xref: /openbsd/gnu/gcc/gcc/config/i386/i386.h (revision 404b540a)
1 /* Definitions of target machine for GCC for IA-32.
2    Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 /* The purpose of this file is to define the characteristics of the i386,
23    independent of assembler syntax or operating system.
24 
25    Three other files build on this one to describe a specific assembler syntax:
26    bsd386.h, att386.h, and sun386.h.
27 
28    The actual tm.h file for a particular system should include
29    this file, and then the file for the appropriate assembler syntax.
30 
31    Many macros that specify assembler syntax are omitted entirely from
32    this file because they really belong in the files for particular
33    assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34    ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35    that start with ASM_ or end in ASM_OP.  */
36 
37 /* Define the specific costs for a given cpu */
38 
39 struct processor_costs {
40   const int add;		/* cost of an add instruction */
41   const int lea;		/* cost of a lea instruction */
42   const int shift_var;		/* variable shift costs */
43   const int shift_const;	/* constant shift costs */
44   const int mult_init[5];	/* cost of starting a multiply
45 				   in QImode, HImode, SImode, DImode, TImode*/
46   const int mult_bit;		/* cost of multiply per each bit set */
47   const int divide[5];		/* cost of a divide/mod
48 				   in QImode, HImode, SImode, DImode, TImode*/
49   int movsx;			/* The cost of movsx operation.  */
50   int movzx;			/* The cost of movzx operation.  */
51   const int large_insn;		/* insns larger than this cost more */
52   const int move_ratio;		/* The threshold of number of scalar
53 				   memory-to-memory move insns.  */
54   const int movzbl_load;	/* cost of loading using movzbl */
55   const int int_load[3];	/* cost of loading integer registers
56 				   in QImode, HImode and SImode relative
57 				   to reg-reg move (2).  */
58   const int int_store[3];	/* cost of storing integer register
59 				   in QImode, HImode and SImode */
60   const int fp_move;		/* cost of reg,reg fld/fst */
61   const int fp_load[3];		/* cost of loading FP register
62 				   in SFmode, DFmode and XFmode */
63   const int fp_store[3];	/* cost of storing FP register
64 				   in SFmode, DFmode and XFmode */
65   const int mmx_move;		/* cost of moving MMX register.  */
66   const int mmx_load[2];	/* cost of loading MMX register
67 				   in SImode and DImode */
68   const int mmx_store[2];	/* cost of storing MMX register
69 				   in SImode and DImode */
70   const int sse_move;		/* cost of moving SSE register.  */
71   const int sse_load[3];	/* cost of loading SSE register
72 				   in SImode, DImode and TImode*/
73   const int sse_store[3];	/* cost of storing SSE register
74 				   in SImode, DImode and TImode*/
75   const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76 				   integer and vice versa.  */
77   const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78   const int simultaneous_prefetches; /* number of parallel prefetch
79 				   operations.  */
80   const int branch_cost;	/* Default value for BRANCH_COST.  */
81   const int fadd;		/* cost of FADD and FSUB instructions.  */
82   const int fmul;		/* cost of FMUL instruction.  */
83   const int fdiv;		/* cost of FDIV instruction.  */
84   const int fabs;		/* cost of FABS instruction.  */
85   const int fchs;		/* cost of FCHS instruction.  */
86   const int fsqrt;		/* cost of FSQRT instruction.  */
87 };
88 
89 extern const struct processor_costs *ix86_cost;
90 
91 /* Macros used in the machine description to test the flags.  */
92 
93 /* configure can arrange to make this 2, to force a 486.  */
94 
95 #ifndef TARGET_CPU_DEFAULT
96 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97 #endif
98 
99 #ifndef TARGET_FPMATH_DEFAULT
100 #define TARGET_FPMATH_DEFAULT \
101   (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102 #endif
103 
104 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105 
106 /* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107    compile-time constant.  */
108 #ifdef IN_LIBGCC2
109 #undef TARGET_64BIT
110 #ifdef __x86_64__
111 #define TARGET_64BIT 1
112 #else
113 #define TARGET_64BIT 0
114 #endif
115 #else
116 #ifndef TARGET_BI_ARCH
117 #undef TARGET_64BIT
118 #if TARGET_64BIT_DEFAULT
119 #define TARGET_64BIT 1
120 #else
121 #define TARGET_64BIT 0
122 #endif
123 #endif
124 #endif
125 
126 #define HAS_LONG_COND_BRANCH 1
127 #define HAS_LONG_UNCOND_BRANCH 1
128 
129 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
130 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
131 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
134 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
135 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
136 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
137 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
138 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
139 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
140 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
141 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
142 
143 #define TUNEMASK (1 << ix86_tune)
144 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
145 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
146 extern const int x86_branch_hints, x86_unroll_strlen;
147 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
148 extern const int x86_use_himode_fiop, x86_use_simode_fiop;
149 extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
150 extern const int x86_read_modify, x86_split_long_moves;
151 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
152 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
153 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
154 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
155 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
156 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
157 extern const int x86_epilogue_using_move, x86_decompose_lea;
158 extern const int x86_arch_always_fancy_math_387, x86_shift1;
159 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
160 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
161 extern const int x86_use_ffreep;
162 extern const int x86_inter_unit_moves, x86_schedule;
163 extern const int x86_use_bt;
164 extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
165 extern const int x86_use_incdec;
166 extern const int x86_pad_returns;
167 extern const int x86_partial_flag_reg_stall;
168 extern int x86_prefetch_sse;
169 
170 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
171 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
172 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
173 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
174 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
175 /* For sane SSE instruction set generation we need fcomi instruction.  It is
176    safe to enable all CMOVE instructions.  */
177 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
178 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
179 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
180 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
181 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
182 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
183 #define TARGET_MOVX (x86_movx & TUNEMASK)
184 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
185 #define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
186 #define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
187 #define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
188 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
189 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
190 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
191 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
192 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
193 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
194 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
195 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
196 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
197 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
198 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
199 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
200 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
201 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
202 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
203 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
204 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
205 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
206 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
207 				      (x86_sse_partial_reg_dependency & TUNEMASK)
208 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
209 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
210 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
211 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
212 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
213 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
214 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
215 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
216 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
217 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
218 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
219 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
220 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
221 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
222 #define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
223 #define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
224 
225 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
226 
227 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
228 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
229 			     && (ix86_fpmath & FPMATH_387))
230 
231 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
232 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
233 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
234 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
235 
236 #define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
237 #define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
238 #define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
239 #define TARGET_XADD (x86_xadd & (1 << ix86_arch))
240 
241 #ifndef TARGET_64BIT_DEFAULT
242 #define TARGET_64BIT_DEFAULT 0
243 #endif
244 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
245 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
246 #endif
247 
248 /* Once GDB has been enhanced to deal with functions without frame
249    pointers, we can change this to allow for elimination of
250    the frame pointer in leaf functions.  */
251 #define TARGET_DEFAULT 0
252 
253 /* This is not really a target flag, but is done this way so that
254    it's analogous to similar code for Mach-O on PowerPC.  darwin.h
255    redefines this to 1.  */
256 #define TARGET_MACHO 0
257 
258 /* Subtargets may reset this to 1 in order to enable 96-bit long double
259    with the rounding mode forced to 53 bits.  */
260 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
261 
262 /* Sometimes certain combinations of command options do not make
263    sense on a particular target machine.  You can define a macro
264    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
265    defined, is executed once just after all the command options have
266    been parsed.
267 
268    Don't use this macro to turn on various extra optimizations for
269    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
270 
271 #define OVERRIDE_OPTIONS override_options ()
272 
273 /* Define this to change the optimizations performed by default.  */
274 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
275   optimization_options ((LEVEL), (SIZE))
276 
277 /* -march=native handling only makes sense with compiler running on
278    an x86 or x86_64 chip.  If changing this condition, also change
279    the condition in driver-i386.c.  */
280 #if defined(__i386__) || defined(__x86_64__)
281 /* In driver-i386.c.  */
282 extern const char *host_detect_local_cpu (int argc, const char **argv);
283 #define EXTRA_SPEC_FUNCTIONS \
284   { "local_cpu_detect", host_detect_local_cpu },
285 #define HAVE_LOCAL_CPU_DETECT
286 #endif
287 
288 /* Support for configure-time defaults of some command line options.
289    The order here is important so that -march doesn't squash the
290    tune or cpu values.  */
291 #define OPTION_DEFAULT_SPECS \
292   {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
293   {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
294   {"arch", "%{!march=*:-march=%(VALUE)}"}
295 
296 /* Specs for the compiler proper */
297 
298 #ifndef CC1_CPU_SPEC
299 #define CC1_CPU_SPEC_1 "\
300 %{!mtune*: \
301 %{m386:mtune=i386 \
302 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
303 %{m486:-mtune=i486 \
304 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
305 %{mpentium:-mtune=pentium \
306 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
307 %{mpentiumpro:-mtune=pentiumpro \
308 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
309 %{mcpu=*:-mtune=%* \
310 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
311 %<mcpu=* \
312 %{mintel-syntax:-masm=intel \
313 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
314 %{mno-intel-syntax:-masm=att \
315 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
316 
317 #ifndef HAVE_LOCAL_CPU_DETECT
318 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
319 #else
320 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
321 "%{march=native:%<march=native %:local_cpu_detect(arch) \
322   %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
323 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
324 #endif
325 #endif
326 
327 /* Target CPU builtins.  */
328 #define TARGET_CPU_CPP_BUILTINS()				\
329   do								\
330     {								\
331       size_t arch_len = strlen (ix86_arch_string);		\
332       size_t tune_len = strlen (ix86_tune_string);		\
333       int last_arch_char = ix86_arch_string[arch_len - 1];	\
334       int last_tune_char = ix86_tune_string[tune_len - 1];		\
335 								\
336       if (TARGET_64BIT)						\
337 	{							\
338 	  builtin_assert ("cpu=x86_64");			\
339 	  builtin_assert ("machine=x86_64");			\
340 	  builtin_define ("__amd64");				\
341 	  builtin_define ("__amd64__");				\
342 	  builtin_define ("__x86_64");				\
343 	  builtin_define ("__x86_64__");			\
344 	}							\
345       else							\
346 	{							\
347 	  builtin_assert ("cpu=i386");				\
348 	  builtin_assert ("machine=i386");			\
349 	  builtin_define_std ("i386");				\
350 	}							\
351 								\
352       /* Built-ins based on -mtune= (or -march= if no		\
353 	 -mtune= given).  */					\
354       if (TARGET_386)						\
355 	builtin_define ("__tune_i386__");			\
356       else if (TARGET_486)					\
357 	builtin_define ("__tune_i486__");			\
358       else if (TARGET_PENTIUM)					\
359 	{							\
360 	  builtin_define ("__tune_i586__");			\
361 	  builtin_define ("__tune_pentium__");			\
362 	  if (last_tune_char == 'x')				\
363 	    builtin_define ("__tune_pentium_mmx__");		\
364 	}							\
365       else if (TARGET_PENTIUMPRO)				\
366 	{							\
367 	  builtin_define ("__tune_i686__");			\
368 	  builtin_define ("__tune_pentiumpro__");		\
369 	  switch (last_tune_char)				\
370 	    {							\
371 	    case '3':						\
372 	      builtin_define ("__tune_pentium3__");		\
373 	      /* FALLTHRU */					\
374 	    case '2':						\
375 	      builtin_define ("__tune_pentium2__");		\
376 	      break;						\
377 	    }							\
378 	}							\
379       else if (TARGET_K6)					\
380 	{							\
381 	  builtin_define ("__tune_k6__");			\
382 	  if (last_tune_char == '2')				\
383 	    builtin_define ("__tune_k6_2__");			\
384 	  else if (last_tune_char == '3')			\
385 	    builtin_define ("__tune_k6_3__");			\
386 	}							\
387       else if (TARGET_ATHLON)					\
388 	{							\
389 	  builtin_define ("__tune_athlon__");			\
390 	  /* Only plain "athlon" lacks SSE.  */			\
391 	  if (last_tune_char != 'n')				\
392 	    builtin_define ("__tune_athlon_sse__");		\
393 	}							\
394       else if (TARGET_K8)					\
395 	builtin_define ("__tune_k8__");				\
396       else if (TARGET_PENTIUM4)					\
397 	builtin_define ("__tune_pentium4__");			\
398       else if (TARGET_NOCONA)					\
399 	builtin_define ("__tune_nocona__");			\
400 								\
401       if (TARGET_MMX)						\
402 	builtin_define ("__MMX__");				\
403       if (TARGET_3DNOW)						\
404 	builtin_define ("__3dNOW__");				\
405       if (TARGET_3DNOW_A)					\
406 	builtin_define ("__3dNOW_A__");				\
407       if (TARGET_SSE)						\
408 	builtin_define ("__SSE__");				\
409       if (TARGET_SSE2)						\
410 	builtin_define ("__SSE2__");				\
411       if (TARGET_SSE3)						\
412 	builtin_define ("__SSE3__");				\
413       if (TARGET_SSE_MATH && TARGET_SSE)			\
414 	builtin_define ("__SSE_MATH__");			\
415       if (TARGET_SSE_MATH && TARGET_SSE2)			\
416 	builtin_define ("__SSE2_MATH__");			\
417 								\
418       /* Built-ins based on -march=.  */			\
419       if (ix86_arch == PROCESSOR_I486)				\
420 	{							\
421 	  builtin_define ("__i486");				\
422 	  builtin_define ("__i486__");				\
423 	}							\
424       else if (ix86_arch == PROCESSOR_PENTIUM)			\
425 	{							\
426 	  builtin_define ("__i586");				\
427 	  builtin_define ("__i586__");				\
428 	  builtin_define ("__pentium");				\
429 	  builtin_define ("__pentium__");			\
430 	  if (last_arch_char == 'x')				\
431 	    builtin_define ("__pentium_mmx__");			\
432 	}							\
433       else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
434 	{							\
435 	  builtin_define ("__i686");				\
436 	  builtin_define ("__i686__");				\
437 	  builtin_define ("__pentiumpro");			\
438 	  builtin_define ("__pentiumpro__");			\
439 	}							\
440       else if (ix86_arch == PROCESSOR_K6)			\
441 	{							\
442 								\
443 	  builtin_define ("__k6");				\
444 	  builtin_define ("__k6__");				\
445 	  if (last_arch_char == '2')				\
446 	    builtin_define ("__k6_2__");			\
447 	  else if (last_arch_char == '3')			\
448 	    builtin_define ("__k6_3__");			\
449 	}							\
450       else if (ix86_arch == PROCESSOR_ATHLON)			\
451 	{							\
452 	  builtin_define ("__athlon");				\
453 	  builtin_define ("__athlon__");			\
454 	  /* Only plain "athlon" lacks SSE.  */			\
455 	  if (last_arch_char != 'n')				\
456 	    builtin_define ("__athlon_sse__");			\
457 	}							\
458       else if (ix86_arch == PROCESSOR_K8)			\
459 	{							\
460 	  builtin_define ("__k8");				\
461 	  builtin_define ("__k8__");				\
462 	}							\
463       else if (ix86_arch == PROCESSOR_PENTIUM4)			\
464 	{							\
465 	  builtin_define ("__pentium4");			\
466 	  builtin_define ("__pentium4__");			\
467 	}							\
468       else if (ix86_arch == PROCESSOR_NOCONA)			\
469 	{							\
470 	  builtin_define ("__nocona");				\
471 	  builtin_define ("__nocona__");			\
472 	}							\
473     }								\
474   while (0)
475 
476 #define TARGET_CPU_DEFAULT_i386 0
477 #define TARGET_CPU_DEFAULT_i486 1
478 #define TARGET_CPU_DEFAULT_pentium 2
479 #define TARGET_CPU_DEFAULT_pentium_mmx 3
480 #define TARGET_CPU_DEFAULT_pentiumpro 4
481 #define TARGET_CPU_DEFAULT_pentium2 5
482 #define TARGET_CPU_DEFAULT_pentium3 6
483 #define TARGET_CPU_DEFAULT_pentium4 7
484 #define TARGET_CPU_DEFAULT_k6 8
485 #define TARGET_CPU_DEFAULT_k6_2 9
486 #define TARGET_CPU_DEFAULT_k6_3 10
487 #define TARGET_CPU_DEFAULT_athlon 11
488 #define TARGET_CPU_DEFAULT_athlon_sse 12
489 #define TARGET_CPU_DEFAULT_k8 13
490 #define TARGET_CPU_DEFAULT_pentium_m 14
491 #define TARGET_CPU_DEFAULT_prescott 15
492 #define TARGET_CPU_DEFAULT_nocona 16
493 #define TARGET_CPU_DEFAULT_generic 17
494 
495 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
496 				  "pentiumpro", "pentium2", "pentium3", \
497 				  "pentium4", "k6", "k6-2", "k6-3",\
498 				  "athlon", "athlon-4", "k8", \
499 				  "pentium-m", "prescott", "nocona", \
500 				  "generic"}
501 
502 #ifndef CC1_SPEC
503 #define CC1_SPEC "%(cc1_cpu) "
504 #endif
505 
506 /* This macro defines names of additional specifications to put in the
507    specs that can be used in various specifications like CC1_SPEC.  Its
508    definition is an initializer with a subgrouping for each command option.
509 
510    Each subgrouping contains a string constant, that defines the
511    specification name, and a string constant that used by the GCC driver
512    program.
513 
514    Do not define this macro if it does not need to do anything.  */
515 
516 #ifndef SUBTARGET_EXTRA_SPECS
517 #define SUBTARGET_EXTRA_SPECS
518 #endif
519 
520 #define EXTRA_SPECS							\
521   { "cc1_cpu",  CC1_CPU_SPEC },						\
522   SUBTARGET_EXTRA_SPECS
523 
524 /* target machine storage layout */
525 
526 #define LONG_DOUBLE_TYPE_SIZE 80
527 
528 /* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
529    FPU, assume that the fpcw is set to extended precision; when using
530    only SSE, rounding is correct; when using both SSE and the FPU,
531    the rounding precision is indeterminate, since either may be chosen
532    apparently at random.  */
533 #define TARGET_FLT_EVAL_METHOD \
534   (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
535 
536 #define SHORT_TYPE_SIZE 16
537 #define INT_TYPE_SIZE 32
538 #define FLOAT_TYPE_SIZE 32
539 #define LONG_TYPE_SIZE BITS_PER_WORD
540 #define DOUBLE_TYPE_SIZE 64
541 #define LONG_LONG_TYPE_SIZE 64
542 
543 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
544 #define MAX_BITS_PER_WORD 64
545 #else
546 #define MAX_BITS_PER_WORD 32
547 #endif
548 
549 /* Define this if most significant byte of a word is the lowest numbered.  */
550 /* That is true on the 80386.  */
551 
552 #define BITS_BIG_ENDIAN 0
553 
554 /* Define this if most significant byte of a word is the lowest numbered.  */
555 /* That is not true on the 80386.  */
556 #define BYTES_BIG_ENDIAN 0
557 
558 /* Define this if most significant word of a multiword number is the lowest
559    numbered.  */
560 /* Not true for 80386 */
561 #define WORDS_BIG_ENDIAN 0
562 
563 /* Width of a word, in units (bytes).  */
564 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
565 #ifdef IN_LIBGCC2
566 #define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
567 #else
568 #define MIN_UNITS_PER_WORD	4
569 #endif
570 
571 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
572 #define PARM_BOUNDARY BITS_PER_WORD
573 
574 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
575 #define STACK_BOUNDARY BITS_PER_WORD
576 
577 /* Boundary (in *bits*) on which the stack pointer prefers to be
578    aligned; the compiler cannot rely on having this alignment.  */
579 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
580 
581 /* As of July 2001, many runtimes do not align the stack properly when
582    entering main.  This causes expand_main_function to forcibly align
583    the stack, which results in aligned frames for functions called from
584    main, though it does nothing for the alignment of main itself.  */
585 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
586   (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
587 
588 /* Minimum allocation boundary for the code of a function.  */
589 #define FUNCTION_BOUNDARY 8
590 
591 /* C++ stores the virtual bit in the lowest bit of function pointers.  */
592 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
593 
594 /* Alignment of field after `int : 0' in a structure.  */
595 
596 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
597 
598 /* Minimum size in bits of the largest boundary to which any
599    and all fundamental data types supported by the hardware
600    might need to be aligned. No data type wants to be aligned
601    rounder than this.
602 
603    Pentium+ prefers DFmode values to be aligned to 64 bit boundary
604    and Pentium Pro XFmode values at 128 bit boundaries.  */
605 
606 #define BIGGEST_ALIGNMENT 128
607 
608 /* Decide whether a variable of mode MODE should be 128 bit aligned.  */
609 #define ALIGN_MODE_128(MODE) \
610  ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
611 
612 /* The published ABIs say that doubles should be aligned on word
613    boundaries, so lower the alignment for structure fields unless
614    -malign-double is set.  */
615 
616 /* ??? Blah -- this macro is used directly by libobjc.  Since it
617    supports no vector modes, cut out the complexity and fall back
618    on BIGGEST_FIELD_ALIGNMENT.  */
619 #ifdef IN_TARGET_LIBS
620 #ifdef __x86_64__
621 #define BIGGEST_FIELD_ALIGNMENT 128
622 #else
623 #define BIGGEST_FIELD_ALIGNMENT 32
624 #endif
625 #else
626 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
627    x86_field_alignment (FIELD, COMPUTED)
628 #endif
629 
630 /* If defined, a C expression to compute the alignment given to a
631    constant that is being placed in memory.  EXP is the constant
632    and ALIGN is the alignment that the object would ordinarily have.
633    The value of this macro is used instead of that alignment to align
634    the object.
635 
636    If this macro is not defined, then ALIGN is used.
637 
638    The typical use of this macro is to increase alignment for string
639    constants to be word aligned so that `strcpy' calls that copy
640    constants can be done inline.  */
641 
642 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
643 
644 /* If defined, a C expression to compute the alignment for a static
645    variable.  TYPE is the data type, and ALIGN is the alignment that
646    the object would ordinarily have.  The value of this macro is used
647    instead of that alignment to align the object.
648 
649    If this macro is not defined, then ALIGN is used.
650 
651    One use of this macro is to increase alignment of medium-size
652    data to make it all fit in fewer cache lines.  Another is to
653    cause character arrays to be word-aligned so that `strcpy' calls
654    that copy constants to character arrays can be done inline.  */
655 
656 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
657 
658 /* If defined, a C expression to compute the alignment for a local
659    variable.  TYPE is the data type, and ALIGN is the alignment that
660    the object would ordinarily have.  The value of this macro is used
661    instead of that alignment to align the object.
662 
663    If this macro is not defined, then ALIGN is used.
664 
665    One use of this macro is to increase alignment of medium-size
666    data to make it all fit in fewer cache lines.  */
667 
668 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
669 
670 /* If defined, a C expression that gives the alignment boundary, in
671    bits, of an argument with the specified mode and type.  If it is
672    not defined, `PARM_BOUNDARY' is used for all arguments.  */
673 
674 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
675   ix86_function_arg_boundary ((MODE), (TYPE))
676 
677 /* Set this nonzero if move instructions will actually fail to work
678    when given unaligned data.  */
679 #define STRICT_ALIGNMENT 0
680 
681 /* If bit field type is int, don't let it cross an int,
682    and give entire struct the alignment of an int.  */
683 /* Required on the 386 since it doesn't have bit-field insns.  */
684 #define PCC_BITFIELD_TYPE_MATTERS 1
685 
686 /* Standard register usage.  */
687 
688 /* This processor has special stack-like registers.  See reg-stack.c
689    for details.  */
690 
691 #define STACK_REGS
692 #define IS_STACK_MODE(MODE)					\
693   (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
694    || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
695    || (MODE) == XFmode)
696 
697 /* Number of actual hardware registers.
698    The hardware registers are assigned numbers for the compiler
699    from 0 to just below FIRST_PSEUDO_REGISTER.
700    All registers that the compiler knows about must be given numbers,
701    even those that are not normally considered general registers.
702 
703    In the 80386 we give the 8 general purpose registers the numbers 0-7.
704    We number the floating point registers 8-15.
705    Note that registers 0-7 can be accessed as a  short or int,
706    while only 0-3 may be used with byte `mov' instructions.
707 
708    Reg 16 does not correspond to any hardware register, but instead
709    appears in the RTL as an argument pointer prior to reload, and is
710    eliminated during reloading in favor of either the stack or frame
711    pointer.  */
712 
713 #define FIRST_PSEUDO_REGISTER 53
714 
715 /* Number of hardware registers that go into the DWARF-2 unwind info.
716    If not defined, equals FIRST_PSEUDO_REGISTER.  */
717 
718 #define DWARF_FRAME_REGISTERS 17
719 
720 /* 1 for registers that have pervasive standard uses
721    and are not available for the register allocator.
722    On the 80386, the stack pointer is such, as is the arg pointer.
723 
724    The value is zero if the register is not fixed on either 32 or
725    64 bit targets, one if the register if fixed on both 32 and 64
726    bit targets, two if it is only fixed on 32bit targets and three
727    if its only fixed on 64bit targets.
728    Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
729  */
730 #define FIXED_REGISTERS						\
731 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
732 {  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
733 /*arg,flags,fpsr,dir,frame*/					\
734     1,    1,   1,  1,    1,					\
735 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
736      0,   0,   0,   0,   0,   0,   0,   0,			\
737 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
738      0,   0,   0,   0,   0,   0,   0,   0,			\
739 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
740      2,   2,   2,   2,   2,   2,   2,   2,			\
741 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
742      2,   2,    2,    2,    2,    2,    2,    2}
743 
744 
745 /* 1 for registers not available across function calls.
746    These must include the FIXED_REGISTERS and also any
747    registers that can be used without being saved.
748    The latter must include the registers where values are returned
749    and the register where structure-value addresses are passed.
750    Aside from that, you can include as many other registers as you like.
751 
752    The value is zero if the register is not call used on either 32 or
753    64 bit targets, one if the register if call used on both 32 and 64
754    bit targets, two if it is only call used on 32bit targets and three
755    if its only call used on 64bit targets.
756    Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
757 */
758 #define CALL_USED_REGISTERS					\
759 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
760 {  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
761 /*arg,flags,fpsr,dir,frame*/					\
762      1,   1,   1,  1,    1,					\
763 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
764      1,   1,   1,   1,   1,  1,    1,   1,			\
765 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
766      1,   1,   1,   1,   1,   1,   1,   1,			\
767 /*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
768      1,   1,   1,   1,   2,   2,   2,   2,			\
769 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
770      1,   1,    1,    1,    1,    1,    1,    1}		\
771 
772 /* Order in which to allocate registers.  Each register must be
773    listed once, even those in FIXED_REGISTERS.  List frame pointer
774    late and fixed registers last.  Note that, in general, we prefer
775    registers listed in CALL_USED_REGISTERS, keeping the others
776    available for storage of persistent values.
777 
778    The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
779    so this is just empty initializer for array.  */
780 
781 #define REG_ALLOC_ORDER 					\
782 {  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
783    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
784    33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
785    48, 49, 50, 51, 52 }
786 
787 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
788    to be rearranged based on a particular function.  When using sse math,
789    we want to allocate SSE before x87 registers and vice vera.  */
790 
791 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
792 
793 
794 /* Macro to conditionally modify fixed_regs/call_used_regs.  */
795 #define CONDITIONAL_REGISTER_USAGE					\
796 do {									\
797     int i;								\
798     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
799       {									\
800 	if (fixed_regs[i] > 1)						\
801 	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
802 	if (call_used_regs[i] > 1)					\
803 	  call_used_regs[i] = (call_used_regs[i]			\
804 			       == (TARGET_64BIT ? 3 : 2));		\
805       }									\
806     if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
807       {									\
808 	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
809 	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
810       }									\
811     if (! TARGET_MMX)							\
812       {									\
813 	int i;								\
814         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
815           if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
816 	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
817       }									\
818     if (! TARGET_SSE)							\
819       {									\
820 	int i;								\
821         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
822           if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
823 	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
824       }									\
825     if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
826       {									\
827 	int i;								\
828 	HARD_REG_SET x;							\
829         COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
830         for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
831           if (TEST_HARD_REG_BIT (x, i)) 				\
832 	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
833       }									\
834     if (! TARGET_64BIT)							\
835       {									\
836 	int i;								\
837 	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
838 	  reg_names[i] = "";						\
839 	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
840 	  reg_names[i] = "";						\
841       }									\
842   } while (0)
843 
844 /* Return number of consecutive hard regs needed starting at reg REGNO
845    to hold something of mode MODE.
846    This is ordinarily the length in words of a value of mode MODE
847    but can be less for certain modes in special long registers.
848 
849    Actually there are no two word move instructions for consecutive
850    registers.  And only registers 0-3 may have mov byte instructions
851    applied to them.
852    */
853 
854 #define HARD_REGNO_NREGS(REGNO, MODE)   \
855   (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
856    ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
857    : ((MODE) == XFmode							\
858       ? (TARGET_64BIT ? 2 : 3)						\
859       : (MODE) == XCmode						\
860       ? (TARGET_64BIT ? 4 : 6)						\
861       : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
862 
863 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
864   ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
865    ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
866       ? 0								\
867       : ((MODE) == XFmode || (MODE) == XCmode))				\
868    : 0)
869 
870 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
871 
872 #define VALID_SSE2_REG_MODE(MODE) \
873     ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
874      || (MODE) == V2DImode || (MODE) == DFmode)
875 
876 #define VALID_SSE_REG_MODE(MODE)					\
877     ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
878      || (MODE) == SFmode || (MODE) == TFmode)
879 
880 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
881     ((MODE) == V2SFmode || (MODE) == SFmode)
882 
883 #define VALID_MMX_REG_MODE(MODE)					\
884     ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
885      || (MODE) == V2SImode || (MODE) == SImode)
886 
887 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
888    place emms and femms instructions.  */
889 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
890 
891 #define VALID_FP_MODE_P(MODE)						\
892     ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
893      || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
894 
895 #define VALID_INT_MODE_P(MODE)						\
896     ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
897      || (MODE) == DImode						\
898      || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
899      || (MODE) == CDImode						\
900      || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
901          || (MODE) == TFmode || (MODE) == TCmode)))
902 
903 /* Return true for modes passed in SSE registers.  */
904 #define SSE_REG_MODE_P(MODE) \
905  ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
906    || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
907    || (MODE) == V4SFmode || (MODE) == V4SImode)
908 
909 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
910 
911 #define HARD_REGNO_MODE_OK(REGNO, MODE)	\
912    ix86_hard_regno_mode_ok ((REGNO), (MODE))
913 
914 /* Value is 1 if it is a good idea to tie two pseudo registers
915    when one has mode MODE1 and one has mode MODE2.
916    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
917    for any hard reg, then this must be 0 for correct output.  */
918 
919 #define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
920 
921 /* It is possible to write patterns to move flags; but until someone
922    does it,  */
923 #define AVOID_CCMODE_COPIES
924 
925 /* Specify the modes required to caller save a given hard regno.
926    We do this on i386 to prevent flags from being saved at all.
927 
928    Kill any attempts to combine saving of modes.  */
929 
930 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
931   (CC_REGNO_P (REGNO) ? VOIDmode					\
932    : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
933    : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
934    : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
935    : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
936    : (MODE))
937 /* Specify the registers used for certain standard purposes.
938    The values of these macros are register numbers.  */
939 
940 /* on the 386 the pc register is %eip, and is not usable as a general
941    register.  The ordinary mov instructions won't work */
942 /* #define PC_REGNUM  */
943 
944 /* Register to use for pushing function arguments.  */
945 #define STACK_POINTER_REGNUM 7
946 
947 /* Base register for access to local variables of the function.  */
948 #define HARD_FRAME_POINTER_REGNUM 6
949 
950 /* Base register for access to local variables of the function.  */
951 #define FRAME_POINTER_REGNUM 20
952 
953 /* First floating point reg */
954 #define FIRST_FLOAT_REG 8
955 
956 /* First & last stack-like regs */
957 #define FIRST_STACK_REG FIRST_FLOAT_REG
958 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
959 
960 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
961 #define LAST_SSE_REG  (FIRST_SSE_REG + 7)
962 
963 #define FIRST_MMX_REG  (LAST_SSE_REG + 1)
964 #define LAST_MMX_REG   (FIRST_MMX_REG + 7)
965 
966 #define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
967 #define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
968 
969 #define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
970 #define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
971 
972 /* Value should be nonzero if functions must have frame pointers.
973    Zero means the frame pointer need not be set up (and parms
974    may be accessed via the stack pointer) in functions that seem suitable.
975    This is computed in `reload', in reload1.c.  */
976 #define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
977 
978 /* Override this in other tm.h files to cope with various OS lossage
979    requiring a frame pointer.  */
980 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
981 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
982 #endif
983 
984 /* Make sure we can access arbitrary call frames.  */
985 #define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
986 
987 /* Base register for access to arguments of the function.  */
988 #define ARG_POINTER_REGNUM 16
989 
990 /* Register in which static-chain is passed to a function.
991    We do use ECX as static chain register for 32 bit ABI.  On the
992    64bit ABI, ECX is an argument register, so we use R10 instead.  */
993 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
994 
995 /* Register to hold the addressing base for position independent
996    code access to data items.  We don't use PIC pointer for 64bit
997    mode.  Define the regnum to dummy value to prevent gcc from
998    pessimizing code dealing with EBX.
999 
1000    To avoid clobbering a call-saved register unnecessarily, we renumber
1001    the pic register when possible.  The change is visible after the
1002    prologue has been emitted.  */
1003 
1004 #define REAL_PIC_OFFSET_TABLE_REGNUM  3
1005 
1006 #define PIC_OFFSET_TABLE_REGNUM				\
1007   ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1008    || !flag_pic ? INVALID_REGNUM			\
1009    : reload_completed ? REGNO (pic_offset_table_rtx)	\
1010    : REAL_PIC_OFFSET_TABLE_REGNUM)
1011 
1012 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1013 
1014 /* A C expression which can inhibit the returning of certain function
1015    values in registers, based on the type of value.  A nonzero value
1016    says to return the function value in memory, just as large
1017    structures are always returned.  Here TYPE will be a C expression
1018    of type `tree', representing the data type of the value.
1019 
1020    Note that values of mode `BLKmode' must be explicitly handled by
1021    this macro.  Also, the option `-fpcc-struct-return' takes effect
1022    regardless of this macro.  On most systems, it is possible to
1023    leave the macro undefined; this causes a default definition to be
1024    used, whose value is the constant 1 for `BLKmode' values, and 0
1025    otherwise.
1026 
1027    Do not use this macro to indicate that structures and unions
1028    should always be returned in memory.  You should instead use
1029    `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1030 
1031 #define RETURN_IN_MEMORY(TYPE) \
1032   ix86_return_in_memory (TYPE)
1033 
1034 /* This is overridden by <cygwin.h>.  */
1035 #define MS_AGGREGATE_RETURN 0
1036 
1037 /* This is overridden by <netware.h>.  */
1038 #define KEEP_AGGREGATE_RETURN_POINTER 0
1039 
1040 /* Define the classes of registers for register constraints in the
1041    machine description.  Also define ranges of constants.
1042 
1043    One of the classes must always be named ALL_REGS and include all hard regs.
1044    If there is more than one class, another class must be named NO_REGS
1045    and contain no registers.
1046 
1047    The name GENERAL_REGS must be the name of a class (or an alias for
1048    another name such as ALL_REGS).  This is the class of registers
1049    that is allowed by "g" or "r" in a register constraint.
1050    Also, registers outside this class are allocated only when
1051    instructions express preferences for them.
1052 
1053    The classes must be numbered in nondecreasing order; that is,
1054    a larger-numbered class must never be contained completely
1055    in a smaller-numbered class.
1056 
1057    For any two classes, it is very desirable that there be another
1058    class that represents their union.
1059 
1060    It might seem that class BREG is unnecessary, since no useful 386
1061    opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1062    and the "b" register constraint is useful in asms for syscalls.
1063 
1064    The flags and fpsr registers are in no class.  */
1065 
1066 enum reg_class
1067 {
1068   NO_REGS,
1069   AREG, DREG, CREG, BREG, SIREG, DIREG,
1070   AD_REGS,			/* %eax/%edx for DImode */
1071   Q_REGS,			/* %eax %ebx %ecx %edx */
1072   NON_Q_REGS,			/* %esi %edi %ebp %esp */
1073   INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1074   LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1075   GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1076   FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1077   FLOAT_REGS,
1078   SSE_REGS,
1079   MMX_REGS,
1080   FP_TOP_SSE_REGS,
1081   FP_SECOND_SSE_REGS,
1082   FLOAT_SSE_REGS,
1083   FLOAT_INT_REGS,
1084   INT_SSE_REGS,
1085   FLOAT_INT_SSE_REGS,
1086   ALL_REGS, LIM_REG_CLASSES
1087 };
1088 
1089 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1090 
1091 #define INTEGER_CLASS_P(CLASS) \
1092   reg_class_subset_p ((CLASS), GENERAL_REGS)
1093 #define FLOAT_CLASS_P(CLASS) \
1094   reg_class_subset_p ((CLASS), FLOAT_REGS)
1095 #define SSE_CLASS_P(CLASS) \
1096   ((CLASS) == SSE_REGS)
1097 #define MMX_CLASS_P(CLASS) \
1098   ((CLASS) == MMX_REGS)
1099 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1100   reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1101 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1102   reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1103 #define MAYBE_SSE_CLASS_P(CLASS) \
1104   reg_classes_intersect_p (SSE_REGS, (CLASS))
1105 #define MAYBE_MMX_CLASS_P(CLASS) \
1106   reg_classes_intersect_p (MMX_REGS, (CLASS))
1107 
1108 #define Q_CLASS_P(CLASS) \
1109   reg_class_subset_p ((CLASS), Q_REGS)
1110 
1111 /* Give names of register classes as strings for dump file.  */
1112 
1113 #define REG_CLASS_NAMES \
1114 {  "NO_REGS",				\
1115    "AREG", "DREG", "CREG", "BREG",	\
1116    "SIREG", "DIREG",			\
1117    "AD_REGS",				\
1118    "Q_REGS", "NON_Q_REGS",		\
1119    "INDEX_REGS",			\
1120    "LEGACY_REGS",			\
1121    "GENERAL_REGS",			\
1122    "FP_TOP_REG", "FP_SECOND_REG",	\
1123    "FLOAT_REGS",			\
1124    "SSE_REGS",				\
1125    "MMX_REGS",				\
1126    "FP_TOP_SSE_REGS",			\
1127    "FP_SECOND_SSE_REGS",		\
1128    "FLOAT_SSE_REGS",			\
1129    "FLOAT_INT_REGS",			\
1130    "INT_SSE_REGS",			\
1131    "FLOAT_INT_SSE_REGS",		\
1132    "ALL_REGS" }
1133 
1134 /* Define which registers fit in which classes.
1135    This is an initializer for a vector of HARD_REG_SET
1136    of length N_REG_CLASSES.  */
1137 
1138 #define REG_CLASS_CONTENTS						\
1139 {     { 0x00,     0x0 },						\
1140       { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1141       { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1142       { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1143       { 0x03,     0x0 },		/* AD_REGS */			\
1144       { 0x0f,     0x0 },		/* Q_REGS */			\
1145   { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1146       { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1147   { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1148   { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1149      { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1150     { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1151 { 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1152 { 0xe0000000,    0x1f },		/* MMX_REGS */			\
1153 { 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1154 { 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1155 { 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1156    { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1157 { 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1158 { 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1159 { 0xffffffff,0x1fffff }							\
1160 }
1161 
1162 /* The same information, inverted:
1163    Return the class number of the smallest class containing
1164    reg number REGNO.  This could be a conditional expression
1165    or could index an array.  */
1166 
1167 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1168 
1169 /* When defined, the compiler allows registers explicitly used in the
1170    rtl to be used as spill registers but prevents the compiler from
1171    extending the lifetime of these registers.  */
1172 
1173 #define SMALL_REGISTER_CLASSES 1
1174 
1175 #define QI_REG_P(X) \
1176   (REG_P (X) && REGNO (X) < 4)
1177 
1178 #define GENERAL_REGNO_P(N) \
1179   ((N) < 8 || REX_INT_REGNO_P (N))
1180 
1181 #define GENERAL_REG_P(X) \
1182   (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1183 
1184 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1185 
1186 #define NON_QI_REG_P(X) \
1187   (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1188 
1189 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1190 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1191 
1192 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1193 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1194 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1195 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1196 
1197 #define SSE_REGNO_P(N) \
1198   (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1199    || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1200 
1201 #define REX_SSE_REGNO_P(N) \
1202    ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1203 
1204 #define SSE_REGNO(N) \
1205   ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1206 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1207 
1208 #define SSE_FLOAT_MODE_P(MODE) \
1209   ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1210 
1211 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1212 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1213 
1214 #define STACK_REG_P(XOP)		\
1215   (REG_P (XOP) &&		       	\
1216    REGNO (XOP) >= FIRST_STACK_REG &&	\
1217    REGNO (XOP) <= LAST_STACK_REG)
1218 
1219 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1220 
1221 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1222 
1223 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1224 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1225 
1226 /* The class value for index registers, and the one for base regs.  */
1227 
1228 #define INDEX_REG_CLASS INDEX_REGS
1229 #define BASE_REG_CLASS GENERAL_REGS
1230 
1231 /* Place additional restrictions on the register class to use when it
1232    is necessary to be able to hold a value of mode MODE in a reload
1233    register for which class CLASS would ordinarily be used.  */
1234 
1235 #define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1236   ((MODE) == QImode && !TARGET_64BIT				\
1237    && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1238        || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1239    ? Q_REGS : (CLASS))
1240 
1241 /* Given an rtx X being reloaded into a reg required to be
1242    in class CLASS, return the class of reg to actually use.
1243    In general this is just CLASS; but on some machines
1244    in some cases it is preferable to use a more restrictive class.
1245    On the 80386 series, we prevent floating constants from being
1246    reloaded into floating registers (since no move-insn can do that)
1247    and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1248 
1249 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1250    QImode must go into class Q_REGS.
1251    Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1252    movdf to do mem-to-mem moves through integer regs.  */
1253 
1254 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1255    ix86_preferred_reload_class ((X), (CLASS))
1256 
1257 /* Discourage putting floating-point values in SSE registers unless
1258    SSE math is being used, and likewise for the 387 registers.  */
1259 
1260 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1261    ix86_preferred_output_reload_class ((X), (CLASS))
1262 
1263 /* If we are copying between general and FP registers, we need a memory
1264    location. The same is true for SSE and MMX registers.  */
1265 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1266   ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1267 
1268 /* QImode spills from non-QI registers need a scratch.  This does not
1269    happen often -- the only example so far requires an uninitialized
1270    pseudo.  */
1271 
1272 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1273   (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1274     || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1275    ? Q_REGS : NO_REGS)
1276 
1277 /* Return the maximum number of consecutive registers
1278    needed to represent mode MODE in a register of class CLASS.  */
1279 /* On the 80386, this is the size of MODE in words,
1280    except in the FP regs, where a single reg is always enough.  */
1281 #define CLASS_MAX_NREGS(CLASS, MODE)					\
1282  (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1283   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1284   : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1285       + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1286 
1287 /* A C expression whose value is nonzero if pseudos that have been
1288    assigned to registers of class CLASS would likely be spilled
1289    because registers of CLASS are needed for spill registers.
1290 
1291    The default value of this macro returns 1 if CLASS has exactly one
1292    register and zero otherwise.  On most machines, this default
1293    should be used.  Only define this macro to some other expression
1294    if pseudo allocated by `local-alloc.c' end up in memory because
1295    their hard registers were needed for spill registers.  If this
1296    macro returns nonzero for those classes, those pseudos will only
1297    be allocated by `global.c', which knows how to reallocate the
1298    pseudo to another register.  If there would not be another
1299    register available for reallocation, you should not change the
1300    definition of this macro since the only effect of such a
1301    definition would be to slow down register allocation.  */
1302 
1303 #define CLASS_LIKELY_SPILLED_P(CLASS)					\
1304   (((CLASS) == AREG)							\
1305    || ((CLASS) == DREG)							\
1306    || ((CLASS) == CREG)							\
1307    || ((CLASS) == BREG)							\
1308    || ((CLASS) == AD_REGS)						\
1309    || ((CLASS) == SIREG)						\
1310    || ((CLASS) == DIREG)						\
1311    || ((CLASS) == FP_TOP_REG)						\
1312    || ((CLASS) == FP_SECOND_REG))
1313 
1314 /* Return a class of registers that cannot change FROM mode to TO mode.  */
1315 
1316 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1317   ix86_cannot_change_mode_class (FROM, TO, CLASS)
1318 
1319 /* Stack layout; function entry, exit and calling.  */
1320 
1321 /* Define this if pushing a word on the stack
1322    makes the stack pointer a smaller address.  */
1323 #define STACK_GROWS_DOWNWARD
1324 
1325 /* Define this to nonzero if the nominal address of the stack frame
1326    is at the high-address end of the local variables;
1327    that is, each additional local variable allocated
1328    goes at a more negative offset in the frame.  */
1329 #define FRAME_GROWS_DOWNWARD 1
1330 
1331 /* Offset within stack frame to start allocating local variables at.
1332    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1333    first local allocated.  Otherwise, it is the offset to the BEGINNING
1334    of the first local allocated.  */
1335 #define STARTING_FRAME_OFFSET 0
1336 
1337 /* If we generate an insn to push BYTES bytes,
1338    this says how many the stack pointer really advances by.
1339    On 386, we have pushw instruction that decrements by exactly 2 no
1340    matter what the position was, there is no pushb.
1341    But as CIE data alignment factor on this arch is -4, we need to make
1342    sure all stack pointer adjustments are in multiple of 4.
1343 
1344    For 64bit ABI we round up to 8 bytes.
1345  */
1346 
1347 #define PUSH_ROUNDING(BYTES) \
1348   (TARGET_64BIT		     \
1349    ? (((BYTES) + 7) & (-8))  \
1350    : (((BYTES) + 3) & (-4)))
1351 
1352 /* If defined, the maximum amount of space required for outgoing arguments will
1353    be computed and placed into the variable
1354    `current_function_outgoing_args_size'.  No space will be pushed onto the
1355    stack for each call; instead, the function prologue should increase the stack
1356    frame size by this amount.  */
1357 
1358 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1359 
1360 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1361    instructions to pass outgoing arguments.  */
1362 
1363 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1364 
1365 /* We want the stack and args grow in opposite directions, even if
1366    PUSH_ARGS is 0.  */
1367 #define PUSH_ARGS_REVERSED 1
1368 
1369 /* Offset of first parameter from the argument pointer register value.  */
1370 #define FIRST_PARM_OFFSET(FNDECL) 0
1371 
1372 /* Define this macro if functions should assume that stack space has been
1373    allocated for arguments even when their values are passed in registers.
1374 
1375    The value of this macro is the size, in bytes, of the area reserved for
1376    arguments passed in registers for the function represented by FNDECL.
1377 
1378    This space can be allocated by the caller, or be a part of the
1379    machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1380    which.  */
1381 #define REG_PARM_STACK_SPACE(FNDECL) 0
1382 
1383 /* Value is the number of bytes of arguments automatically
1384    popped when returning from a subroutine call.
1385    FUNDECL is the declaration node of the function (as a tree),
1386    FUNTYPE is the data type of the function (as a tree),
1387    or for a library call it is an identifier node for the subroutine name.
1388    SIZE is the number of bytes of arguments passed on the stack.
1389 
1390    On the 80386, the RTD insn may be used to pop them if the number
1391      of args is fixed, but if the number is variable then the caller
1392      must pop them all.  RTD can't be used for library calls now
1393      because the library is compiled with the Unix compiler.
1394    Use of RTD is a selectable option, since it is incompatible with
1395    standard Unix calling sequences.  If the option is not selected,
1396    the caller must always pop the args.
1397 
1398    The attribute stdcall is equivalent to RTD on a per module basis.  */
1399 
1400 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1401   ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1402 
1403 #define FUNCTION_VALUE_REGNO_P(N) \
1404   ix86_function_value_regno_p (N)
1405 
1406 /* Define how to find the value returned by a library function
1407    assuming the value has mode MODE.  */
1408 
1409 #define LIBCALL_VALUE(MODE) \
1410   ix86_libcall_value (MODE)
1411 
1412 /* Define the size of the result block used for communication between
1413    untyped_call and untyped_return.  The block contains a DImode value
1414    followed by the block used by fnsave and frstor.  */
1415 
1416 #define APPLY_RESULT_SIZE (8+108)
1417 
1418 /* 1 if N is a possible register number for function argument passing.  */
1419 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1420 
1421 /* Define a data type for recording info about an argument list
1422    during the scan of that argument list.  This data type should
1423    hold all necessary information about the function itself
1424    and about the args processed so far, enough to enable macros
1425    such as FUNCTION_ARG to determine where the next arg should go.  */
1426 
1427 typedef struct ix86_args {
1428   int words;			/* # words passed so far */
1429   int nregs;			/* # registers available for passing */
1430   int regno;			/* next available register number */
1431   int fastcall;			/* fastcall calling convention is used */
1432   int sse_words;		/* # sse words passed so far */
1433   int sse_nregs;		/* # sse registers available for passing */
1434   int warn_sse;			/* True when we want to warn about SSE ABI.  */
1435   int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1436   int sse_regno;		/* next available sse register number */
1437   int mmx_words;		/* # mmx words passed so far */
1438   int mmx_nregs;		/* # mmx registers available for passing */
1439   int mmx_regno;		/* next available mmx register number */
1440   int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1441   int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1442 				   be passed in SSE registers.  Otherwise 0.  */
1443 } CUMULATIVE_ARGS;
1444 
1445 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1446    for a call to a function whose data type is FNTYPE.
1447    For a library call, FNTYPE is 0.  */
1448 
1449 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1450   init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1451 
1452 /* Update the data in CUM to advance over an argument
1453    of mode MODE and data type TYPE.
1454    (TYPE is null for libcalls where that information may not be available.)  */
1455 
1456 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1457   function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1458 
1459 /* Define where to put the arguments to a function.
1460    Value is zero to push the argument on the stack,
1461    or a hard register in which to store the argument.
1462 
1463    MODE is the argument's machine mode.
1464    TYPE is the data type of the argument (as a tree).
1465     This is null for libcalls where that information may
1466     not be available.
1467    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1468     the preceding args and about the function being called.
1469    NAMED is nonzero if this argument is a named parameter
1470     (otherwise it is an extra parameter matching an ellipsis).  */
1471 
1472 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1473   function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1474 
1475 /* Implement `va_start' for varargs and stdarg.  */
1476 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1477   ix86_va_start (VALIST, NEXTARG)
1478 
1479 #define TARGET_ASM_FILE_END ix86_file_end
1480 #define NEED_INDICATE_EXEC_STACK 0
1481 
1482 /* Output assembler code to FILE to increment profiler label # LABELNO
1483    for profiling a function entry.  */
1484 
1485 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1486 
1487 #define MCOUNT_NAME "_mcount"
1488 
1489 #define PROFILE_COUNT_REGISTER "edx"
1490 
1491 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1492    the stack pointer does not matter.  The value is tested only in
1493    functions that have frame pointers.
1494    No definition is equivalent to always zero.  */
1495 /* Note on the 386 it might be more efficient not to define this since
1496    we have to restore it ourselves from the frame pointer, in order to
1497    use pop */
1498 
1499 #define EXIT_IGNORE_STACK 1
1500 
1501 /* Output assembler code for a block containing the constant parts
1502    of a trampoline, leaving space for the variable parts.  */
1503 
1504 /* On the 386, the trampoline contains two instructions:
1505      mov #STATIC,ecx
1506      jmp FUNCTION
1507    The trampoline is generated entirely at runtime.  The operand of JMP
1508    is the address of FUNCTION relative to the instruction following the
1509    JMP (which is 5 bytes long).  */
1510 
1511 /* Length in units of the trampoline for entering a nested function.  */
1512 
1513 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1514 
1515 /* Emit RTL insns to initialize the variable parts of a trampoline.
1516    FNADDR is an RTX for the address of the function's pure code.
1517    CXT is an RTX for the static chain value for the function.  */
1518 
1519 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1520   x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1521 
1522 /* Definitions for register eliminations.
1523 
1524    This is an array of structures.  Each structure initializes one pair
1525    of eliminable registers.  The "from" register number is given first,
1526    followed by "to".  Eliminations of the same "from" register are listed
1527    in order of preference.
1528 
1529    There are two registers that can always be eliminated on the i386.
1530    The frame pointer and the arg pointer can be replaced by either the
1531    hard frame pointer or to the stack pointer, depending upon the
1532    circumstances.  The hard frame pointer is not used before reload and
1533    so it is not eligible for elimination.  */
1534 
1535 #define ELIMINABLE_REGS					\
1536 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1537  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1538  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1539  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1540 
1541 /* Given FROM and TO register numbers, say whether this elimination is
1542    allowed.  Frame pointer elimination is automatically handled.
1543 
1544    All other eliminations are valid.  */
1545 
1546 #define CAN_ELIMINATE(FROM, TO) \
1547   ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1548 
1549 /* Define the offset between two registers, one to be eliminated, and the other
1550    its replacement, at the start of a routine.  */
1551 
1552 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1553   ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1554 
1555 /* Addressing modes, and classification of registers for them.  */
1556 
1557 /* Macros to check register numbers against specific register classes.  */
1558 
1559 /* These assume that REGNO is a hard or pseudo reg number.
1560    They give nonzero only if REGNO is a hard reg of the suitable class
1561    or a pseudo reg currently allocated to a suitable hard reg.
1562    Since they use reg_renumber, they are safe only once reg_renumber
1563    has been allocated, which happens in local-alloc.c.  */
1564 
1565 #define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1566   ((REGNO) < STACK_POINTER_REGNUM 					\
1567    || (REGNO >= FIRST_REX_INT_REG					\
1568        && (REGNO) <= LAST_REX_INT_REG)					\
1569    || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1570        && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1571    || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1572 
1573 #define REGNO_OK_FOR_BASE_P(REGNO) 					\
1574   ((REGNO) <= STACK_POINTER_REGNUM 					\
1575    || (REGNO) == ARG_POINTER_REGNUM 					\
1576    || (REGNO) == FRAME_POINTER_REGNUM 					\
1577    || (REGNO >= FIRST_REX_INT_REG					\
1578        && (REGNO) <= LAST_REX_INT_REG)					\
1579    || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1580        && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1581    || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1582 
1583 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1584   ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1585 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1586   ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1587 
1588 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1589    and check its validity for a certain class.
1590    We have two alternate definitions for each of them.
1591    The usual definition accepts all pseudo regs; the other rejects
1592    them unless they have been allocated suitable hard regs.
1593    The symbol REG_OK_STRICT causes the latter definition to be used.
1594 
1595    Most source files want to accept pseudo regs in the hope that
1596    they will get allocated to the class that the insn wants them to be in.
1597    Source files for reload pass need to be strict.
1598    After reload, it makes no difference, since pseudo regs have
1599    been eliminated by then.  */
1600 
1601 
1602 /* Non strict versions, pseudos are ok.  */
1603 #define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1604   (REGNO (X) < STACK_POINTER_REGNUM					\
1605    || (REGNO (X) >= FIRST_REX_INT_REG					\
1606        && REGNO (X) <= LAST_REX_INT_REG)				\
1607    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1608 
1609 #define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1610   (REGNO (X) <= STACK_POINTER_REGNUM					\
1611    || REGNO (X) == ARG_POINTER_REGNUM					\
1612    || REGNO (X) == FRAME_POINTER_REGNUM 				\
1613    || (REGNO (X) >= FIRST_REX_INT_REG					\
1614        && REGNO (X) <= LAST_REX_INT_REG)				\
1615    || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1616 
1617 /* Strict versions, hard registers only */
1618 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1619 #define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1620 
1621 #ifndef REG_OK_STRICT
1622 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1623 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1624 
1625 #else
1626 #define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1627 #define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1628 #endif
1629 
1630 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1631    that is a valid memory address for an instruction.
1632    The MODE argument is the machine mode for the MEM expression
1633    that wants to use this address.
1634 
1635    The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1636    except for CONSTANT_ADDRESS_P which is usually machine-independent.
1637 
1638    See legitimize_pic_address in i386.c for details as to what
1639    constitutes a legitimate address when -fpic is used.  */
1640 
1641 #define MAX_REGS_PER_ADDRESS 2
1642 
1643 #define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1644 
1645 /* Nonzero if the constant value X is a legitimate general operand.
1646    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1647 
1648 #define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1649 
1650 #ifdef REG_OK_STRICT
1651 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1652 do {									\
1653   if (legitimate_address_p ((MODE), (X), 1))				\
1654     goto ADDR;								\
1655 } while (0)
1656 
1657 #else
1658 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1659 do {									\
1660   if (legitimate_address_p ((MODE), (X), 0))				\
1661     goto ADDR;								\
1662 } while (0)
1663 
1664 #endif
1665 
1666 /* If defined, a C expression to determine the base term of address X.
1667    This macro is used in only one place: `find_base_term' in alias.c.
1668 
1669    It is always safe for this macro to not be defined.  It exists so
1670    that alias analysis can understand machine-dependent addresses.
1671 
1672    The typical use of this macro is to handle addresses containing
1673    a label_ref or symbol_ref within an UNSPEC.  */
1674 
1675 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1676 
1677 /* Try machine-dependent ways of modifying an illegitimate address
1678    to be legitimate.  If we find one, return the new, valid address.
1679    This macro is used in only one place: `memory_address' in explow.c.
1680 
1681    OLDX is the address as it was before break_out_memory_refs was called.
1682    In some cases it is useful to look at this to decide what needs to be done.
1683 
1684    MODE and WIN are passed so that this macro can use
1685    GO_IF_LEGITIMATE_ADDRESS.
1686 
1687    It is always safe for this macro to do nothing.  It exists to recognize
1688    opportunities to optimize the output.
1689 
1690    For the 80386, we handle X+REG by loading X into a register R and
1691    using R+REG.  R will go in a general reg and indexing will be used.
1692    However, if REG is a broken-out memory address or multiplication,
1693    nothing needs to be done because REG can certainly go in a general reg.
1694 
1695    When -fpic is used, special handling is needed for symbolic references.
1696    See comments by legitimize_pic_address in i386.c for details.  */
1697 
1698 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1699 do {									\
1700   (X) = legitimize_address ((X), (OLDX), (MODE));			\
1701   if (memory_address_p ((MODE), (X)))					\
1702     goto WIN;								\
1703 } while (0)
1704 
1705 #define REWRITE_ADDRESS(X) rewrite_address (X)
1706 
1707 /* Nonzero if the constant value X is a legitimate general operand
1708    when generating PIC code.  It is given that flag_pic is on and
1709    that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1710 
1711 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1712 
1713 #define SYMBOLIC_CONST(X)	\
1714   (GET_CODE (X) == SYMBOL_REF						\
1715    || GET_CODE (X) == LABEL_REF						\
1716    || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1717 
1718 /* Go to LABEL if ADDR (a legitimate address expression)
1719    has an effect that depends on the machine mode it is used for.
1720    On the 80386, only postdecrement and postincrement address depend thus
1721    (the amount of decrement or increment being the length of the operand).  */
1722 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1723 do {							\
1724  if (GET_CODE (ADDR) == POST_INC			\
1725      || GET_CODE (ADDR) == POST_DEC)			\
1726    goto LABEL;						\
1727 } while (0)
1728 
1729 /* Max number of args passed in registers.  If this is more than 3, we will
1730    have problems with ebx (register #4), since it is a caller save register and
1731    is also used as the pic register in ELF.  So for now, don't allow more than
1732    3 registers to be passed in registers.  */
1733 
1734 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1735 
1736 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1737 
1738 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1739 
1740 
1741 /* Specify the machine mode that this machine uses
1742    for the index in the tablejump instruction.  */
1743 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1744 
1745 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1746 #define DEFAULT_SIGNED_CHAR 1
1747 
1748 /* Number of bytes moved into a data cache for a single prefetch operation.  */
1749 #define PREFETCH_BLOCK ix86_cost->prefetch_block
1750 
1751 /* Number of prefetch operations that can be done in parallel.  */
1752 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1753 
1754 /* Max number of bytes we can move from memory to memory
1755    in one reasonably fast instruction.  */
1756 #define MOVE_MAX 16
1757 
1758 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1759    move efficiently, as opposed to  MOVE_MAX which is the maximum
1760    number of bytes we can move with a single instruction.  */
1761 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1762 
1763 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1764    move-instruction pairs, we will do a movmem or libcall instead.
1765    Increasing the value will always make code faster, but eventually
1766    incurs high cost in increased code size.
1767 
1768    If you don't define this, a reasonable default is used.  */
1769 
1770 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1771 
1772 /* If a clear memory operation would take CLEAR_RATIO or more simple
1773    move-instruction sequences, we will do a clrmem or libcall instead.  */
1774 
1775 #define CLEAR_RATIO (optimize_size ? 2 \
1776 		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1777 
1778 /* Define if shifts truncate the shift count
1779    which implies one can omit a sign-extension or zero-extension
1780    of a shift count.  */
1781 /* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1782 
1783 /* #define SHIFT_COUNT_TRUNCATED */
1784 
1785 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1786    is done just by pretending it is already truncated.  */
1787 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1788 
1789 /* A macro to update M and UNSIGNEDP when an object whose type is
1790    TYPE and which has the specified mode and signedness is to be
1791    stored in a register.  This macro is only called when TYPE is a
1792    scalar type.
1793 
1794    On i386 it is sometimes useful to promote HImode and QImode
1795    quantities to SImode.  The choice depends on target type.  */
1796 
1797 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1798 do {							\
1799   if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1800       || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1801     (MODE) = SImode;					\
1802 } while (0)
1803 
1804 /* Specify the machine mode that pointers have.
1805    After generation of rtl, the compiler makes no further distinction
1806    between pointers and any other objects of this machine mode.  */
1807 #define Pmode (TARGET_64BIT ? DImode : SImode)
1808 
1809 /* A function address in a call instruction
1810    is a byte address (for indexing purposes)
1811    so give the MEM rtx a byte's mode.  */
1812 #define FUNCTION_MODE QImode
1813 
1814 /* A C expression for the cost of moving data from a register in class FROM to
1815    one in class TO.  The classes are expressed using the enumeration values
1816    such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1817    interpreted relative to that.
1818 
1819    It is not required that the cost always equal 2 when FROM is the same as TO;
1820    on some machines it is expensive to move between registers if they are not
1821    general registers.  */
1822 
1823 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1824    ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1825 
1826 /* A C expression for the cost of moving data of mode M between a
1827    register and memory.  A value of 2 is the default; this cost is
1828    relative to those in `REGISTER_MOVE_COST'.
1829 
1830    If moving between registers and memory is more expensive than
1831    between two registers, you should define this macro to express the
1832    relative cost.  */
1833 
1834 #define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1835   ix86_memory_move_cost ((MODE), (CLASS), (IN))
1836 
1837 /* A C expression for the cost of a branch instruction.  A value of 1
1838    is the default; other values are interpreted relative to that.  */
1839 
1840 #define BRANCH_COST ix86_branch_cost
1841 
1842 /* Define this macro as a C expression which is nonzero if accessing
1843    less than a word of memory (i.e. a `char' or a `short') is no
1844    faster than accessing a word of memory, i.e., if such access
1845    require more than one instruction or if there is no difference in
1846    cost between byte and (aligned) word loads.
1847 
1848    When this macro is not defined, the compiler will access a field by
1849    finding the smallest containing object; when it is defined, a
1850    fullword load will be used if alignment permits.  Unless bytes
1851    accesses are faster than word accesses, using word accesses is
1852    preferable since it may eliminate subsequent memory access if
1853    subsequent accesses occur to other fields in the same word of the
1854    structure, but to different bytes.  */
1855 
1856 #define SLOW_BYTE_ACCESS 0
1857 
1858 /* Nonzero if access to memory by shorts is slow and undesirable.  */
1859 #define SLOW_SHORT_ACCESS 0
1860 
1861 /* Define this macro to be the value 1 if unaligned accesses have a
1862    cost many times greater than aligned accesses, for example if they
1863    are emulated in a trap handler.
1864 
1865    When this macro is nonzero, the compiler will act as if
1866    `STRICT_ALIGNMENT' were nonzero when generating code for block
1867    moves.  This can cause significantly more instructions to be
1868    produced.  Therefore, do not set this macro nonzero if unaligned
1869    accesses only add a cycle or two to the time for a memory access.
1870 
1871    If the value of this macro is always zero, it need not be defined.  */
1872 
1873 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1874 
1875 /* Define this macro if it is as good or better to call a constant
1876    function address than to call an address kept in a register.
1877 
1878    Desirable on the 386 because a CALL with a constant address is
1879    faster than one with a register address.  */
1880 
1881 #define NO_FUNCTION_CSE
1882 
1883 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1884    return the mode to be used for the comparison.
1885 
1886    For floating-point equality comparisons, CCFPEQmode should be used.
1887    VOIDmode should be used in all other cases.
1888 
1889    For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1890    possible, to allow for more combinations.  */
1891 
1892 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1893 
1894 /* Return nonzero if MODE implies a floating point inequality can be
1895    reversed.  */
1896 
1897 #define REVERSIBLE_CC_MODE(MODE) 1
1898 
1899 /* A C expression whose value is reversed condition code of the CODE for
1900    comparison done in CC_MODE mode.  */
1901 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1902 
1903 
1904 /* Control the assembler format that we output, to the extent
1905    this does not vary between assemblers.  */
1906 
1907 /* How to refer to registers in assembler output.
1908    This sequence is indexed by compiler's hard-register-number (see above).  */
1909 
1910 /* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1911    For non floating point regs, the following are the HImode names.
1912 
1913    For float regs, the stack top is sometimes referred to as "%st(0)"
1914    instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1915 
1916 #define HI_REGISTER_NAMES						\
1917 {"ax","dx","cx","bx","si","di","bp","sp",				\
1918  "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1919  "argp", "flags", "fpsr", "dirflag", "frame",				\
1920  "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1921  "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1922  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1923  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1924 
1925 #define REGISTER_NAMES HI_REGISTER_NAMES
1926 
1927 /* Table of additional register names to use in user input.  */
1928 
1929 #define ADDITIONAL_REGISTER_NAMES \
1930 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1931   { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1932   { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1933   { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1934   { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1935   { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1936 
1937 /* Note we are omitting these since currently I don't know how
1938 to get gcc to use these, since they want the same but different
1939 number as al, and ax.
1940 */
1941 
1942 #define QI_REGISTER_NAMES \
1943 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1944 
1945 /* These parallel the array above, and can be used to access bits 8:15
1946    of regs 0 through 3.  */
1947 
1948 #define QI_HIGH_REGISTER_NAMES \
1949 {"ah", "dh", "ch", "bh", }
1950 
1951 /* How to renumber registers for dbx and gdb.  */
1952 
1953 #define DBX_REGISTER_NUMBER(N) \
1954   (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1955 
1956 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1957 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1958 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1959 
1960 /* Before the prologue, RA is at 0(%esp).  */
1961 #define INCOMING_RETURN_ADDR_RTX \
1962   gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1963 
1964 /* After the prologue, RA is at -4(AP) in the current frame.  */
1965 #define RETURN_ADDR_RTX(COUNT, FRAME)					   \
1966   ((COUNT) == 0								   \
1967    ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1968    : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1969 
1970 /* PC is dbx register 8; let's use that column for RA.  */
1971 #define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
1972 
1973 /* Before the prologue, the top of the frame is at 4(%esp).  */
1974 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1975 
1976 /* Describe how we implement __builtin_eh_return.  */
1977 #define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
1978 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
1979 
1980 
1981 /* Select a format to encode pointers in exception handling data.  CODE
1982    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1983    true if the symbol may be affected by dynamic relocations.
1984 
1985    ??? All x86 object file formats are capable of representing this.
1986    After all, the relocation needed is the same as for the call insn.
1987    Whether or not a particular assembler allows us to enter such, I
1988    guess we'll have to see.  */
1989 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
1990   asm_preferred_eh_data_format ((CODE), (GLOBAL))
1991 
1992 /* This is how to output an insn to push a register on the stack.
1993    It need not be very fast code.  */
1994 
1995 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
1996 do {									\
1997   if (TARGET_64BIT)							\
1998     asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
1999 		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2000   else									\
2001     asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2002 } while (0)
2003 
2004 /* This is how to output an insn to pop a register from the stack.
2005    It need not be very fast code.  */
2006 
2007 #define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2008 do {									\
2009   if (TARGET_64BIT)							\
2010     asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2011 		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2012   else									\
2013     asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2014 } while (0)
2015 
2016 /* This is how to output an element of a case-vector that is absolute.  */
2017 
2018 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2019   ix86_output_addr_vec_elt ((FILE), (VALUE))
2020 
2021 /* This is how to output an element of a case-vector that is relative.  */
2022 
2023 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2024   ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2025 
2026 /* Under some conditions we need jump tables in the text section,
2027    because the assembler cannot handle label differences between
2028    sections.  This is the case for x86_64 on Mach-O for example.  */
2029 
2030 #define JUMP_TABLES_IN_TEXT_SECTION \
2031   (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2032    || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2033 
2034 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2035    and switch back.  For x86 we do this only to save a few bytes that
2036    would otherwise be unused in the text section.  */
2037 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2038    asm (SECTION_OP "\n\t"				\
2039 	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2040 	TEXT_SECTION_ASM_OP);
2041 
2042 /* Print operand X (an rtx) in assembler syntax to file FILE.
2043    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2044    Effect of various CODE letters is described in i386.c near
2045    print_operand function.  */
2046 
2047 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2048   ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2049 
2050 #define PRINT_OPERAND(FILE, X, CODE)  \
2051   print_operand ((FILE), (X), (CODE))
2052 
2053 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2054   print_operand_address ((FILE), (ADDR))
2055 
2056 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2057 do {						\
2058   if (! output_addr_const_extra (FILE, (X)))	\
2059     goto FAIL;					\
2060 } while (0);
2061 
2062 /* a letter which is not needed by the normal asm syntax, which
2063    we can use for operand syntax in the extended asm */
2064 
2065 #define ASM_OPERAND_LETTER '#'
2066 #define RET return ""
2067 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2068 
2069 /* Which processor to schedule for. The cpu attribute defines a list that
2070    mirrors this list, so changes to i386.md must be made at the same time.  */
2071 
2072 enum processor_type
2073 {
2074   PROCESSOR_I386,			/* 80386 */
2075   PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2076   PROCESSOR_PENTIUM,
2077   PROCESSOR_PENTIUMPRO,
2078   PROCESSOR_K6,
2079   PROCESSOR_ATHLON,
2080   PROCESSOR_PENTIUM4,
2081   PROCESSOR_K8,
2082   PROCESSOR_NOCONA,
2083   PROCESSOR_GENERIC32,
2084   PROCESSOR_GENERIC64,
2085   PROCESSOR_max
2086 };
2087 
2088 extern enum processor_type ix86_tune;
2089 extern enum processor_type ix86_arch;
2090 
2091 enum fpmath_unit
2092 {
2093   FPMATH_387 = 1,
2094   FPMATH_SSE = 2
2095 };
2096 
2097 extern enum fpmath_unit ix86_fpmath;
2098 
2099 enum tls_dialect
2100 {
2101   TLS_DIALECT_GNU,
2102   TLS_DIALECT_GNU2,
2103   TLS_DIALECT_SUN
2104 };
2105 
2106 extern enum tls_dialect ix86_tls_dialect;
2107 
2108 enum cmodel {
2109   CM_32,	/* The traditional 32-bit ABI.  */
2110   CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2111   CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2112   CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2113   CM_LARGE,	/* No assumptions.  */
2114   CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2115   CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2116 };
2117 
2118 extern enum cmodel ix86_cmodel;
2119 
2120 /* Size of the RED_ZONE area.  */
2121 #define RED_ZONE_SIZE 128
2122 /* Reserved area of the red zone for temporaries.  */
2123 #define RED_ZONE_RESERVE 8
2124 
2125 enum asm_dialect {
2126   ASM_ATT,
2127   ASM_INTEL
2128 };
2129 
2130 extern enum asm_dialect ix86_asm_dialect;
2131 extern unsigned int ix86_preferred_stack_boundary;
2132 extern int ix86_branch_cost, ix86_section_threshold;
2133 
2134 /* Smallest class containing REGNO.  */
2135 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2136 
2137 extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2138 extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2139 extern rtx ix86_compare_emitted;
2140 
2141 /* To properly truncate FP values into integers, we need to set i387 control
2142    word.  We can't emit proper mode switching code before reload, as spills
2143    generated by reload may truncate values incorrectly, but we still can avoid
2144    redundant computation of new control word by the mode switching pass.
2145    The fldcw instructions are still emitted redundantly, but this is probably
2146    not going to be noticeable problem, as most CPUs do have fast path for
2147    the sequence.
2148 
2149    The machinery is to emit simple truncation instructions and split them
2150    before reload to instructions having USEs of two memory locations that
2151    are filled by this code to old and new control word.
2152 
2153    Post-reload pass may be later used to eliminate the redundant fildcw if
2154    needed.  */
2155 
2156 enum ix86_entity
2157 {
2158   I387_TRUNC = 0,
2159   I387_FLOOR,
2160   I387_CEIL,
2161   I387_MASK_PM,
2162   MAX_386_ENTITIES
2163 };
2164 
2165 enum ix86_stack_slot
2166 {
2167   SLOT_VIRTUAL = 0,
2168   SLOT_TEMP,
2169   SLOT_CW_STORED,
2170   SLOT_CW_TRUNC,
2171   SLOT_CW_FLOOR,
2172   SLOT_CW_CEIL,
2173   SLOT_CW_MASK_PM,
2174   MAX_386_STACK_LOCALS
2175 };
2176 
2177 /* Define this macro if the port needs extra instructions inserted
2178    for mode switching in an optimizing compilation.  */
2179 
2180 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2181    ix86_optimize_mode_switching[(ENTITY)]
2182 
2183 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2184    initializer for an array of integers.  Each initializer element N
2185    refers to an entity that needs mode switching, and specifies the
2186    number of different modes that might need to be set for this
2187    entity.  The position of the initializer in the initializer -
2188    starting counting at zero - determines the integer that is used to
2189    refer to the mode-switched entity in question.  */
2190 
2191 #define NUM_MODES_FOR_MODE_SWITCHING \
2192    { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2193 
2194 /* ENTITY is an integer specifying a mode-switched entity.  If
2195    `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2196    return an integer value not larger than the corresponding element
2197    in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2198    must be switched into prior to the execution of INSN. */
2199 
2200 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2201 
2202 /* This macro specifies the order in which modes for ENTITY are
2203    processed.  0 is the highest priority.  */
2204 
2205 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2206 
2207 /* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2208    is the set of hard registers live at the point where the insn(s)
2209    are to be inserted.  */
2210 
2211 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2212   ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2213    ? emit_i387_cw_initialization (MODE), 0				\
2214    : 0)
2215 
2216 
2217 /* Avoid renaming of stack registers, as doing so in combination with
2218    scheduling just increases amount of live registers at time and in
2219    the turn amount of fxch instructions needed.
2220 
2221    ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2222 
2223 #define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2224    ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2225 
2226 
2227 #define DLL_IMPORT_EXPORT_PREFIX '#'
2228 
2229 #define FASTCALL_PREFIX '@'
2230 
2231 struct machine_function GTY(())
2232 {
2233   struct stack_local_entry *stack_locals;
2234   const char *some_ld_name;
2235   rtx force_align_arg_pointer;
2236   int save_varrargs_registers;
2237   int accesses_prev_frame;
2238   int optimize_mode_switching[MAX_386_ENTITIES];
2239   /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2240      determine the style used.  */
2241   int use_fast_prologue_epilogue;
2242   /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2243      for.  */
2244   int use_fast_prologue_epilogue_nregs;
2245   /* If true, the current function needs the default PIC register, not
2246      an alternate register (on x86) and must not use the red zone (on
2247      x86_64), even if it's a leaf function.  We don't want the
2248      function to be regarded as non-leaf because TLS calls need not
2249      affect register allocation.  This flag is set when a TLS call
2250      instruction is expanded within a function, and never reset, even
2251      if all such instructions are optimized away.  Use the
2252      ix86_current_function_calls_tls_descriptor macro for a better
2253      approximation.  */
2254   int tls_descriptor_call_expanded_p;
2255 };
2256 
2257 #define ix86_stack_locals (cfun->machine->stack_locals)
2258 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2259 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2260 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2261   (cfun->machine->tls_descriptor_call_expanded_p)
2262 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2263    calls are optimized away, we try to detect cases in which it was
2264    optimized away.  Since such instructions (use (reg REG_SP)), we can
2265    verify whether there's any such instruction live by testing that
2266    REG_SP is live.  */
2267 #define ix86_current_function_calls_tls_descriptor \
2268   (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2269 
2270 /* Control behavior of x86_file_start.  */
2271 #define X86_FILE_START_VERSION_DIRECTIVE false
2272 #define X86_FILE_START_FLTUSED false
2273 
2274 /* Flag to mark data that is in the large address area.  */
2275 #define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2276 #define SYMBOL_REF_FAR_ADDR_P(X)	\
2277 	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2278 /*
2279 Local variables:
2280 version-control: t
2281 End:
2282 */
2283