximum load size and memcmp size parameter.
215 // This structure includes:
216 // 1. A list of load compare blocks - LoadCmpBlocks.
217 // 2. An EndBlock, split from original instruction point, which is the block to
218 // return from.
219 // 3. ResultBlock, block to branch to for early exit when a
220 // LoadCmpBlock finds a difference.
MemCmpExpansion(CallInst * const CI,uint64_t Size,const TargetTransformInfo::MemCmpExpansionOptions & Options,const bool IsUsedForZeroCmp,const DataLayout & TheDataLayout,DomTreeUpdater * DTU)221 MemCmpExpansion::MemCmpExpansion(
222 CallInst *const CI, uint64_t Size,
223 const TargetTransformInfo::MemCmpExpansionOptions &Options,
224 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
225 DomTreeUpdater *DTU)
226 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
227 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
228 Builder(CI) {
229 assert(Size > 0 && "zero blocks");
230 // Scale the max size down if the target can load more bytes than we need.
231 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
232 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
233 LoadSizes = LoadSizes.drop_front();
234 }
235 assert(!LoadSizes.empty() && "cannot load Size bytes");
236 MaxLoadSize = LoadSizes.front();
237 // Compute the decomposition.
238 unsigned GreedyNumLoadsNonOneByte = 0;
239 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
240 GreedyNumLoadsNonOneByte);
241 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
242 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
243 // If we allow overlapping loads and the load sequence is not already optimal,
244 // use overlapping loads.
245 if (Options.AllowOverlappingLoads &&
246 (LoadSequence.empty() || LoadSequence.size() > 2)) {
247 unsigned OverlappingNumLoadsNonOneByte = 0;
248 auto OverlappingLoads = computeOverlappingLoadSequence(
249 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
250 if (!OverlappingLoads.empty() &&
251 (LoadSequence.empty() ||
252 OverlappingLoads.size() < LoadSequence.size())) {
253 LoadSequence = OverlappingLoads;
254 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
255 }
256 }
257 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
258 }
259
getNumBlocks()260 unsigned MemCmpExpansion::getNumBlocks() {
261 if (IsUsedForZeroCmp)
262 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
263 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
264 return getNumLoads();
265 }
266
createLoadCmpBlocks()267 void MemCmpExpansion::createLoadCmpBlocks() {
268 for (unsigned i = 0; i < getNumBlocks(); i++) {
269 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
270 EndBlock->getParent(), EndBlock);
271 LoadCmpBlocks.push_back(BB);
272 }
273 }
274
createResultBlock()275 void MemCmpExpansion::createResultBlock() {
276 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
277 EndBlock->getParent(), EndBlock);
278 }
279
getLoadPair(Type * LoadSizeType,bool NeedsBSwap,Type * CmpSizeType,unsigned OffsetBytes)280 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
281 bool NeedsBSwap,
282 Type *CmpSizeType,
283 unsigned OffsetBytes) {
284 // Get the memory source at offset `OffsetBytes`.
285 Value *LhsSource = CI->getArgOperand(0);
286 Value *RhsSource = CI->getArgOperand(1);
287 Align LhsAlign = LhsSource->getPointerAlignment(DL);
288 Align RhsAlign = RhsSource->getPointerAlignment(DL);
289 if (OffsetBytes > 0) {
290 auto *ByteType = Type::getInt8Ty(CI->getContext());
291 LhsSource = Builder.CreateConstGEP1_64(
292 ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
293 OffsetBytes);
294 RhsSource = Builder.CreateConstGEP1_64(
295 ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
296 OffsetBytes);
297 LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
298 RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
299 }
300 LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
301 RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
302
303 // Create a constant or a load from the source.
304 Value *Lhs = nullptr;
305 if (auto *C = dyn_cast<Constant>(LhsSource))
306 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
307 if (!Lhs)
308 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
309
310 Value *Rhs = nullptr;
311 if (auto *C = dyn_cast<Constant>(RhsSource))
312 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
313 if (!Rhs)
314 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
315
316 // Swap bytes if required.
317 if (NeedsBSwap) {
318 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
319 Intrinsic::bswap, LoadSizeType);
320 Lhs = Builder.CreateCall(Bswap, Lhs);
321 Rhs = Builder.CreateCall(Bswap, Rhs);
322 }
323
324 // Zero extend if required.
325 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
326 Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
327 Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
328 }
329 return {Lhs, Rhs};
330 }
331
332 // This function creates the IR instructions for loading and comparing 1 byte.
333 // It loads 1 byte from each source of the memcmp parameters with the given
334 // GEPIndex. It then subtracts the two loaded values and adds this result to the
335 // final phi node for selecting the memcmp result.
emitLoadCompareByteBlock(unsigned BlockIndex,unsigned OffsetBytes)336 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
337 unsigned OffsetBytes) {
338 BasicBlock *BB = LoadCmpBlocks[BlockIndex];
339 Builder.SetInsertPoint(BB);
340 const LoadPair Loads =
341 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
342 Type::getInt32Ty(CI->getContext()), OffsetBytes);
343 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
344
345 PhiRes->addIncoming(Diff, BB);
346
347 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
348 // Early exit branch if difference found to EndBlock. Otherwise, continue to
349 // next LoadCmpBlock,
350 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
351 ConstantInt::get(Diff->getType(), 0));
352 BranchInst *CmpBr =
353 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
354 Builder.Insert(CmpBr);
355 if (DTU)
356 DTU->applyUpdates(
357 {{DominatorTree::Insert, BB, EndBlock},
358 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
359 } else {
360 // The last block has an unconditional branch to EndBlock.
361 BranchInst *CmpBr = BranchInst::Create(EndBlock);
362 Builder.Insert(CmpBr);
363 if (DTU)
364 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
365 }
366 }
367
368 /// Generate an equality comparison for one or more pairs of loaded values.
369 /// This is used in the case where the memcmp() call is compared equal or not
370 /// equal to zero.
getCompareLoadPairs(unsigned BlockIndex,unsigned & LoadIndex)371 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
372 unsigned &LoadIndex) {
373 assert(LoadIndex < getNumLoads() &&
374 "getCompareLoadPairs() called with no remaining loads");
375 std::vector<Value *> XorList, OrList;
376 Value *Diff = nullptr;
377
378 const unsigned NumLoads =
379 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
380
381 // For a single-block expansion, start inserting before the memcmp call.
382 if (LoadCmpBlocks.empty())
383 Builder.SetInsertPoint(CI);
384 else
385 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
386
387 Value *Cmp = nullptr;
388 // If we have multiple loads per block, we need to generate a composite
389 // comparison using xor+or. The type for the combinations is the largest load
390 // type.
391 IntegerType *const MaxLoadType =
392 NumLoads == 1 ? nullptr
393 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
394 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
395 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
396 const LoadPair Loads = getLoadPair(
397 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
398 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
399
400 if (NumLoads != 1) {
401 // If we have multiple loads per block, we need to generate a composite
402 // comparison using xor+or.
403 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
404 Diff = Builder.CreateZExt(Diff, MaxLoadType);
405 XorList.push_back(Diff);
406 } else {
407 // If there's only one load per block, we just compare the loaded values.
408 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
409 }
410 }
411
412 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
413 std::vector<Value *> OutList;
414 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
415 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
416 OutList.push_back(Or);
417 }
418 if (InList.size() % 2 != 0)
419 OutList.push_back(InList.back());
420 return OutList;
421 };
422
423 if (!Cmp) {
424 // Pairwise OR the XOR results.
425 OrList = pairWiseOr(XorList);
426
427 // Pairwise OR the OR results until one result left.
428 while (OrList.size() != 1) {
429 OrList = pairWiseOr(OrList);
430 }
431
432 assert(Diff && "Failed to find comparison diff");
433 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
434 }
435
436 return Cmp;
437 }
438
emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,unsigned & LoadIndex)439 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
440 unsigned &LoadIndex) {
441 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
442
443 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
444 ? EndBlock
445 : LoadCmpBlocks[BlockIndex + 1];
446 // Early exit branch if difference found to ResultBlock. Otherwise,
447 // continue to next LoadCmpBlock or EndBlock.
448 BasicBlock *BB = Builder.GetInsertBlock();
449 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
450 Builder.Insert(CmpBr);
451 if (DTU)
452 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
453 {DominatorTree::Insert, BB, NextBB}});
454
455 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
456 // since early exit to ResultBlock was not taken (no difference was found in
457 // any of the bytes).
458 if (BlockIndex == LoadCmpBlocks.size() - 1) {
459 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
460 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
461 }
462 }
463
464 // This function creates the IR intructions for loading and comparing using the
465 // given LoadSize. It loads the number of bytes specified by LoadSize from each
466 // source of the memcmp parameters. It then does a subtract to see if there was
467 // a difference in the loaded values. If a difference is found, it branches
468 // with an early exit to the ResultBlock for calculating which source was
469 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
470 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
471 // a special case through emitLoadCompareByteBlock. The special handling can
472 // simply subtract the loaded values and add it to the result phi node.
emitLoadCompareBlock(unsigned BlockIndex)473 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
474 // There is one load per block in this case, BlockIndex == LoadIndex.
475 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
476
477 if (CurLoadEntry.LoadSize == 1) {
478 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
479 return;
480 }
481
482 Type *LoadSizeType =
483 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
484 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
485 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
486
487 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
488
489 const LoadPair Loads =
490 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
491 CurLoadEntry.Offset);
492
493 // Add the loaded values to the phi nodes for calculating memcmp result only
494 // if result is not used in a zero equality.
495 if (!IsUsedForZeroCmp) {
496 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
497 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
498 }
499
500 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
501 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
502 ? EndBlock
503 : LoadCmpBlocks[BlockIndex + 1];
504 // Early exit branch if difference found to ResultBlock. Otherwise, continue
505 // to next LoadCmpBlock or EndBlock.
506 BasicBlock *BB = Builder.GetInsertBlock();
507 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
508 Builder.Insert(CmpBr);
509 if (DTU)
510 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
511 {DominatorTree::Insert, BB, ResBlock.BB}});
512
513 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
514 // since early exit to ResultBlock was not taken (no difference was found in
515 // any of the bytes).
516 if (BlockIndex == LoadCmpBlocks.size() - 1) {
517 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
518 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
519 }
520 }
521
522 // This function populates the ResultBlock with a sequence to calculate the
523 // memcmp result. It compares the two loaded source values and returns -1 if
524 // src1 < src2 and 1 if src1 > src2.
emitMemCmpResultBlock()525 void MemCmpExpansion::emitMemCmpResultBlock() {
526 // Special case: if memcmp result is used in a zero equality, result does not
527 // need to be calculated and can simply return 1.
528 if (IsUsedForZeroCmp) {
529 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
530 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
531 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
532 PhiRes->addIncoming(Res, ResBlock.BB);
533 BranchInst *NewBr = BranchInst::Create(EndBlock);
534 Builder.Insert(NewBr);
535 if (DTU)
536 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
537 return;
538 }
539 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
540 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
541
542 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
543 ResBlock.PhiSrc2);
544
545 Value *Res =
546 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
547 ConstantInt::get(Builder.getInt32Ty(), 1));
548
549 PhiRes->addIncoming(Res, ResBlock.BB);
550 BranchInst *NewBr = BranchInst::Create(EndBlock);
551 Builder.Insert(NewBr);
552 if (DTU)
553 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
554 }
555
setupResultBlockPHINodes()556 void MemCmpExpansion::setupResultBlockPHINodes() {
557 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
558 Builder.SetInsertPoint(ResBlock.BB);
559 // Note: this assumes one load per block.
560 ResBlock.PhiSrc1 =
561 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
562 ResBlock.PhiSrc2 =
563 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
564 }
565
setupEndBlockPHINodes()566 void MemCmpExpansion::setupEndBlockPHINodes() {
567 Builder.SetInsertPoint(&EndBlock->front());
568 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
569 }
570
getMemCmpExpansionZeroCase()571 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
572 unsigned LoadIndex = 0;
573 // This loop populates each of the LoadCmpBlocks with the IR sequence to
574 // handle multiple loads per block.
575 for (unsigned I = 0; I < getNumBlocks(); ++I) {
576 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
577 }
578
579 emitMemCmpResultBlock();
580 return PhiRes;
581 }
582
583 /// A memcmp expansion that compares equality with 0 and only has one block of
584 /// load and compare can bypass the compare, branch, and phi IR that is required
585 /// in the general case.
getMemCmpEqZeroOneBlock()586 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
587 unsigned LoadIndex = 0;
588 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
589 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
590 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
591 }
592
593 /// A memcmp expansion that only has one block of load and compare can bypass
594 /// the compare, branch, and phi IR that is required in the general case.
getMemCmpOneBlock()595 Value *MemCmpExpansion::getMemCmpOneBlock() {
596 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
597 bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
598
599 // The i8 and i16 cases don't need compares. We zext the loaded values and
600 // subtract them to get the suitable negative, zero, or positive i32 result.
601 if (Size < 4) {
602 const LoadPair Loads =
603 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
604 /*Offset*/ 0);
605 return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
606 }
607
608 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
609 /*Offset*/ 0);
610 // The result of memcmp is negative, zero, or positive, so produce that by
611 // subtracting 2 extended compare bits: sub (ugt, ult).
612 // If a target prefers to use selects to get -1/0/1, they should be able
613 // to transform this later. The inverse transform (going from selects to math)
614 // may not be possible in the DAG because the selects got converted into
615 // branches before we got there.
616 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
617 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
618 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
619 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
620 return Builder.CreateSub(ZextUGT, ZextULT);
621 }
622
623 // This function expands the memcmp call into an inline expansion and returns
624 // the memcmp result.
getMemCmpExpansion()625 Value *MemCmpExpansion::getMemCmpExpansion() {
626 // Create the basic block framework for a multi-block expansion.
627 if (getNumBlocks() != 1) {
628 BasicBlock *StartBlock = CI->getParent();
629 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
630 /*MSSAU=*/nullptr, "endblock");
631 setupEndBlockPHINodes();
632 createResultBlock();
633
634 // If return value of memcmp is not used in a zero equality, we need to
635 // calculate which source was larger. The calculation requires the
636 // two loaded source values of each load compare block.
637 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
638 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
639
640 // Create the number of required load compare basic blocks.
641 createLoadCmpBlocks();
642
643 // Update the terminator added by SplitBlock to branch to the first
644 // LoadCmpBlock.
645 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
646 if (DTU)
647 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
648 {DominatorTree::Delete, StartBlock, EndBlock}});
649 }
650
651 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
652
653 if (IsUsedForZeroCmp)
654 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
655 : getMemCmpExpansionZeroCase();
656
657 if (getNumBlocks() == 1)
658 return getMemCmpOneBlock();
659
660 for (unsigned I = 0; I < getNumBlocks(); ++I) {
661 emitLoadCompareBlock(I);
662 }
663
664 emitMemCmpResultBlock();
665 return PhiRes;
666 }
667
668 // This function checks to see if an expansion of memcmp can be generated.
669 // It checks for constant compare size that is less than the max inline size.
670 // If an expansion cannot occur, returns false to leave as a library call.
671 // Otherwise, the library call is replaced with a new IR instruction sequence.
672 /// We want to transform:
673 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
674 /// To:
675 /// loadbb:
676 /// %0 = bitcast i32* %buffer2 to i8*
677 /// %1 = bitcast i32* %buffer1 to i8*
678 /// %2 = bitcast i8* %1 to i64*
679 /// %3 = bitcast i8* %0 to i64*
680 /// %4 = load i64, i64* %2
681 /// %5 = load i64, i64* %3
682 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
683 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
684 /// %8 = sub i64 %6, %7
685 /// %9 = icmp ne i64 %8, 0
686 /// br i1 %9, label %res_block, label %loadbb1
687 /// res_block: ; preds = %loadbb2,
688 /// %loadbb1, %loadbb
689 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
690 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
691 /// %10 = icmp ult i64 %phi.src1, %phi.src2
692 /// %11 = select i1 %10, i32 -1, i32 1
693 /// br label %endblock
694 /// loadbb1: ; preds = %loadbb
695 /// %12 = bitcast i32* %buffer2 to i8*
696 /// %13 = bitcast i32* %buffer1 to i8*
697 /// %14 = bitcast i8* %13 to i32*
698 /// %15 = bitcast i8* %12 to i32*
699 /// %16 = getelementptr i32, i32* %14, i32 2
700 /// %17 = getelementptr i32, i32* %15, i32 2
701 /// %18 = load i32, i32* %16
702 /// %19 = load i32, i32* %17
703 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
704 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
705 /// %22 = zext i32 %20 to i64
706 /// %23 = zext i32 %21 to i64
707 /// %24 = sub i64 %22, %23
708 /// %25 = icmp ne i64 %24, 0
709 /// br i1 %25, label %res_block, label %loadbb2
710 /// loadbb2: ; preds = %loadbb1
711 /// %26 = bitcast i32* %buffer2 to i8*
712 /// %27 = bitcast i32* %buffer1 to i8*
713 /// %28 = bitcast i8* %27 to i16*
714 /// %29 = bitcast i8* %26 to i16*
715 /// %30 = getelementptr i16, i16* %28, i16 6
716 /// %31 = getelementptr i16, i16* %29, i16 6
717 /// %32 = load i16, i16* %30
718 /// %33 = load i16, i16* %31
719 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
720 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
721 /// %36 = zext i16 %34 to i64
722 /// %37 = zext i16 %35 to i64
723 /// %38 = sub i64 %36, %37
724 /// %39 = icmp ne i64 %38, 0
725 /// br i1 %39, label %res_block, label %loadbb3
726 /// loadbb3: ; preds = %loadbb2
727 /// %40 = bitcast i32* %buffer2 to i8*
728 /// %41 = bitcast i32* %buffer1 to i8*
729 /// %42 = getelementptr i8, i8* %41, i8 14
730 /// %43 = getelementptr i8, i8* %40, i8 14
731 /// %44 = load i8, i8* %42
732 /// %45 = load i8, i8* %43
733 /// %46 = zext i8 %44 to i32
734 /// %47 = zext i8 %45 to i32
735 /// %48 = sub i32 %46, %47
736 /// br label %endblock
737 /// endblock: ; preds = %res_block,
738 /// %loadbb3
739 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
740 /// ret i32 %phi.res
expandMemCmp(CallInst * CI,const TargetTransformInfo * TTI,const TargetLowering * TLI,const DataLayout * DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU,const bool IsBCmp)741 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
742 const TargetLowering *TLI, const DataLayout *DL,
743 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
744 DomTreeUpdater *DTU, const bool IsBCmp) {
745 NumMemCmpCalls++;
746
747 // Early exit from expansion if -Oz.
748 if (CI->getFunction()->hasMinSize())
749 return false;
750
751 // Early exit from expansion if size is not a constant.
752 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
753 if (!SizeCast) {
754 NumMemCmpNotConstant++;
755 return false;
756 }
757 const uint64_t SizeVal = SizeCast->getZExtValue();
758
759 if (SizeVal == 0) {
760 return false;
761 }
762 // TTI call to check if target would like to expand memcmp. Also, get the
763 // available load sizes.
764 const bool IsUsedForZeroCmp =
765 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
766 bool OptForSize = CI->getFunction()->hasOptSize() ||
767 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
768 auto Options = TTI->enableMemCmpExpansion(OptForSize,
769 IsUsedForZeroCmp);
770 if (!Options) return false;
771
772 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
773 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
774
775 if (OptForSize &&
776 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
777 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
778
779 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
780 Options.MaxNumLoads = MaxLoadsPerMemcmp;
781
782 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
783
784 // Don't expand if this will require more loads than desired by the target.
785 if (Expansion.getNumLoads() == 0) {
786 NumMemCmpGreaterThanMax++;
787 return false;
788 }
789
790 NumMemCmpInlined++;
791
792 Value *Res = Expansion.getMemCmpExpansion();
793
794 // Replace call with result of expansion and erase call.
795 CI->replaceAllUsesWith(Res);
796 CI->eraseFromParent();
797
798 return true;
799 }
800
801 class ExpandMemCmpPass : public FunctionPass {
802 public:
803 static char ID;
804
ExpandMemCmpPass()805 ExpandMemCmpPass() : FunctionPass(ID) {
806 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
807 }
808
runOnFunction(Function & F)809 bool runOnFunction(Function &F) override {
810 if (skipFunction(F)) return false;
811
812 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
813 if (!TPC) {
814 return false;
815 }
816 const TargetLowering* TL =
817 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
818
819 const TargetLibraryInfo *TLI =
820 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
821 const TargetTransformInfo *TTI =
822 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
823 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
824 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
825 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
826 nullptr;
827 DominatorTree *DT = nullptr;
828 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
829 DT = &DTWP->getDomTree();
830 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
831 return !PA.areAllPreserved();
832 }
833
834 private:
getAnalysisUsage(AnalysisUsage & AU) const835 void getAnalysisUsage(AnalysisUsage &AU) const override {
836 AU.addRequired<TargetLibraryInfoWrapperPass>();
837 AU.addRequired<TargetTransformInfoWrapperPass>();
838 AU.addRequired<ProfileSummaryInfoWrapperPass>();
839 AU.addPreserved<DominatorTreeWrapperPass>();
840 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
841 FunctionPass::getAnalysisUsage(AU);
842 }
843
844 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
845 const TargetTransformInfo *TTI,
846 const TargetLowering *TL, ProfileSummaryInfo *PSI,
847 BlockFrequencyInfo *BFI, DominatorTree *DT);
848 // Returns true if a change was made.
849 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
850 const TargetTransformInfo *TTI, const TargetLowering *TL,
851 const DataLayout &DL, ProfileSummaryInfo *PSI,
852 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
853 };
854
runOnBlock(BasicBlock & BB,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,const DataLayout & DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU)855 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
856 const TargetTransformInfo *TTI,
857 const TargetLowering *TL,
858 const DataLayout &DL, ProfileSummaryInfo *PSI,
859 BlockFrequencyInfo *BFI,
860 DomTreeUpdater *DTU) {
861 for (Instruction& I : BB) {
862 CallInst *CI = dyn_cast<CallInst>(&I);
863 if (!CI) {
864 continue;
865 }
866 LibFunc Func;
867 if (TLI->getLibFunc(*CI, Func) &&
868 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
869 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
870 return true;
871 }
872 }
873 return false;
874 }
875
876 PreservedAnalyses
runImpl(Function & F,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DominatorTree * DT)877 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
878 const TargetTransformInfo *TTI,
879 const TargetLowering *TL, ProfileSummaryInfo *PSI,
880 BlockFrequencyInfo *BFI, DominatorTree *DT) {
881 std::optional<DomTreeUpdater> DTU;
882 if (DT)
883 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
884
885 const DataLayout& DL = F.getParent()->getDataLayout();
886 bool MadeChanges = false;
887 for (auto BBIt = F.begin(); BBIt != F.end();) {
888 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
889 MadeChanges = true;
890 // If changes were made, restart the function from the beginning, since
891 // the structure of the function was changed.
892 BBIt = F.begin();
893 } else {
894 ++BBIt;
895 }
896 }
897 if (MadeChanges)
898 for (BasicBlock &BB : F)
899 SimplifyInstructionsInBlock(&BB);
900 if (!MadeChanges)
901 return PreservedAnalyses::all();
902 PreservedAnalyses PA;
903 PA.preserve<DominatorTreeAnalysis>();
904 return PA;
905 }
906
907 } // namespace
908
909 char ExpandMemCmpPass::ID = 0;
910 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
911 "Expand memcmp() to load/stores", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
913 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
914 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
915 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
916 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
917 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
918 "Expand memcmp() to load/stores", false, false)
919
920 FunctionPass *llvm::createExpandMemCmpPass() {
921 return new ExpandMemCmpPass();
922 }
923