1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclOpenMP.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/GlobalDecl.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/DiagnosticOptions.h"
29 #include "clang/Basic/FileManager.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/CRC.h"
34 #include "llvm/Support/MD5.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/StringSaver.h"
37 #include "llvm/Support/xxhash.h"
38 #include <optional>
39
40 using namespace clang;
41
42 namespace {
43
44 // Get GlobalDecl of DeclContext of local entities.
getGlobalDeclAsDeclContext(const DeclContext * DC)45 static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) {
46 GlobalDecl GD;
47 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
48 GD = GlobalDecl(CD, Ctor_Complete);
49 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
50 GD = GlobalDecl(DD, Dtor_Complete);
51 else
52 GD = GlobalDecl(cast<FunctionDecl>(DC));
53 return GD;
54 }
55
56 struct msvc_hashing_ostream : public llvm::raw_svector_ostream {
57 raw_ostream &OS;
58 llvm::SmallString<64> Buffer;
59
msvc_hashing_ostream__anon0fcfe5880111::msvc_hashing_ostream60 msvc_hashing_ostream(raw_ostream &OS)
61 : llvm::raw_svector_ostream(Buffer), OS(OS) {}
~msvc_hashing_ostream__anon0fcfe5880111::msvc_hashing_ostream62 ~msvc_hashing_ostream() override {
63 StringRef MangledName = str();
64 bool StartsWithEscape = MangledName.startswith("\01");
65 if (StartsWithEscape)
66 MangledName = MangledName.drop_front(1);
67 if (MangledName.size() < 4096) {
68 OS << str();
69 return;
70 }
71
72 llvm::MD5 Hasher;
73 llvm::MD5::MD5Result Hash;
74 Hasher.update(MangledName);
75 Hasher.final(Hash);
76
77 SmallString<32> HexString;
78 llvm::MD5::stringifyResult(Hash, HexString);
79
80 if (StartsWithEscape)
81 OS << '\01';
82 OS << "??@" << HexString << '@';
83 }
84 };
85
86 static const DeclContext *
getLambdaDefaultArgumentDeclContext(const Decl * D)87 getLambdaDefaultArgumentDeclContext(const Decl *D) {
88 if (const auto *RD = dyn_cast<CXXRecordDecl>(D))
89 if (RD->isLambda())
90 if (const auto *Parm =
91 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
92 return Parm->getDeclContext();
93 return nullptr;
94 }
95
96 /// Retrieve the declaration context that should be used when mangling
97 /// the given declaration.
getEffectiveDeclContext(const Decl * D)98 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
99 // The ABI assumes that lambda closure types that occur within
100 // default arguments live in the context of the function. However, due to
101 // the way in which Clang parses and creates function declarations, this is
102 // not the case: the lambda closure type ends up living in the context
103 // where the function itself resides, because the function declaration itself
104 // had not yet been created. Fix the context here.
105 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D))
106 return LDADC;
107
108 // Perform the same check for block literals.
109 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
110 if (ParmVarDecl *ContextParam =
111 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
112 return ContextParam->getDeclContext();
113 }
114
115 const DeclContext *DC = D->getDeclContext();
116 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
117 isa<OMPDeclareMapperDecl>(DC)) {
118 return getEffectiveDeclContext(cast<Decl>(DC));
119 }
120
121 return DC->getRedeclContext();
122 }
123
getEffectiveParentContext(const DeclContext * DC)124 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
125 return getEffectiveDeclContext(cast<Decl>(DC));
126 }
127
getStructor(const NamedDecl * ND)128 static const FunctionDecl *getStructor(const NamedDecl *ND) {
129 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
130 return FTD->getTemplatedDecl()->getCanonicalDecl();
131
132 const auto *FD = cast<FunctionDecl>(ND);
133 if (const auto *FTD = FD->getPrimaryTemplate())
134 return FTD->getTemplatedDecl()->getCanonicalDecl();
135
136 return FD->getCanonicalDecl();
137 }
138
139 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
140 /// Microsoft Visual C++ ABI.
141 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
142 typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
143 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
144 llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
145 llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
146 llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds;
147 llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds;
148 SmallString<16> AnonymousNamespaceHash;
149
150 public:
151 MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags,
152 bool IsAux = false);
153 bool shouldMangleCXXName(const NamedDecl *D) override;
154 bool shouldMangleStringLiteral(const StringLiteral *SL) override;
155 void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override;
156 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
157 const MethodVFTableLocation &ML,
158 raw_ostream &Out) override;
159 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
160 raw_ostream &) override;
161 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
162 const ThisAdjustment &ThisAdjustment,
163 raw_ostream &) override;
164 void mangleCXXVFTable(const CXXRecordDecl *Derived,
165 ArrayRef<const CXXRecordDecl *> BasePath,
166 raw_ostream &Out) override;
167 void mangleCXXVBTable(const CXXRecordDecl *Derived,
168 ArrayRef<const CXXRecordDecl *> BasePath,
169 raw_ostream &Out) override;
170 void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
171 const CXXRecordDecl *DstRD,
172 raw_ostream &Out) override;
173 void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
174 bool IsUnaligned, uint32_t NumEntries,
175 raw_ostream &Out) override;
176 void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
177 raw_ostream &Out) override;
178 void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
179 CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
180 int32_t VBPtrOffset, uint32_t VBIndex,
181 raw_ostream &Out) override;
182 void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
183 void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
184 void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
185 uint32_t NVOffset, int32_t VBPtrOffset,
186 uint32_t VBTableOffset, uint32_t Flags,
187 raw_ostream &Out) override;
188 void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
189 raw_ostream &Out) override;
190 void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
191 raw_ostream &Out) override;
192 void
193 mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
194 ArrayRef<const CXXRecordDecl *> BasePath,
195 raw_ostream &Out) override;
196 void mangleTypeName(QualType T, raw_ostream &) override;
197 void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
198 raw_ostream &) override;
199 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
200 void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
201 raw_ostream &Out) override;
202 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
203 void mangleDynamicAtExitDestructor(const VarDecl *D,
204 raw_ostream &Out) override;
205 void mangleSEHFilterExpression(GlobalDecl EnclosingDecl,
206 raw_ostream &Out) override;
207 void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,
208 raw_ostream &Out) override;
209 void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
getNextDiscriminator(const NamedDecl * ND,unsigned & disc)210 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
211 const DeclContext *DC = getEffectiveDeclContext(ND);
212 if (!DC->isFunctionOrMethod())
213 return false;
214
215 // Lambda closure types are already numbered, give out a phony number so
216 // that they demangle nicely.
217 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
218 if (RD->isLambda()) {
219 disc = 1;
220 return true;
221 }
222 }
223
224 // Use the canonical number for externally visible decls.
225 if (ND->isExternallyVisible()) {
226 disc = getASTContext().getManglingNumber(ND, isAux());
227 return true;
228 }
229
230 // Anonymous tags are already numbered.
231 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
232 if (!Tag->hasNameForLinkage() &&
233 !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
234 !getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
235 return false;
236 }
237
238 // Make up a reasonable number for internal decls.
239 unsigned &discriminator = Uniquifier[ND];
240 if (!discriminator)
241 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
242 disc = discriminator + 1;
243 return true;
244 }
245
getLambdaString(const CXXRecordDecl * Lambda)246 std::string getLambdaString(const CXXRecordDecl *Lambda) override {
247 assert(Lambda->isLambda() && "RD must be a lambda!");
248 std::string Name("<lambda_");
249
250 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
251 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
252 unsigned LambdaId;
253 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
254 const FunctionDecl *Func =
255 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
256
257 if (Func) {
258 unsigned DefaultArgNo =
259 Func->getNumParams() - Parm->getFunctionScopeIndex();
260 Name += llvm::utostr(DefaultArgNo);
261 Name += "_";
262 }
263
264 if (LambdaManglingNumber)
265 LambdaId = LambdaManglingNumber;
266 else
267 LambdaId = getLambdaIdForDebugInfo(Lambda);
268
269 Name += llvm::utostr(LambdaId);
270 Name += ">";
271 return Name;
272 }
273
getLambdaId(const CXXRecordDecl * RD)274 unsigned getLambdaId(const CXXRecordDecl *RD) {
275 assert(RD->isLambda() && "RD must be a lambda!");
276 assert(!RD->isExternallyVisible() && "RD must not be visible!");
277 assert(RD->getLambdaManglingNumber() == 0 &&
278 "RD must not have a mangling number!");
279 std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
280 Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
281 return Result.first->second;
282 }
283
getLambdaIdForDebugInfo(const CXXRecordDecl * RD)284 unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) {
285 assert(RD->isLambda() && "RD must be a lambda!");
286 assert(!RD->isExternallyVisible() && "RD must not be visible!");
287 assert(RD->getLambdaManglingNumber() == 0 &&
288 "RD must not have a mangling number!");
289 llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator Result =
290 LambdaIds.find(RD);
291 // The lambda should exist, but return 0 in case it doesn't.
292 if (Result == LambdaIds.end())
293 return 0;
294 return Result->second;
295 }
296
297 /// Return a character sequence that is (somewhat) unique to the TU suitable
298 /// for mangling anonymous namespaces.
getAnonymousNamespaceHash() const299 StringRef getAnonymousNamespaceHash() const {
300 return AnonymousNamespaceHash;
301 }
302
303 private:
304 void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out);
305 };
306
307 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
308 /// Microsoft Visual C++ ABI.
309 class MicrosoftCXXNameMangler {
310 MicrosoftMangleContextImpl &Context;
311 raw_ostream &Out;
312
313 /// The "structor" is the top-level declaration being mangled, if
314 /// that's not a template specialization; otherwise it's the pattern
315 /// for that specialization.
316 const NamedDecl *Structor;
317 unsigned StructorType;
318
319 typedef llvm::SmallVector<std::string, 10> BackRefVec;
320 BackRefVec NameBackReferences;
321
322 typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
323 ArgBackRefMap FunArgBackReferences;
324 ArgBackRefMap TemplateArgBackReferences;
325
326 typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap;
327 TemplateArgStringMap TemplateArgStrings;
328 llvm::StringSaver TemplateArgStringStorage;
329 llvm::BumpPtrAllocator TemplateArgStringStorageAlloc;
330
331 typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet;
332 PassObjectSizeArgsSet PassObjectSizeArgs;
333
getASTContext() const334 ASTContext &getASTContext() const { return Context.getASTContext(); }
335
336 const bool PointersAre64Bit;
337
338 public:
339 enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
340
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_)341 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
342 : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
343 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
344 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
345 LangAS::Default) == 64) {}
346
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXConstructorDecl * D,CXXCtorType Type)347 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
348 const CXXConstructorDecl *D, CXXCtorType Type)
349 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
350 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
351 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
352 LangAS::Default) == 64) {}
353
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl & C,raw_ostream & Out_,const CXXDestructorDecl * D,CXXDtorType Type)354 MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
355 const CXXDestructorDecl *D, CXXDtorType Type)
356 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
357 TemplateArgStringStorage(TemplateArgStringStorageAlloc),
358 PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(
359 LangAS::Default) == 64) {}
360
getStream() const361 raw_ostream &getStream() const { return Out; }
362
363 void mangle(GlobalDecl GD, StringRef Prefix = "?");
364 void mangleName(GlobalDecl GD);
365 void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle);
366 void mangleVariableEncoding(const VarDecl *VD);
367 void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD,
368 StringRef Prefix = "$");
369 void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
370 const CXXMethodDecl *MD,
371 StringRef Prefix = "$");
372 void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
373 const MethodVFTableLocation &ML);
374 void mangleNumber(int64_t Number);
375 void mangleNumber(llvm::APSInt Number);
376 void mangleFloat(llvm::APFloat Number);
377 void mangleBits(llvm::APInt Number);
378 void mangleTagTypeKind(TagTypeKind TK);
379 void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName,
380 ArrayRef<StringRef> NestedNames = std::nullopt);
381 void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range);
382 void mangleType(QualType T, SourceRange Range,
383 QualifierMangleMode QMM = QMM_Mangle);
384 void mangleFunctionType(const FunctionType *T,
385 const FunctionDecl *D = nullptr,
386 bool ForceThisQuals = false,
387 bool MangleExceptionSpec = true);
388 void mangleNestedName(GlobalDecl GD);
389
390 private:
isStructorDecl(const NamedDecl * ND) const391 bool isStructorDecl(const NamedDecl *ND) const {
392 return ND == Structor || getStructor(ND) == Structor;
393 }
394
is64BitPointer(Qualifiers Quals) const395 bool is64BitPointer(Qualifiers Quals) const {
396 LangAS AddrSpace = Quals.getAddressSpace();
397 return AddrSpace == LangAS::ptr64 ||
398 (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr ||
399 AddrSpace == LangAS::ptr32_uptr));
400 }
401
mangleUnqualifiedName(GlobalDecl GD)402 void mangleUnqualifiedName(GlobalDecl GD) {
403 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName());
404 }
405 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name);
406 void mangleSourceName(StringRef Name);
407 void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
408 void mangleCXXDtorType(CXXDtorType T);
409 void mangleQualifiers(Qualifiers Quals, bool IsMember);
410 void mangleRefQualifier(RefQualifierKind RefQualifier);
411 void manglePointerCVQualifiers(Qualifiers Quals);
412 void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
413
414 void mangleUnscopedTemplateName(GlobalDecl GD);
415 void
416 mangleTemplateInstantiationName(GlobalDecl GD,
417 const TemplateArgumentList &TemplateArgs);
418 void mangleObjCMethodName(const ObjCMethodDecl *MD);
419
420 void mangleFunctionArgumentType(QualType T, SourceRange Range);
421 void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
422
423 bool isArtificialTagType(QualType T) const;
424
425 // Declare manglers for every type class.
426 #define ABSTRACT_TYPE(CLASS, PARENT)
427 #define NON_CANONICAL_TYPE(CLASS, PARENT)
428 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
429 Qualifiers Quals, \
430 SourceRange Range);
431 #include "clang/AST/TypeNodes.inc"
432 #undef ABSTRACT_TYPE
433 #undef NON_CANONICAL_TYPE
434 #undef TYPE
435
436 void mangleType(const TagDecl *TD);
437 void mangleDecayedArrayType(const ArrayType *T);
438 void mangleArrayType(const ArrayType *T);
439 void mangleFunctionClass(const FunctionDecl *FD);
440 void mangleCallingConvention(CallingConv CC);
441 void mangleCallingConvention(const FunctionType *T);
442 void mangleIntegerLiteral(const llvm::APSInt &Number,
443 const NonTypeTemplateParmDecl *PD = nullptr,
444 QualType TemplateArgType = QualType());
445 void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD);
446 void mangleThrowSpecification(const FunctionProtoType *T);
447
448 void mangleTemplateArgs(const TemplateDecl *TD,
449 const TemplateArgumentList &TemplateArgs);
450 void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
451 const NamedDecl *Parm);
452 void mangleTemplateArgValue(QualType T, const APValue &V,
453 bool WithScalarType = false);
454
455 void mangleObjCProtocol(const ObjCProtocolDecl *PD);
456 void mangleObjCLifetime(const QualType T, Qualifiers Quals,
457 SourceRange Range);
458 void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals,
459 SourceRange Range);
460 };
461 }
462
MicrosoftMangleContextImpl(ASTContext & Context,DiagnosticsEngine & Diags,bool IsAux)463 MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context,
464 DiagnosticsEngine &Diags,
465 bool IsAux)
466 : MicrosoftMangleContext(Context, Diags, IsAux) {
467 // To mangle anonymous namespaces, hash the path to the main source file. The
468 // path should be whatever (probably relative) path was passed on the command
469 // line. The goal is for the compiler to produce the same output regardless of
470 // working directory, so use the uncanonicalized relative path.
471 //
472 // It's important to make the mangled names unique because, when CodeView
473 // debug info is in use, the debugger uses mangled type names to distinguish
474 // between otherwise identically named types in anonymous namespaces.
475 //
476 // These symbols are always internal, so there is no need for the hash to
477 // match what MSVC produces. For the same reason, clang is free to change the
478 // hash at any time without breaking compatibility with old versions of clang.
479 // The generated names are intended to look similar to what MSVC generates,
480 // which are something like "?A0x01234567@".
481 SourceManager &SM = Context.getSourceManager();
482 if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) {
483 // Truncate the hash so we get 8 characters of hexadecimal.
484 uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName()));
485 AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash);
486 } else {
487 // If we don't have a path to the main file, we'll just use 0.
488 AnonymousNamespaceHash = "0";
489 }
490 }
491
shouldMangleCXXName(const NamedDecl * D)492 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
493 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
494 LanguageLinkage L = FD->getLanguageLinkage();
495 // Overloadable functions need mangling.
496 if (FD->hasAttr<OverloadableAttr>())
497 return true;
498
499 // The ABI expects that we would never mangle "typical" user-defined entry
500 // points regardless of visibility or freestanding-ness.
501 //
502 // N.B. This is distinct from asking about "main". "main" has a lot of
503 // special rules associated with it in the standard while these
504 // user-defined entry points are outside of the purview of the standard.
505 // For example, there can be only one definition for "main" in a standards
506 // compliant program; however nothing forbids the existence of wmain and
507 // WinMain in the same translation unit.
508 if (FD->isMSVCRTEntryPoint())
509 return false;
510
511 // C++ functions and those whose names are not a simple identifier need
512 // mangling.
513 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
514 return true;
515
516 // C functions are not mangled.
517 if (L == CLanguageLinkage)
518 return false;
519 }
520
521 // Otherwise, no mangling is done outside C++ mode.
522 if (!getASTContext().getLangOpts().CPlusPlus)
523 return false;
524
525 const VarDecl *VD = dyn_cast<VarDecl>(D);
526 if (VD && !isa<DecompositionDecl>(D)) {
527 // C variables are not mangled.
528 if (VD->isExternC())
529 return false;
530
531 // Variables at global scope with internal linkage are not mangled.
532 const DeclContext *DC = getEffectiveDeclContext(D);
533 // Check for extern variable declared locally.
534 if (DC->isFunctionOrMethod() && D->hasLinkage())
535 while (!DC->isNamespace() && !DC->isTranslationUnit())
536 DC = getEffectiveParentContext(DC);
537
538 if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
539 !isa<VarTemplateSpecializationDecl>(D) &&
540 D->getIdentifier() != nullptr)
541 return false;
542 }
543
544 return true;
545 }
546
547 bool
shouldMangleStringLiteral(const StringLiteral * SL)548 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
549 return true;
550 }
551
mangle(GlobalDecl GD,StringRef Prefix)552 void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) {
553 const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
554 // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
555 // Therefore it's really important that we don't decorate the
556 // name with leading underscores or leading/trailing at signs. So, by
557 // default, we emit an asm marker at the start so we get the name right.
558 // Callers can override this with a custom prefix.
559
560 // <mangled-name> ::= ? <name> <type-encoding>
561 Out << Prefix;
562 mangleName(GD);
563 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
564 mangleFunctionEncoding(GD, Context.shouldMangleDeclName(FD));
565 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
566 mangleVariableEncoding(VD);
567 else if (isa<MSGuidDecl>(D))
568 // MSVC appears to mangle GUIDs as if they were variables of type
569 // 'const struct __s_GUID'.
570 Out << "3U__s_GUID@@B";
571 else if (isa<TemplateParamObjectDecl>(D)) {
572 // Template parameter objects don't get a <type-encoding>; their type is
573 // specified as part of their value.
574 } else
575 llvm_unreachable("Tried to mangle unexpected NamedDecl!");
576 }
577
mangleFunctionEncoding(GlobalDecl GD,bool ShouldMangle)578 void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD,
579 bool ShouldMangle) {
580 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
581 // <type-encoding> ::= <function-class> <function-type>
582
583 // Since MSVC operates on the type as written and not the canonical type, it
584 // actually matters which decl we have here. MSVC appears to choose the
585 // first, since it is most likely to be the declaration in a header file.
586 FD = FD->getFirstDecl();
587
588 // We should never ever see a FunctionNoProtoType at this point.
589 // We don't even know how to mangle their types anyway :).
590 const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
591
592 // extern "C" functions can hold entities that must be mangled.
593 // As it stands, these functions still need to get expressed in the full
594 // external name. They have their class and type omitted, replaced with '9'.
595 if (ShouldMangle) {
596 // We would like to mangle all extern "C" functions using this additional
597 // component but this would break compatibility with MSVC's behavior.
598 // Instead, do this when we know that compatibility isn't important (in
599 // other words, when it is an overloaded extern "C" function).
600 if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
601 Out << "$$J0";
602
603 mangleFunctionClass(FD);
604
605 mangleFunctionType(FT, FD, false, false);
606 } else {
607 Out << '9';
608 }
609 }
610
mangleVariableEncoding(const VarDecl * VD)611 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
612 // <type-encoding> ::= <storage-class> <variable-type>
613 // <storage-class> ::= 0 # private static member
614 // ::= 1 # protected static member
615 // ::= 2 # public static member
616 // ::= 3 # global
617 // ::= 4 # static local
618
619 // The first character in the encoding (after the name) is the storage class.
620 if (VD->isStaticDataMember()) {
621 // If it's a static member, it also encodes the access level.
622 switch (VD->getAccess()) {
623 default:
624 case AS_private: Out << '0'; break;
625 case AS_protected: Out << '1'; break;
626 case AS_public: Out << '2'; break;
627 }
628 }
629 else if (!VD->isStaticLocal())
630 Out << '3';
631 else
632 Out << '4';
633 // Now mangle the type.
634 // <variable-type> ::= <type> <cvr-qualifiers>
635 // ::= <type> <pointee-cvr-qualifiers> # pointers, references
636 // Pointers and references are odd. The type of 'int * const foo;' gets
637 // mangled as 'QAHA' instead of 'PAHB', for example.
638 SourceRange SR = VD->getSourceRange();
639 QualType Ty = VD->getType();
640 if (Ty->isPointerType() || Ty->isReferenceType() ||
641 Ty->isMemberPointerType()) {
642 mangleType(Ty, SR, QMM_Drop);
643 manglePointerExtQualifiers(
644 Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
645 if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
646 mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
647 // Member pointers are suffixed with a back reference to the member
648 // pointer's class name.
649 mangleName(MPT->getClass()->getAsCXXRecordDecl());
650 } else
651 mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
652 } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
653 // Global arrays are funny, too.
654 mangleDecayedArrayType(AT);
655 if (AT->getElementType()->isArrayType())
656 Out << 'A';
657 else
658 mangleQualifiers(Ty.getQualifiers(), false);
659 } else {
660 mangleType(Ty, SR, QMM_Drop);
661 mangleQualifiers(Ty.getQualifiers(), false);
662 }
663 }
664
mangleMemberDataPointer(const CXXRecordDecl * RD,const ValueDecl * VD,StringRef Prefix)665 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
666 const ValueDecl *VD,
667 StringRef Prefix) {
668 // <member-data-pointer> ::= <integer-literal>
669 // ::= $F <number> <number>
670 // ::= $G <number> <number> <number>
671
672 int64_t FieldOffset;
673 int64_t VBTableOffset;
674 MSInheritanceModel IM = RD->getMSInheritanceModel();
675 if (VD) {
676 FieldOffset = getASTContext().getFieldOffset(VD);
677 assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
678 "cannot take address of bitfield");
679 FieldOffset /= getASTContext().getCharWidth();
680
681 VBTableOffset = 0;
682
683 if (IM == MSInheritanceModel::Virtual)
684 FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
685 } else {
686 FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
687
688 VBTableOffset = -1;
689 }
690
691 char Code = '\0';
692 switch (IM) {
693 case MSInheritanceModel::Single: Code = '0'; break;
694 case MSInheritanceModel::Multiple: Code = '0'; break;
695 case MSInheritanceModel::Virtual: Code = 'F'; break;
696 case MSInheritanceModel::Unspecified: Code = 'G'; break;
697 }
698
699 Out << Prefix << Code;
700
701 mangleNumber(FieldOffset);
702
703 // The C++ standard doesn't allow base-to-derived member pointer conversions
704 // in template parameter contexts, so the vbptr offset of data member pointers
705 // is always zero.
706 if (inheritanceModelHasVBPtrOffsetField(IM))
707 mangleNumber(0);
708 if (inheritanceModelHasVBTableOffsetField(IM))
709 mangleNumber(VBTableOffset);
710 }
711
712 void
mangleMemberFunctionPointer(const CXXRecordDecl * RD,const CXXMethodDecl * MD,StringRef Prefix)713 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
714 const CXXMethodDecl *MD,
715 StringRef Prefix) {
716 // <member-function-pointer> ::= $1? <name>
717 // ::= $H? <name> <number>
718 // ::= $I? <name> <number> <number>
719 // ::= $J? <name> <number> <number> <number>
720
721 MSInheritanceModel IM = RD->getMSInheritanceModel();
722
723 char Code = '\0';
724 switch (IM) {
725 case MSInheritanceModel::Single: Code = '1'; break;
726 case MSInheritanceModel::Multiple: Code = 'H'; break;
727 case MSInheritanceModel::Virtual: Code = 'I'; break;
728 case MSInheritanceModel::Unspecified: Code = 'J'; break;
729 }
730
731 // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
732 // thunk.
733 uint64_t NVOffset = 0;
734 uint64_t VBTableOffset = 0;
735 uint64_t VBPtrOffset = 0;
736 if (MD) {
737 Out << Prefix << Code << '?';
738 if (MD->isVirtual()) {
739 MicrosoftVTableContext *VTContext =
740 cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
741 MethodVFTableLocation ML =
742 VTContext->getMethodVFTableLocation(GlobalDecl(MD));
743 mangleVirtualMemPtrThunk(MD, ML);
744 NVOffset = ML.VFPtrOffset.getQuantity();
745 VBTableOffset = ML.VBTableIndex * 4;
746 if (ML.VBase) {
747 const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
748 VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
749 }
750 } else {
751 mangleName(MD);
752 mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
753 }
754
755 if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual)
756 NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
757 } else {
758 // Null single inheritance member functions are encoded as a simple nullptr.
759 if (IM == MSInheritanceModel::Single) {
760 Out << Prefix << "0A@";
761 return;
762 }
763 if (IM == MSInheritanceModel::Unspecified)
764 VBTableOffset = -1;
765 Out << Prefix << Code;
766 }
767
768 if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, IM))
769 mangleNumber(static_cast<uint32_t>(NVOffset));
770 if (inheritanceModelHasVBPtrOffsetField(IM))
771 mangleNumber(VBPtrOffset);
772 if (inheritanceModelHasVBTableOffsetField(IM))
773 mangleNumber(VBTableOffset);
774 }
775
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MethodVFTableLocation & ML)776 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
777 const CXXMethodDecl *MD, const MethodVFTableLocation &ML) {
778 // Get the vftable offset.
779 CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
780 getASTContext().getTargetInfo().getPointerWidth(LangAS::Default));
781 uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
782
783 Out << "?_9";
784 mangleName(MD->getParent());
785 Out << "$B";
786 mangleNumber(OffsetInVFTable);
787 Out << 'A';
788 mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>());
789 }
790
mangleName(GlobalDecl GD)791 void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) {
792 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
793
794 // Always start with the unqualified name.
795 mangleUnqualifiedName(GD);
796
797 mangleNestedName(GD);
798
799 // Terminate the whole name with an '@'.
800 Out << '@';
801 }
802
mangleNumber(int64_t Number)803 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
804 mangleNumber(llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false));
805 }
806
mangleNumber(llvm::APSInt Number)807 void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) {
808 // MSVC never mangles any integer wider than 64 bits. In general it appears
809 // to convert every integer to signed 64 bit before mangling (including
810 // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom
811 // 64.
812 unsigned Width = std::max(Number.getBitWidth(), 64U);
813 llvm::APInt Value = Number.extend(Width);
814
815 // <non-negative integer> ::= A@ # when Number == 0
816 // ::= <decimal digit> # when 1 <= Number <= 10
817 // ::= <hex digit>+ @ # when Number >= 10
818 //
819 // <number> ::= [?] <non-negative integer>
820
821 if (Value.isNegative()) {
822 Value = -Value;
823 Out << '?';
824 }
825 mangleBits(Value);
826 }
827
mangleFloat(llvm::APFloat Number)828 void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) {
829 using llvm::APFloat;
830
831 switch (APFloat::SemanticsToEnum(Number.getSemantics())) {
832 case APFloat::S_IEEEsingle: Out << 'A'; break;
833 case APFloat::S_IEEEdouble: Out << 'B'; break;
834
835 // The following are all Clang extensions. We try to pick manglings that are
836 // unlikely to conflict with MSVC's scheme.
837 case APFloat::S_IEEEhalf: Out << 'V'; break;
838 case APFloat::S_BFloat: Out << 'W'; break;
839 case APFloat::S_x87DoubleExtended: Out << 'X'; break;
840 case APFloat::S_IEEEquad: Out << 'Y'; break;
841 case APFloat::S_PPCDoubleDouble: Out << 'Z'; break;
842 case APFloat::S_Float8E5M2:
843 case APFloat::S_Float8E4M3FN:
844 llvm_unreachable("Tried to mangle unexpected APFloat semantics");
845 }
846
847 mangleBits(Number.bitcastToAPInt());
848 }
849
mangleBits(llvm::APInt Value)850 void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) {
851 if (Value == 0)
852 Out << "A@";
853 else if (Value.uge(1) && Value.ule(10))
854 Out << (Value - 1);
855 else {
856 // Numbers that are not encoded as decimal digits are represented as nibbles
857 // in the range of ASCII characters 'A' to 'P'.
858 // The number 0x123450 would be encoded as 'BCDEFA'
859 llvm::SmallString<32> EncodedNumberBuffer;
860 for (; Value != 0; Value.lshrInPlace(4))
861 EncodedNumberBuffer.push_back('A' + (Value & 0xf).getZExtValue());
862 std::reverse(EncodedNumberBuffer.begin(), EncodedNumberBuffer.end());
863 Out.write(EncodedNumberBuffer.data(), EncodedNumberBuffer.size());
864 Out << '@';
865 }
866 }
867
isTemplate(GlobalDecl GD,const TemplateArgumentList * & TemplateArgs)868 static GlobalDecl isTemplate(GlobalDecl GD,
869 const TemplateArgumentList *&TemplateArgs) {
870 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
871 // Check if we have a function template.
872 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
873 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
874 TemplateArgs = FD->getTemplateSpecializationArgs();
875 return GD.getWithDecl(TD);
876 }
877 }
878
879 // Check if we have a class template.
880 if (const ClassTemplateSpecializationDecl *Spec =
881 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
882 TemplateArgs = &Spec->getTemplateArgs();
883 return GD.getWithDecl(Spec->getSpecializedTemplate());
884 }
885
886 // Check if we have a variable template.
887 if (const VarTemplateSpecializationDecl *Spec =
888 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
889 TemplateArgs = &Spec->getTemplateArgs();
890 return GD.getWithDecl(Spec->getSpecializedTemplate());
891 }
892
893 return GlobalDecl();
894 }
895
mangleUnqualifiedName(GlobalDecl GD,DeclarationName Name)896 void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
897 DeclarationName Name) {
898 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
899 // <unqualified-name> ::= <operator-name>
900 // ::= <ctor-dtor-name>
901 // ::= <source-name>
902 // ::= <template-name>
903
904 // Check if we have a template.
905 const TemplateArgumentList *TemplateArgs = nullptr;
906 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
907 // Function templates aren't considered for name back referencing. This
908 // makes sense since function templates aren't likely to occur multiple
909 // times in a symbol.
910 if (isa<FunctionTemplateDecl>(TD.getDecl())) {
911 mangleTemplateInstantiationName(TD, *TemplateArgs);
912 Out << '@';
913 return;
914 }
915
916 // Here comes the tricky thing: if we need to mangle something like
917 // void foo(A::X<Y>, B::X<Y>),
918 // the X<Y> part is aliased. However, if you need to mangle
919 // void foo(A::X<A::Y>, A::X<B::Y>),
920 // the A::X<> part is not aliased.
921 // That is, from the mangler's perspective we have a structure like this:
922 // namespace[s] -> type[ -> template-parameters]
923 // but from the Clang perspective we have
924 // type [ -> template-parameters]
925 // \-> namespace[s]
926 // What we do is we create a new mangler, mangle the same type (without
927 // a namespace suffix) to a string using the extra mangler and then use
928 // the mangled type name as a key to check the mangling of different types
929 // for aliasing.
930
931 // It's important to key cache reads off ND, not TD -- the same TD can
932 // be used with different TemplateArgs, but ND uniquely identifies
933 // TD / TemplateArg pairs.
934 ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(ND);
935 if (Found == TemplateArgBackReferences.end()) {
936
937 TemplateArgStringMap::iterator Found = TemplateArgStrings.find(ND);
938 if (Found == TemplateArgStrings.end()) {
939 // Mangle full template name into temporary buffer.
940 llvm::SmallString<64> TemplateMangling;
941 llvm::raw_svector_ostream Stream(TemplateMangling);
942 MicrosoftCXXNameMangler Extra(Context, Stream);
943 Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
944
945 // Use the string backref vector to possibly get a back reference.
946 mangleSourceName(TemplateMangling);
947
948 // Memoize back reference for this type if one exist, else memoize
949 // the mangling itself.
950 BackRefVec::iterator StringFound =
951 llvm::find(NameBackReferences, TemplateMangling);
952 if (StringFound != NameBackReferences.end()) {
953 TemplateArgBackReferences[ND] =
954 StringFound - NameBackReferences.begin();
955 } else {
956 TemplateArgStrings[ND] =
957 TemplateArgStringStorage.save(TemplateMangling.str());
958 }
959 } else {
960 Out << Found->second << '@'; // Outputs a StringRef.
961 }
962 } else {
963 Out << Found->second; // Outputs a back reference (an int).
964 }
965 return;
966 }
967
968 switch (Name.getNameKind()) {
969 case DeclarationName::Identifier: {
970 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
971 bool IsDeviceStub =
972 ND &&
973 ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) ||
974 (isa<FunctionTemplateDecl>(ND) &&
975 cast<FunctionTemplateDecl>(ND)
976 ->getTemplatedDecl()
977 ->hasAttr<CUDAGlobalAttr>())) &&
978 GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
979 if (IsDeviceStub)
980 mangleSourceName(
981 (llvm::Twine("__device_stub__") + II->getName()).str());
982 else
983 mangleSourceName(II->getName());
984 break;
985 }
986
987 // Otherwise, an anonymous entity. We must have a declaration.
988 assert(ND && "mangling empty name without declaration");
989
990 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
991 if (NS->isAnonymousNamespace()) {
992 Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@';
993 break;
994 }
995 }
996
997 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) {
998 // Decomposition declarations are considered anonymous, and get
999 // numbered with a $S prefix.
1000 llvm::SmallString<64> Name("$S");
1001 // Get a unique id for the anonymous struct.
1002 Name += llvm::utostr(Context.getAnonymousStructId(DD) + 1);
1003 mangleSourceName(Name);
1004 break;
1005 }
1006
1007 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1008 // We must have an anonymous union or struct declaration.
1009 const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
1010 assert(RD && "expected variable decl to have a record type");
1011 // Anonymous types with no tag or typedef get the name of their
1012 // declarator mangled in. If they have no declarator, number them with
1013 // a $S prefix.
1014 llvm::SmallString<64> Name("$S");
1015 // Get a unique id for the anonymous struct.
1016 Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
1017 mangleSourceName(Name.str());
1018 break;
1019 }
1020
1021 if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(ND)) {
1022 // Mangle a GUID object as if it were a variable with the corresponding
1023 // mangled name.
1024 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1025 llvm::raw_svector_ostream GUIDOS(GUID);
1026 Context.mangleMSGuidDecl(GD, GUIDOS);
1027 mangleSourceName(GUID);
1028 break;
1029 }
1030
1031 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1032 Out << "?__N";
1033 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
1034 TPO->getValue());
1035 break;
1036 }
1037
1038 // We must have an anonymous struct.
1039 const TagDecl *TD = cast<TagDecl>(ND);
1040 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1041 assert(TD->getDeclContext() == D->getDeclContext() &&
1042 "Typedef should not be in another decl context!");
1043 assert(D->getDeclName().getAsIdentifierInfo() &&
1044 "Typedef was not named!");
1045 mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
1046 break;
1047 }
1048
1049 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1050 if (Record->isLambda()) {
1051 llvm::SmallString<10> Name("<lambda_");
1052
1053 Decl *LambdaContextDecl = Record->getLambdaContextDecl();
1054 unsigned LambdaManglingNumber = Record->getLambdaManglingNumber();
1055 unsigned LambdaId;
1056 const ParmVarDecl *Parm =
1057 dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
1058 const FunctionDecl *Func =
1059 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
1060
1061 if (Func) {
1062 unsigned DefaultArgNo =
1063 Func->getNumParams() - Parm->getFunctionScopeIndex();
1064 Name += llvm::utostr(DefaultArgNo);
1065 Name += "_";
1066 }
1067
1068 if (LambdaManglingNumber)
1069 LambdaId = LambdaManglingNumber;
1070 else
1071 LambdaId = Context.getLambdaId(Record);
1072
1073 Name += llvm::utostr(LambdaId);
1074 Name += ">";
1075
1076 mangleSourceName(Name);
1077
1078 // If the context is a variable or a class member and not a parameter,
1079 // it is encoded in a qualified name.
1080 if (LambdaManglingNumber && LambdaContextDecl) {
1081 if ((isa<VarDecl>(LambdaContextDecl) ||
1082 isa<FieldDecl>(LambdaContextDecl)) &&
1083 !isa<ParmVarDecl>(LambdaContextDecl)) {
1084 mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl));
1085 }
1086 }
1087 break;
1088 }
1089 }
1090
1091 llvm::SmallString<64> Name;
1092 if (DeclaratorDecl *DD =
1093 Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
1094 // Anonymous types without a name for linkage purposes have their
1095 // declarator mangled in if they have one.
1096 Name += "<unnamed-type-";
1097 Name += DD->getName();
1098 } else if (TypedefNameDecl *TND =
1099 Context.getASTContext().getTypedefNameForUnnamedTagDecl(
1100 TD)) {
1101 // Anonymous types without a name for linkage purposes have their
1102 // associate typedef mangled in if they have one.
1103 Name += "<unnamed-type-";
1104 Name += TND->getName();
1105 } else if (isa<EnumDecl>(TD) &&
1106 cast<EnumDecl>(TD)->enumerator_begin() !=
1107 cast<EnumDecl>(TD)->enumerator_end()) {
1108 // Anonymous non-empty enums mangle in the first enumerator.
1109 auto *ED = cast<EnumDecl>(TD);
1110 Name += "<unnamed-enum-";
1111 Name += ED->enumerator_begin()->getName();
1112 } else {
1113 // Otherwise, number the types using a $S prefix.
1114 Name += "<unnamed-type-$S";
1115 Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
1116 }
1117 Name += ">";
1118 mangleSourceName(Name.str());
1119 break;
1120 }
1121
1122 case DeclarationName::ObjCZeroArgSelector:
1123 case DeclarationName::ObjCOneArgSelector:
1124 case DeclarationName::ObjCMultiArgSelector: {
1125 // This is reachable only when constructing an outlined SEH finally
1126 // block. Nothing depends on this mangling and it's used only with
1127 // functinos with internal linkage.
1128 llvm::SmallString<64> Name;
1129 mangleSourceName(Name.str());
1130 break;
1131 }
1132
1133 case DeclarationName::CXXConstructorName:
1134 if (isStructorDecl(ND)) {
1135 if (StructorType == Ctor_CopyingClosure) {
1136 Out << "?_O";
1137 return;
1138 }
1139 if (StructorType == Ctor_DefaultClosure) {
1140 Out << "?_F";
1141 return;
1142 }
1143 }
1144 Out << "?0";
1145 return;
1146
1147 case DeclarationName::CXXDestructorName:
1148 if (isStructorDecl(ND))
1149 // If the named decl is the C++ destructor we're mangling,
1150 // use the type we were given.
1151 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1152 else
1153 // Otherwise, use the base destructor name. This is relevant if a
1154 // class with a destructor is declared within a destructor.
1155 mangleCXXDtorType(Dtor_Base);
1156 break;
1157
1158 case DeclarationName::CXXConversionFunctionName:
1159 // <operator-name> ::= ?B # (cast)
1160 // The target type is encoded as the return type.
1161 Out << "?B";
1162 break;
1163
1164 case DeclarationName::CXXOperatorName:
1165 mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
1166 break;
1167
1168 case DeclarationName::CXXLiteralOperatorName: {
1169 Out << "?__K";
1170 mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
1171 break;
1172 }
1173
1174 case DeclarationName::CXXDeductionGuideName:
1175 llvm_unreachable("Can't mangle a deduction guide name!");
1176
1177 case DeclarationName::CXXUsingDirective:
1178 llvm_unreachable("Can't mangle a using directive name!");
1179 }
1180 }
1181
1182 // <postfix> ::= <unqualified-name> [<postfix>]
1183 // ::= <substitution> [<postfix>]
mangleNestedName(GlobalDecl GD)1184 void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) {
1185 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1186 const DeclContext *DC = getEffectiveDeclContext(ND);
1187 while (!DC->isTranslationUnit()) {
1188 if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
1189 unsigned Disc;
1190 if (Context.getNextDiscriminator(ND, Disc)) {
1191 Out << '?';
1192 mangleNumber(Disc);
1193 Out << '?';
1194 }
1195 }
1196
1197 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
1198 auto Discriminate =
1199 [](StringRef Name, const unsigned Discriminator,
1200 const unsigned ParameterDiscriminator) -> std::string {
1201 std::string Buffer;
1202 llvm::raw_string_ostream Stream(Buffer);
1203 Stream << Name;
1204 if (Discriminator)
1205 Stream << '_' << Discriminator;
1206 if (ParameterDiscriminator)
1207 Stream << '_' << ParameterDiscriminator;
1208 return Stream.str();
1209 };
1210
1211 unsigned Discriminator = BD->getBlockManglingNumber();
1212 if (!Discriminator)
1213 Discriminator = Context.getBlockId(BD, /*Local=*/false);
1214
1215 // Mangle the parameter position as a discriminator to deal with unnamed
1216 // parameters. Rather than mangling the unqualified parameter name,
1217 // always use the position to give a uniform mangling.
1218 unsigned ParameterDiscriminator = 0;
1219 if (const auto *MC = BD->getBlockManglingContextDecl())
1220 if (const auto *P = dyn_cast<ParmVarDecl>(MC))
1221 if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext()))
1222 ParameterDiscriminator =
1223 F->getNumParams() - P->getFunctionScopeIndex();
1224
1225 DC = getEffectiveDeclContext(BD);
1226
1227 Out << '?';
1228 mangleSourceName(Discriminate("_block_invoke", Discriminator,
1229 ParameterDiscriminator));
1230 // If we have a block mangling context, encode that now. This allows us
1231 // to discriminate between named static data initializers in the same
1232 // scope. This is handled differently from parameters, which use
1233 // positions to discriminate between multiple instances.
1234 if (const auto *MC = BD->getBlockManglingContextDecl())
1235 if (!isa<ParmVarDecl>(MC))
1236 if (const auto *ND = dyn_cast<NamedDecl>(MC))
1237 mangleUnqualifiedName(ND);
1238 // MS ABI and Itanium manglings are in inverted scopes. In the case of a
1239 // RecordDecl, mangle the entire scope hierarchy at this point rather than
1240 // just the unqualified name to get the ordering correct.
1241 if (const auto *RD = dyn_cast<RecordDecl>(DC))
1242 mangleName(RD);
1243 else
1244 Out << '@';
1245 // void __cdecl
1246 Out << "YAX";
1247 // struct __block_literal *
1248 Out << 'P';
1249 // __ptr64
1250 if (PointersAre64Bit)
1251 Out << 'E';
1252 Out << 'A';
1253 mangleArtificialTagType(TTK_Struct,
1254 Discriminate("__block_literal", Discriminator,
1255 ParameterDiscriminator));
1256 Out << "@Z";
1257
1258 // If the effective context was a Record, we have fully mangled the
1259 // qualified name and do not need to continue.
1260 if (isa<RecordDecl>(DC))
1261 break;
1262 continue;
1263 } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
1264 mangleObjCMethodName(Method);
1265 } else if (isa<NamedDecl>(DC)) {
1266 ND = cast<NamedDecl>(DC);
1267 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1268 mangle(getGlobalDeclAsDeclContext(FD), "?");
1269 break;
1270 } else {
1271 mangleUnqualifiedName(ND);
1272 // Lambdas in default arguments conceptually belong to the function the
1273 // parameter corresponds to.
1274 if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) {
1275 DC = LDADC;
1276 continue;
1277 }
1278 }
1279 }
1280 DC = DC->getParent();
1281 }
1282 }
1283
mangleCXXDtorType(CXXDtorType T)1284 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
1285 // Microsoft uses the names on the case labels for these dtor variants. Clang
1286 // uses the Itanium terminology internally. Everything in this ABI delegates
1287 // towards the base dtor.
1288 switch (T) {
1289 // <operator-name> ::= ?1 # destructor
1290 case Dtor_Base: Out << "?1"; return;
1291 // <operator-name> ::= ?_D # vbase destructor
1292 case Dtor_Complete: Out << "?_D"; return;
1293 // <operator-name> ::= ?_G # scalar deleting destructor
1294 case Dtor_Deleting: Out << "?_G"; return;
1295 // <operator-name> ::= ?_E # vector deleting destructor
1296 // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
1297 // it.
1298 case Dtor_Comdat:
1299 llvm_unreachable("not expecting a COMDAT");
1300 }
1301 llvm_unreachable("Unsupported dtor type?");
1302 }
1303
mangleOperatorName(OverloadedOperatorKind OO,SourceLocation Loc)1304 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
1305 SourceLocation Loc) {
1306 switch (OO) {
1307 // ?0 # constructor
1308 // ?1 # destructor
1309 // <operator-name> ::= ?2 # new
1310 case OO_New: Out << "?2"; break;
1311 // <operator-name> ::= ?3 # delete
1312 case OO_Delete: Out << "?3"; break;
1313 // <operator-name> ::= ?4 # =
1314 case OO_Equal: Out << "?4"; break;
1315 // <operator-name> ::= ?5 # >>
1316 case OO_GreaterGreater: Out << "?5"; break;
1317 // <operator-name> ::= ?6 # <<
1318 case OO_LessLess: Out << "?6"; break;
1319 // <operator-name> ::= ?7 # !
1320 case OO_Exclaim: Out << "?7"; break;
1321 // <operator-name> ::= ?8 # ==
1322 case OO_EqualEqual: Out << "?8"; break;
1323 // <operator-name> ::= ?9 # !=
1324 case OO_ExclaimEqual: Out << "?9"; break;
1325 // <operator-name> ::= ?A # []
1326 case OO_Subscript: Out << "?A"; break;
1327 // ?B # conversion
1328 // <operator-name> ::= ?C # ->
1329 case OO_Arrow: Out << "?C"; break;
1330 // <operator-name> ::= ?D # *
1331 case OO_Star: Out << "?D"; break;
1332 // <operator-name> ::= ?E # ++
1333 case OO_PlusPlus: Out << "?E"; break;
1334 // <operator-name> ::= ?F # --
1335 case OO_MinusMinus: Out << "?F"; break;
1336 // <operator-name> ::= ?G # -
1337 case OO_Minus: Out << "?G"; break;
1338 // <operator-name> ::= ?H # +
1339 case OO_Plus: Out << "?H"; break;
1340 // <operator-name> ::= ?I # &
1341 case OO_Amp: Out << "?I"; break;
1342 // <operator-name> ::= ?J # ->*
1343 case OO_ArrowStar: Out << "?J"; break;
1344 // <operator-name> ::= ?K # /
1345 case OO_Slash: Out << "?K"; break;
1346 // <operator-name> ::= ?L # %
1347 case OO_Percent: Out << "?L"; break;
1348 // <operator-name> ::= ?M # <
1349 case OO_Less: Out << "?M"; break;
1350 // <operator-name> ::= ?N # <=
1351 case OO_LessEqual: Out << "?N"; break;
1352 // <operator-name> ::= ?O # >
1353 case OO_Greater: Out << "?O"; break;
1354 // <operator-name> ::= ?P # >=
1355 case OO_GreaterEqual: Out << "?P"; break;
1356 // <operator-name> ::= ?Q # ,
1357 case OO_Comma: Out << "?Q"; break;
1358 // <operator-name> ::= ?R # ()
1359 case OO_Call: Out << "?R"; break;
1360 // <operator-name> ::= ?S # ~
1361 case OO_Tilde: Out << "?S"; break;
1362 // <operator-name> ::= ?T # ^
1363 case OO_Caret: Out << "?T"; break;
1364 // <operator-name> ::= ?U # |
1365 case OO_Pipe: Out << "?U"; break;
1366 // <operator-name> ::= ?V # &&
1367 case OO_AmpAmp: Out << "?V"; break;
1368 // <operator-name> ::= ?W # ||
1369 case OO_PipePipe: Out << "?W"; break;
1370 // <operator-name> ::= ?X # *=
1371 case OO_StarEqual: Out << "?X"; break;
1372 // <operator-name> ::= ?Y # +=
1373 case OO_PlusEqual: Out << "?Y"; break;
1374 // <operator-name> ::= ?Z # -=
1375 case OO_MinusEqual: Out << "?Z"; break;
1376 // <operator-name> ::= ?_0 # /=
1377 case OO_SlashEqual: Out << "?_0"; break;
1378 // <operator-name> ::= ?_1 # %=
1379 case OO_PercentEqual: Out << "?_1"; break;
1380 // <operator-name> ::= ?_2 # >>=
1381 case OO_GreaterGreaterEqual: Out << "?_2"; break;
1382 // <operator-name> ::= ?_3 # <<=
1383 case OO_LessLessEqual: Out << "?_3"; break;
1384 // <operator-name> ::= ?_4 # &=
1385 case OO_AmpEqual: Out << "?_4"; break;
1386 // <operator-name> ::= ?_5 # |=
1387 case OO_PipeEqual: Out << "?_5"; break;
1388 // <operator-name> ::= ?_6 # ^=
1389 case OO_CaretEqual: Out << "?_6"; break;
1390 // ?_7 # vftable
1391 // ?_8 # vbtable
1392 // ?_9 # vcall
1393 // ?_A # typeof
1394 // ?_B # local static guard
1395 // ?_C # string
1396 // ?_D # vbase destructor
1397 // ?_E # vector deleting destructor
1398 // ?_F # default constructor closure
1399 // ?_G # scalar deleting destructor
1400 // ?_H # vector constructor iterator
1401 // ?_I # vector destructor iterator
1402 // ?_J # vector vbase constructor iterator
1403 // ?_K # virtual displacement map
1404 // ?_L # eh vector constructor iterator
1405 // ?_M # eh vector destructor iterator
1406 // ?_N # eh vector vbase constructor iterator
1407 // ?_O # copy constructor closure
1408 // ?_P<name> # udt returning <name>
1409 // ?_Q # <unknown>
1410 // ?_R0 # RTTI Type Descriptor
1411 // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
1412 // ?_R2 # RTTI Base Class Array
1413 // ?_R3 # RTTI Class Hierarchy Descriptor
1414 // ?_R4 # RTTI Complete Object Locator
1415 // ?_S # local vftable
1416 // ?_T # local vftable constructor closure
1417 // <operator-name> ::= ?_U # new[]
1418 case OO_Array_New: Out << "?_U"; break;
1419 // <operator-name> ::= ?_V # delete[]
1420 case OO_Array_Delete: Out << "?_V"; break;
1421 // <operator-name> ::= ?__L # co_await
1422 case OO_Coawait: Out << "?__L"; break;
1423 // <operator-name> ::= ?__M # <=>
1424 case OO_Spaceship: Out << "?__M"; break;
1425
1426 case OO_Conditional: {
1427 DiagnosticsEngine &Diags = Context.getDiags();
1428 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1429 "cannot mangle this conditional operator yet");
1430 Diags.Report(Loc, DiagID);
1431 break;
1432 }
1433
1434 case OO_None:
1435 case NUM_OVERLOADED_OPERATORS:
1436 llvm_unreachable("Not an overloaded operator");
1437 }
1438 }
1439
mangleSourceName(StringRef Name)1440 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
1441 // <source name> ::= <identifier> @
1442 BackRefVec::iterator Found = llvm::find(NameBackReferences, Name);
1443 if (Found == NameBackReferences.end()) {
1444 if (NameBackReferences.size() < 10)
1445 NameBackReferences.push_back(std::string(Name));
1446 Out << Name << '@';
1447 } else {
1448 Out << (Found - NameBackReferences.begin());
1449 }
1450 }
1451
mangleObjCMethodName(const ObjCMethodDecl * MD)1452 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1453 Context.mangleObjCMethodNameAsSourceName(MD, Out);
1454 }
1455
mangleTemplateInstantiationName(GlobalDecl GD,const TemplateArgumentList & TemplateArgs)1456 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1457 GlobalDecl GD, const TemplateArgumentList &TemplateArgs) {
1458 // <template-name> ::= <unscoped-template-name> <template-args>
1459 // ::= <substitution>
1460 // Always start with the unqualified name.
1461
1462 // Templates have their own context for back references.
1463 ArgBackRefMap OuterFunArgsContext;
1464 ArgBackRefMap OuterTemplateArgsContext;
1465 BackRefVec OuterTemplateContext;
1466 PassObjectSizeArgsSet OuterPassObjectSizeArgs;
1467 NameBackReferences.swap(OuterTemplateContext);
1468 FunArgBackReferences.swap(OuterFunArgsContext);
1469 TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1470 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1471
1472 mangleUnscopedTemplateName(GD);
1473 mangleTemplateArgs(cast<TemplateDecl>(GD.getDecl()), TemplateArgs);
1474
1475 // Restore the previous back reference contexts.
1476 NameBackReferences.swap(OuterTemplateContext);
1477 FunArgBackReferences.swap(OuterFunArgsContext);
1478 TemplateArgBackReferences.swap(OuterTemplateArgsContext);
1479 PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
1480 }
1481
mangleUnscopedTemplateName(GlobalDecl GD)1482 void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) {
1483 // <unscoped-template-name> ::= ?$ <unqualified-name>
1484 Out << "?$";
1485 mangleUnqualifiedName(GD);
1486 }
1487
mangleIntegerLiteral(const llvm::APSInt & Value,const NonTypeTemplateParmDecl * PD,QualType TemplateArgType)1488 void MicrosoftCXXNameMangler::mangleIntegerLiteral(
1489 const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD,
1490 QualType TemplateArgType) {
1491 // <integer-literal> ::= $0 <number>
1492 Out << "$";
1493
1494 // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when
1495 // argument is integer.
1496 if (getASTContext().getLangOpts().isCompatibleWithMSVC(
1497 LangOptions::MSVC2019) &&
1498 PD && PD->getType()->getTypeClass() == Type::Auto &&
1499 !TemplateArgType.isNull()) {
1500 Out << "M";
1501 mangleType(TemplateArgType, SourceRange(), QMM_Drop);
1502 }
1503
1504 Out << "0";
1505
1506 mangleNumber(Value);
1507 }
1508
mangleExpression(const Expr * E,const NonTypeTemplateParmDecl * PD)1509 void MicrosoftCXXNameMangler::mangleExpression(
1510 const Expr *E, const NonTypeTemplateParmDecl *PD) {
1511 // See if this is a constant expression.
1512 if (std::optional<llvm::APSInt> Value =
1513 E->getIntegerConstantExpr(Context.getASTContext())) {
1514 mangleIntegerLiteral(*Value, PD, E->getType());
1515 return;
1516 }
1517
1518 // As bad as this diagnostic is, it's better than crashing.
1519 DiagnosticsEngine &Diags = Context.getDiags();
1520 unsigned DiagID = Diags.getCustomDiagID(
1521 DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1522 Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1523 << E->getSourceRange();
1524 }
1525
mangleTemplateArgs(const TemplateDecl * TD,const TemplateArgumentList & TemplateArgs)1526 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1527 const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1528 // <template-args> ::= <template-arg>+
1529 const TemplateParameterList *TPL = TD->getTemplateParameters();
1530 assert(TPL->size() == TemplateArgs.size() &&
1531 "size mismatch between args and parms!");
1532
1533 for (size_t i = 0; i < TemplateArgs.size(); ++i) {
1534 const TemplateArgument &TA = TemplateArgs[i];
1535
1536 // Separate consecutive packs by $$Z.
1537 if (i > 0 && TA.getKind() == TemplateArgument::Pack &&
1538 TemplateArgs[i - 1].getKind() == TemplateArgument::Pack)
1539 Out << "$$Z";
1540
1541 mangleTemplateArg(TD, TA, TPL->getParam(i));
1542 }
1543 }
1544
mangleTemplateArg(const TemplateDecl * TD,const TemplateArgument & TA,const NamedDecl * Parm)1545 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1546 const TemplateArgument &TA,
1547 const NamedDecl *Parm) {
1548 // <template-arg> ::= <type>
1549 // ::= <integer-literal>
1550 // ::= <member-data-pointer>
1551 // ::= <member-function-pointer>
1552 // ::= $ <constant-value>
1553 // ::= <template-args>
1554 //
1555 // <constant-value> ::= 0 <number> # integer
1556 // ::= 1 <mangled-name> # address of D
1557 // ::= 2 <type> <typed-constant-value>* @ # struct
1558 // ::= 3 <type> <constant-value>* @ # array
1559 // ::= 4 ??? # string
1560 // ::= 5 <constant-value> @ # address of subobject
1561 // ::= 6 <constant-value> <unqualified-name> @ # a.b
1562 // ::= 7 <type> [<unqualified-name> <constant-value>] @
1563 // # union, with or without an active member
1564 // # pointer to member, symbolically
1565 // ::= 8 <class> <unqualified-name> @
1566 // ::= A <type> <non-negative integer> # float
1567 // ::= B <type> <non-negative integer> # double
1568 // ::= E <mangled-name> # reference to D
1569 // # pointer to member, by component value
1570 // ::= F <number> <number>
1571 // ::= G <number> <number> <number>
1572 // ::= H <mangled-name> <number>
1573 // ::= I <mangled-name> <number> <number>
1574 // ::= J <mangled-name> <number> <number> <number>
1575 //
1576 // <typed-constant-value> ::= [<type>] <constant-value>
1577 //
1578 // The <type> appears to be included in a <typed-constant-value> only in the
1579 // '0', '1', '8', 'A', 'B', and 'E' cases.
1580
1581 switch (TA.getKind()) {
1582 case TemplateArgument::Null:
1583 llvm_unreachable("Can't mangle null template arguments!");
1584 case TemplateArgument::TemplateExpansion:
1585 llvm_unreachable("Can't mangle template expansion arguments!");
1586 case TemplateArgument::Type: {
1587 QualType T = TA.getAsType();
1588 mangleType(T, SourceRange(), QMM_Escape);
1589 break;
1590 }
1591 case TemplateArgument::Declaration: {
1592 const NamedDecl *ND = TA.getAsDecl();
1593 if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1594 mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext())
1595 ->getMostRecentNonInjectedDecl(),
1596 cast<ValueDecl>(ND));
1597 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1598 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1599 if (MD && MD->isInstance()) {
1600 mangleMemberFunctionPointer(
1601 MD->getParent()->getMostRecentNonInjectedDecl(), MD);
1602 } else {
1603 Out << "$1?";
1604 mangleName(FD);
1605 mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
1606 }
1607 } else if (TA.getParamTypeForDecl()->isRecordType()) {
1608 Out << "$";
1609 auto *TPO = cast<TemplateParamObjectDecl>(ND);
1610 mangleTemplateArgValue(TPO->getType().getUnqualifiedType(),
1611 TPO->getValue());
1612 } else {
1613 mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
1614 }
1615 break;
1616 }
1617 case TemplateArgument::Integral: {
1618 QualType T = TA.getIntegralType();
1619 mangleIntegerLiteral(TA.getAsIntegral(),
1620 cast<NonTypeTemplateParmDecl>(Parm), T);
1621 break;
1622 }
1623 case TemplateArgument::NullPtr: {
1624 QualType T = TA.getNullPtrType();
1625 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1626 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1627 if (MPT->isMemberFunctionPointerType() &&
1628 !isa<FunctionTemplateDecl>(TD)) {
1629 mangleMemberFunctionPointer(RD, nullptr);
1630 return;
1631 }
1632 if (MPT->isMemberDataPointer()) {
1633 if (!isa<FunctionTemplateDecl>(TD)) {
1634 mangleMemberDataPointer(RD, nullptr);
1635 return;
1636 }
1637 // nullptr data pointers are always represented with a single field
1638 // which is initialized with either 0 or -1. Why -1? Well, we need to
1639 // distinguish the case where the data member is at offset zero in the
1640 // record.
1641 // However, we are free to use 0 *if* we would use multiple fields for
1642 // non-nullptr member pointers.
1643 if (!RD->nullFieldOffsetIsZero()) {
1644 mangleIntegerLiteral(llvm::APSInt::get(-1),
1645 cast<NonTypeTemplateParmDecl>(Parm), T);
1646 return;
1647 }
1648 }
1649 }
1650 mangleIntegerLiteral(llvm::APSInt::getUnsigned(0),
1651 cast<NonTypeTemplateParmDecl>(Parm), T);
1652 break;
1653 }
1654 case TemplateArgument::Expression:
1655 mangleExpression(TA.getAsExpr(), cast<NonTypeTemplateParmDecl>(Parm));
1656 break;
1657 case TemplateArgument::Pack: {
1658 ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1659 if (TemplateArgs.empty()) {
1660 if (isa<TemplateTypeParmDecl>(Parm) ||
1661 isa<TemplateTemplateParmDecl>(Parm))
1662 // MSVC 2015 changed the mangling for empty expanded template packs,
1663 // use the old mangling for link compatibility for old versions.
1664 Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
1665 LangOptions::MSVC2015)
1666 ? "$$V"
1667 : "$$$V");
1668 else if (isa<NonTypeTemplateParmDecl>(Parm))
1669 Out << "$S";
1670 else
1671 llvm_unreachable("unexpected template parameter decl!");
1672 } else {
1673 for (const TemplateArgument &PA : TemplateArgs)
1674 mangleTemplateArg(TD, PA, Parm);
1675 }
1676 break;
1677 }
1678 case TemplateArgument::Template: {
1679 const NamedDecl *ND =
1680 TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
1681 if (const auto *TD = dyn_cast<TagDecl>(ND)) {
1682 mangleType(TD);
1683 } else if (isa<TypeAliasDecl>(ND)) {
1684 Out << "$$Y";
1685 mangleName(ND);
1686 } else {
1687 llvm_unreachable("unexpected template template NamedDecl!");
1688 }
1689 break;
1690 }
1691 }
1692 }
1693
mangleTemplateArgValue(QualType T,const APValue & V,bool WithScalarType)1694 void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T,
1695 const APValue &V,
1696 bool WithScalarType) {
1697 switch (V.getKind()) {
1698 case APValue::None:
1699 case APValue::Indeterminate:
1700 // FIXME: MSVC doesn't allow this, so we can't be sure how it should be
1701 // mangled.
1702 if (WithScalarType)
1703 mangleType(T, SourceRange(), QMM_Escape);
1704 Out << '@';
1705 return;
1706
1707 case APValue::Int:
1708 if (WithScalarType)
1709 mangleType(T, SourceRange(), QMM_Escape);
1710 Out << '0';
1711 mangleNumber(V.getInt());
1712 return;
1713
1714 case APValue::Float:
1715 if (WithScalarType)
1716 mangleType(T, SourceRange(), QMM_Escape);
1717 mangleFloat(V.getFloat());
1718 return;
1719
1720 case APValue::LValue: {
1721 if (WithScalarType)
1722 mangleType(T, SourceRange(), QMM_Escape);
1723
1724 // We don't know how to mangle past-the-end pointers yet.
1725 if (V.isLValueOnePastTheEnd())
1726 break;
1727
1728 APValue::LValueBase Base = V.getLValueBase();
1729 if (!V.hasLValuePath() || V.getLValuePath().empty()) {
1730 // Taking the address of a complete object has a special-case mangling.
1731 if (Base.isNull()) {
1732 // MSVC emits 0A@ for null pointers. Generalize this for arbitrary
1733 // integers cast to pointers.
1734 // FIXME: This mangles 0 cast to a pointer the same as a null pointer,
1735 // even in cases where the two are different values.
1736 Out << "0";
1737 mangleNumber(V.getLValueOffset().getQuantity());
1738 } else if (!V.hasLValuePath()) {
1739 // FIXME: This can only happen as an extension. Invent a mangling.
1740 break;
1741 } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) {
1742 Out << (T->isReferenceType() ? "E" : "1");
1743 mangle(VD);
1744 } else {
1745 break;
1746 }
1747 } else {
1748 unsigned NumAts = 0;
1749 if (T->isPointerType()) {
1750 Out << "5";
1751 ++NumAts;
1752 }
1753
1754 QualType T = Base.getType();
1755 for (APValue::LValuePathEntry E : V.getLValuePath()) {
1756 // We don't know how to mangle array subscripting yet.
1757 if (T->isArrayType())
1758 goto mangling_unknown;
1759
1760 const Decl *D = E.getAsBaseOrMember().getPointer();
1761 auto *FD = dyn_cast<FieldDecl>(D);
1762 // We don't know how to mangle derived-to-base conversions yet.
1763 if (!FD)
1764 goto mangling_unknown;
1765
1766 Out << "6";
1767 ++NumAts;
1768 T = FD->getType();
1769 }
1770
1771 auto *VD = Base.dyn_cast<const ValueDecl*>();
1772 if (!VD)
1773 break;
1774 Out << "E";
1775 mangle(VD);
1776
1777 for (APValue::LValuePathEntry E : V.getLValuePath()) {
1778 const Decl *D = E.getAsBaseOrMember().getPointer();
1779 mangleUnqualifiedName(cast<FieldDecl>(D));
1780 }
1781 for (unsigned I = 0; I != NumAts; ++I)
1782 Out << '@';
1783 }
1784
1785 return;
1786 }
1787
1788 case APValue::MemberPointer: {
1789 if (WithScalarType)
1790 mangleType(T, SourceRange(), QMM_Escape);
1791
1792 // FIXME: The below manglings don't include a conversion, so bail if there
1793 // would be one. MSVC mangles the (possibly converted) value of the
1794 // pointer-to-member object as if it were a struct, leading to collisions
1795 // in some cases.
1796 if (!V.getMemberPointerPath().empty())
1797 break;
1798
1799 const CXXRecordDecl *RD =
1800 T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
1801 const ValueDecl *D = V.getMemberPointerDecl();
1802 if (T->isMemberDataPointerType())
1803 mangleMemberDataPointer(RD, D, "");
1804 else
1805 mangleMemberFunctionPointer(RD, cast_or_null<CXXMethodDecl>(D), "");
1806 return;
1807 }
1808
1809 case APValue::Struct: {
1810 Out << '2';
1811 mangleType(T, SourceRange(), QMM_Escape);
1812 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
1813 assert(RD && "unexpected type for record value");
1814
1815 unsigned BaseIndex = 0;
1816 for (const CXXBaseSpecifier &B : RD->bases())
1817 mangleTemplateArgValue(B.getType(), V.getStructBase(BaseIndex++));
1818 for (const FieldDecl *FD : RD->fields())
1819 if (!FD->isUnnamedBitfield())
1820 mangleTemplateArgValue(FD->getType(),
1821 V.getStructField(FD->getFieldIndex()),
1822 /*WithScalarType*/ true);
1823 Out << '@';
1824 return;
1825 }
1826
1827 case APValue::Union:
1828 Out << '7';
1829 mangleType(T, SourceRange(), QMM_Escape);
1830 if (const FieldDecl *FD = V.getUnionField()) {
1831 mangleUnqualifiedName(FD);
1832 mangleTemplateArgValue(FD->getType(), V.getUnionValue());
1833 }
1834 Out << '@';
1835 return;
1836
1837 case APValue::ComplexInt:
1838 // We mangle complex types as structs, so mangle the value as a struct too.
1839 Out << '2';
1840 mangleType(T, SourceRange(), QMM_Escape);
1841 Out << '0';
1842 mangleNumber(V.getComplexIntReal());
1843 Out << '0';
1844 mangleNumber(V.getComplexIntImag());
1845 Out << '@';
1846 return;
1847
1848 case APValue::ComplexFloat:
1849 Out << '2';
1850 mangleType(T, SourceRange(), QMM_Escape);
1851 mangleFloat(V.getComplexFloatReal());
1852 mangleFloat(V.getComplexFloatImag());
1853 Out << '@';
1854 return;
1855
1856 case APValue::Array: {
1857 Out << '3';
1858 QualType ElemT = getASTContext().getAsArrayType(T)->getElementType();
1859 mangleType(ElemT, SourceRange(), QMM_Escape);
1860 for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) {
1861 const APValue &ElemV = I < V.getArrayInitializedElts()
1862 ? V.getArrayInitializedElt(I)
1863 : V.getArrayFiller();
1864 mangleTemplateArgValue(ElemT, ElemV);
1865 Out << '@';
1866 }
1867 Out << '@';
1868 return;
1869 }
1870
1871 case APValue::Vector: {
1872 // __m128 is mangled as a struct containing an array. We follow this
1873 // approach for all vector types.
1874 Out << '2';
1875 mangleType(T, SourceRange(), QMM_Escape);
1876 Out << '3';
1877 QualType ElemT = T->castAs<VectorType>()->getElementType();
1878 mangleType(ElemT, SourceRange(), QMM_Escape);
1879 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) {
1880 const APValue &ElemV = V.getVectorElt(I);
1881 mangleTemplateArgValue(ElemT, ElemV);
1882 Out << '@';
1883 }
1884 Out << "@@";
1885 return;
1886 }
1887
1888 case APValue::AddrLabelDiff:
1889 case APValue::FixedPoint:
1890 break;
1891 }
1892
1893 mangling_unknown:
1894 DiagnosticsEngine &Diags = Context.getDiags();
1895 unsigned DiagID = Diags.getCustomDiagID(
1896 DiagnosticsEngine::Error, "cannot mangle this template argument yet");
1897 Diags.Report(DiagID);
1898 }
1899
mangleObjCProtocol(const ObjCProtocolDecl * PD)1900 void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) {
1901 llvm::SmallString<64> TemplateMangling;
1902 llvm::raw_svector_ostream Stream(TemplateMangling);
1903 MicrosoftCXXNameMangler Extra(Context, Stream);
1904
1905 Stream << "?$";
1906 Extra.mangleSourceName("Protocol");
1907 Extra.mangleArtificialTagType(TTK_Struct, PD->getName());
1908
1909 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1910 }
1911
mangleObjCLifetime(const QualType Type,Qualifiers Quals,SourceRange Range)1912 void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type,
1913 Qualifiers Quals,
1914 SourceRange Range) {
1915 llvm::SmallString<64> TemplateMangling;
1916 llvm::raw_svector_ostream Stream(TemplateMangling);
1917 MicrosoftCXXNameMangler Extra(Context, Stream);
1918
1919 Stream << "?$";
1920 switch (Quals.getObjCLifetime()) {
1921 case Qualifiers::OCL_None:
1922 case Qualifiers::OCL_ExplicitNone:
1923 break;
1924 case Qualifiers::OCL_Autoreleasing:
1925 Extra.mangleSourceName("Autoreleasing");
1926 break;
1927 case Qualifiers::OCL_Strong:
1928 Extra.mangleSourceName("Strong");
1929 break;
1930 case Qualifiers::OCL_Weak:
1931 Extra.mangleSourceName("Weak");
1932 break;
1933 }
1934 Extra.manglePointerCVQualifiers(Quals);
1935 Extra.manglePointerExtQualifiers(Quals, Type);
1936 Extra.mangleType(Type, Range);
1937
1938 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1939 }
1940
mangleObjCKindOfType(const ObjCObjectType * T,Qualifiers Quals,SourceRange Range)1941 void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T,
1942 Qualifiers Quals,
1943 SourceRange Range) {
1944 llvm::SmallString<64> TemplateMangling;
1945 llvm::raw_svector_ostream Stream(TemplateMangling);
1946 MicrosoftCXXNameMangler Extra(Context, Stream);
1947
1948 Stream << "?$";
1949 Extra.mangleSourceName("KindOf");
1950 Extra.mangleType(QualType(T, 0)
1951 .stripObjCKindOfType(getASTContext())
1952 ->castAs<ObjCObjectType>(),
1953 Quals, Range);
1954
1955 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__ObjC"});
1956 }
1957
mangleQualifiers(Qualifiers Quals,bool IsMember)1958 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1959 bool IsMember) {
1960 // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1961 // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1962 // 'I' means __restrict (32/64-bit).
1963 // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1964 // keyword!
1965 // <base-cvr-qualifiers> ::= A # near
1966 // ::= B # near const
1967 // ::= C # near volatile
1968 // ::= D # near const volatile
1969 // ::= E # far (16-bit)
1970 // ::= F # far const (16-bit)
1971 // ::= G # far volatile (16-bit)
1972 // ::= H # far const volatile (16-bit)
1973 // ::= I # huge (16-bit)
1974 // ::= J # huge const (16-bit)
1975 // ::= K # huge volatile (16-bit)
1976 // ::= L # huge const volatile (16-bit)
1977 // ::= M <basis> # based
1978 // ::= N <basis> # based const
1979 // ::= O <basis> # based volatile
1980 // ::= P <basis> # based const volatile
1981 // ::= Q # near member
1982 // ::= R # near const member
1983 // ::= S # near volatile member
1984 // ::= T # near const volatile member
1985 // ::= U # far member (16-bit)
1986 // ::= V # far const member (16-bit)
1987 // ::= W # far volatile member (16-bit)
1988 // ::= X # far const volatile member (16-bit)
1989 // ::= Y # huge member (16-bit)
1990 // ::= Z # huge const member (16-bit)
1991 // ::= 0 # huge volatile member (16-bit)
1992 // ::= 1 # huge const volatile member (16-bit)
1993 // ::= 2 <basis> # based member
1994 // ::= 3 <basis> # based const member
1995 // ::= 4 <basis> # based volatile member
1996 // ::= 5 <basis> # based const volatile member
1997 // ::= 6 # near function (pointers only)
1998 // ::= 7 # far function (pointers only)
1999 // ::= 8 # near method (pointers only)
2000 // ::= 9 # far method (pointers only)
2001 // ::= _A <basis> # based function (pointers only)
2002 // ::= _B <basis> # based function (far?) (pointers only)
2003 // ::= _C <basis> # based method (pointers only)
2004 // ::= _D <basis> # based method (far?) (pointers only)
2005 // ::= _E # block (Clang)
2006 // <basis> ::= 0 # __based(void)
2007 // ::= 1 # __based(segment)?
2008 // ::= 2 <name> # __based(name)
2009 // ::= 3 # ?
2010 // ::= 4 # ?
2011 // ::= 5 # not really based
2012 bool HasConst = Quals.hasConst(),
2013 HasVolatile = Quals.hasVolatile();
2014
2015 if (!IsMember) {
2016 if (HasConst && HasVolatile) {
2017 Out << 'D';
2018 } else if (HasVolatile) {
2019 Out << 'C';
2020 } else if (HasConst) {
2021 Out << 'B';
2022 } else {
2023 Out << 'A';
2024 }
2025 } else {
2026 if (HasConst && HasVolatile) {
2027 Out << 'T';
2028 } else if (HasVolatile) {
2029 Out << 'S';
2030 } else if (HasConst) {
2031 Out << 'R';
2032 } else {
2033 Out << 'Q';
2034 }
2035 }
2036
2037 // FIXME: For now, just drop all extension qualifiers on the floor.
2038 }
2039
2040 void
mangleRefQualifier(RefQualifierKind RefQualifier)2041 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2042 // <ref-qualifier> ::= G # lvalue reference
2043 // ::= H # rvalue-reference
2044 switch (RefQualifier) {
2045 case RQ_None:
2046 break;
2047
2048 case RQ_LValue:
2049 Out << 'G';
2050 break;
2051
2052 case RQ_RValue:
2053 Out << 'H';
2054 break;
2055 }
2056 }
2057
manglePointerExtQualifiers(Qualifiers Quals,QualType PointeeType)2058 void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
2059 QualType PointeeType) {
2060 // Check if this is a default 64-bit pointer or has __ptr64 qualifier.
2061 bool is64Bit = PointeeType.isNull() ? PointersAre64Bit :
2062 is64BitPointer(PointeeType.getQualifiers());
2063 if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType()))
2064 Out << 'E';
2065
2066 if (Quals.hasRestrict())
2067 Out << 'I';
2068
2069 if (Quals.hasUnaligned() ||
2070 (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned()))
2071 Out << 'F';
2072 }
2073
manglePointerCVQualifiers(Qualifiers Quals)2074 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
2075 // <pointer-cv-qualifiers> ::= P # no qualifiers
2076 // ::= Q # const
2077 // ::= R # volatile
2078 // ::= S # const volatile
2079 bool HasConst = Quals.hasConst(),
2080 HasVolatile = Quals.hasVolatile();
2081
2082 if (HasConst && HasVolatile) {
2083 Out << 'S';
2084 } else if (HasVolatile) {
2085 Out << 'R';
2086 } else if (HasConst) {
2087 Out << 'Q';
2088 } else {
2089 Out << 'P';
2090 }
2091 }
2092
mangleFunctionArgumentType(QualType T,SourceRange Range)2093 void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T,
2094 SourceRange Range) {
2095 // MSVC will backreference two canonically equivalent types that have slightly
2096 // different manglings when mangled alone.
2097
2098 // Decayed types do not match up with non-decayed versions of the same type.
2099 //
2100 // e.g.
2101 // void (*x)(void) will not form a backreference with void x(void)
2102 void *TypePtr;
2103 if (const auto *DT = T->getAs<DecayedType>()) {
2104 QualType OriginalType = DT->getOriginalType();
2105 // All decayed ArrayTypes should be treated identically; as-if they were
2106 // a decayed IncompleteArrayType.
2107 if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
2108 OriginalType = getASTContext().getIncompleteArrayType(
2109 AT->getElementType(), AT->getSizeModifier(),
2110 AT->getIndexTypeCVRQualifiers());
2111
2112 TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
2113 // If the original parameter was textually written as an array,
2114 // instead treat the decayed parameter like it's const.
2115 //
2116 // e.g.
2117 // int [] -> int * const
2118 if (OriginalType->isArrayType())
2119 T = T.withConst();
2120 } else {
2121 TypePtr = T.getCanonicalType().getAsOpaquePtr();
2122 }
2123
2124 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2125
2126 if (Found == FunArgBackReferences.end()) {
2127 size_t OutSizeBefore = Out.tell();
2128
2129 mangleType(T, Range, QMM_Drop);
2130
2131 // See if it's worth creating a back reference.
2132 // Only types longer than 1 character are considered
2133 // and only 10 back references slots are available:
2134 bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
2135 if (LongerThanOneChar && FunArgBackReferences.size() < 10) {
2136 size_t Size = FunArgBackReferences.size();
2137 FunArgBackReferences[TypePtr] = Size;
2138 }
2139 } else {
2140 Out << Found->second;
2141 }
2142 }
2143
manglePassObjectSizeArg(const PassObjectSizeAttr * POSA)2144 void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
2145 const PassObjectSizeAttr *POSA) {
2146 int Type = POSA->getType();
2147 bool Dynamic = POSA->isDynamic();
2148
2149 auto Iter = PassObjectSizeArgs.insert({Type, Dynamic}).first;
2150 auto *TypePtr = (const void *)&*Iter;
2151 ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr);
2152
2153 if (Found == FunArgBackReferences.end()) {
2154 std::string Name =
2155 Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size";
2156 mangleArtificialTagType(TTK_Enum, Name + llvm::utostr(Type), {"__clang"});
2157
2158 if (FunArgBackReferences.size() < 10) {
2159 size_t Size = FunArgBackReferences.size();
2160 FunArgBackReferences[TypePtr] = Size;
2161 }
2162 } else {
2163 Out << Found->second;
2164 }
2165 }
2166
mangleAddressSpaceType(QualType T,Qualifiers Quals,SourceRange Range)2167 void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T,
2168 Qualifiers Quals,
2169 SourceRange Range) {
2170 // Address space is mangled as an unqualified templated type in the __clang
2171 // namespace. The demangled version of this is:
2172 // In the case of a language specific address space:
2173 // __clang::struct _AS[language_addr_space]<Type>
2174 // where:
2175 // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace>
2176 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2177 // "private"| "generic" | "device" | "host" ]
2178 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2179 // Note that the above were chosen to match the Itanium mangling for this.
2180 //
2181 // In the case of a non-language specific address space:
2182 // __clang::struct _AS<TargetAS, Type>
2183 assert(Quals.hasAddressSpace() && "Not valid without address space");
2184 llvm::SmallString<32> ASMangling;
2185 llvm::raw_svector_ostream Stream(ASMangling);
2186 MicrosoftCXXNameMangler Extra(Context, Stream);
2187 Stream << "?$";
2188
2189 LangAS AS = Quals.getAddressSpace();
2190 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2191 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2192 Extra.mangleSourceName("_AS");
2193 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(TargetAS));
2194 } else {
2195 switch (AS) {
2196 default:
2197 llvm_unreachable("Not a language specific address space");
2198 case LangAS::opencl_global:
2199 Extra.mangleSourceName("_ASCLglobal");
2200 break;
2201 case LangAS::opencl_global_device:
2202 Extra.mangleSourceName("_ASCLdevice");
2203 break;
2204 case LangAS::opencl_global_host:
2205 Extra.mangleSourceName("_ASCLhost");
2206 break;
2207 case LangAS::opencl_local:
2208 Extra.mangleSourceName("_ASCLlocal");
2209 break;
2210 case LangAS::opencl_constant:
2211 Extra.mangleSourceName("_ASCLconstant");
2212 break;
2213 case LangAS::opencl_private:
2214 Extra.mangleSourceName("_ASCLprivate");
2215 break;
2216 case LangAS::opencl_generic:
2217 Extra.mangleSourceName("_ASCLgeneric");
2218 break;
2219 case LangAS::cuda_device:
2220 Extra.mangleSourceName("_ASCUdevice");
2221 break;
2222 case LangAS::cuda_constant:
2223 Extra.mangleSourceName("_ASCUconstant");
2224 break;
2225 case LangAS::cuda_shared:
2226 Extra.mangleSourceName("_ASCUshared");
2227 break;
2228 case LangAS::ptr32_sptr:
2229 case LangAS::ptr32_uptr:
2230 case LangAS::ptr64:
2231 llvm_unreachable("don't mangle ptr address spaces with _AS");
2232 }
2233 }
2234
2235 Extra.mangleType(T, Range, QMM_Escape);
2236 mangleQualifiers(Qualifiers(), false);
2237 mangleArtificialTagType(TTK_Struct, ASMangling, {"__clang"});
2238 }
2239
mangleType(QualType T,SourceRange Range,QualifierMangleMode QMM)2240 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
2241 QualifierMangleMode QMM) {
2242 // Don't use the canonical types. MSVC includes things like 'const' on
2243 // pointer arguments to function pointers that canonicalization strips away.
2244 T = T.getDesugaredType(getASTContext());
2245 Qualifiers Quals = T.getLocalQualifiers();
2246
2247 if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
2248 // If there were any Quals, getAsArrayType() pushed them onto the array
2249 // element type.
2250 if (QMM == QMM_Mangle)
2251 Out << 'A';
2252 else if (QMM == QMM_Escape || QMM == QMM_Result)
2253 Out << "$$B";
2254 mangleArrayType(AT);
2255 return;
2256 }
2257
2258 bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
2259 T->isReferenceType() || T->isBlockPointerType();
2260
2261 switch (QMM) {
2262 case QMM_Drop:
2263 if (Quals.hasObjCLifetime())
2264 Quals = Quals.withoutObjCLifetime();
2265 break;
2266 case QMM_Mangle:
2267 if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
2268 Out << '6';
2269 mangleFunctionType(FT);
2270 return;
2271 }
2272 mangleQualifiers(Quals, false);
2273 break;
2274 case QMM_Escape:
2275 if (!IsPointer && Quals) {
2276 Out << "$$C";
2277 mangleQualifiers(Quals, false);
2278 }
2279 break;
2280 case QMM_Result:
2281 // Presence of __unaligned qualifier shouldn't affect mangling here.
2282 Quals.removeUnaligned();
2283 if (Quals.hasObjCLifetime())
2284 Quals = Quals.withoutObjCLifetime();
2285 if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) {
2286 Out << '?';
2287 mangleQualifiers(Quals, false);
2288 }
2289 break;
2290 }
2291
2292 const Type *ty = T.getTypePtr();
2293
2294 switch (ty->getTypeClass()) {
2295 #define ABSTRACT_TYPE(CLASS, PARENT)
2296 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2297 case Type::CLASS: \
2298 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2299 return;
2300 #define TYPE(CLASS, PARENT) \
2301 case Type::CLASS: \
2302 mangleType(cast<CLASS##Type>(ty), Quals, Range); \
2303 break;
2304 #include "clang/AST/TypeNodes.inc"
2305 #undef ABSTRACT_TYPE
2306 #undef NON_CANONICAL_TYPE
2307 #undef TYPE
2308 }
2309 }
2310
mangleType(const BuiltinType * T,Qualifiers,SourceRange Range)2311 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
2312 SourceRange Range) {
2313 // <type> ::= <builtin-type>
2314 // <builtin-type> ::= X # void
2315 // ::= C # signed char
2316 // ::= D # char
2317 // ::= E # unsigned char
2318 // ::= F # short
2319 // ::= G # unsigned short (or wchar_t if it's not a builtin)
2320 // ::= H # int
2321 // ::= I # unsigned int
2322 // ::= J # long
2323 // ::= K # unsigned long
2324 // L # <none>
2325 // ::= M # float
2326 // ::= N # double
2327 // ::= O # long double (__float80 is mangled differently)
2328 // ::= _J # long long, __int64
2329 // ::= _K # unsigned long long, __int64
2330 // ::= _L # __int128
2331 // ::= _M # unsigned __int128
2332 // ::= _N # bool
2333 // _O # <array in parameter>
2334 // ::= _Q # char8_t
2335 // ::= _S # char16_t
2336 // ::= _T # __float80 (Intel)
2337 // ::= _U # char32_t
2338 // ::= _W # wchar_t
2339 // ::= _Z # __float80 (Digital Mars)
2340 switch (T->getKind()) {
2341 case BuiltinType::Void:
2342 Out << 'X';
2343 break;
2344 case BuiltinType::SChar:
2345 Out << 'C';
2346 break;
2347 case BuiltinType::Char_U:
2348 case BuiltinType::Char_S:
2349 Out << 'D';
2350 break;
2351 case BuiltinType::UChar:
2352 Out << 'E';
2353 break;
2354 case BuiltinType::Short:
2355 Out << 'F';
2356 break;
2357 case BuiltinType::UShort:
2358 Out << 'G';
2359 break;
2360 case BuiltinType::Int:
2361 Out << 'H';
2362 break;
2363 case BuiltinType::UInt:
2364 Out << 'I';
2365 break;
2366 case BuiltinType::Long:
2367 Out << 'J';
2368 break;
2369 case BuiltinType::ULong:
2370 Out << 'K';
2371 break;
2372 case BuiltinType::Float:
2373 Out << 'M';
2374 break;
2375 case BuiltinType::Double:
2376 Out << 'N';
2377 break;
2378 // TODO: Determine size and mangle accordingly
2379 case BuiltinType::LongDouble:
2380 Out << 'O';
2381 break;
2382 case BuiltinType::LongLong:
2383 Out << "_J";
2384 break;
2385 case BuiltinType::ULongLong:
2386 Out << "_K";
2387 break;
2388 case BuiltinType::Int128:
2389 Out << "_L";
2390 break;
2391 case BuiltinType::UInt128:
2392 Out << "_M";
2393 break;
2394 case BuiltinType::Bool:
2395 Out << "_N";
2396 break;
2397 case BuiltinType::Char8:
2398 Out << "_Q";
2399 break;
2400 case BuiltinType::Char16:
2401 Out << "_S";
2402 break;
2403 case BuiltinType::Char32:
2404 Out << "_U";
2405 break;
2406 case BuiltinType::WChar_S:
2407 case BuiltinType::WChar_U:
2408 Out << "_W";
2409 break;
2410
2411 #define BUILTIN_TYPE(Id, SingletonId)
2412 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2413 case BuiltinType::Id:
2414 #include "clang/AST/BuiltinTypes.def"
2415 case BuiltinType::Dependent:
2416 llvm_unreachable("placeholder types shouldn't get to name mangling");
2417
2418 case BuiltinType::ObjCId:
2419 mangleArtificialTagType(TTK_Struct, "objc_object");
2420 break;
2421 case BuiltinType::ObjCClass:
2422 mangleArtificialTagType(TTK_Struct, "objc_class");
2423 break;
2424 case BuiltinType::ObjCSel:
2425 mangleArtificialTagType(TTK_Struct, "objc_selector");
2426 break;
2427
2428 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2429 case BuiltinType::Id: \
2430 Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \
2431 break;
2432 #include "clang/Basic/OpenCLImageTypes.def"
2433 case BuiltinType::OCLSampler:
2434 Out << "PA";
2435 mangleArtificialTagType(TTK_Struct, "ocl_sampler");
2436 break;
2437 case BuiltinType::OCLEvent:
2438 Out << "PA";
2439 mangleArtificialTagType(TTK_Struct, "ocl_event");
2440 break;
2441 case BuiltinType::OCLClkEvent:
2442 Out << "PA";
2443 mangleArtificialTagType(TTK_Struct, "ocl_clkevent");
2444 break;
2445 case BuiltinType::OCLQueue:
2446 Out << "PA";
2447 mangleArtificialTagType(TTK_Struct, "ocl_queue");
2448 break;
2449 case BuiltinType::OCLReserveID:
2450 Out << "PA";
2451 mangleArtificialTagType(TTK_Struct, "ocl_reserveid");
2452 break;
2453 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2454 case BuiltinType::Id: \
2455 mangleArtificialTagType(TTK_Struct, "ocl_" #ExtType); \
2456 break;
2457 #include "clang/Basic/OpenCLExtensionTypes.def"
2458
2459 case BuiltinType::NullPtr:
2460 Out << "$$T";
2461 break;
2462
2463 case BuiltinType::Float16:
2464 mangleArtificialTagType(TTK_Struct, "_Float16", {"__clang"});
2465 break;
2466
2467 case BuiltinType::Half:
2468 if (!getASTContext().getLangOpts().HLSL)
2469 mangleArtificialTagType(TTK_Struct, "_Half", {"__clang"});
2470 else if (getASTContext().getLangOpts().NativeHalfType)
2471 Out << "$f16@";
2472 else
2473 Out << "$halff@";
2474 break;
2475
2476 case BuiltinType::BFloat16:
2477 mangleArtificialTagType(TTK_Struct, "__bf16", {"__clang"});
2478 break;
2479
2480 #define SVE_TYPE(Name, Id, SingletonId) \
2481 case BuiltinType::Id:
2482 #include "clang/Basic/AArch64SVEACLETypes.def"
2483 #define PPC_VECTOR_TYPE(Name, Id, Size) \
2484 case BuiltinType::Id:
2485 #include "clang/Basic/PPCTypes.def"
2486 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2487 #include "clang/Basic/RISCVVTypes.def"
2488 case BuiltinType::ShortAccum:
2489 case BuiltinType::Accum:
2490 case BuiltinType::LongAccum:
2491 case BuiltinType::UShortAccum:
2492 case BuiltinType::UAccum:
2493 case BuiltinType::ULongAccum:
2494 case BuiltinType::ShortFract:
2495 case BuiltinType::Fract:
2496 case BuiltinType::LongFract:
2497 case BuiltinType::UShortFract:
2498 case BuiltinType::UFract:
2499 case BuiltinType::ULongFract:
2500 case BuiltinType::SatShortAccum:
2501 case BuiltinType::SatAccum:
2502 case BuiltinType::SatLongAccum:
2503 case BuiltinType::SatUShortAccum:
2504 case BuiltinType::SatUAccum:
2505 case BuiltinType::SatULongAccum:
2506 case BuiltinType::SatShortFract:
2507 case BuiltinType::SatFract:
2508 case BuiltinType::SatLongFract:
2509 case BuiltinType::SatUShortFract:
2510 case BuiltinType::SatUFract:
2511 case BuiltinType::SatULongFract:
2512 case BuiltinType::Ibm128:
2513 case BuiltinType::Float128: {
2514 DiagnosticsEngine &Diags = Context.getDiags();
2515 unsigned DiagID = Diags.getCustomDiagID(
2516 DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
2517 Diags.Report(Range.getBegin(), DiagID)
2518 << T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
2519 break;
2520 }
2521 }
2522 }
2523
2524 // <type> ::= <function-type>
mangleType(const FunctionProtoType * T,Qualifiers,SourceRange)2525 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
2526 SourceRange) {
2527 // Structors only appear in decls, so at this point we know it's not a
2528 // structor type.
2529 // FIXME: This may not be lambda-friendly.
2530 if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) {
2531 Out << "$$A8@@";
2532 mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
2533 } else {
2534 Out << "$$A6";
2535 mangleFunctionType(T);
2536 }
2537 }
mangleType(const FunctionNoProtoType * T,Qualifiers,SourceRange)2538 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
2539 Qualifiers, SourceRange) {
2540 Out << "$$A6";
2541 mangleFunctionType(T);
2542 }
2543
mangleFunctionType(const FunctionType * T,const FunctionDecl * D,bool ForceThisQuals,bool MangleExceptionSpec)2544 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
2545 const FunctionDecl *D,
2546 bool ForceThisQuals,
2547 bool MangleExceptionSpec) {
2548 // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
2549 // <return-type> <argument-list> <throw-spec>
2550 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
2551
2552 SourceRange Range;
2553 if (D) Range = D->getSourceRange();
2554
2555 bool IsInLambda = false;
2556 bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
2557 CallingConv CC = T->getCallConv();
2558 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
2559 if (MD->getParent()->isLambda())
2560 IsInLambda = true;
2561 if (MD->isInstance())
2562 HasThisQuals = true;
2563 if (isa<CXXDestructorDecl>(MD)) {
2564 IsStructor = true;
2565 } else if (isa<CXXConstructorDecl>(MD)) {
2566 IsStructor = true;
2567 IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
2568 StructorType == Ctor_DefaultClosure) &&
2569 isStructorDecl(MD);
2570 if (IsCtorClosure)
2571 CC = getASTContext().getDefaultCallingConvention(
2572 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
2573 }
2574 }
2575
2576 // If this is a C++ instance method, mangle the CVR qualifiers for the
2577 // this pointer.
2578 if (HasThisQuals) {
2579 Qualifiers Quals = Proto->getMethodQuals();
2580 manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
2581 mangleRefQualifier(Proto->getRefQualifier());
2582 mangleQualifiers(Quals, /*IsMember=*/false);
2583 }
2584
2585 mangleCallingConvention(CC);
2586
2587 // <return-type> ::= <type>
2588 // ::= @ # structors (they have no declared return type)
2589 if (IsStructor) {
2590 if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) {
2591 // The scalar deleting destructor takes an extra int argument which is not
2592 // reflected in the AST.
2593 if (StructorType == Dtor_Deleting) {
2594 Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
2595 return;
2596 }
2597 // The vbase destructor returns void which is not reflected in the AST.
2598 if (StructorType == Dtor_Complete) {
2599 Out << "XXZ";
2600 return;
2601 }
2602 }
2603 if (IsCtorClosure) {
2604 // Default constructor closure and copy constructor closure both return
2605 // void.
2606 Out << 'X';
2607
2608 if (StructorType == Ctor_DefaultClosure) {
2609 // Default constructor closure always has no arguments.
2610 Out << 'X';
2611 } else if (StructorType == Ctor_CopyingClosure) {
2612 // Copy constructor closure always takes an unqualified reference.
2613 mangleFunctionArgumentType(getASTContext().getLValueReferenceType(
2614 Proto->getParamType(0)
2615 ->getAs<LValueReferenceType>()
2616 ->getPointeeType(),
2617 /*SpelledAsLValue=*/true),
2618 Range);
2619 Out << '@';
2620 } else {
2621 llvm_unreachable("unexpected constructor closure!");
2622 }
2623 Out << 'Z';
2624 return;
2625 }
2626 Out << '@';
2627 } else if (IsInLambda && D && isa<CXXConversionDecl>(D)) {
2628 // The only lambda conversion operators are to function pointers, which
2629 // can differ by their calling convention and are typically deduced. So
2630 // we make sure that this type gets mangled properly.
2631 mangleType(T->getReturnType(), Range, QMM_Result);
2632 } else {
2633 QualType ResultType = T->getReturnType();
2634 if (IsInLambda && isa<CXXConversionDecl>(D)) {
2635 // The only lambda conversion operators are to function pointers, which
2636 // can differ by their calling convention and are typically deduced. So
2637 // we make sure that this type gets mangled properly.
2638 mangleType(ResultType, Range, QMM_Result);
2639 } else if (const auto *AT = dyn_cast_or_null<AutoType>(
2640 ResultType->getContainedAutoType())) {
2641 Out << '?';
2642 mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
2643 Out << '?';
2644 assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
2645 "shouldn't need to mangle __auto_type!");
2646 mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
2647 Out << '@';
2648 } else if (IsInLambda) {
2649 Out << '@';
2650 } else {
2651 if (ResultType->isVoidType())
2652 ResultType = ResultType.getUnqualifiedType();
2653 mangleType(ResultType, Range, QMM_Result);
2654 }
2655 }
2656
2657 // <argument-list> ::= X # void
2658 // ::= <type>+ @
2659 // ::= <type>* Z # varargs
2660 if (!Proto) {
2661 // Function types without prototypes can arise when mangling a function type
2662 // within an overloadable function in C. We mangle these as the absence of
2663 // any parameter types (not even an empty parameter list).
2664 Out << '@';
2665 } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2666 Out << 'X';
2667 } else {
2668 // Happens for function pointer type arguments for example.
2669 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2670 mangleFunctionArgumentType(Proto->getParamType(I), Range);
2671 // Mangle each pass_object_size parameter as if it's a parameter of enum
2672 // type passed directly after the parameter with the pass_object_size
2673 // attribute. The aforementioned enum's name is __pass_object_size, and we
2674 // pretend it resides in a top-level namespace called __clang.
2675 //
2676 // FIXME: Is there a defined extension notation for the MS ABI, or is it
2677 // necessary to just cross our fingers and hope this type+namespace
2678 // combination doesn't conflict with anything?
2679 if (D)
2680 if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
2681 manglePassObjectSizeArg(P);
2682 }
2683 // <builtin-type> ::= Z # ellipsis
2684 if (Proto->isVariadic())
2685 Out << 'Z';
2686 else
2687 Out << '@';
2688 }
2689
2690 if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 &&
2691 getASTContext().getLangOpts().isCompatibleWithMSVC(
2692 LangOptions::MSVC2017_5))
2693 mangleThrowSpecification(Proto);
2694 else
2695 Out << 'Z';
2696 }
2697
mangleFunctionClass(const FunctionDecl * FD)2698 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
2699 // <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
2700 // # pointer. in 64-bit mode *all*
2701 // # 'this' pointers are 64-bit.
2702 // ::= <global-function>
2703 // <member-function> ::= A # private: near
2704 // ::= B # private: far
2705 // ::= C # private: static near
2706 // ::= D # private: static far
2707 // ::= E # private: virtual near
2708 // ::= F # private: virtual far
2709 // ::= I # protected: near
2710 // ::= J # protected: far
2711 // ::= K # protected: static near
2712 // ::= L # protected: static far
2713 // ::= M # protected: virtual near
2714 // ::= N # protected: virtual far
2715 // ::= Q # public: near
2716 // ::= R # public: far
2717 // ::= S # public: static near
2718 // ::= T # public: static far
2719 // ::= U # public: virtual near
2720 // ::= V # public: virtual far
2721 // <global-function> ::= Y # global near
2722 // ::= Z # global far
2723 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
2724 bool IsVirtual = MD->isVirtual();
2725 // When mangling vbase destructor variants, ignore whether or not the
2726 // underlying destructor was defined to be virtual.
2727 if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) &&
2728 StructorType == Dtor_Complete) {
2729 IsVirtual = false;
2730 }
2731 switch (MD->getAccess()) {
2732 case AS_none:
2733 llvm_unreachable("Unsupported access specifier");
2734 case AS_private:
2735 if (MD->isStatic())
2736 Out << 'C';
2737 else if (IsVirtual)
2738 Out << 'E';
2739 else
2740 Out << 'A';
2741 break;
2742 case AS_protected:
2743 if (MD->isStatic())
2744 Out << 'K';
2745 else if (IsVirtual)
2746 Out << 'M';
2747 else
2748 Out << 'I';
2749 break;
2750 case AS_public:
2751 if (MD->isStatic())
2752 Out << 'S';
2753 else if (IsVirtual)
2754 Out << 'U';
2755 else
2756 Out << 'Q';
2757 }
2758 } else {
2759 Out << 'Y';
2760 }
2761 }
mangleCallingConvention(CallingConv CC)2762 void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
2763 // <calling-convention> ::= A # __cdecl
2764 // ::= B # __export __cdecl
2765 // ::= C # __pascal
2766 // ::= D # __export __pascal
2767 // ::= E # __thiscall
2768 // ::= F # __export __thiscall
2769 // ::= G # __stdcall
2770 // ::= H # __export __stdcall
2771 // ::= I # __fastcall
2772 // ::= J # __export __fastcall
2773 // ::= Q # __vectorcall
2774 // ::= S # __attribute__((__swiftcall__)) // Clang-only
2775 // ::= T # __attribute__((__swiftasynccall__))
2776 // // Clang-only
2777 // ::= w # __regcall
2778 // The 'export' calling conventions are from a bygone era
2779 // (*cough*Win16*cough*) when functions were declared for export with
2780 // that keyword. (It didn't actually export them, it just made them so
2781 // that they could be in a DLL and somebody from another module could call
2782 // them.)
2783
2784 switch (CC) {
2785 default:
2786 llvm_unreachable("Unsupported CC for mangling");
2787 case CC_Win64:
2788 case CC_X86_64SysV:
2789 case CC_C: Out << 'A'; break;
2790 case CC_X86Pascal: Out << 'C'; break;
2791 case CC_X86ThisCall: Out << 'E'; break;
2792 case CC_X86StdCall: Out << 'G'; break;
2793 case CC_X86FastCall: Out << 'I'; break;
2794 case CC_X86VectorCall: Out << 'Q'; break;
2795 case CC_Swift: Out << 'S'; break;
2796 case CC_SwiftAsync: Out << 'W'; break;
2797 case CC_PreserveMost: Out << 'U'; break;
2798 case CC_X86RegCall: Out << 'w'; break;
2799 }
2800 }
mangleCallingConvention(const FunctionType * T)2801 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
2802 mangleCallingConvention(T->getCallConv());
2803 }
2804
mangleThrowSpecification(const FunctionProtoType * FT)2805 void MicrosoftCXXNameMangler::mangleThrowSpecification(
2806 const FunctionProtoType *FT) {
2807 // <throw-spec> ::= Z # (default)
2808 // ::= _E # noexcept
2809 if (FT->canThrow())
2810 Out << 'Z';
2811 else
2812 Out << "_E";
2813 }
2814
mangleType(const UnresolvedUsingType * T,Qualifiers,SourceRange Range)2815 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
2816 Qualifiers, SourceRange Range) {
2817 // Probably should be mangled as a template instantiation; need to see what
2818 // VC does first.
2819 DiagnosticsEngine &Diags = Context.getDiags();
2820 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2821 "cannot mangle this unresolved dependent type yet");
2822 Diags.Report(Range.getBegin(), DiagID)
2823 << Range;
2824 }
2825
2826 // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
2827 // <union-type> ::= T <name>
2828 // <struct-type> ::= U <name>
2829 // <class-type> ::= V <name>
2830 // <enum-type> ::= W4 <name>
mangleTagTypeKind(TagTypeKind TTK)2831 void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
2832 switch (TTK) {
2833 case TTK_Union:
2834 Out << 'T';
2835 break;
2836 case TTK_Struct:
2837 case TTK_Interface:
2838 Out << 'U';
2839 break;
2840 case TTK_Class:
2841 Out << 'V';
2842 break;
2843 case TTK_Enum:
2844 Out << "W4";
2845 break;
2846 }
2847 }
mangleType(const EnumType * T,Qualifiers,SourceRange)2848 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
2849 SourceRange) {
2850 mangleType(cast<TagType>(T)->getDecl());
2851 }
mangleType(const RecordType * T,Qualifiers,SourceRange)2852 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
2853 SourceRange) {
2854 mangleType(cast<TagType>(T)->getDecl());
2855 }
mangleType(const TagDecl * TD)2856 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
2857 mangleTagTypeKind(TD->getTagKind());
2858 mangleName(TD);
2859 }
2860
2861 // If you add a call to this, consider updating isArtificialTagType() too.
mangleArtificialTagType(TagTypeKind TK,StringRef UnqualifiedName,ArrayRef<StringRef> NestedNames)2862 void MicrosoftCXXNameMangler::mangleArtificialTagType(
2863 TagTypeKind TK, StringRef UnqualifiedName,
2864 ArrayRef<StringRef> NestedNames) {
2865 // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
2866 mangleTagTypeKind(TK);
2867
2868 // Always start with the unqualified name.
2869 mangleSourceName(UnqualifiedName);
2870
2871 for (StringRef N : llvm::reverse(NestedNames))
2872 mangleSourceName(N);
2873
2874 // Terminate the whole name with an '@'.
2875 Out << '@';
2876 }
2877
2878 // <type> ::= <array-type>
2879 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2880 // [Y <dimension-count> <dimension>+]
2881 // <element-type> # as global, E is never required
2882 // It's supposed to be the other way around, but for some strange reason, it
2883 // isn't. Today this behavior is retained for the sole purpose of backwards
2884 // compatibility.
mangleDecayedArrayType(const ArrayType * T)2885 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
2886 // This isn't a recursive mangling, so now we have to do it all in this
2887 // one call.
2888 manglePointerCVQualifiers(T->getElementType().getQualifiers());
2889 mangleType(T->getElementType(), SourceRange());
2890 }
mangleType(const ConstantArrayType * T,Qualifiers,SourceRange)2891 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
2892 SourceRange) {
2893 llvm_unreachable("Should have been special cased");
2894 }
mangleType(const VariableArrayType * T,Qualifiers,SourceRange)2895 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
2896 SourceRange) {
2897 llvm_unreachable("Should have been special cased");
2898 }
mangleType(const DependentSizedArrayType * T,Qualifiers,SourceRange)2899 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
2900 Qualifiers, SourceRange) {
2901 llvm_unreachable("Should have been special cased");
2902 }
mangleType(const IncompleteArrayType * T,Qualifiers,SourceRange)2903 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
2904 Qualifiers, SourceRange) {
2905 llvm_unreachable("Should have been special cased");
2906 }
mangleArrayType(const ArrayType * T)2907 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
2908 QualType ElementTy(T, 0);
2909 SmallVector<llvm::APInt, 3> Dimensions;
2910 for (;;) {
2911 if (ElementTy->isConstantArrayType()) {
2912 const ConstantArrayType *CAT =
2913 getASTContext().getAsConstantArrayType(ElementTy);
2914 Dimensions.push_back(CAT->getSize());
2915 ElementTy = CAT->getElementType();
2916 } else if (ElementTy->isIncompleteArrayType()) {
2917 const IncompleteArrayType *IAT =
2918 getASTContext().getAsIncompleteArrayType(ElementTy);
2919 Dimensions.push_back(llvm::APInt(32, 0));
2920 ElementTy = IAT->getElementType();
2921 } else if (ElementTy->isVariableArrayType()) {
2922 const VariableArrayType *VAT =
2923 getASTContext().getAsVariableArrayType(ElementTy);
2924 Dimensions.push_back(llvm::APInt(32, 0));
2925 ElementTy = VAT->getElementType();
2926 } else if (ElementTy->isDependentSizedArrayType()) {
2927 // The dependent expression has to be folded into a constant (TODO).
2928 const DependentSizedArrayType *DSAT =
2929 getASTContext().getAsDependentSizedArrayType(ElementTy);
2930 DiagnosticsEngine &Diags = Context.getDiags();
2931 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2932 "cannot mangle this dependent-length array yet");
2933 Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
2934 << DSAT->getBracketsRange();
2935 return;
2936 } else {
2937 break;
2938 }
2939 }
2940 Out << 'Y';
2941 // <dimension-count> ::= <number> # number of extra dimensions
2942 mangleNumber(Dimensions.size());
2943 for (const llvm::APInt &Dimension : Dimensions)
2944 mangleNumber(Dimension.getLimitedValue());
2945 mangleType(ElementTy, SourceRange(), QMM_Escape);
2946 }
2947
2948 // <type> ::= <pointer-to-member-type>
2949 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
2950 // <class name> <type>
mangleType(const MemberPointerType * T,Qualifiers Quals,SourceRange Range)2951 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
2952 Qualifiers Quals, SourceRange Range) {
2953 QualType PointeeType = T->getPointeeType();
2954 manglePointerCVQualifiers(Quals);
2955 manglePointerExtQualifiers(Quals, PointeeType);
2956 if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
2957 Out << '8';
2958 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2959 mangleFunctionType(FPT, nullptr, true);
2960 } else {
2961 mangleQualifiers(PointeeType.getQualifiers(), true);
2962 mangleName(T->getClass()->castAs<RecordType>()->getDecl());
2963 mangleType(PointeeType, Range, QMM_Drop);
2964 }
2965 }
2966
mangleType(const TemplateTypeParmType * T,Qualifiers,SourceRange Range)2967 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
2968 Qualifiers, SourceRange Range) {
2969 DiagnosticsEngine &Diags = Context.getDiags();
2970 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2971 "cannot mangle this template type parameter type yet");
2972 Diags.Report(Range.getBegin(), DiagID)
2973 << Range;
2974 }
2975
mangleType(const SubstTemplateTypeParmPackType * T,Qualifiers,SourceRange Range)2976 void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
2977 Qualifiers, SourceRange Range) {
2978 DiagnosticsEngine &Diags = Context.getDiags();
2979 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2980 "cannot mangle this substituted parameter pack yet");
2981 Diags.Report(Range.getBegin(), DiagID)
2982 << Range;
2983 }
2984
2985 // <type> ::= <pointer-type>
2986 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
2987 // # the E is required for 64-bit non-static pointers
mangleType(const PointerType * T,Qualifiers Quals,SourceRange Range)2988 void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
2989 SourceRange Range) {
2990 QualType PointeeType = T->getPointeeType();
2991 manglePointerCVQualifiers(Quals);
2992 manglePointerExtQualifiers(Quals, PointeeType);
2993
2994 // For pointer size address spaces, go down the same type mangling path as
2995 // non address space types.
2996 LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace();
2997 if (isPtrSizeAddressSpace(AddrSpace) || AddrSpace == LangAS::Default)
2998 mangleType(PointeeType, Range);
2999 else
3000 mangleAddressSpaceType(PointeeType, PointeeType.getQualifiers(), Range);
3001 }
3002
mangleType(const ObjCObjectPointerType * T,Qualifiers Quals,SourceRange Range)3003 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
3004 Qualifiers Quals, SourceRange Range) {
3005 QualType PointeeType = T->getPointeeType();
3006 switch (Quals.getObjCLifetime()) {
3007 case Qualifiers::OCL_None:
3008 case Qualifiers::OCL_ExplicitNone:
3009 break;
3010 case Qualifiers::OCL_Autoreleasing:
3011 case Qualifiers::OCL_Strong:
3012 case Qualifiers::OCL_Weak:
3013 return mangleObjCLifetime(PointeeType, Quals, Range);
3014 }
3015 manglePointerCVQualifiers(Quals);
3016 manglePointerExtQualifiers(Quals, PointeeType);
3017 mangleType(PointeeType, Range);
3018 }
3019
3020 // <type> ::= <reference-type>
3021 // <reference-type> ::= A E? <cvr-qualifiers> <type>
3022 // # the E is required for 64-bit non-static lvalue references
mangleType(const LValueReferenceType * T,Qualifiers Quals,SourceRange Range)3023 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
3024 Qualifiers Quals, SourceRange Range) {
3025 QualType PointeeType = T->getPointeeType();
3026 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3027 Out << 'A';
3028 manglePointerExtQualifiers(Quals, PointeeType);
3029 mangleType(PointeeType, Range);
3030 }
3031
3032 // <type> ::= <r-value-reference-type>
3033 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
3034 // # the E is required for 64-bit non-static rvalue references
mangleType(const RValueReferenceType * T,Qualifiers Quals,SourceRange Range)3035 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
3036 Qualifiers Quals, SourceRange Range) {
3037 QualType PointeeType = T->getPointeeType();
3038 assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
3039 Out << "$$Q";
3040 manglePointerExtQualifiers(Quals, PointeeType);
3041 mangleType(PointeeType, Range);
3042 }
3043
mangleType(const ComplexType * T,Qualifiers,SourceRange Range)3044 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
3045 SourceRange Range) {
3046 QualType ElementType = T->getElementType();
3047
3048 llvm::SmallString<64> TemplateMangling;
3049 llvm::raw_svector_ostream Stream(TemplateMangling);
3050 MicrosoftCXXNameMangler Extra(Context, Stream);
3051 Stream << "?$";
3052 Extra.mangleSourceName("_Complex");
3053 Extra.mangleType(ElementType, Range, QMM_Escape);
3054
3055 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3056 }
3057
3058 // Returns true for types that mangleArtificialTagType() gets called for with
3059 // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's
3060 // mangling matters.
3061 // (It doesn't matter for Objective-C types and the like that cl.exe doesn't
3062 // support.)
isArtificialTagType(QualType T) const3063 bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const {
3064 const Type *ty = T.getTypePtr();
3065 switch (ty->getTypeClass()) {
3066 default:
3067 return false;
3068
3069 case Type::Vector: {
3070 // For ABI compatibility only __m64, __m128(id), and __m256(id) matter,
3071 // but since mangleType(VectorType*) always calls mangleArtificialTagType()
3072 // just always return true (the other vector types are clang-only).
3073 return true;
3074 }
3075 }
3076 }
3077
mangleType(const VectorType * T,Qualifiers Quals,SourceRange Range)3078 void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
3079 SourceRange Range) {
3080 QualType EltTy = T->getElementType();
3081 const BuiltinType *ET = EltTy->getAs<BuiltinType>();
3082 const BitIntType *BitIntTy = EltTy->getAs<BitIntType>();
3083 assert((ET || BitIntTy) &&
3084 "vectors with non-builtin/_BitInt elements are unsupported");
3085 uint64_t Width = getASTContext().getTypeSize(T);
3086 // Pattern match exactly the typedefs in our intrinsic headers. Anything that
3087 // doesn't match the Intel types uses a custom mangling below.
3088 size_t OutSizeBefore = Out.tell();
3089 if (!isa<ExtVectorType>(T)) {
3090 if (getASTContext().getTargetInfo().getTriple().isX86() && ET) {
3091 if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
3092 mangleArtificialTagType(TTK_Union, "__m64");
3093 } else if (Width >= 128) {
3094 if (ET->getKind() == BuiltinType::Float)
3095 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width));
3096 else if (ET->getKind() == BuiltinType::LongLong)
3097 mangleArtificialTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
3098 else if (ET->getKind() == BuiltinType::Double)
3099 mangleArtificialTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
3100 }
3101 }
3102 }
3103
3104 bool IsBuiltin = Out.tell() != OutSizeBefore;
3105 if (!IsBuiltin) {
3106 // The MS ABI doesn't have a special mangling for vector types, so we define
3107 // our own mangling to handle uses of __vector_size__ on user-specified
3108 // types, and for extensions like __v4sf.
3109
3110 llvm::SmallString<64> TemplateMangling;
3111 llvm::raw_svector_ostream Stream(TemplateMangling);
3112 MicrosoftCXXNameMangler Extra(Context, Stream);
3113 Stream << "?$";
3114 Extra.mangleSourceName("__vector");
3115 Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0),
3116 Range, QMM_Escape);
3117 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()));
3118
3119 mangleArtificialTagType(TTK_Union, TemplateMangling, {"__clang"});
3120 }
3121 }
3122
mangleType(const ExtVectorType * T,Qualifiers Quals,SourceRange Range)3123 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
3124 Qualifiers Quals, SourceRange Range) {
3125 mangleType(static_cast<const VectorType *>(T), Quals, Range);
3126 }
3127
mangleType(const DependentVectorType * T,Qualifiers,SourceRange Range)3128 void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T,
3129 Qualifiers, SourceRange Range) {
3130 DiagnosticsEngine &Diags = Context.getDiags();
3131 unsigned DiagID = Diags.getCustomDiagID(
3132 DiagnosticsEngine::Error,
3133 "cannot mangle this dependent-sized vector type yet");
3134 Diags.Report(Range.getBegin(), DiagID) << Range;
3135 }
3136
mangleType(const DependentSizedExtVectorType * T,Qualifiers,SourceRange Range)3137 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
3138 Qualifiers, SourceRange Range) {
3139 DiagnosticsEngine &Diags = Context.getDiags();
3140 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3141 "cannot mangle this dependent-sized extended vector type yet");
3142 Diags.Report(Range.getBegin(), DiagID)
3143 << Range;
3144 }
3145
mangleType(const ConstantMatrixType * T,Qualifiers quals,SourceRange Range)3146 void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T,
3147 Qualifiers quals, SourceRange Range) {
3148 DiagnosticsEngine &Diags = Context.getDiags();
3149 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3150 "Cannot mangle this matrix type yet");
3151 Diags.Report(Range.getBegin(), DiagID) << Range;
3152 }
3153
mangleType(const DependentSizedMatrixType * T,Qualifiers quals,SourceRange Range)3154 void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T,
3155 Qualifiers quals, SourceRange Range) {
3156 DiagnosticsEngine &Diags = Context.getDiags();
3157 unsigned DiagID = Diags.getCustomDiagID(
3158 DiagnosticsEngine::Error,
3159 "Cannot mangle this dependent-sized matrix type yet");
3160 Diags.Report(Range.getBegin(), DiagID) << Range;
3161 }
3162
mangleType(const DependentAddressSpaceType * T,Qualifiers,SourceRange Range)3163 void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T,
3164 Qualifiers, SourceRange Range) {
3165 DiagnosticsEngine &Diags = Context.getDiags();
3166 unsigned DiagID = Diags.getCustomDiagID(
3167 DiagnosticsEngine::Error,
3168 "cannot mangle this dependent address space type yet");
3169 Diags.Report(Range.getBegin(), DiagID) << Range;
3170 }
3171
mangleType(const ObjCInterfaceType * T,Qualifiers,SourceRange)3172 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
3173 SourceRange) {
3174 // ObjC interfaces have structs underlying them.
3175 mangleTagTypeKind(TTK_Struct);
3176 mangleName(T->getDecl());
3177 }
3178
mangleType(const ObjCObjectType * T,Qualifiers Quals,SourceRange Range)3179 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
3180 Qualifiers Quals, SourceRange Range) {
3181 if (T->isKindOfType())
3182 return mangleObjCKindOfType(T, Quals, Range);
3183
3184 if (T->qual_empty() && !T->isSpecialized())
3185 return mangleType(T->getBaseType(), Range, QMM_Drop);
3186
3187 ArgBackRefMap OuterFunArgsContext;
3188 ArgBackRefMap OuterTemplateArgsContext;
3189 BackRefVec OuterTemplateContext;
3190
3191 FunArgBackReferences.swap(OuterFunArgsContext);
3192 TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3193 NameBackReferences.swap(OuterTemplateContext);
3194
3195 mangleTagTypeKind(TTK_Struct);
3196
3197 Out << "?$";
3198 if (T->isObjCId())
3199 mangleSourceName("objc_object");
3200 else if (T->isObjCClass())
3201 mangleSourceName("objc_class");
3202 else
3203 mangleSourceName(T->getInterface()->getName());
3204
3205 for (const auto &Q : T->quals())
3206 mangleObjCProtocol(Q);
3207
3208 if (T->isSpecialized())
3209 for (const auto &TA : T->getTypeArgs())
3210 mangleType(TA, Range, QMM_Drop);
3211
3212 Out << '@';
3213
3214 Out << '@';
3215
3216 FunArgBackReferences.swap(OuterFunArgsContext);
3217 TemplateArgBackReferences.swap(OuterTemplateArgsContext);
3218 NameBackReferences.swap(OuterTemplateContext);
3219 }
3220
mangleType(const BlockPointerType * T,Qualifiers Quals,SourceRange Range)3221 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
3222 Qualifiers Quals, SourceRange Range) {
3223 QualType PointeeType = T->getPointeeType();
3224 manglePointerCVQualifiers(Quals);
3225 manglePointerExtQualifiers(Quals, PointeeType);
3226
3227 Out << "_E";
3228
3229 mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
3230 }
3231
mangleType(const InjectedClassNameType *,Qualifiers,SourceRange)3232 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
3233 Qualifiers, SourceRange) {
3234 llvm_unreachable("Cannot mangle injected class name type.");
3235 }
3236
mangleType(const TemplateSpecializationType * T,Qualifiers,SourceRange Range)3237 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
3238 Qualifiers, SourceRange Range) {
3239 DiagnosticsEngine &Diags = Context.getDiags();
3240 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3241 "cannot mangle this template specialization type yet");
3242 Diags.Report(Range.getBegin(), DiagID)
3243 << Range;
3244 }
3245
mangleType(const DependentNameType * T,Qualifiers,SourceRange Range)3246 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
3247 SourceRange Range) {
3248 DiagnosticsEngine &Diags = Context.getDiags();
3249 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3250 "cannot mangle this dependent name type yet");
3251 Diags.Report(Range.getBegin(), DiagID)
3252 << Range;
3253 }
3254
mangleType(const DependentTemplateSpecializationType * T,Qualifiers,SourceRange Range)3255 void MicrosoftCXXNameMangler::mangleType(
3256 const DependentTemplateSpecializationType *T, Qualifiers,
3257 SourceRange Range) {
3258 DiagnosticsEngine &Diags = Context.getDiags();
3259 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3260 "cannot mangle this dependent template specialization type yet");
3261 Diags.Report(Range.getBegin(), DiagID)
3262 << Range;
3263 }
3264
mangleType(const PackExpansionType * T,Qualifiers,SourceRange Range)3265 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
3266 SourceRange Range) {
3267 DiagnosticsEngine &Diags = Context.getDiags();
3268 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3269 "cannot mangle this pack expansion yet");
3270 Diags.Report(Range.getBegin(), DiagID)
3271 << Range;
3272 }
3273
mangleType(const TypeOfType * T,Qualifiers,SourceRange Range)3274 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
3275 SourceRange Range) {
3276 DiagnosticsEngine &Diags = Context.getDiags();
3277 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3278 "cannot mangle this typeof(type) yet");
3279 Diags.Report(Range.getBegin(), DiagID)
3280 << Range;
3281 }
3282
mangleType(const TypeOfExprType * T,Qualifiers,SourceRange Range)3283 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
3284 SourceRange Range) {
3285 DiagnosticsEngine &Diags = Context.getDiags();
3286 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3287 "cannot mangle this typeof(expression) yet");
3288 Diags.Report(Range.getBegin(), DiagID)
3289 << Range;
3290 }
3291
mangleType(const DecltypeType * T,Qualifiers,SourceRange Range)3292 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
3293 SourceRange Range) {
3294 DiagnosticsEngine &Diags = Context.getDiags();
3295 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3296 "cannot mangle this decltype() yet");
3297 Diags.Report(Range.getBegin(), DiagID)
3298 << Range;
3299 }
3300
mangleType(const UnaryTransformType * T,Qualifiers,SourceRange Range)3301 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
3302 Qualifiers, SourceRange Range) {
3303 DiagnosticsEngine &Diags = Context.getDiags();
3304 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3305 "cannot mangle this unary transform type yet");
3306 Diags.Report(Range.getBegin(), DiagID)
3307 << Range;
3308 }
3309
mangleType(const AutoType * T,Qualifiers,SourceRange Range)3310 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
3311 SourceRange Range) {
3312 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3313
3314 DiagnosticsEngine &Diags = Context.getDiags();
3315 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3316 "cannot mangle this 'auto' type yet");
3317 Diags.Report(Range.getBegin(), DiagID)
3318 << Range;
3319 }
3320
mangleType(const DeducedTemplateSpecializationType * T,Qualifiers,SourceRange Range)3321 void MicrosoftCXXNameMangler::mangleType(
3322 const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) {
3323 assert(T->getDeducedType().isNull() && "expecting a dependent type!");
3324
3325 DiagnosticsEngine &Diags = Context.getDiags();
3326 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3327 "cannot mangle this deduced class template specialization type yet");
3328 Diags.Report(Range.getBegin(), DiagID)
3329 << Range;
3330 }
3331
mangleType(const AtomicType * T,Qualifiers,SourceRange Range)3332 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
3333 SourceRange Range) {
3334 QualType ValueType = T->getValueType();
3335
3336 llvm::SmallString<64> TemplateMangling;
3337 llvm::raw_svector_ostream Stream(TemplateMangling);
3338 MicrosoftCXXNameMangler Extra(Context, Stream);
3339 Stream << "?$";
3340 Extra.mangleSourceName("_Atomic");
3341 Extra.mangleType(ValueType, Range, QMM_Escape);
3342
3343 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3344 }
3345
mangleType(const PipeType * T,Qualifiers,SourceRange Range)3346 void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
3347 SourceRange Range) {
3348 QualType ElementType = T->getElementType();
3349
3350 llvm::SmallString<64> TemplateMangling;
3351 llvm::raw_svector_ostream Stream(TemplateMangling);
3352 MicrosoftCXXNameMangler Extra(Context, Stream);
3353 Stream << "?$";
3354 Extra.mangleSourceName("ocl_pipe");
3355 Extra.mangleType(ElementType, Range, QMM_Escape);
3356 Extra.mangleIntegerLiteral(llvm::APSInt::get(T->isReadOnly()));
3357
3358 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3359 }
3360
mangleCXXName(GlobalDecl GD,raw_ostream & Out)3361 void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD,
3362 raw_ostream &Out) {
3363 const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
3364 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3365 getASTContext().getSourceManager(),
3366 "Mangling declaration");
3367
3368 msvc_hashing_ostream MHO(Out);
3369
3370 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
3371 auto Type = GD.getCtorType();
3372 MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type);
3373 return mangler.mangle(GD);
3374 }
3375
3376 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
3377 auto Type = GD.getDtorType();
3378 MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type);
3379 return mangler.mangle(GD);
3380 }
3381
3382 MicrosoftCXXNameMangler Mangler(*this, MHO);
3383 return Mangler.mangle(GD);
3384 }
3385
mangleType(const BitIntType * T,Qualifiers,SourceRange Range)3386 void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers,
3387 SourceRange Range) {
3388 llvm::SmallString<64> TemplateMangling;
3389 llvm::raw_svector_ostream Stream(TemplateMangling);
3390 MicrosoftCXXNameMangler Extra(Context, Stream);
3391 Stream << "?$";
3392 if (T->isUnsigned())
3393 Extra.mangleSourceName("_UBitInt");
3394 else
3395 Extra.mangleSourceName("_BitInt");
3396 Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumBits()));
3397
3398 mangleArtificialTagType(TTK_Struct, TemplateMangling, {"__clang"});
3399 }
3400
mangleType(const DependentBitIntType * T,Qualifiers,SourceRange Range)3401 void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T,
3402 Qualifiers, SourceRange Range) {
3403 DiagnosticsEngine &Diags = Context.getDiags();
3404 unsigned DiagID = Diags.getCustomDiagID(
3405 DiagnosticsEngine::Error, "cannot mangle this DependentBitInt type yet");
3406 Diags.Report(Range.getBegin(), DiagID) << Range;
3407 }
3408
3409 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
3410 // <virtual-adjustment>
3411 // <no-adjustment> ::= A # private near
3412 // ::= B # private far
3413 // ::= I # protected near
3414 // ::= J # protected far
3415 // ::= Q # public near
3416 // ::= R # public far
3417 // <static-adjustment> ::= G <static-offset> # private near
3418 // ::= H <static-offset> # private far
3419 // ::= O <static-offset> # protected near
3420 // ::= P <static-offset> # protected far
3421 // ::= W <static-offset> # public near
3422 // ::= X <static-offset> # public far
3423 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
3424 // ::= $1 <virtual-shift> <static-offset> # private far
3425 // ::= $2 <virtual-shift> <static-offset> # protected near
3426 // ::= $3 <virtual-shift> <static-offset> # protected far
3427 // ::= $4 <virtual-shift> <static-offset> # public near
3428 // ::= $5 <virtual-shift> <static-offset> # public far
3429 // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
3430 // <vtordisp-shift> ::= <offset-to-vtordisp>
3431 // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
3432 // <offset-to-vtordisp>
mangleThunkThisAdjustment(AccessSpecifier AS,const ThisAdjustment & Adjustment,MicrosoftCXXNameMangler & Mangler,raw_ostream & Out)3433 static void mangleThunkThisAdjustment(AccessSpecifier AS,
3434 const ThisAdjustment &Adjustment,
3435 MicrosoftCXXNameMangler &Mangler,
3436 raw_ostream &Out) {
3437 if (!Adjustment.Virtual.isEmpty()) {
3438 Out << '$';
3439 char AccessSpec;
3440 switch (AS) {
3441 case AS_none:
3442 llvm_unreachable("Unsupported access specifier");
3443 case AS_private:
3444 AccessSpec = '0';
3445 break;
3446 case AS_protected:
3447 AccessSpec = '2';
3448 break;
3449 case AS_public:
3450 AccessSpec = '4';
3451 }
3452 if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
3453 Out << 'R' << AccessSpec;
3454 Mangler.mangleNumber(
3455 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
3456 Mangler.mangleNumber(
3457 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
3458 Mangler.mangleNumber(
3459 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3460 Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
3461 } else {
3462 Out << AccessSpec;
3463 Mangler.mangleNumber(
3464 static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
3465 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3466 }
3467 } else if (Adjustment.NonVirtual != 0) {
3468 switch (AS) {
3469 case AS_none:
3470 llvm_unreachable("Unsupported access specifier");
3471 case AS_private:
3472 Out << 'G';
3473 break;
3474 case AS_protected:
3475 Out << 'O';
3476 break;
3477 case AS_public:
3478 Out << 'W';
3479 }
3480 Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
3481 } else {
3482 switch (AS) {
3483 case AS_none:
3484 llvm_unreachable("Unsupported access specifier");
3485 case AS_private:
3486 Out << 'A';
3487 break;
3488 case AS_protected:
3489 Out << 'I';
3490 break;
3491 case AS_public:
3492 Out << 'Q';
3493 }
3494 }
3495 }
3496
mangleVirtualMemPtrThunk(const CXXMethodDecl * MD,const MethodVFTableLocation & ML,raw_ostream & Out)3497 void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(
3498 const CXXMethodDecl *MD, const MethodVFTableLocation &ML,
3499 raw_ostream &Out) {
3500 msvc_hashing_ostream MHO(Out);
3501 MicrosoftCXXNameMangler Mangler(*this, MHO);
3502 Mangler.getStream() << '?';
3503 Mangler.mangleVirtualMemPtrThunk(MD, ML);
3504 }
3505
mangleThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk,raw_ostream & Out)3506 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3507 const ThunkInfo &Thunk,
3508 raw_ostream &Out) {
3509 msvc_hashing_ostream MHO(Out);
3510 MicrosoftCXXNameMangler Mangler(*this, MHO);
3511 Mangler.getStream() << '?';
3512 Mangler.mangleName(MD);
3513
3514 // Usually the thunk uses the access specifier of the new method, but if this
3515 // is a covariant return thunk, then MSVC always uses the public access
3516 // specifier, and we do the same.
3517 AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public;
3518 mangleThunkThisAdjustment(AS, Thunk.This, Mangler, MHO);
3519
3520 if (!Thunk.Return.isEmpty())
3521 assert(Thunk.Method != nullptr &&
3522 "Thunk info should hold the overridee decl");
3523
3524 const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
3525 Mangler.mangleFunctionType(
3526 DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
3527 }
3528
mangleCXXDtorThunk(const CXXDestructorDecl * DD,CXXDtorType Type,const ThisAdjustment & Adjustment,raw_ostream & Out)3529 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
3530 const CXXDestructorDecl *DD, CXXDtorType Type,
3531 const ThisAdjustment &Adjustment, raw_ostream &Out) {
3532 // FIXME: Actually, the dtor thunk should be emitted for vector deleting
3533 // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
3534 // mangling manually until we support both deleting dtor types.
3535 assert(Type == Dtor_Deleting);
3536 msvc_hashing_ostream MHO(Out);
3537 MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type);
3538 Mangler.getStream() << "??_E";
3539 Mangler.mangleName(DD->getParent());
3540 mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO);
3541 Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
3542 }
3543
mangleCXXVFTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)3544 void MicrosoftMangleContextImpl::mangleCXXVFTable(
3545 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3546 raw_ostream &Out) {
3547 // <mangled-name> ::= ?_7 <class-name> <storage-class>
3548 // <cvr-qualifiers> [<name>] @
3549 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3550 // is always '6' for vftables.
3551 msvc_hashing_ostream MHO(Out);
3552 MicrosoftCXXNameMangler Mangler(*this, MHO);
3553 if (Derived->hasAttr<DLLImportAttr>())
3554 Mangler.getStream() << "??_S";
3555 else
3556 Mangler.getStream() << "??_7";
3557 Mangler.mangleName(Derived);
3558 Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
3559 for (const CXXRecordDecl *RD : BasePath)
3560 Mangler.mangleName(RD);
3561 Mangler.getStream() << '@';
3562 }
3563
mangleCXXVBTable(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)3564 void MicrosoftMangleContextImpl::mangleCXXVBTable(
3565 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3566 raw_ostream &Out) {
3567 // <mangled-name> ::= ?_8 <class-name> <storage-class>
3568 // <cvr-qualifiers> [<name>] @
3569 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3570 // is always '7' for vbtables.
3571 msvc_hashing_ostream MHO(Out);
3572 MicrosoftCXXNameMangler Mangler(*this, MHO);
3573 Mangler.getStream() << "??_8";
3574 Mangler.mangleName(Derived);
3575 Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
3576 for (const CXXRecordDecl *RD : BasePath)
3577 Mangler.mangleName(RD);
3578 Mangler.getStream() << '@';
3579 }
3580
mangleCXXRTTI(QualType T,raw_ostream & Out)3581 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
3582 msvc_hashing_ostream MHO(Out);
3583 MicrosoftCXXNameMangler Mangler(*this, MHO);
3584 Mangler.getStream() << "??_R0";
3585 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3586 Mangler.getStream() << "@8";
3587 }
3588
mangleCXXRTTIName(QualType T,raw_ostream & Out)3589 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
3590 raw_ostream &Out) {
3591 MicrosoftCXXNameMangler Mangler(*this, Out);
3592 Mangler.getStream() << '.';
3593 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3594 }
3595
mangleCXXVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD,raw_ostream & Out)3596 void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
3597 const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
3598 msvc_hashing_ostream MHO(Out);
3599 MicrosoftCXXNameMangler Mangler(*this, MHO);
3600 Mangler.getStream() << "??_K";
3601 Mangler.mangleName(SrcRD);
3602 Mangler.getStream() << "$C";
3603 Mangler.mangleName(DstRD);
3604 }
3605
mangleCXXThrowInfo(QualType T,bool IsConst,bool IsVolatile,bool IsUnaligned,uint32_t NumEntries,raw_ostream & Out)3606 void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst,
3607 bool IsVolatile,
3608 bool IsUnaligned,
3609 uint32_t NumEntries,
3610 raw_ostream &Out) {
3611 msvc_hashing_ostream MHO(Out);
3612 MicrosoftCXXNameMangler Mangler(*this, MHO);
3613 Mangler.getStream() << "_TI";
3614 if (IsConst)
3615 Mangler.getStream() << 'C';
3616 if (IsVolatile)
3617 Mangler.getStream() << 'V';
3618 if (IsUnaligned)
3619 Mangler.getStream() << 'U';
3620 Mangler.getStream() << NumEntries;
3621 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3622 }
3623
mangleCXXCatchableTypeArray(QualType T,uint32_t NumEntries,raw_ostream & Out)3624 void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
3625 QualType T, uint32_t NumEntries, raw_ostream &Out) {
3626 msvc_hashing_ostream MHO(Out);
3627 MicrosoftCXXNameMangler Mangler(*this, MHO);
3628 Mangler.getStream() << "_CTA";
3629 Mangler.getStream() << NumEntries;
3630 Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
3631 }
3632
mangleCXXCatchableType(QualType T,const CXXConstructorDecl * CD,CXXCtorType CT,uint32_t Size,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex,raw_ostream & Out)3633 void MicrosoftMangleContextImpl::mangleCXXCatchableType(
3634 QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
3635 uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
3636 raw_ostream &Out) {
3637 MicrosoftCXXNameMangler Mangler(*this, Out);
3638 Mangler.getStream() << "_CT";
3639
3640 llvm::SmallString<64> RTTIMangling;
3641 {
3642 llvm::raw_svector_ostream Stream(RTTIMangling);
3643 msvc_hashing_ostream MHO(Stream);
3644 mangleCXXRTTI(T, MHO);
3645 }
3646 Mangler.getStream() << RTTIMangling;
3647
3648 // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but
3649 // both older and newer versions include it.
3650 // FIXME: It is known that the Ctor is present in 2013, and in 2017.7
3651 // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4
3652 // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914?
3653 // Or 1912, 1913 already?).
3654 bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC(
3655 LangOptions::MSVC2015) &&
3656 !getASTContext().getLangOpts().isCompatibleWithMSVC(
3657 LangOptions::MSVC2017_7);
3658 llvm::SmallString<64> CopyCtorMangling;
3659 if (!OmitCopyCtor && CD) {
3660 llvm::raw_svector_ostream Stream(CopyCtorMangling);
3661 msvc_hashing_ostream MHO(Stream);
3662 mangleCXXName(GlobalDecl(CD, CT), MHO);
3663 }
3664 Mangler.getStream() << CopyCtorMangling;
3665
3666 Mangler.getStream() << Size;
3667 if (VBPtrOffset == -1) {
3668 if (NVOffset) {
3669 Mangler.getStream() << NVOffset;
3670 }
3671 } else {
3672 Mangler.getStream() << NVOffset;
3673 Mangler.getStream() << VBPtrOffset;
3674 Mangler.getStream() << VBIndex;
3675 }
3676 }
3677
mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl * Derived,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBTableOffset,uint32_t Flags,raw_ostream & Out)3678 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
3679 const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
3680 uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
3681 msvc_hashing_ostream MHO(Out);
3682 MicrosoftCXXNameMangler Mangler(*this, MHO);
3683 Mangler.getStream() << "??_R1";
3684 Mangler.mangleNumber(NVOffset);
3685 Mangler.mangleNumber(VBPtrOffset);
3686 Mangler.mangleNumber(VBTableOffset);
3687 Mangler.mangleNumber(Flags);
3688 Mangler.mangleName(Derived);
3689 Mangler.getStream() << "8";
3690 }
3691
mangleCXXRTTIBaseClassArray(const CXXRecordDecl * Derived,raw_ostream & Out)3692 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
3693 const CXXRecordDecl *Derived, raw_ostream &Out) {
3694 msvc_hashing_ostream MHO(Out);
3695 MicrosoftCXXNameMangler Mangler(*this, MHO);
3696 Mangler.getStream() << "??_R2";
3697 Mangler.mangleName(Derived);
3698 Mangler.getStream() << "8";
3699 }
3700
mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl * Derived,raw_ostream & Out)3701 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
3702 const CXXRecordDecl *Derived, raw_ostream &Out) {
3703 msvc_hashing_ostream MHO(Out);
3704 MicrosoftCXXNameMangler Mangler(*this, MHO);
3705 Mangler.getStream() << "??_R3";
3706 Mangler.mangleName(Derived);
3707 Mangler.getStream() << "8";
3708 }
3709
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl * Derived,ArrayRef<const CXXRecordDecl * > BasePath,raw_ostream & Out)3710 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
3711 const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
3712 raw_ostream &Out) {
3713 // <mangled-name> ::= ?_R4 <class-name> <storage-class>
3714 // <cvr-qualifiers> [<name>] @
3715 // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
3716 // is always '6' for vftables.
3717 llvm::SmallString<64> VFTableMangling;
3718 llvm::raw_svector_ostream Stream(VFTableMangling);
3719 mangleCXXVFTable(Derived, BasePath, Stream);
3720
3721 if (VFTableMangling.startswith("??@")) {
3722 assert(VFTableMangling.endswith("@"));
3723 Out << VFTableMangling << "??_R4@";
3724 return;
3725 }
3726
3727 assert(VFTableMangling.startswith("??_7") ||
3728 VFTableMangling.startswith("??_S"));
3729
3730 Out << "??_R4" << VFTableMangling.str().drop_front(4);
3731 }
3732
mangleSEHFilterExpression(GlobalDecl EnclosingDecl,raw_ostream & Out)3733 void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
3734 GlobalDecl EnclosingDecl, raw_ostream &Out) {
3735 msvc_hashing_ostream MHO(Out);
3736 MicrosoftCXXNameMangler Mangler(*this, MHO);
3737 // The function body is in the same comdat as the function with the handler,
3738 // so the numbering here doesn't have to be the same across TUs.
3739 //
3740 // <mangled-name> ::= ?filt$ <filter-number> @0
3741 Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
3742 Mangler.mangleName(EnclosingDecl);
3743 }
3744
mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,raw_ostream & Out)3745 void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
3746 GlobalDecl EnclosingDecl, raw_ostream &Out) {
3747 msvc_hashing_ostream MHO(Out);
3748 MicrosoftCXXNameMangler Mangler(*this, MHO);
3749 // The function body is in the same comdat as the function with the handler,
3750 // so the numbering here doesn't have to be the same across TUs.
3751 //
3752 // <mangled-name> ::= ?fin$ <filter-number> @0
3753 Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
3754 Mangler.mangleName(EnclosingDecl);
3755 }
3756
mangleTypeName(QualType T,raw_ostream & Out)3757 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
3758 // This is just a made up unique string for the purposes of tbaa. undname
3759 // does *not* know how to demangle it.
3760 MicrosoftCXXNameMangler Mangler(*this, Out);
3761 Mangler.getStream() << '?';
3762 Mangler.mangleType(T, SourceRange());
3763 }
3764
mangleReferenceTemporary(const VarDecl * VD,unsigned ManglingNumber,raw_ostream & Out)3765 void MicrosoftMangleContextImpl::mangleReferenceTemporary(
3766 const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
3767 msvc_hashing_ostream MHO(Out);
3768 MicrosoftCXXNameMangler Mangler(*this, MHO);
3769
3770 Mangler.getStream() << "?$RT" << ManglingNumber << '@';
3771 Mangler.mangle(VD, "");
3772 }
3773
mangleThreadSafeStaticGuardVariable(const VarDecl * VD,unsigned GuardNum,raw_ostream & Out)3774 void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
3775 const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
3776 msvc_hashing_ostream MHO(Out);
3777 MicrosoftCXXNameMangler Mangler(*this, MHO);
3778
3779 Mangler.getStream() << "?$TSS" << GuardNum << '@';
3780 Mangler.mangleNestedName(VD);
3781 Mangler.getStream() << "@4HA";
3782 }
3783
mangleStaticGuardVariable(const VarDecl * VD,raw_ostream & Out)3784 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
3785 raw_ostream &Out) {
3786 // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
3787 // ::= ?__J <postfix> @5 <scope-depth>
3788 // ::= ?$S <guard-num> @ <postfix> @4IA
3789
3790 // The first mangling is what MSVC uses to guard static locals in inline
3791 // functions. It uses a different mangling in external functions to support
3792 // guarding more than 32 variables. MSVC rejects inline functions with more
3793 // than 32 static locals. We don't fully implement the second mangling
3794 // because those guards are not externally visible, and instead use LLVM's
3795 // default renaming when creating a new guard variable.
3796 msvc_hashing_ostream MHO(Out);
3797 MicrosoftCXXNameMangler Mangler(*this, MHO);
3798
3799 bool Visible = VD->isExternallyVisible();
3800 if (Visible) {
3801 Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B");
3802 } else {
3803 Mangler.getStream() << "?$S1@";
3804 }
3805 unsigned ScopeDepth = 0;
3806 if (Visible && !getNextDiscriminator(VD, ScopeDepth))
3807 // If we do not have a discriminator and are emitting a guard variable for
3808 // use at global scope, then mangling the nested name will not be enough to
3809 // remove ambiguities.
3810 Mangler.mangle(VD, "");
3811 else
3812 Mangler.mangleNestedName(VD);
3813 Mangler.getStream() << (Visible ? "@5" : "@4IA");
3814 if (ScopeDepth)
3815 Mangler.mangleNumber(ScopeDepth);
3816 }
3817
mangleInitFiniStub(const VarDecl * D,char CharCode,raw_ostream & Out)3818 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
3819 char CharCode,
3820 raw_ostream &Out) {
3821 msvc_hashing_ostream MHO(Out);
3822 MicrosoftCXXNameMangler Mangler(*this, MHO);
3823 Mangler.getStream() << "??__" << CharCode;
3824 if (D->isStaticDataMember()) {
3825 Mangler.getStream() << '?';
3826 Mangler.mangleName(D);
3827 Mangler.mangleVariableEncoding(D);
3828 Mangler.getStream() << "@@";
3829 } else {
3830 Mangler.mangleName(D);
3831 }
3832 // This is the function class mangling. These stubs are global, non-variadic,
3833 // cdecl functions that return void and take no args.
3834 Mangler.getStream() << "YAXXZ";
3835 }
3836
mangleDynamicInitializer(const VarDecl * D,raw_ostream & Out)3837 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
3838 raw_ostream &Out) {
3839 // <initializer-name> ::= ?__E <name> YAXXZ
3840 mangleInitFiniStub(D, 'E', Out);
3841 }
3842
3843 void
mangleDynamicAtExitDestructor(const VarDecl * D,raw_ostream & Out)3844 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3845 raw_ostream &Out) {
3846 // <destructor-name> ::= ?__F <name> YAXXZ
3847 mangleInitFiniStub(D, 'F', Out);
3848 }
3849
mangleStringLiteral(const StringLiteral * SL,raw_ostream & Out)3850 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
3851 raw_ostream &Out) {
3852 // <char-type> ::= 0 # char, char16_t, char32_t
3853 // # (little endian char data in mangling)
3854 // ::= 1 # wchar_t (big endian char data in mangling)
3855 //
3856 // <literal-length> ::= <non-negative integer> # the length of the literal
3857 //
3858 // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
3859 // # trailing null bytes
3860 //
3861 // <encoded-string> ::= <simple character> # uninteresting character
3862 // ::= '?$' <hex digit> <hex digit> # these two nibbles
3863 // # encode the byte for the
3864 // # character
3865 // ::= '?' [a-z] # \xe1 - \xfa
3866 // ::= '?' [A-Z] # \xc1 - \xda
3867 // ::= '?' [0-9] # [,/\:. \n\t'-]
3868 //
3869 // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
3870 // <encoded-string> '@'
3871 MicrosoftCXXNameMangler Mangler(*this, Out);
3872 Mangler.getStream() << "??_C@_";
3873
3874 // The actual string length might be different from that of the string literal
3875 // in cases like:
3876 // char foo[3] = "foobar";
3877 // char bar[42] = "foobar";
3878 // Where it is truncated or zero-padded to fit the array. This is the length
3879 // used for mangling, and any trailing null-bytes also need to be mangled.
3880 unsigned StringLength = getASTContext()
3881 .getAsConstantArrayType(SL->getType())
3882 ->getSize()
3883 .getZExtValue();
3884 unsigned StringByteLength = StringLength * SL->getCharByteWidth();
3885
3886 // <char-type>: The "kind" of string literal is encoded into the mangled name.
3887 if (SL->isWide())
3888 Mangler.getStream() << '1';
3889 else
3890 Mangler.getStream() << '0';
3891
3892 // <literal-length>: The next part of the mangled name consists of the length
3893 // of the string in bytes.
3894 Mangler.mangleNumber(StringByteLength);
3895
3896 auto GetLittleEndianByte = [&SL](unsigned Index) {
3897 unsigned CharByteWidth = SL->getCharByteWidth();
3898 if (Index / CharByteWidth >= SL->getLength())
3899 return static_cast<char>(0);
3900 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3901 unsigned OffsetInCodeUnit = Index % CharByteWidth;
3902 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3903 };
3904
3905 auto GetBigEndianByte = [&SL](unsigned Index) {
3906 unsigned CharByteWidth = SL->getCharByteWidth();
3907 if (Index / CharByteWidth >= SL->getLength())
3908 return static_cast<char>(0);
3909 uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
3910 unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
3911 return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
3912 };
3913
3914 // CRC all the bytes of the StringLiteral.
3915 llvm::JamCRC JC;
3916 for (unsigned I = 0, E = StringByteLength; I != E; ++I)
3917 JC.update(GetLittleEndianByte(I));
3918
3919 // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
3920 // scheme.
3921 Mangler.mangleNumber(JC.getCRC());
3922
3923 // <encoded-string>: The mangled name also contains the first 32 bytes
3924 // (including null-terminator bytes) of the encoded StringLiteral.
3925 // Each character is encoded by splitting them into bytes and then encoding
3926 // the constituent bytes.
3927 auto MangleByte = [&Mangler](char Byte) {
3928 // There are five different manglings for characters:
3929 // - [a-zA-Z0-9_$]: A one-to-one mapping.
3930 // - ?[a-z]: The range from \xe1 to \xfa.
3931 // - ?[A-Z]: The range from \xc1 to \xda.
3932 // - ?[0-9]: The set of [,/\:. \n\t'-].
3933 // - ?$XX: A fallback which maps nibbles.
3934 if (isAsciiIdentifierContinue(Byte, /*AllowDollar=*/true)) {
3935 Mangler.getStream() << Byte;
3936 } else if (isLetter(Byte & 0x7f)) {
3937 Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
3938 } else {
3939 const char SpecialChars[] = {',', '/', '\\', ':', '.',
3940 ' ', '\n', '\t', '\'', '-'};
3941 const char *Pos = llvm::find(SpecialChars, Byte);
3942 if (Pos != std::end(SpecialChars)) {
3943 Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
3944 } else {
3945 Mangler.getStream() << "?$";
3946 Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
3947 Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
3948 }
3949 }
3950 };
3951
3952 // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead.
3953 unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U;
3954 unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength);
3955 for (unsigned I = 0; I != NumBytesToMangle; ++I) {
3956 if (SL->isWide())
3957 MangleByte(GetBigEndianByte(I));
3958 else
3959 MangleByte(GetLittleEndianByte(I));
3960 }
3961
3962 Mangler.getStream() << '@';
3963 }
3964
create(ASTContext & Context,DiagnosticsEngine & Diags,bool IsAux)3965 MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context,
3966 DiagnosticsEngine &Diags,
3967 bool IsAux) {
3968 return new MicrosoftMangleContextImpl(Context, Diags, IsAux);
3969 }
3970