1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21 * Kernel-internal data types and definitions:
22 */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE 0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33 unsigned int (*state)(void);
34 unsigned long (*get_ip)(void);
35 unsigned int (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68 __u64 nr;
69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73 struct perf_callchain_entry *entry;
74 u32 max_stack;
75 u32 nr;
76 short contexts;
77 bool contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84 union {
85 struct perf_raw_frag *next;
86 unsigned long pad;
87 };
88 perf_copy_f copy;
89 void *data;
90 u32 size;
91 } __packed;
92
93 struct perf_raw_record {
94 struct perf_raw_frag frag;
95 u32 size;
96 };
97
perf_raw_frag_last(const struct perf_raw_frag * frag)98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 return frag->pad < sizeof(u64);
101 }
102
103 /*
104 * branch stack layout:
105 * nr: number of taken branches stored in entries[]
106 * hw_idx: The low level index of raw branch records
107 * for the most recent branch.
108 * -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123 struct perf_branch_stack {
124 __u64 nr;
125 __u64 hw_idx;
126 struct perf_branch_entry entries[];
127 };
128
129 struct task_struct;
130
131 /*
132 * extra PMU register associated with an event
133 */
134 struct hw_perf_event_extra {
135 u64 config; /* register value */
136 unsigned int reg; /* register address or index */
137 int alloc; /* extra register already allocated */
138 int idx; /* index in shared_regs->regs[] */
139 };
140
141 /**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147 #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153 * struct hw_perf_event - performance event hardware details:
154 */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 union {
158 struct { /* hardware */
159 u64 config;
160 u64 last_tag;
161 unsigned long config_base;
162 unsigned long event_base;
163 int event_base_rdpmc;
164 int idx;
165 int last_cpu;
166 int flags;
167
168 struct hw_perf_event_extra extra_reg;
169 struct hw_perf_event_extra branch_reg;
170 };
171 struct { /* aux / Intel-PT */
172 u64 aux_config;
173 };
174 struct { /* software */
175 struct hrtimer hrtimer;
176 };
177 struct { /* tracepoint */
178 /* for tp_event->class */
179 struct list_head tp_list;
180 };
181 struct { /* amd_power */
182 u64 pwr_acc;
183 u64 ptsc;
184 };
185 #ifdef CONFIG_HAVE_HW_BREAKPOINT
186 struct { /* breakpoint */
187 /*
188 * Crufty hack to avoid the chicken and egg
189 * problem hw_breakpoint has with context
190 * creation and event initalization.
191 */
192 struct arch_hw_breakpoint info;
193 struct rhlist_head bp_list;
194 };
195 #endif
196 struct { /* amd_iommu */
197 u8 iommu_bank;
198 u8 iommu_cntr;
199 u16 padding;
200 u64 conf;
201 u64 conf1;
202 };
203 };
204 /*
205 * If the event is a per task event, this will point to the task in
206 * question. See the comment in perf_event_alloc().
207 */
208 struct task_struct *target;
209
210 /*
211 * PMU would store hardware filter configuration
212 * here.
213 */
214 void *addr_filters;
215
216 /* Last sync'ed generation of filters */
217 unsigned long addr_filters_gen;
218
219 /*
220 * hw_perf_event::state flags; used to track the PERF_EF_* state.
221 */
222 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
223 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
224 #define PERF_HES_ARCH 0x04
225
226 int state;
227
228 /*
229 * The last observed hardware counter value, updated with a
230 * local64_cmpxchg() such that pmu::read() can be called nested.
231 */
232 local64_t prev_count;
233
234 /*
235 * The period to start the next sample with.
236 */
237 u64 sample_period;
238
239 union {
240 struct { /* Sampling */
241 /*
242 * The period we started this sample with.
243 */
244 u64 last_period;
245
246 /*
247 * However much is left of the current period;
248 * note that this is a full 64bit value and
249 * allows for generation of periods longer
250 * than hardware might allow.
251 */
252 local64_t period_left;
253 };
254 struct { /* Topdown events counting for context switch */
255 u64 saved_metric;
256 u64 saved_slots;
257 };
258 };
259
260 /*
261 * State for throttling the event, see __perf_event_overflow() and
262 * perf_adjust_freq_unthr_context().
263 */
264 u64 interrupts_seq;
265 u64 interrupts;
266
267 /*
268 * State for freq target events, see __perf_event_overflow() and
269 * perf_adjust_freq_unthr_context().
270 */
271 u64 freq_time_stamp;
272 u64 freq_count_stamp;
273 #endif
274 };
275
276 struct perf_event;
277 struct perf_event_pmu_context;
278
279 /*
280 * Common implementation detail of pmu::{start,commit,cancel}_txn
281 */
282 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
283 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
284
285 /**
286 * pmu::capabilities flags
287 */
288 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
289 #define PERF_PMU_CAP_NO_NMI 0x0002
290 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
291 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
292 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
293 #define PERF_PMU_CAP_ITRACE 0x0020
294 #define PERF_PMU_CAP_NO_EXCLUDE 0x0040
295 #define PERF_PMU_CAP_AUX_OUTPUT 0x0080
296 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100
297
298 /**
299 * pmu::scope
300 */
301 enum perf_pmu_scope {
302 PERF_PMU_SCOPE_NONE = 0,
303 PERF_PMU_SCOPE_CORE,
304 PERF_PMU_SCOPE_DIE,
305 PERF_PMU_SCOPE_CLUSTER,
306 PERF_PMU_SCOPE_PKG,
307 PERF_PMU_SCOPE_SYS_WIDE,
308 PERF_PMU_MAX_SCOPE,
309 };
310
311 struct perf_output_handle;
312
313 #define PMU_NULL_DEV ((void *)(~0UL))
314
315 /**
316 * struct pmu - generic performance monitoring unit
317 */
318 struct pmu {
319 struct list_head entry;
320
321 struct module *module;
322 struct device *dev;
323 struct device *parent;
324 const struct attribute_group **attr_groups;
325 const struct attribute_group **attr_update;
326 const char *name;
327 int type;
328
329 /*
330 * various common per-pmu feature flags
331 */
332 int capabilities;
333
334 /*
335 * PMU scope
336 */
337 unsigned int scope;
338
339 int __percpu *pmu_disable_count;
340 struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
341 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
342 int task_ctx_nr;
343 int hrtimer_interval_ms;
344
345 /* number of address filters this PMU can do */
346 unsigned int nr_addr_filters;
347
348 /*
349 * Fully disable/enable this PMU, can be used to protect from the PMI
350 * as well as for lazy/batch writing of the MSRs.
351 */
352 void (*pmu_enable) (struct pmu *pmu); /* optional */
353 void (*pmu_disable) (struct pmu *pmu); /* optional */
354
355 /*
356 * Try and initialize the event for this PMU.
357 *
358 * Returns:
359 * -ENOENT -- @event is not for this PMU
360 *
361 * -ENODEV -- @event is for this PMU but PMU not present
362 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
363 * -EINVAL -- @event is for this PMU but @event is not valid
364 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
365 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
366 *
367 * 0 -- @event is for this PMU and valid
368 *
369 * Other error return values are allowed.
370 */
371 int (*event_init) (struct perf_event *event);
372
373 /*
374 * Notification that the event was mapped or unmapped. Called
375 * in the context of the mapping task.
376 */
377 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
378 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
379
380 /*
381 * Flags for ->add()/->del()/ ->start()/->stop(). There are
382 * matching hw_perf_event::state flags.
383 */
384 #define PERF_EF_START 0x01 /* start the counter when adding */
385 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
386 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
387
388 /*
389 * Adds/Removes a counter to/from the PMU, can be done inside a
390 * transaction, see the ->*_txn() methods.
391 *
392 * The add/del callbacks will reserve all hardware resources required
393 * to service the event, this includes any counter constraint
394 * scheduling etc.
395 *
396 * Called with IRQs disabled and the PMU disabled on the CPU the event
397 * is on.
398 *
399 * ->add() called without PERF_EF_START should result in the same state
400 * as ->add() followed by ->stop().
401 *
402 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
403 * ->stop() that must deal with already being stopped without
404 * PERF_EF_UPDATE.
405 */
406 int (*add) (struct perf_event *event, int flags);
407 void (*del) (struct perf_event *event, int flags);
408
409 /*
410 * Starts/Stops a counter present on the PMU.
411 *
412 * The PMI handler should stop the counter when perf_event_overflow()
413 * returns !0. ->start() will be used to continue.
414 *
415 * Also used to change the sample period.
416 *
417 * Called with IRQs disabled and the PMU disabled on the CPU the event
418 * is on -- will be called from NMI context with the PMU generates
419 * NMIs.
420 *
421 * ->stop() with PERF_EF_UPDATE will read the counter and update
422 * period/count values like ->read() would.
423 *
424 * ->start() with PERF_EF_RELOAD will reprogram the counter
425 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
426 */
427 void (*start) (struct perf_event *event, int flags);
428 void (*stop) (struct perf_event *event, int flags);
429
430 /*
431 * Updates the counter value of the event.
432 *
433 * For sampling capable PMUs this will also update the software period
434 * hw_perf_event::period_left field.
435 */
436 void (*read) (struct perf_event *event);
437
438 /*
439 * Group events scheduling is treated as a transaction, add
440 * group events as a whole and perform one schedulability test.
441 * If the test fails, roll back the whole group
442 *
443 * Start the transaction, after this ->add() doesn't need to
444 * do schedulability tests.
445 *
446 * Optional.
447 */
448 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
449 /*
450 * If ->start_txn() disabled the ->add() schedulability test
451 * then ->commit_txn() is required to perform one. On success
452 * the transaction is closed. On error the transaction is kept
453 * open until ->cancel_txn() is called.
454 *
455 * Optional.
456 */
457 int (*commit_txn) (struct pmu *pmu);
458 /*
459 * Will cancel the transaction, assumes ->del() is called
460 * for each successful ->add() during the transaction.
461 *
462 * Optional.
463 */
464 void (*cancel_txn) (struct pmu *pmu);
465
466 /*
467 * Will return the value for perf_event_mmap_page::index for this event,
468 * if no implementation is provided it will default to 0 (see
469 * perf_event_idx_default).
470 */
471 int (*event_idx) (struct perf_event *event); /*optional */
472
473 /*
474 * context-switches callback
475 */
476 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
477 bool sched_in);
478
479 /*
480 * Kmem cache of PMU specific data
481 */
482 struct kmem_cache *task_ctx_cache;
483
484 /*
485 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
486 * can be synchronized using this function. See Intel LBR callstack support
487 * implementation and Perf core context switch handling callbacks for usage
488 * examples.
489 */
490 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
491 struct perf_event_pmu_context *next_epc);
492 /* optional */
493
494 /*
495 * Set up pmu-private data structures for an AUX area
496 */
497 void *(*setup_aux) (struct perf_event *event, void **pages,
498 int nr_pages, bool overwrite);
499 /* optional */
500
501 /*
502 * Free pmu-private AUX data structures
503 */
504 void (*free_aux) (void *aux); /* optional */
505
506 /*
507 * Take a snapshot of the AUX buffer without touching the event
508 * state, so that preempting ->start()/->stop() callbacks does
509 * not interfere with their logic. Called in PMI context.
510 *
511 * Returns the size of AUX data copied to the output handle.
512 *
513 * Optional.
514 */
515 long (*snapshot_aux) (struct perf_event *event,
516 struct perf_output_handle *handle,
517 unsigned long size);
518
519 /*
520 * Validate address range filters: make sure the HW supports the
521 * requested configuration and number of filters; return 0 if the
522 * supplied filters are valid, -errno otherwise.
523 *
524 * Runs in the context of the ioctl()ing process and is not serialized
525 * with the rest of the PMU callbacks.
526 */
527 int (*addr_filters_validate) (struct list_head *filters);
528 /* optional */
529
530 /*
531 * Synchronize address range filter configuration:
532 * translate hw-agnostic filters into hardware configuration in
533 * event::hw::addr_filters.
534 *
535 * Runs as a part of filter sync sequence that is done in ->start()
536 * callback by calling perf_event_addr_filters_sync().
537 *
538 * May (and should) traverse event::addr_filters::list, for which its
539 * caller provides necessary serialization.
540 */
541 void (*addr_filters_sync) (struct perf_event *event);
542 /* optional */
543
544 /*
545 * Check if event can be used for aux_output purposes for
546 * events of this PMU.
547 *
548 * Runs from perf_event_open(). Should return 0 for "no match"
549 * or non-zero for "match".
550 */
551 int (*aux_output_match) (struct perf_event *event);
552 /* optional */
553
554 /*
555 * Skip programming this PMU on the given CPU. Typically needed for
556 * big.LITTLE things.
557 */
558 bool (*filter) (struct pmu *pmu, int cpu); /* optional */
559
560 /*
561 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
562 */
563 int (*check_period) (struct perf_event *event, u64 value); /* optional */
564 };
565
566 enum perf_addr_filter_action_t {
567 PERF_ADDR_FILTER_ACTION_STOP = 0,
568 PERF_ADDR_FILTER_ACTION_START,
569 PERF_ADDR_FILTER_ACTION_FILTER,
570 };
571
572 /**
573 * struct perf_addr_filter - address range filter definition
574 * @entry: event's filter list linkage
575 * @path: object file's path for file-based filters
576 * @offset: filter range offset
577 * @size: filter range size (size==0 means single address trigger)
578 * @action: filter/start/stop
579 *
580 * This is a hardware-agnostic filter configuration as specified by the user.
581 */
582 struct perf_addr_filter {
583 struct list_head entry;
584 struct path path;
585 unsigned long offset;
586 unsigned long size;
587 enum perf_addr_filter_action_t action;
588 };
589
590 /**
591 * struct perf_addr_filters_head - container for address range filters
592 * @list: list of filters for this event
593 * @lock: spinlock that serializes accesses to the @list and event's
594 * (and its children's) filter generations.
595 * @nr_file_filters: number of file-based filters
596 *
597 * A child event will use parent's @list (and therefore @lock), so they are
598 * bundled together; see perf_event_addr_filters().
599 */
600 struct perf_addr_filters_head {
601 struct list_head list;
602 raw_spinlock_t lock;
603 unsigned int nr_file_filters;
604 };
605
606 struct perf_addr_filter_range {
607 unsigned long start;
608 unsigned long size;
609 };
610
611 /**
612 * enum perf_event_state - the states of an event:
613 */
614 enum perf_event_state {
615 PERF_EVENT_STATE_DEAD = -4,
616 PERF_EVENT_STATE_EXIT = -3,
617 PERF_EVENT_STATE_ERROR = -2,
618 PERF_EVENT_STATE_OFF = -1,
619 PERF_EVENT_STATE_INACTIVE = 0,
620 PERF_EVENT_STATE_ACTIVE = 1,
621 };
622
623 struct file;
624 struct perf_sample_data;
625
626 typedef void (*perf_overflow_handler_t)(struct perf_event *,
627 struct perf_sample_data *,
628 struct pt_regs *regs);
629
630 /*
631 * Event capabilities. For event_caps and groups caps.
632 *
633 * PERF_EV_CAP_SOFTWARE: Is a software event.
634 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
635 * from any CPU in the package where it is active.
636 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
637 * cannot be a group leader. If an event with this flag is detached from the
638 * group it is scheduled out and moved into an unrecoverable ERROR state.
639 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
640 * PMU scope where it is active.
641 */
642 #define PERF_EV_CAP_SOFTWARE BIT(0)
643 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
644 #define PERF_EV_CAP_SIBLING BIT(2)
645 #define PERF_EV_CAP_READ_SCOPE BIT(3)
646
647 #define SWEVENT_HLIST_BITS 8
648 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
649
650 struct swevent_hlist {
651 struct hlist_head heads[SWEVENT_HLIST_SIZE];
652 struct rcu_head rcu_head;
653 };
654
655 #define PERF_ATTACH_CONTEXT 0x01
656 #define PERF_ATTACH_GROUP 0x02
657 #define PERF_ATTACH_TASK 0x04
658 #define PERF_ATTACH_TASK_DATA 0x08
659 #define PERF_ATTACH_ITRACE 0x10
660 #define PERF_ATTACH_SCHED_CB 0x20
661 #define PERF_ATTACH_CHILD 0x40
662
663 struct bpf_prog;
664 struct perf_cgroup;
665 struct perf_buffer;
666
667 struct pmu_event_list {
668 raw_spinlock_t lock;
669 struct list_head list;
670 };
671
672 /*
673 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
674 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
675 * safe lock, and is only held by the CPU doing the modification, having IRQs
676 * disabled is sufficient since it will hold-off the IPIs.
677 */
678 #ifdef CONFIG_PROVE_LOCKING
679 #define lockdep_assert_event_ctx(event) \
680 WARN_ON_ONCE(__lockdep_enabled && \
681 (this_cpu_read(hardirqs_enabled) && \
682 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
683 #else
684 #define lockdep_assert_event_ctx(event)
685 #endif
686
687 #define for_each_sibling_event(sibling, event) \
688 lockdep_assert_event_ctx(event); \
689 if ((event)->group_leader == (event)) \
690 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
691
692 /**
693 * struct perf_event - performance event kernel representation:
694 */
695 struct perf_event {
696 #ifdef CONFIG_PERF_EVENTS
697 /*
698 * entry onto perf_event_context::event_list;
699 * modifications require ctx->lock
700 * RCU safe iterations.
701 */
702 struct list_head event_entry;
703
704 /*
705 * Locked for modification by both ctx->mutex and ctx->lock; holding
706 * either sufficies for read.
707 */
708 struct list_head sibling_list;
709 struct list_head active_list;
710 /*
711 * Node on the pinned or flexible tree located at the event context;
712 */
713 struct rb_node group_node;
714 u64 group_index;
715 /*
716 * We need storage to track the entries in perf_pmu_migrate_context; we
717 * cannot use the event_entry because of RCU and we want to keep the
718 * group in tact which avoids us using the other two entries.
719 */
720 struct list_head migrate_entry;
721
722 struct hlist_node hlist_entry;
723 struct list_head active_entry;
724 int nr_siblings;
725
726 /* Not serialized. Only written during event initialization. */
727 int event_caps;
728 /* The cumulative AND of all event_caps for events in this group. */
729 int group_caps;
730
731 unsigned int group_generation;
732 struct perf_event *group_leader;
733 /*
734 * event->pmu will always point to pmu in which this event belongs.
735 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
736 * different pmu events is created.
737 */
738 struct pmu *pmu;
739 void *pmu_private;
740
741 enum perf_event_state state;
742 unsigned int attach_state;
743 local64_t count;
744 atomic64_t child_count;
745
746 /*
747 * These are the total time in nanoseconds that the event
748 * has been enabled (i.e. eligible to run, and the task has
749 * been scheduled in, if this is a per-task event)
750 * and running (scheduled onto the CPU), respectively.
751 */
752 u64 total_time_enabled;
753 u64 total_time_running;
754 u64 tstamp;
755
756 struct perf_event_attr attr;
757 u16 header_size;
758 u16 id_header_size;
759 u16 read_size;
760 struct hw_perf_event hw;
761
762 struct perf_event_context *ctx;
763 /*
764 * event->pmu_ctx points to perf_event_pmu_context in which the event
765 * is added. This pmu_ctx can be of other pmu for sw event when that
766 * sw event is part of a group which also contains non-sw events.
767 */
768 struct perf_event_pmu_context *pmu_ctx;
769 atomic_long_t refcount;
770
771 /*
772 * These accumulate total time (in nanoseconds) that children
773 * events have been enabled and running, respectively.
774 */
775 atomic64_t child_total_time_enabled;
776 atomic64_t child_total_time_running;
777
778 /*
779 * Protect attach/detach and child_list:
780 */
781 struct mutex child_mutex;
782 struct list_head child_list;
783 struct perf_event *parent;
784
785 int oncpu;
786 int cpu;
787
788 struct list_head owner_entry;
789 struct task_struct *owner;
790
791 /* mmap bits */
792 struct mutex mmap_mutex;
793 atomic_t mmap_count;
794
795 struct perf_buffer *rb;
796 struct list_head rb_entry;
797 unsigned long rcu_batches;
798 int rcu_pending;
799
800 /* poll related */
801 wait_queue_head_t waitq;
802 struct fasync_struct *fasync;
803
804 /* delayed work for NMIs and such */
805 unsigned int pending_wakeup;
806 unsigned int pending_kill;
807 unsigned int pending_disable;
808 unsigned long pending_addr; /* SIGTRAP */
809 struct irq_work pending_irq;
810 struct irq_work pending_disable_irq;
811 struct callback_head pending_task;
812 unsigned int pending_work;
813 struct rcuwait pending_work_wait;
814
815 atomic_t event_limit;
816
817 /* address range filters */
818 struct perf_addr_filters_head addr_filters;
819 /* vma address array for file-based filders */
820 struct perf_addr_filter_range *addr_filter_ranges;
821 unsigned long addr_filters_gen;
822
823 /* for aux_output events */
824 struct perf_event *aux_event;
825
826 void (*destroy)(struct perf_event *);
827 struct rcu_head rcu_head;
828
829 struct pid_namespace *ns;
830 u64 id;
831
832 atomic64_t lost_samples;
833
834 u64 (*clock)(void);
835 perf_overflow_handler_t overflow_handler;
836 void *overflow_handler_context;
837 struct bpf_prog *prog;
838 u64 bpf_cookie;
839
840 #ifdef CONFIG_EVENT_TRACING
841 struct trace_event_call *tp_event;
842 struct event_filter *filter;
843 #ifdef CONFIG_FUNCTION_TRACER
844 struct ftrace_ops ftrace_ops;
845 #endif
846 #endif
847
848 #ifdef CONFIG_CGROUP_PERF
849 struct perf_cgroup *cgrp; /* cgroup event is attach to */
850 #endif
851
852 #ifdef CONFIG_SECURITY
853 void *security;
854 #endif
855 struct list_head sb_list;
856
857 /*
858 * Certain events gets forwarded to another pmu internally by over-
859 * writing kernel copy of event->attr.type without user being aware
860 * of it. event->orig_type contains original 'type' requested by
861 * user.
862 */
863 __u32 orig_type;
864 #endif /* CONFIG_PERF_EVENTS */
865 };
866
867 /*
868 * ,-----------------------[1:n]------------------------.
869 * V V
870 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
871 * | |
872 * `--[n:1]-> pmu <-[1:n]--'
873 *
874 *
875 * struct perf_event_pmu_context lifetime is refcount based and RCU freed
876 * (similar to perf_event_context). Locking is as if it were a member of
877 * perf_event_context; specifically:
878 *
879 * modification, both: ctx->mutex && ctx->lock
880 * reading, either: ctx->mutex || ctx->lock
881 *
882 * There is one exception to this; namely put_pmu_ctx() isn't always called
883 * with ctx->mutex held; this means that as long as we can guarantee the epc
884 * has events the above rules hold.
885 *
886 * Specificially, sys_perf_event_open()'s group_leader case depends on
887 * ctx->mutex pinning the configuration. Since we hold a reference on
888 * group_leader (through the filedesc) it can't go away, therefore it's
889 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
890 *
891 * perf_event holds a refcount on perf_event_context
892 * perf_event holds a refcount on perf_event_pmu_context
893 */
894 struct perf_event_pmu_context {
895 struct pmu *pmu;
896 struct perf_event_context *ctx;
897
898 struct list_head pmu_ctx_entry;
899
900 struct list_head pinned_active;
901 struct list_head flexible_active;
902
903 /* Used to avoid freeing per-cpu perf_event_pmu_context */
904 unsigned int embedded : 1;
905
906 unsigned int nr_events;
907 unsigned int nr_cgroups;
908 unsigned int nr_freq;
909
910 atomic_t refcount; /* event <-> epc */
911 struct rcu_head rcu_head;
912
913 void *task_ctx_data; /* pmu specific data */
914 /*
915 * Set when one or more (plausibly active) event can't be scheduled
916 * due to pmu overcommit or pmu constraints, except tolerant to
917 * events not necessary to be active due to scheduling constraints,
918 * such as cgroups.
919 */
920 int rotate_necessary;
921 };
922
perf_pmu_ctx_is_active(struct perf_event_pmu_context * epc)923 static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
924 {
925 return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active);
926 }
927
928 struct perf_event_groups {
929 struct rb_root tree;
930 u64 index;
931 };
932
933
934 /**
935 * struct perf_event_context - event context structure
936 *
937 * Used as a container for task events and CPU events as well:
938 */
939 struct perf_event_context {
940 /*
941 * Protect the states of the events in the list,
942 * nr_active, and the list:
943 */
944 raw_spinlock_t lock;
945 /*
946 * Protect the list of events. Locking either mutex or lock
947 * is sufficient to ensure the list doesn't change; to change
948 * the list you need to lock both the mutex and the spinlock.
949 */
950 struct mutex mutex;
951
952 struct list_head pmu_ctx_list;
953 struct perf_event_groups pinned_groups;
954 struct perf_event_groups flexible_groups;
955 struct list_head event_list;
956
957 int nr_events;
958 int nr_user;
959 int is_active;
960
961 int nr_task_data;
962 int nr_stat;
963 int nr_freq;
964 int rotate_disable;
965
966 refcount_t refcount; /* event <-> ctx */
967 struct task_struct *task;
968
969 /*
970 * Context clock, runs when context enabled.
971 */
972 u64 time;
973 u64 timestamp;
974 u64 timeoffset;
975
976 /*
977 * These fields let us detect when two contexts have both
978 * been cloned (inherited) from a common ancestor.
979 */
980 struct perf_event_context *parent_ctx;
981 u64 parent_gen;
982 u64 generation;
983 int pin_count;
984 #ifdef CONFIG_CGROUP_PERF
985 int nr_cgroups; /* cgroup evts */
986 #endif
987 struct rcu_head rcu_head;
988
989 /*
990 * The count of events for which using the switch-out fast path
991 * should be avoided.
992 *
993 * Sum (event->pending_work + events with
994 * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)))
995 *
996 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
997 * that until the signal is delivered.
998 */
999 local_t nr_no_switch_fast;
1000 };
1001
1002 struct perf_cpu_pmu_context {
1003 struct perf_event_pmu_context epc;
1004 struct perf_event_pmu_context *task_epc;
1005
1006 struct list_head sched_cb_entry;
1007 int sched_cb_usage;
1008
1009 int active_oncpu;
1010 int exclusive;
1011
1012 raw_spinlock_t hrtimer_lock;
1013 struct hrtimer hrtimer;
1014 ktime_t hrtimer_interval;
1015 unsigned int hrtimer_active;
1016 };
1017
1018 /**
1019 * struct perf_event_cpu_context - per cpu event context structure
1020 */
1021 struct perf_cpu_context {
1022 struct perf_event_context ctx;
1023 struct perf_event_context *task_ctx;
1024 int online;
1025
1026 #ifdef CONFIG_CGROUP_PERF
1027 struct perf_cgroup *cgrp;
1028 #endif
1029
1030 /*
1031 * Per-CPU storage for iterators used in visit_groups_merge. The default
1032 * storage is of size 2 to hold the CPU and any CPU event iterators.
1033 */
1034 int heap_size;
1035 struct perf_event **heap;
1036 struct perf_event *heap_default[2];
1037 };
1038
1039 struct perf_output_handle {
1040 struct perf_event *event;
1041 struct perf_buffer *rb;
1042 unsigned long wakeup;
1043 unsigned long size;
1044 u64 aux_flags;
1045 union {
1046 void *addr;
1047 unsigned long head;
1048 };
1049 int page;
1050 };
1051
1052 struct bpf_perf_event_data_kern {
1053 bpf_user_pt_regs_t *regs;
1054 struct perf_sample_data *data;
1055 struct perf_event *event;
1056 };
1057
1058 #ifdef CONFIG_CGROUP_PERF
1059
1060 /*
1061 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1062 * This is a per-cpu dynamically allocated data structure.
1063 */
1064 struct perf_cgroup_info {
1065 u64 time;
1066 u64 timestamp;
1067 u64 timeoffset;
1068 int active;
1069 };
1070
1071 struct perf_cgroup {
1072 struct cgroup_subsys_state css;
1073 struct perf_cgroup_info __percpu *info;
1074 };
1075
1076 /*
1077 * Must ensure cgroup is pinned (css_get) before calling
1078 * this function. In other words, we cannot call this function
1079 * if there is no cgroup event for the current CPU context.
1080 */
1081 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)1082 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1083 {
1084 return container_of(task_css_check(task, perf_event_cgrp_id,
1085 ctx ? lockdep_is_held(&ctx->lock)
1086 : true),
1087 struct perf_cgroup, css);
1088 }
1089 #endif /* CONFIG_CGROUP_PERF */
1090
1091 #ifdef CONFIG_PERF_EVENTS
1092
1093 extern struct perf_event_context *perf_cpu_task_ctx(void);
1094
1095 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1096 struct perf_event *event);
1097 extern void perf_aux_output_end(struct perf_output_handle *handle,
1098 unsigned long size);
1099 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1100 unsigned long size);
1101 extern void *perf_get_aux(struct perf_output_handle *handle);
1102 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1103 extern void perf_event_itrace_started(struct perf_event *event);
1104
1105 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1106 extern void perf_pmu_unregister(struct pmu *pmu);
1107
1108 extern void __perf_event_task_sched_in(struct task_struct *prev,
1109 struct task_struct *task);
1110 extern void __perf_event_task_sched_out(struct task_struct *prev,
1111 struct task_struct *next);
1112 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1113 extern void perf_event_exit_task(struct task_struct *child);
1114 extern void perf_event_free_task(struct task_struct *task);
1115 extern void perf_event_delayed_put(struct task_struct *task);
1116 extern struct file *perf_event_get(unsigned int fd);
1117 extern const struct perf_event *perf_get_event(struct file *file);
1118 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1119 extern void perf_event_print_debug(void);
1120 extern void perf_pmu_disable(struct pmu *pmu);
1121 extern void perf_pmu_enable(struct pmu *pmu);
1122 extern void perf_sched_cb_dec(struct pmu *pmu);
1123 extern void perf_sched_cb_inc(struct pmu *pmu);
1124 extern int perf_event_task_disable(void);
1125 extern int perf_event_task_enable(void);
1126
1127 extern void perf_pmu_resched(struct pmu *pmu);
1128
1129 extern int perf_event_refresh(struct perf_event *event, int refresh);
1130 extern void perf_event_update_userpage(struct perf_event *event);
1131 extern int perf_event_release_kernel(struct perf_event *event);
1132 extern struct perf_event *
1133 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1134 int cpu,
1135 struct task_struct *task,
1136 perf_overflow_handler_t callback,
1137 void *context);
1138 extern void perf_pmu_migrate_context(struct pmu *pmu,
1139 int src_cpu, int dst_cpu);
1140 int perf_event_read_local(struct perf_event *event, u64 *value,
1141 u64 *enabled, u64 *running);
1142 extern u64 perf_event_read_value(struct perf_event *event,
1143 u64 *enabled, u64 *running);
1144
1145 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1146
branch_sample_no_flags(const struct perf_event * event)1147 static inline bool branch_sample_no_flags(const struct perf_event *event)
1148 {
1149 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1150 }
1151
branch_sample_no_cycles(const struct perf_event * event)1152 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1153 {
1154 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1155 }
1156
branch_sample_type(const struct perf_event * event)1157 static inline bool branch_sample_type(const struct perf_event *event)
1158 {
1159 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1160 }
1161
branch_sample_hw_index(const struct perf_event * event)1162 static inline bool branch_sample_hw_index(const struct perf_event *event)
1163 {
1164 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1165 }
1166
branch_sample_priv(const struct perf_event * event)1167 static inline bool branch_sample_priv(const struct perf_event *event)
1168 {
1169 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1170 }
1171
branch_sample_counters(const struct perf_event * event)1172 static inline bool branch_sample_counters(const struct perf_event *event)
1173 {
1174 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1175 }
1176
branch_sample_call_stack(const struct perf_event * event)1177 static inline bool branch_sample_call_stack(const struct perf_event *event)
1178 {
1179 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1180 }
1181
1182 struct perf_sample_data {
1183 /*
1184 * Fields set by perf_sample_data_init() unconditionally,
1185 * group so as to minimize the cachelines touched.
1186 */
1187 u64 sample_flags;
1188 u64 period;
1189 u64 dyn_size;
1190
1191 /*
1192 * Fields commonly set by __perf_event_header__init_id(),
1193 * group so as to minimize the cachelines touched.
1194 */
1195 u64 type;
1196 struct {
1197 u32 pid;
1198 u32 tid;
1199 } tid_entry;
1200 u64 time;
1201 u64 id;
1202 struct {
1203 u32 cpu;
1204 u32 reserved;
1205 } cpu_entry;
1206
1207 /*
1208 * The other fields, optionally {set,used} by
1209 * perf_{prepare,output}_sample().
1210 */
1211 u64 ip;
1212 struct perf_callchain_entry *callchain;
1213 struct perf_raw_record *raw;
1214 struct perf_branch_stack *br_stack;
1215 u64 *br_stack_cntr;
1216 union perf_sample_weight weight;
1217 union perf_mem_data_src data_src;
1218 u64 txn;
1219
1220 struct perf_regs regs_user;
1221 struct perf_regs regs_intr;
1222 u64 stack_user_size;
1223
1224 u64 stream_id;
1225 u64 cgroup;
1226 u64 addr;
1227 u64 phys_addr;
1228 u64 data_page_size;
1229 u64 code_page_size;
1230 u64 aux_size;
1231 } ____cacheline_aligned;
1232
1233 /* default value for data source */
1234 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1235 PERF_MEM_S(LVL, NA) |\
1236 PERF_MEM_S(SNOOP, NA) |\
1237 PERF_MEM_S(LOCK, NA) |\
1238 PERF_MEM_S(TLB, NA) |\
1239 PERF_MEM_S(LVLNUM, NA))
1240
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)1241 static inline void perf_sample_data_init(struct perf_sample_data *data,
1242 u64 addr, u64 period)
1243 {
1244 /* remaining struct members initialized in perf_prepare_sample() */
1245 data->sample_flags = PERF_SAMPLE_PERIOD;
1246 data->period = period;
1247 data->dyn_size = 0;
1248
1249 if (addr) {
1250 data->addr = addr;
1251 data->sample_flags |= PERF_SAMPLE_ADDR;
1252 }
1253 }
1254
perf_sample_save_callchain(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)1255 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1256 struct perf_event *event,
1257 struct pt_regs *regs)
1258 {
1259 int size = 1;
1260
1261 data->callchain = perf_callchain(event, regs);
1262 size += data->callchain->nr;
1263
1264 data->dyn_size += size * sizeof(u64);
1265 data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1266 }
1267
perf_sample_save_raw_data(struct perf_sample_data * data,struct perf_raw_record * raw)1268 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1269 struct perf_raw_record *raw)
1270 {
1271 struct perf_raw_frag *frag = &raw->frag;
1272 u32 sum = 0;
1273 int size;
1274
1275 do {
1276 sum += frag->size;
1277 if (perf_raw_frag_last(frag))
1278 break;
1279 frag = frag->next;
1280 } while (1);
1281
1282 size = round_up(sum + sizeof(u32), sizeof(u64));
1283 raw->size = size - sizeof(u32);
1284 frag->pad = raw->size - sum;
1285
1286 data->raw = raw;
1287 data->dyn_size += size;
1288 data->sample_flags |= PERF_SAMPLE_RAW;
1289 }
1290
perf_sample_save_brstack(struct perf_sample_data * data,struct perf_event * event,struct perf_branch_stack * brs,u64 * brs_cntr)1291 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1292 struct perf_event *event,
1293 struct perf_branch_stack *brs,
1294 u64 *brs_cntr)
1295 {
1296 int size = sizeof(u64); /* nr */
1297
1298 if (branch_sample_hw_index(event))
1299 size += sizeof(u64);
1300 size += brs->nr * sizeof(struct perf_branch_entry);
1301
1302 /*
1303 * The extension space for counters is appended after the
1304 * struct perf_branch_stack. It is used to store the occurrences
1305 * of events of each branch.
1306 */
1307 if (brs_cntr)
1308 size += brs->nr * sizeof(u64);
1309
1310 data->br_stack = brs;
1311 data->br_stack_cntr = brs_cntr;
1312 data->dyn_size += size;
1313 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1314 }
1315
perf_sample_data_size(struct perf_sample_data * data,struct perf_event * event)1316 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1317 struct perf_event *event)
1318 {
1319 u32 size = sizeof(struct perf_event_header);
1320
1321 size += event->header_size + event->id_header_size;
1322 size += data->dyn_size;
1323
1324 return size;
1325 }
1326
1327 /*
1328 * Clear all bitfields in the perf_branch_entry.
1329 * The to and from fields are not cleared because they are
1330 * systematically modified by caller.
1331 */
perf_clear_branch_entry_bitfields(struct perf_branch_entry * br)1332 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1333 {
1334 br->mispred = 0;
1335 br->predicted = 0;
1336 br->in_tx = 0;
1337 br->abort = 0;
1338 br->cycles = 0;
1339 br->type = 0;
1340 br->spec = PERF_BR_SPEC_NA;
1341 br->reserved = 0;
1342 }
1343
1344 extern void perf_output_sample(struct perf_output_handle *handle,
1345 struct perf_event_header *header,
1346 struct perf_sample_data *data,
1347 struct perf_event *event);
1348 extern void perf_prepare_sample(struct perf_sample_data *data,
1349 struct perf_event *event,
1350 struct pt_regs *regs);
1351 extern void perf_prepare_header(struct perf_event_header *header,
1352 struct perf_sample_data *data,
1353 struct perf_event *event,
1354 struct pt_regs *regs);
1355
1356 extern int perf_event_overflow(struct perf_event *event,
1357 struct perf_sample_data *data,
1358 struct pt_regs *regs);
1359
1360 extern void perf_event_output_forward(struct perf_event *event,
1361 struct perf_sample_data *data,
1362 struct pt_regs *regs);
1363 extern void perf_event_output_backward(struct perf_event *event,
1364 struct perf_sample_data *data,
1365 struct pt_regs *regs);
1366 extern int perf_event_output(struct perf_event *event,
1367 struct perf_sample_data *data,
1368 struct pt_regs *regs);
1369
1370 static inline bool
is_default_overflow_handler(struct perf_event * event)1371 is_default_overflow_handler(struct perf_event *event)
1372 {
1373 perf_overflow_handler_t overflow_handler = event->overflow_handler;
1374
1375 if (likely(overflow_handler == perf_event_output_forward))
1376 return true;
1377 if (unlikely(overflow_handler == perf_event_output_backward))
1378 return true;
1379 return false;
1380 }
1381
1382 extern void
1383 perf_event_header__init_id(struct perf_event_header *header,
1384 struct perf_sample_data *data,
1385 struct perf_event *event);
1386 extern void
1387 perf_event__output_id_sample(struct perf_event *event,
1388 struct perf_output_handle *handle,
1389 struct perf_sample_data *sample);
1390
1391 extern void
1392 perf_log_lost_samples(struct perf_event *event, u64 lost);
1393
event_has_any_exclude_flag(struct perf_event * event)1394 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1395 {
1396 struct perf_event_attr *attr = &event->attr;
1397
1398 return attr->exclude_idle || attr->exclude_user ||
1399 attr->exclude_kernel || attr->exclude_hv ||
1400 attr->exclude_guest || attr->exclude_host;
1401 }
1402
is_sampling_event(struct perf_event * event)1403 static inline bool is_sampling_event(struct perf_event *event)
1404 {
1405 return event->attr.sample_period != 0;
1406 }
1407
1408 /*
1409 * Return 1 for a software event, 0 for a hardware event
1410 */
is_software_event(struct perf_event * event)1411 static inline int is_software_event(struct perf_event *event)
1412 {
1413 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1414 }
1415
1416 /*
1417 * Return 1 for event in sw context, 0 for event in hw context
1418 */
in_software_context(struct perf_event * event)1419 static inline int in_software_context(struct perf_event *event)
1420 {
1421 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1422 }
1423
is_exclusive_pmu(struct pmu * pmu)1424 static inline int is_exclusive_pmu(struct pmu *pmu)
1425 {
1426 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1427 }
1428
1429 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1430
1431 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1432 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1433
1434 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)1435 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1436 #endif
1437
1438 /*
1439 * When generating a perf sample in-line, instead of from an interrupt /
1440 * exception, we lack a pt_regs. This is typically used from software events
1441 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1442 *
1443 * We typically don't need a full set, but (for x86) do require:
1444 * - ip for PERF_SAMPLE_IP
1445 * - cs for user_mode() tests
1446 * - sp for PERF_SAMPLE_CALLCHAIN
1447 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1448 *
1449 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1450 * things like PERF_SAMPLE_REGS_INTR.
1451 */
perf_fetch_caller_regs(struct pt_regs * regs)1452 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1453 {
1454 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1455 }
1456
1457 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1458 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1459 {
1460 if (static_key_false(&perf_swevent_enabled[event_id]))
1461 __perf_sw_event(event_id, nr, regs, addr);
1462 }
1463
1464 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1465
1466 /*
1467 * 'Special' version for the scheduler, it hard assumes no recursion,
1468 * which is guaranteed by us not actually scheduling inside other swevents
1469 * because those disable preemption.
1470 */
__perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1471 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1472 {
1473 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1474
1475 perf_fetch_caller_regs(regs);
1476 ___perf_sw_event(event_id, nr, regs, addr);
1477 }
1478
1479 extern struct static_key_false perf_sched_events;
1480
__perf_sw_enabled(int swevt)1481 static __always_inline bool __perf_sw_enabled(int swevt)
1482 {
1483 return static_key_false(&perf_swevent_enabled[swevt]);
1484 }
1485
perf_event_task_migrate(struct task_struct * task)1486 static inline void perf_event_task_migrate(struct task_struct *task)
1487 {
1488 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1489 task->sched_migrated = 1;
1490 }
1491
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1492 static inline void perf_event_task_sched_in(struct task_struct *prev,
1493 struct task_struct *task)
1494 {
1495 if (static_branch_unlikely(&perf_sched_events))
1496 __perf_event_task_sched_in(prev, task);
1497
1498 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1499 task->sched_migrated) {
1500 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1501 task->sched_migrated = 0;
1502 }
1503 }
1504
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1505 static inline void perf_event_task_sched_out(struct task_struct *prev,
1506 struct task_struct *next)
1507 {
1508 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1509 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1510
1511 #ifdef CONFIG_CGROUP_PERF
1512 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1513 perf_cgroup_from_task(prev, NULL) !=
1514 perf_cgroup_from_task(next, NULL))
1515 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1516 #endif
1517
1518 if (static_branch_unlikely(&perf_sched_events))
1519 __perf_event_task_sched_out(prev, next);
1520 }
1521
1522 extern void perf_event_mmap(struct vm_area_struct *vma);
1523
1524 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1525 bool unregister, const char *sym);
1526 extern void perf_event_bpf_event(struct bpf_prog *prog,
1527 enum perf_bpf_event_type type,
1528 u16 flags);
1529
1530 #ifdef CONFIG_GUEST_PERF_EVENTS
1531 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1532
1533 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1534 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1535 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1536
perf_guest_state(void)1537 static inline unsigned int perf_guest_state(void)
1538 {
1539 return static_call(__perf_guest_state)();
1540 }
perf_guest_get_ip(void)1541 static inline unsigned long perf_guest_get_ip(void)
1542 {
1543 return static_call(__perf_guest_get_ip)();
1544 }
perf_guest_handle_intel_pt_intr(void)1545 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1546 {
1547 return static_call(__perf_guest_handle_intel_pt_intr)();
1548 }
1549 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1550 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1551 #else
perf_guest_state(void)1552 static inline unsigned int perf_guest_state(void) { return 0; }
perf_guest_get_ip(void)1553 static inline unsigned long perf_guest_get_ip(void) { return 0; }
perf_guest_handle_intel_pt_intr(void)1554 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1555 #endif /* CONFIG_GUEST_PERF_EVENTS */
1556
1557 extern void perf_event_exec(void);
1558 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1559 extern void perf_event_namespaces(struct task_struct *tsk);
1560 extern void perf_event_fork(struct task_struct *tsk);
1561 extern void perf_event_text_poke(const void *addr,
1562 const void *old_bytes, size_t old_len,
1563 const void *new_bytes, size_t new_len);
1564
1565 /* Callchains */
1566 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1567
1568 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1569 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1570 extern struct perf_callchain_entry *
1571 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1572 u32 max_stack, bool crosstask, bool add_mark);
1573 extern int get_callchain_buffers(int max_stack);
1574 extern void put_callchain_buffers(void);
1575 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1576 extern void put_callchain_entry(int rctx);
1577
1578 extern int sysctl_perf_event_max_stack;
1579 extern int sysctl_perf_event_max_contexts_per_stack;
1580
perf_callchain_store_context(struct perf_callchain_entry_ctx * ctx,u64 ip)1581 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1582 {
1583 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1584 struct perf_callchain_entry *entry = ctx->entry;
1585 entry->ip[entry->nr++] = ip;
1586 ++ctx->contexts;
1587 return 0;
1588 } else {
1589 ctx->contexts_maxed = true;
1590 return -1; /* no more room, stop walking the stack */
1591 }
1592 }
1593
perf_callchain_store(struct perf_callchain_entry_ctx * ctx,u64 ip)1594 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1595 {
1596 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1597 struct perf_callchain_entry *entry = ctx->entry;
1598 entry->ip[entry->nr++] = ip;
1599 ++ctx->nr;
1600 return 0;
1601 } else {
1602 return -1; /* no more room, stop walking the stack */
1603 }
1604 }
1605
1606 extern int sysctl_perf_event_paranoid;
1607 extern int sysctl_perf_event_mlock;
1608 extern int sysctl_perf_event_sample_rate;
1609 extern int sysctl_perf_cpu_time_max_percent;
1610
1611 extern void perf_sample_event_took(u64 sample_len_ns);
1612
1613 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
1614 void *buffer, size_t *lenp, loff_t *ppos);
1615 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
1616 void *buffer, size_t *lenp, loff_t *ppos);
1617 int perf_event_max_stack_handler(const struct ctl_table *table, int write,
1618 void *buffer, size_t *lenp, loff_t *ppos);
1619
1620 /* Access to perf_event_open(2) syscall. */
1621 #define PERF_SECURITY_OPEN 0
1622
1623 /* Finer grained perf_event_open(2) access control. */
1624 #define PERF_SECURITY_CPU 1
1625 #define PERF_SECURITY_KERNEL 2
1626 #define PERF_SECURITY_TRACEPOINT 3
1627
perf_is_paranoid(void)1628 static inline int perf_is_paranoid(void)
1629 {
1630 return sysctl_perf_event_paranoid > -1;
1631 }
1632
1633 int perf_allow_kernel(struct perf_event_attr *attr);
1634
perf_allow_cpu(struct perf_event_attr * attr)1635 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1636 {
1637 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1638 return -EACCES;
1639
1640 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1641 }
1642
perf_allow_tracepoint(struct perf_event_attr * attr)1643 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1644 {
1645 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1646 return -EPERM;
1647
1648 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1649 }
1650
1651 extern void perf_event_init(void);
1652 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1653 int entry_size, struct pt_regs *regs,
1654 struct hlist_head *head, int rctx,
1655 struct task_struct *task);
1656 extern void perf_bp_event(struct perf_event *event, void *data);
1657
1658 #ifndef perf_misc_flags
1659 # define perf_misc_flags(regs) \
1660 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1661 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1662 #endif
1663 #ifndef perf_arch_bpf_user_pt_regs
1664 # define perf_arch_bpf_user_pt_regs(regs) regs
1665 #endif
1666
has_branch_stack(struct perf_event * event)1667 static inline bool has_branch_stack(struct perf_event *event)
1668 {
1669 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1670 }
1671
needs_branch_stack(struct perf_event * event)1672 static inline bool needs_branch_stack(struct perf_event *event)
1673 {
1674 return event->attr.branch_sample_type != 0;
1675 }
1676
has_aux(struct perf_event * event)1677 static inline bool has_aux(struct perf_event *event)
1678 {
1679 return event->pmu->setup_aux;
1680 }
1681
is_write_backward(struct perf_event * event)1682 static inline bool is_write_backward(struct perf_event *event)
1683 {
1684 return !!event->attr.write_backward;
1685 }
1686
has_addr_filter(struct perf_event * event)1687 static inline bool has_addr_filter(struct perf_event *event)
1688 {
1689 return event->pmu->nr_addr_filters;
1690 }
1691
1692 /*
1693 * An inherited event uses parent's filters
1694 */
1695 static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event * event)1696 perf_event_addr_filters(struct perf_event *event)
1697 {
1698 struct perf_addr_filters_head *ifh = &event->addr_filters;
1699
1700 if (event->parent)
1701 ifh = &event->parent->addr_filters;
1702
1703 return ifh;
1704 }
1705
perf_event_fasync(struct perf_event * event)1706 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
1707 {
1708 /* Only the parent has fasync state */
1709 if (event->parent)
1710 event = event->parent;
1711 return &event->fasync;
1712 }
1713
1714 extern void perf_event_addr_filters_sync(struct perf_event *event);
1715 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1716
1717 extern int perf_output_begin(struct perf_output_handle *handle,
1718 struct perf_sample_data *data,
1719 struct perf_event *event, unsigned int size);
1720 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1721 struct perf_sample_data *data,
1722 struct perf_event *event,
1723 unsigned int size);
1724 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1725 struct perf_sample_data *data,
1726 struct perf_event *event,
1727 unsigned int size);
1728
1729 extern void perf_output_end(struct perf_output_handle *handle);
1730 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1731 const void *buf, unsigned int len);
1732 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1733 unsigned int len);
1734 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1735 struct perf_output_handle *handle,
1736 unsigned long from, unsigned long to);
1737 extern int perf_swevent_get_recursion_context(void);
1738 extern void perf_swevent_put_recursion_context(int rctx);
1739 extern u64 perf_swevent_set_period(struct perf_event *event);
1740 extern void perf_event_enable(struct perf_event *event);
1741 extern void perf_event_disable(struct perf_event *event);
1742 extern void perf_event_disable_local(struct perf_event *event);
1743 extern void perf_event_disable_inatomic(struct perf_event *event);
1744 extern void perf_event_task_tick(void);
1745 extern int perf_event_account_interrupt(struct perf_event *event);
1746 extern int perf_event_period(struct perf_event *event, u64 value);
1747 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1748 #else /* !CONFIG_PERF_EVENTS: */
1749 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1750 perf_aux_output_begin(struct perf_output_handle *handle,
1751 struct perf_event *event) { return NULL; }
1752 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)1753 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1754 { }
1755 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1756 perf_aux_output_skip(struct perf_output_handle *handle,
1757 unsigned long size) { return -EINVAL; }
1758 static inline void *
perf_get_aux(struct perf_output_handle * handle)1759 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1760 static inline void
perf_event_task_migrate(struct task_struct * task)1761 perf_event_task_migrate(struct task_struct *task) { }
1762 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1763 perf_event_task_sched_in(struct task_struct *prev,
1764 struct task_struct *task) { }
1765 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1766 perf_event_task_sched_out(struct task_struct *prev,
1767 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child,u64 clone_flags)1768 static inline int perf_event_init_task(struct task_struct *child,
1769 u64 clone_flags) { return 0; }
perf_event_exit_task(struct task_struct * child)1770 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)1771 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)1772 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_get(unsigned int fd)1773 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
perf_get_event(struct file * file)1774 static inline const struct perf_event *perf_get_event(struct file *file)
1775 {
1776 return ERR_PTR(-EINVAL);
1777 }
perf_event_attrs(struct perf_event * event)1778 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1779 {
1780 return ERR_PTR(-EINVAL);
1781 }
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)1782 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1783 u64 *enabled, u64 *running)
1784 {
1785 return -EINVAL;
1786 }
perf_event_print_debug(void)1787 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)1788 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)1789 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1790 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1791 {
1792 return -EINVAL;
1793 }
1794
1795 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1796 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1797 static inline void
perf_bp_event(struct perf_event * event,void * data)1798 perf_bp_event(struct perf_event *event, void *data) { }
1799
perf_event_mmap(struct vm_area_struct * vma)1800 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1801
1802 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)1803 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1804 bool unregister, const char *sym) { }
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)1805 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1806 enum perf_bpf_event_type type,
1807 u16 flags) { }
perf_event_exec(void)1808 static inline void perf_event_exec(void) { }
perf_event_comm(struct task_struct * tsk,bool exec)1809 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
perf_event_namespaces(struct task_struct * tsk)1810 static inline void perf_event_namespaces(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)1811 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)1812 static inline void perf_event_text_poke(const void *addr,
1813 const void *old_bytes,
1814 size_t old_len,
1815 const void *new_bytes,
1816 size_t new_len) { }
perf_event_init(void)1817 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)1818 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)1819 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)1820 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)1821 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)1822 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)1823 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)1824 static inline void perf_event_task_tick(void) { }
perf_event_release_kernel(struct perf_event * event)1825 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
perf_event_period(struct perf_event * event,u64 value)1826 static inline int perf_event_period(struct perf_event *event, u64 value)
1827 {
1828 return -EINVAL;
1829 }
perf_event_pause(struct perf_event * event,bool reset)1830 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1831 {
1832 return 0;
1833 }
1834 #endif
1835
1836 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1837 extern void perf_restore_debug_store(void);
1838 #else
perf_restore_debug_store(void)1839 static inline void perf_restore_debug_store(void) { }
1840 #endif
1841
1842 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1843
1844 struct perf_pmu_events_attr {
1845 struct device_attribute attr;
1846 u64 id;
1847 const char *event_str;
1848 };
1849
1850 struct perf_pmu_events_ht_attr {
1851 struct device_attribute attr;
1852 u64 id;
1853 const char *event_str_ht;
1854 const char *event_str_noht;
1855 };
1856
1857 struct perf_pmu_events_hybrid_attr {
1858 struct device_attribute attr;
1859 u64 id;
1860 const char *event_str;
1861 u64 pmu_type;
1862 };
1863
1864 struct perf_pmu_format_hybrid_attr {
1865 struct device_attribute attr;
1866 u64 pmu_type;
1867 };
1868
1869 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1870 char *page);
1871
1872 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1873 static struct perf_pmu_events_attr _var = { \
1874 .attr = __ATTR(_name, 0444, _show, NULL), \
1875 .id = _id, \
1876 };
1877
1878 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1879 static struct perf_pmu_events_attr _var = { \
1880 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1881 .id = 0, \
1882 .event_str = _str, \
1883 };
1884
1885 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1886 (&((struct perf_pmu_events_attr[]) { \
1887 { .attr = __ATTR(_name, 0444, _show, NULL), \
1888 .id = _id, } \
1889 })[0].attr.attr)
1890
1891 #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1892 static ssize_t \
1893 _name##_show(struct device *dev, \
1894 struct device_attribute *attr, \
1895 char *page) \
1896 { \
1897 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1898 return sprintf(page, _format "\n"); \
1899 } \
1900
1901 #define PMU_FORMAT_ATTR(_name, _format) \
1902 PMU_FORMAT_ATTR_SHOW(_name, _format) \
1903 \
1904 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1905
1906 /* Performance counter hotplug functions */
1907 #ifdef CONFIG_PERF_EVENTS
1908 int perf_event_init_cpu(unsigned int cpu);
1909 int perf_event_exit_cpu(unsigned int cpu);
1910 #else
1911 #define perf_event_init_cpu NULL
1912 #define perf_event_exit_cpu NULL
1913 #endif
1914
1915 extern void arch_perf_update_userpage(struct perf_event *event,
1916 struct perf_event_mmap_page *userpg,
1917 u64 now);
1918
1919 /*
1920 * Snapshot branch stack on software events.
1921 *
1922 * Branch stack can be very useful in understanding software events. For
1923 * example, when a long function, e.g. sys_perf_event_open, returns an
1924 * errno, it is not obvious why the function failed. Branch stack could
1925 * provide very helpful information in this type of scenarios.
1926 *
1927 * On software event, it is necessary to stop the hardware branch recorder
1928 * fast. Otherwise, the hardware register/buffer will be flushed with
1929 * entries of the triggering event. Therefore, static call is used to
1930 * stop the hardware recorder.
1931 */
1932
1933 /*
1934 * cnt is the number of entries allocated for entries.
1935 * Return number of entries copied to .
1936 */
1937 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1938 unsigned int cnt);
1939 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1940
1941 #ifndef PERF_NEEDS_LOPWR_CB
perf_lopwr_cb(bool mode)1942 static inline void perf_lopwr_cb(bool mode)
1943 {
1944 }
1945 #endif
1946
1947 #endif /* _LINUX_PERF_EVENT_H */
1948