1 /* pp_sort.c
2 *
3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11 /*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 *
15 * [p.931 of _The Lord of the Rings_, VI/ii: "The Land of Shadow"]
16 */
17
18 /* This file contains pp ("push/pop") functions that
19 * execute the opcodes that make up a perl program. A typical pp function
20 * expects to find its arguments on the stack, and usually pushes its
21 * results onto the stack, hence the 'pp' terminology. Each OP structure
22 * contains a pointer to the relevant pp_foo() function.
23 *
24 * This particular file just contains pp_sort(), which is complex
25 * enough to merit its own file! See the other pp*.c files for the rest of
26 * the pp_ functions.
27 */
28
29 #include "EXTERN.h"
30 #define PERL_IN_PP_SORT_C
31 #include "perl.h"
32
33 #ifndef SMALLSORT
34 #define SMALLSORT (200)
35 #endif
36
37 /*
38 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
39 *
40 * The original code was written in conjunction with BSD Computer Software
41 * Research Group at University of California, Berkeley.
42 *
43 * See also: "Optimistic Sorting and Information Theoretic Complexity"
44 * Peter McIlroy
45 * SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
46 * pp 467-474, Austin, Texas, 25-27 January 1993.
47 *
48 * The integration to Perl is by John P. Linderman <jpl.jpl@gmail.com>.
49 *
50 * The code can be distributed under the same terms as Perl itself.
51 *
52 */
53
54
55 typedef char * aptr; /* pointer for arithmetic on sizes */
56 typedef SV * gptr; /* pointers in our lists */
57
58 /* Binary merge internal sort, with a few special mods
59 ** for the special perl environment it now finds itself in.
60 **
61 ** Things that were once options have been hotwired
62 ** to values suitable for this use. In particular, we'll always
63 ** initialize looking for natural runs, we'll always produce stable
64 ** output, and we'll always do Peter McIlroy's binary merge.
65 */
66
67 /* Pointer types for arithmetic and storage and convenience casts */
68
69 #define APTR(P) ((aptr)(P))
70 #define GPTP(P) ((gptr *)(P))
71 #define GPPP(P) ((gptr **)(P))
72
73
74 /* byte offset from pointer P to (larger) pointer Q */
75 #define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
76
77 #define PSIZE sizeof(gptr)
78
79 /* If PSIZE is power of 2, make PSHIFT that power, if that helps */
80
81 #ifdef PSHIFT
82 #define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
83 #define PNBYTE(N) ((N) << (PSHIFT))
84 #define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
85 #else
86 /* Leave optimization to compiler */
87 #define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
88 #define PNBYTE(N) ((N) * (PSIZE))
89 #define PINDEX(P, N) (GPTP(P) + (N))
90 #endif
91
92 /* Pointer into other corresponding to pointer into this */
93 #define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
94
95 #define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
96
97
98 /* Runs are identified by a pointer in the auxiliary list.
99 ** The pointer is at the start of the list,
100 ** and it points to the start of the next list.
101 ** NEXT is used as an lvalue, too.
102 */
103
104 #define NEXT(P) (*GPPP(P))
105
106
107 /* PTHRESH is the minimum number of pairs with the same sense to justify
108 ** checking for a run and extending it. Note that PTHRESH counts PAIRS,
109 ** not just elements, so PTHRESH == 8 means a run of 16.
110 */
111
112 #define PTHRESH (8)
113
114 /* RTHRESH is the number of elements in a run that must compare low
115 ** to the low element from the opposing run before we justify
116 ** doing a binary rampup instead of single stepping.
117 ** In random input, N in a row low should only happen with
118 ** probability 2^(1-N), so we can risk that we are dealing
119 ** with orderly input without paying much when we aren't.
120 */
121
122 #define RTHRESH (6)
123
124
125 /*
126 ** Overview of algorithm and variables.
127 ** The array of elements at list1 will be organized into runs of length 2,
128 ** or runs of length >= 2 * PTHRESH. We only try to form long runs when
129 ** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
130 **
131 ** Unless otherwise specified, pair pointers address the first of two elements.
132 **
133 ** b and b+1 are a pair that compare with sense "sense".
134 ** b is the "bottom" of adjacent pairs that might form a longer run.
135 **
136 ** p2 parallels b in the list2 array, where runs are defined by
137 ** a pointer chain.
138 **
139 ** t represents the "top" of the adjacent pairs that might extend
140 ** the run beginning at b. Usually, t addresses a pair
141 ** that compares with opposite sense from (b,b+1).
142 ** However, it may also address a singleton element at the end of list1,
143 ** or it may be equal to "last", the first element beyond list1.
144 **
145 ** r addresses the Nth pair following b. If this would be beyond t,
146 ** we back it off to t. Only when r is less than t do we consider the
147 ** run long enough to consider checking.
148 **
149 ** q addresses a pair such that the pairs at b through q already form a run.
150 ** Often, q will equal b, indicating we only are sure of the pair itself.
151 ** However, a search on the previous cycle may have revealed a longer run,
152 ** so q may be greater than b.
153 **
154 ** p is used to work back from a candidate r, trying to reach q,
155 ** which would mean b through r would be a run. If we discover such a run,
156 ** we start q at r and try to push it further towards t.
157 ** If b through r is NOT a run, we detect the wrong order at (p-1,p).
158 ** In any event, after the check (if any), we have two main cases.
159 **
160 ** 1) Short run. b <= q < p <= r <= t.
161 ** b through q is a run (perhaps trivial)
162 ** q through p are uninteresting pairs
163 ** p through r is a run
164 **
165 ** 2) Long run. b < r <= q < t.
166 ** b through q is a run (of length >= 2 * PTHRESH)
167 **
168 ** Note that degenerate cases are not only possible, but likely.
169 ** For example, if the pair following b compares with opposite sense,
170 ** then b == q < p == r == t.
171 */
172
173
174 PERL_STATIC_FORCE_INLINE IV __attribute__always_inline__
dynprep(pTHX_ gptr * list1,gptr * list2,size_t nmemb,const SVCOMPARE_t cmp)175 dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, const SVCOMPARE_t cmp)
176 {
177 I32 sense;
178 gptr *b, *p, *q, *t, *p2;
179 gptr *last, *r;
180 IV runs = 0;
181
182 b = list1;
183 last = PINDEX(b, nmemb);
184 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
185 for (p2 = list2; b < last; ) {
186 /* We just started, or just reversed sense.
187 ** Set t at end of pairs with the prevailing sense.
188 */
189 for (p = b+2, t = p; ++p < last; t = ++p) {
190 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
191 }
192 q = b;
193 /* Having laid out the playing field, look for long runs */
194 do {
195 p = r = b + (2 * PTHRESH);
196 if (r >= t) p = r = t; /* too short to care about */
197 else {
198 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
199 ((p -= 2) > q)) {}
200 if (p <= q) {
201 /* b through r is a (long) run.
202 ** Extend it as far as possible.
203 */
204 p = q = r;
205 while (((p += 2) < t) &&
206 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
207 r = p = q + 2; /* no simple pairs, no after-run */
208 }
209 }
210 if (q > b) { /* run of greater than 2 at b */
211 gptr *savep = p;
212
213 p = q += 2;
214 /* pick up singleton, if possible */
215 if ((p == t) &&
216 ((t + 1) == last) &&
217 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
218 savep = r = p = q = last;
219 p2 = NEXT(p2) = p2 + (p - b); ++runs;
220 if (sense)
221 while (b < --p) {
222 const gptr c = *b;
223 *b++ = *p;
224 *p = c;
225 }
226 p = savep;
227 }
228 while (q < p) { /* simple pairs */
229 p2 = NEXT(p2) = p2 + 2; ++runs;
230 if (sense) {
231 const gptr c = *q++;
232 *(q-1) = *q;
233 *q++ = c;
234 } else q += 2;
235 }
236 if (((b = p) == t) && ((t+1) == last)) {
237 NEXT(p2) = p2 + 1; ++runs;
238 b++;
239 }
240 q = r;
241 } while (b < t);
242 sense = !sense;
243 }
244 return runs;
245 }
246
247
248 /* The original merge sort, in use since 5.7, was as fast as, or faster than,
249 * qsort on many platforms, but slower than qsort, conspicuously so,
250 * on others. The most likely explanation was platform-specific
251 * differences in cache sizes and relative speeds.
252 *
253 * The quicksort divide-and-conquer algorithm guarantees that, as the
254 * problem is subdivided into smaller and smaller parts, the parts
255 * fit into smaller (and faster) caches. So it doesn't matter how
256 * many levels of cache exist, quicksort will "find" them, and,
257 * as long as smaller is faster, take advantage of them.
258 *
259 * By contrast, consider how the original mergesort algorithm worked.
260 * Suppose we have five runs (each typically of length 2 after dynprep).
261 *
262 * pass base aux
263 * 0 1 2 3 4 5
264 * 1 12 34 5
265 * 2 1234 5
266 * 3 12345
267 * 4 12345
268 *
269 * Adjacent pairs are merged in "grand sweeps" through the input.
270 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
271 * runs 3 and 4 are merged and the runs from run 5 have been copied.
272 * The only cache that matters is one large enough to hold *all* the input.
273 * On some platforms, this may be many times slower than smaller caches.
274 *
275 * The following pseudo-code uses the same basic merge algorithm,
276 * but in a divide-and-conquer way.
277 *
278 * # merge $runs runs at offset $offset of list $list1 into $list2.
279 * # all unmerged runs ($runs == 1) originate in list $base.
280 * sub mgsort2 {
281 * my ($offset, $runs, $base, $list1, $list2) = @_;
282 *
283 * if ($runs == 1) {
284 * if ($list1 is $base) copy run to $list2
285 * return offset of end of list (or copy)
286 * } else {
287 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
288 * mgsort2($off2, $runs/2, $base, $list2, $list1)
289 * merge the adjacent runs at $offset of $list1 into $list2
290 * return the offset of the end of the merged runs
291 * }
292 * }
293 * mgsort2(0, $runs, $base, $aux, $base);
294 *
295 * For our 5 runs, the tree of calls looks like
296 *
297 * 5
298 * 3 2
299 * 2 1 1 1
300 * 1 1
301 *
302 * 1 2 3 4 5
303 *
304 * and the corresponding activity looks like
305 *
306 * copy runs 1 and 2 from base to aux
307 * merge runs 1 and 2 from aux to base
308 * (run 3 is where it belongs, no copy needed)
309 * merge runs 12 and 3 from base to aux
310 * (runs 4 and 5 are where they belong, no copy needed)
311 * merge runs 4 and 5 from base to aux
312 * merge runs 123 and 45 from aux to base
313 *
314 * Note that we merge runs 1 and 2 immediately after copying them,
315 * while they are still likely to be in fast cache. Similarly,
316 * run 3 is merged with run 12 while it still may be lingering in cache.
317 * This implementation should therefore enjoy much of the cache-friendly
318 * behavior that quicksort does. In addition, it does less copying
319 * than the original mergesort implementation (only runs 1 and 2 are copied)
320 * and the "balancing" of merges is better (merged runs comprise more nearly
321 * equal numbers of original runs).
322 *
323 * The actual cache-friendly implementation will use a pseudo-stack
324 * to avoid recursion, and will unroll processing of runs of length 2,
325 * but it is otherwise similar to the recursive implementation.
326 */
327
328 typedef struct {
329 IV offset; /* offset of 1st of 2 runs at this level */
330 IV runs; /* how many runs must be combined into 1 */
331 } off_runs; /* pseudo-stack element */
332
333 PERL_STATIC_FORCE_INLINE void
S_sortsv_flags_impl(pTHX_ gptr * base,size_t nmemb,SVCOMPARE_t cmp,U32 flags)334 S_sortsv_flags_impl(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
335 {
336 IV i, run, offset;
337 I32 sense, level;
338 gptr *f1, *f2, *t, *b, *p;
339 int iwhich;
340 gptr *aux;
341 gptr *p1;
342 gptr small[SMALLSORT];
343 gptr *which[3];
344 off_runs stack[60], *stackp;
345
346 PERL_UNUSED_ARG(flags);
347 PERL_ARGS_ASSERT_SORTSV_FLAGS_IMPL;
348 if (nmemb <= 1) return; /* sorted trivially */
349
350 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
351 else { Newx(aux,nmemb,gptr); } /* allocate auxiliary array */
352 level = 0;
353 stackp = stack;
354 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
355 stackp->offset = offset = 0;
356 which[0] = which[2] = base;
357 which[1] = aux;
358 for (;;) {
359 /* On levels where both runs have be constructed (stackp->runs == 0),
360 * merge them, and note the offset of their end, in case the offset
361 * is needed at the next level up. Hop up a level, and,
362 * as long as stackp->runs is 0, keep merging.
363 */
364 IV runs = stackp->runs;
365 if (runs == 0) {
366 gptr *list1, *list2;
367 iwhich = level & 1;
368 list1 = which[iwhich]; /* area where runs are now */
369 list2 = which[++iwhich]; /* area for merged runs */
370 do {
371 gptr *l1, *l2, *tp2;
372 offset = stackp->offset;
373 f1 = p1 = list1 + offset; /* start of first run */
374 p = tp2 = list2 + offset; /* where merged run will go */
375 t = NEXT(p); /* where first run ends */
376 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
377 t = NEXT(t); /* where second runs ends */
378 l2 = POTHER(t, list2, list1); /* ... on the other side */
379 offset = PNELEM(list2, t);
380 while (f1 < l1 && f2 < l2) {
381 /* If head 1 is larger than head 2, find ALL the elements
382 ** in list 2 strictly less than head1, write them all,
383 ** then head 1. Then compare the new heads, and repeat,
384 ** until one or both lists are exhausted.
385 **
386 ** In all comparisons (after establishing
387 ** which head to merge) the item to merge
388 ** (at pointer q) is the first operand of
389 ** the comparison. When we want to know
390 ** if "q is strictly less than the other",
391 ** we can't just do
392 ** cmp(q, other) < 0
393 ** because stability demands that we treat equality
394 ** as high when q comes from l2, and as low when
395 ** q was from l1. So we ask the question by doing
396 ** cmp(q, other) <= sense
397 ** and make sense == 0 when equality should look low,
398 ** and -1 when equality should look high.
399 */
400
401 gptr *q;
402 if (cmp(aTHX_ *f1, *f2) <= 0) {
403 q = f2; b = f1; t = l1;
404 sense = -1;
405 } else {
406 q = f1; b = f2; t = l2;
407 sense = 0;
408 }
409
410
411 /* ramp up
412 **
413 ** Leave t at something strictly
414 ** greater than q (or at the end of the list),
415 ** and b at something strictly less than q.
416 */
417 for (i = 1, run = 0 ;;) {
418 if ((p = PINDEX(b, i)) >= t) {
419 /* off the end */
420 if (((p = PINDEX(t, -1)) > b) &&
421 (cmp(aTHX_ *q, *p) <= sense))
422 t = p;
423 else b = p;
424 break;
425 } else if (cmp(aTHX_ *q, *p) <= sense) {
426 t = p;
427 break;
428 } else b = p;
429 if (++run >= RTHRESH) i += i;
430 }
431
432
433 /* q is known to follow b and must be inserted before t.
434 ** Increment b, so the range of possibilities is [b,t).
435 ** Round binary split down, to favor early appearance.
436 ** Adjust b and t until q belongs just before t.
437 */
438
439 b++;
440 while (b < t) {
441 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
442 if (cmp(aTHX_ *q, *p) <= sense) {
443 t = p;
444 } else b = p + 1;
445 }
446
447
448 /* Copy all the strictly low elements */
449
450 if (q == f1) {
451 FROMTOUPTO(f2, tp2, t);
452 *tp2++ = *f1++;
453 } else {
454 FROMTOUPTO(f1, tp2, t);
455 *tp2++ = *f2++;
456 }
457 }
458
459
460 /* Run out remaining list */
461 if (f1 == l1) {
462 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
463 } else FROMTOUPTO(f1, tp2, l1);
464 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
465
466 if (--level == 0) goto done;
467 --stackp;
468 t = list1; list1 = list2; list2 = t; /* swap lists */
469 } while ((runs = stackp->runs) == 0);
470 }
471
472
473 stackp->runs = 0; /* current run will finish level */
474 /* While there are more than 2 runs remaining,
475 * turn them into exactly 2 runs (at the "other" level),
476 * each made up of approximately half the runs.
477 * Stack the second half for later processing,
478 * and set about producing the first half now.
479 */
480 while (runs > 2) {
481 ++level;
482 ++stackp;
483 stackp->offset = offset;
484 runs -= stackp->runs = runs / 2;
485 }
486 /* We must construct a single run from 1 or 2 runs.
487 * All the original runs are in which[0] == base.
488 * The run we construct must end up in which[level&1].
489 */
490 iwhich = level & 1;
491 if (runs == 1) {
492 /* Constructing a single run from a single run.
493 * If it's where it belongs already, there's nothing to do.
494 * Otherwise, copy it to where it belongs.
495 * A run of 1 is either a singleton at level 0,
496 * or the second half of a split 3. In neither event
497 * is it necessary to set offset. It will be set by the merge
498 * that immediately follows.
499 */
500 if (iwhich) { /* Belongs in aux, currently in base */
501 f1 = b = PINDEX(base, offset); /* where list starts */
502 f2 = PINDEX(aux, offset); /* where list goes */
503 t = NEXT(f2); /* where list will end */
504 offset = PNELEM(aux, t); /* offset thereof */
505 t = PINDEX(base, offset); /* where it currently ends */
506 FROMTOUPTO(f1, f2, t); /* copy */
507 NEXT(b) = t; /* set up parallel pointer */
508 } else if (level == 0) goto done; /* single run at level 0 */
509 } else {
510 /* Constructing a single run from two runs.
511 * The merge code at the top will do that.
512 * We need only make sure the two runs are in the "other" array,
513 * so they'll end up in the correct array after the merge.
514 */
515 ++level;
516 ++stackp;
517 stackp->offset = offset;
518 stackp->runs = 0; /* take care of both runs, trigger merge */
519 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
520 f1 = b = PINDEX(base, offset); /* where first run starts */
521 f2 = PINDEX(aux, offset); /* where it will be copied */
522 t = NEXT(f2); /* where first run will end */
523 offset = PNELEM(aux, t); /* offset thereof */
524 p = PINDEX(base, offset); /* end of first run */
525 t = NEXT(t); /* where second run will end */
526 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
527 FROMTOUPTO(f1, f2, t); /* copy both runs */
528 NEXT(b) = p; /* paralleled pointer for 1st */
529 NEXT(p) = t; /* ... and for second */
530 }
531 }
532 }
533 done:
534 if (aux != small) Safefree(aux); /* free iff allocated */
535
536 return;
537 }
538
539 /*
540 =for apidoc sortsv_flags
541
542 In-place sort an array of SV pointers with the given comparison routine,
543 with various SORTf_* flag options.
544
545 =cut
546 */
547 void
Perl_sortsv_flags(pTHX_ gptr * base,size_t nmemb,SVCOMPARE_t cmp,U32 flags)548 Perl_sortsv_flags(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
549 {
550 PERL_ARGS_ASSERT_SORTSV_FLAGS;
551
552 sortsv_flags_impl(base, nmemb, cmp, flags);
553 }
554
555 /*
556 * Each of sortsv_* functions contains an inlined copy of
557 * sortsv_flags_impl() with an inlined comparator. Basically, we are
558 * emulating C++ templates by using __attribute__((always_inline)).
559 *
560 * The purpose of that is to avoid the function call overhead inside
561 * the sorting routine, which calls the comparison function multiple
562 * times per sorted item.
563 */
564
565 static void
sortsv_amagic_i_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)566 sortsv_amagic_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
567 {
568 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp, flags);
569 }
570
571 static void
sortsv_amagic_i_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)572 sortsv_amagic_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
573 {
574 sortsv_flags_impl(base, nmemb, S_amagic_i_ncmp_desc, flags);
575 }
576
577 static void
sortsv_i_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)578 sortsv_i_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
579 {
580 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp, flags);
581 }
582
583 static void
sortsv_i_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)584 sortsv_i_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
585 {
586 sortsv_flags_impl(base, nmemb, S_sv_i_ncmp_desc, flags);
587 }
588
589 static void
sortsv_amagic_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)590 sortsv_amagic_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
591 {
592 sortsv_flags_impl(base, nmemb, S_amagic_ncmp, flags);
593 }
594
595 static void
sortsv_amagic_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)596 sortsv_amagic_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
597 {
598 sortsv_flags_impl(base, nmemb, S_amagic_ncmp_desc, flags);
599 }
600
601 static void
sortsv_ncmp(pTHX_ gptr * base,size_t nmemb,U32 flags)602 sortsv_ncmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
603 {
604 sortsv_flags_impl(base, nmemb, S_sv_ncmp, flags);
605 }
606
607 static void
sortsv_ncmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)608 sortsv_ncmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
609 {
610 sortsv_flags_impl(base, nmemb, S_sv_ncmp_desc, flags);
611 }
612
613 static void
sortsv_amagic_cmp(pTHX_ gptr * base,size_t nmemb,U32 flags)614 sortsv_amagic_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
615 {
616 sortsv_flags_impl(base, nmemb, S_amagic_cmp, flags);
617 }
618
619 static void
sortsv_amagic_cmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)620 sortsv_amagic_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
621 {
622 sortsv_flags_impl(base, nmemb, S_amagic_cmp_desc, flags);
623 }
624
625 static void
sortsv_cmp(pTHX_ gptr * base,size_t nmemb,U32 flags)626 sortsv_cmp(pTHX_ gptr *base, size_t nmemb, U32 flags)
627 {
628 sortsv_flags_impl(base, nmemb, Perl_sv_cmp, flags);
629 }
630
631 static void
sortsv_cmp_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)632 sortsv_cmp_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
633 {
634 sortsv_flags_impl(base, nmemb, S_cmp_desc, flags);
635 }
636
637 #ifdef USE_LOCALE_COLLATE
638
639 static void
sortsv_amagic_cmp_locale(pTHX_ gptr * base,size_t nmemb,U32 flags)640 sortsv_amagic_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
641 {
642 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale, flags);
643 }
644
645 static void
sortsv_amagic_cmp_locale_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)646 sortsv_amagic_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
647 {
648 sortsv_flags_impl(base, nmemb, S_amagic_cmp_locale_desc, flags);
649 }
650
651 static void
sortsv_cmp_locale(pTHX_ gptr * base,size_t nmemb,U32 flags)652 sortsv_cmp_locale(pTHX_ gptr *base, size_t nmemb, U32 flags)
653 {
654 sortsv_flags_impl(base, nmemb, Perl_sv_cmp_locale, flags);
655 }
656
657 static void
sortsv_cmp_locale_desc(pTHX_ gptr * base,size_t nmemb,U32 flags)658 sortsv_cmp_locale_desc(pTHX_ gptr *base, size_t nmemb, U32 flags)
659 {
660 sortsv_flags_impl(base, nmemb, S_cmp_locale_desc, flags);
661 }
662
663 #endif
664
665 /*
666
667 =for apidoc sortsv
668
669 In-place sort an array of SV pointers with the given comparison routine.
670
671 Currently this always uses mergesort. See C<L</sortsv_flags>> for a more
672 flexible routine.
673
674 =cut
675 */
676
677 void
Perl_sortsv(pTHX_ SV ** array,size_t nmemb,SVCOMPARE_t cmp)678 Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
679 {
680 PERL_ARGS_ASSERT_SORTSV;
681
682 sortsv_flags(array, nmemb, cmp, 0);
683 }
684
685 #define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
686 #define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
687 #define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
688
PP(pp_sort)689 PP(pp_sort)
690 {
691 dMARK; dORIGMARK;
692 SV **p1 = ORIGMARK+1, **p2;
693 SSize_t max, i;
694 AV* av = NULL;
695 GV *gv;
696 CV *cv = NULL;
697 U8 gimme = GIMME_V;
698 OP* const nextop = PL_op->op_next;
699 I32 overloading = 0;
700 bool hasargs = FALSE; /* the sort sub has proto($$)? */
701 bool copytmps;
702 I32 is_xsub = 0;
703 const U8 priv = PL_op->op_private;
704 const U8 flags = PL_op->op_flags;
705 U32 sort_flags = 0;
706 I32 all_SIVs = 1, descending = 0;
707
708 if ((priv & OPpSORT_DESCEND) != 0)
709 descending = 1;
710
711 if (gimme != G_LIST) {
712 rpp_popfree_to_NN(mark);
713 rpp_xpush_IMM(&PL_sv_undef);
714 return NORMAL;
715 }
716
717 ENTER;
718 SAVEVPTR(PL_sortcop);
719
720 /* Important flag meanings:
721 *
722 * OPf_STACKED sort <function_name> args
723 *
724 * (OPf_STACKED
725 * |OPf_SPECIAL) sort { <block> } args
726 *
727 * ---- standard block; e.g. sort { $a <=> $b } args
728 *
729 *
730 * OPpSORT_NUMERIC { $a <=> $b } (as opposed to $a cmp $b)
731 * OPpSORT_INTEGER ditto in scope of 'use integer'
732 * OPpSORT_DESCEND { $b <=> $a }
733 * OPpSORT_REVERSE @a= reverse sort ....;
734 * OPpSORT_INPLACE @a = sort @a;
735 */
736
737 if (flags & OPf_STACKED) {
738 if (flags & OPf_SPECIAL) {
739 OP *nullop = OpSIBLING(cLISTOP->op_first); /* pass pushmark */
740 assert(nullop->op_type == OP_NULL);
741 PL_sortcop = nullop->op_next;
742 }
743 else {
744 /* sort <function_name> list */
745 GV *autogv = NULL;
746 HV *stash;
747 SV *fn = *++MARK;
748 cv = sv_2cv(fn, &stash, &gv, GV_ADD);
749
750 /* want to remove the function name from the stack,
751 * but mustn't trigger cv being freed at the same time.
752 * Normally the name is a PV while cv is CV (duh!) but
753 * for lexical subs, fn can already be the CV (but is kept
754 * alive by a reference from the pad */
755 #ifdef PERL_RC_STACK
756 assert(fn != (SV*)cv || SvREFCNT(fn) > 1);
757 SvREFCNT_dec(fn);
758 #endif
759 *MARK = NULL;
760
761 check_cv:
762 if (cv && SvPOK(cv)) {
763 const char * const proto = SvPV_nolen_const(MUTABLE_SV(cv));
764 if (proto && strEQ(proto, "$$")) {
765 hasargs = TRUE;
766 }
767 }
768 if (cv && CvISXSUB(cv) && CvXSUB(cv)) {
769 is_xsub = 1;
770 }
771 else if (!(cv && CvROOT(cv))) {
772 if (gv) {
773 goto autoload;
774 }
775 else if (!CvANON(cv) && (gv = CvGV(cv))) {
776 if (cv != GvCV(gv)) cv = GvCV(gv);
777 autoload:
778 if (!autogv && (
779 autogv = gv_autoload_pvn(
780 GvSTASH(gv), GvNAME(gv), GvNAMELEN(gv),
781 GvNAMEUTF8(gv) ? SVf_UTF8 : 0
782 )
783 )) {
784 cv = GvCVu(autogv);
785 goto check_cv;
786 }
787 else {
788 SV *tmpstr = sv_newmortal();
789 gv_efullname3(tmpstr, gv, NULL);
790 DIE(aTHX_ "Undefined sort subroutine \"%" SVf "\" called",
791 SVfARG(tmpstr));
792 }
793 }
794 else {
795 DIE(aTHX_ "Undefined subroutine in sort");
796 }
797 }
798
799 if (is_xsub)
800 PL_sortcop = (OP*)cv;
801 else
802 PL_sortcop = CvSTART(cv);
803 }
804 }
805 else {
806 PL_sortcop = NULL;
807 }
808
809 /* optimiser converts "@a = sort @a" to "sort \@a". In this case,
810 * push (@a) onto stack, then assign result back to @a at the end of
811 * this function */
812 if (priv & OPpSORT_INPLACE) {
813 assert( MARK+1 == PL_stack_sp
814 && *PL_stack_sp
815 && SvTYPE(*PL_stack_sp) == SVt_PVAV);
816 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
817 av = MUTABLE_AV((*PL_stack_sp));
818 if (SvREADONLY(av))
819 Perl_croak_no_modify();
820 max = AvFILL(av) + 1;
821
822 I32 oldmark = MARK - PL_stack_base;
823 rpp_extend(max);
824 MARK = PL_stack_base + oldmark;
825
826 if (SvMAGICAL(av)) {
827 for (i=0; i < max; i++) {
828 SV **svp = av_fetch(av, i, FALSE);
829 SV *sv;
830 if (svp) {
831 sv = *svp;
832 #ifdef PERL_RC_STACK
833 SvREFCNT_inc_simple_void_NN(sv);
834 #endif
835 }
836 else
837 sv = NULL;
838 *++PL_stack_sp = sv;
839 }
840 }
841 else {
842 SV **svp = AvARRAY(av);
843 assert(svp || max == 0);
844 for (i = 0; i < max; i++) {
845 SV *sv = *svp++;
846 #ifdef PERL_RC_STACK
847 SvREFCNT_inc_simple_void(sv);
848 #endif
849 *++PL_stack_sp = sv;
850 }
851 }
852 p1 = p2 = PL_stack_sp - (max-1);
853 /* we've kept av on the stacck (just below the pushed contents) so
854 * that a reference-counted stack keeps a reference to it for now
855 */
856 assert((SV*)av == p1[-1]);
857 }
858 else {
859 p2 = MARK+1;
860 max = PL_stack_sp - MARK;
861 }
862
863 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
864 * any nulls; also stringify or converting to integer or number as
865 * required any args */
866
867 /* no ref-counted SVs at base to be overwritten */
868 assert(p1 == p2 || (p1+1 == p2 && !*p1));
869
870 copytmps = cBOOL(PL_sortcop);
871 for (i=max; i > 0 ; i--) {
872 SV *sv = *p2++;
873 if (sv) { /* Weed out nulls. */
874 if (copytmps && SvPADTMP(sv)) {
875 SV *nsv = sv_mortalcopy(sv);
876 #ifdef PERL_RC_STACK
877 SvREFCNT_dec_NN(sv);
878 SvREFCNT_inc_simple_void_NN(nsv);
879 #endif
880 sv = nsv;
881 }
882 SvTEMP_off(sv);
883 if (!PL_sortcop) {
884 if (priv & OPpSORT_NUMERIC) {
885 if (priv & OPpSORT_INTEGER) {
886 if (!SvIOK(sv))
887 (void)sv_2iv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
888 }
889 else {
890 if (!SvNSIOK(sv))
891 (void)sv_2nv_flags(sv, SV_GMAGIC|SV_SKIP_OVERLOAD);
892 if (all_SIVs && !SvSIOK(sv))
893 all_SIVs = 0;
894 }
895 }
896 else {
897 if (!SvPOK(sv))
898 (void)sv_2pv_flags(sv, 0,
899 SV_GMAGIC|SV_CONST_RETURN|SV_SKIP_OVERLOAD);
900 }
901 if (SvAMAGIC(sv))
902 overloading = 1;
903 }
904 *p1++ = sv;
905 }
906 else
907 max--;
908 }
909
910 if (max > 1) {
911 SV **start;
912 if (PL_sortcop) {
913 PERL_CONTEXT *cx;
914 const bool oldcatch = CATCH_GET;
915 I32 old_savestack_ix = PL_savestack_ix;
916
917 SAVEOP();
918
919 CATCH_SET(TRUE);
920 push_stackinfo(PERLSI_SORT, 1);
921
922 if (!hasargs && !is_xsub) {
923 /* standard perl sub with values passed as $a and $b */
924 SAVEGENERICSV(PL_firstgv);
925 SAVEGENERICSV(PL_secondgv);
926 PL_firstgv = MUTABLE_GV(SvREFCNT_inc(
927 gv_fetchpvs("a", GV_ADD|GV_NOTQUAL, SVt_PV)
928 ));
929 PL_secondgv = MUTABLE_GV(SvREFCNT_inc(
930 gv_fetchpvs("b", GV_ADD|GV_NOTQUAL, SVt_PV)
931 ));
932 /* make sure the GP isn't removed out from under us for
933 * the SAVESPTR() */
934 save_gp(PL_firstgv, 0);
935 save_gp(PL_secondgv, 0);
936 /* we don't want modifications localized */
937 GvINTRO_off(PL_firstgv);
938 GvINTRO_off(PL_secondgv);
939 SAVEGENERICSV(GvSV(PL_firstgv));
940 SvREFCNT_inc(GvSV(PL_firstgv));
941 SAVEGENERICSV(GvSV(PL_secondgv));
942 SvREFCNT_inc(GvSV(PL_secondgv));
943 }
944
945 gimme = G_SCALAR;
946 cx = cx_pushblock(CXt_NULL, gimme, PL_stack_base, old_savestack_ix);
947 if (!(flags & OPf_SPECIAL)) {
948 cx->cx_type = CXt_SUB|CXp_MULTICALL;
949 cx_pushsub(cx, cv, NULL, hasargs);
950 if (!is_xsub) {
951 PADLIST * const padlist = CvPADLIST(cv);
952
953 if (++CvDEPTH(cv) >= 2)
954 pad_push(padlist, CvDEPTH(cv));
955 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
956
957 if (hasargs) {
958 /* This is mostly copied from pp_entersub */
959 AV * const av0 = MUTABLE_AV(PAD_SVl(0));
960
961 cx->blk_sub.savearray = GvAV(PL_defgv);
962 GvAV(PL_defgv) = MUTABLE_AV(SvREFCNT_inc_simple(av0));
963 }
964
965 }
966 }
967
968 start = p1 - max;
969 Perl_sortsv_flags(aTHX_ start, max,
970 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
971 sort_flags);
972
973 /* Reset cx, in case the context stack has been reallocated. */
974 cx = CX_CUR();
975
976 /* the code used to think this could be > 0 */
977 assert(cx->blk_oldsp == 0);
978
979 rpp_popfree_to_NN(PL_stack_base);
980
981 CX_LEAVE_SCOPE(cx);
982 if (!(flags & OPf_SPECIAL)) {
983 assert(CxTYPE(cx) == CXt_SUB);
984 cx_popsub(cx);
985 }
986 else
987 assert(CxTYPE(cx) == CXt_NULL);
988 /* there isn't a POPNULL ! */
989
990 cx_popblock(cx);
991 CX_POP(cx);
992 pop_stackinfo();
993 CATCH_SET(oldcatch);
994 }
995 else {
996 /* call one of the built-in sort functions */
997
998 /* XXX this extend has been here since perl5.000. With safe
999 * signals, I don't think it's needed any more - DAPM.
1000 MEXTEND(SP, 20); Can't afford stack realloc on signal.
1001 */
1002 start = p1 - max;
1003 if (priv & OPpSORT_NUMERIC) {
1004 if ((priv & OPpSORT_INTEGER) || all_SIVs) {
1005 if (overloading)
1006 if (descending)
1007 sortsv_amagic_i_ncmp_desc(aTHX_ start, max, sort_flags);
1008 else
1009 sortsv_amagic_i_ncmp(aTHX_ start, max, sort_flags);
1010 else
1011 if (descending)
1012 sortsv_i_ncmp_desc(aTHX_ start, max, sort_flags);
1013 else
1014 sortsv_i_ncmp(aTHX_ start, max, sort_flags);
1015 }
1016 else {
1017 if (overloading)
1018 if (descending)
1019 sortsv_amagic_ncmp_desc(aTHX_ start, max, sort_flags);
1020 else
1021 sortsv_amagic_ncmp(aTHX_ start, max, sort_flags);
1022 else
1023 if (descending)
1024 sortsv_ncmp_desc(aTHX_ start, max, sort_flags);
1025 else
1026 sortsv_ncmp(aTHX_ start, max, sort_flags);
1027 }
1028 }
1029 #ifdef USE_LOCALE_COLLATE
1030 else if(IN_LC_RUNTIME(LC_COLLATE)) {
1031 if (overloading)
1032 if (descending)
1033 sortsv_amagic_cmp_locale_desc(aTHX_ start, max, sort_flags);
1034 else
1035 sortsv_amagic_cmp_locale(aTHX_ start, max, sort_flags);
1036 else
1037 if (descending)
1038 sortsv_cmp_locale_desc(aTHX_ start, max, sort_flags);
1039 else
1040 sortsv_cmp_locale(aTHX_ start, max, sort_flags);
1041 }
1042 #endif
1043 else {
1044 if (overloading)
1045 if (descending)
1046 sortsv_amagic_cmp_desc(aTHX_ start, max, sort_flags);
1047 else
1048 sortsv_amagic_cmp(aTHX_ start, max, sort_flags);
1049 else
1050 if (descending)
1051 sortsv_cmp_desc(aTHX_ start, max, sort_flags);
1052 else
1053 sortsv_cmp(aTHX_ start, max, sort_flags);
1054 }
1055 }
1056 if ((priv & OPpSORT_REVERSE) != 0) {
1057 SV **q = start+max-1;
1058 while (start < q) {
1059 SV * const tmp = *start;
1060 *start++ = *q;
1061 *q-- = tmp;
1062 }
1063 }
1064 }
1065
1066 if (!av) {
1067 LEAVE;
1068 PL_stack_sp = ORIGMARK + max;
1069 return nextop;
1070 }
1071
1072 /* OPpSORT_INPLACE: copy back result to the array */
1073 {
1074 SV** const base = MARK+2;
1075 SSize_t max_minus_one = max - 1; /* attempt to work around mingw bug */
1076
1077 /* we left the AV there so on a refcounted stack it wouldn't be
1078 * prematurely freed */
1079 assert(base[-1] == (SV*)av);
1080
1081 if (SvMAGICAL(av)) {
1082 for (i = 0; i <= max_minus_one; i++) {
1083 SV *sv = base[i];
1084 base[i] = newSVsv(sv);
1085 #ifdef PERL_RC_STACK
1086 SvREFCNT_dec_NN(sv);
1087 #endif
1088 }
1089 av_clear(av);
1090 if (max_minus_one >= 0)
1091 av_extend(av, max_minus_one);
1092 for (i=0; i <= max_minus_one; i++) {
1093 SV * const sv = base[i];
1094 SV ** const didstore = av_store(av, i, sv);
1095 if (SvSMAGICAL(sv))
1096 mg_set(sv);
1097 #ifdef PERL_RC_STACK
1098 if (didstore)
1099 SvREFCNT_inc_simple_void_NN(sv);
1100 #else
1101 if (!didstore)
1102 sv_2mortal(sv);
1103 #endif
1104 }
1105 }
1106 else {
1107 /* the elements of av are likely to be the same as the
1108 * (non-refcounted) elements on the stack, just in a different
1109 * order. However, its possible that someone's messed with av
1110 * in the meantime.
1111 * So to avoid freeing most/all the stack elements when
1112 * doing av_clear(), first bump the count on each element.
1113 * In addition, normally a *copy* of each sv should be
1114 * assigned to each array element; but if the only reference
1115 * to that sv was from the array, then we can skip the copy.
1116 *
1117 * For a refcounted stack, it's not necessary to bump the
1118 * refcounts initially, as the stack itself keeps the
1119 * elements alive during av_clear().
1120 *
1121 */
1122 for (i = 0; i <= max_minus_one; i++) {
1123 SV *sv = base[i];
1124 assert(sv);
1125 #ifdef PERL_RC_STACK
1126 if (SvREFCNT(sv) > 2) {
1127 base[i] = newSVsv(sv);
1128 SvREFCNT_dec_NN(sv);
1129 }
1130 #else
1131 if (SvREFCNT(sv) > 1)
1132 base[i] = newSVsv(sv);
1133 else
1134 SvREFCNT_inc_simple_void_NN(sv);
1135 #endif
1136 }
1137 av_clear(av);
1138 if (max_minus_one >= 0) {
1139 av_extend(av, max_minus_one);
1140 Copy(base, AvARRAY(av), max, SV*);
1141 }
1142 AvFILLp(av) = max_minus_one;
1143 AvREIFY_off(av);
1144 AvREAL_on(av);
1145 }
1146 /* sort is only ever optimised with OPpSORT_INPLACE when the
1147 * (@a = sort @a) is in void context. (As an aside: the context
1148 * flag aught to be copied to the sort op: then we could assert
1149 * here that it's void).
1150 * Thus we can simply discard the stack elements now: their
1151 * reference counts have already claimed by av - hence not using
1152 * rpp_popfree_to() here.
1153 */
1154 PL_stack_sp = ORIGMARK;
1155 #ifdef PERL_RC_STACK
1156 SvREFCNT_dec_NN(av);
1157 #endif
1158 LEAVE;
1159 return nextop;
1160 }
1161 }
1162
1163
1164 /* call a traditional perl compare function, setting $a and $b */
1165
1166 static I32
S_sortcv(pTHX_ SV * const a,SV * const b)1167 S_sortcv(pTHX_ SV *const a, SV *const b)
1168 {
1169 const I32 oldsaveix = PL_savestack_ix;
1170 I32 result;
1171 PMOP * const pm = PL_curpm;
1172 COP * const cop = PL_curcop;
1173 SV *olda, *oldb;
1174
1175 PERL_ARGS_ASSERT_SORTCV;
1176
1177 #ifdef PERL_RC_STACK
1178 assert(rpp_stack_is_rc());
1179 #endif
1180
1181 olda = GvSV(PL_firstgv);
1182 GvSV(PL_firstgv) = SvREFCNT_inc_simple_NN(a);
1183 SvREFCNT_dec(olda);
1184 oldb = GvSV(PL_secondgv);
1185 GvSV(PL_secondgv) = SvREFCNT_inc_simple_NN(b);
1186 SvREFCNT_dec(oldb);
1187 assert(PL_stack_sp == PL_stack_base);
1188 PL_op = PL_sortcop;
1189 CALLRUNOPS(aTHX);
1190 PL_curcop = cop;
1191 /* entry zero of a stack is always PL_sv_undef, which
1192 * simplifies converting a '()' return into undef in scalar context */
1193 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1194 result = SvIV(*PL_stack_sp);
1195 rpp_popfree_to_NN(PL_stack_base);
1196
1197 LEAVE_SCOPE(oldsaveix);
1198 PL_curpm = pm;
1199 return result;
1200 }
1201
1202
1203 /* call a perl compare function that has a ($$) prototype, setting @_ */
1204
1205 static I32
S_sortcv_stacked(pTHX_ SV * const a,SV * const b)1206 S_sortcv_stacked(pTHX_ SV *const a, SV *const b)
1207 {
1208 const I32 oldsaveix = PL_savestack_ix;
1209 I32 result;
1210 AV * const av = GvAV(PL_defgv);
1211 PMOP * const pm = PL_curpm;
1212 COP * const cop = PL_curcop;
1213
1214 PERL_ARGS_ASSERT_SORTCV_STACKED;
1215
1216 #ifdef PERL_RC_STACK
1217 assert(rpp_stack_is_rc());
1218 #endif
1219
1220 #ifdef PERL_RC_STACK
1221 assert(AvREAL(av));
1222 av_clear(av);
1223 #else
1224 if (AvREAL(av)) {
1225 av_clear(av);
1226 AvREAL_off(av);
1227 AvREIFY_on(av);
1228 }
1229 #endif
1230
1231 if (AvMAX(av) < 1) {
1232 SV **ary = AvALLOC(av);
1233 if (AvARRAY(av) != ary) {
1234 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1235 AvARRAY(av) = ary;
1236 }
1237 if (AvMAX(av) < 1) {
1238 Renew(ary,2,SV*);
1239 AvMAX(av) = 1;
1240 AvARRAY(av) = ary;
1241 AvALLOC(av) = ary;
1242 }
1243 }
1244 AvFILLp(av) = 1;
1245
1246 AvARRAY(av)[0] = a;
1247 AvARRAY(av)[1] = b;
1248 #ifdef PERL_RC_STACK
1249 SvREFCNT_inc_simple_void_NN(a);
1250 SvREFCNT_inc_simple_void_NN(b);
1251 #endif
1252 assert(PL_stack_sp == PL_stack_base);
1253 PL_op = PL_sortcop;
1254 CALLRUNOPS(aTHX);
1255 PL_curcop = cop;
1256 /* entry zero of a stack is always PL_sv_undef, which
1257 * simplifies converting a '()' return into undef in scalar context */
1258 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1259 result = SvIV(*PL_stack_sp);
1260 rpp_popfree_to_NN(PL_stack_base);
1261
1262 LEAVE_SCOPE(oldsaveix);
1263 PL_curpm = pm;
1264 return result;
1265 }
1266
1267
1268 /* call an XS compare function. (The two args are always passed on the
1269 * stack, regardless of whether it has a ($$) prototype or not.) */
1270
1271 static I32
S_sortcv_xsub(pTHX_ SV * const a,SV * const b)1272 S_sortcv_xsub(pTHX_ SV *const a, SV *const b)
1273 {
1274 const I32 oldsaveix = PL_savestack_ix;
1275 CV * const cv=MUTABLE_CV(PL_sortcop);
1276 I32 result;
1277 PMOP * const pm = PL_curpm;
1278
1279 PERL_ARGS_ASSERT_SORTCV_XSUB;
1280
1281 #ifdef PERL_RC_STACK
1282 assert(rpp_stack_is_rc());
1283 #endif
1284
1285 assert(PL_stack_sp == PL_stack_base);
1286 PUSHMARK(PL_stack_sp);
1287 rpp_xpush_2(a, b);
1288
1289 rpp_invoke_xs(cv);
1290
1291 /* entry zero of a stack is always PL_sv_undef, which
1292 * simplifies converting a '()' return into undef in scalar context */
1293 assert(PL_stack_sp > PL_stack_base || *PL_stack_base == &PL_sv_undef);
1294 result = SvIV(*PL_stack_sp);
1295 rpp_popfree_to_NN(PL_stack_base);
1296
1297 LEAVE_SCOPE(oldsaveix);
1298 PL_curpm = pm;
1299 return result;
1300 }
1301
1302
1303 PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp(pTHX_ SV * const a,SV * const b)1304 S_sv_ncmp(pTHX_ SV *const a, SV *const b)
1305 {
1306 I32 cmp = do_ncmp(a, b);
1307
1308 PERL_ARGS_ASSERT_SV_NCMP;
1309
1310 if (cmp == 2) {
1311 if (ckWARN(WARN_UNINITIALIZED)) report_uninit(NULL);
1312 return 0;
1313 }
1314
1315 return cmp;
1316 }
1317
1318 PERL_STATIC_FORCE_INLINE I32
S_sv_ncmp_desc(pTHX_ SV * const a,SV * const b)1319 S_sv_ncmp_desc(pTHX_ SV *const a, SV *const b)
1320 {
1321 PERL_ARGS_ASSERT_SV_NCMP_DESC;
1322
1323 return -S_sv_ncmp(aTHX_ a, b);
1324 }
1325
1326 PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp(pTHX_ SV * const a,SV * const b)1327 S_sv_i_ncmp(pTHX_ SV *const a, SV *const b)
1328 {
1329 const IV iv1 = SvIV(a);
1330 const IV iv2 = SvIV(b);
1331
1332 PERL_ARGS_ASSERT_SV_I_NCMP;
1333
1334 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1335 }
1336
1337 PERL_STATIC_FORCE_INLINE I32
S_sv_i_ncmp_desc(pTHX_ SV * const a,SV * const b)1338 S_sv_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1339 {
1340 PERL_ARGS_ASSERT_SV_I_NCMP_DESC;
1341
1342 return -S_sv_i_ncmp(aTHX_ a, b);
1343 }
1344
1345 #define tryCALL_AMAGICbin(left,right,meth) \
1346 (SvAMAGIC(left)||SvAMAGIC(right)) \
1347 ? amagic_call(left, right, meth, 0) \
1348 : NULL;
1349
1350 #define SORT_NORMAL_RETURN_VALUE(val) (((val) > 0) ? 1 : ((val) ? -1 : 0))
1351
1352 PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp(pTHX_ SV * const a,SV * const b)1353 S_amagic_ncmp(pTHX_ SV *const a, SV *const b)
1354 {
1355 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1356
1357 PERL_ARGS_ASSERT_AMAGIC_NCMP;
1358
1359 if (tmpsv) {
1360 if (SvIOK(tmpsv)) {
1361 const I32 i = SvIVX(tmpsv);
1362 return SORT_NORMAL_RETURN_VALUE(i);
1363 }
1364 else {
1365 const NV d = SvNV(tmpsv);
1366 return SORT_NORMAL_RETURN_VALUE(d);
1367 }
1368 }
1369 return S_sv_ncmp(aTHX_ a, b);
1370 }
1371
1372 PERL_STATIC_FORCE_INLINE I32
S_amagic_ncmp_desc(pTHX_ SV * const a,SV * const b)1373 S_amagic_ncmp_desc(pTHX_ SV *const a, SV *const b)
1374 {
1375 PERL_ARGS_ASSERT_AMAGIC_NCMP_DESC;
1376
1377 return -S_amagic_ncmp(aTHX_ a, b);
1378 }
1379
1380 PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp(pTHX_ SV * const a,SV * const b)1381 S_amagic_i_ncmp(pTHX_ SV *const a, SV *const b)
1382 {
1383 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp_amg);
1384
1385 PERL_ARGS_ASSERT_AMAGIC_I_NCMP;
1386
1387 if (tmpsv) {
1388 if (SvIOK(tmpsv)) {
1389 const I32 i = SvIVX(tmpsv);
1390 return SORT_NORMAL_RETURN_VALUE(i);
1391 }
1392 else {
1393 const NV d = SvNV(tmpsv);
1394 return SORT_NORMAL_RETURN_VALUE(d);
1395 }
1396 }
1397 return S_sv_i_ncmp(aTHX_ a, b);
1398 }
1399
1400 PERL_STATIC_FORCE_INLINE I32
S_amagic_i_ncmp_desc(pTHX_ SV * const a,SV * const b)1401 S_amagic_i_ncmp_desc(pTHX_ SV *const a, SV *const b)
1402 {
1403 PERL_ARGS_ASSERT_AMAGIC_I_NCMP_DESC;
1404
1405 return -S_amagic_i_ncmp(aTHX_ a, b);
1406 }
1407
1408 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp(pTHX_ SV * const str1,SV * const str2)1409 S_amagic_cmp(pTHX_ SV *const str1, SV *const str2)
1410 {
1411 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1412
1413 PERL_ARGS_ASSERT_AMAGIC_CMP;
1414
1415 if (tmpsv) {
1416 if (SvIOK(tmpsv)) {
1417 const I32 i = SvIVX(tmpsv);
1418 return SORT_NORMAL_RETURN_VALUE(i);
1419 }
1420 else {
1421 const NV d = SvNV(tmpsv);
1422 return SORT_NORMAL_RETURN_VALUE(d);
1423 }
1424 }
1425 return sv_cmp(str1, str2);
1426 }
1427
1428 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_desc(pTHX_ SV * const str1,SV * const str2)1429 S_amagic_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1430 {
1431 PERL_ARGS_ASSERT_AMAGIC_CMP_DESC;
1432
1433 return -S_amagic_cmp(aTHX_ str1, str2);
1434 }
1435
1436 PERL_STATIC_FORCE_INLINE I32
S_cmp_desc(pTHX_ SV * const str1,SV * const str2)1437 S_cmp_desc(pTHX_ SV *const str1, SV *const str2)
1438 {
1439 PERL_ARGS_ASSERT_CMP_DESC;
1440
1441 return -sv_cmp(str1, str2);
1442 }
1443
1444 #ifdef USE_LOCALE_COLLATE
1445
1446 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale(pTHX_ SV * const str1,SV * const str2)1447 S_amagic_cmp_locale(pTHX_ SV *const str1, SV *const str2)
1448 {
1449 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp_amg);
1450
1451 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE;
1452
1453 if (tmpsv) {
1454 if (SvIOK(tmpsv)) {
1455 const I32 i = SvIVX(tmpsv);
1456 return SORT_NORMAL_RETURN_VALUE(i);
1457 }
1458 else {
1459 const NV d = SvNV(tmpsv);
1460 return SORT_NORMAL_RETURN_VALUE(d);
1461 }
1462 }
1463 return sv_cmp_locale(str1, str2);
1464 }
1465
1466 PERL_STATIC_FORCE_INLINE I32
S_amagic_cmp_locale_desc(pTHX_ SV * const str1,SV * const str2)1467 S_amagic_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1468 {
1469 PERL_ARGS_ASSERT_AMAGIC_CMP_LOCALE_DESC;
1470
1471 return -S_amagic_cmp_locale(aTHX_ str1, str2);
1472 }
1473
1474 PERL_STATIC_FORCE_INLINE I32
S_cmp_locale_desc(pTHX_ SV * const str1,SV * const str2)1475 S_cmp_locale_desc(pTHX_ SV *const str1, SV *const str2)
1476 {
1477 PERL_ARGS_ASSERT_CMP_LOCALE_DESC;
1478
1479 return -sv_cmp_locale(str1, str2);
1480 }
1481
1482 #endif
1483
1484 /*
1485 * ex: set ts=8 sts=4 sw=4 et:
1486 */
1487