1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/PointerIntPair.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/IR/ValueMap.h"
38 #include "llvm/Pass.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <memory>
42 #include <optional>
43 #include <utility>
44 
45 namespace llvm {
46 
47 class OverflowingBinaryOperator;
48 class AssumptionCache;
49 class BasicBlock;
50 class Constant;
51 class ConstantInt;
52 class DataLayout;
53 class DominatorTree;
54 class Function;
55 class GEPOperator;
56 class Instruction;
57 class LLVMContext;
58 class Loop;
59 class LoopInfo;
60 class raw_ostream;
61 class ScalarEvolution;
62 class SCEVAddRecExpr;
63 class SCEVUnknown;
64 class StructType;
65 class TargetLibraryInfo;
66 class Type;
67 class Value;
68 enum SCEVTypes : unsigned short;
69 
70 extern bool VerifySCEV;
71 
72 /// This class represents an analyzed expression in the program.  These are
73 /// opaque objects that the client is not allowed to do much with directly.
74 ///
75 class SCEV : public FoldingSetNode {
76   friend struct FoldingSetTrait<SCEV>;
77 
78   /// A reference to an Interned FoldingSetNodeID for this node.  The
79   /// ScalarEvolution's BumpPtrAllocator holds the data.
80   FoldingSetNodeIDRef FastID;
81 
82   // The SCEV baseclass this node corresponds to
83   const SCEVTypes SCEVType;
84 
85 protected:
86   // Estimated complexity of this node's expression tree size.
87   const unsigned short ExpressionSize;
88 
89   /// This field is initialized to zero and may be used in subclasses to store
90   /// miscellaneous information.
91   unsigned short SubclassData = 0;
92 
93 public:
94   /// NoWrapFlags are bitfield indices into SubclassData.
95   ///
96   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97   /// no-signed-wrap <NSW> properties, which are derived from the IR
98   /// operator. NSW is a misnomer that we use to mean no signed overflow or
99   /// underflow.
100   ///
101   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102   /// the integer domain, abs(step) * max-iteration(loop) <=
103   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104   /// its start value if the step is non-zero.  Computing the same value on
105   /// each iteration is not considered wrapping, and recurrences with step = 0
106   /// are trivially <NW>.  <NW> is independent of the sign of step and the
107   /// value the add recurrence starts with.
108   ///
109   /// Note that NUW and NSW are also valid properties of a recurrence, and
110   /// either implies NW. For convenience, NW will be set for a recurrence
111   /// whenever either NUW or NSW are set.
112   ///
113   /// We require that the flag on a SCEV apply to the entire scope in which
114   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115   /// a defining location, which is in turn described by the following rules:
116   /// * A SCEVUnknown is at the point of definition of the Value.
117   /// * A SCEVConstant is defined at all points.
118   /// * A SCEVAddRec is defined starting with the header of the associated
119   ///   loop.
120   /// * All other SCEVs are defined at the earlest point all operands are
121   ///   defined.
122   ///
123   /// The above rules describe a maximally hoisted form (without regards to
124   /// potential control dependence).  A SCEV is defined anywhere a
125   /// corresponding instruction could be defined in said maximally hoisted
126   /// form.  Note that SCEVUDivExpr (currently the only expression type which
127   /// can trap) can be defined per these rules in regions where it would trap
128   /// at runtime.  A SCEV being defined does not require the existence of any
129   /// instruction within the defined scope.
130   enum NoWrapFlags {
131     FlagAnyWrap = 0,    // No guarantee.
132     FlagNW = (1 << 0),  // No self-wrap.
133     FlagNUW = (1 << 1), // No unsigned wrap.
134     FlagNSW = (1 << 2), // No signed wrap.
135     NoWrapMask = (1 << 3) - 1
136   };
137 
138   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139                 unsigned short ExpressionSize)
140       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141   SCEV(const SCEV &) = delete;
142   SCEV &operator=(const SCEV &) = delete;
143 
144   SCEVTypes getSCEVType() const { return SCEVType; }
145 
146   /// Return the LLVM type of this SCEV expression.
147   Type *getType() const;
148 
149   /// Return operands of this SCEV expression.
150   ArrayRef<const SCEV *> operands() const;
151 
152   /// Return true if the expression is a constant zero.
153   bool isZero() const;
154 
155   /// Return true if the expression is a constant one.
156   bool isOne() const;
157 
158   /// Return true if the expression is a constant all-ones value.
159   bool isAllOnesValue() const;
160 
161   /// Return true if the specified scev is negated, but not a constant.
162   bool isNonConstantNegative() const;
163 
164   // Returns estimated size of the mathematical expression represented by this
165   // SCEV. The rules of its calculation are following:
166   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
167   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
168   //    (1 + Size(Op1) + ... + Size(OpN)).
169   // This value gives us an estimation of time we need to traverse through this
170   // SCEV and all its operands recursively. We may use it to avoid performing
171   // heavy transformations on SCEVs of excessive size for sake of saving the
172   // compilation time.
173   unsigned short getExpressionSize() const {
174     return ExpressionSize;
175   }
176 
177   /// Print out the internal representation of this scalar to the specified
178   /// stream.  This should really only be used for debugging purposes.
179   void print(raw_ostream &OS) const;
180 
181   /// This method is used for debugging.
182   void dump() const;
183 };
184 
185 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
186 // temporary FoldingSetNodeID values.
187 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
188   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
189 
190   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
191                      FoldingSetNodeID &TempID) {
192     return ID == X.FastID;
193   }
194 
195   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
196     return X.FastID.ComputeHash();
197   }
198 };
199 
200 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
201   S.print(OS);
202   return OS;
203 }
204 
205 /// An object of this class is returned by queries that could not be answered.
206 /// For example, if you ask for the number of iterations of a linked-list
207 /// traversal loop, you will get one of these.  None of the standard SCEV
208 /// operations are valid on this class, it is just a marker.
209 struct SCEVCouldNotCompute : public SCEV {
210   SCEVCouldNotCompute();
211 
212   /// Methods for support type inquiry through isa, cast, and dyn_cast:
213   static bool classof(const SCEV *S);
214 };
215 
216 /// This class represents an assumption made using SCEV expressions which can
217 /// be checked at run-time.
218 class SCEVPredicate : public FoldingSetNode {
219   friend struct FoldingSetTrait<SCEVPredicate>;
220 
221   /// A reference to an Interned FoldingSetNodeID for this node.  The
222   /// ScalarEvolution's BumpPtrAllocator holds the data.
223   FoldingSetNodeIDRef FastID;
224 
225 public:
226   enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
227 
228 protected:
229   SCEVPredicateKind Kind;
230   ~SCEVPredicate() = default;
231   SCEVPredicate(const SCEVPredicate &) = default;
232   SCEVPredicate &operator=(const SCEVPredicate &) = default;
233 
234 public:
235   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
236 
237   SCEVPredicateKind getKind() const { return Kind; }
238 
239   /// Returns the estimated complexity of this predicate.  This is roughly
240   /// measured in the number of run-time checks required.
241   virtual unsigned getComplexity() const { return 1; }
242 
243   /// Returns true if the predicate is always true. This means that no
244   /// assumptions were made and nothing needs to be checked at run-time.
245   virtual bool isAlwaysTrue() const = 0;
246 
247   /// Returns true if this predicate implies \p N.
248   virtual bool implies(const SCEVPredicate *N) const = 0;
249 
250   /// Prints a textual representation of this predicate with an indentation of
251   /// \p Depth.
252   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
253 };
254 
255 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
256   P.print(OS);
257   return OS;
258 }
259 
260 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
261 // temporary FoldingSetNodeID values.
262 template <>
263 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
264   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
265     ID = X.FastID;
266   }
267 
268   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
269                      unsigned IDHash, FoldingSetNodeID &TempID) {
270     return ID == X.FastID;
271   }
272 
273   static unsigned ComputeHash(const SCEVPredicate &X,
274                               FoldingSetNodeID &TempID) {
275     return X.FastID.ComputeHash();
276   }
277 };
278 
279 /// This class represents an assumption that the expression LHS Pred RHS
280 /// evaluates to true, and this can be checked at run-time.
281 class SCEVComparePredicate final : public SCEVPredicate {
282   /// We assume that LHS Pred RHS is true.
283   const ICmpInst::Predicate Pred;
284   const SCEV *LHS;
285   const SCEV *RHS;
286 
287 public:
288   SCEVComparePredicate(const FoldingSetNodeIDRef ID,
289                        const ICmpInst::Predicate Pred,
290                        const SCEV *LHS, const SCEV *RHS);
291 
292   /// Implementation of the SCEVPredicate interface
293   bool implies(const SCEVPredicate *N) const override;
294   void print(raw_ostream &OS, unsigned Depth = 0) const override;
295   bool isAlwaysTrue() const override;
296 
297   ICmpInst::Predicate getPredicate() const { return Pred; }
298 
299   /// Returns the left hand side of the predicate.
300   const SCEV *getLHS() const { return LHS; }
301 
302   /// Returns the right hand side of the predicate.
303   const SCEV *getRHS() const { return RHS; }
304 
305   /// Methods for support type inquiry through isa, cast, and dyn_cast:
306   static bool classof(const SCEVPredicate *P) {
307     return P->getKind() == P_Compare;
308   }
309 };
310 
311 /// This class represents an assumption made on an AddRec expression. Given an
312 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
313 /// flags (defined below) in the first X iterations of the loop, where X is a
314 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
315 ///
316 /// Note that this does not imply that X is equal to the backedge taken
317 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
318 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
319 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
320 /// have more than X iterations.
321 class SCEVWrapPredicate final : public SCEVPredicate {
322 public:
323   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
324   /// for FlagNUSW. The increment is considered to be signed, and a + b
325   /// (where b is the increment) is considered to wrap if:
326   ///    zext(a + b) != zext(a) + sext(b)
327   ///
328   /// If Signed is a function that takes an n-bit tuple and maps to the
329   /// integer domain as the tuples value interpreted as twos complement,
330   /// and Unsigned a function that takes an n-bit tuple and maps to the
331   /// integer domain as the base two value of input tuple, then a + b
332   /// has IncrementNUSW iff:
333   ///
334   /// 0 <= Unsigned(a) + Signed(b) < 2^n
335   ///
336   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
337   ///
338   /// Note that the IncrementNUSW flag is not commutative: if base + inc
339   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
340   /// property. The reason for this is that this is used for sign/zero
341   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
342   /// assumed. A {base,+,inc} expression is already non-commutative with
343   /// regards to base and inc, since it is interpreted as:
344   ///     (((base + inc) + inc) + inc) ...
345   enum IncrementWrapFlags {
346     IncrementAnyWrap = 0,     // No guarantee.
347     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
348     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
349                               // (equivalent with SCEV::NSW)
350     IncrementNoWrapMask = (1 << 2) - 1
351   };
352 
353   /// Convenient IncrementWrapFlags manipulation methods.
354   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
355   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
357     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
359            "Invalid flags value!");
360     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
361   }
362 
363   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
364   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
365     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
366     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
367 
368     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
369   }
370 
371   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
372   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
373            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
374     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
375     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
376            "Invalid flags value!");
377 
378     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
379   }
380 
381   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
382   /// SCEVAddRecExpr.
383   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
384   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
385 
386 private:
387   const SCEVAddRecExpr *AR;
388   IncrementWrapFlags Flags;
389 
390 public:
391   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
392                              const SCEVAddRecExpr *AR,
393                              IncrementWrapFlags Flags);
394 
395   /// Returns the set assumed no overflow flags.
396   IncrementWrapFlags getFlags() const { return Flags; }
397 
398   /// Implementation of the SCEVPredicate interface
399   const SCEVAddRecExpr *getExpr() const;
400   bool implies(const SCEVPredicate *N) const override;
401   void print(raw_ostream &OS, unsigned Depth = 0) const override;
402   bool isAlwaysTrue() const override;
403 
404   /// Methods for support type inquiry through isa, cast, and dyn_cast:
405   static bool classof(const SCEVPredicate *P) {
406     return P->getKind() == P_Wrap;
407   }
408 };
409 
410 /// This class represents a composition of other SCEV predicates, and is the
411 /// class that most clients will interact with.  This is equivalent to a
412 /// logical "AND" of all the predicates in the union.
413 ///
414 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
415 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
416 class SCEVUnionPredicate final : public SCEVPredicate {
417 private:
418   using PredicateMap =
419       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
420 
421   /// Vector with references to all predicates in this union.
422   SmallVector<const SCEVPredicate *, 16> Preds;
423 
424   /// Adds a predicate to this union.
425   void add(const SCEVPredicate *N);
426 
427 public:
428   SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
429 
430   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
431     return Preds;
432   }
433 
434   /// Implementation of the SCEVPredicate interface
435   bool isAlwaysTrue() const override;
436   bool implies(const SCEVPredicate *N) const override;
437   void print(raw_ostream &OS, unsigned Depth) const override;
438 
439   /// We estimate the complexity of a union predicate as the size number of
440   /// predicates in the union.
441   unsigned getComplexity() const override { return Preds.size(); }
442 
443   /// Methods for support type inquiry through isa, cast, and dyn_cast:
444   static bool classof(const SCEVPredicate *P) {
445     return P->getKind() == P_Union;
446   }
447 };
448 
449 /// The main scalar evolution driver. Because client code (intentionally)
450 /// can't do much with the SCEV objects directly, they must ask this class
451 /// for services.
452 class ScalarEvolution {
453   friend class ScalarEvolutionsTest;
454 
455 public:
456   /// An enum describing the relationship between a SCEV and a loop.
457   enum LoopDisposition {
458     LoopVariant,   ///< The SCEV is loop-variant (unknown).
459     LoopInvariant, ///< The SCEV is loop-invariant.
460     LoopComputable ///< The SCEV varies predictably with the loop.
461   };
462 
463   /// An enum describing the relationship between a SCEV and a basic block.
464   enum BlockDisposition {
465     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
466     DominatesBlock,        ///< The SCEV dominates the block.
467     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
468   };
469 
470   /// Convenient NoWrapFlags manipulation that hides enum casts and is
471   /// visible in the ScalarEvolution name space.
472   [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
473                                                    int Mask) {
474     return (SCEV::NoWrapFlags)(Flags & Mask);
475   }
476   [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
477                                                   SCEV::NoWrapFlags OnFlags) {
478     return (SCEV::NoWrapFlags)(Flags | OnFlags);
479   }
480   [[nodiscard]] static SCEV::NoWrapFlags
481   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
482     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
483   }
484   [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
485                                      SCEV::NoWrapFlags TestFlags) {
486     return TestFlags == maskFlags(Flags, TestFlags);
487   };
488 
489   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
490                   DominatorTree &DT, LoopInfo &LI);
491   ScalarEvolution(ScalarEvolution &&Arg);
492   ~ScalarEvolution();
493 
494   LLVMContext &getContext() const { return F.getContext(); }
495 
496   /// Test if values of the given type are analyzable within the SCEV
497   /// framework. This primarily includes integer types, and it can optionally
498   /// include pointer types if the ScalarEvolution class has access to
499   /// target-specific information.
500   bool isSCEVable(Type *Ty) const;
501 
502   /// Return the size in bits of the specified type, for which isSCEVable must
503   /// return true.
504   uint64_t getTypeSizeInBits(Type *Ty) const;
505 
506   /// Return a type with the same bitwidth as the given type and which
507   /// represents how SCEV will treat the given type, for which isSCEVable must
508   /// return true. For pointer types, this is the pointer-sized integer type.
509   Type *getEffectiveSCEVType(Type *Ty) const;
510 
511   // Returns a wider type among {Ty1, Ty2}.
512   Type *getWiderType(Type *Ty1, Type *Ty2) const;
513 
514   /// Return true if there exists a point in the program at which both
515   /// A and B could be operands to the same instruction.
516   /// SCEV expressions are generally assumed to correspond to instructions
517   /// which could exists in IR.  In general, this requires that there exists
518   /// a use point in the program where all operands dominate the use.
519   ///
520   /// Example:
521   /// loop {
522   ///   if
523   ///     loop { v1 = load @global1; }
524   ///   else
525   ///     loop { v2 = load @global2; }
526   /// }
527   /// No SCEV with operand V1, and v2 can exist in this program.
528   bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B);
529 
530   /// Return true if the SCEV is a scAddRecExpr or it contains
531   /// scAddRecExpr. The result will be cached in HasRecMap.
532   bool containsAddRecurrence(const SCEV *S);
533 
534   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
535   /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
536   /// no-overflow fact should be true in the context of this instruction.
537   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
538                        const SCEV *LHS, const SCEV *RHS,
539                        const Instruction *CtxI = nullptr);
540 
541   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
542   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
543   /// Does not mutate the original instruction. Returns std::nullopt if it could
544   /// not deduce more precise flags than the instruction already has, otherwise
545   /// returns proven flags.
546   std::optional<SCEV::NoWrapFlags>
547   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
548 
549   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
550   void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
551 
552   /// Return true if the SCEV expression contains an undef value.
553   bool containsUndefs(const SCEV *S) const;
554 
555   /// Return true if the SCEV expression contains a Value that has been
556   /// optimised out and is now a nullptr.
557   bool containsErasedValue(const SCEV *S) const;
558 
559   /// Return a SCEV expression for the full generality of the specified
560   /// expression.
561   const SCEV *getSCEV(Value *V);
562 
563   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
564   const SCEV *getExistingSCEV(Value *V);
565 
566   const SCEV *getConstant(ConstantInt *V);
567   const SCEV *getConstant(const APInt &Val);
568   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
569   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
570   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
571   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
572   const SCEV *getVScale(Type *Ty);
573   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
574   const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
575                                     unsigned Depth = 0);
576   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
577   const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
578                                     unsigned Depth = 0);
579   const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
580   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
581   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
582                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
583                          unsigned Depth = 0);
584   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
585                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
586                          unsigned Depth = 0) {
587     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
588     return getAddExpr(Ops, Flags, Depth);
589   }
590   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
591                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
592                          unsigned Depth = 0) {
593     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
594     return getAddExpr(Ops, Flags, Depth);
595   }
596   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
597                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
598                          unsigned Depth = 0);
599   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
600                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
601                          unsigned Depth = 0) {
602     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
603     return getMulExpr(Ops, Flags, Depth);
604   }
605   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
606                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
607                          unsigned Depth = 0) {
608     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
609     return getMulExpr(Ops, Flags, Depth);
610   }
611   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
612   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
613   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
614   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
615                             SCEV::NoWrapFlags Flags);
616   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
617                             const Loop *L, SCEV::NoWrapFlags Flags);
618   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
619                             const Loop *L, SCEV::NoWrapFlags Flags) {
620     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
621     return getAddRecExpr(NewOp, L, Flags);
622   }
623 
624   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
625   /// Predicates. If successful return these <AddRecExpr, Predicates>;
626   /// The function is intended to be called from PSCEV (the caller will decide
627   /// whether to actually add the predicates and carry out the rewrites).
628   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
629   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
630 
631   /// Returns an expression for a GEP
632   ///
633   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
634   /// instead we use IndexExprs.
635   /// \p IndexExprs The expressions for the indices.
636   const SCEV *getGEPExpr(GEPOperator *GEP,
637                          const SmallVectorImpl<const SCEV *> &IndexExprs);
638   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
639   const SCEV *getMinMaxExpr(SCEVTypes Kind,
640                             SmallVectorImpl<const SCEV *> &Operands);
641   const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
642                                       SmallVectorImpl<const SCEV *> &Operands);
643   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
644   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
645   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
646   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
647   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
648   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
649   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
650                           bool Sequential = false);
651   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
652                           bool Sequential = false);
653   const SCEV *getUnknown(Value *V);
654   const SCEV *getCouldNotCompute();
655 
656   /// Return a SCEV for the constant 0 of a specific type.
657   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
658 
659   /// Return a SCEV for the constant 1 of a specific type.
660   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
661 
662   /// Return a SCEV for the constant \p Power of two.
663   const SCEV *getPowerOfTwo(Type *Ty, unsigned Power) {
664     assert(Power < getTypeSizeInBits(Ty) && "Power out of range");
665     return getConstant(APInt::getOneBitSet(getTypeSizeInBits(Ty), Power));
666   }
667 
668   /// Return a SCEV for the constant -1 of a specific type.
669   const SCEV *getMinusOne(Type *Ty) {
670     return getConstant(Ty, -1, /*isSigned=*/true);
671   }
672 
673   /// Return an expression for a TypeSize.
674   const SCEV *getSizeOfExpr(Type *IntTy, TypeSize Size);
675 
676   /// Return an expression for the alloc size of AllocTy that is type IntTy
677   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
678 
679   /// Return an expression for the store size of StoreTy that is type IntTy
680   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
681 
682   /// Return an expression for offsetof on the given field with type IntTy
683   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
684 
685   /// Return the SCEV object corresponding to -V.
686   const SCEV *getNegativeSCEV(const SCEV *V,
687                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
688 
689   /// Return the SCEV object corresponding to ~V.
690   const SCEV *getNotSCEV(const SCEV *V);
691 
692   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
693   ///
694   /// If the LHS and RHS are pointers which don't share a common base
695   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
696   /// To compute the difference between two unrelated pointers, you can
697   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
698   /// types that support it.
699   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
700                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
701                            unsigned Depth = 0);
702 
703   /// Compute ceil(N / D). N and D are treated as unsigned values.
704   ///
705   /// Since SCEV doesn't have native ceiling division, this generates a
706   /// SCEV expression of the following form:
707   ///
708   /// umin(N, 1) + floor((N - umin(N, 1)) / D)
709   ///
710   /// A denominator of zero or poison is handled the same way as getUDivExpr().
711   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
712 
713   /// Return a SCEV corresponding to a conversion of the input value to the
714   /// specified type.  If the type must be extended, it is zero extended.
715   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
716                                       unsigned Depth = 0);
717 
718   /// Return a SCEV corresponding to a conversion of the input value to the
719   /// specified type.  If the type must be extended, it is sign extended.
720   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
721                                       unsigned Depth = 0);
722 
723   /// Return a SCEV corresponding to a conversion of the input value to the
724   /// specified type.  If the type must be extended, it is zero extended.  The
725   /// conversion must not be narrowing.
726   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
727 
728   /// Return a SCEV corresponding to a conversion of the input value to the
729   /// specified type.  If the type must be extended, it is sign extended.  The
730   /// conversion must not be narrowing.
731   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
732 
733   /// Return a SCEV corresponding to a conversion of the input value to the
734   /// specified type. If the type must be extended, it is extended with
735   /// unspecified bits. The conversion must not be narrowing.
736   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
737 
738   /// Return a SCEV corresponding to a conversion of the input value to the
739   /// specified type.  The conversion must not be widening.
740   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
741 
742   /// Promote the operands to the wider of the types using zero-extension, and
743   /// then perform a umax operation with them.
744   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
745 
746   /// Promote the operands to the wider of the types using zero-extension, and
747   /// then perform a umin operation with them.
748   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
749                                          bool Sequential = false);
750 
751   /// Promote the operands to the wider of the types using zero-extension, and
752   /// then perform a umin operation with them. N-ary function.
753   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
754                                          bool Sequential = false);
755 
756   /// Transitively follow the chain of pointer-type operands until reaching a
757   /// SCEV that does not have a single pointer operand. This returns a
758   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
759   /// cases do exist.
760   const SCEV *getPointerBase(const SCEV *V);
761 
762   /// Compute an expression equivalent to S - getPointerBase(S).
763   const SCEV *removePointerBase(const SCEV *S);
764 
765   /// Return a SCEV expression for the specified value at the specified scope
766   /// in the program.  The L value specifies a loop nest to evaluate the
767   /// expression at, where null is the top-level or a specified loop is
768   /// immediately inside of the loop.
769   ///
770   /// This method can be used to compute the exit value for a variable defined
771   /// in a loop by querying what the value will hold in the parent loop.
772   ///
773   /// In the case that a relevant loop exit value cannot be computed, the
774   /// original value V is returned.
775   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
776 
777   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
778   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
779 
780   /// Test whether entry to the loop is protected by a conditional between LHS
781   /// and RHS.  This is used to help avoid max expressions in loop trip
782   /// counts, and to eliminate casts.
783   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
784                                 const SCEV *LHS, const SCEV *RHS);
785 
786   /// Test whether entry to the basic block is protected by a conditional
787   /// between LHS and RHS.
788   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
789                                       ICmpInst::Predicate Pred, const SCEV *LHS,
790                                       const SCEV *RHS);
791 
792   /// Test whether the backedge of the loop is protected by a conditional
793   /// between LHS and RHS.  This is used to eliminate casts.
794   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
795                                    const SCEV *LHS, const SCEV *RHS);
796 
797   /// A version of getTripCountFromExitCount below which always picks an
798   /// evaluation type which can not result in overflow.
799   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
800 
801   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
802   /// count".  A "trip count" is the number of times the header of the loop
803   /// will execute if an exit is taken after the specified number of backedges
804   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
805   /// expression can overflow if ExitCount = UINT_MAX.  If EvalTy is not wide
806   /// enough to hold the result without overflow, result unsigned wraps with
807   /// 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
808   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, Type *EvalTy,
809                                         const Loop *L);
810 
811   /// Returns the exact trip count of the loop if we can compute it, and
812   /// the result is a small constant.  '0' is used to represent an unknown
813   /// or non-constant trip count.  Note that a trip count is simply one more
814   /// than the backedge taken count for the loop.
815   unsigned getSmallConstantTripCount(const Loop *L);
816 
817   /// Return the exact trip count for this loop if we exit through ExitingBlock.
818   /// '0' is used to represent an unknown or non-constant trip count.  Note
819   /// that a trip count is simply one more than the backedge taken count for
820   /// the same exit.
821   /// This "trip count" assumes that control exits via ExitingBlock. More
822   /// precisely, it is the number of times that control will reach ExitingBlock
823   /// before taking the branch. For loops with multiple exits, it may not be
824   /// the number times that the loop header executes if the loop exits
825   /// prematurely via another branch.
826   unsigned getSmallConstantTripCount(const Loop *L,
827                                      const BasicBlock *ExitingBlock);
828 
829   /// Returns the upper bound of the loop trip count as a normal unsigned
830   /// value.
831   /// Returns 0 if the trip count is unknown or not constant.
832   unsigned getSmallConstantMaxTripCount(const Loop *L);
833 
834   /// Returns the largest constant divisor of the trip count as a normal
835   /// unsigned value, if possible. This means that the actual trip count is
836   /// always a multiple of the returned value. Returns 1 if the trip count is
837   /// unknown or not guaranteed to be the multiple of a constant., Will also
838   /// return 1 if the trip count is very large (>= 2^32).
839   /// Note that the argument is an exit count for loop L, NOT a trip count.
840   unsigned getSmallConstantTripMultiple(const Loop *L,
841                                         const SCEV *ExitCount);
842 
843   /// Returns the largest constant divisor of the trip count of the
844   /// loop.  Will return 1 if no trip count could be computed, or if a
845   /// divisor could not be found.
846   unsigned getSmallConstantTripMultiple(const Loop *L);
847 
848   /// Returns the largest constant divisor of the trip count of this loop as a
849   /// normal unsigned value, if possible. This means that the actual trip
850   /// count is always a multiple of the returned value (don't forget the trip
851   /// count could very well be zero as well!). As explained in the comments
852   /// for getSmallConstantTripCount, this assumes that control exits the loop
853   /// via ExitingBlock.
854   unsigned getSmallConstantTripMultiple(const Loop *L,
855                                         const BasicBlock *ExitingBlock);
856 
857   /// The terms "backedge taken count" and "exit count" are used
858   /// interchangeably to refer to the number of times the backedge of a loop
859   /// has executed before the loop is exited.
860   enum ExitCountKind {
861     /// An expression exactly describing the number of times the backedge has
862     /// executed when a loop is exited.
863     Exact,
864     /// A constant which provides an upper bound on the exact trip count.
865     ConstantMaximum,
866     /// An expression which provides an upper bound on the exact trip count.
867     SymbolicMaximum,
868   };
869 
870   /// Return the number of times the backedge executes before the given exit
871   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
872   /// For a single exit loop, this value is equivelent to the result of
873   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
874   /// before the backedge is executed (ExitCount + 1) times.  Note that there
875   /// is no guarantee about *which* exit is taken on the exiting iteration.
876   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
877                            ExitCountKind Kind = Exact);
878 
879   /// If the specified loop has a predictable backedge-taken count, return it,
880   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
881   /// the number of times the loop header will be branched to from within the
882   /// loop, assuming there are no abnormal exists like exception throws. This is
883   /// one less than the trip count of the loop, since it doesn't count the first
884   /// iteration, when the header is branched to from outside the loop.
885   ///
886   /// Note that it is not valid to call this method on a loop without a
887   /// loop-invariant backedge-taken count (see
888   /// hasLoopInvariantBackedgeTakenCount).
889   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
890 
891   /// Similar to getBackedgeTakenCount, except it will add a set of
892   /// SCEV predicates to Predicates that are required to be true in order for
893   /// the answer to be correct. Predicates can be checked with run-time
894   /// checks and can be used to perform loop versioning.
895   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
896                                               SmallVector<const SCEVPredicate *, 4> &Predicates);
897 
898   /// When successful, this returns a SCEVConstant that is greater than or equal
899   /// to (i.e. a "conservative over-approximation") of the value returend by
900   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
901   /// SCEVCouldNotCompute object.
902   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
903     return getBackedgeTakenCount(L, ConstantMaximum);
904   }
905 
906   /// When successful, this returns a SCEV that is greater than or equal
907   /// to (i.e. a "conservative over-approximation") of the value returend by
908   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
909   /// SCEVCouldNotCompute object.
910   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
911     return getBackedgeTakenCount(L, SymbolicMaximum);
912   }
913 
914   /// Return true if the backedge taken count is either the value returned by
915   /// getConstantMaxBackedgeTakenCount or zero.
916   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
917 
918   /// Return true if the specified loop has an analyzable loop-invariant
919   /// backedge-taken count.
920   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
921 
922   // This method should be called by the client when it made any change that
923   // would invalidate SCEV's answers, and the client wants to remove all loop
924   // information held internally by ScalarEvolution. This is intended to be used
925   // when the alternative to forget a loop is too expensive (i.e. large loop
926   // bodies).
927   void forgetAllLoops();
928 
929   /// This method should be called by the client when it has changed a loop in
930   /// a way that may effect ScalarEvolution's ability to compute a trip count,
931   /// or if the loop is deleted.  This call is potentially expensive for large
932   /// loop bodies.
933   void forgetLoop(const Loop *L);
934 
935   // This method invokes forgetLoop for the outermost loop of the given loop
936   // \p L, making ScalarEvolution forget about all this subtree. This needs to
937   // be done whenever we make a transform that may affect the parameters of the
938   // outer loop, such as exit counts for branches.
939   void forgetTopmostLoop(const Loop *L);
940 
941   /// This method should be called by the client when it has changed a value
942   /// in a way that may effect its value, or which may disconnect it from a
943   /// def-use chain linking it to a loop.
944   void forgetValue(Value *V);
945 
946   /// Forget LCSSA phi node V of loop L to which a new predecessor was added,
947   /// such that it may no longer be trivial.
948   void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V);
949 
950   /// Called when the client has changed the disposition of values in
951   /// this loop.
952   ///
953   /// We don't have a way to invalidate per-loop dispositions. Clear and
954   /// recompute is simpler.
955   void forgetLoopDispositions();
956 
957   /// Called when the client has changed the disposition of values in
958   /// a loop or block.
959   ///
960   /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
961   /// and recompute is simpler.
962   void forgetBlockAndLoopDispositions(Value *V = nullptr);
963 
964   /// Determine the minimum number of zero bits that S is guaranteed to end in
965   /// (at every loop iteration).  It is, at the same time, the minimum number
966   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
967   /// If S is guaranteed to be 0, it returns the bitwidth of S.
968   uint32_t getMinTrailingZeros(const SCEV *S);
969 
970   /// Returns the max constant multiple of S.
971   APInt getConstantMultiple(const SCEV *S);
972 
973   // Returns the max constant multiple of S. If S is exactly 0, return 1.
974   APInt getNonZeroConstantMultiple(const SCEV *S);
975 
976   /// Determine the unsigned range for a particular SCEV.
977   /// NOTE: This returns a copy of the reference returned by getRangeRef.
978   ConstantRange getUnsignedRange(const SCEV *S) {
979     return getRangeRef(S, HINT_RANGE_UNSIGNED);
980   }
981 
982   /// Determine the min of the unsigned range for a particular SCEV.
983   APInt getUnsignedRangeMin(const SCEV *S) {
984     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
985   }
986 
987   /// Determine the max of the unsigned range for a particular SCEV.
988   APInt getUnsignedRangeMax(const SCEV *S) {
989     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
990   }
991 
992   /// Determine the signed range for a particular SCEV.
993   /// NOTE: This returns a copy of the reference returned by getRangeRef.
994   ConstantRange getSignedRange(const SCEV *S) {
995     return getRangeRef(S, HINT_RANGE_SIGNED);
996   }
997 
998   /// Determine the min of the signed range for a particular SCEV.
999   APInt getSignedRangeMin(const SCEV *S) {
1000     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
1001   }
1002 
1003   /// Determine the max of the signed range for a particular SCEV.
1004   APInt getSignedRangeMax(const SCEV *S) {
1005     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
1006   }
1007 
1008   /// Test if the given expression is known to be negative.
1009   bool isKnownNegative(const SCEV *S);
1010 
1011   /// Test if the given expression is known to be positive.
1012   bool isKnownPositive(const SCEV *S);
1013 
1014   /// Test if the given expression is known to be non-negative.
1015   bool isKnownNonNegative(const SCEV *S);
1016 
1017   /// Test if the given expression is known to be non-positive.
1018   bool isKnownNonPositive(const SCEV *S);
1019 
1020   /// Test if the given expression is known to be non-zero.
1021   bool isKnownNonZero(const SCEV *S);
1022 
1023   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1024   /// \p S by substitution of all AddRec sub-expression related to loop \p L
1025   /// with initial value of that SCEV. The second is obtained from \p S by
1026   /// substitution of all AddRec sub-expressions related to loop \p L with post
1027   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1028   /// sub-expressions (not related to \p L) remain the same.
1029   /// If the \p S contains non-invariant unknown SCEV the function returns
1030   /// CouldNotCompute SCEV in both values of std::pair.
1031   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1032   /// the function returns pair:
1033   /// first = {0, +, 1}<L2>
1034   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1035   /// We can see that for the first AddRec sub-expression it was replaced with
1036   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1037   /// increment value) for the second one. In both cases AddRec expression
1038   /// related to L2 remains the same.
1039   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1040                                                                 const SCEV *S);
1041 
1042   /// We'd like to check the predicate on every iteration of the most dominated
1043   /// loop between loops used in LHS and RHS.
1044   /// To do this we use the following list of steps:
1045   /// 1. Collect set S all loops on which either LHS or RHS depend.
1046   /// 2. If S is non-empty
1047   /// a. Let PD be the element of S which is dominated by all other elements.
1048   /// b. Let E(LHS) be value of LHS on entry of PD.
1049   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1050   ///    attached to PD on with their entry values.
1051   ///    Define E(RHS) in the same way.
1052   /// c. Let B(LHS) be value of L on backedge of PD.
1053   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1054   ///    attached to PD on with their backedge values.
1055   ///    Define B(RHS) in the same way.
1056   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1057   ///    so we can assert on that.
1058   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1059   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1060   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1061                            const SCEV *RHS);
1062 
1063   /// Test if the given expression is known to satisfy the condition described
1064   /// by Pred, LHS, and RHS.
1065   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1066                         const SCEV *RHS);
1067 
1068   /// Check whether the condition described by Pred, LHS, and RHS is true or
1069   /// false. If we know it, return the evaluation of this condition. If neither
1070   /// is proved, return std::nullopt.
1071   std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
1072                                         const SCEV *LHS, const SCEV *RHS);
1073 
1074   /// Test if the given expression is known to satisfy the condition described
1075   /// by Pred, LHS, and RHS in the given Context.
1076   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1077                           const SCEV *RHS, const Instruction *CtxI);
1078 
1079   /// Check whether the condition described by Pred, LHS, and RHS is true or
1080   /// false in the given \p Context. If we know it, return the evaluation of
1081   /// this condition. If neither is proved, return std::nullopt.
1082   std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
1083                                           const SCEV *LHS, const SCEV *RHS,
1084                                           const Instruction *CtxI);
1085 
1086   /// Test if the condition described by Pred, LHS, RHS is known to be true on
1087   /// every iteration of the loop of the recurrency LHS.
1088   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1089                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
1090 
1091   /// Information about the number of loop iterations for which a loop exit's
1092   /// branch condition evaluates to the not-taken path.  This is a temporary
1093   /// pair of exact and max expressions that are eventually summarized in
1094   /// ExitNotTakenInfo and BackedgeTakenInfo.
1095   struct ExitLimit {
1096     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1097     const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1098                                      // times
1099     const SCEV *SymbolicMaxNotTaken;
1100 
1101     // Not taken either exactly ConstantMaxNotTaken or zero times
1102     bool MaxOrZero = false;
1103 
1104     /// A set of predicate guards for this ExitLimit. The result is only valid
1105     /// if all of the predicates in \c Predicates evaluate to 'true' at
1106     /// run-time.
1107     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1108 
1109     void addPredicate(const SCEVPredicate *P) {
1110       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1111       Predicates.insert(P);
1112     }
1113 
1114     /// Construct either an exact exit limit from a constant, or an unknown
1115     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1116     /// as arguments and asserts enforce that internally.
1117     /*implicit*/ ExitLimit(const SCEV *E);
1118 
1119     ExitLimit(
1120         const SCEV *E, const SCEV *ConstantMaxNotTaken,
1121         const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1122         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
1123             std::nullopt);
1124 
1125     ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1126               const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1127               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1128 
1129     /// Test whether this ExitLimit contains any computed information, or
1130     /// whether it's all SCEVCouldNotCompute values.
1131     bool hasAnyInfo() const {
1132       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1133              !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1134     }
1135 
1136     /// Test whether this ExitLimit contains all information.
1137     bool hasFullInfo() const {
1138       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1139     }
1140   };
1141 
1142   /// Compute the number of times the backedge of the specified loop will
1143   /// execute if its exit condition were a conditional branch of ExitCond.
1144   ///
1145   /// \p ControlsOnlyExit is true if ExitCond directly controls the only exit
1146   /// branch. In this case, we can assume that the loop exits only if the
1147   /// condition is true and can infer that failing to meet the condition prior
1148   /// to integer wraparound results in undefined behavior.
1149   ///
1150   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1151   /// SCEV predicates in order to return an exact answer.
1152   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1153                                      bool ExitIfTrue, bool ControlsOnlyExit,
1154                                      bool AllowPredicates = false);
1155 
1156   /// A predicate is said to be monotonically increasing if may go from being
1157   /// false to being true as the loop iterates, but never the other way
1158   /// around.  A predicate is said to be monotonically decreasing if may go
1159   /// from being true to being false as the loop iterates, but never the other
1160   /// way around.
1161   enum MonotonicPredicateType {
1162     MonotonicallyIncreasing,
1163     MonotonicallyDecreasing
1164   };
1165 
1166   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1167   /// monotonically increasing or decreasing, returns
1168   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1169   /// respectively. If we could not prove either of these facts, returns
1170   /// std::nullopt.
1171   std::optional<MonotonicPredicateType>
1172   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1173                             ICmpInst::Predicate Pred);
1174 
1175   struct LoopInvariantPredicate {
1176     ICmpInst::Predicate Pred;
1177     const SCEV *LHS;
1178     const SCEV *RHS;
1179 
1180     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1181                            const SCEV *RHS)
1182         : Pred(Pred), LHS(LHS), RHS(RHS) {}
1183   };
1184   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1185   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1186   /// invariants, available at L's entry. Otherwise, return std::nullopt.
1187   std::optional<LoopInvariantPredicate>
1188   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1189                             const SCEV *RHS, const Loop *L,
1190                             const Instruction *CtxI = nullptr);
1191 
1192   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1193   /// respect to L at given Context during at least first MaxIter iterations,
1194   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1195   /// available at L's entry. Otherwise, return std::nullopt. The predicate
1196   /// should be the loop's exit condition.
1197   std::optional<LoopInvariantPredicate>
1198   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1199                                                 const SCEV *LHS,
1200                                                 const SCEV *RHS, const Loop *L,
1201                                                 const Instruction *CtxI,
1202                                                 const SCEV *MaxIter);
1203 
1204   std::optional<LoopInvariantPredicate>
1205   getLoopInvariantExitCondDuringFirstIterationsImpl(
1206       ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1207       const Instruction *CtxI, const SCEV *MaxIter);
1208 
1209   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1210   /// iff any changes were made. If the operands are provably equal or
1211   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1212   /// ICMP_EQ or ICMP_NE.
1213   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1214                             const SCEV *&RHS, unsigned Depth = 0);
1215 
1216   /// Return the "disposition" of the given SCEV with respect to the given
1217   /// loop.
1218   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1219 
1220   /// Return true if the value of the given SCEV is unchanging in the
1221   /// specified loop.
1222   bool isLoopInvariant(const SCEV *S, const Loop *L);
1223 
1224   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1225   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1226   /// the header of loop L.
1227   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1228 
1229   /// Return true if the given SCEV changes value in a known way in the
1230   /// specified loop.  This property being true implies that the value is
1231   /// variant in the loop AND that we can emit an expression to compute the
1232   /// value of the expression at any particular loop iteration.
1233   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1234 
1235   /// Return the "disposition" of the given SCEV with respect to the given
1236   /// block.
1237   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1238 
1239   /// Return true if elements that makes up the given SCEV dominate the
1240   /// specified basic block.
1241   bool dominates(const SCEV *S, const BasicBlock *BB);
1242 
1243   /// Return true if elements that makes up the given SCEV properly dominate
1244   /// the specified basic block.
1245   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1246 
1247   /// Test whether the given SCEV has Op as a direct or indirect operand.
1248   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1249 
1250   /// Return the size of an element read or written by Inst.
1251   const SCEV *getElementSize(Instruction *Inst);
1252 
1253   void print(raw_ostream &OS) const;
1254   void verify() const;
1255   bool invalidate(Function &F, const PreservedAnalyses &PA,
1256                   FunctionAnalysisManager::Invalidator &Inv);
1257 
1258   /// Return the DataLayout associated with the module this SCEV instance is
1259   /// operating on.
1260   const DataLayout &getDataLayout() const {
1261     return F.getParent()->getDataLayout();
1262   }
1263 
1264   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1265   const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1266                                            const SCEV *LHS, const SCEV *RHS);
1267 
1268   const SCEVPredicate *
1269   getWrapPredicate(const SCEVAddRecExpr *AR,
1270                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1271 
1272   /// Re-writes the SCEV according to the Predicates in \p A.
1273   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1274                                     const SCEVPredicate &A);
1275   /// Tries to convert the \p S expression to an AddRec expression,
1276   /// adding additional predicates to \p Preds as required.
1277   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1278       const SCEV *S, const Loop *L,
1279       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1280 
1281   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1282   /// constant, and std::nullopt if it isn't.
1283   ///
1284   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1285   /// frugal here since we just bail out of actually constructing and
1286   /// canonicalizing an expression in the cases where the result isn't going
1287   /// to be a constant.
1288   std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1289                                                  const SCEV *RHS);
1290 
1291   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1292   /// this AddRec (such as range info) in case if new flags may potentially
1293   /// sharpen it.
1294   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1295 
1296   /// Try to apply information from loop guards for \p L to \p Expr.
1297   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1298 
1299   /// Return true if the loop has no abnormal exits. That is, if the loop
1300   /// is not infinite, it must exit through an explicit edge in the CFG.
1301   /// (As opposed to either a) throwing out of the function or b) entering a
1302   /// well defined infinite loop in some callee.)
1303   bool loopHasNoAbnormalExits(const Loop *L) {
1304     return getLoopProperties(L).HasNoAbnormalExits;
1305   }
1306 
1307   /// Return true if this loop is finite by assumption.  That is,
1308   /// to be infinite, it must also be undefined.
1309   bool loopIsFiniteByAssumption(const Loop *L);
1310 
1311   /// Return the set of Values that, if poison, will definitively result in S
1312   /// being poison as well. The returned set may be incomplete, i.e. there can
1313   /// be additional Values that also result in S being poison.
1314   void getPoisonGeneratingValues(SmallPtrSetImpl<const Value *> &Result,
1315                                  const SCEV *S);
1316 
1317   /// Check whether it is poison-safe to represent the expression S using the
1318   /// instruction I. If such a replacement is performed, the poison flags of
1319   /// instructions in DropPoisonGeneratingInsts must be dropped.
1320   bool canReuseInstruction(
1321       const SCEV *S, Instruction *I,
1322       SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts);
1323 
1324   class FoldID {
1325     const SCEV *Op = nullptr;
1326     const Type *Ty = nullptr;
1327     unsigned short C;
1328 
1329   public:
1330     FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty) : Op(Op), Ty(Ty), C(C) {
1331       assert(Op);
1332       assert(Ty);
1333     }
1334 
1335     FoldID(unsigned short C) : C(C) {}
1336 
1337     unsigned computeHash() const {
1338       return detail::combineHashValue(
1339           C, detail::combineHashValue(reinterpret_cast<uintptr_t>(Op),
1340                                       reinterpret_cast<uintptr_t>(Ty)));
1341     }
1342 
1343     bool operator==(const FoldID &RHS) const {
1344       return std::tie(Op, Ty, C) == std::tie(RHS.Op, RHS.Ty, RHS.C);
1345     }
1346   };
1347 
1348 private:
1349   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1350   /// Value is deleted.
1351   class SCEVCallbackVH final : public CallbackVH {
1352     ScalarEvolution *SE;
1353 
1354     void deleted() override;
1355     void allUsesReplacedWith(Value *New) override;
1356 
1357   public:
1358     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1359   };
1360 
1361   friend class SCEVCallbackVH;
1362   friend class SCEVExpander;
1363   friend class SCEVUnknown;
1364 
1365   /// The function we are analyzing.
1366   Function &F;
1367 
1368   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1369   /// at all?  If this is false, we avoid doing work that will only help if
1370   /// thare are guards present in the IR.
1371   bool HasGuards;
1372 
1373   /// The target library information for the target we are targeting.
1374   TargetLibraryInfo &TLI;
1375 
1376   /// The tracker for \@llvm.assume intrinsics in this function.
1377   AssumptionCache &AC;
1378 
1379   /// The dominator tree.
1380   DominatorTree &DT;
1381 
1382   /// The loop information for the function we are currently analyzing.
1383   LoopInfo &LI;
1384 
1385   /// This SCEV is used to represent unknown trip counts and things.
1386   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1387 
1388   /// The type for HasRecMap.
1389   using HasRecMapType = DenseMap<const SCEV *, bool>;
1390 
1391   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1392   HasRecMapType HasRecMap;
1393 
1394   /// The type for ExprValueMap.
1395   using ValueSetVector = SmallSetVector<Value *, 4>;
1396   using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1397 
1398   /// ExprValueMap -- This map records the original values from which
1399   /// the SCEV expr is generated from.
1400   ExprValueMapType ExprValueMap;
1401 
1402   /// The type for ValueExprMap.
1403   using ValueExprMapType =
1404       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1405 
1406   /// This is a cache of the values we have analyzed so far.
1407   ValueExprMapType ValueExprMap;
1408 
1409   /// This is a cache for expressions that got folded to a different existing
1410   /// SCEV.
1411   DenseMap<FoldID, const SCEV *> FoldCache;
1412   DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
1413 
1414   /// Mark predicate values currently being processed by isImpliedCond.
1415   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1416 
1417   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1418   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1419 
1420   /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1421   SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1422 
1423   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1424   SmallPtrSet<const PHINode *, 6> PendingMerges;
1425 
1426   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1427   /// conditions dominating the backedge of a loop.
1428   bool WalkingBEDominatingConds = false;
1429 
1430   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1431   /// predicate by splitting it into a set of independent predicates.
1432   bool ProvingSplitPredicate = false;
1433 
1434   /// Memoized values for the getConstantMultiple
1435   DenseMap<const SCEV *, APInt> ConstantMultipleCache;
1436 
1437   /// Return the Value set from which the SCEV expr is generated.
1438   ArrayRef<Value *> getSCEVValues(const SCEV *S);
1439 
1440   /// Private helper method for the getConstantMultiple method.
1441   APInt getConstantMultipleImpl(const SCEV *S);
1442 
1443   /// Information about the number of times a particular loop exit may be
1444   /// reached before exiting the loop.
1445   struct ExitNotTakenInfo {
1446     PoisoningVH<BasicBlock> ExitingBlock;
1447     const SCEV *ExactNotTaken;
1448     const SCEV *ConstantMaxNotTaken;
1449     const SCEV *SymbolicMaxNotTaken;
1450     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1451 
1452     explicit ExitNotTakenInfo(
1453         PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
1454         const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
1455         const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1456         : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1457           ConstantMaxNotTaken(ConstantMaxNotTaken),
1458           SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1459 
1460     bool hasAlwaysTruePredicate() const {
1461       return Predicates.empty();
1462     }
1463   };
1464 
1465   /// Information about the backedge-taken count of a loop. This currently
1466   /// includes an exact count and a maximum count.
1467   ///
1468   class BackedgeTakenInfo {
1469     friend class ScalarEvolution;
1470 
1471     /// A list of computable exits and their not-taken counts.  Loops almost
1472     /// never have more than one computable exit.
1473     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1474 
1475     /// Expression indicating the least constant maximum backedge-taken count of
1476     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1477     /// only valid if the redicates associated with all loop exits are true.
1478     const SCEV *ConstantMax = nullptr;
1479 
1480     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1481     /// the loop.
1482     bool IsComplete = false;
1483 
1484     /// Expression indicating the least maximum backedge-taken count of the loop
1485     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1486     const SCEV *SymbolicMax = nullptr;
1487 
1488     /// True iff the backedge is taken either exactly Max or zero times.
1489     bool MaxOrZero = false;
1490 
1491     bool isComplete() const { return IsComplete; }
1492     const SCEV *getConstantMax() const { return ConstantMax; }
1493 
1494   public:
1495     BackedgeTakenInfo() = default;
1496     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1497     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1498 
1499     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1500 
1501     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1502     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1503                       const SCEV *ConstantMax, bool MaxOrZero);
1504 
1505     /// Test whether this BackedgeTakenInfo contains any computed information,
1506     /// or whether it's all SCEVCouldNotCompute values.
1507     bool hasAnyInfo() const {
1508       return !ExitNotTaken.empty() ||
1509              !isa<SCEVCouldNotCompute>(getConstantMax());
1510     }
1511 
1512     /// Test whether this BackedgeTakenInfo contains complete information.
1513     bool hasFullInfo() const { return isComplete(); }
1514 
1515     /// Return an expression indicating the exact *backedge-taken*
1516     /// count of the loop if it is known or SCEVCouldNotCompute
1517     /// otherwise.  If execution makes it to the backedge on every
1518     /// iteration (i.e. there are no abnormal exists like exception
1519     /// throws and thread exits) then this is the number of times the
1520     /// loop header will execute minus one.
1521     ///
1522     /// If the SCEV predicate associated with the answer can be different
1523     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1524     /// The SCEV predicate associated with the answer will be added to
1525     /// Predicates. A run-time check needs to be emitted for the SCEV
1526     /// predicate in order for the answer to be valid.
1527     ///
1528     /// Note that we should always know if we need to pass a predicate
1529     /// argument or not from the way the ExitCounts vector was computed.
1530     /// If we allowed SCEV predicates to be generated when populating this
1531     /// vector, this information can contain them and therefore a
1532     /// SCEVPredicate argument should be added to getExact.
1533     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1534                          SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1535 
1536     /// Return the number of times this loop exit may fall through to the back
1537     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1538     /// this block before this number of iterations, but may exit via another
1539     /// block.
1540     const SCEV *getExact(const BasicBlock *ExitingBlock,
1541                          ScalarEvolution *SE) const;
1542 
1543     /// Get the constant max backedge taken count for the loop.
1544     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1545 
1546     /// Get the constant max backedge taken count for the particular loop exit.
1547     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1548                                ScalarEvolution *SE) const;
1549 
1550     /// Get the symbolic max backedge taken count for the loop.
1551     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1552 
1553     /// Get the symbolic max backedge taken count for the particular loop exit.
1554     const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
1555                                ScalarEvolution *SE) const;
1556 
1557     /// Return true if the number of times this backedge is taken is either the
1558     /// value returned by getConstantMax or zero.
1559     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1560   };
1561 
1562   /// Cache the backedge-taken count of the loops for this function as they
1563   /// are computed.
1564   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1565 
1566   /// Cache the predicated backedge-taken count of the loops for this
1567   /// function as they are computed.
1568   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1569 
1570   /// Loops whose backedge taken counts directly use this non-constant SCEV.
1571   DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1572       BECountUsers;
1573 
1574   /// This map contains entries for all of the PHI instructions that we
1575   /// attempt to compute constant evolutions for.  This allows us to avoid
1576   /// potentially expensive recomputation of these properties.  An instruction
1577   /// maps to null if we are unable to compute its exit value.
1578   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1579 
1580   /// This map contains entries for all the expressions that we attempt to
1581   /// compute getSCEVAtScope information for, which can be expensive in
1582   /// extreme cases.
1583   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1584       ValuesAtScopes;
1585 
1586   /// Reverse map for invalidation purposes: Stores of which SCEV and which
1587   /// loop this is the value-at-scope of.
1588   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1589       ValuesAtScopesUsers;
1590 
1591   /// Memoized computeLoopDisposition results.
1592   DenseMap<const SCEV *,
1593            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1594       LoopDispositions;
1595 
1596   struct LoopProperties {
1597     /// Set to true if the loop contains no instruction that can abnormally exit
1598     /// the loop (i.e. via throwing an exception, by terminating the thread
1599     /// cleanly or by infinite looping in a called function).  Strictly
1600     /// speaking, the last one is not leaving the loop, but is identical to
1601     /// leaving the loop for reasoning about undefined behavior.
1602     bool HasNoAbnormalExits;
1603 
1604     /// Set to true if the loop contains no instruction that can have side
1605     /// effects (i.e. via throwing an exception, volatile or atomic access).
1606     bool HasNoSideEffects;
1607   };
1608 
1609   /// Cache for \c getLoopProperties.
1610   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1611 
1612   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1613   LoopProperties getLoopProperties(const Loop *L);
1614 
1615   bool loopHasNoSideEffects(const Loop *L) {
1616     return getLoopProperties(L).HasNoSideEffects;
1617   }
1618 
1619   /// Compute a LoopDisposition value.
1620   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1621 
1622   /// Memoized computeBlockDisposition results.
1623   DenseMap<
1624       const SCEV *,
1625       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1626       BlockDispositions;
1627 
1628   /// Compute a BlockDisposition value.
1629   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1630 
1631   /// Stores all SCEV that use a given SCEV as its direct operand.
1632   DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1633 
1634   /// Memoized results from getRange
1635   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1636 
1637   /// Memoized results from getRange
1638   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1639 
1640   /// Used to parameterize getRange
1641   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1642 
1643   /// Set the memoized range for the given SCEV.
1644   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1645                                 ConstantRange CR) {
1646     DenseMap<const SCEV *, ConstantRange> &Cache =
1647         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1648 
1649     auto Pair = Cache.try_emplace(S, std::move(CR));
1650     if (!Pair.second)
1651       Pair.first->second = std::move(CR);
1652     return Pair.first->second;
1653   }
1654 
1655   /// Determine the range for a particular SCEV.
1656   /// NOTE: This returns a reference to an entry in a cache. It must be
1657   /// copied if its needed for longer.
1658   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1659                                    unsigned Depth = 0);
1660 
1661   /// Determine the range for a particular SCEV, but evaluates ranges for
1662   /// operands iteratively first.
1663   const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1664 
1665   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1666   /// Helper for \c getRange.
1667   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1668                                     const APInt &MaxBECount);
1669 
1670   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1671   /// Start,+,\p Step}<nw>.
1672   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1673                                                   const SCEV *MaxBECount,
1674                                                   unsigned BitWidth,
1675                                                   RangeSignHint SignHint);
1676 
1677   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1678   /// Step} by "factoring out" a ternary expression from the add recurrence.
1679   /// Helper called by \c getRange.
1680   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1681                                      const APInt &MaxBECount);
1682 
1683   /// If the unknown expression U corresponds to a simple recurrence, return
1684   /// a constant range which represents the entire recurrence.  Note that
1685   /// *add* recurrences with loop invariant steps aren't represented by
1686   /// SCEVUnknowns and thus don't use this mechanism.
1687   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1688 
1689   /// We know that there is no SCEV for the specified value.  Analyze the
1690   /// expression recursively.
1691   const SCEV *createSCEV(Value *V);
1692 
1693   /// We know that there is no SCEV for the specified value. Create a new SCEV
1694   /// for \p V iteratively.
1695   const SCEV *createSCEVIter(Value *V);
1696   /// Collect operands of \p V for which SCEV expressions should be constructed
1697   /// first. Returns a SCEV directly if it can be constructed trivially for \p
1698   /// V.
1699   const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1700 
1701   /// Provide the special handling we need to analyze PHI SCEVs.
1702   const SCEV *createNodeForPHI(PHINode *PN);
1703 
1704   /// Helper function called from createNodeForPHI.
1705   const SCEV *createAddRecFromPHI(PHINode *PN);
1706 
1707   /// A helper function for createAddRecFromPHI to handle simple cases.
1708   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1709                                             Value *StartValueV);
1710 
1711   /// Helper function called from createNodeForPHI.
1712   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1713 
1714   /// Provide special handling for a select-like instruction (currently this
1715   /// is either a select instruction or a phi node).  \p Ty is the type of the
1716   /// instruction being processed, that is assumed equivalent to
1717   /// "Cond ? TrueVal : FalseVal".
1718   std::optional<const SCEV *>
1719   createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1720                                                Value *TrueVal, Value *FalseVal);
1721 
1722   /// See if we can model this select-like instruction via umin_seq expression.
1723   const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1724                                                  Value *TrueVal,
1725                                                  Value *FalseVal);
1726 
1727   /// Given a value \p V, which is a select-like instruction (currently this is
1728   /// either a select instruction or a phi node), which is assumed equivalent to
1729   ///   Cond ? TrueVal : FalseVal
1730   /// see if we can model it as a SCEV expression.
1731   const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1732                                        Value *FalseVal);
1733 
1734   /// Provide the special handling we need to analyze GEP SCEVs.
1735   const SCEV *createNodeForGEP(GEPOperator *GEP);
1736 
1737   /// Implementation code for getSCEVAtScope; called at most once for each
1738   /// SCEV+Loop pair.
1739   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1740 
1741   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1742   /// values if the loop hasn't been analyzed yet. The returned result is
1743   /// guaranteed not to be predicated.
1744   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1745 
1746   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1747   /// with the purpose of returning complete information.
1748   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1749 
1750   /// Compute the number of times the specified loop will iterate.
1751   /// If AllowPredicates is set, we will create new SCEV predicates as
1752   /// necessary in order to return an exact answer.
1753   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1754                                               bool AllowPredicates = false);
1755 
1756   /// Compute the number of times the backedge of the specified loop will
1757   /// execute if it exits via the specified block. If AllowPredicates is set,
1758   /// this call will try to use a minimal set of SCEV predicates in order to
1759   /// return an exact answer.
1760   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1761                              bool AllowPredicates = false);
1762 
1763   /// Return a symbolic upper bound for the backedge taken count of the loop.
1764   /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1765   /// an arbitrary expression as opposed to only constants.
1766   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1767 
1768   // Helper functions for computeExitLimitFromCond to avoid exponential time
1769   // complexity.
1770 
1771   class ExitLimitCache {
1772     // It may look like we need key on the whole (L, ExitIfTrue,
1773     // ControlsOnlyExit, AllowPredicates) tuple, but recursive calls to
1774     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1775     // vary the in \c ExitCond and \c ControlsOnlyExit parameters.  We remember
1776     // the initial values of the other values to assert our assumption.
1777     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1778 
1779     const Loop *L;
1780     bool ExitIfTrue;
1781     bool AllowPredicates;
1782 
1783   public:
1784     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1785         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1786 
1787     std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1788                                   bool ExitIfTrue, bool ControlsOnlyExit,
1789                                   bool AllowPredicates);
1790 
1791     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1792                 bool ControlsOnlyExit, bool AllowPredicates,
1793                 const ExitLimit &EL);
1794   };
1795 
1796   using ExitLimitCacheTy = ExitLimitCache;
1797 
1798   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1799                                            const Loop *L, Value *ExitCond,
1800                                            bool ExitIfTrue,
1801                                            bool ControlsOnlyExit,
1802                                            bool AllowPredicates);
1803   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1804                                          Value *ExitCond, bool ExitIfTrue,
1805                                          bool ControlsOnlyExit,
1806                                          bool AllowPredicates);
1807   std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1808       ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
1809       bool ControlsOnlyExit, bool AllowPredicates);
1810 
1811   /// Compute the number of times the backedge of the specified loop will
1812   /// execute if its exit condition were a conditional branch of the ICmpInst
1813   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1814   /// to use a minimal set of SCEV predicates in order to return an exact
1815   /// answer.
1816   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1817                                      bool ExitIfTrue,
1818                                      bool IsSubExpr,
1819                                      bool AllowPredicates = false);
1820 
1821   /// Variant of previous which takes the components representing an ICmp
1822   /// as opposed to the ICmpInst itself.  Note that the prior version can
1823   /// return more precise results in some cases and is preferred when caller
1824   /// has a materialized ICmp.
1825   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1826                                      const SCEV *LHS, const SCEV *RHS,
1827                                      bool IsSubExpr,
1828                                      bool AllowPredicates = false);
1829 
1830   /// Compute the number of times the backedge of the specified loop will
1831   /// execute if its exit condition were a switch with a single exiting case
1832   /// to ExitingBB.
1833   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1834                                                  SwitchInst *Switch,
1835                                                  BasicBlock *ExitingBB,
1836                                                  bool IsSubExpr);
1837 
1838   /// Compute the exit limit of a loop that is controlled by a
1839   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1840   /// count in these cases (since SCEV has no way of expressing them), but we
1841   /// can still sometimes compute an upper bound.
1842   ///
1843   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1844   /// RHS`.
1845   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1846                                          ICmpInst::Predicate Pred);
1847 
1848   /// If the loop is known to execute a constant number of times (the
1849   /// condition evolves only from constants), try to evaluate a few iterations
1850   /// of the loop until we get the exit condition gets a value of ExitWhen
1851   /// (true or false).  If we cannot evaluate the exit count of the loop,
1852   /// return CouldNotCompute.
1853   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1854                                            bool ExitWhen);
1855 
1856   /// Return the number of times an exit condition comparing the specified
1857   /// value to zero will execute.  If not computable, return CouldNotCompute.
1858   /// If AllowPredicates is set, this call will try to use a minimal set of
1859   /// SCEV predicates in order to return an exact answer.
1860   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1861                          bool AllowPredicates = false);
1862 
1863   /// Return the number of times an exit condition checking the specified
1864   /// value for nonzero will execute.  If not computable, return
1865   /// CouldNotCompute.
1866   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1867 
1868   /// Return the number of times an exit condition containing the specified
1869   /// less-than comparison will execute.  If not computable, return
1870   /// CouldNotCompute.
1871   ///
1872   /// \p isSigned specifies whether the less-than is signed.
1873   ///
1874   /// \p ControlsOnlyExit is true when the LHS < RHS condition directly controls
1875   /// the branch (loops exits only if condition is true). In this case, we can
1876   /// use NoWrapFlags to skip overflow checks.
1877   ///
1878   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1879   /// SCEV predicates in order to return an exact answer.
1880   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1881                              bool isSigned, bool ControlsOnlyExit,
1882                              bool AllowPredicates = false);
1883 
1884   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1885                                 bool isSigned, bool IsSubExpr,
1886                                 bool AllowPredicates = false);
1887 
1888   /// Return a predecessor of BB (which may not be an immediate predecessor)
1889   /// which has exactly one successor from which BB is reachable, or null if
1890   /// no such block is found.
1891   std::pair<const BasicBlock *, const BasicBlock *>
1892   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1893 
1894   /// Test whether the condition described by Pred, LHS, and RHS is true
1895   /// whenever the given FoundCondValue value evaluates to true in given
1896   /// Context. If Context is nullptr, then the found predicate is true
1897   /// everywhere. LHS and FoundLHS may have different type width.
1898   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1899                      const Value *FoundCondValue, bool Inverse,
1900                      const Instruction *Context = nullptr);
1901 
1902   /// Test whether the condition described by Pred, LHS, and RHS is true
1903   /// whenever the given FoundCondValue value evaluates to true in given
1904   /// Context. If Context is nullptr, then the found predicate is true
1905   /// everywhere. LHS and FoundLHS must have same type width.
1906   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1907                                   const SCEV *RHS,
1908                                   ICmpInst::Predicate FoundPred,
1909                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1910                                   const Instruction *CtxI);
1911 
1912   /// Test whether the condition described by Pred, LHS, and RHS is true
1913   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1914   /// true in given Context. If Context is nullptr, then the found predicate is
1915   /// true everywhere.
1916   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1917                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1918                      const SCEV *FoundRHS,
1919                      const Instruction *Context = nullptr);
1920 
1921   /// Test whether the condition described by Pred, LHS, and RHS is true
1922   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1923   /// true in given Context. If Context is nullptr, then the found predicate is
1924   /// true everywhere.
1925   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1926                              const SCEV *RHS, const SCEV *FoundLHS,
1927                              const SCEV *FoundRHS,
1928                              const Instruction *Context = nullptr);
1929 
1930   /// Test whether the condition described by Pred, LHS, and RHS is true
1931   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1932   /// true. Here LHS is an operation that includes FoundLHS as one of its
1933   /// arguments.
1934   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1935                               const SCEV *LHS, const SCEV *RHS,
1936                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1937                               unsigned Depth = 0);
1938 
1939   /// Test whether the condition described by Pred, LHS, and RHS is true.
1940   /// Use only simple non-recursive types of checks, such as range analysis etc.
1941   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1942                                        const SCEV *LHS, const SCEV *RHS);
1943 
1944   /// Test whether the condition described by Pred, LHS, and RHS is true
1945   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1946   /// true.
1947   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1948                                    const SCEV *RHS, const SCEV *FoundLHS,
1949                                    const SCEV *FoundRHS);
1950 
1951   /// Test whether the condition described by Pred, LHS, and RHS is true
1952   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1953   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1954   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1955   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1956                                       const SCEV *RHS,
1957                                       ICmpInst::Predicate FoundPred,
1958                                       const SCEV *FoundLHS,
1959                                       const SCEV *FoundRHS);
1960 
1961   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1962   /// by a call to @llvm.experimental.guard in \p BB.
1963   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1964                          const SCEV *LHS, const SCEV *RHS);
1965 
1966   /// Test whether the condition described by Pred, LHS, and RHS is true
1967   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1968   /// true.
1969   ///
1970   /// This routine tries to rule out certain kinds of integer overflow, and
1971   /// then tries to reason about arithmetic properties of the predicates.
1972   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1973                                           const SCEV *LHS, const SCEV *RHS,
1974                                           const SCEV *FoundLHS,
1975                                           const SCEV *FoundRHS);
1976 
1977   /// Test whether the condition described by Pred, LHS, and RHS is true
1978   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1979   /// true.
1980   ///
1981   /// This routine tries to weaken the known condition basing on fact that
1982   /// FoundLHS is an AddRec.
1983   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1984                                            const SCEV *LHS, const SCEV *RHS,
1985                                            const SCEV *FoundLHS,
1986                                            const SCEV *FoundRHS,
1987                                            const Instruction *CtxI);
1988 
1989   /// Test whether the condition described by Pred, LHS, and RHS is true
1990   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1991   /// true.
1992   ///
1993   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1994   /// if it is true for every possible incoming value from their respective
1995   /// basic blocks.
1996   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1997                          const SCEV *LHS, const SCEV *RHS,
1998                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1999                          unsigned Depth);
2000 
2001   /// Test whether the condition described by Pred, LHS, and RHS is true
2002   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
2003   /// true.
2004   ///
2005   /// This routine tries to reason about shifts.
2006   bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
2007                                      const SCEV *RHS, const SCEV *FoundLHS,
2008                                      const SCEV *FoundRHS);
2009 
2010   /// If we know that the specified Phi is in the header of its containing
2011   /// loop, we know the loop executes a constant number of times, and the PHI
2012   /// node is just a recurrence involving constants, fold it.
2013   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2014                                               const Loop *L);
2015 
2016   /// Test if the given expression is known to satisfy the condition described
2017   /// by Pred and the known constant ranges of LHS and RHS.
2018   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
2019                                          const SCEV *LHS, const SCEV *RHS);
2020 
2021   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2022   /// integer overflow.
2023   ///
2024   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2025   /// positive.
2026   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
2027                                      const SCEV *RHS);
2028 
2029   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2030   /// prove them individually.
2031   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
2032                                     const SCEV *RHS);
2033 
2034   /// Try to match the Expr as "(L + R)<Flags>".
2035   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2036                       SCEV::NoWrapFlags &Flags);
2037 
2038   /// Forget predicated/non-predicated backedge taken counts for the given loop.
2039   void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2040 
2041   /// Drop memoized information for all \p SCEVs.
2042   void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2043 
2044   /// Helper for forgetMemoizedResults.
2045   void forgetMemoizedResultsImpl(const SCEV *S);
2046 
2047   /// Iterate over instructions in \p Worklist and their users. Erase entries
2048   /// from ValueExprMap and collect SCEV expressions in \p ToForget
2049   void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2050                           SmallPtrSetImpl<Instruction *> &Visited,
2051                           SmallVectorImpl<const SCEV *> &ToForget);
2052 
2053   /// Erase Value from ValueExprMap and ExprValueMap.
2054   void eraseValueFromMap(Value *V);
2055 
2056   /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2057   void insertValueToMap(Value *V, const SCEV *S);
2058 
2059   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2060   /// pointer.
2061   bool checkValidity(const SCEV *S) const;
2062 
2063   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2064   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
2065   /// equivalent to proving no signed (resp. unsigned) wrap in
2066   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2067   /// (resp. `SCEVZeroExtendExpr`).
2068   template <typename ExtendOpTy>
2069   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2070                                  const Loop *L);
2071 
2072   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2073   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2074 
2075   /// Try to prove NSW on \p AR by proving facts about conditions known  on
2076   /// entry and backedge.
2077   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2078 
2079   /// Try to prove NUW on \p AR by proving facts about conditions known on
2080   /// entry and backedge.
2081   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2082 
2083   std::optional<MonotonicPredicateType>
2084   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2085                                 ICmpInst::Predicate Pred);
2086 
2087   /// Return SCEV no-wrap flags that can be proven based on reasoning about
2088   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2089   /// would trigger undefined behavior on overflow.
2090   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2091 
2092   /// Return a scope which provides an upper bound on the defining scope of
2093   /// 'S'. Specifically, return the first instruction in said bounding scope.
2094   /// Return nullptr if the scope is trivial (function entry).
2095   /// (See scope definition rules associated with flag discussion above)
2096   const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2097 
2098   /// Return a scope which provides an upper bound on the defining scope for
2099   /// a SCEV with the operands in Ops.  The outparam Precise is set if the
2100   /// bound found is a precise bound (i.e. must be the defining scope.)
2101   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2102                                            bool &Precise);
2103 
2104   /// Wrapper around the above for cases which don't care if the bound
2105   /// is precise.
2106   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2107 
2108   /// Given two instructions in the same function, return true if we can
2109   /// prove B must execute given A executes.
2110   bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2111                                          const Instruction *B);
2112 
2113   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2114   /// this is more complex than proving that just \p I is never poison, since
2115   /// SCEV commons expressions across control flow, and you can have cases
2116   /// like:
2117   ///
2118   ///   idx0 = a + b;
2119   ///   ptr[idx0] = 100;
2120   ///   if (<condition>) {
2121   ///     idx1 = a +nsw b;
2122   ///     ptr[idx1] = 200;
2123   ///   }
2124   ///
2125   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2126   /// hence not sign-overflow) only if "<condition>" is true.  Since both
2127   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2128   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2129   bool isSCEVExprNeverPoison(const Instruction *I);
2130 
2131   /// This is like \c isSCEVExprNeverPoison but it specifically works for
2132   /// instructions that will get mapped to SCEV add recurrences.  Return true
2133   /// if \p I will never generate poison under the assumption that \p I is an
2134   /// add recurrence on the loop \p L.
2135   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2136 
2137   /// Similar to createAddRecFromPHI, but with the additional flexibility of
2138   /// suggesting runtime overflow checks in case casts are encountered.
2139   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2140   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2141   /// into an AddRec, assuming some predicates; The function then returns the
2142   /// AddRec and the predicates as a pair, and caches this pair in
2143   /// PredicatedSCEVRewrites.
2144   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2145   /// itself (with no predicates) is recorded, and a nullptr with an empty
2146   /// predicates vector is returned as a pair.
2147   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2148   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2149 
2150   /// Compute the maximum backedge count based on the range of values
2151   /// permitted by Start, End, and Stride. This is for loops of the form
2152   /// {Start, +, Stride} LT End.
2153   ///
2154   /// Preconditions:
2155   /// * the induction variable is known to be positive.
2156   /// * the induction variable is assumed not to overflow (i.e. either it
2157   ///   actually doesn't, or we'd have to immediately execute UB)
2158   /// We *don't* assert these preconditions so please be careful.
2159   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2160                                      const SCEV *End, unsigned BitWidth,
2161                                      bool IsSigned);
2162 
2163   /// Verify if an linear IV with positive stride can overflow when in a
2164   /// less-than comparison, knowing the invariant term of the comparison,
2165   /// the stride.
2166   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2167 
2168   /// Verify if an linear IV with negative stride can overflow when in a
2169   /// greater-than comparison, knowing the invariant term of the comparison,
2170   /// the stride.
2171   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2172 
2173   /// Get add expr already created or create a new one.
2174   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2175                                  SCEV::NoWrapFlags Flags);
2176 
2177   /// Get mul expr already created or create a new one.
2178   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2179                                  SCEV::NoWrapFlags Flags);
2180 
2181   // Get addrec expr already created or create a new one.
2182   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2183                                     const Loop *L, SCEV::NoWrapFlags Flags);
2184 
2185   /// Return x if \p Val is f(x) where f is a 1-1 function.
2186   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2187 
2188   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2189   /// A loop is considered "used" by an expression if it contains
2190   /// an add rec on said loop.
2191   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2192 
2193   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2194   /// Assign A and B to LHS and RHS, respectively.
2195   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2196 
2197   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2198   /// `UniqueSCEVs`.  Return if found, else nullptr.
2199   SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2200 
2201   /// Get reachable blocks in this function, making limited use of SCEV
2202   /// reasoning about conditions.
2203   void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2204                           Function &F);
2205 
2206   /// Return the given SCEV expression with a new set of operands.
2207   /// This preserves the origial nowrap flags.
2208   const SCEV *getWithOperands(const SCEV *S,
2209                               SmallVectorImpl<const SCEV *> &NewOps);
2210 
2211   FoldingSet<SCEV> UniqueSCEVs;
2212   FoldingSet<SCEVPredicate> UniquePreds;
2213   BumpPtrAllocator SCEVAllocator;
2214 
2215   /// This maps loops to a list of addrecs that directly use said loop.
2216   DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2217 
2218   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2219   /// they can be rewritten into under certain predicates.
2220   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2221            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2222       PredicatedSCEVRewrites;
2223 
2224   /// Set of AddRecs for which proving NUW via an induction has already been
2225   /// tried.
2226   SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2227 
2228   /// Set of AddRecs for which proving NSW via an induction has already been
2229   /// tried.
2230   SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2231 
2232   /// The head of a linked list of all SCEVUnknown values that have been
2233   /// allocated. This is used by releaseMemory to locate them all and call
2234   /// their destructors.
2235   SCEVUnknown *FirstUnknown = nullptr;
2236 };
2237 
2238 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2239 class ScalarEvolutionAnalysis
2240     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2241   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2242 
2243   static AnalysisKey Key;
2244 
2245 public:
2246   using Result = ScalarEvolution;
2247 
2248   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2249 };
2250 
2251 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2252 class ScalarEvolutionVerifierPass
2253     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2254 public:
2255   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2256   static bool isRequired() { return true; }
2257 };
2258 
2259 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2260 class ScalarEvolutionPrinterPass
2261     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2262   raw_ostream &OS;
2263 
2264 public:
2265   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2266 
2267   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2268 
2269   static bool isRequired() { return true; }
2270 };
2271 
2272 class ScalarEvolutionWrapperPass : public FunctionPass {
2273   std::unique_ptr<ScalarEvolution> SE;
2274 
2275 public:
2276   static char ID;
2277 
2278   ScalarEvolutionWrapperPass();
2279 
2280   ScalarEvolution &getSE() { return *SE; }
2281   const ScalarEvolution &getSE() const { return *SE; }
2282 
2283   bool runOnFunction(Function &F) override;
2284   void releaseMemory() override;
2285   void getAnalysisUsage(AnalysisUsage &AU) const override;
2286   void print(raw_ostream &OS, const Module * = nullptr) const override;
2287   void verifyAnalysis() const override;
2288 };
2289 
2290 /// An interface layer with SCEV used to manage how we see SCEV expressions
2291 /// for values in the context of existing predicates. We can add new
2292 /// predicates, but we cannot remove them.
2293 ///
2294 /// This layer has multiple purposes:
2295 ///   - provides a simple interface for SCEV versioning.
2296 ///   - guarantees that the order of transformations applied on a SCEV
2297 ///     expression for a single Value is consistent across two different
2298 ///     getSCEV calls. This means that, for example, once we've obtained
2299 ///     an AddRec expression for a certain value through expression
2300 ///     rewriting, we will continue to get an AddRec expression for that
2301 ///     Value.
2302 ///   - lowers the number of expression rewrites.
2303 class PredicatedScalarEvolution {
2304 public:
2305   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2306 
2307   const SCEVPredicate &getPredicate() const;
2308 
2309   /// Returns the SCEV expression of V, in the context of the current SCEV
2310   /// predicate.  The order of transformations applied on the expression of V
2311   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2312   /// adding new predicates.
2313   const SCEV *getSCEV(Value *V);
2314 
2315   /// Get the (predicated) backedge count for the analyzed loop.
2316   const SCEV *getBackedgeTakenCount();
2317 
2318   /// Adds a new predicate.
2319   void addPredicate(const SCEVPredicate &Pred);
2320 
2321   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2322   /// predicates. If we can't transform the expression into an AddRecExpr we
2323   /// return nullptr and not add additional SCEV predicates to the current
2324   /// context.
2325   const SCEVAddRecExpr *getAsAddRec(Value *V);
2326 
2327   /// Proves that V doesn't overflow by adding SCEV predicate.
2328   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2329 
2330   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2331   /// predicate.
2332   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2333 
2334   /// Returns the ScalarEvolution analysis used.
2335   ScalarEvolution *getSE() const { return &SE; }
2336 
2337   /// We need to explicitly define the copy constructor because of FlagsMap.
2338   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2339 
2340   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2341   /// The printed text is indented by \p Depth.
2342   void print(raw_ostream &OS, unsigned Depth) const;
2343 
2344   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2345   /// Equal predicates in Preds.
2346   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2347                                 const SCEVAddRecExpr *AR2) const;
2348 
2349 private:
2350   /// Increments the version number of the predicate.  This needs to be called
2351   /// every time the SCEV predicate changes.
2352   void updateGeneration();
2353 
2354   /// Holds a SCEV and the version number of the SCEV predicate used to
2355   /// perform the rewrite of the expression.
2356   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2357 
2358   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2359   /// number. If this number doesn't match the current Generation, we will
2360   /// need to do a rewrite. To preserve the transformation order of previous
2361   /// rewrites, we will rewrite the previous result instead of the original
2362   /// SCEV.
2363   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2364 
2365   /// Records what NoWrap flags we've added to a Value *.
2366   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2367 
2368   /// The ScalarEvolution analysis.
2369   ScalarEvolution &SE;
2370 
2371   /// The analyzed Loop.
2372   const Loop &L;
2373 
2374   /// The SCEVPredicate that forms our context. We will rewrite all
2375   /// expressions assuming that this predicate true.
2376   std::unique_ptr<SCEVUnionPredicate> Preds;
2377 
2378   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2379   /// expression we mark it with the version of the predicate. We use this to
2380   /// figure out if the predicate has changed from the last rewrite of the
2381   /// SCEV. If so, we need to perform a new rewrite.
2382   unsigned Generation = 0;
2383 
2384   /// The backedge taken count.
2385   const SCEV *BackedgeCount = nullptr;
2386 };
2387 
2388 template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2389   static inline ScalarEvolution::FoldID getEmptyKey() {
2390     ScalarEvolution::FoldID ID(0);
2391     return ID;
2392   }
2393   static inline ScalarEvolution::FoldID getTombstoneKey() {
2394     ScalarEvolution::FoldID ID(1);
2395     return ID;
2396   }
2397 
2398   static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2399     return Val.computeHash();
2400   }
2401 
2402   static bool isEqual(const ScalarEvolution::FoldID &LHS,
2403                       const ScalarEvolution::FoldID &RHS) {
2404     return LHS == RHS;
2405   }
2406 };
2407 
2408 } // end namespace llvm
2409 
2410 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2411