1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // C99 6.7: Declarations.
34 //===----------------------------------------------------------------------===//
35 
36 /// ParseTypeName
37 ///       type-name: [C99 6.7.6]
38 ///         specifier-qualifier-list abstract-declarator[opt]
39 ///
40 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)41 TypeResult Parser::ParseTypeName(SourceRange *Range,
42                                  Declarator::TheContext Context,
43                                  AccessSpecifier AS,
44                                  Decl **OwnedType,
45                                  ParsedAttributes *Attrs) {
46   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47   if (DSC == DSC_normal)
48     DSC = DSC_type_specifier;
49 
50   // Parse the common declaration-specifiers piece.
51   DeclSpec DS(AttrFactory);
52   if (Attrs)
53     DS.addAttributes(Attrs->getList());
54   ParseSpecifierQualifierList(DS, AS, DSC);
55   if (OwnedType)
56     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57 
58   // Parse the abstract-declarator, if present.
59   Declarator DeclaratorInfo(DS, Context);
60   ParseDeclarator(DeclaratorInfo);
61   if (Range)
62     *Range = DeclaratorInfo.getSourceRange();
63 
64   if (DeclaratorInfo.isInvalidType())
65     return true;
66 
67   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68 }
69 
70 
71 /// isAttributeLateParsed - Return true if the attribute has arguments that
72 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)73 static bool isAttributeLateParsed(const IdentifierInfo &II) {
74 #define CLANG_ATTR_LATE_PARSED_LIST
75     return llvm::StringSwitch<bool>(II.getName())
76 #include "clang/Parse/AttrParserStringSwitches.inc"
77         .Default(false);
78 #undef CLANG_ATTR_LATE_PARSED_LIST
79 }
80 
81 /// ParseGNUAttributes - Parse a non-empty attributes list.
82 ///
83 /// [GNU] attributes:
84 ///         attribute
85 ///         attributes attribute
86 ///
87 /// [GNU]  attribute:
88 ///          '__attribute__' '(' '(' attribute-list ')' ')'
89 ///
90 /// [GNU]  attribute-list:
91 ///          attrib
92 ///          attribute_list ',' attrib
93 ///
94 /// [GNU]  attrib:
95 ///          empty
96 ///          attrib-name
97 ///          attrib-name '(' identifier ')'
98 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
99 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100 ///
101 /// [GNU]  attrib-name:
102 ///          identifier
103 ///          typespec
104 ///          typequal
105 ///          storageclass
106 ///
107 /// Whether an attribute takes an 'identifier' is determined by the
108 /// attrib-name. GCC's behavior here is not worth imitating:
109 ///
110 ///  * In C mode, if the attribute argument list starts with an identifier
111 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
112 ///    a type, it is parsed as an identifier. If the attribute actually
113 ///    wanted an expression, it's out of luck (but it turns out that no
114 ///    attributes work that way, because C constant expressions are very
115 ///    limited).
116 ///  * In C++ mode, if the attribute argument list starts with an identifier,
117 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
118 ///    At block scope, any additional tokens between the identifier and the
119 ///    ',' or ')' are ignored, otherwise they produce a parse error.
120 ///
121 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123                                 SourceLocation *endLoc,
124                                 LateParsedAttrList *LateAttrs,
125                                 Declarator *D) {
126   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127 
128   while (Tok.is(tok::kw___attribute)) {
129     ConsumeToken();
130     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131                          "attribute")) {
132       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133       return;
134     }
135     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137       return;
138     }
139     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140     while (true) {
141       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142       if (TryConsumeToken(tok::comma))
143         continue;
144 
145       // Expect an identifier or declaration specifier (const, int, etc.)
146       if (Tok.isAnnotation())
147         break;
148       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
149       if (!AttrName)
150         break;
151 
152       SourceLocation AttrNameLoc = ConsumeToken();
153 
154       if (Tok.isNot(tok::l_paren)) {
155         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
156                      AttributeList::AS_GNU);
157         continue;
158       }
159 
160       // Handle "parameterized" attributes
161       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
162         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
163                               SourceLocation(), AttributeList::AS_GNU, D);
164         continue;
165       }
166 
167       // Handle attributes with arguments that require late parsing.
168       LateParsedAttribute *LA =
169           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
170       LateAttrs->push_back(LA);
171 
172       // Attributes in a class are parsed at the end of the class, along
173       // with other late-parsed declarations.
174       if (!ClassStack.empty() && !LateAttrs->parseSoon())
175         getCurrentClass().LateParsedDeclarations.push_back(LA);
176 
177       // consume everything up to and including the matching right parens
178       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
179 
180       Token Eof;
181       Eof.startToken();
182       Eof.setLocation(Tok.getLocation());
183       LA->Toks.push_back(Eof);
184     }
185 
186     if (ExpectAndConsume(tok::r_paren))
187       SkipUntil(tok::r_paren, StopAtSemi);
188     SourceLocation Loc = Tok.getLocation();
189     if (ExpectAndConsume(tok::r_paren))
190       SkipUntil(tok::r_paren, StopAtSemi);
191     if (endLoc)
192       *endLoc = Loc;
193   }
194 }
195 
196 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)197 static StringRef normalizeAttrName(StringRef Name) {
198   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
199     Name = Name.drop_front(2).drop_back(2);
200   return Name;
201 }
202 
203 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)204 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
205 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
206   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
207 #include "clang/Parse/AttrParserStringSwitches.inc"
208            .Default(false);
209 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
210 }
211 
212 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)213 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
214 #define CLANG_ATTR_TYPE_ARG_LIST
215   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
216 #include "clang/Parse/AttrParserStringSwitches.inc"
217            .Default(false);
218 #undef CLANG_ATTR_TYPE_ARG_LIST
219 }
220 
221 /// \brief Determine whether the given attribute requires parsing its arguments
222 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)223 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
224 #define CLANG_ATTR_ARG_CONTEXT_LIST
225   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
226 #include "clang/Parse/AttrParserStringSwitches.inc"
227            .Default(false);
228 #undef CLANG_ATTR_ARG_CONTEXT_LIST
229 }
230 
ParseIdentifierLoc()231 IdentifierLoc *Parser::ParseIdentifierLoc() {
232   assert(Tok.is(tok::identifier) && "expected an identifier");
233   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
234                                             Tok.getLocation(),
235                                             Tok.getIdentifierInfo());
236   ConsumeToken();
237   return IL;
238 }
239 
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)240 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
241                                        SourceLocation AttrNameLoc,
242                                        ParsedAttributes &Attrs,
243                                        SourceLocation *EndLoc,
244                                        IdentifierInfo *ScopeName,
245                                        SourceLocation ScopeLoc,
246                                        AttributeList::Syntax Syntax) {
247   BalancedDelimiterTracker Parens(*this, tok::l_paren);
248   Parens.consumeOpen();
249 
250   TypeResult T;
251   if (Tok.isNot(tok::r_paren))
252     T = ParseTypeName();
253 
254   if (Parens.consumeClose())
255     return;
256 
257   if (T.isInvalid())
258     return;
259 
260   if (T.isUsable())
261     Attrs.addNewTypeAttr(&AttrName,
262                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
263                          ScopeName, ScopeLoc, T.get(), Syntax);
264   else
265     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
266                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
267 }
268 
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)269 unsigned Parser::ParseAttributeArgsCommon(
270     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
271     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
272     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
273   // Ignore the left paren location for now.
274   ConsumeParen();
275 
276   ArgsVector ArgExprs;
277   if (Tok.is(tok::identifier)) {
278     // If this attribute wants an 'identifier' argument, make it so.
279     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
280     AttributeList::Kind AttrKind =
281         AttributeList::getKind(AttrName, ScopeName, Syntax);
282 
283     // If we don't know how to parse this attribute, but this is the only
284     // token in this argument, assume it's meant to be an identifier.
285     if (AttrKind == AttributeList::UnknownAttribute ||
286         AttrKind == AttributeList::IgnoredAttribute) {
287       const Token &Next = NextToken();
288       IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
289     }
290 
291     if (IsIdentifierArg)
292       ArgExprs.push_back(ParseIdentifierLoc());
293   }
294 
295   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
296     // Eat the comma.
297     if (!ArgExprs.empty())
298       ConsumeToken();
299 
300     // Parse the non-empty comma-separated list of expressions.
301     do {
302       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
303       if (attributeParsedArgsUnevaluated(*AttrName))
304         Unevaluated.reset(
305             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
306 
307       ExprResult ArgExpr(
308           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
309       if (ArgExpr.isInvalid()) {
310         SkipUntil(tok::r_paren, StopAtSemi);
311         return 0;
312       }
313       ArgExprs.push_back(ArgExpr.get());
314       // Eat the comma, move to the next argument
315     } while (TryConsumeToken(tok::comma));
316   }
317 
318   SourceLocation RParen = Tok.getLocation();
319   if (!ExpectAndConsume(tok::r_paren)) {
320     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
321     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
322                  ArgExprs.data(), ArgExprs.size(), Syntax);
323   }
324 
325   if (EndLoc)
326     *EndLoc = RParen;
327 
328   return static_cast<unsigned>(ArgExprs.size());
329 }
330 
331 /// Parse the arguments to a parameterized GNU attribute or
332 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)333 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
334                                    SourceLocation AttrNameLoc,
335                                    ParsedAttributes &Attrs,
336                                    SourceLocation *EndLoc,
337                                    IdentifierInfo *ScopeName,
338                                    SourceLocation ScopeLoc,
339                                    AttributeList::Syntax Syntax,
340                                    Declarator *D) {
341 
342   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
343 
344   AttributeList::Kind AttrKind =
345       AttributeList::getKind(AttrName, ScopeName, Syntax);
346 
347   if (AttrKind == AttributeList::AT_Availability) {
348     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
349                                ScopeLoc, Syntax);
350     return;
351   } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
352     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
353                                     ScopeName, ScopeLoc, Syntax);
354     return;
355   } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
357                                      ScopeName, ScopeLoc, Syntax);
358     return;
359   } else if (attributeIsTypeArgAttr(*AttrName)) {
360     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
361                               ScopeLoc, Syntax);
362     return;
363   }
364 
365   // These may refer to the function arguments, but need to be parsed early to
366   // participate in determining whether it's a redeclaration.
367   std::unique_ptr<ParseScope> PrototypeScope;
368   if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
369     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
370     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
371                                         Scope::FunctionDeclarationScope |
372                                         Scope::DeclScope));
373     for (unsigned i = 0; i != FTI.NumParams; ++i) {
374       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
375       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
376     }
377   }
378 
379   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
380                            ScopeLoc, Syntax);
381 }
382 
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)383 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
384                                         SourceLocation AttrNameLoc,
385                                         ParsedAttributes &Attrs) {
386   // If the attribute isn't known, we will not attempt to parse any
387   // arguments.
388   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
389                     getTargetInfo().getTriple(), getLangOpts())) {
390     // Eat the left paren, then skip to the ending right paren.
391     ConsumeParen();
392     SkipUntil(tok::r_paren);
393     return false;
394   }
395 
396   SourceLocation OpenParenLoc = Tok.getLocation();
397 
398   if (AttrName->getName() == "property") {
399     // The property declspec is more complex in that it can take one or two
400     // assignment expressions as a parameter, but the lhs of the assignment
401     // must be named get or put.
402 
403     BalancedDelimiterTracker T(*this, tok::l_paren);
404     T.expectAndConsume(diag::err_expected_lparen_after,
405                        AttrName->getNameStart(), tok::r_paren);
406 
407     enum AccessorKind {
408       AK_Invalid = -1,
409       AK_Put = 0,
410       AK_Get = 1 // indices into AccessorNames
411     };
412     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
413     bool HasInvalidAccessor = false;
414 
415     // Parse the accessor specifications.
416     while (true) {
417       // Stop if this doesn't look like an accessor spec.
418       if (!Tok.is(tok::identifier)) {
419         // If the user wrote a completely empty list, use a special diagnostic.
420         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
421             AccessorNames[AK_Put] == nullptr &&
422             AccessorNames[AK_Get] == nullptr) {
423           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
424           break;
425         }
426 
427         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
428         break;
429       }
430 
431       AccessorKind Kind;
432       SourceLocation KindLoc = Tok.getLocation();
433       StringRef KindStr = Tok.getIdentifierInfo()->getName();
434       if (KindStr == "get") {
435         Kind = AK_Get;
436       } else if (KindStr == "put") {
437         Kind = AK_Put;
438 
439         // Recover from the common mistake of using 'set' instead of 'put'.
440       } else if (KindStr == "set") {
441         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
442             << FixItHint::CreateReplacement(KindLoc, "put");
443         Kind = AK_Put;
444 
445         // Handle the mistake of forgetting the accessor kind by skipping
446         // this accessor.
447       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
448         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
449         ConsumeToken();
450         HasInvalidAccessor = true;
451         goto next_property_accessor;
452 
453         // Otherwise, complain about the unknown accessor kind.
454       } else {
455         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
456         HasInvalidAccessor = true;
457         Kind = AK_Invalid;
458 
459         // Try to keep parsing unless it doesn't look like an accessor spec.
460         if (!NextToken().is(tok::equal))
461           break;
462       }
463 
464       // Consume the identifier.
465       ConsumeToken();
466 
467       // Consume the '='.
468       if (!TryConsumeToken(tok::equal)) {
469         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
470             << KindStr;
471         break;
472       }
473 
474       // Expect the method name.
475       if (!Tok.is(tok::identifier)) {
476         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
477         break;
478       }
479 
480       if (Kind == AK_Invalid) {
481         // Just drop invalid accessors.
482       } else if (AccessorNames[Kind] != nullptr) {
483         // Complain about the repeated accessor, ignore it, and keep parsing.
484         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
485       } else {
486         AccessorNames[Kind] = Tok.getIdentifierInfo();
487       }
488       ConsumeToken();
489 
490     next_property_accessor:
491       // Keep processing accessors until we run out.
492       if (TryConsumeToken(tok::comma))
493         continue;
494 
495       // If we run into the ')', stop without consuming it.
496       if (Tok.is(tok::r_paren))
497         break;
498 
499       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
500       break;
501     }
502 
503     // Only add the property attribute if it was well-formed.
504     if (!HasInvalidAccessor)
505       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
506                                AccessorNames[AK_Get], AccessorNames[AK_Put],
507                                AttributeList::AS_Declspec);
508     T.skipToEnd();
509     return !HasInvalidAccessor;
510   }
511 
512   unsigned NumArgs =
513       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
514                                SourceLocation(), AttributeList::AS_Declspec);
515 
516   // If this attribute's args were parsed, and it was expected to have
517   // arguments but none were provided, emit a diagnostic.
518   const AttributeList *Attr = Attrs.getList();
519   if (Attr && Attr->getMaxArgs() && !NumArgs) {
520     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
521     return false;
522   }
523   return true;
524 }
525 
526 /// [MS] decl-specifier:
527 ///             __declspec ( extended-decl-modifier-seq )
528 ///
529 /// [MS] extended-decl-modifier-seq:
530 ///             extended-decl-modifier[opt]
531 ///             extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpec(ParsedAttributes & Attrs)532 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
533   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
534 
535   ConsumeToken();
536   BalancedDelimiterTracker T(*this, tok::l_paren);
537   if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
538                          tok::r_paren))
539     return;
540 
541   // An empty declspec is perfectly legal and should not warn.  Additionally,
542   // you can specify multiple attributes per declspec.
543   while (Tok.isNot(tok::r_paren)) {
544     // Attribute not present.
545     if (TryConsumeToken(tok::comma))
546       continue;
547 
548     // We expect either a well-known identifier or a generic string.  Anything
549     // else is a malformed declspec.
550     bool IsString = Tok.getKind() == tok::string_literal ? true : false;
551     if (!IsString && Tok.getKind() != tok::identifier &&
552         Tok.getKind() != tok::kw_restrict) {
553       Diag(Tok, diag::err_ms_declspec_type);
554       T.skipToEnd();
555       return;
556     }
557 
558     IdentifierInfo *AttrName;
559     SourceLocation AttrNameLoc;
560     if (IsString) {
561       SmallString<8> StrBuffer;
562       bool Invalid = false;
563       StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
564       if (Invalid) {
565         T.skipToEnd();
566         return;
567       }
568       AttrName = PP.getIdentifierInfo(Str);
569       AttrNameLoc = ConsumeStringToken();
570     } else {
571       AttrName = Tok.getIdentifierInfo();
572       AttrNameLoc = ConsumeToken();
573     }
574 
575     bool AttrHandled = false;
576 
577     // Parse attribute arguments.
578     if (Tok.is(tok::l_paren))
579       AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
580     else if (AttrName->getName() == "property")
581       // The property attribute must have an argument list.
582       Diag(Tok.getLocation(), diag::err_expected_lparen_after)
583           << AttrName->getName();
584 
585     if (!AttrHandled)
586       Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
587                    AttributeList::AS_Declspec);
588   }
589   T.consumeClose();
590 }
591 
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)592 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
593   // Treat these like attributes
594   while (true) {
595     switch (Tok.getKind()) {
596     case tok::kw___fastcall:
597     case tok::kw___stdcall:
598     case tok::kw___thiscall:
599     case tok::kw___cdecl:
600     case tok::kw___vectorcall:
601     case tok::kw___ptr64:
602     case tok::kw___w64:
603     case tok::kw___ptr32:
604     case tok::kw___unaligned:
605     case tok::kw___sptr:
606     case tok::kw___uptr: {
607       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
608       SourceLocation AttrNameLoc = ConsumeToken();
609       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
610                    AttributeList::AS_Keyword);
611       break;
612     }
613     default:
614       return;
615     }
616   }
617 }
618 
DiagnoseAndSkipExtendedMicrosoftTypeAttributes()619 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
620   SourceLocation StartLoc = Tok.getLocation();
621   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
622 
623   if (EndLoc.isValid()) {
624     SourceRange Range(StartLoc, EndLoc);
625     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
626   }
627 }
628 
SkipExtendedMicrosoftTypeAttributes()629 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
630   SourceLocation EndLoc;
631 
632   while (true) {
633     switch (Tok.getKind()) {
634     case tok::kw_const:
635     case tok::kw_volatile:
636     case tok::kw___fastcall:
637     case tok::kw___stdcall:
638     case tok::kw___thiscall:
639     case tok::kw___cdecl:
640     case tok::kw___vectorcall:
641     case tok::kw___ptr32:
642     case tok::kw___ptr64:
643     case tok::kw___w64:
644     case tok::kw___unaligned:
645     case tok::kw___sptr:
646     case tok::kw___uptr:
647       EndLoc = ConsumeToken();
648       break;
649     default:
650       return EndLoc;
651     }
652   }
653 }
654 
ParseBorlandTypeAttributes(ParsedAttributes & attrs)655 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
656   // Treat these like attributes
657   while (Tok.is(tok::kw___pascal)) {
658     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
659     SourceLocation AttrNameLoc = ConsumeToken();
660     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
661                  AttributeList::AS_Keyword);
662   }
663 }
664 
ParseOpenCLAttributes(ParsedAttributes & attrs)665 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
666   // Treat these like attributes
667   while (Tok.is(tok::kw___kernel)) {
668     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
669     SourceLocation AttrNameLoc = ConsumeToken();
670     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
671                  AttributeList::AS_Keyword);
672   }
673 }
674 
ParseOpenCLQualifiers(ParsedAttributes & Attrs)675 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
676   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677   SourceLocation AttrNameLoc = Tok.getLocation();
678   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679                AttributeList::AS_Keyword);
680 }
681 
VersionNumberSeparator(const char Separator)682 static bool VersionNumberSeparator(const char Separator) {
683   return (Separator == '.' || Separator == '_');
684 }
685 
686 /// \brief Parse a version number.
687 ///
688 /// version:
689 ///   simple-integer
690 ///   simple-integer ',' simple-integer
691 ///   simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)692 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
693   Range = Tok.getLocation();
694 
695   if (!Tok.is(tok::numeric_constant)) {
696     Diag(Tok, diag::err_expected_version);
697     SkipUntil(tok::comma, tok::r_paren,
698               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
699     return VersionTuple();
700   }
701 
702   // Parse the major (and possibly minor and subminor) versions, which
703   // are stored in the numeric constant. We utilize a quirk of the
704   // lexer, which is that it handles something like 1.2.3 as a single
705   // numeric constant, rather than two separate tokens.
706   SmallString<512> Buffer;
707   Buffer.resize(Tok.getLength()+1);
708   const char *ThisTokBegin = &Buffer[0];
709 
710   // Get the spelling of the token, which eliminates trigraphs, etc.
711   bool Invalid = false;
712   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
713   if (Invalid)
714     return VersionTuple();
715 
716   // Parse the major version.
717   unsigned AfterMajor = 0;
718   unsigned Major = 0;
719   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
720     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
721     ++AfterMajor;
722   }
723 
724   if (AfterMajor == 0) {
725     Diag(Tok, diag::err_expected_version);
726     SkipUntil(tok::comma, tok::r_paren,
727               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
728     return VersionTuple();
729   }
730 
731   if (AfterMajor == ActualLength) {
732     ConsumeToken();
733 
734     // We only had a single version component.
735     if (Major == 0) {
736       Diag(Tok, diag::err_zero_version);
737       return VersionTuple();
738     }
739 
740     return VersionTuple(Major);
741   }
742 
743   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
744   if (!VersionNumberSeparator(AfterMajorSeparator)
745       || (AfterMajor + 1 == ActualLength)) {
746     Diag(Tok, diag::err_expected_version);
747     SkipUntil(tok::comma, tok::r_paren,
748               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
749     return VersionTuple();
750   }
751 
752   // Parse the minor version.
753   unsigned AfterMinor = AfterMajor + 1;
754   unsigned Minor = 0;
755   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
756     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
757     ++AfterMinor;
758   }
759 
760   if (AfterMinor == ActualLength) {
761     ConsumeToken();
762 
763     // We had major.minor.
764     if (Major == 0 && Minor == 0) {
765       Diag(Tok, diag::err_zero_version);
766       return VersionTuple();
767     }
768 
769     return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
770   }
771 
772   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
773   // If what follows is not a '.' or '_', we have a problem.
774   if (!VersionNumberSeparator(AfterMinorSeparator)) {
775     Diag(Tok, diag::err_expected_version);
776     SkipUntil(tok::comma, tok::r_paren,
777               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
778     return VersionTuple();
779   }
780 
781   // Warn if separators, be it '.' or '_', do not match.
782   if (AfterMajorSeparator != AfterMinorSeparator)
783     Diag(Tok, diag::warn_expected_consistent_version_separator);
784 
785   // Parse the subminor version.
786   unsigned AfterSubminor = AfterMinor + 1;
787   unsigned Subminor = 0;
788   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
789     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
790     ++AfterSubminor;
791   }
792 
793   if (AfterSubminor != ActualLength) {
794     Diag(Tok, diag::err_expected_version);
795     SkipUntil(tok::comma, tok::r_paren,
796               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
797     return VersionTuple();
798   }
799   ConsumeToken();
800   return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
801 }
802 
803 /// \brief Parse the contents of the "availability" attribute.
804 ///
805 /// availability-attribute:
806 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
807 ///
808 /// platform:
809 ///   identifier
810 ///
811 /// version-arg-list:
812 ///   version-arg
813 ///   version-arg ',' version-arg-list
814 ///
815 /// version-arg:
816 ///   'introduced' '=' version
817 ///   'deprecated' '=' version
818 ///   'obsoleted' = version
819 ///   'unavailable'
820 /// opt-message:
821 ///   'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)822 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
823                                         SourceLocation AvailabilityLoc,
824                                         ParsedAttributes &attrs,
825                                         SourceLocation *endLoc,
826                                         IdentifierInfo *ScopeName,
827                                         SourceLocation ScopeLoc,
828                                         AttributeList::Syntax Syntax) {
829   enum { Introduced, Deprecated, Obsoleted, Unknown };
830   AvailabilityChange Changes[Unknown];
831   ExprResult MessageExpr;
832 
833   // Opening '('.
834   BalancedDelimiterTracker T(*this, tok::l_paren);
835   if (T.consumeOpen()) {
836     Diag(Tok, diag::err_expected) << tok::l_paren;
837     return;
838   }
839 
840   // Parse the platform name,
841   if (Tok.isNot(tok::identifier)) {
842     Diag(Tok, diag::err_availability_expected_platform);
843     SkipUntil(tok::r_paren, StopAtSemi);
844     return;
845   }
846   IdentifierLoc *Platform = ParseIdentifierLoc();
847 
848   // Parse the ',' following the platform name.
849   if (ExpectAndConsume(tok::comma)) {
850     SkipUntil(tok::r_paren, StopAtSemi);
851     return;
852   }
853 
854   // If we haven't grabbed the pointers for the identifiers
855   // "introduced", "deprecated", and "obsoleted", do so now.
856   if (!Ident_introduced) {
857     Ident_introduced = PP.getIdentifierInfo("introduced");
858     Ident_deprecated = PP.getIdentifierInfo("deprecated");
859     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
860     Ident_unavailable = PP.getIdentifierInfo("unavailable");
861     Ident_message = PP.getIdentifierInfo("message");
862   }
863 
864   // Parse the set of introductions/deprecations/removals.
865   SourceLocation UnavailableLoc;
866   do {
867     if (Tok.isNot(tok::identifier)) {
868       Diag(Tok, diag::err_availability_expected_change);
869       SkipUntil(tok::r_paren, StopAtSemi);
870       return;
871     }
872     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
873     SourceLocation KeywordLoc = ConsumeToken();
874 
875     if (Keyword == Ident_unavailable) {
876       if (UnavailableLoc.isValid()) {
877         Diag(KeywordLoc, diag::err_availability_redundant)
878           << Keyword << SourceRange(UnavailableLoc);
879       }
880       UnavailableLoc = KeywordLoc;
881       continue;
882     }
883 
884     if (Tok.isNot(tok::equal)) {
885       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
886       SkipUntil(tok::r_paren, StopAtSemi);
887       return;
888     }
889     ConsumeToken();
890     if (Keyword == Ident_message) {
891       if (Tok.isNot(tok::string_literal)) {
892         Diag(Tok, diag::err_expected_string_literal)
893           << /*Source='availability attribute'*/2;
894         SkipUntil(tok::r_paren, StopAtSemi);
895         return;
896       }
897       MessageExpr = ParseStringLiteralExpression();
898       // Also reject wide string literals.
899       if (StringLiteral *MessageStringLiteral =
900               cast_or_null<StringLiteral>(MessageExpr.get())) {
901         if (MessageStringLiteral->getCharByteWidth() != 1) {
902           Diag(MessageStringLiteral->getSourceRange().getBegin(),
903                diag::err_expected_string_literal)
904             << /*Source='availability attribute'*/ 2;
905           SkipUntil(tok::r_paren, StopAtSemi);
906           return;
907         }
908       }
909       break;
910     }
911 
912     // Special handling of 'NA' only when applied to introduced or
913     // deprecated.
914     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
915         Tok.is(tok::identifier)) {
916       IdentifierInfo *NA = Tok.getIdentifierInfo();
917       if (NA->getName() == "NA") {
918         ConsumeToken();
919         if (Keyword == Ident_introduced)
920           UnavailableLoc = KeywordLoc;
921         continue;
922       }
923     }
924 
925     SourceRange VersionRange;
926     VersionTuple Version = ParseVersionTuple(VersionRange);
927 
928     if (Version.empty()) {
929       SkipUntil(tok::r_paren, StopAtSemi);
930       return;
931     }
932 
933     unsigned Index;
934     if (Keyword == Ident_introduced)
935       Index = Introduced;
936     else if (Keyword == Ident_deprecated)
937       Index = Deprecated;
938     else if (Keyword == Ident_obsoleted)
939       Index = Obsoleted;
940     else
941       Index = Unknown;
942 
943     if (Index < Unknown) {
944       if (!Changes[Index].KeywordLoc.isInvalid()) {
945         Diag(KeywordLoc, diag::err_availability_redundant)
946           << Keyword
947           << SourceRange(Changes[Index].KeywordLoc,
948                          Changes[Index].VersionRange.getEnd());
949       }
950 
951       Changes[Index].KeywordLoc = KeywordLoc;
952       Changes[Index].Version = Version;
953       Changes[Index].VersionRange = VersionRange;
954     } else {
955       Diag(KeywordLoc, diag::err_availability_unknown_change)
956         << Keyword << VersionRange;
957     }
958 
959   } while (TryConsumeToken(tok::comma));
960 
961   // Closing ')'.
962   if (T.consumeClose())
963     return;
964 
965   if (endLoc)
966     *endLoc = T.getCloseLocation();
967 
968   // The 'unavailable' availability cannot be combined with any other
969   // availability changes. Make sure that hasn't happened.
970   if (UnavailableLoc.isValid()) {
971     bool Complained = false;
972     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
973       if (Changes[Index].KeywordLoc.isValid()) {
974         if (!Complained) {
975           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
976             << SourceRange(Changes[Index].KeywordLoc,
977                            Changes[Index].VersionRange.getEnd());
978           Complained = true;
979         }
980 
981         // Clear out the availability.
982         Changes[Index] = AvailabilityChange();
983       }
984     }
985   }
986 
987   // Record this attribute
988   attrs.addNew(&Availability,
989                SourceRange(AvailabilityLoc, T.getCloseLocation()),
990                ScopeName, ScopeLoc,
991                Platform,
992                Changes[Introduced],
993                Changes[Deprecated],
994                Changes[Obsoleted],
995                UnavailableLoc, MessageExpr.get(),
996                Syntax);
997 }
998 
999 /// \brief Parse the contents of the "objc_bridge_related" attribute.
1000 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1001 /// related_class:
1002 ///     Identifier
1003 ///
1004 /// opt-class_method:
1005 ///     Identifier: | <empty>
1006 ///
1007 /// opt-instance_method:
1008 ///     Identifier | <empty>
1009 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1010 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1011                                 SourceLocation ObjCBridgeRelatedLoc,
1012                                 ParsedAttributes &attrs,
1013                                 SourceLocation *endLoc,
1014                                 IdentifierInfo *ScopeName,
1015                                 SourceLocation ScopeLoc,
1016                                 AttributeList::Syntax Syntax) {
1017   // Opening '('.
1018   BalancedDelimiterTracker T(*this, tok::l_paren);
1019   if (T.consumeOpen()) {
1020     Diag(Tok, diag::err_expected) << tok::l_paren;
1021     return;
1022   }
1023 
1024   // Parse the related class name.
1025   if (Tok.isNot(tok::identifier)) {
1026     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1027     SkipUntil(tok::r_paren, StopAtSemi);
1028     return;
1029   }
1030   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1031   if (ExpectAndConsume(tok::comma)) {
1032     SkipUntil(tok::r_paren, StopAtSemi);
1033     return;
1034   }
1035 
1036   // Parse optional class method name.
1037   IdentifierLoc *ClassMethod = nullptr;
1038   if (Tok.is(tok::identifier)) {
1039     ClassMethod = ParseIdentifierLoc();
1040     if (!TryConsumeToken(tok::colon)) {
1041       Diag(Tok, diag::err_objcbridge_related_selector_name);
1042       SkipUntil(tok::r_paren, StopAtSemi);
1043       return;
1044     }
1045   }
1046   if (!TryConsumeToken(tok::comma)) {
1047     if (Tok.is(tok::colon))
1048       Diag(Tok, diag::err_objcbridge_related_selector_name);
1049     else
1050       Diag(Tok, diag::err_expected) << tok::comma;
1051     SkipUntil(tok::r_paren, StopAtSemi);
1052     return;
1053   }
1054 
1055   // Parse optional instance method name.
1056   IdentifierLoc *InstanceMethod = nullptr;
1057   if (Tok.is(tok::identifier))
1058     InstanceMethod = ParseIdentifierLoc();
1059   else if (Tok.isNot(tok::r_paren)) {
1060     Diag(Tok, diag::err_expected) << tok::r_paren;
1061     SkipUntil(tok::r_paren, StopAtSemi);
1062     return;
1063   }
1064 
1065   // Closing ')'.
1066   if (T.consumeClose())
1067     return;
1068 
1069   if (endLoc)
1070     *endLoc = T.getCloseLocation();
1071 
1072   // Record this attribute
1073   attrs.addNew(&ObjCBridgeRelated,
1074                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1075                ScopeName, ScopeLoc,
1076                RelatedClass,
1077                ClassMethod,
1078                InstanceMethod,
1079                Syntax);
1080 }
1081 
1082 // Late Parsed Attributes:
1083 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1084 
ParseLexedAttributes()1085 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1086 
ParseLexedAttributes()1087 void Parser::LateParsedClass::ParseLexedAttributes() {
1088   Self->ParseLexedAttributes(*Class);
1089 }
1090 
ParseLexedAttributes()1091 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1092   Self->ParseLexedAttribute(*this, true, false);
1093 }
1094 
1095 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1096 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1097 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1098   // Deal with templates
1099   // FIXME: Test cases to make sure this does the right thing for templates.
1100   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1101   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1102                                 HasTemplateScope);
1103   if (HasTemplateScope)
1104     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1105 
1106   // Set or update the scope flags.
1107   bool AlreadyHasClassScope = Class.TopLevelClass;
1108   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1109   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1110   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1111 
1112   // Enter the scope of nested classes
1113   if (!AlreadyHasClassScope)
1114     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1115                                                 Class.TagOrTemplate);
1116   if (!Class.LateParsedDeclarations.empty()) {
1117     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1118       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1119     }
1120   }
1121 
1122   if (!AlreadyHasClassScope)
1123     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1124                                                  Class.TagOrTemplate);
1125 }
1126 
1127 
1128 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1129 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1130                                      bool EnterScope, bool OnDefinition) {
1131   assert(LAs.parseSoon() &&
1132          "Attribute list should be marked for immediate parsing.");
1133   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1134     if (D)
1135       LAs[i]->addDecl(D);
1136     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1137     delete LAs[i];
1138   }
1139   LAs.clear();
1140 }
1141 
1142 
1143 /// \brief Finish parsing an attribute for which parsing was delayed.
1144 /// This will be called at the end of parsing a class declaration
1145 /// for each LateParsedAttribute. We consume the saved tokens and
1146 /// create an attribute with the arguments filled in. We add this
1147 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1148 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1149                                  bool EnterScope, bool OnDefinition) {
1150   // Create a fake EOF so that attribute parsing won't go off the end of the
1151   // attribute.
1152   Token AttrEnd;
1153   AttrEnd.startToken();
1154   AttrEnd.setKind(tok::eof);
1155   AttrEnd.setLocation(Tok.getLocation());
1156   AttrEnd.setEofData(LA.Toks.data());
1157   LA.Toks.push_back(AttrEnd);
1158 
1159   // Append the current token at the end of the new token stream so that it
1160   // doesn't get lost.
1161   LA.Toks.push_back(Tok);
1162   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1163   // Consume the previously pushed token.
1164   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1165 
1166   ParsedAttributes Attrs(AttrFactory);
1167   SourceLocation endLoc;
1168 
1169   if (LA.Decls.size() > 0) {
1170     Decl *D = LA.Decls[0];
1171     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1172     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1173 
1174     // Allow 'this' within late-parsed attributes.
1175     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1176                                      ND && ND->isCXXInstanceMember());
1177 
1178     if (LA.Decls.size() == 1) {
1179       // If the Decl is templatized, add template parameters to scope.
1180       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1181       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1182       if (HasTemplateScope)
1183         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1184 
1185       // If the Decl is on a function, add function parameters to the scope.
1186       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1187       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1188       if (HasFunScope)
1189         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1190 
1191       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1192                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1193                             nullptr);
1194 
1195       if (HasFunScope) {
1196         Actions.ActOnExitFunctionContext();
1197         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1198       }
1199       if (HasTemplateScope) {
1200         TempScope.Exit();
1201       }
1202     } else {
1203       // If there are multiple decls, then the decl cannot be within the
1204       // function scope.
1205       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1206                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1207                             nullptr);
1208     }
1209   } else {
1210     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1211   }
1212 
1213   const AttributeList *AL = Attrs.getList();
1214   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1215       AL->isKnownToGCC())
1216     Diag(Tok, diag::warn_attribute_on_function_definition)
1217       << &LA.AttrName;
1218 
1219   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1220     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1221 
1222   // Due to a parsing error, we either went over the cached tokens or
1223   // there are still cached tokens left, so we skip the leftover tokens.
1224   while (Tok.isNot(tok::eof))
1225     ConsumeAnyToken();
1226 
1227   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1228     ConsumeAnyToken();
1229 }
1230 
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1231 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1232                                               SourceLocation AttrNameLoc,
1233                                               ParsedAttributes &Attrs,
1234                                               SourceLocation *EndLoc,
1235                                               IdentifierInfo *ScopeName,
1236                                               SourceLocation ScopeLoc,
1237                                               AttributeList::Syntax Syntax) {
1238   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1239 
1240   BalancedDelimiterTracker T(*this, tok::l_paren);
1241   T.consumeOpen();
1242 
1243   if (Tok.isNot(tok::identifier)) {
1244     Diag(Tok, diag::err_expected) << tok::identifier;
1245     T.skipToEnd();
1246     return;
1247   }
1248   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1249 
1250   if (ExpectAndConsume(tok::comma)) {
1251     T.skipToEnd();
1252     return;
1253   }
1254 
1255   SourceRange MatchingCTypeRange;
1256   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1257   if (MatchingCType.isInvalid()) {
1258     T.skipToEnd();
1259     return;
1260   }
1261 
1262   bool LayoutCompatible = false;
1263   bool MustBeNull = false;
1264   while (TryConsumeToken(tok::comma)) {
1265     if (Tok.isNot(tok::identifier)) {
1266       Diag(Tok, diag::err_expected) << tok::identifier;
1267       T.skipToEnd();
1268       return;
1269     }
1270     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1271     if (Flag->isStr("layout_compatible"))
1272       LayoutCompatible = true;
1273     else if (Flag->isStr("must_be_null"))
1274       MustBeNull = true;
1275     else {
1276       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1277       T.skipToEnd();
1278       return;
1279     }
1280     ConsumeToken(); // consume flag
1281   }
1282 
1283   if (!T.consumeClose()) {
1284     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1285                                    ArgumentKind, MatchingCType.get(),
1286                                    LayoutCompatible, MustBeNull, Syntax);
1287   }
1288 
1289   if (EndLoc)
1290     *EndLoc = T.getCloseLocation();
1291 }
1292 
1293 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1294 /// of a C++11 attribute-specifier in a location where an attribute is not
1295 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1296 /// situation.
1297 ///
1298 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1299 /// this doesn't appear to actually be an attribute-specifier, and the caller
1300 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1301 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1302   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1303 
1304   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1305   case CAK_NotAttributeSpecifier:
1306     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1307     return false;
1308 
1309   case CAK_InvalidAttributeSpecifier:
1310     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1311     return false;
1312 
1313   case CAK_AttributeSpecifier:
1314     // Parse and discard the attributes.
1315     SourceLocation BeginLoc = ConsumeBracket();
1316     ConsumeBracket();
1317     SkipUntil(tok::r_square);
1318     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1319     SourceLocation EndLoc = ConsumeBracket();
1320     Diag(BeginLoc, diag::err_attributes_not_allowed)
1321       << SourceRange(BeginLoc, EndLoc);
1322     return true;
1323   }
1324   llvm_unreachable("All cases handled above.");
1325 }
1326 
1327 /// \brief We have found the opening square brackets of a C++11
1328 /// attribute-specifier in a location where an attribute is not permitted, but
1329 /// we know where the attributes ought to be written. Parse them anyway, and
1330 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1331 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1332                                              SourceLocation CorrectLocation) {
1333   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1334          Tok.is(tok::kw_alignas));
1335 
1336   // Consume the attributes.
1337   SourceLocation Loc = Tok.getLocation();
1338   ParseCXX11Attributes(Attrs);
1339   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1340 
1341   Diag(Loc, diag::err_attributes_not_allowed)
1342     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1343     << FixItHint::CreateRemoval(AttrRange);
1344 }
1345 
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1346 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1347   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1348     << attrs.Range;
1349 }
1350 
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1351 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1352   AttributeList *AttrList = attrs.getList();
1353   while (AttrList) {
1354     if (AttrList->isCXX11Attribute()) {
1355       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1356         << AttrList->getName();
1357       AttrList->setInvalid();
1358     }
1359     AttrList = AttrList->getNext();
1360   }
1361 }
1362 
1363 /// ParseDeclaration - Parse a full 'declaration', which consists of
1364 /// declaration-specifiers, some number of declarators, and a semicolon.
1365 /// 'Context' should be a Declarator::TheContext value.  This returns the
1366 /// location of the semicolon in DeclEnd.
1367 ///
1368 ///       declaration: [C99 6.7]
1369 ///         block-declaration ->
1370 ///           simple-declaration
1371 ///           others                   [FIXME]
1372 /// [C++]   template-declaration
1373 /// [C++]   namespace-definition
1374 /// [C++]   using-directive
1375 /// [C++]   using-declaration
1376 /// [C++11/C11] static_assert-declaration
1377 ///         others... [FIXME]
1378 ///
ParseDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1379 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1380                                                 SourceLocation &DeclEnd,
1381                                           ParsedAttributesWithRange &attrs) {
1382   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1383   // Must temporarily exit the objective-c container scope for
1384   // parsing c none objective-c decls.
1385   ObjCDeclContextSwitch ObjCDC(*this);
1386 
1387   Decl *SingleDecl = nullptr;
1388   Decl *OwnedType = nullptr;
1389   switch (Tok.getKind()) {
1390   case tok::kw_template:
1391   case tok::kw_export:
1392     ProhibitAttributes(attrs);
1393     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1394     break;
1395   case tok::kw_inline:
1396     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1397     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1398       ProhibitAttributes(attrs);
1399       SourceLocation InlineLoc = ConsumeToken();
1400       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1401       break;
1402     }
1403     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1404                                   true);
1405   case tok::kw_namespace:
1406     ProhibitAttributes(attrs);
1407     SingleDecl = ParseNamespace(Context, DeclEnd);
1408     break;
1409   case tok::kw_using:
1410     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1411                                                   DeclEnd, attrs, &OwnedType);
1412     break;
1413   case tok::kw_static_assert:
1414   case tok::kw__Static_assert:
1415     ProhibitAttributes(attrs);
1416     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1417     break;
1418   default:
1419     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1420   }
1421 
1422   // This routine returns a DeclGroup, if the thing we parsed only contains a
1423   // single decl, convert it now. Alias declarations can also declare a type;
1424   // include that too if it is present.
1425   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1426 }
1427 
1428 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1429 ///         declaration-specifiers init-declarator-list[opt] ';'
1430 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1431 ///             init-declarator-list ';'
1432 ///[C90/C++]init-declarator-list ';'                             [TODO]
1433 /// [OMP]   threadprivate-directive                              [TODO]
1434 ///
1435 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1436 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1437 ///
1438 /// If RequireSemi is false, this does not check for a ';' at the end of the
1439 /// declaration.  If it is true, it checks for and eats it.
1440 ///
1441 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1442 /// of a simple-declaration. If we find that we are, we also parse the
1443 /// for-range-initializer, and place it here.
1444 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1445 Parser::ParseSimpleDeclaration(unsigned Context,
1446                                SourceLocation &DeclEnd,
1447                                ParsedAttributesWithRange &Attrs,
1448                                bool RequireSemi, ForRangeInit *FRI) {
1449   // Parse the common declaration-specifiers piece.
1450   ParsingDeclSpec DS(*this);
1451 
1452   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1453   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1454 
1455   // If we had a free-standing type definition with a missing semicolon, we
1456   // may get this far before the problem becomes obvious.
1457   if (DS.hasTagDefinition() &&
1458       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1459     return DeclGroupPtrTy();
1460 
1461   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1462   // declaration-specifiers init-declarator-list[opt] ';'
1463   if (Tok.is(tok::semi)) {
1464     ProhibitAttributes(Attrs);
1465     DeclEnd = Tok.getLocation();
1466     if (RequireSemi) ConsumeToken();
1467     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1468                                                        DS);
1469     DS.complete(TheDecl);
1470     return Actions.ConvertDeclToDeclGroup(TheDecl);
1471   }
1472 
1473   DS.takeAttributesFrom(Attrs);
1474   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1475 }
1476 
1477 /// Returns true if this might be the start of a declarator, or a common typo
1478 /// for a declarator.
MightBeDeclarator(unsigned Context)1479 bool Parser::MightBeDeclarator(unsigned Context) {
1480   switch (Tok.getKind()) {
1481   case tok::annot_cxxscope:
1482   case tok::annot_template_id:
1483   case tok::caret:
1484   case tok::code_completion:
1485   case tok::coloncolon:
1486   case tok::ellipsis:
1487   case tok::kw___attribute:
1488   case tok::kw_operator:
1489   case tok::l_paren:
1490   case tok::star:
1491     return true;
1492 
1493   case tok::amp:
1494   case tok::ampamp:
1495     return getLangOpts().CPlusPlus;
1496 
1497   case tok::l_square: // Might be an attribute on an unnamed bit-field.
1498     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1499            NextToken().is(tok::l_square);
1500 
1501   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1502     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1503 
1504   case tok::identifier:
1505     switch (NextToken().getKind()) {
1506     case tok::code_completion:
1507     case tok::coloncolon:
1508     case tok::comma:
1509     case tok::equal:
1510     case tok::equalequal: // Might be a typo for '='.
1511     case tok::kw_alignas:
1512     case tok::kw_asm:
1513     case tok::kw___attribute:
1514     case tok::l_brace:
1515     case tok::l_paren:
1516     case tok::l_square:
1517     case tok::less:
1518     case tok::r_brace:
1519     case tok::r_paren:
1520     case tok::r_square:
1521     case tok::semi:
1522       return true;
1523 
1524     case tok::colon:
1525       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1526       // and in block scope it's probably a label. Inside a class definition,
1527       // this is a bit-field.
1528       return Context == Declarator::MemberContext ||
1529              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1530 
1531     case tok::identifier: // Possible virt-specifier.
1532       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1533 
1534     default:
1535       return false;
1536     }
1537 
1538   default:
1539     return false;
1540   }
1541 }
1542 
1543 /// Skip until we reach something which seems like a sensible place to pick
1544 /// up parsing after a malformed declaration. This will sometimes stop sooner
1545 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1546 void Parser::SkipMalformedDecl() {
1547   while (true) {
1548     switch (Tok.getKind()) {
1549     case tok::l_brace:
1550       // Skip until matching }, then stop. We've probably skipped over
1551       // a malformed class or function definition or similar.
1552       ConsumeBrace();
1553       SkipUntil(tok::r_brace);
1554       if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1555         // This declaration isn't over yet. Keep skipping.
1556         continue;
1557       }
1558       TryConsumeToken(tok::semi);
1559       return;
1560 
1561     case tok::l_square:
1562       ConsumeBracket();
1563       SkipUntil(tok::r_square);
1564       continue;
1565 
1566     case tok::l_paren:
1567       ConsumeParen();
1568       SkipUntil(tok::r_paren);
1569       continue;
1570 
1571     case tok::r_brace:
1572       return;
1573 
1574     case tok::semi:
1575       ConsumeToken();
1576       return;
1577 
1578     case tok::kw_inline:
1579       // 'inline namespace' at the start of a line is almost certainly
1580       // a good place to pick back up parsing, except in an Objective-C
1581       // @interface context.
1582       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1583           (!ParsingInObjCContainer || CurParsedObjCImpl))
1584         return;
1585       break;
1586 
1587     case tok::kw_namespace:
1588       // 'namespace' at the start of a line is almost certainly a good
1589       // place to pick back up parsing, except in an Objective-C
1590       // @interface context.
1591       if (Tok.isAtStartOfLine() &&
1592           (!ParsingInObjCContainer || CurParsedObjCImpl))
1593         return;
1594       break;
1595 
1596     case tok::at:
1597       // @end is very much like } in Objective-C contexts.
1598       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1599           ParsingInObjCContainer)
1600         return;
1601       break;
1602 
1603     case tok::minus:
1604     case tok::plus:
1605       // - and + probably start new method declarations in Objective-C contexts.
1606       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1607         return;
1608       break;
1609 
1610     case tok::eof:
1611     case tok::annot_module_begin:
1612     case tok::annot_module_end:
1613     case tok::annot_module_include:
1614       return;
1615 
1616     default:
1617       break;
1618     }
1619 
1620     ConsumeAnyToken();
1621   }
1622 }
1623 
1624 /// ParseDeclGroup - Having concluded that this is either a function
1625 /// definition or a group of object declarations, actually parse the
1626 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,SourceLocation * DeclEnd,ForRangeInit * FRI)1627 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1628                                               unsigned Context,
1629                                               SourceLocation *DeclEnd,
1630                                               ForRangeInit *FRI) {
1631   // Parse the first declarator.
1632   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1633   ParseDeclarator(D);
1634 
1635   // Bail out if the first declarator didn't seem well-formed.
1636   if (!D.hasName() && !D.mayOmitIdentifier()) {
1637     SkipMalformedDecl();
1638     return DeclGroupPtrTy();
1639   }
1640 
1641   // Save late-parsed attributes for now; they need to be parsed in the
1642   // appropriate function scope after the function Decl has been constructed.
1643   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1644   LateParsedAttrList LateParsedAttrs(true);
1645   if (D.isFunctionDeclarator()) {
1646     MaybeParseGNUAttributes(D, &LateParsedAttrs);
1647 
1648     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1649     // attribute. If we find the keyword here, tell the user to put it
1650     // at the start instead.
1651     if (Tok.is(tok::kw__Noreturn)) {
1652       SourceLocation Loc = ConsumeToken();
1653       const char *PrevSpec;
1654       unsigned DiagID;
1655 
1656       // We can offer a fixit if it's valid to mark this function as _Noreturn
1657       // and we don't have any other declarators in this declaration.
1658       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1659       MaybeParseGNUAttributes(D, &LateParsedAttrs);
1660       Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
1661 
1662       Diag(Loc, diag::err_c11_noreturn_misplaced)
1663           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1664           << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1665                     : FixItHint());
1666     }
1667   }
1668 
1669   // Check to see if we have a function *definition* which must have a body.
1670   if (D.isFunctionDeclarator() &&
1671       // Look at the next token to make sure that this isn't a function
1672       // declaration.  We have to check this because __attribute__ might be the
1673       // start of a function definition in GCC-extended K&R C.
1674       !isDeclarationAfterDeclarator()) {
1675 
1676     // Function definitions are only allowed at file scope and in C++ classes.
1677     // The C++ inline method definition case is handled elsewhere, so we only
1678     // need to handle the file scope definition case.
1679     if (Context == Declarator::FileContext) {
1680       if (isStartOfFunctionDefinition(D)) {
1681         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1682           Diag(Tok, diag::err_function_declared_typedef);
1683 
1684           // Recover by treating the 'typedef' as spurious.
1685           DS.ClearStorageClassSpecs();
1686         }
1687 
1688         Decl *TheDecl =
1689           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1690         return Actions.ConvertDeclToDeclGroup(TheDecl);
1691       }
1692 
1693       if (isDeclarationSpecifier()) {
1694         // If there is an invalid declaration specifier right after the function
1695         // prototype, then we must be in a missing semicolon case where this isn't
1696         // actually a body.  Just fall through into the code that handles it as a
1697         // prototype, and let the top-level code handle the erroneous declspec
1698         // where it would otherwise expect a comma or semicolon.
1699       } else {
1700         Diag(Tok, diag::err_expected_fn_body);
1701         SkipUntil(tok::semi);
1702         return DeclGroupPtrTy();
1703       }
1704     } else {
1705       if (Tok.is(tok::l_brace)) {
1706         Diag(Tok, diag::err_function_definition_not_allowed);
1707         SkipMalformedDecl();
1708         return DeclGroupPtrTy();
1709       }
1710     }
1711   }
1712 
1713   if (ParseAsmAttributesAfterDeclarator(D))
1714     return DeclGroupPtrTy();
1715 
1716   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1717   // must parse and analyze the for-range-initializer before the declaration is
1718   // analyzed.
1719   //
1720   // Handle the Objective-C for-in loop variable similarly, although we
1721   // don't need to parse the container in advance.
1722   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1723     bool IsForRangeLoop = false;
1724     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1725       IsForRangeLoop = true;
1726       if (Tok.is(tok::l_brace))
1727         FRI->RangeExpr = ParseBraceInitializer();
1728       else
1729         FRI->RangeExpr = ParseExpression();
1730     }
1731 
1732     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1733     if (IsForRangeLoop)
1734       Actions.ActOnCXXForRangeDecl(ThisDecl);
1735     Actions.FinalizeDeclaration(ThisDecl);
1736     D.complete(ThisDecl);
1737     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1738   }
1739 
1740   SmallVector<Decl *, 8> DeclsInGroup;
1741   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1742       D, ParsedTemplateInfo(), FRI);
1743   if (LateParsedAttrs.size() > 0)
1744     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1745   D.complete(FirstDecl);
1746   if (FirstDecl)
1747     DeclsInGroup.push_back(FirstDecl);
1748 
1749   bool ExpectSemi = Context != Declarator::ForContext;
1750 
1751   // If we don't have a comma, it is either the end of the list (a ';') or an
1752   // error, bail out.
1753   SourceLocation CommaLoc;
1754   while (TryConsumeToken(tok::comma, CommaLoc)) {
1755     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1756       // This comma was followed by a line-break and something which can't be
1757       // the start of a declarator. The comma was probably a typo for a
1758       // semicolon.
1759       Diag(CommaLoc, diag::err_expected_semi_declaration)
1760         << FixItHint::CreateReplacement(CommaLoc, ";");
1761       ExpectSemi = false;
1762       break;
1763     }
1764 
1765     // Parse the next declarator.
1766     D.clear();
1767     D.setCommaLoc(CommaLoc);
1768 
1769     // Accept attributes in an init-declarator.  In the first declarator in a
1770     // declaration, these would be part of the declspec.  In subsequent
1771     // declarators, they become part of the declarator itself, so that they
1772     // don't apply to declarators after *this* one.  Examples:
1773     //    short __attribute__((common)) var;    -> declspec
1774     //    short var __attribute__((common));    -> declarator
1775     //    short x, __attribute__((common)) var;    -> declarator
1776     MaybeParseGNUAttributes(D);
1777 
1778     // MSVC parses but ignores qualifiers after the comma as an extension.
1779     if (getLangOpts().MicrosoftExt)
1780       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1781 
1782     ParseDeclarator(D);
1783     if (!D.isInvalidType()) {
1784       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1785       D.complete(ThisDecl);
1786       if (ThisDecl)
1787         DeclsInGroup.push_back(ThisDecl);
1788     }
1789   }
1790 
1791   if (DeclEnd)
1792     *DeclEnd = Tok.getLocation();
1793 
1794   if (ExpectSemi &&
1795       ExpectAndConsumeSemi(Context == Declarator::FileContext
1796                            ? diag::err_invalid_token_after_toplevel_declarator
1797                            : diag::err_expected_semi_declaration)) {
1798     // Okay, there was no semicolon and one was expected.  If we see a
1799     // declaration specifier, just assume it was missing and continue parsing.
1800     // Otherwise things are very confused and we skip to recover.
1801     if (!isDeclarationSpecifier()) {
1802       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1803       TryConsumeToken(tok::semi);
1804     }
1805   }
1806 
1807   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1808 }
1809 
1810 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1811 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1812 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1813   // If a simple-asm-expr is present, parse it.
1814   if (Tok.is(tok::kw_asm)) {
1815     SourceLocation Loc;
1816     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1817     if (AsmLabel.isInvalid()) {
1818       SkipUntil(tok::semi, StopBeforeMatch);
1819       return true;
1820     }
1821 
1822     D.setAsmLabel(AsmLabel.get());
1823     D.SetRangeEnd(Loc);
1824   }
1825 
1826   MaybeParseGNUAttributes(D);
1827   return false;
1828 }
1829 
1830 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1831 /// declarator'. This method parses the remainder of the declaration
1832 /// (including any attributes or initializer, among other things) and
1833 /// finalizes the declaration.
1834 ///
1835 ///       init-declarator: [C99 6.7]
1836 ///         declarator
1837 ///         declarator '=' initializer
1838 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1839 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1840 /// [C++]   declarator initializer[opt]
1841 ///
1842 /// [C++] initializer:
1843 /// [C++]   '=' initializer-clause
1844 /// [C++]   '(' expression-list ')'
1845 /// [C++0x] '=' 'default'                                                [TODO]
1846 /// [C++0x] '=' 'delete'
1847 /// [C++0x] braced-init-list
1848 ///
1849 /// According to the standard grammar, =default and =delete are function
1850 /// definitions, but that definitely doesn't fit with the parser here.
1851 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1852 Decl *Parser::ParseDeclarationAfterDeclarator(
1853     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1854   if (ParseAsmAttributesAfterDeclarator(D))
1855     return nullptr;
1856 
1857   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1858 }
1859 
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1860 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1861     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1862   // Inform the current actions module that we just parsed this declarator.
1863   Decl *ThisDecl = nullptr;
1864   switch (TemplateInfo.Kind) {
1865   case ParsedTemplateInfo::NonTemplate:
1866     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1867     break;
1868 
1869   case ParsedTemplateInfo::Template:
1870   case ParsedTemplateInfo::ExplicitSpecialization: {
1871     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1872                                                *TemplateInfo.TemplateParams,
1873                                                D);
1874     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1875       // Re-direct this decl to refer to the templated decl so that we can
1876       // initialize it.
1877       ThisDecl = VT->getTemplatedDecl();
1878     break;
1879   }
1880   case ParsedTemplateInfo::ExplicitInstantiation: {
1881     if (Tok.is(tok::semi)) {
1882       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1883           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1884       if (ThisRes.isInvalid()) {
1885         SkipUntil(tok::semi, StopBeforeMatch);
1886         return nullptr;
1887       }
1888       ThisDecl = ThisRes.get();
1889     } else {
1890       // FIXME: This check should be for a variable template instantiation only.
1891 
1892       // Check that this is a valid instantiation
1893       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1894         // If the declarator-id is not a template-id, issue a diagnostic and
1895         // recover by ignoring the 'template' keyword.
1896         Diag(Tok, diag::err_template_defn_explicit_instantiation)
1897             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1898         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1899       } else {
1900         SourceLocation LAngleLoc =
1901             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1902         Diag(D.getIdentifierLoc(),
1903              diag::err_explicit_instantiation_with_definition)
1904             << SourceRange(TemplateInfo.TemplateLoc)
1905             << FixItHint::CreateInsertion(LAngleLoc, "<>");
1906 
1907         // Recover as if it were an explicit specialization.
1908         TemplateParameterLists FakedParamLists;
1909         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1910             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1911             0, LAngleLoc));
1912 
1913         ThisDecl =
1914             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1915       }
1916     }
1917     break;
1918     }
1919   }
1920 
1921   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1922 
1923   // Parse declarator '=' initializer.
1924   // If a '==' or '+=' is found, suggest a fixit to '='.
1925   if (isTokenEqualOrEqualTypo()) {
1926     SourceLocation EqualLoc = ConsumeToken();
1927 
1928     if (Tok.is(tok::kw_delete)) {
1929       if (D.isFunctionDeclarator())
1930         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1931           << 1 /* delete */;
1932       else
1933         Diag(ConsumeToken(), diag::err_deleted_non_function);
1934     } else if (Tok.is(tok::kw_default)) {
1935       if (D.isFunctionDeclarator())
1936         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1937           << 0 /* default */;
1938       else
1939         Diag(ConsumeToken(), diag::err_default_special_members);
1940     } else {
1941       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1942         EnterScope(0);
1943         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1944       }
1945 
1946       if (Tok.is(tok::code_completion)) {
1947         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1948         Actions.FinalizeDeclaration(ThisDecl);
1949         cutOffParsing();
1950         return nullptr;
1951       }
1952 
1953       ExprResult Init(ParseInitializer());
1954 
1955       // If this is the only decl in (possibly) range based for statement,
1956       // our best guess is that the user meant ':' instead of '='.
1957       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1958         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1959             << FixItHint::CreateReplacement(EqualLoc, ":");
1960         // We are trying to stop parser from looking for ';' in this for
1961         // statement, therefore preventing spurious errors to be issued.
1962         FRI->ColonLoc = EqualLoc;
1963         Init = ExprError();
1964         FRI->RangeExpr = Init;
1965       }
1966 
1967       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1968         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1969         ExitScope();
1970       }
1971 
1972       if (Init.isInvalid()) {
1973         SmallVector<tok::TokenKind, 2> StopTokens;
1974         StopTokens.push_back(tok::comma);
1975         if (D.getContext() == Declarator::ForContext)
1976           StopTokens.push_back(tok::r_paren);
1977         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1978         Actions.ActOnInitializerError(ThisDecl);
1979       } else
1980         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1981                                      /*DirectInit=*/false, TypeContainsAuto);
1982     }
1983   } else if (Tok.is(tok::l_paren)) {
1984     // Parse C++ direct initializer: '(' expression-list ')'
1985     BalancedDelimiterTracker T(*this, tok::l_paren);
1986     T.consumeOpen();
1987 
1988     ExprVector Exprs;
1989     CommaLocsTy CommaLocs;
1990 
1991     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1992       EnterScope(0);
1993       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1994     }
1995 
1996     if (ParseExpressionList(Exprs, CommaLocs)) {
1997       Actions.ActOnInitializerError(ThisDecl);
1998       SkipUntil(tok::r_paren, StopAtSemi);
1999 
2000       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2001         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2002         ExitScope();
2003       }
2004     } else {
2005       // Match the ')'.
2006       T.consumeClose();
2007 
2008       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2009              "Unexpected number of commas!");
2010 
2011       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2012         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2013         ExitScope();
2014       }
2015 
2016       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2017                                                           T.getCloseLocation(),
2018                                                           Exprs);
2019       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2020                                    /*DirectInit=*/true, TypeContainsAuto);
2021     }
2022   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2023              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2024     // Parse C++0x braced-init-list.
2025     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2026 
2027     if (D.getCXXScopeSpec().isSet()) {
2028       EnterScope(0);
2029       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2030     }
2031 
2032     ExprResult Init(ParseBraceInitializer());
2033 
2034     if (D.getCXXScopeSpec().isSet()) {
2035       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2036       ExitScope();
2037     }
2038 
2039     if (Init.isInvalid()) {
2040       Actions.ActOnInitializerError(ThisDecl);
2041     } else
2042       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2043                                    /*DirectInit=*/true, TypeContainsAuto);
2044 
2045   } else {
2046     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2047   }
2048 
2049   Actions.FinalizeDeclaration(ThisDecl);
2050 
2051   return ThisDecl;
2052 }
2053 
2054 /// ParseSpecifierQualifierList
2055 ///        specifier-qualifier-list:
2056 ///          type-specifier specifier-qualifier-list[opt]
2057 ///          type-qualifier specifier-qualifier-list[opt]
2058 /// [GNU]    attributes     specifier-qualifier-list[opt]
2059 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)2060 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2061                                          DeclSpecContext DSC) {
2062   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2063   /// parse declaration-specifiers and complain about extra stuff.
2064   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2065   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2066 
2067   // Validate declspec for type-name.
2068   unsigned Specs = DS.getParsedSpecifiers();
2069   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2070     Diag(Tok, diag::err_expected_type);
2071     DS.SetTypeSpecError();
2072   } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
2073              !DS.hasAttributes()) {
2074     Diag(Tok, diag::err_typename_requires_specqual);
2075     if (!DS.hasTypeSpecifier())
2076       DS.SetTypeSpecError();
2077   }
2078 
2079   // Issue diagnostic and remove storage class if present.
2080   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2081     if (DS.getStorageClassSpecLoc().isValid())
2082       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2083     else
2084       Diag(DS.getThreadStorageClassSpecLoc(),
2085            diag::err_typename_invalid_storageclass);
2086     DS.ClearStorageClassSpecs();
2087   }
2088 
2089   // Issue diagnostic and remove function specfier if present.
2090   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2091     if (DS.isInlineSpecified())
2092       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2093     if (DS.isVirtualSpecified())
2094       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2095     if (DS.isExplicitSpecified())
2096       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2097     DS.ClearFunctionSpecs();
2098   }
2099 
2100   // Issue diagnostic and remove constexpr specfier if present.
2101   if (DS.isConstexprSpecified()) {
2102     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2103     DS.ClearConstexprSpec();
2104   }
2105 }
2106 
2107 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2108 /// specified token is valid after the identifier in a declarator which
2109 /// immediately follows the declspec.  For example, these things are valid:
2110 ///
2111 ///      int x   [             4];         // direct-declarator
2112 ///      int x   (             int y);     // direct-declarator
2113 ///  int(int x   )                         // direct-declarator
2114 ///      int x   ;                         // simple-declaration
2115 ///      int x   =             17;         // init-declarator-list
2116 ///      int x   ,             y;          // init-declarator-list
2117 ///      int x   __asm__       ("foo");    // init-declarator-list
2118 ///      int x   :             4;          // struct-declarator
2119 ///      int x   {             5};         // C++'0x unified initializers
2120 ///
2121 /// This is not, because 'x' does not immediately follow the declspec (though
2122 /// ')' happens to be valid anyway).
2123 ///    int (x)
2124 ///
isValidAfterIdentifierInDeclarator(const Token & T)2125 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2126   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2127          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2128          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2129 }
2130 
2131 
2132 /// ParseImplicitInt - This method is called when we have an non-typename
2133 /// identifier in a declspec (which normally terminates the decl spec) when
2134 /// the declspec has no type specifier.  In this case, the declspec is either
2135 /// malformed or is "implicit int" (in K&R and C89).
2136 ///
2137 /// This method handles diagnosing this prettily and returns false if the
2138 /// declspec is done being processed.  If it recovers and thinks there may be
2139 /// other pieces of declspec after it, it returns true.
2140 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2141 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2142                               const ParsedTemplateInfo &TemplateInfo,
2143                               AccessSpecifier AS, DeclSpecContext DSC,
2144                               ParsedAttributesWithRange &Attrs) {
2145   assert(Tok.is(tok::identifier) && "should have identifier");
2146 
2147   SourceLocation Loc = Tok.getLocation();
2148   // If we see an identifier that is not a type name, we normally would
2149   // parse it as the identifer being declared.  However, when a typename
2150   // is typo'd or the definition is not included, this will incorrectly
2151   // parse the typename as the identifier name and fall over misparsing
2152   // later parts of the diagnostic.
2153   //
2154   // As such, we try to do some look-ahead in cases where this would
2155   // otherwise be an "implicit-int" case to see if this is invalid.  For
2156   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2157   // an identifier with implicit int, we'd get a parse error because the
2158   // next token is obviously invalid for a type.  Parse these as a case
2159   // with an invalid type specifier.
2160   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2161 
2162   // Since we know that this either implicit int (which is rare) or an
2163   // error, do lookahead to try to do better recovery. This never applies
2164   // within a type specifier. Outside of C++, we allow this even if the
2165   // language doesn't "officially" support implicit int -- we support
2166   // implicit int as an extension in C99 and C11.
2167   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2168       isValidAfterIdentifierInDeclarator(NextToken())) {
2169     // If this token is valid for implicit int, e.g. "static x = 4", then
2170     // we just avoid eating the identifier, so it will be parsed as the
2171     // identifier in the declarator.
2172     return false;
2173   }
2174 
2175   if (getLangOpts().CPlusPlus &&
2176       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2177     // Don't require a type specifier if we have the 'auto' storage class
2178     // specifier in C++98 -- we'll promote it to a type specifier.
2179     if (SS)
2180       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2181     return false;
2182   }
2183 
2184   // Otherwise, if we don't consume this token, we are going to emit an
2185   // error anyway.  Try to recover from various common problems.  Check
2186   // to see if this was a reference to a tag name without a tag specified.
2187   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2188   //
2189   // C++ doesn't need this, and isTagName doesn't take SS.
2190   if (SS == nullptr) {
2191     const char *TagName = nullptr, *FixitTagName = nullptr;
2192     tok::TokenKind TagKind = tok::unknown;
2193 
2194     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2195       default: break;
2196       case DeclSpec::TST_enum:
2197         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2198       case DeclSpec::TST_union:
2199         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2200       case DeclSpec::TST_struct:
2201         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2202       case DeclSpec::TST_interface:
2203         TagName="__interface"; FixitTagName = "__interface ";
2204         TagKind=tok::kw___interface;break;
2205       case DeclSpec::TST_class:
2206         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2207     }
2208 
2209     if (TagName) {
2210       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2211       LookupResult R(Actions, TokenName, SourceLocation(),
2212                      Sema::LookupOrdinaryName);
2213 
2214       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2215         << TokenName << TagName << getLangOpts().CPlusPlus
2216         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2217 
2218       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2219         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2220              I != IEnd; ++I)
2221           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2222             << TokenName << TagName;
2223       }
2224 
2225       // Parse this as a tag as if the missing tag were present.
2226       if (TagKind == tok::kw_enum)
2227         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2228       else
2229         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2230                             /*EnteringContext*/ false, DSC_normal, Attrs);
2231       return true;
2232     }
2233   }
2234 
2235   // Determine whether this identifier could plausibly be the name of something
2236   // being declared (with a missing type).
2237   if (!isTypeSpecifier(DSC) &&
2238       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2239     // Look ahead to the next token to try to figure out what this declaration
2240     // was supposed to be.
2241     switch (NextToken().getKind()) {
2242     case tok::l_paren: {
2243       // static x(4); // 'x' is not a type
2244       // x(int n);    // 'x' is not a type
2245       // x (*p)[];    // 'x' is a type
2246       //
2247       // Since we're in an error case, we can afford to perform a tentative
2248       // parse to determine which case we're in.
2249       TentativeParsingAction PA(*this);
2250       ConsumeToken();
2251       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2252       PA.Revert();
2253 
2254       if (TPR != TPResult::False) {
2255         // The identifier is followed by a parenthesized declarator.
2256         // It's supposed to be a type.
2257         break;
2258       }
2259 
2260       // If we're in a context where we could be declaring a constructor,
2261       // check whether this is a constructor declaration with a bogus name.
2262       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2263         IdentifierInfo *II = Tok.getIdentifierInfo();
2264         if (Actions.isCurrentClassNameTypo(II, SS)) {
2265           Diag(Loc, diag::err_constructor_bad_name)
2266             << Tok.getIdentifierInfo() << II
2267             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2268           Tok.setIdentifierInfo(II);
2269         }
2270       }
2271       // Fall through.
2272     }
2273     case tok::comma:
2274     case tok::equal:
2275     case tok::kw_asm:
2276     case tok::l_brace:
2277     case tok::l_square:
2278     case tok::semi:
2279       // This looks like a variable or function declaration. The type is
2280       // probably missing. We're done parsing decl-specifiers.
2281       if (SS)
2282         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2283       return false;
2284 
2285     default:
2286       // This is probably supposed to be a type. This includes cases like:
2287       //   int f(itn);
2288       //   struct S { unsinged : 4; };
2289       break;
2290     }
2291   }
2292 
2293   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2294   // and attempt to recover.
2295   ParsedType T;
2296   IdentifierInfo *II = Tok.getIdentifierInfo();
2297   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2298                                   getLangOpts().CPlusPlus &&
2299                                       NextToken().is(tok::less));
2300   if (T) {
2301     // The action has suggested that the type T could be used. Set that as
2302     // the type in the declaration specifiers, consume the would-be type
2303     // name token, and we're done.
2304     const char *PrevSpec;
2305     unsigned DiagID;
2306     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2307                        Actions.getASTContext().getPrintingPolicy());
2308     DS.SetRangeEnd(Tok.getLocation());
2309     ConsumeToken();
2310     // There may be other declaration specifiers after this.
2311     return true;
2312   } else if (II != Tok.getIdentifierInfo()) {
2313     // If no type was suggested, the correction is to a keyword
2314     Tok.setKind(II->getTokenID());
2315     // There may be other declaration specifiers after this.
2316     return true;
2317   }
2318 
2319   // Otherwise, the action had no suggestion for us.  Mark this as an error.
2320   DS.SetTypeSpecError();
2321   DS.SetRangeEnd(Tok.getLocation());
2322   ConsumeToken();
2323 
2324   // TODO: Could inject an invalid typedef decl in an enclosing scope to
2325   // avoid rippling error messages on subsequent uses of the same type,
2326   // could be useful if #include was forgotten.
2327   return false;
2328 }
2329 
2330 /// \brief Determine the declaration specifier context from the declarator
2331 /// context.
2332 ///
2333 /// \param Context the declarator context, which is one of the
2334 /// Declarator::TheContext enumerator values.
2335 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2336 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2337   if (Context == Declarator::MemberContext)
2338     return DSC_class;
2339   if (Context == Declarator::FileContext)
2340     return DSC_top_level;
2341   if (Context == Declarator::TemplateTypeArgContext)
2342     return DSC_template_type_arg;
2343   if (Context == Declarator::TrailingReturnContext)
2344     return DSC_trailing;
2345   if (Context == Declarator::AliasDeclContext ||
2346       Context == Declarator::AliasTemplateContext)
2347     return DSC_alias_declaration;
2348   return DSC_normal;
2349 }
2350 
2351 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2352 ///
2353 /// FIXME: Simply returns an alignof() expression if the argument is a
2354 /// type. Ideally, the type should be propagated directly into Sema.
2355 ///
2356 /// [C11]   type-id
2357 /// [C11]   constant-expression
2358 /// [C++0x] type-id ...[opt]
2359 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2360 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2361                                       SourceLocation &EllipsisLoc) {
2362   ExprResult ER;
2363   if (isTypeIdInParens()) {
2364     SourceLocation TypeLoc = Tok.getLocation();
2365     ParsedType Ty = ParseTypeName().get();
2366     SourceRange TypeRange(Start, Tok.getLocation());
2367     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2368                                                Ty.getAsOpaquePtr(), TypeRange);
2369   } else
2370     ER = ParseConstantExpression();
2371 
2372   if (getLangOpts().CPlusPlus11)
2373     TryConsumeToken(tok::ellipsis, EllipsisLoc);
2374 
2375   return ER;
2376 }
2377 
2378 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2379 /// attribute to Attrs.
2380 ///
2381 /// alignment-specifier:
2382 /// [C11]   '_Alignas' '(' type-id ')'
2383 /// [C11]   '_Alignas' '(' constant-expression ')'
2384 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2385 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2386 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2387                                      SourceLocation *EndLoc) {
2388   assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2389          "Not an alignment-specifier!");
2390 
2391   IdentifierInfo *KWName = Tok.getIdentifierInfo();
2392   SourceLocation KWLoc = ConsumeToken();
2393 
2394   BalancedDelimiterTracker T(*this, tok::l_paren);
2395   if (T.expectAndConsume())
2396     return;
2397 
2398   SourceLocation EllipsisLoc;
2399   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2400   if (ArgExpr.isInvalid()) {
2401     T.skipToEnd();
2402     return;
2403   }
2404 
2405   T.consumeClose();
2406   if (EndLoc)
2407     *EndLoc = T.getCloseLocation();
2408 
2409   ArgsVector ArgExprs;
2410   ArgExprs.push_back(ArgExpr.get());
2411   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2412                AttributeList::AS_Keyword, EllipsisLoc);
2413 }
2414 
2415 /// Determine whether we're looking at something that might be a declarator
2416 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2417 /// diagnose a missing semicolon after a prior tag definition in the decl
2418 /// specifier.
2419 ///
2420 /// \return \c true if an error occurred and this can't be any kind of
2421 /// declaration.
2422 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2423 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2424                                               DeclSpecContext DSContext,
2425                                               LateParsedAttrList *LateAttrs) {
2426   assert(DS.hasTagDefinition() && "shouldn't call this");
2427 
2428   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2429 
2430   if (getLangOpts().CPlusPlus &&
2431       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2432        Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2433       TryAnnotateCXXScopeToken(EnteringContext)) {
2434     SkipMalformedDecl();
2435     return true;
2436   }
2437 
2438   bool HasScope = Tok.is(tok::annot_cxxscope);
2439   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2440   Token AfterScope = HasScope ? NextToken() : Tok;
2441 
2442   // Determine whether the following tokens could possibly be a
2443   // declarator.
2444   bool MightBeDeclarator = true;
2445   if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2446     // A declarator-id can't start with 'typename'.
2447     MightBeDeclarator = false;
2448   } else if (AfterScope.is(tok::annot_template_id)) {
2449     // If we have a type expressed as a template-id, this cannot be a
2450     // declarator-id (such a type cannot be redeclared in a simple-declaration).
2451     TemplateIdAnnotation *Annot =
2452         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2453     if (Annot->Kind == TNK_Type_template)
2454       MightBeDeclarator = false;
2455   } else if (AfterScope.is(tok::identifier)) {
2456     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2457 
2458     // These tokens cannot come after the declarator-id in a
2459     // simple-declaration, and are likely to come after a type-specifier.
2460     if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2461         Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2462         Next.is(tok::coloncolon)) {
2463       // Missing a semicolon.
2464       MightBeDeclarator = false;
2465     } else if (HasScope) {
2466       // If the declarator-id has a scope specifier, it must redeclare a
2467       // previously-declared entity. If that's a type (and this is not a
2468       // typedef), that's an error.
2469       CXXScopeSpec SS;
2470       Actions.RestoreNestedNameSpecifierAnnotation(
2471           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2472       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2473       Sema::NameClassification Classification = Actions.ClassifyName(
2474           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2475           /*IsAddressOfOperand*/false);
2476       switch (Classification.getKind()) {
2477       case Sema::NC_Error:
2478         SkipMalformedDecl();
2479         return true;
2480 
2481       case Sema::NC_Keyword:
2482       case Sema::NC_NestedNameSpecifier:
2483         llvm_unreachable("typo correction and nested name specifiers not "
2484                          "possible here");
2485 
2486       case Sema::NC_Type:
2487       case Sema::NC_TypeTemplate:
2488         // Not a previously-declared non-type entity.
2489         MightBeDeclarator = false;
2490         break;
2491 
2492       case Sema::NC_Unknown:
2493       case Sema::NC_Expression:
2494       case Sema::NC_VarTemplate:
2495       case Sema::NC_FunctionTemplate:
2496         // Might be a redeclaration of a prior entity.
2497         break;
2498       }
2499     }
2500   }
2501 
2502   if (MightBeDeclarator)
2503     return false;
2504 
2505   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2506   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2507        diag::err_expected_after)
2508       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2509 
2510   // Try to recover from the typo, by dropping the tag definition and parsing
2511   // the problematic tokens as a type.
2512   //
2513   // FIXME: Split the DeclSpec into pieces for the standalone
2514   // declaration and pieces for the following declaration, instead
2515   // of assuming that all the other pieces attach to new declaration,
2516   // and call ParsedFreeStandingDeclSpec as appropriate.
2517   DS.ClearTypeSpecType();
2518   ParsedTemplateInfo NotATemplate;
2519   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2520   return false;
2521 }
2522 
2523 /// ParseDeclarationSpecifiers
2524 ///       declaration-specifiers: [C99 6.7]
2525 ///         storage-class-specifier declaration-specifiers[opt]
2526 ///         type-specifier declaration-specifiers[opt]
2527 /// [C99]   function-specifier declaration-specifiers[opt]
2528 /// [C11]   alignment-specifier declaration-specifiers[opt]
2529 /// [GNU]   attributes declaration-specifiers[opt]
2530 /// [Clang] '__module_private__' declaration-specifiers[opt]
2531 ///
2532 ///       storage-class-specifier: [C99 6.7.1]
2533 ///         'typedef'
2534 ///         'extern'
2535 ///         'static'
2536 ///         'auto'
2537 ///         'register'
2538 /// [C++]   'mutable'
2539 /// [C++11] 'thread_local'
2540 /// [C11]   '_Thread_local'
2541 /// [GNU]   '__thread'
2542 ///       function-specifier: [C99 6.7.4]
2543 /// [C99]   'inline'
2544 /// [C++]   'virtual'
2545 /// [C++]   'explicit'
2546 /// [OpenCL] '__kernel'
2547 ///       'friend': [C++ dcl.friend]
2548 ///       'constexpr': [C++0x dcl.constexpr]
2549 
2550 ///
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2551 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2552                                         const ParsedTemplateInfo &TemplateInfo,
2553                                         AccessSpecifier AS,
2554                                         DeclSpecContext DSContext,
2555                                         LateParsedAttrList *LateAttrs) {
2556   if (DS.getSourceRange().isInvalid()) {
2557     // Start the range at the current token but make the end of the range
2558     // invalid.  This will make the entire range invalid unless we successfully
2559     // consume a token.
2560     DS.SetRangeStart(Tok.getLocation());
2561     DS.SetRangeEnd(SourceLocation());
2562   }
2563 
2564   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2565   bool AttrsLastTime = false;
2566   ParsedAttributesWithRange attrs(AttrFactory);
2567   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
2568   while (1) {
2569     bool isInvalid = false;
2570     bool isStorageClass = false;
2571     const char *PrevSpec = nullptr;
2572     unsigned DiagID = 0;
2573 
2574     SourceLocation Loc = Tok.getLocation();
2575 
2576     switch (Tok.getKind()) {
2577     default:
2578     DoneWithDeclSpec:
2579       if (!AttrsLastTime)
2580         ProhibitAttributes(attrs);
2581       else {
2582         // Reject C++11 attributes that appertain to decl specifiers as
2583         // we don't support any C++11 attributes that appertain to decl
2584         // specifiers. This also conforms to what g++ 4.8 is doing.
2585         ProhibitCXX11Attributes(attrs);
2586 
2587         DS.takeAttributesFrom(attrs);
2588       }
2589 
2590       // If this is not a declaration specifier token, we're done reading decl
2591       // specifiers.  First verify that DeclSpec's are consistent.
2592       DS.Finish(Diags, PP, Policy);
2593       return;
2594 
2595     case tok::l_square:
2596     case tok::kw_alignas:
2597       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2598         goto DoneWithDeclSpec;
2599 
2600       ProhibitAttributes(attrs);
2601       // FIXME: It would be good to recover by accepting the attributes,
2602       //        but attempting to do that now would cause serious
2603       //        madness in terms of diagnostics.
2604       attrs.clear();
2605       attrs.Range = SourceRange();
2606 
2607       ParseCXX11Attributes(attrs);
2608       AttrsLastTime = true;
2609       continue;
2610 
2611     case tok::code_completion: {
2612       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2613       if (DS.hasTypeSpecifier()) {
2614         bool AllowNonIdentifiers
2615           = (getCurScope()->getFlags() & (Scope::ControlScope |
2616                                           Scope::BlockScope |
2617                                           Scope::TemplateParamScope |
2618                                           Scope::FunctionPrototypeScope |
2619                                           Scope::AtCatchScope)) == 0;
2620         bool AllowNestedNameSpecifiers
2621           = DSContext == DSC_top_level ||
2622             (DSContext == DSC_class && DS.isFriendSpecified());
2623 
2624         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2625                                      AllowNonIdentifiers,
2626                                      AllowNestedNameSpecifiers);
2627         return cutOffParsing();
2628       }
2629 
2630       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2631         CCC = Sema::PCC_LocalDeclarationSpecifiers;
2632       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2633         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2634                                     : Sema::PCC_Template;
2635       else if (DSContext == DSC_class)
2636         CCC = Sema::PCC_Class;
2637       else if (CurParsedObjCImpl)
2638         CCC = Sema::PCC_ObjCImplementation;
2639 
2640       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2641       return cutOffParsing();
2642     }
2643 
2644     case tok::coloncolon: // ::foo::bar
2645       // C++ scope specifier.  Annotate and loop, or bail out on error.
2646       if (TryAnnotateCXXScopeToken(EnteringContext)) {
2647         if (!DS.hasTypeSpecifier())
2648           DS.SetTypeSpecError();
2649         goto DoneWithDeclSpec;
2650       }
2651       if (Tok.is(tok::coloncolon)) // ::new or ::delete
2652         goto DoneWithDeclSpec;
2653       continue;
2654 
2655     case tok::annot_cxxscope: {
2656       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2657         goto DoneWithDeclSpec;
2658 
2659       CXXScopeSpec SS;
2660       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2661                                                    Tok.getAnnotationRange(),
2662                                                    SS);
2663 
2664       // We are looking for a qualified typename.
2665       Token Next = NextToken();
2666       if (Next.is(tok::annot_template_id) &&
2667           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2668             ->Kind == TNK_Type_template) {
2669         // We have a qualified template-id, e.g., N::A<int>
2670 
2671         // C++ [class.qual]p2:
2672         //   In a lookup in which the constructor is an acceptable lookup
2673         //   result and the nested-name-specifier nominates a class C:
2674         //
2675         //     - if the name specified after the
2676         //       nested-name-specifier, when looked up in C, is the
2677         //       injected-class-name of C (Clause 9), or
2678         //
2679         //     - if the name specified after the nested-name-specifier
2680         //       is the same as the identifier or the
2681         //       simple-template-id's template-name in the last
2682         //       component of the nested-name-specifier,
2683         //
2684         //   the name is instead considered to name the constructor of
2685         //   class C.
2686         //
2687         // Thus, if the template-name is actually the constructor
2688         // name, then the code is ill-formed; this interpretation is
2689         // reinforced by the NAD status of core issue 635.
2690         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2691         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2692             TemplateId->Name &&
2693             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2694           if (isConstructorDeclarator(/*Unqualified*/false)) {
2695             // The user meant this to be an out-of-line constructor
2696             // definition, but template arguments are not allowed
2697             // there.  Just allow this as a constructor; we'll
2698             // complain about it later.
2699             goto DoneWithDeclSpec;
2700           }
2701 
2702           // The user meant this to name a type, but it actually names
2703           // a constructor with some extraneous template
2704           // arguments. Complain, then parse it as a type as the user
2705           // intended.
2706           Diag(TemplateId->TemplateNameLoc,
2707                diag::err_out_of_line_template_id_names_constructor)
2708             << TemplateId->Name;
2709         }
2710 
2711         DS.getTypeSpecScope() = SS;
2712         ConsumeToken(); // The C++ scope.
2713         assert(Tok.is(tok::annot_template_id) &&
2714                "ParseOptionalCXXScopeSpecifier not working");
2715         AnnotateTemplateIdTokenAsType();
2716         continue;
2717       }
2718 
2719       if (Next.is(tok::annot_typename)) {
2720         DS.getTypeSpecScope() = SS;
2721         ConsumeToken(); // The C++ scope.
2722         if (Tok.getAnnotationValue()) {
2723           ParsedType T = getTypeAnnotation(Tok);
2724           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2725                                          Tok.getAnnotationEndLoc(),
2726                                          PrevSpec, DiagID, T, Policy);
2727           if (isInvalid)
2728             break;
2729         }
2730         else
2731           DS.SetTypeSpecError();
2732         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2733         ConsumeToken(); // The typename
2734       }
2735 
2736       if (Next.isNot(tok::identifier))
2737         goto DoneWithDeclSpec;
2738 
2739       // If we're in a context where the identifier could be a class name,
2740       // check whether this is a constructor declaration.
2741       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2742           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2743                                      &SS)) {
2744         if (isConstructorDeclarator(/*Unqualified*/false))
2745           goto DoneWithDeclSpec;
2746 
2747         // As noted in C++ [class.qual]p2 (cited above), when the name
2748         // of the class is qualified in a context where it could name
2749         // a constructor, its a constructor name. However, we've
2750         // looked at the declarator, and the user probably meant this
2751         // to be a type. Complain that it isn't supposed to be treated
2752         // as a type, then proceed to parse it as a type.
2753         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2754           << Next.getIdentifierInfo();
2755       }
2756 
2757       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2758                                                Next.getLocation(),
2759                                                getCurScope(), &SS,
2760                                                false, false, ParsedType(),
2761                                                /*IsCtorOrDtorName=*/false,
2762                                                /*NonTrivialSourceInfo=*/true);
2763 
2764       // If the referenced identifier is not a type, then this declspec is
2765       // erroneous: We already checked about that it has no type specifier, and
2766       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2767       // typename.
2768       if (!TypeRep) {
2769         ConsumeToken();   // Eat the scope spec so the identifier is current.
2770         ParsedAttributesWithRange Attrs(AttrFactory);
2771         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2772           if (!Attrs.empty()) {
2773             AttrsLastTime = true;
2774             attrs.takeAllFrom(Attrs);
2775           }
2776           continue;
2777         }
2778         goto DoneWithDeclSpec;
2779       }
2780 
2781       DS.getTypeSpecScope() = SS;
2782       ConsumeToken(); // The C++ scope.
2783 
2784       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2785                                      DiagID, TypeRep, Policy);
2786       if (isInvalid)
2787         break;
2788 
2789       DS.SetRangeEnd(Tok.getLocation());
2790       ConsumeToken(); // The typename.
2791 
2792       continue;
2793     }
2794 
2795     case tok::annot_typename: {
2796       // If we've previously seen a tag definition, we were almost surely
2797       // missing a semicolon after it.
2798       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2799         goto DoneWithDeclSpec;
2800 
2801       if (Tok.getAnnotationValue()) {
2802         ParsedType T = getTypeAnnotation(Tok);
2803         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2804                                        DiagID, T, Policy);
2805       } else
2806         DS.SetTypeSpecError();
2807 
2808       if (isInvalid)
2809         break;
2810 
2811       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2812       ConsumeToken(); // The typename
2813 
2814       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2815       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2816       // Objective-C interface.
2817       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2818         ParseObjCProtocolQualifiers(DS);
2819 
2820       continue;
2821     }
2822 
2823     case tok::kw___is_signed:
2824       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2825       // typically treats it as a trait. If we see __is_signed as it appears
2826       // in libstdc++, e.g.,
2827       //
2828       //   static const bool __is_signed;
2829       //
2830       // then treat __is_signed as an identifier rather than as a keyword.
2831       if (DS.getTypeSpecType() == TST_bool &&
2832           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2833           DS.getStorageClassSpec() == DeclSpec::SCS_static)
2834         TryKeywordIdentFallback(true);
2835 
2836       // We're done with the declaration-specifiers.
2837       goto DoneWithDeclSpec;
2838 
2839       // typedef-name
2840     case tok::kw___super:
2841     case tok::kw_decltype:
2842     case tok::identifier: {
2843       // This identifier can only be a typedef name if we haven't already seen
2844       // a type-specifier.  Without this check we misparse:
2845       //  typedef int X; struct Y { short X; };  as 'short int'.
2846       if (DS.hasTypeSpecifier())
2847         goto DoneWithDeclSpec;
2848 
2849       // In C++, check to see if this is a scope specifier like foo::bar::, if
2850       // so handle it as such.  This is important for ctor parsing.
2851       if (getLangOpts().CPlusPlus) {
2852         if (TryAnnotateCXXScopeToken(EnteringContext)) {
2853           DS.SetTypeSpecError();
2854           goto DoneWithDeclSpec;
2855         }
2856         if (!Tok.is(tok::identifier))
2857           continue;
2858       }
2859 
2860       // Check for need to substitute AltiVec keyword tokens.
2861       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2862         break;
2863 
2864       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2865       //                allow the use of a typedef name as a type specifier.
2866       if (DS.isTypeAltiVecVector())
2867         goto DoneWithDeclSpec;
2868 
2869       ParsedType TypeRep =
2870         Actions.getTypeName(*Tok.getIdentifierInfo(),
2871                             Tok.getLocation(), getCurScope());
2872 
2873       // MSVC: If we weren't able to parse a default template argument, and it's
2874       // just a simple identifier, create a DependentNameType.  This will allow us
2875       // to defer the name lookup to template instantiation time, as long we forge a
2876       // NestedNameSpecifier for the current context.
2877       if (!TypeRep && DSContext == DSC_template_type_arg &&
2878           getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2879         TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2880             *Tok.getIdentifierInfo(), Tok.getLocation());
2881       }
2882 
2883       // If this is not a typedef name, don't parse it as part of the declspec,
2884       // it must be an implicit int or an error.
2885       if (!TypeRep) {
2886         ParsedAttributesWithRange Attrs(AttrFactory);
2887         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2888           if (!Attrs.empty()) {
2889             AttrsLastTime = true;
2890             attrs.takeAllFrom(Attrs);
2891           }
2892           continue;
2893         }
2894         goto DoneWithDeclSpec;
2895       }
2896 
2897       // If we're in a context where the identifier could be a class name,
2898       // check whether this is a constructor declaration.
2899       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2900           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2901           isConstructorDeclarator(/*Unqualified*/true))
2902         goto DoneWithDeclSpec;
2903 
2904       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2905                                      DiagID, TypeRep, Policy);
2906       if (isInvalid)
2907         break;
2908 
2909       DS.SetRangeEnd(Tok.getLocation());
2910       ConsumeToken(); // The identifier
2911 
2912       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2913       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2914       // Objective-C interface.
2915       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2916         ParseObjCProtocolQualifiers(DS);
2917 
2918       // Need to support trailing type qualifiers (e.g. "id<p> const").
2919       // If a type specifier follows, it will be diagnosed elsewhere.
2920       continue;
2921     }
2922 
2923       // type-name
2924     case tok::annot_template_id: {
2925       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2926       if (TemplateId->Kind != TNK_Type_template) {
2927         // This template-id does not refer to a type name, so we're
2928         // done with the type-specifiers.
2929         goto DoneWithDeclSpec;
2930       }
2931 
2932       // If we're in a context where the template-id could be a
2933       // constructor name or specialization, check whether this is a
2934       // constructor declaration.
2935       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2936           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2937           isConstructorDeclarator(TemplateId->SS.isEmpty()))
2938         goto DoneWithDeclSpec;
2939 
2940       // Turn the template-id annotation token into a type annotation
2941       // token, then try again to parse it as a type-specifier.
2942       AnnotateTemplateIdTokenAsType();
2943       continue;
2944     }
2945 
2946     // GNU attributes support.
2947     case tok::kw___attribute:
2948       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2949       continue;
2950 
2951     // Microsoft declspec support.
2952     case tok::kw___declspec:
2953       ParseMicrosoftDeclSpec(DS.getAttributes());
2954       continue;
2955 
2956     // Microsoft single token adornments.
2957     case tok::kw___forceinline: {
2958       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2959       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2960       SourceLocation AttrNameLoc = Tok.getLocation();
2961       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2962                                 nullptr, 0, AttributeList::AS_Keyword);
2963       break;
2964     }
2965 
2966     case tok::kw___sptr:
2967     case tok::kw___uptr:
2968     case tok::kw___ptr64:
2969     case tok::kw___ptr32:
2970     case tok::kw___w64:
2971     case tok::kw___cdecl:
2972     case tok::kw___stdcall:
2973     case tok::kw___fastcall:
2974     case tok::kw___thiscall:
2975     case tok::kw___vectorcall:
2976     case tok::kw___unaligned:
2977       ParseMicrosoftTypeAttributes(DS.getAttributes());
2978       continue;
2979 
2980     // Borland single token adornments.
2981     case tok::kw___pascal:
2982       ParseBorlandTypeAttributes(DS.getAttributes());
2983       continue;
2984 
2985     // OpenCL single token adornments.
2986     case tok::kw___kernel:
2987       ParseOpenCLAttributes(DS.getAttributes());
2988       continue;
2989 
2990     // storage-class-specifier
2991     case tok::kw_typedef:
2992       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2993                                          PrevSpec, DiagID, Policy);
2994       isStorageClass = true;
2995       break;
2996     case tok::kw_extern:
2997       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
2998         Diag(Tok, diag::ext_thread_before) << "extern";
2999       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3000                                          PrevSpec, DiagID, Policy);
3001       isStorageClass = true;
3002       break;
3003     case tok::kw___private_extern__:
3004       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3005                                          Loc, PrevSpec, DiagID, Policy);
3006       isStorageClass = true;
3007       break;
3008     case tok::kw_static:
3009       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3010         Diag(Tok, diag::ext_thread_before) << "static";
3011       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3012                                          PrevSpec, DiagID, Policy);
3013       isStorageClass = true;
3014       break;
3015     case tok::kw_auto:
3016       if (getLangOpts().CPlusPlus11) {
3017         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3018           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3019                                              PrevSpec, DiagID, Policy);
3020           if (!isInvalid)
3021             Diag(Tok, diag::ext_auto_storage_class)
3022               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3023         } else
3024           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3025                                          DiagID, Policy);
3026       } else
3027         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3028                                            PrevSpec, DiagID, Policy);
3029       isStorageClass = true;
3030       break;
3031     case tok::kw_register:
3032       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3033                                          PrevSpec, DiagID, Policy);
3034       isStorageClass = true;
3035       break;
3036     case tok::kw_mutable:
3037       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3038                                          PrevSpec, DiagID, Policy);
3039       isStorageClass = true;
3040       break;
3041     case tok::kw___thread:
3042       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3043                                                PrevSpec, DiagID);
3044       isStorageClass = true;
3045       break;
3046     case tok::kw_thread_local:
3047       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3048                                                PrevSpec, DiagID);
3049       break;
3050     case tok::kw__Thread_local:
3051       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3052                                                Loc, PrevSpec, DiagID);
3053       isStorageClass = true;
3054       break;
3055 
3056     // function-specifier
3057     case tok::kw_inline:
3058       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3059       break;
3060     case tok::kw_virtual:
3061       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3062       break;
3063     case tok::kw_explicit:
3064       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3065       break;
3066     case tok::kw__Noreturn:
3067       if (!getLangOpts().C11)
3068         Diag(Loc, diag::ext_c11_noreturn);
3069       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3070       break;
3071 
3072     // alignment-specifier
3073     case tok::kw__Alignas:
3074       if (!getLangOpts().C11)
3075         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3076       ParseAlignmentSpecifier(DS.getAttributes());
3077       continue;
3078 
3079     // friend
3080     case tok::kw_friend:
3081       if (DSContext == DSC_class)
3082         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3083       else {
3084         PrevSpec = ""; // not actually used by the diagnostic
3085         DiagID = diag::err_friend_invalid_in_context;
3086         isInvalid = true;
3087       }
3088       break;
3089 
3090     // Modules
3091     case tok::kw___module_private__:
3092       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3093       break;
3094 
3095     // constexpr
3096     case tok::kw_constexpr:
3097       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3098       break;
3099 
3100     // type-specifier
3101     case tok::kw_short:
3102       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3103                                       DiagID, Policy);
3104       break;
3105     case tok::kw_long:
3106       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3107         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3108                                         DiagID, Policy);
3109       else
3110         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3111                                         DiagID, Policy);
3112       break;
3113     case tok::kw___int64:
3114         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3115                                         DiagID, Policy);
3116       break;
3117     case tok::kw_signed:
3118       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3119                                      DiagID);
3120       break;
3121     case tok::kw_unsigned:
3122       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3123                                      DiagID);
3124       break;
3125     case tok::kw__Complex:
3126       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3127                                         DiagID);
3128       break;
3129     case tok::kw__Imaginary:
3130       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3131                                         DiagID);
3132       break;
3133     case tok::kw_void:
3134       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3135                                      DiagID, Policy);
3136       break;
3137     case tok::kw_char:
3138       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3139                                      DiagID, Policy);
3140       break;
3141     case tok::kw_int:
3142       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3143                                      DiagID, Policy);
3144       break;
3145     case tok::kw___int128:
3146       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3147                                      DiagID, Policy);
3148       break;
3149     case tok::kw_half:
3150       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3151                                      DiagID, Policy);
3152       break;
3153     case tok::kw_float:
3154       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3155                                      DiagID, Policy);
3156       break;
3157     case tok::kw_double:
3158       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3159                                      DiagID, Policy);
3160       break;
3161     case tok::kw_wchar_t:
3162       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3163                                      DiagID, Policy);
3164       break;
3165     case tok::kw_char16_t:
3166       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3167                                      DiagID, Policy);
3168       break;
3169     case tok::kw_char32_t:
3170       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3171                                      DiagID, Policy);
3172       break;
3173     case tok::kw_bool:
3174     case tok::kw__Bool:
3175       if (Tok.is(tok::kw_bool) &&
3176           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3177           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3178         PrevSpec = ""; // Not used by the diagnostic.
3179         DiagID = diag::err_bool_redeclaration;
3180         // For better error recovery.
3181         Tok.setKind(tok::identifier);
3182         isInvalid = true;
3183       } else {
3184         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3185                                        DiagID, Policy);
3186       }
3187       break;
3188     case tok::kw__Decimal32:
3189       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3190                                      DiagID, Policy);
3191       break;
3192     case tok::kw__Decimal64:
3193       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3194                                      DiagID, Policy);
3195       break;
3196     case tok::kw__Decimal128:
3197       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3198                                      DiagID, Policy);
3199       break;
3200     case tok::kw___vector:
3201       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3202       break;
3203     case tok::kw___pixel:
3204       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3205       break;
3206     case tok::kw___bool:
3207       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3208       break;
3209     case tok::kw___unknown_anytype:
3210       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3211                                      PrevSpec, DiagID, Policy);
3212       break;
3213 
3214     // class-specifier:
3215     case tok::kw_class:
3216     case tok::kw_struct:
3217     case tok::kw___interface:
3218     case tok::kw_union: {
3219       tok::TokenKind Kind = Tok.getKind();
3220       ConsumeToken();
3221 
3222       // These are attributes following class specifiers.
3223       // To produce better diagnostic, we parse them when
3224       // parsing class specifier.
3225       ParsedAttributesWithRange Attributes(AttrFactory);
3226       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3227                           EnteringContext, DSContext, Attributes);
3228 
3229       // If there are attributes following class specifier,
3230       // take them over and handle them here.
3231       if (!Attributes.empty()) {
3232         AttrsLastTime = true;
3233         attrs.takeAllFrom(Attributes);
3234       }
3235       continue;
3236     }
3237 
3238     // enum-specifier:
3239     case tok::kw_enum:
3240       ConsumeToken();
3241       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3242       continue;
3243 
3244     // cv-qualifier:
3245     case tok::kw_const:
3246       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3247                                  getLangOpts());
3248       break;
3249     case tok::kw_volatile:
3250       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3251                                  getLangOpts());
3252       break;
3253     case tok::kw_restrict:
3254       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3255                                  getLangOpts());
3256       break;
3257 
3258     // C++ typename-specifier:
3259     case tok::kw_typename:
3260       if (TryAnnotateTypeOrScopeToken()) {
3261         DS.SetTypeSpecError();
3262         goto DoneWithDeclSpec;
3263       }
3264       if (!Tok.is(tok::kw_typename))
3265         continue;
3266       break;
3267 
3268     // GNU typeof support.
3269     case tok::kw_typeof:
3270       ParseTypeofSpecifier(DS);
3271       continue;
3272 
3273     case tok::annot_decltype:
3274       ParseDecltypeSpecifier(DS);
3275       continue;
3276 
3277     case tok::kw___underlying_type:
3278       ParseUnderlyingTypeSpecifier(DS);
3279       continue;
3280 
3281     case tok::kw__Atomic:
3282       // C11 6.7.2.4/4:
3283       //   If the _Atomic keyword is immediately followed by a left parenthesis,
3284       //   it is interpreted as a type specifier (with a type name), not as a
3285       //   type qualifier.
3286       if (NextToken().is(tok::l_paren)) {
3287         ParseAtomicSpecifier(DS);
3288         continue;
3289       }
3290       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3291                                  getLangOpts());
3292       break;
3293 
3294     // OpenCL qualifiers:
3295     case tok::kw___generic:
3296       // generic address space is introduced only in OpenCL v2.0
3297       // see OpenCL C Spec v2.0 s6.5.5
3298       if (Actions.getLangOpts().OpenCLVersion < 200) {
3299         DiagID = diag::err_opencl_unknown_type_specifier;
3300         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3301         isInvalid = true;
3302         break;
3303       };
3304     case tok::kw___private:
3305     case tok::kw___global:
3306     case tok::kw___local:
3307     case tok::kw___constant:
3308     case tok::kw___read_only:
3309     case tok::kw___write_only:
3310     case tok::kw___read_write:
3311       ParseOpenCLQualifiers(DS.getAttributes());
3312       break;
3313 
3314     case tok::less:
3315       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3316       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3317       // but we support it.
3318       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3319         goto DoneWithDeclSpec;
3320 
3321       if (!ParseObjCProtocolQualifiers(DS))
3322         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3323           << FixItHint::CreateInsertion(Loc, "id")
3324           << SourceRange(Loc, DS.getSourceRange().getEnd());
3325 
3326       // Need to support trailing type qualifiers (e.g. "id<p> const").
3327       // If a type specifier follows, it will be diagnosed elsewhere.
3328       continue;
3329     }
3330     // If the specifier wasn't legal, issue a diagnostic.
3331     if (isInvalid) {
3332       assert(PrevSpec && "Method did not return previous specifier!");
3333       assert(DiagID);
3334 
3335       if (DiagID == diag::ext_duplicate_declspec)
3336         Diag(Tok, DiagID)
3337           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3338       else if (DiagID == diag::err_opencl_unknown_type_specifier)
3339         Diag(Tok, DiagID) << PrevSpec << isStorageClass;
3340       else
3341         Diag(Tok, DiagID) << PrevSpec;
3342     }
3343 
3344     DS.SetRangeEnd(Tok.getLocation());
3345     if (DiagID != diag::err_bool_redeclaration)
3346       ConsumeToken();
3347 
3348     AttrsLastTime = false;
3349   }
3350 }
3351 
3352 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3353 /// semicolon.
3354 ///
3355 ///       struct-declaration:
3356 ///         specifier-qualifier-list struct-declarator-list
3357 /// [GNU]   __extension__ struct-declaration
3358 /// [GNU]   specifier-qualifier-list
3359 ///       struct-declarator-list:
3360 ///         struct-declarator
3361 ///         struct-declarator-list ',' struct-declarator
3362 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3363 ///       struct-declarator:
3364 ///         declarator
3365 /// [GNU]   declarator attributes[opt]
3366 ///         declarator[opt] ':' constant-expression
3367 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3368 ///
ParseStructDeclaration(ParsingDeclSpec & DS,llvm::function_ref<void (ParsingFieldDeclarator &)> FieldsCallback)3369 void Parser::ParseStructDeclaration(
3370     ParsingDeclSpec &DS,
3371     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3372 
3373   if (Tok.is(tok::kw___extension__)) {
3374     // __extension__ silences extension warnings in the subexpression.
3375     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
3376     ConsumeToken();
3377     return ParseStructDeclaration(DS, FieldsCallback);
3378   }
3379 
3380   // Parse the common specifier-qualifiers-list piece.
3381   ParseSpecifierQualifierList(DS);
3382 
3383   // If there are no declarators, this is a free-standing declaration
3384   // specifier. Let the actions module cope with it.
3385   if (Tok.is(tok::semi)) {
3386     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3387                                                        DS);
3388     DS.complete(TheDecl);
3389     return;
3390   }
3391 
3392   // Read struct-declarators until we find the semicolon.
3393   bool FirstDeclarator = true;
3394   SourceLocation CommaLoc;
3395   while (1) {
3396     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3397     DeclaratorInfo.D.setCommaLoc(CommaLoc);
3398 
3399     // Attributes are only allowed here on successive declarators.
3400     if (!FirstDeclarator)
3401       MaybeParseGNUAttributes(DeclaratorInfo.D);
3402 
3403     /// struct-declarator: declarator
3404     /// struct-declarator: declarator[opt] ':' constant-expression
3405     if (Tok.isNot(tok::colon)) {
3406       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3407       ColonProtectionRAIIObject X(*this);
3408       ParseDeclarator(DeclaratorInfo.D);
3409     } else
3410       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3411 
3412     if (TryConsumeToken(tok::colon)) {
3413       ExprResult Res(ParseConstantExpression());
3414       if (Res.isInvalid())
3415         SkipUntil(tok::semi, StopBeforeMatch);
3416       else
3417         DeclaratorInfo.BitfieldSize = Res.get();
3418     }
3419 
3420     // If attributes exist after the declarator, parse them.
3421     MaybeParseGNUAttributes(DeclaratorInfo.D);
3422 
3423     // We're done with this declarator;  invoke the callback.
3424     FieldsCallback(DeclaratorInfo);
3425 
3426     // If we don't have a comma, it is either the end of the list (a ';')
3427     // or an error, bail out.
3428     if (!TryConsumeToken(tok::comma, CommaLoc))
3429       return;
3430 
3431     FirstDeclarator = false;
3432   }
3433 }
3434 
3435 /// ParseStructUnionBody
3436 ///       struct-contents:
3437 ///         struct-declaration-list
3438 /// [EXT]   empty
3439 /// [GNU]   "struct-declaration-list" without terminatoring ';'
3440 ///       struct-declaration-list:
3441 ///         struct-declaration
3442 ///         struct-declaration-list struct-declaration
3443 /// [OBC]   '@' 'defs' '(' class-name ')'
3444 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3445 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3446                                   unsigned TagType, Decl *TagDecl) {
3447   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3448                                       "parsing struct/union body");
3449   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3450 
3451   BalancedDelimiterTracker T(*this, tok::l_brace);
3452   if (T.consumeOpen())
3453     return;
3454 
3455   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3456   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3457 
3458   SmallVector<Decl *, 32> FieldDecls;
3459 
3460   // While we still have something to read, read the declarations in the struct.
3461   while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3462     // Each iteration of this loop reads one struct-declaration.
3463 
3464     // Check for extraneous top-level semicolon.
3465     if (Tok.is(tok::semi)) {
3466       ConsumeExtraSemi(InsideStruct, TagType);
3467       continue;
3468     }
3469 
3470     // Parse _Static_assert declaration.
3471     if (Tok.is(tok::kw__Static_assert)) {
3472       SourceLocation DeclEnd;
3473       ParseStaticAssertDeclaration(DeclEnd);
3474       continue;
3475     }
3476 
3477     if (Tok.is(tok::annot_pragma_pack)) {
3478       HandlePragmaPack();
3479       continue;
3480     }
3481 
3482     if (Tok.is(tok::annot_pragma_align)) {
3483       HandlePragmaAlign();
3484       continue;
3485     }
3486 
3487     if (!Tok.is(tok::at)) {
3488       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3489         // Install the declarator into the current TagDecl.
3490         Decl *Field =
3491             Actions.ActOnField(getCurScope(), TagDecl,
3492                                FD.D.getDeclSpec().getSourceRange().getBegin(),
3493                                FD.D, FD.BitfieldSize);
3494         FieldDecls.push_back(Field);
3495         FD.complete(Field);
3496       };
3497 
3498       // Parse all the comma separated declarators.
3499       ParsingDeclSpec DS(*this);
3500       ParseStructDeclaration(DS, CFieldCallback);
3501     } else { // Handle @defs
3502       ConsumeToken();
3503       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3504         Diag(Tok, diag::err_unexpected_at);
3505         SkipUntil(tok::semi);
3506         continue;
3507       }
3508       ConsumeToken();
3509       ExpectAndConsume(tok::l_paren);
3510       if (!Tok.is(tok::identifier)) {
3511         Diag(Tok, diag::err_expected) << tok::identifier;
3512         SkipUntil(tok::semi);
3513         continue;
3514       }
3515       SmallVector<Decl *, 16> Fields;
3516       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3517                         Tok.getIdentifierInfo(), Fields);
3518       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3519       ConsumeToken();
3520       ExpectAndConsume(tok::r_paren);
3521     }
3522 
3523     if (TryConsumeToken(tok::semi))
3524       continue;
3525 
3526     if (Tok.is(tok::r_brace)) {
3527       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3528       break;
3529     }
3530 
3531     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3532     // Skip to end of block or statement to avoid ext-warning on extra ';'.
3533     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3534     // If we stopped at a ';', eat it.
3535     TryConsumeToken(tok::semi);
3536   }
3537 
3538   T.consumeClose();
3539 
3540   ParsedAttributes attrs(AttrFactory);
3541   // If attributes exist after struct contents, parse them.
3542   MaybeParseGNUAttributes(attrs);
3543 
3544   Actions.ActOnFields(getCurScope(),
3545                       RecordLoc, TagDecl, FieldDecls,
3546                       T.getOpenLocation(), T.getCloseLocation(),
3547                       attrs.getList());
3548   StructScope.Exit();
3549   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3550                                    T.getCloseLocation());
3551 }
3552 
3553 /// ParseEnumSpecifier
3554 ///       enum-specifier: [C99 6.7.2.2]
3555 ///         'enum' identifier[opt] '{' enumerator-list '}'
3556 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3557 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3558 ///                                                 '}' attributes[opt]
3559 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3560 ///                                                 '}'
3561 ///         'enum' identifier
3562 /// [GNU]   'enum' attributes[opt] identifier
3563 ///
3564 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3565 /// [C++11] enum-head '{' enumerator-list ','  '}'
3566 ///
3567 ///       enum-head: [C++11]
3568 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3569 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
3570 ///             identifier enum-base[opt]
3571 ///
3572 ///       enum-key: [C++11]
3573 ///         'enum'
3574 ///         'enum' 'class'
3575 ///         'enum' 'struct'
3576 ///
3577 ///       enum-base: [C++11]
3578 ///         ':' type-specifier-seq
3579 ///
3580 /// [C++] elaborated-type-specifier:
3581 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
3582 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3583 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3584                                 const ParsedTemplateInfo &TemplateInfo,
3585                                 AccessSpecifier AS, DeclSpecContext DSC) {
3586   // Parse the tag portion of this.
3587   if (Tok.is(tok::code_completion)) {
3588     // Code completion for an enum name.
3589     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3590     return cutOffParsing();
3591   }
3592 
3593   // If attributes exist after tag, parse them.
3594   ParsedAttributesWithRange attrs(AttrFactory);
3595   MaybeParseGNUAttributes(attrs);
3596   MaybeParseCXX11Attributes(attrs);
3597 
3598   // If declspecs exist after tag, parse them.
3599   while (Tok.is(tok::kw___declspec))
3600     ParseMicrosoftDeclSpec(attrs);
3601 
3602   SourceLocation ScopedEnumKWLoc;
3603   bool IsScopedUsingClassTag = false;
3604 
3605   // In C++11, recognize 'enum class' and 'enum struct'.
3606   if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3607     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3608                                         : diag::ext_scoped_enum);
3609     IsScopedUsingClassTag = Tok.is(tok::kw_class);
3610     ScopedEnumKWLoc = ConsumeToken();
3611 
3612     // Attributes are not allowed between these keywords.  Diagnose,
3613     // but then just treat them like they appeared in the right place.
3614     ProhibitAttributes(attrs);
3615 
3616     // They are allowed afterwards, though.
3617     MaybeParseGNUAttributes(attrs);
3618     MaybeParseCXX11Attributes(attrs);
3619     while (Tok.is(tok::kw___declspec))
3620       ParseMicrosoftDeclSpec(attrs);
3621   }
3622 
3623   // C++11 [temp.explicit]p12:
3624   //   The usual access controls do not apply to names used to specify
3625   //   explicit instantiations.
3626   // We extend this to also cover explicit specializations.  Note that
3627   // we don't suppress if this turns out to be an elaborated type
3628   // specifier.
3629   bool shouldDelayDiagsInTag =
3630     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3631      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3632   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3633 
3634   // Enum definitions should not be parsed in a trailing-return-type.
3635   bool AllowDeclaration = DSC != DSC_trailing;
3636 
3637   bool AllowFixedUnderlyingType = AllowDeclaration &&
3638     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3639      getLangOpts().ObjC2);
3640 
3641   CXXScopeSpec &SS = DS.getTypeSpecScope();
3642   if (getLangOpts().CPlusPlus) {
3643     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3644     // if a fixed underlying type is allowed.
3645     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3646 
3647     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
3648                                        /*EnteringContext=*/true))
3649       return;
3650 
3651     if (SS.isSet() && Tok.isNot(tok::identifier)) {
3652       Diag(Tok, diag::err_expected) << tok::identifier;
3653       if (Tok.isNot(tok::l_brace)) {
3654         // Has no name and is not a definition.
3655         // Skip the rest of this declarator, up until the comma or semicolon.
3656         SkipUntil(tok::comma, StopAtSemi);
3657         return;
3658       }
3659     }
3660   }
3661 
3662   // Must have either 'enum name' or 'enum {...}'.
3663   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3664       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3665     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3666 
3667     // Skip the rest of this declarator, up until the comma or semicolon.
3668     SkipUntil(tok::comma, StopAtSemi);
3669     return;
3670   }
3671 
3672   // If an identifier is present, consume and remember it.
3673   IdentifierInfo *Name = nullptr;
3674   SourceLocation NameLoc;
3675   if (Tok.is(tok::identifier)) {
3676     Name = Tok.getIdentifierInfo();
3677     NameLoc = ConsumeToken();
3678   }
3679 
3680   if (!Name && ScopedEnumKWLoc.isValid()) {
3681     // C++0x 7.2p2: The optional identifier shall not be omitted in the
3682     // declaration of a scoped enumeration.
3683     Diag(Tok, diag::err_scoped_enum_missing_identifier);
3684     ScopedEnumKWLoc = SourceLocation();
3685     IsScopedUsingClassTag = false;
3686   }
3687 
3688   // Okay, end the suppression area.  We'll decide whether to emit the
3689   // diagnostics in a second.
3690   if (shouldDelayDiagsInTag)
3691     diagsFromTag.done();
3692 
3693   TypeResult BaseType;
3694 
3695   // Parse the fixed underlying type.
3696   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3697   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3698     bool PossibleBitfield = false;
3699     if (CanBeBitfield) {
3700       // If we're in class scope, this can either be an enum declaration with
3701       // an underlying type, or a declaration of a bitfield member. We try to
3702       // use a simple disambiguation scheme first to catch the common cases
3703       // (integer literal, sizeof); if it's still ambiguous, we then consider
3704       // anything that's a simple-type-specifier followed by '(' as an
3705       // expression. This suffices because function types are not valid
3706       // underlying types anyway.
3707       EnterExpressionEvaluationContext Unevaluated(Actions,
3708                                                    Sema::ConstantEvaluated);
3709       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3710       // If the next token starts an expression, we know we're parsing a
3711       // bit-field. This is the common case.
3712       if (TPR == TPResult::True)
3713         PossibleBitfield = true;
3714       // If the next token starts a type-specifier-seq, it may be either a
3715       // a fixed underlying type or the start of a function-style cast in C++;
3716       // lookahead one more token to see if it's obvious that we have a
3717       // fixed underlying type.
3718       else if (TPR == TPResult::False &&
3719                GetLookAheadToken(2).getKind() == tok::semi) {
3720         // Consume the ':'.
3721         ConsumeToken();
3722       } else {
3723         // We have the start of a type-specifier-seq, so we have to perform
3724         // tentative parsing to determine whether we have an expression or a
3725         // type.
3726         TentativeParsingAction TPA(*this);
3727 
3728         // Consume the ':'.
3729         ConsumeToken();
3730 
3731         // If we see a type specifier followed by an open-brace, we have an
3732         // ambiguity between an underlying type and a C++11 braced
3733         // function-style cast. Resolve this by always treating it as an
3734         // underlying type.
3735         // FIXME: The standard is not entirely clear on how to disambiguate in
3736         // this case.
3737         if ((getLangOpts().CPlusPlus &&
3738              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3739             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3740           // We'll parse this as a bitfield later.
3741           PossibleBitfield = true;
3742           TPA.Revert();
3743         } else {
3744           // We have a type-specifier-seq.
3745           TPA.Commit();
3746         }
3747       }
3748     } else {
3749       // Consume the ':'.
3750       ConsumeToken();
3751     }
3752 
3753     if (!PossibleBitfield) {
3754       SourceRange Range;
3755       BaseType = ParseTypeName(&Range);
3756 
3757       if (getLangOpts().CPlusPlus11) {
3758         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3759       } else if (!getLangOpts().ObjC2) {
3760         if (getLangOpts().CPlusPlus)
3761           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3762         else
3763           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3764       }
3765     }
3766   }
3767 
3768   // There are four options here.  If we have 'friend enum foo;' then this is a
3769   // friend declaration, and cannot have an accompanying definition. If we have
3770   // 'enum foo;', then this is a forward declaration.  If we have
3771   // 'enum foo {...' then this is a definition. Otherwise we have something
3772   // like 'enum foo xyz', a reference.
3773   //
3774   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3775   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
3776   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
3777   //
3778   Sema::TagUseKind TUK;
3779   if (!AllowDeclaration) {
3780     TUK = Sema::TUK_Reference;
3781   } else if (Tok.is(tok::l_brace)) {
3782     if (DS.isFriendSpecified()) {
3783       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3784         << SourceRange(DS.getFriendSpecLoc());
3785       ConsumeBrace();
3786       SkipUntil(tok::r_brace, StopAtSemi);
3787       TUK = Sema::TUK_Friend;
3788     } else {
3789       TUK = Sema::TUK_Definition;
3790     }
3791   } else if (!isTypeSpecifier(DSC) &&
3792              (Tok.is(tok::semi) ||
3793               (Tok.isAtStartOfLine() &&
3794                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3795     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3796     if (Tok.isNot(tok::semi)) {
3797       // A semicolon was missing after this declaration. Diagnose and recover.
3798       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3799       PP.EnterToken(Tok);
3800       Tok.setKind(tok::semi);
3801     }
3802   } else {
3803     TUK = Sema::TUK_Reference;
3804   }
3805 
3806   // If this is an elaborated type specifier, and we delayed
3807   // diagnostics before, just merge them into the current pool.
3808   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3809     diagsFromTag.redelay();
3810   }
3811 
3812   MultiTemplateParamsArg TParams;
3813   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3814       TUK != Sema::TUK_Reference) {
3815     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3816       // Skip the rest of this declarator, up until the comma or semicolon.
3817       Diag(Tok, diag::err_enum_template);
3818       SkipUntil(tok::comma, StopAtSemi);
3819       return;
3820     }
3821 
3822     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3823       // Enumerations can't be explicitly instantiated.
3824       DS.SetTypeSpecError();
3825       Diag(StartLoc, diag::err_explicit_instantiation_enum);
3826       return;
3827     }
3828 
3829     assert(TemplateInfo.TemplateParams && "no template parameters");
3830     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3831                                      TemplateInfo.TemplateParams->size());
3832   }
3833 
3834   if (TUK == Sema::TUK_Reference)
3835     ProhibitAttributes(attrs);
3836 
3837   if (!Name && TUK != Sema::TUK_Definition) {
3838     Diag(Tok, diag::err_enumerator_unnamed_no_def);
3839 
3840     // Skip the rest of this declarator, up until the comma or semicolon.
3841     SkipUntil(tok::comma, StopAtSemi);
3842     return;
3843   }
3844 
3845   bool Owned = false;
3846   bool IsDependent = false;
3847   const char *PrevSpec = nullptr;
3848   unsigned DiagID;
3849   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3850                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
3851                                    AS, DS.getModulePrivateSpecLoc(), TParams,
3852                                    Owned, IsDependent, ScopedEnumKWLoc,
3853                                    IsScopedUsingClassTag, BaseType,
3854                                    DSC == DSC_type_specifier);
3855 
3856   if (IsDependent) {
3857     // This enum has a dependent nested-name-specifier. Handle it as a
3858     // dependent tag.
3859     if (!Name) {
3860       DS.SetTypeSpecError();
3861       Diag(Tok, diag::err_expected_type_name_after_typename);
3862       return;
3863     }
3864 
3865     TypeResult Type = Actions.ActOnDependentTag(
3866         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3867     if (Type.isInvalid()) {
3868       DS.SetTypeSpecError();
3869       return;
3870     }
3871 
3872     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3873                            NameLoc.isValid() ? NameLoc : StartLoc,
3874                            PrevSpec, DiagID, Type.get(),
3875                            Actions.getASTContext().getPrintingPolicy()))
3876       Diag(StartLoc, DiagID) << PrevSpec;
3877 
3878     return;
3879   }
3880 
3881   if (!TagDecl) {
3882     // The action failed to produce an enumeration tag. If this is a
3883     // definition, consume the entire definition.
3884     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3885       ConsumeBrace();
3886       SkipUntil(tok::r_brace, StopAtSemi);
3887     }
3888 
3889     DS.SetTypeSpecError();
3890     return;
3891   }
3892 
3893   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3894     ParseEnumBody(StartLoc, TagDecl);
3895 
3896   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3897                          NameLoc.isValid() ? NameLoc : StartLoc,
3898                          PrevSpec, DiagID, TagDecl, Owned,
3899                          Actions.getASTContext().getPrintingPolicy()))
3900     Diag(StartLoc, DiagID) << PrevSpec;
3901 }
3902 
3903 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
3904 ///       enumerator-list:
3905 ///         enumerator
3906 ///         enumerator-list ',' enumerator
3907 ///       enumerator:
3908 ///         enumeration-constant attributes[opt]
3909 ///         enumeration-constant attributes[opt] '=' constant-expression
3910 ///       enumeration-constant:
3911 ///         identifier
3912 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)3913 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3914   // Enter the scope of the enum body and start the definition.
3915   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3916   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3917 
3918   BalancedDelimiterTracker T(*this, tok::l_brace);
3919   T.consumeOpen();
3920 
3921   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3922   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3923     Diag(Tok, diag::error_empty_enum);
3924 
3925   SmallVector<Decl *, 32> EnumConstantDecls;
3926 
3927   Decl *LastEnumConstDecl = nullptr;
3928 
3929   // Parse the enumerator-list.
3930   while (Tok.isNot(tok::r_brace)) {
3931     // Parse enumerator. If failed, try skipping till the start of the next
3932     // enumerator definition.
3933     if (Tok.isNot(tok::identifier)) {
3934       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3935       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3936           TryConsumeToken(tok::comma))
3937         continue;
3938       break;
3939     }
3940     IdentifierInfo *Ident = Tok.getIdentifierInfo();
3941     SourceLocation IdentLoc = ConsumeToken();
3942 
3943     // If attributes exist after the enumerator, parse them.
3944     ParsedAttributesWithRange attrs(AttrFactory);
3945     MaybeParseGNUAttributes(attrs);
3946     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
3947     if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
3948       if (!getLangOpts().CPlusPlus1z)
3949         Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
3950             << 1 /*enumerator*/;
3951       ParseCXX11Attributes(attrs);
3952     }
3953 
3954     SourceLocation EqualLoc;
3955     ExprResult AssignedVal;
3956     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3957 
3958     if (TryConsumeToken(tok::equal, EqualLoc)) {
3959       AssignedVal = ParseConstantExpression();
3960       if (AssignedVal.isInvalid())
3961         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3962     }
3963 
3964     // Install the enumerator constant into EnumDecl.
3965     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3966                                                     LastEnumConstDecl,
3967                                                     IdentLoc, Ident,
3968                                                     attrs.getList(), EqualLoc,
3969                                                     AssignedVal.get());
3970     PD.complete(EnumConstDecl);
3971 
3972     EnumConstantDecls.push_back(EnumConstDecl);
3973     LastEnumConstDecl = EnumConstDecl;
3974 
3975     if (Tok.is(tok::identifier)) {
3976       // We're missing a comma between enumerators.
3977       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3978       Diag(Loc, diag::err_enumerator_list_missing_comma)
3979         << FixItHint::CreateInsertion(Loc, ", ");
3980       continue;
3981     }
3982 
3983     // Emumerator definition must be finished, only comma or r_brace are
3984     // allowed here.
3985     SourceLocation CommaLoc;
3986     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3987       if (EqualLoc.isValid())
3988         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3989                                                            << tok::comma;
3990       else
3991         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
3992       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
3993         if (TryConsumeToken(tok::comma, CommaLoc))
3994           continue;
3995       } else {
3996         break;
3997       }
3998     }
3999 
4000     // If comma is followed by r_brace, emit appropriate warning.
4001     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4002       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4003         Diag(CommaLoc, getLangOpts().CPlusPlus ?
4004                diag::ext_enumerator_list_comma_cxx :
4005                diag::ext_enumerator_list_comma_c)
4006           << FixItHint::CreateRemoval(CommaLoc);
4007       else if (getLangOpts().CPlusPlus11)
4008         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4009           << FixItHint::CreateRemoval(CommaLoc);
4010       break;
4011     }
4012   }
4013 
4014   // Eat the }.
4015   T.consumeClose();
4016 
4017   // If attributes exist after the identifier list, parse them.
4018   ParsedAttributes attrs(AttrFactory);
4019   MaybeParseGNUAttributes(attrs);
4020 
4021   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4022                         EnumDecl, EnumConstantDecls,
4023                         getCurScope(),
4024                         attrs.getList());
4025 
4026   EnumScope.Exit();
4027   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4028                                    T.getCloseLocation());
4029 
4030   // The next token must be valid after an enum definition. If not, a ';'
4031   // was probably forgotten.
4032   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4033   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4034     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4035     // Push this token back into the preprocessor and change our current token
4036     // to ';' so that the rest of the code recovers as though there were an
4037     // ';' after the definition.
4038     PP.EnterToken(Tok);
4039     Tok.setKind(tok::semi);
4040   }
4041 }
4042 
4043 /// isTypeSpecifierQualifier - Return true if the current token could be the
4044 /// start of a type-qualifier-list.
isTypeQualifier() const4045 bool Parser::isTypeQualifier() const {
4046   switch (Tok.getKind()) {
4047   default: return false;
4048   // type-qualifier
4049   case tok::kw_const:
4050   case tok::kw_volatile:
4051   case tok::kw_restrict:
4052   case tok::kw___private:
4053   case tok::kw___local:
4054   case tok::kw___global:
4055   case tok::kw___constant:
4056   case tok::kw___generic:
4057   case tok::kw___read_only:
4058   case tok::kw___read_write:
4059   case tok::kw___write_only:
4060     return true;
4061   }
4062 }
4063 
4064 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4065 /// is definitely a type-specifier.  Return false if it isn't part of a type
4066 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const4067 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4068   switch (Tok.getKind()) {
4069   default: return false;
4070     // type-specifiers
4071   case tok::kw_short:
4072   case tok::kw_long:
4073   case tok::kw___int64:
4074   case tok::kw___int128:
4075   case tok::kw_signed:
4076   case tok::kw_unsigned:
4077   case tok::kw__Complex:
4078   case tok::kw__Imaginary:
4079   case tok::kw_void:
4080   case tok::kw_char:
4081   case tok::kw_wchar_t:
4082   case tok::kw_char16_t:
4083   case tok::kw_char32_t:
4084   case tok::kw_int:
4085   case tok::kw_half:
4086   case tok::kw_float:
4087   case tok::kw_double:
4088   case tok::kw_bool:
4089   case tok::kw__Bool:
4090   case tok::kw__Decimal32:
4091   case tok::kw__Decimal64:
4092   case tok::kw__Decimal128:
4093   case tok::kw___vector:
4094 
4095     // struct-or-union-specifier (C99) or class-specifier (C++)
4096   case tok::kw_class:
4097   case tok::kw_struct:
4098   case tok::kw___interface:
4099   case tok::kw_union:
4100     // enum-specifier
4101   case tok::kw_enum:
4102 
4103     // typedef-name
4104   case tok::annot_typename:
4105     return true;
4106   }
4107 }
4108 
4109 /// isTypeSpecifierQualifier - Return true if the current token could be the
4110 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()4111 bool Parser::isTypeSpecifierQualifier() {
4112   switch (Tok.getKind()) {
4113   default: return false;
4114 
4115   case tok::identifier:   // foo::bar
4116     if (TryAltiVecVectorToken())
4117       return true;
4118     // Fall through.
4119   case tok::kw_typename:  // typename T::type
4120     // Annotate typenames and C++ scope specifiers.  If we get one, just
4121     // recurse to handle whatever we get.
4122     if (TryAnnotateTypeOrScopeToken())
4123       return true;
4124     if (Tok.is(tok::identifier))
4125       return false;
4126     return isTypeSpecifierQualifier();
4127 
4128   case tok::coloncolon:   // ::foo::bar
4129     if (NextToken().is(tok::kw_new) ||    // ::new
4130         NextToken().is(tok::kw_delete))   // ::delete
4131       return false;
4132 
4133     if (TryAnnotateTypeOrScopeToken())
4134       return true;
4135     return isTypeSpecifierQualifier();
4136 
4137     // GNU attributes support.
4138   case tok::kw___attribute:
4139     // GNU typeof support.
4140   case tok::kw_typeof:
4141 
4142     // type-specifiers
4143   case tok::kw_short:
4144   case tok::kw_long:
4145   case tok::kw___int64:
4146   case tok::kw___int128:
4147   case tok::kw_signed:
4148   case tok::kw_unsigned:
4149   case tok::kw__Complex:
4150   case tok::kw__Imaginary:
4151   case tok::kw_void:
4152   case tok::kw_char:
4153   case tok::kw_wchar_t:
4154   case tok::kw_char16_t:
4155   case tok::kw_char32_t:
4156   case tok::kw_int:
4157   case tok::kw_half:
4158   case tok::kw_float:
4159   case tok::kw_double:
4160   case tok::kw_bool:
4161   case tok::kw__Bool:
4162   case tok::kw__Decimal32:
4163   case tok::kw__Decimal64:
4164   case tok::kw__Decimal128:
4165   case tok::kw___vector:
4166 
4167     // struct-or-union-specifier (C99) or class-specifier (C++)
4168   case tok::kw_class:
4169   case tok::kw_struct:
4170   case tok::kw___interface:
4171   case tok::kw_union:
4172     // enum-specifier
4173   case tok::kw_enum:
4174 
4175     // type-qualifier
4176   case tok::kw_const:
4177   case tok::kw_volatile:
4178   case tok::kw_restrict:
4179 
4180     // Debugger support.
4181   case tok::kw___unknown_anytype:
4182 
4183     // typedef-name
4184   case tok::annot_typename:
4185     return true;
4186 
4187     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4188   case tok::less:
4189     return getLangOpts().ObjC1;
4190 
4191   case tok::kw___cdecl:
4192   case tok::kw___stdcall:
4193   case tok::kw___fastcall:
4194   case tok::kw___thiscall:
4195   case tok::kw___vectorcall:
4196   case tok::kw___w64:
4197   case tok::kw___ptr64:
4198   case tok::kw___ptr32:
4199   case tok::kw___pascal:
4200   case tok::kw___unaligned:
4201 
4202   case tok::kw___private:
4203   case tok::kw___local:
4204   case tok::kw___global:
4205   case tok::kw___constant:
4206   case tok::kw___generic:
4207   case tok::kw___read_only:
4208   case tok::kw___read_write:
4209   case tok::kw___write_only:
4210 
4211     return true;
4212 
4213   // C11 _Atomic
4214   case tok::kw__Atomic:
4215     return true;
4216   }
4217 }
4218 
4219 /// isDeclarationSpecifier() - Return true if the current token is part of a
4220 /// declaration specifier.
4221 ///
4222 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4223 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4224 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4225   switch (Tok.getKind()) {
4226   default: return false;
4227 
4228   case tok::identifier:   // foo::bar
4229     // Unfortunate hack to support "Class.factoryMethod" notation.
4230     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4231       return false;
4232     if (TryAltiVecVectorToken())
4233       return true;
4234     // Fall through.
4235   case tok::kw_decltype: // decltype(T())::type
4236   case tok::kw_typename: // typename T::type
4237     // Annotate typenames and C++ scope specifiers.  If we get one, just
4238     // recurse to handle whatever we get.
4239     if (TryAnnotateTypeOrScopeToken())
4240       return true;
4241     if (Tok.is(tok::identifier))
4242       return false;
4243 
4244     // If we're in Objective-C and we have an Objective-C class type followed
4245     // by an identifier and then either ':' or ']', in a place where an
4246     // expression is permitted, then this is probably a class message send
4247     // missing the initial '['. In this case, we won't consider this to be
4248     // the start of a declaration.
4249     if (DisambiguatingWithExpression &&
4250         isStartOfObjCClassMessageMissingOpenBracket())
4251       return false;
4252 
4253     return isDeclarationSpecifier();
4254 
4255   case tok::coloncolon:   // ::foo::bar
4256     if (NextToken().is(tok::kw_new) ||    // ::new
4257         NextToken().is(tok::kw_delete))   // ::delete
4258       return false;
4259 
4260     // Annotate typenames and C++ scope specifiers.  If we get one, just
4261     // recurse to handle whatever we get.
4262     if (TryAnnotateTypeOrScopeToken())
4263       return true;
4264     return isDeclarationSpecifier();
4265 
4266     // storage-class-specifier
4267   case tok::kw_typedef:
4268   case tok::kw_extern:
4269   case tok::kw___private_extern__:
4270   case tok::kw_static:
4271   case tok::kw_auto:
4272   case tok::kw_register:
4273   case tok::kw___thread:
4274   case tok::kw_thread_local:
4275   case tok::kw__Thread_local:
4276 
4277     // Modules
4278   case tok::kw___module_private__:
4279 
4280     // Debugger support
4281   case tok::kw___unknown_anytype:
4282 
4283     // type-specifiers
4284   case tok::kw_short:
4285   case tok::kw_long:
4286   case tok::kw___int64:
4287   case tok::kw___int128:
4288   case tok::kw_signed:
4289   case tok::kw_unsigned:
4290   case tok::kw__Complex:
4291   case tok::kw__Imaginary:
4292   case tok::kw_void:
4293   case tok::kw_char:
4294   case tok::kw_wchar_t:
4295   case tok::kw_char16_t:
4296   case tok::kw_char32_t:
4297 
4298   case tok::kw_int:
4299   case tok::kw_half:
4300   case tok::kw_float:
4301   case tok::kw_double:
4302   case tok::kw_bool:
4303   case tok::kw__Bool:
4304   case tok::kw__Decimal32:
4305   case tok::kw__Decimal64:
4306   case tok::kw__Decimal128:
4307   case tok::kw___vector:
4308 
4309     // struct-or-union-specifier (C99) or class-specifier (C++)
4310   case tok::kw_class:
4311   case tok::kw_struct:
4312   case tok::kw_union:
4313   case tok::kw___interface:
4314     // enum-specifier
4315   case tok::kw_enum:
4316 
4317     // type-qualifier
4318   case tok::kw_const:
4319   case tok::kw_volatile:
4320   case tok::kw_restrict:
4321 
4322     // function-specifier
4323   case tok::kw_inline:
4324   case tok::kw_virtual:
4325   case tok::kw_explicit:
4326   case tok::kw__Noreturn:
4327 
4328     // alignment-specifier
4329   case tok::kw__Alignas:
4330 
4331     // friend keyword.
4332   case tok::kw_friend:
4333 
4334     // static_assert-declaration
4335   case tok::kw__Static_assert:
4336 
4337     // GNU typeof support.
4338   case tok::kw_typeof:
4339 
4340     // GNU attributes.
4341   case tok::kw___attribute:
4342 
4343     // C++11 decltype and constexpr.
4344   case tok::annot_decltype:
4345   case tok::kw_constexpr:
4346 
4347     // C11 _Atomic
4348   case tok::kw__Atomic:
4349     return true;
4350 
4351     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4352   case tok::less:
4353     return getLangOpts().ObjC1;
4354 
4355     // typedef-name
4356   case tok::annot_typename:
4357     return !DisambiguatingWithExpression ||
4358            !isStartOfObjCClassMessageMissingOpenBracket();
4359 
4360   case tok::kw___declspec:
4361   case tok::kw___cdecl:
4362   case tok::kw___stdcall:
4363   case tok::kw___fastcall:
4364   case tok::kw___thiscall:
4365   case tok::kw___vectorcall:
4366   case tok::kw___w64:
4367   case tok::kw___sptr:
4368   case tok::kw___uptr:
4369   case tok::kw___ptr64:
4370   case tok::kw___ptr32:
4371   case tok::kw___forceinline:
4372   case tok::kw___pascal:
4373   case tok::kw___unaligned:
4374 
4375   case tok::kw___private:
4376   case tok::kw___local:
4377   case tok::kw___global:
4378   case tok::kw___constant:
4379   case tok::kw___generic:
4380   case tok::kw___read_only:
4381   case tok::kw___read_write:
4382   case tok::kw___write_only:
4383 
4384     return true;
4385   }
4386 }
4387 
isConstructorDeclarator(bool IsUnqualified)4388 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4389   TentativeParsingAction TPA(*this);
4390 
4391   // Parse the C++ scope specifier.
4392   CXXScopeSpec SS;
4393   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4394                                      /*EnteringContext=*/true)) {
4395     TPA.Revert();
4396     return false;
4397   }
4398 
4399   // Parse the constructor name.
4400   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4401     // We already know that we have a constructor name; just consume
4402     // the token.
4403     ConsumeToken();
4404   } else {
4405     TPA.Revert();
4406     return false;
4407   }
4408 
4409   // Current class name must be followed by a left parenthesis.
4410   if (Tok.isNot(tok::l_paren)) {
4411     TPA.Revert();
4412     return false;
4413   }
4414   ConsumeParen();
4415 
4416   // A right parenthesis, or ellipsis followed by a right parenthesis signals
4417   // that we have a constructor.
4418   if (Tok.is(tok::r_paren) ||
4419       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4420     TPA.Revert();
4421     return true;
4422   }
4423 
4424   // A C++11 attribute here signals that we have a constructor, and is an
4425   // attribute on the first constructor parameter.
4426   if (getLangOpts().CPlusPlus11 &&
4427       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4428                                 /*OuterMightBeMessageSend*/ true)) {
4429     TPA.Revert();
4430     return true;
4431   }
4432 
4433   // If we need to, enter the specified scope.
4434   DeclaratorScopeObj DeclScopeObj(*this, SS);
4435   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4436     DeclScopeObj.EnterDeclaratorScope();
4437 
4438   // Optionally skip Microsoft attributes.
4439   ParsedAttributes Attrs(AttrFactory);
4440   MaybeParseMicrosoftAttributes(Attrs);
4441 
4442   // Check whether the next token(s) are part of a declaration
4443   // specifier, in which case we have the start of a parameter and,
4444   // therefore, we know that this is a constructor.
4445   bool IsConstructor = false;
4446   if (isDeclarationSpecifier())
4447     IsConstructor = true;
4448   else if (Tok.is(tok::identifier) ||
4449            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4450     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4451     // This might be a parenthesized member name, but is more likely to
4452     // be a constructor declaration with an invalid argument type. Keep
4453     // looking.
4454     if (Tok.is(tok::annot_cxxscope))
4455       ConsumeToken();
4456     ConsumeToken();
4457 
4458     // If this is not a constructor, we must be parsing a declarator,
4459     // which must have one of the following syntactic forms (see the
4460     // grammar extract at the start of ParseDirectDeclarator):
4461     switch (Tok.getKind()) {
4462     case tok::l_paren:
4463       // C(X   (   int));
4464     case tok::l_square:
4465       // C(X   [   5]);
4466       // C(X   [   [attribute]]);
4467     case tok::coloncolon:
4468       // C(X   ::   Y);
4469       // C(X   ::   *p);
4470       // Assume this isn't a constructor, rather than assuming it's a
4471       // constructor with an unnamed parameter of an ill-formed type.
4472       break;
4473 
4474     case tok::r_paren:
4475       // C(X   )
4476       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4477         // Assume these were meant to be constructors:
4478         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
4479         //   C(X)   try  (this is otherwise ill-formed).
4480         IsConstructor = true;
4481       }
4482       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4483         // If we have a constructor name within the class definition,
4484         // assume these were meant to be constructors:
4485         //   C(X)   {
4486         //   C(X)   ;
4487         // ... because otherwise we would be declaring a non-static data
4488         // member that is ill-formed because it's of the same type as its
4489         // surrounding class.
4490         //
4491         // FIXME: We can actually do this whether or not the name is qualified,
4492         // because if it is qualified in this context it must be being used as
4493         // a constructor name. However, we do not implement that rule correctly
4494         // currently, so we're somewhat conservative here.
4495         IsConstructor = IsUnqualified;
4496       }
4497       break;
4498 
4499     default:
4500       IsConstructor = true;
4501       break;
4502     }
4503   }
4504 
4505   TPA.Revert();
4506   return IsConstructor;
4507 }
4508 
4509 /// ParseTypeQualifierListOpt
4510 ///          type-qualifier-list: [C99 6.7.5]
4511 ///            type-qualifier
4512 /// [vendor]   attributes
4513 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4514 ///            type-qualifier-list type-qualifier
4515 /// [vendor]   type-qualifier-list attributes
4516 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4517 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
4518 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
4519 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4520 /// AttrRequirements bitmask values.
ParseTypeQualifierListOpt(DeclSpec & DS,unsigned AttrReqs,bool AtomicAllowed,bool IdentifierRequired)4521 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4522                                        bool AtomicAllowed,
4523                                        bool IdentifierRequired) {
4524   if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4525       isCXX11AttributeSpecifier()) {
4526     ParsedAttributesWithRange attrs(AttrFactory);
4527     ParseCXX11Attributes(attrs);
4528     DS.takeAttributesFrom(attrs);
4529   }
4530 
4531   SourceLocation EndLoc;
4532 
4533   while (1) {
4534     bool isInvalid = false;
4535     const char *PrevSpec = nullptr;
4536     unsigned DiagID = 0;
4537     SourceLocation Loc = Tok.getLocation();
4538 
4539     switch (Tok.getKind()) {
4540     case tok::code_completion:
4541       Actions.CodeCompleteTypeQualifiers(DS);
4542       return cutOffParsing();
4543 
4544     case tok::kw_const:
4545       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
4546                                  getLangOpts());
4547       break;
4548     case tok::kw_volatile:
4549       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4550                                  getLangOpts());
4551       break;
4552     case tok::kw_restrict:
4553       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4554                                  getLangOpts());
4555       break;
4556     case tok::kw__Atomic:
4557       if (!AtomicAllowed)
4558         goto DoneWithTypeQuals;
4559       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4560                                  getLangOpts());
4561       break;
4562 
4563     // OpenCL qualifiers:
4564     case tok::kw___private:
4565     case tok::kw___global:
4566     case tok::kw___local:
4567     case tok::kw___constant:
4568     case tok::kw___generic:
4569     case tok::kw___read_only:
4570     case tok::kw___write_only:
4571     case tok::kw___read_write:
4572       ParseOpenCLQualifiers(DS.getAttributes());
4573       break;
4574 
4575     case tok::kw___uptr:
4576       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4577       // with the MS modifier keyword.
4578       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4579           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4580         if (TryKeywordIdentFallback(false))
4581           continue;
4582       }
4583     case tok::kw___sptr:
4584     case tok::kw___w64:
4585     case tok::kw___ptr64:
4586     case tok::kw___ptr32:
4587     case tok::kw___cdecl:
4588     case tok::kw___stdcall:
4589     case tok::kw___fastcall:
4590     case tok::kw___thiscall:
4591     case tok::kw___vectorcall:
4592     case tok::kw___unaligned:
4593       if (AttrReqs & AR_DeclspecAttributesParsed) {
4594         ParseMicrosoftTypeAttributes(DS.getAttributes());
4595         continue;
4596       }
4597       goto DoneWithTypeQuals;
4598     case tok::kw___pascal:
4599       if (AttrReqs & AR_VendorAttributesParsed) {
4600         ParseBorlandTypeAttributes(DS.getAttributes());
4601         continue;
4602       }
4603       goto DoneWithTypeQuals;
4604     case tok::kw___attribute:
4605       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4606         // When GNU attributes are expressly forbidden, diagnose their usage.
4607         Diag(Tok, diag::err_attributes_not_allowed);
4608 
4609       // Parse the attributes even if they are rejected to ensure that error
4610       // recovery is graceful.
4611       if (AttrReqs & AR_GNUAttributesParsed ||
4612           AttrReqs & AR_GNUAttributesParsedAndRejected) {
4613         ParseGNUAttributes(DS.getAttributes());
4614         continue; // do *not* consume the next token!
4615       }
4616       // otherwise, FALL THROUGH!
4617     default:
4618       DoneWithTypeQuals:
4619       // If this is not a type-qualifier token, we're done reading type
4620       // qualifiers.  First verify that DeclSpec's are consistent.
4621       DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4622       if (EndLoc.isValid())
4623         DS.SetRangeEnd(EndLoc);
4624       return;
4625     }
4626 
4627     // If the specifier combination wasn't legal, issue a diagnostic.
4628     if (isInvalid) {
4629       assert(PrevSpec && "Method did not return previous specifier!");
4630       Diag(Tok, DiagID) << PrevSpec;
4631     }
4632     EndLoc = ConsumeToken();
4633   }
4634 }
4635 
4636 
4637 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4638 ///
ParseDeclarator(Declarator & D)4639 void Parser::ParseDeclarator(Declarator &D) {
4640   /// This implements the 'declarator' production in the C grammar, then checks
4641   /// for well-formedness and issues diagnostics.
4642   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4643 }
4644 
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang,unsigned TheContext)4645 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4646                                unsigned TheContext) {
4647   if (Kind == tok::star || Kind == tok::caret)
4648     return true;
4649 
4650   if (!Lang.CPlusPlus)
4651     return false;
4652 
4653   if (Kind == tok::amp)
4654     return true;
4655 
4656   // We parse rvalue refs in C++03, because otherwise the errors are scary.
4657   // But we must not parse them in conversion-type-ids and new-type-ids, since
4658   // those can be legitimately followed by a && operator.
4659   // (The same thing can in theory happen after a trailing-return-type, but
4660   // since those are a C++11 feature, there is no rejects-valid issue there.)
4661   if (Kind == tok::ampamp)
4662     return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4663                                 TheContext != Declarator::CXXNewContext);
4664 
4665   return false;
4666 }
4667 
4668 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4669 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4670 /// isn't parsed at all, making this function effectively parse the C++
4671 /// ptr-operator production.
4672 ///
4673 /// If the grammar of this construct is extended, matching changes must also be
4674 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4675 /// isConstructorDeclarator.
4676 ///
4677 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4678 /// [C]     pointer[opt] direct-declarator
4679 /// [C++]   direct-declarator
4680 /// [C++]   ptr-operator declarator
4681 ///
4682 ///       pointer: [C99 6.7.5]
4683 ///         '*' type-qualifier-list[opt]
4684 ///         '*' type-qualifier-list[opt] pointer
4685 ///
4686 ///       ptr-operator:
4687 ///         '*' cv-qualifier-seq[opt]
4688 ///         '&'
4689 /// [C++0x] '&&'
4690 /// [GNU]   '&' restrict[opt] attributes[opt]
4691 /// [GNU?]  '&&' restrict[opt] attributes[opt]
4692 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4693 void Parser::ParseDeclaratorInternal(Declarator &D,
4694                                      DirectDeclParseFunction DirectDeclParser) {
4695   if (Diags.hasAllExtensionsSilenced())
4696     D.setExtension();
4697 
4698   // C++ member pointers start with a '::' or a nested-name.
4699   // Member pointers get special handling, since there's no place for the
4700   // scope spec in the generic path below.
4701   if (getLangOpts().CPlusPlus &&
4702       (Tok.is(tok::coloncolon) ||
4703        (Tok.is(tok::identifier) &&
4704         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
4705        Tok.is(tok::annot_cxxscope))) {
4706     bool EnteringContext = D.getContext() == Declarator::FileContext ||
4707                            D.getContext() == Declarator::MemberContext;
4708     CXXScopeSpec SS;
4709     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4710 
4711     if (SS.isNotEmpty()) {
4712       if (Tok.isNot(tok::star)) {
4713         // The scope spec really belongs to the direct-declarator.
4714         if (D.mayHaveIdentifier())
4715           D.getCXXScopeSpec() = SS;
4716         else
4717           AnnotateScopeToken(SS, true);
4718 
4719         if (DirectDeclParser)
4720           (this->*DirectDeclParser)(D);
4721         return;
4722       }
4723 
4724       SourceLocation Loc = ConsumeToken();
4725       D.SetRangeEnd(Loc);
4726       DeclSpec DS(AttrFactory);
4727       ParseTypeQualifierListOpt(DS);
4728       D.ExtendWithDeclSpec(DS);
4729 
4730       // Recurse to parse whatever is left.
4731       ParseDeclaratorInternal(D, DirectDeclParser);
4732 
4733       // Sema will have to catch (syntactically invalid) pointers into global
4734       // scope. It has to catch pointers into namespace scope anyway.
4735       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4736                                                       DS.getLocEnd()),
4737                     DS.getAttributes(),
4738                     /* Don't replace range end. */SourceLocation());
4739       return;
4740     }
4741   }
4742 
4743   tok::TokenKind Kind = Tok.getKind();
4744   // Not a pointer, C++ reference, or block.
4745   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
4746     if (DirectDeclParser)
4747       (this->*DirectDeclParser)(D);
4748     return;
4749   }
4750 
4751   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4752   // '&&' -> rvalue reference
4753   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
4754   D.SetRangeEnd(Loc);
4755 
4756   if (Kind == tok::star || Kind == tok::caret) {
4757     // Is a pointer.
4758     DeclSpec DS(AttrFactory);
4759 
4760     // GNU attributes are not allowed here in a new-type-id, but Declspec and
4761     // C++11 attributes are allowed.
4762     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
4763                             ((D.getContext() != Declarator::CXXNewContext)
4764                                  ? AR_GNUAttributesParsed
4765                                  : AR_GNUAttributesParsedAndRejected);
4766     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
4767     D.ExtendWithDeclSpec(DS);
4768 
4769     // Recursively parse the declarator.
4770     ParseDeclaratorInternal(D, DirectDeclParser);
4771     if (Kind == tok::star)
4772       // Remember that we parsed a pointer type, and remember the type-quals.
4773       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4774                                                 DS.getConstSpecLoc(),
4775                                                 DS.getVolatileSpecLoc(),
4776                                                 DS.getRestrictSpecLoc()),
4777                     DS.getAttributes(),
4778                     SourceLocation());
4779     else
4780       // Remember that we parsed a Block type, and remember the type-quals.
4781       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4782                                                      Loc),
4783                     DS.getAttributes(),
4784                     SourceLocation());
4785   } else {
4786     // Is a reference
4787     DeclSpec DS(AttrFactory);
4788 
4789     // Complain about rvalue references in C++03, but then go on and build
4790     // the declarator.
4791     if (Kind == tok::ampamp)
4792       Diag(Loc, getLangOpts().CPlusPlus11 ?
4793            diag::warn_cxx98_compat_rvalue_reference :
4794            diag::ext_rvalue_reference);
4795 
4796     // GNU-style and C++11 attributes are allowed here, as is restrict.
4797     ParseTypeQualifierListOpt(DS);
4798     D.ExtendWithDeclSpec(DS);
4799 
4800     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4801     // cv-qualifiers are introduced through the use of a typedef or of a
4802     // template type argument, in which case the cv-qualifiers are ignored.
4803     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4804       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4805         Diag(DS.getConstSpecLoc(),
4806              diag::err_invalid_reference_qualifier_application) << "const";
4807       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4808         Diag(DS.getVolatileSpecLoc(),
4809              diag::err_invalid_reference_qualifier_application) << "volatile";
4810       // 'restrict' is permitted as an extension.
4811       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4812         Diag(DS.getAtomicSpecLoc(),
4813              diag::err_invalid_reference_qualifier_application) << "_Atomic";
4814     }
4815 
4816     // Recursively parse the declarator.
4817     ParseDeclaratorInternal(D, DirectDeclParser);
4818 
4819     if (D.getNumTypeObjects() > 0) {
4820       // C++ [dcl.ref]p4: There shall be no references to references.
4821       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4822       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4823         if (const IdentifierInfo *II = D.getIdentifier())
4824           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4825            << II;
4826         else
4827           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4828             << "type name";
4829 
4830         // Once we've complained about the reference-to-reference, we
4831         // can go ahead and build the (technically ill-formed)
4832         // declarator: reference collapsing will take care of it.
4833       }
4834     }
4835 
4836     // Remember that we parsed a reference type.
4837     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4838                                                 Kind == tok::amp),
4839                   DS.getAttributes(),
4840                   SourceLocation());
4841   }
4842 }
4843 
4844 // When correcting from misplaced brackets before the identifier, the location
4845 // is saved inside the declarator so that other diagnostic messages can use
4846 // them.  This extracts and returns that location, or returns the provided
4847 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)4848 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4849                                                 SourceLocation Loc) {
4850   if (D.getName().StartLocation.isInvalid() &&
4851       D.getName().EndLocation.isValid())
4852     return D.getName().EndLocation;
4853 
4854   return Loc;
4855 }
4856 
4857 /// ParseDirectDeclarator
4858 ///       direct-declarator: [C99 6.7.5]
4859 /// [C99]   identifier
4860 ///         '(' declarator ')'
4861 /// [GNU]   '(' attributes declarator ')'
4862 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
4863 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4864 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4865 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4866 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4867 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
4868 ///                    attribute-specifier-seq[opt]
4869 ///         direct-declarator '(' parameter-type-list ')'
4870 ///         direct-declarator '(' identifier-list[opt] ')'
4871 /// [GNU]   direct-declarator '(' parameter-forward-declarations
4872 ///                    parameter-type-list[opt] ')'
4873 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
4874 ///                    cv-qualifier-seq[opt] exception-specification[opt]
4875 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4876 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4877 ///                    ref-qualifier[opt] exception-specification[opt]
4878 /// [C++]   declarator-id
4879 /// [C++11] declarator-id attribute-specifier-seq[opt]
4880 ///
4881 ///       declarator-id: [C++ 8]
4882 ///         '...'[opt] id-expression
4883 ///         '::'[opt] nested-name-specifier[opt] type-name
4884 ///
4885 ///       id-expression: [C++ 5.1]
4886 ///         unqualified-id
4887 ///         qualified-id
4888 ///
4889 ///       unqualified-id: [C++ 5.1]
4890 ///         identifier
4891 ///         operator-function-id
4892 ///         conversion-function-id
4893 ///          '~' class-name
4894 ///         template-id
4895 ///
4896 /// Note, any additional constructs added here may need corresponding changes
4897 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)4898 void Parser::ParseDirectDeclarator(Declarator &D) {
4899   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4900 
4901   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4902     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
4903     // this context it is a bitfield. Also in range-based for statement colon
4904     // may delimit for-range-declaration.
4905     ColonProtectionRAIIObject X(*this,
4906                                 D.getContext() == Declarator::MemberContext ||
4907                                     (D.getContext() == Declarator::ForContext &&
4908                                      getLangOpts().CPlusPlus11));
4909 
4910     // ParseDeclaratorInternal might already have parsed the scope.
4911     if (D.getCXXScopeSpec().isEmpty()) {
4912       bool EnteringContext = D.getContext() == Declarator::FileContext ||
4913                              D.getContext() == Declarator::MemberContext;
4914       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4915                                      EnteringContext);
4916     }
4917 
4918     if (D.getCXXScopeSpec().isValid()) {
4919       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
4920         // Change the declaration context for name lookup, until this function
4921         // is exited (and the declarator has been parsed).
4922         DeclScopeObj.EnterDeclaratorScope();
4923     }
4924 
4925     // C++0x [dcl.fct]p14:
4926     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
4927     //   parameter-declaration-clause without a preceding comma. In this case,
4928     //   the ellipsis is parsed as part of the abstract-declarator if the type
4929     //   of the parameter either names a template parameter pack that has not
4930     //   been expanded or contains auto; otherwise, it is parsed as part of the
4931     //   parameter-declaration-clause.
4932     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4933         !((D.getContext() == Declarator::PrototypeContext ||
4934            D.getContext() == Declarator::LambdaExprParameterContext ||
4935            D.getContext() == Declarator::BlockLiteralContext) &&
4936           NextToken().is(tok::r_paren) &&
4937           !D.hasGroupingParens() &&
4938           !Actions.containsUnexpandedParameterPacks(D) &&
4939           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
4940       SourceLocation EllipsisLoc = ConsumeToken();
4941       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
4942         // The ellipsis was put in the wrong place. Recover, and explain to
4943         // the user what they should have done.
4944         ParseDeclarator(D);
4945         if (EllipsisLoc.isValid())
4946           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4947         return;
4948       } else
4949         D.setEllipsisLoc(EllipsisLoc);
4950 
4951       // The ellipsis can't be followed by a parenthesized declarator. We
4952       // check for that in ParseParenDeclarator, after we have disambiguated
4953       // the l_paren token.
4954     }
4955 
4956     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4957         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4958       // We found something that indicates the start of an unqualified-id.
4959       // Parse that unqualified-id.
4960       bool AllowConstructorName;
4961       if (D.getDeclSpec().hasTypeSpecifier())
4962         AllowConstructorName = false;
4963       else if (D.getCXXScopeSpec().isSet())
4964         AllowConstructorName =
4965           (D.getContext() == Declarator::FileContext ||
4966            D.getContext() == Declarator::MemberContext);
4967       else
4968         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4969 
4970       SourceLocation TemplateKWLoc;
4971       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4972                              /*EnteringContext=*/true,
4973                              /*AllowDestructorName=*/true,
4974                              AllowConstructorName,
4975                              ParsedType(),
4976                              TemplateKWLoc,
4977                              D.getName()) ||
4978           // Once we're past the identifier, if the scope was bad, mark the
4979           // whole declarator bad.
4980           D.getCXXScopeSpec().isInvalid()) {
4981         D.SetIdentifier(nullptr, Tok.getLocation());
4982         D.setInvalidType(true);
4983       } else {
4984         // Parsed the unqualified-id; update range information and move along.
4985         if (D.getSourceRange().getBegin().isInvalid())
4986           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
4987         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
4988       }
4989       goto PastIdentifier;
4990     }
4991   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
4992     assert(!getLangOpts().CPlusPlus &&
4993            "There's a C++-specific check for tok::identifier above");
4994     assert(Tok.getIdentifierInfo() && "Not an identifier?");
4995     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
4996     D.SetRangeEnd(Tok.getLocation());
4997     ConsumeToken();
4998     goto PastIdentifier;
4999   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5000     // A virt-specifier isn't treated as an identifier if it appears after a
5001     // trailing-return-type.
5002     if (D.getContext() != Declarator::TrailingReturnContext ||
5003         !isCXX11VirtSpecifier(Tok)) {
5004       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5005         << FixItHint::CreateRemoval(Tok.getLocation());
5006       D.SetIdentifier(nullptr, Tok.getLocation());
5007       ConsumeToken();
5008       goto PastIdentifier;
5009     }
5010   }
5011 
5012   if (Tok.is(tok::l_paren)) {
5013     // direct-declarator: '(' declarator ')'
5014     // direct-declarator: '(' attributes declarator ')'
5015     // Example: 'char (*X)'   or 'int (*XX)(void)'
5016     ParseParenDeclarator(D);
5017 
5018     // If the declarator was parenthesized, we entered the declarator
5019     // scope when parsing the parenthesized declarator, then exited
5020     // the scope already. Re-enter the scope, if we need to.
5021     if (D.getCXXScopeSpec().isSet()) {
5022       // If there was an error parsing parenthesized declarator, declarator
5023       // scope may have been entered before. Don't do it again.
5024       if (!D.isInvalidType() &&
5025           Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
5026         // Change the declaration context for name lookup, until this function
5027         // is exited (and the declarator has been parsed).
5028         DeclScopeObj.EnterDeclaratorScope();
5029     }
5030   } else if (D.mayOmitIdentifier()) {
5031     // This could be something simple like "int" (in which case the declarator
5032     // portion is empty), if an abstract-declarator is allowed.
5033     D.SetIdentifier(nullptr, Tok.getLocation());
5034 
5035     // The grammar for abstract-pack-declarator does not allow grouping parens.
5036     // FIXME: Revisit this once core issue 1488 is resolved.
5037     if (D.hasEllipsis() && D.hasGroupingParens())
5038       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5039            diag::ext_abstract_pack_declarator_parens);
5040   } else {
5041     if (Tok.getKind() == tok::annot_pragma_parser_crash)
5042       LLVM_BUILTIN_TRAP;
5043     if (Tok.is(tok::l_square))
5044       return ParseMisplacedBracketDeclarator(D);
5045     if (D.getContext() == Declarator::MemberContext) {
5046       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5047            diag::err_expected_member_name_or_semi)
5048           << (D.getDeclSpec().isEmpty() ? SourceRange()
5049                                         : D.getDeclSpec().getSourceRange());
5050     } else if (getLangOpts().CPlusPlus) {
5051       if (Tok.is(tok::period) || Tok.is(tok::arrow))
5052         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5053       else {
5054         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5055         if (Tok.isAtStartOfLine() && Loc.isValid())
5056           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5057               << getLangOpts().CPlusPlus;
5058         else
5059           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5060                diag::err_expected_unqualified_id)
5061               << getLangOpts().CPlusPlus;
5062       }
5063     } else {
5064       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5065            diag::err_expected_either)
5066           << tok::identifier << tok::l_paren;
5067     }
5068     D.SetIdentifier(nullptr, Tok.getLocation());
5069     D.setInvalidType(true);
5070   }
5071 
5072  PastIdentifier:
5073   assert(D.isPastIdentifier() &&
5074          "Haven't past the location of the identifier yet?");
5075 
5076   // Don't parse attributes unless we have parsed an unparenthesized name.
5077   if (D.hasName() && !D.getNumTypeObjects())
5078     MaybeParseCXX11Attributes(D);
5079 
5080   while (1) {
5081     if (Tok.is(tok::l_paren)) {
5082       // Enter function-declaration scope, limiting any declarators to the
5083       // function prototype scope, including parameter declarators.
5084       ParseScope PrototypeScope(this,
5085                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
5086                                 (D.isFunctionDeclaratorAFunctionDeclaration()
5087                                    ? Scope::FunctionDeclarationScope : 0));
5088 
5089       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5090       // In such a case, check if we actually have a function declarator; if it
5091       // is not, the declarator has been fully parsed.
5092       bool IsAmbiguous = false;
5093       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5094         // The name of the declarator, if any, is tentatively declared within
5095         // a possible direct initializer.
5096         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5097         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5098         TentativelyDeclaredIdentifiers.pop_back();
5099         if (!IsFunctionDecl)
5100           break;
5101       }
5102       ParsedAttributes attrs(AttrFactory);
5103       BalancedDelimiterTracker T(*this, tok::l_paren);
5104       T.consumeOpen();
5105       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5106       PrototypeScope.Exit();
5107     } else if (Tok.is(tok::l_square)) {
5108       ParseBracketDeclarator(D);
5109     } else {
5110       break;
5111     }
5112   }
5113 }
5114 
5115 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
5116 /// only called before the identifier, so these are most likely just grouping
5117 /// parens for precedence.  If we find that these are actually function
5118 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5119 ///
5120 ///       direct-declarator:
5121 ///         '(' declarator ')'
5122 /// [GNU]   '(' attributes declarator ')'
5123 ///         direct-declarator '(' parameter-type-list ')'
5124 ///         direct-declarator '(' identifier-list[opt] ')'
5125 /// [GNU]   direct-declarator '(' parameter-forward-declarations
5126 ///                    parameter-type-list[opt] ')'
5127 ///
ParseParenDeclarator(Declarator & D)5128 void Parser::ParseParenDeclarator(Declarator &D) {
5129   BalancedDelimiterTracker T(*this, tok::l_paren);
5130   T.consumeOpen();
5131 
5132   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5133 
5134   // Eat any attributes before we look at whether this is a grouping or function
5135   // declarator paren.  If this is a grouping paren, the attribute applies to
5136   // the type being built up, for example:
5137   //     int (__attribute__(()) *x)(long y)
5138   // If this ends up not being a grouping paren, the attribute applies to the
5139   // first argument, for example:
5140   //     int (__attribute__(()) int x)
5141   // In either case, we need to eat any attributes to be able to determine what
5142   // sort of paren this is.
5143   //
5144   ParsedAttributes attrs(AttrFactory);
5145   bool RequiresArg = false;
5146   if (Tok.is(tok::kw___attribute)) {
5147     ParseGNUAttributes(attrs);
5148 
5149     // We require that the argument list (if this is a non-grouping paren) be
5150     // present even if the attribute list was empty.
5151     RequiresArg = true;
5152   }
5153 
5154   // Eat any Microsoft extensions.
5155   ParseMicrosoftTypeAttributes(attrs);
5156 
5157   // Eat any Borland extensions.
5158   if  (Tok.is(tok::kw___pascal))
5159     ParseBorlandTypeAttributes(attrs);
5160 
5161   // If we haven't past the identifier yet (or where the identifier would be
5162   // stored, if this is an abstract declarator), then this is probably just
5163   // grouping parens. However, if this could be an abstract-declarator, then
5164   // this could also be the start of function arguments (consider 'void()').
5165   bool isGrouping;
5166 
5167   if (!D.mayOmitIdentifier()) {
5168     // If this can't be an abstract-declarator, this *must* be a grouping
5169     // paren, because we haven't seen the identifier yet.
5170     isGrouping = true;
5171   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
5172              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5173               NextToken().is(tok::r_paren)) || // C++ int(...)
5174              isDeclarationSpecifier() ||       // 'int(int)' is a function.
5175              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
5176     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5177     // considered to be a type, not a K&R identifier-list.
5178     isGrouping = false;
5179   } else {
5180     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5181     isGrouping = true;
5182   }
5183 
5184   // If this is a grouping paren, handle:
5185   // direct-declarator: '(' declarator ')'
5186   // direct-declarator: '(' attributes declarator ')'
5187   if (isGrouping) {
5188     SourceLocation EllipsisLoc = D.getEllipsisLoc();
5189     D.setEllipsisLoc(SourceLocation());
5190 
5191     bool hadGroupingParens = D.hasGroupingParens();
5192     D.setGroupingParens(true);
5193     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5194     // Match the ')'.
5195     T.consumeClose();
5196     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5197                                             T.getCloseLocation()),
5198                   attrs, T.getCloseLocation());
5199 
5200     D.setGroupingParens(hadGroupingParens);
5201 
5202     // An ellipsis cannot be placed outside parentheses.
5203     if (EllipsisLoc.isValid())
5204       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5205 
5206     return;
5207   }
5208 
5209   // Okay, if this wasn't a grouping paren, it must be the start of a function
5210   // argument list.  Recognize that this declarator will never have an
5211   // identifier (and remember where it would have been), then call into
5212   // ParseFunctionDeclarator to handle of argument list.
5213   D.SetIdentifier(nullptr, Tok.getLocation());
5214 
5215   // Enter function-declaration scope, limiting any declarators to the
5216   // function prototype scope, including parameter declarators.
5217   ParseScope PrototypeScope(this,
5218                             Scope::FunctionPrototypeScope | Scope::DeclScope |
5219                             (D.isFunctionDeclaratorAFunctionDeclaration()
5220                                ? Scope::FunctionDeclarationScope : 0));
5221   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5222   PrototypeScope.Exit();
5223 }
5224 
5225 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5226 /// declarator D up to a paren, which indicates that we are parsing function
5227 /// arguments.
5228 ///
5229 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5230 /// immediately after the open paren - they should be considered to be the
5231 /// first argument of a parameter.
5232 ///
5233 /// If RequiresArg is true, then the first argument of the function is required
5234 /// to be present and required to not be an identifier list.
5235 ///
5236 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5237 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5238 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5239 ///
5240 /// [C++11] exception-specification:
5241 ///           dynamic-exception-specification
5242 ///           noexcept-specification
5243 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5244 void Parser::ParseFunctionDeclarator(Declarator &D,
5245                                      ParsedAttributes &FirstArgAttrs,
5246                                      BalancedDelimiterTracker &Tracker,
5247                                      bool IsAmbiguous,
5248                                      bool RequiresArg) {
5249   assert(getCurScope()->isFunctionPrototypeScope() &&
5250          "Should call from a Function scope");
5251   // lparen is already consumed!
5252   assert(D.isPastIdentifier() && "Should not call before identifier!");
5253 
5254   // This should be true when the function has typed arguments.
5255   // Otherwise, it is treated as a K&R-style function.
5256   bool HasProto = false;
5257   // Build up an array of information about the parsed arguments.
5258   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5259   // Remember where we see an ellipsis, if any.
5260   SourceLocation EllipsisLoc;
5261 
5262   DeclSpec DS(AttrFactory);
5263   bool RefQualifierIsLValueRef = true;
5264   SourceLocation RefQualifierLoc;
5265   SourceLocation ConstQualifierLoc;
5266   SourceLocation VolatileQualifierLoc;
5267   SourceLocation RestrictQualifierLoc;
5268   ExceptionSpecificationType ESpecType = EST_None;
5269   SourceRange ESpecRange;
5270   SmallVector<ParsedType, 2> DynamicExceptions;
5271   SmallVector<SourceRange, 2> DynamicExceptionRanges;
5272   ExprResult NoexceptExpr;
5273   CachedTokens *ExceptionSpecTokens = 0;
5274   ParsedAttributes FnAttrs(AttrFactory);
5275   TypeResult TrailingReturnType;
5276 
5277   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5278      EndLoc is the end location for the function declarator.
5279      They differ for trailing return types. */
5280   SourceLocation StartLoc, LocalEndLoc, EndLoc;
5281   SourceLocation LParenLoc, RParenLoc;
5282   LParenLoc = Tracker.getOpenLocation();
5283   StartLoc = LParenLoc;
5284 
5285   if (isFunctionDeclaratorIdentifierList()) {
5286     if (RequiresArg)
5287       Diag(Tok, diag::err_argument_required_after_attribute);
5288 
5289     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5290 
5291     Tracker.consumeClose();
5292     RParenLoc = Tracker.getCloseLocation();
5293     LocalEndLoc = RParenLoc;
5294     EndLoc = RParenLoc;
5295   } else {
5296     if (Tok.isNot(tok::r_paren))
5297       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5298                                       EllipsisLoc);
5299     else if (RequiresArg)
5300       Diag(Tok, diag::err_argument_required_after_attribute);
5301 
5302     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5303 
5304     // If we have the closing ')', eat it.
5305     Tracker.consumeClose();
5306     RParenLoc = Tracker.getCloseLocation();
5307     LocalEndLoc = RParenLoc;
5308     EndLoc = RParenLoc;
5309 
5310     if (getLangOpts().CPlusPlus) {
5311       // FIXME: Accept these components in any order, and produce fixits to
5312       // correct the order if the user gets it wrong. Ideally we should deal
5313       // with the virt-specifier-seq and pure-specifier in the same way.
5314 
5315       // Parse cv-qualifier-seq[opt].
5316       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5317                                 /*AtomicAllowed*/ false);
5318       if (!DS.getSourceRange().getEnd().isInvalid()) {
5319         EndLoc = DS.getSourceRange().getEnd();
5320         ConstQualifierLoc = DS.getConstSpecLoc();
5321         VolatileQualifierLoc = DS.getVolatileSpecLoc();
5322         RestrictQualifierLoc = DS.getRestrictSpecLoc();
5323       }
5324 
5325       // Parse ref-qualifier[opt].
5326       if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5327         Diag(Tok, getLangOpts().CPlusPlus11 ?
5328              diag::warn_cxx98_compat_ref_qualifier :
5329              diag::ext_ref_qualifier);
5330 
5331         RefQualifierIsLValueRef = Tok.is(tok::amp);
5332         RefQualifierLoc = ConsumeToken();
5333         EndLoc = RefQualifierLoc;
5334       }
5335 
5336       // C++11 [expr.prim.general]p3:
5337       //   If a declaration declares a member function or member function
5338       //   template of a class X, the expression this is a prvalue of type
5339       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5340       //   and the end of the function-definition, member-declarator, or
5341       //   declarator.
5342       // FIXME: currently, "static" case isn't handled correctly.
5343       bool IsCXX11MemberFunction =
5344         getLangOpts().CPlusPlus11 &&
5345         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5346         (D.getContext() == Declarator::MemberContext
5347          ? !D.getDeclSpec().isFriendSpecified()
5348          : D.getContext() == Declarator::FileContext &&
5349            D.getCXXScopeSpec().isValid() &&
5350            Actions.CurContext->isRecord());
5351       Sema::CXXThisScopeRAII ThisScope(Actions,
5352                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
5353                                DS.getTypeQualifiers() |
5354                                (D.getDeclSpec().isConstexprSpecified() &&
5355                                 !getLangOpts().CPlusPlus14
5356                                   ? Qualifiers::Const : 0),
5357                                IsCXX11MemberFunction);
5358 
5359       // Parse exception-specification[opt].
5360       bool Delayed = D.isFirstDeclarationOfMember() &&
5361                      D.isFunctionDeclaratorAFunctionDeclaration();
5362       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5363           GetLookAheadToken(0).is(tok::kw_noexcept) &&
5364           GetLookAheadToken(1).is(tok::l_paren) &&
5365           GetLookAheadToken(2).is(tok::kw_noexcept) &&
5366           GetLookAheadToken(3).is(tok::l_paren) &&
5367           GetLookAheadToken(4).is(tok::identifier) &&
5368           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5369         // HACK: We've got an exception-specification
5370         //   noexcept(noexcept(swap(...)))
5371         // or
5372         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5373         // on a 'swap' member function. This is a libstdc++ bug; the lookup
5374         // for 'swap' will only find the function we're currently declaring,
5375         // whereas it expects to find a non-member swap through ADL. Turn off
5376         // delayed parsing to give it a chance to find what it expects.
5377         Delayed = false;
5378       }
5379       ESpecType = tryParseExceptionSpecification(Delayed,
5380                                                  ESpecRange,
5381                                                  DynamicExceptions,
5382                                                  DynamicExceptionRanges,
5383                                                  NoexceptExpr,
5384                                                  ExceptionSpecTokens);
5385       if (ESpecType != EST_None)
5386         EndLoc = ESpecRange.getEnd();
5387 
5388       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5389       // after the exception-specification.
5390       MaybeParseCXX11Attributes(FnAttrs);
5391 
5392       // Parse trailing-return-type[opt].
5393       LocalEndLoc = EndLoc;
5394       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5395         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5396         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5397           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5398         LocalEndLoc = Tok.getLocation();
5399         SourceRange Range;
5400         TrailingReturnType = ParseTrailingReturnType(Range);
5401         EndLoc = Range.getEnd();
5402       }
5403     }
5404   }
5405 
5406   // Remember that we parsed a function type, and remember the attributes.
5407   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5408                                              IsAmbiguous,
5409                                              LParenLoc,
5410                                              ParamInfo.data(), ParamInfo.size(),
5411                                              EllipsisLoc, RParenLoc,
5412                                              DS.getTypeQualifiers(),
5413                                              RefQualifierIsLValueRef,
5414                                              RefQualifierLoc, ConstQualifierLoc,
5415                                              VolatileQualifierLoc,
5416                                              RestrictQualifierLoc,
5417                                              /*MutableLoc=*/SourceLocation(),
5418                                              ESpecType, ESpecRange.getBegin(),
5419                                              DynamicExceptions.data(),
5420                                              DynamicExceptionRanges.data(),
5421                                              DynamicExceptions.size(),
5422                                              NoexceptExpr.isUsable() ?
5423                                                NoexceptExpr.get() : nullptr,
5424                                              ExceptionSpecTokens,
5425                                              StartLoc, LocalEndLoc, D,
5426                                              TrailingReturnType),
5427                 FnAttrs, EndLoc);
5428 }
5429 
5430 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5431 /// identifier list form for a K&R-style function:  void foo(a,b,c)
5432 ///
5433 /// Note that identifier-lists are only allowed for normal declarators, not for
5434 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5435 bool Parser::isFunctionDeclaratorIdentifierList() {
5436   return !getLangOpts().CPlusPlus
5437          && Tok.is(tok::identifier)
5438          && !TryAltiVecVectorToken()
5439          // K&R identifier lists can't have typedefs as identifiers, per C99
5440          // 6.7.5.3p11.
5441          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5442          // Identifier lists follow a really simple grammar: the identifiers can
5443          // be followed *only* by a ", identifier" or ")".  However, K&R
5444          // identifier lists are really rare in the brave new modern world, and
5445          // it is very common for someone to typo a type in a non-K&R style
5446          // list.  If we are presented with something like: "void foo(intptr x,
5447          // float y)", we don't want to start parsing the function declarator as
5448          // though it is a K&R style declarator just because intptr is an
5449          // invalid type.
5450          //
5451          // To handle this, we check to see if the token after the first
5452          // identifier is a "," or ")".  Only then do we parse it as an
5453          // identifier list.
5454          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5455 }
5456 
5457 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5458 /// we found a K&R-style identifier list instead of a typed parameter list.
5459 ///
5460 /// After returning, ParamInfo will hold the parsed parameters.
5461 ///
5462 ///       identifier-list: [C99 6.7.5]
5463 ///         identifier
5464 ///         identifier-list ',' identifier
5465 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5466 void Parser::ParseFunctionDeclaratorIdentifierList(
5467        Declarator &D,
5468        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5469   // If there was no identifier specified for the declarator, either we are in
5470   // an abstract-declarator, or we are in a parameter declarator which was found
5471   // to be abstract.  In abstract-declarators, identifier lists are not valid:
5472   // diagnose this.
5473   if (!D.getIdentifier())
5474     Diag(Tok, diag::ext_ident_list_in_param);
5475 
5476   // Maintain an efficient lookup of params we have seen so far.
5477   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5478 
5479   do {
5480     // If this isn't an identifier, report the error and skip until ')'.
5481     if (Tok.isNot(tok::identifier)) {
5482       Diag(Tok, diag::err_expected) << tok::identifier;
5483       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5484       // Forget we parsed anything.
5485       ParamInfo.clear();
5486       return;
5487     }
5488 
5489     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5490 
5491     // Reject 'typedef int y; int test(x, y)', but continue parsing.
5492     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5493       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5494 
5495     // Verify that the argument identifier has not already been mentioned.
5496     if (!ParamsSoFar.insert(ParmII).second) {
5497       Diag(Tok, diag::err_param_redefinition) << ParmII;
5498     } else {
5499       // Remember this identifier in ParamInfo.
5500       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5501                                                      Tok.getLocation(),
5502                                                      nullptr));
5503     }
5504 
5505     // Eat the identifier.
5506     ConsumeToken();
5507     // The list continues if we see a comma.
5508   } while (TryConsumeToken(tok::comma));
5509 }
5510 
5511 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5512 /// after the opening parenthesis. This function will not parse a K&R-style
5513 /// identifier list.
5514 ///
5515 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
5516 /// caller parsed those arguments immediately after the open paren - they should
5517 /// be considered to be part of the first parameter.
5518 ///
5519 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5520 /// be the location of the ellipsis, if any was parsed.
5521 ///
5522 ///       parameter-type-list: [C99 6.7.5]
5523 ///         parameter-list
5524 ///         parameter-list ',' '...'
5525 /// [C++]   parameter-list '...'
5526 ///
5527 ///       parameter-list: [C99 6.7.5]
5528 ///         parameter-declaration
5529 ///         parameter-list ',' parameter-declaration
5530 ///
5531 ///       parameter-declaration: [C99 6.7.5]
5532 ///         declaration-specifiers declarator
5533 /// [C++]   declaration-specifiers declarator '=' assignment-expression
5534 /// [C++11]                                       initializer-clause
5535 /// [GNU]   declaration-specifiers declarator attributes
5536 ///         declaration-specifiers abstract-declarator[opt]
5537 /// [C++]   declaration-specifiers abstract-declarator[opt]
5538 ///           '=' assignment-expression
5539 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
5540 /// [C++11] attribute-specifier-seq parameter-declaration
5541 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5542 void Parser::ParseParameterDeclarationClause(
5543        Declarator &D,
5544        ParsedAttributes &FirstArgAttrs,
5545        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5546        SourceLocation &EllipsisLoc) {
5547   do {
5548     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5549     // before deciding this was a parameter-declaration-clause.
5550     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5551       break;
5552 
5553     // Parse the declaration-specifiers.
5554     // Just use the ParsingDeclaration "scope" of the declarator.
5555     DeclSpec DS(AttrFactory);
5556 
5557     // Parse any C++11 attributes.
5558     MaybeParseCXX11Attributes(DS.getAttributes());
5559 
5560     // Skip any Microsoft attributes before a param.
5561     MaybeParseMicrosoftAttributes(DS.getAttributes());
5562 
5563     SourceLocation DSStart = Tok.getLocation();
5564 
5565     // If the caller parsed attributes for the first argument, add them now.
5566     // Take them so that we only apply the attributes to the first parameter.
5567     // FIXME: If we can leave the attributes in the token stream somehow, we can
5568     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5569     // too much hassle.
5570     DS.takeAttributesFrom(FirstArgAttrs);
5571 
5572     ParseDeclarationSpecifiers(DS);
5573 
5574 
5575     // Parse the declarator.  This is "PrototypeContext" or
5576     // "LambdaExprParameterContext", because we must accept either
5577     // 'declarator' or 'abstract-declarator' here.
5578     Declarator ParmDeclarator(DS,
5579               D.getContext() == Declarator::LambdaExprContext ?
5580                                   Declarator::LambdaExprParameterContext :
5581                                                 Declarator::PrototypeContext);
5582     ParseDeclarator(ParmDeclarator);
5583 
5584     // Parse GNU attributes, if present.
5585     MaybeParseGNUAttributes(ParmDeclarator);
5586 
5587     // Remember this parsed parameter in ParamInfo.
5588     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5589 
5590     // DefArgToks is used when the parsing of default arguments needs
5591     // to be delayed.
5592     CachedTokens *DefArgToks = nullptr;
5593 
5594     // If no parameter was specified, verify that *something* was specified,
5595     // otherwise we have a missing type and identifier.
5596     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5597         ParmDeclarator.getNumTypeObjects() == 0) {
5598       // Completely missing, emit error.
5599       Diag(DSStart, diag::err_missing_param);
5600     } else {
5601       // Otherwise, we have something.  Add it and let semantic analysis try
5602       // to grok it and add the result to the ParamInfo we are building.
5603 
5604       // Last chance to recover from a misplaced ellipsis in an attempted
5605       // parameter pack declaration.
5606       if (Tok.is(tok::ellipsis) &&
5607           (NextToken().isNot(tok::r_paren) ||
5608            (!ParmDeclarator.getEllipsisLoc().isValid() &&
5609             !Actions.isUnexpandedParameterPackPermitted())) &&
5610           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5611         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5612 
5613       // Inform the actions module about the parameter declarator, so it gets
5614       // added to the current scope.
5615       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5616       // Parse the default argument, if any. We parse the default
5617       // arguments in all dialects; the semantic analysis in
5618       // ActOnParamDefaultArgument will reject the default argument in
5619       // C.
5620       if (Tok.is(tok::equal)) {
5621         SourceLocation EqualLoc = Tok.getLocation();
5622 
5623         // Parse the default argument
5624         if (D.getContext() == Declarator::MemberContext) {
5625           // If we're inside a class definition, cache the tokens
5626           // corresponding to the default argument. We'll actually parse
5627           // them when we see the end of the class definition.
5628           // FIXME: Can we use a smart pointer for Toks?
5629           DefArgToks = new CachedTokens;
5630 
5631           SourceLocation ArgStartLoc = NextToken().getLocation();
5632           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5633             delete DefArgToks;
5634             DefArgToks = nullptr;
5635             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5636           } else {
5637             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5638                                                       ArgStartLoc);
5639           }
5640         } else {
5641           // Consume the '='.
5642           ConsumeToken();
5643 
5644           // The argument isn't actually potentially evaluated unless it is
5645           // used.
5646           EnterExpressionEvaluationContext Eval(Actions,
5647                                               Sema::PotentiallyEvaluatedIfUsed,
5648                                                 Param);
5649 
5650           ExprResult DefArgResult;
5651           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5652             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5653             DefArgResult = ParseBraceInitializer();
5654           } else
5655             DefArgResult = ParseAssignmentExpression();
5656           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5657           if (DefArgResult.isInvalid()) {
5658             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5659             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5660           } else {
5661             // Inform the actions module about the default argument
5662             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5663                                               DefArgResult.get());
5664           }
5665         }
5666       }
5667 
5668       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5669                                           ParmDeclarator.getIdentifierLoc(),
5670                                           Param, DefArgToks));
5671     }
5672 
5673     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
5674       if (!getLangOpts().CPlusPlus) {
5675         // We have ellipsis without a preceding ',', which is ill-formed
5676         // in C. Complain and provide the fix.
5677         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5678             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5679       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
5680                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
5681         // It looks like this was supposed to be a parameter pack. Warn and
5682         // point out where the ellipsis should have gone.
5683         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
5684         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
5685           << ParmEllipsis.isValid() << ParmEllipsis;
5686         if (ParmEllipsis.isValid()) {
5687           Diag(ParmEllipsis,
5688                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
5689         } else {
5690           Diag(ParmDeclarator.getIdentifierLoc(),
5691                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
5692             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
5693                                           "...")
5694             << !ParmDeclarator.hasName();
5695         }
5696         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
5697           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5698       }
5699 
5700       // We can't have any more parameters after an ellipsis.
5701       break;
5702     }
5703 
5704     // If the next token is a comma, consume it and keep reading arguments.
5705   } while (TryConsumeToken(tok::comma));
5706 }
5707 
5708 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
5709 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5710 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5711 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5712 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5713 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5714 ///                           attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5715 void Parser::ParseBracketDeclarator(Declarator &D) {
5716   if (CheckProhibitedCXX11Attribute())
5717     return;
5718 
5719   BalancedDelimiterTracker T(*this, tok::l_square);
5720   T.consumeOpen();
5721 
5722   // C array syntax has many features, but by-far the most common is [] and [4].
5723   // This code does a fast path to handle some of the most obvious cases.
5724   if (Tok.getKind() == tok::r_square) {
5725     T.consumeClose();
5726     ParsedAttributes attrs(AttrFactory);
5727     MaybeParseCXX11Attributes(attrs);
5728 
5729     // Remember that we parsed the empty array type.
5730     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5731                                             T.getOpenLocation(),
5732                                             T.getCloseLocation()),
5733                   attrs, T.getCloseLocation());
5734     return;
5735   } else if (Tok.getKind() == tok::numeric_constant &&
5736              GetLookAheadToken(1).is(tok::r_square)) {
5737     // [4] is very common.  Parse the numeric constant expression.
5738     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5739     ConsumeToken();
5740 
5741     T.consumeClose();
5742     ParsedAttributes attrs(AttrFactory);
5743     MaybeParseCXX11Attributes(attrs);
5744 
5745     // Remember that we parsed a array type, and remember its features.
5746     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5747                                             ExprRes.get(),
5748                                             T.getOpenLocation(),
5749                                             T.getCloseLocation()),
5750                   attrs, T.getCloseLocation());
5751     return;
5752   }
5753 
5754   // If valid, this location is the position where we read the 'static' keyword.
5755   SourceLocation StaticLoc;
5756   TryConsumeToken(tok::kw_static, StaticLoc);
5757 
5758   // If there is a type-qualifier-list, read it now.
5759   // Type qualifiers in an array subscript are a C99 feature.
5760   DeclSpec DS(AttrFactory);
5761   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
5762 
5763   // If we haven't already read 'static', check to see if there is one after the
5764   // type-qualifier-list.
5765   if (!StaticLoc.isValid())
5766     TryConsumeToken(tok::kw_static, StaticLoc);
5767 
5768   // Handle "direct-declarator [ type-qual-list[opt] * ]".
5769   bool isStar = false;
5770   ExprResult NumElements;
5771 
5772   // Handle the case where we have '[*]' as the array size.  However, a leading
5773   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
5774   // the token after the star is a ']'.  Since stars in arrays are
5775   // infrequent, use of lookahead is not costly here.
5776   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5777     ConsumeToken();  // Eat the '*'.
5778 
5779     if (StaticLoc.isValid()) {
5780       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5781       StaticLoc = SourceLocation();  // Drop the static.
5782     }
5783     isStar = true;
5784   } else if (Tok.isNot(tok::r_square)) {
5785     // Note, in C89, this production uses the constant-expr production instead
5786     // of assignment-expr.  The only difference is that assignment-expr allows
5787     // things like '=' and '*='.  Sema rejects these in C89 mode because they
5788     // are not i-c-e's, so we don't need to distinguish between the two here.
5789 
5790     // Parse the constant-expression or assignment-expression now (depending
5791     // on dialect).
5792     if (getLangOpts().CPlusPlus) {
5793       NumElements = ParseConstantExpression();
5794     } else {
5795       EnterExpressionEvaluationContext Unevaluated(Actions,
5796                                                    Sema::ConstantEvaluated);
5797       NumElements =
5798           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
5799     }
5800   } else {
5801     if (StaticLoc.isValid()) {
5802       Diag(StaticLoc, diag::err_unspecified_size_with_static);
5803       StaticLoc = SourceLocation();  // Drop the static.
5804     }
5805   }
5806 
5807   // If there was an error parsing the assignment-expression, recover.
5808   if (NumElements.isInvalid()) {
5809     D.setInvalidType(true);
5810     // If the expression was invalid, skip it.
5811     SkipUntil(tok::r_square, StopAtSemi);
5812     return;
5813   }
5814 
5815   T.consumeClose();
5816 
5817   ParsedAttributes attrs(AttrFactory);
5818   MaybeParseCXX11Attributes(attrs);
5819 
5820   // Remember that we parsed a array type, and remember its features.
5821   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5822                                           StaticLoc.isValid(), isStar,
5823                                           NumElements.get(),
5824                                           T.getOpenLocation(),
5825                                           T.getCloseLocation()),
5826                 attrs, T.getCloseLocation());
5827 }
5828 
5829 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)5830 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5831   assert(Tok.is(tok::l_square) && "Missing opening bracket");
5832   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5833 
5834   SourceLocation StartBracketLoc = Tok.getLocation();
5835   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5836 
5837   while (Tok.is(tok::l_square)) {
5838     ParseBracketDeclarator(TempDeclarator);
5839   }
5840 
5841   // Stuff the location of the start of the brackets into the Declarator.
5842   // The diagnostics from ParseDirectDeclarator will make more sense if
5843   // they use this location instead.
5844   if (Tok.is(tok::semi))
5845     D.getName().EndLocation = StartBracketLoc;
5846 
5847   SourceLocation SuggestParenLoc = Tok.getLocation();
5848 
5849   // Now that the brackets are removed, try parsing the declarator again.
5850   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5851 
5852   // Something went wrong parsing the brackets, in which case,
5853   // ParseBracketDeclarator has emitted an error, and we don't need to emit
5854   // one here.
5855   if (TempDeclarator.getNumTypeObjects() == 0)
5856     return;
5857 
5858   // Determine if parens will need to be suggested in the diagnostic.
5859   bool NeedParens = false;
5860   if (D.getNumTypeObjects() != 0) {
5861     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5862     case DeclaratorChunk::Pointer:
5863     case DeclaratorChunk::Reference:
5864     case DeclaratorChunk::BlockPointer:
5865     case DeclaratorChunk::MemberPointer:
5866       NeedParens = true;
5867       break;
5868     case DeclaratorChunk::Array:
5869     case DeclaratorChunk::Function:
5870     case DeclaratorChunk::Paren:
5871       break;
5872     }
5873   }
5874 
5875   if (NeedParens) {
5876     // Create a DeclaratorChunk for the inserted parens.
5877     ParsedAttributes attrs(AttrFactory);
5878     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5879     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5880                   SourceLocation());
5881   }
5882 
5883   // Adding back the bracket info to the end of the Declarator.
5884   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5885     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5886     ParsedAttributes attrs(AttrFactory);
5887     attrs.set(Chunk.Common.AttrList);
5888     D.AddTypeInfo(Chunk, attrs, SourceLocation());
5889   }
5890 
5891   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5892   // If parentheses are required, always suggest them.
5893   if (!D.getIdentifier() && !NeedParens)
5894     return;
5895 
5896   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5897 
5898   // Generate the move bracket error message.
5899   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5900   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5901 
5902   if (NeedParens) {
5903     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5904         << getLangOpts().CPlusPlus
5905         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5906         << FixItHint::CreateInsertion(EndLoc, ")")
5907         << FixItHint::CreateInsertionFromRange(
5908                EndLoc, CharSourceRange(BracketRange, true))
5909         << FixItHint::CreateRemoval(BracketRange);
5910   } else {
5911     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5912         << getLangOpts().CPlusPlus
5913         << FixItHint::CreateInsertionFromRange(
5914                EndLoc, CharSourceRange(BracketRange, true))
5915         << FixItHint::CreateRemoval(BracketRange);
5916   }
5917 }
5918 
5919 /// [GNU]   typeof-specifier:
5920 ///           typeof ( expressions )
5921 ///           typeof ( type-name )
5922 /// [GNU/C++] typeof unary-expression
5923 ///
ParseTypeofSpecifier(DeclSpec & DS)5924 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5925   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5926   Token OpTok = Tok;
5927   SourceLocation StartLoc = ConsumeToken();
5928 
5929   const bool hasParens = Tok.is(tok::l_paren);
5930 
5931   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5932                                                Sema::ReuseLambdaContextDecl);
5933 
5934   bool isCastExpr;
5935   ParsedType CastTy;
5936   SourceRange CastRange;
5937   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
5938       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
5939   if (hasParens)
5940     DS.setTypeofParensRange(CastRange);
5941 
5942   if (CastRange.getEnd().isInvalid())
5943     // FIXME: Not accurate, the range gets one token more than it should.
5944     DS.SetRangeEnd(Tok.getLocation());
5945   else
5946     DS.SetRangeEnd(CastRange.getEnd());
5947 
5948   if (isCastExpr) {
5949     if (!CastTy) {
5950       DS.SetTypeSpecError();
5951       return;
5952     }
5953 
5954     const char *PrevSpec = nullptr;
5955     unsigned DiagID;
5956     // Check for duplicate type specifiers (e.g. "int typeof(int)").
5957     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5958                            DiagID, CastTy,
5959                            Actions.getASTContext().getPrintingPolicy()))
5960       Diag(StartLoc, DiagID) << PrevSpec;
5961     return;
5962   }
5963 
5964   // If we get here, the operand to the typeof was an expresion.
5965   if (Operand.isInvalid()) {
5966     DS.SetTypeSpecError();
5967     return;
5968   }
5969 
5970   // We might need to transform the operand if it is potentially evaluated.
5971   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
5972   if (Operand.isInvalid()) {
5973     DS.SetTypeSpecError();
5974     return;
5975   }
5976 
5977   const char *PrevSpec = nullptr;
5978   unsigned DiagID;
5979   // Check for duplicate type specifiers (e.g. "int typeof(int)").
5980   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
5981                          DiagID, Operand.get(),
5982                          Actions.getASTContext().getPrintingPolicy()))
5983     Diag(StartLoc, DiagID) << PrevSpec;
5984 }
5985 
5986 /// [C11]   atomic-specifier:
5987 ///           _Atomic ( type-name )
5988 ///
ParseAtomicSpecifier(DeclSpec & DS)5989 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
5990   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
5991          "Not an atomic specifier");
5992 
5993   SourceLocation StartLoc = ConsumeToken();
5994   BalancedDelimiterTracker T(*this, tok::l_paren);
5995   if (T.consumeOpen())
5996     return;
5997 
5998   TypeResult Result = ParseTypeName();
5999   if (Result.isInvalid()) {
6000     SkipUntil(tok::r_paren, StopAtSemi);
6001     return;
6002   }
6003 
6004   // Match the ')'
6005   T.consumeClose();
6006 
6007   if (T.getCloseLocation().isInvalid())
6008     return;
6009 
6010   DS.setTypeofParensRange(T.getRange());
6011   DS.SetRangeEnd(T.getCloseLocation());
6012 
6013   const char *PrevSpec = nullptr;
6014   unsigned DiagID;
6015   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6016                          DiagID, Result.get(),
6017                          Actions.getASTContext().getPrintingPolicy()))
6018     Diag(StartLoc, DiagID) << PrevSpec;
6019 }
6020 
6021 
6022 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6023 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()6024 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6025   Token Next = NextToken();
6026   switch (Next.getKind()) {
6027   default: return false;
6028   case tok::kw_short:
6029   case tok::kw_long:
6030   case tok::kw_signed:
6031   case tok::kw_unsigned:
6032   case tok::kw_void:
6033   case tok::kw_char:
6034   case tok::kw_int:
6035   case tok::kw_float:
6036   case tok::kw_double:
6037   case tok::kw_bool:
6038   case tok::kw___bool:
6039   case tok::kw___pixel:
6040     Tok.setKind(tok::kw___vector);
6041     return true;
6042   case tok::identifier:
6043     if (Next.getIdentifierInfo() == Ident_pixel) {
6044       Tok.setKind(tok::kw___vector);
6045       return true;
6046     }
6047     if (Next.getIdentifierInfo() == Ident_bool) {
6048       Tok.setKind(tok::kw___vector);
6049       return true;
6050     }
6051     return false;
6052   }
6053 }
6054 
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)6055 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6056                                       const char *&PrevSpec, unsigned &DiagID,
6057                                       bool &isInvalid) {
6058   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6059   if (Tok.getIdentifierInfo() == Ident_vector) {
6060     Token Next = NextToken();
6061     switch (Next.getKind()) {
6062     case tok::kw_short:
6063     case tok::kw_long:
6064     case tok::kw_signed:
6065     case tok::kw_unsigned:
6066     case tok::kw_void:
6067     case tok::kw_char:
6068     case tok::kw_int:
6069     case tok::kw_float:
6070     case tok::kw_double:
6071     case tok::kw_bool:
6072     case tok::kw___bool:
6073     case tok::kw___pixel:
6074       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6075       return true;
6076     case tok::identifier:
6077       if (Next.getIdentifierInfo() == Ident_pixel) {
6078         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6079         return true;
6080       }
6081       if (Next.getIdentifierInfo() == Ident_bool) {
6082         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6083         return true;
6084       }
6085       break;
6086     default:
6087       break;
6088     }
6089   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6090              DS.isTypeAltiVecVector()) {
6091     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6092     return true;
6093   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6094              DS.isTypeAltiVecVector()) {
6095     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6096     return true;
6097   }
6098   return false;
6099 }
6100