xref: /netbsd/external/mit/lua/dist/src/lopcodes.h (revision f13f21ab)
1 /*	$NetBSD: lopcodes.h,v 1.10 2023/06/08 21:12:08 nikita Exp $	*/
2 
3 /*
4 ** Id: lopcodes.h
5 ** Opcodes for Lua virtual machine
6 ** See Copyright Notice in lua.h
7 */
8 
9 #ifndef lopcodes_h
10 #define lopcodes_h
11 
12 #include "llimits.h"
13 
14 
15 /*===========================================================================
16   We assume that instructions are unsigned 32-bit integers.
17   All instructions have an opcode in the first 7 bits.
18   Instructions can have the following formats:
19 
20         3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
21         1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
22 iABC          C(8)     |      B(8)     |k|     A(8)      |   Op(7)     |
23 iABx                Bx(17)               |     A(8)      |   Op(7)     |
24 iAsBx              sBx (signed)(17)      |     A(8)      |   Op(7)     |
25 iAx                           Ax(25)                     |   Op(7)     |
26 isJ                           sJ (signed)(25)            |   Op(7)     |
27 
28   A signed argument is represented in excess K: the represented value is
29   the written unsigned value minus K, where K is half the maximum for the
30   corresponding unsigned argument.
31 ===========================================================================*/
32 
33 
34 enum OpMode {iABC, iABx, iAsBx, iAx, isJ};  /* basic instruction formats */
35 
36 
37 /*
38 ** size and position of opcode arguments.
39 */
40 #define SIZE_C		8
41 #define SIZE_B		8
42 #define SIZE_Bx		(SIZE_C + SIZE_B + 1)
43 #define SIZE_A		8
44 #define SIZE_Ax		(SIZE_Bx + SIZE_A)
45 #define SIZE_sJ		(SIZE_Bx + SIZE_A)
46 
47 #define SIZE_OP		7
48 
49 #define POS_OP		0
50 
51 #define POS_A		(POS_OP + SIZE_OP)
52 #define POS_k		(POS_A + SIZE_A)
53 #define POS_B		(POS_k + 1)
54 #define POS_C		(POS_B + SIZE_B)
55 
56 #define POS_Bx		POS_k
57 
58 #define POS_Ax		POS_A
59 
60 #define POS_sJ		POS_A
61 
62 
63 /*
64 ** limits for opcode arguments.
65 ** we use (signed) 'int' to manipulate most arguments,
66 ** so they must fit in ints.
67 */
68 
69 /* Check whether type 'int' has at least 'b' bits ('b' < 32) */
70 #define L_INTHASBITS(b)		((UINT_MAX >> ((b) - 1)) >= 1)
71 
72 
73 #if L_INTHASBITS(SIZE_Bx)
74 #define MAXARG_Bx	((1<<SIZE_Bx)-1)
75 #else
76 #define MAXARG_Bx	MAX_INT
77 #endif
78 
79 #define OFFSET_sBx	(MAXARG_Bx>>1)         /* 'sBx' is signed */
80 
81 
82 #if L_INTHASBITS(SIZE_Ax)
83 #define MAXARG_Ax	((1<<SIZE_Ax)-1)
84 #else
85 #define MAXARG_Ax	MAX_INT
86 #endif
87 
88 #if L_INTHASBITS(SIZE_sJ)
89 #define MAXARG_sJ	((1 << SIZE_sJ) - 1)
90 #else
91 #define MAXARG_sJ	MAX_INT
92 #endif
93 
94 #define OFFSET_sJ	(MAXARG_sJ >> 1)
95 
96 
97 #define MAXARG_A	((1<<SIZE_A)-1)
98 #define MAXARG_B	((1<<SIZE_B)-1)
99 #define MAXARG_C	((1<<SIZE_C)-1)
100 #define OFFSET_sC	(MAXARG_C >> 1)
101 
102 #define int2sC(i)	((i) + OFFSET_sC)
103 #define sC2int(i)	((i) - OFFSET_sC)
104 
105 
106 /* creates a mask with 'n' 1 bits at position 'p' */
107 #define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))
108 
109 /* creates a mask with 'n' 0 bits at position 'p' */
110 #define MASK0(n,p)	(~MASK1(n,p))
111 
112 /*
113 ** the following macros help to manipulate instructions
114 */
115 
116 #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
117 #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
118 		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
119 
120 #define checkopm(i,m)	(getOpMode(GET_OPCODE(i)) == m)
121 
122 
123 #define getarg(i,pos,size)	(cast_int(((i)>>(pos)) & MASK1(size,0)))
124 #define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
125                 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
126 
127 #define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
128 #define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)
129 
130 #define GETARG_B(i)	check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
131 #define GETARG_sB(i)	sC2int(GETARG_B(i))
132 #define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)
133 
134 #define GETARG_C(i)	check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
135 #define GETARG_sC(i)	sC2int(GETARG_C(i))
136 #define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)
137 
138 #define TESTARG_k(i)	check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
139 #define GETARG_k(i)	check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
140 #define SETARG_k(i,v)	setarg(i, v, POS_k, 1)
141 
142 #define GETARG_Bx(i)	check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
143 #define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)
144 
145 #define GETARG_Ax(i)	check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
146 #define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)
147 
148 #define GETARG_sBx(i)  \
149 	check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
150 #define SETARG_sBx(i,b)	SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
151 
152 #define GETARG_sJ(i)  \
153 	check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
154 #define SETARG_sJ(i,j) \
155 	setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
156 
157 
158 #define CREATE_ABCk(o,a,b,c,k)	((cast(Instruction, o)<<POS_OP) \
159 			| (cast(Instruction, a)<<POS_A) \
160 			| (cast(Instruction, b)<<POS_B) \
161 			| (cast(Instruction, c)<<POS_C) \
162 			| (cast(Instruction, k)<<POS_k))
163 
164 #define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
165 			| (cast(Instruction, a)<<POS_A) \
166 			| (cast(Instruction, bc)<<POS_Bx))
167 
168 #define CREATE_Ax(o,a)		((cast(Instruction, o)<<POS_OP) \
169 			| (cast(Instruction, a)<<POS_Ax))
170 
171 #define CREATE_sJ(o,j,k)	((cast(Instruction, o) << POS_OP) \
172 			| (cast(Instruction, j) << POS_sJ) \
173 			| (cast(Instruction, k) << POS_k))
174 
175 
176 #if !defined(MAXINDEXRK)  /* (for debugging only) */
177 #define MAXINDEXRK	MAXARG_B
178 #endif
179 
180 
181 /*
182 ** invalid register that fits in 8 bits
183 */
184 #define NO_REG		MAXARG_A
185 
186 
187 /*
188 ** R[x] - register
189 ** K[x] - constant (in constant table)
190 ** RK(x) == if k(i) then K[x] else R[x]
191 */
192 
193 
194 /*
195 ** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
196 ** has extra descriptions in the notes after the enumeration.
197 */
198 
199 typedef enum {
200 /*----------------------------------------------------------------------
201   name		args	description
202 ------------------------------------------------------------------------*/
203 OP_MOVE,/*	A B	R[A] := R[B]					*/
204 OP_LOADI,/*	A sBx	R[A] := sBx					*/
205 #ifndef _KERNEL
206 OP_LOADF,/*	A sBx	R[A] := (lua_Number)sBx				*/
207 #endif /* _KERNEL */
208 OP_LOADK,/*	A Bx	R[A] := K[Bx]					*/
209 OP_LOADKX,/*	A	R[A] := K[extra arg]				*/
210 OP_LOADFALSE,/*	A	R[A] := false					*/
211 OP_LFALSESKIP,/*A	R[A] := false; pc++	(*)			*/
212 OP_LOADTRUE,/*	A	R[A] := true					*/
213 OP_LOADNIL,/*	A B	R[A], R[A+1], ..., R[A+B] := nil		*/
214 OP_GETUPVAL,/*	A B	R[A] := UpValue[B]				*/
215 OP_SETUPVAL,/*	A B	UpValue[B] := R[A]				*/
216 
217 OP_GETTABUP,/*	A B C	R[A] := UpValue[B][K[C]:string]			*/
218 OP_GETTABLE,/*	A B C	R[A] := R[B][R[C]]				*/
219 OP_GETI,/*	A B C	R[A] := R[B][C]					*/
220 OP_GETFIELD,/*	A B C	R[A] := R[B][K[C]:string]			*/
221 
222 OP_SETTABUP,/*	A B C	UpValue[A][K[B]:string] := RK(C)		*/
223 OP_SETTABLE,/*	A B C	R[A][R[B]] := RK(C)				*/
224 OP_SETI,/*	A B C	R[A][B] := RK(C)				*/
225 OP_SETFIELD,/*	A B C	R[A][K[B]:string] := RK(C)			*/
226 
227 OP_NEWTABLE,/*	A B C k	R[A] := {}					*/
228 
229 OP_SELF,/*	A B C	R[A+1] := R[B]; R[A] := R[B][RK(C):string]	*/
230 
231 OP_ADDI,/*	A B sC	R[A] := R[B] + sC				*/
232 
233 OP_ADDK,/*	A B C	R[A] := R[B] + K[C]:number			*/
234 OP_SUBK,/*	A B C	R[A] := R[B] - K[C]:number			*/
235 OP_MULK,/*	A B C	R[A] := R[B] * K[C]:number			*/
236 OP_MODK,/*	A B C	R[A] := R[B] % K[C]:number			*/
237 #ifndef _KERNEL
238 OP_POWK,/*	A B C	R[A] := R[B] ^ K[C]:number			*/
239 OP_DIVK,/*	A B C	R[A] := R[B] / K[C]:number			*/
240 #endif /* _KERNEL */
241 OP_IDIVK,/*	A B C	R[A] := R[B] // K[C]:number			*/
242 
243 OP_BANDK,/*	A B C	R[A] := R[B] & K[C]:integer			*/
244 OP_BORK,/*	A B C	R[A] := R[B] | K[C]:integer			*/
245 OP_BXORK,/*	A B C	R[A] := R[B] ~ K[C]:integer			*/
246 
247 OP_SHRI,/*	A B sC	R[A] := R[B] >> sC				*/
248 OP_SHLI,/*	A B sC	R[A] := sC << R[B]				*/
249 
250 OP_ADD,/*	A B C	R[A] := R[B] + R[C]				*/
251 OP_SUB,/*	A B C	R[A] := R[B] - R[C]				*/
252 OP_MUL,/*	A B C	R[A] := R[B] * R[C]				*/
253 OP_MOD,/*	A B C	R[A] := R[B] % R[C]				*/
254 #ifndef _KERNEL
255 OP_POW,/*	A B C	R[A] := R[B] ^ R[C]				*/
256 OP_DIV,/*	A B C	R[A] := R[B] / R[C]				*/
257 #endif /* _KERNEL */
258 OP_IDIV,/*	A B C	R[A] := R[B] // R[C]				*/
259 
260 OP_BAND,/*	A B C	R[A] := R[B] & R[C]				*/
261 OP_BOR,/*	A B C	R[A] := R[B] | R[C]				*/
262 OP_BXOR,/*	A B C	R[A] := R[B] ~ R[C]				*/
263 OP_SHL,/*	A B C	R[A] := R[B] << R[C]				*/
264 OP_SHR,/*	A B C	R[A] := R[B] >> R[C]				*/
265 
266 OP_MMBIN,/*	A B C	call C metamethod over R[A] and R[B]	(*)	*/
267 OP_MMBINI,/*	A sB C k	call C metamethod over R[A] and sB	*/
268 OP_MMBINK,/*	A B C k		call C metamethod over R[A] and K[B]	*/
269 
270 OP_UNM,/*	A B	R[A] := -R[B]					*/
271 OP_BNOT,/*	A B	R[A] := ~R[B]					*/
272 OP_NOT,/*	A B	R[A] := not R[B]				*/
273 OP_LEN,/*	A B	R[A] := #R[B] (length operator)			*/
274 
275 OP_CONCAT,/*	A B	R[A] := R[A].. ... ..R[A + B - 1]		*/
276 
277 OP_CLOSE,/*	A	close all upvalues >= R[A]			*/
278 OP_TBC,/*	A	mark variable A "to be closed"			*/
279 OP_JMP,/*	sJ	pc += sJ					*/
280 OP_EQ,/*	A B k	if ((R[A] == R[B]) ~= k) then pc++		*/
281 OP_LT,/*	A B k	if ((R[A] <  R[B]) ~= k) then pc++		*/
282 OP_LE,/*	A B k	if ((R[A] <= R[B]) ~= k) then pc++		*/
283 
284 OP_EQK,/*	A B k	if ((R[A] == K[B]) ~= k) then pc++		*/
285 OP_EQI,/*	A sB k	if ((R[A] == sB) ~= k) then pc++		*/
286 OP_LTI,/*	A sB k	if ((R[A] < sB) ~= k) then pc++			*/
287 OP_LEI,/*	A sB k	if ((R[A] <= sB) ~= k) then pc++		*/
288 OP_GTI,/*	A sB k	if ((R[A] > sB) ~= k) then pc++			*/
289 OP_GEI,/*	A sB k	if ((R[A] >= sB) ~= k) then pc++		*/
290 
291 OP_TEST,/*	A k	if (not R[A] == k) then pc++			*/
292 OP_TESTSET,/*	A B k	if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
293 
294 OP_CALL,/*	A B C	R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
295 OP_TAILCALL,/*	A B C k	return R[A](R[A+1], ... ,R[A+B-1])		*/
296 
297 OP_RETURN,/*	A B C k	return R[A], ... ,R[A+B-2]	(see note)	*/
298 OP_RETURN0,/*		return						*/
299 OP_RETURN1,/*	A	return R[A]					*/
300 
301 OP_FORLOOP,/*	A Bx	update counters; if loop continues then pc-=Bx; */
302 OP_FORPREP,/*	A Bx	<check values and prepare counters>;
303                         if not to run then pc+=Bx+1;			*/
304 
305 OP_TFORPREP,/*	A Bx	create upvalue for R[A + 3]; pc+=Bx		*/
306 OP_TFORCALL,/*	A C	R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]);	*/
307 OP_TFORLOOP,/*	A Bx	if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx }	*/
308 
309 OP_SETLIST,/*	A B C k	R[A][C+i] := R[A+i], 1 <= i <= B		*/
310 
311 OP_CLOSURE,/*	A Bx	R[A] := closure(KPROTO[Bx])			*/
312 
313 OP_VARARG,/*	A C	R[A], R[A+1], ..., R[A+C-2] = vararg		*/
314 
315 OP_VARARGPREP,/*A	(adjust vararg parameters)			*/
316 
317 OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
318 } OpCode;
319 
320 
321 #define NUM_OPCODES	((int)(OP_EXTRAARG) + 1)
322 
323 
324 
325 /*===========================================================================
326   Notes:
327 
328   (*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
329   value, in a code equivalent to (not cond ? false : true).  (It
330   produces false and skips the next instruction producing true.)
331 
332   (*) Opcodes OP_MMBIN and variants follow each arithmetic and
333   bitwise opcode. If the operation succeeds, it skips this next
334   opcode. Otherwise, this opcode calls the corresponding metamethod.
335 
336   (*) Opcode OP_TESTSET is used in short-circuit expressions that need
337   both to jump and to produce a value, such as (a = b or c).
338 
339   (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
340   'top' is set to last_result+1, so next open instruction (OP_CALL,
341   OP_RETURN*, OP_SETLIST) may use 'top'.
342 
343   (*) In OP_VARARG, if (C == 0) then use actual number of varargs and
344   set top (like in OP_CALL with C == 0).
345 
346   (*) In OP_RETURN, if (B == 0) then return up to 'top'.
347 
348   (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
349   OP_EXTRAARG.
350 
351   (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
352   real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
353   bits of C).
354 
355   (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
356   power of 2) plus 1, or zero for size zero. If not k, the array size
357   is C. Otherwise, the array size is EXTRAARG _ C.
358 
359   (*) For comparisons, k specifies what condition the test should accept
360   (true or false).
361 
362   (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
363    (the constant is the first operand).
364 
365   (*) All 'skips' (pc++) assume that next instruction is a jump.
366 
367   (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
368   function builds upvalues, which may need to be closed. C > 0 means
369   the function is vararg, so that its 'func' must be corrected before
370   returning; in this case, (C - 1) is its number of fixed parameters.
371 
372   (*) In comparisons with an immediate operand, C signals whether the
373   original operand was a float. (It must be corrected in case of
374   metamethods.)
375 
376 ===========================================================================*/
377 
378 
379 /*
380 ** masks for instruction properties. The format is:
381 ** bits 0-2: op mode
382 ** bit 3: instruction set register A
383 ** bit 4: operator is a test (next instruction must be a jump)
384 ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
385 ** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
386 ** bit 7: instruction is an MM instruction (call a metamethod)
387 */
388 
389 LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
390 
391 #define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 7))
392 #define testAMode(m)	(luaP_opmodes[m] & (1 << 3))
393 #define testTMode(m)	(luaP_opmodes[m] & (1 << 4))
394 #define testITMode(m)	(luaP_opmodes[m] & (1 << 5))
395 #define testOTMode(m)	(luaP_opmodes[m] & (1 << 6))
396 #define testMMMode(m)	(luaP_opmodes[m] & (1 << 7))
397 
398 /* "out top" (set top for next instruction) */
399 #define isOT(i)  \
400 	((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
401           GET_OPCODE(i) == OP_TAILCALL)
402 
403 /* "in top" (uses top from previous instruction) */
404 #define isIT(i)		(testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
405 
406 #define opmode(mm,ot,it,t,a,m)  \
407     (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
408 
409 
410 /* number of list items to accumulate before a SETLIST instruction */
411 #define LFIELDS_PER_FLUSH	50
412 
413 #endif
414