1 
2 /* Internal type definitions for GDB.
3 
4    Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 
6    Contributed by Cygnus Support, using pieces from other GDB modules.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25 
26 /* * \page gdbtypes GDB Types
27 
28    GDB represents all the different kinds of types in programming
29    languages using a common representation defined in gdbtypes.h.
30 
31    The main data structure is main_type; it consists of a code (such
32    as #TYPE_CODE_ENUM for enumeration types), a number of
33    generally-useful fields such as the printable name, and finally a
34    field main_type::type_specific that is a union of info specific to
35    particular languages or other special cases (such as calling
36    convention).
37 
38    The available type codes are defined in enum #type_code.  The enum
39    includes codes both for types that are common across a variety
40    of languages, and for types that are language-specific.
41 
42    Most accesses to type fields go through macros such as
43    #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n).  These are
44    written such that they can be used as both rvalues and lvalues.
45  */
46 
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57 
58 /* Forward declarations for prototypes.  */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65 
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67    are already DWARF-specific.  */
68 
69 /* * Offset relative to the start of its containing CU (compilation
70    unit).  */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72 
73 /* * Offset relative to the start of its .debug_info or .debug_types
74    section.  */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76 
77 static inline char *
sect_offset_str(sect_offset offset)78 sect_offset_str (sect_offset offset)
79 {
80   return hex_string (to_underlying (offset));
81 }
82 
83 /* Some macros for char-based bitfields.  */
84 
85 #define B_SET(a,x)	((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x)	((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x)	((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE		unsigned char
89 #define	B_BYTES(x)	( 1 + ((x)>>3) )
90 #define	B_CLRALL(a,x)	memset ((a), 0, B_BYTES(x))
91 
92 /* * Different kinds of data types are distinguished by the `code'
93    field.  */
94 
95 enum type_code
96   {
97     TYPE_CODE_BITSTRING = -1,	/**< Deprecated  */
98     TYPE_CODE_UNDEF = 0,	/**< Not used; catches errors */
99     TYPE_CODE_PTR,		/**< Pointer type */
100 
101     /* * Array type with lower & upper bounds.
102 
103        Regardless of the language, GDB represents multidimensional
104        array types the way C does: as arrays of arrays.  So an
105        instance of a GDB array type T can always be seen as a series
106        of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107        memory.
108 
109        Row-major languages like C lay out multi-dimensional arrays so
110        that incrementing the rightmost index in a subscripting
111        expression results in the smallest change in the address of the
112        element referred to.  Column-major languages like Fortran lay
113        them out so that incrementing the leftmost index results in the
114        smallest change.
115 
116        This means that, in column-major languages, working our way
117        from type to target type corresponds to working through indices
118        from right to left, not left to right.  */
119     TYPE_CODE_ARRAY,
120 
121     TYPE_CODE_STRUCT,		/**< C struct or Pascal record */
122     TYPE_CODE_UNION,		/**< C union or Pascal variant part */
123     TYPE_CODE_ENUM,		/**< Enumeration type */
124     TYPE_CODE_FLAGS,		/**< Bit flags type */
125     TYPE_CODE_FUNC,		/**< Function type */
126     TYPE_CODE_INT,		/**< Integer type */
127 
128     /* * Floating type.  This is *NOT* a complex type.  */
129     TYPE_CODE_FLT,
130 
131     /* * Void type.  The length field specifies the length (probably
132        always one) which is used in pointer arithmetic involving
133        pointers to this type, but actually dereferencing such a
134        pointer is invalid; a void type has no length and no actual
135        representation in memory or registers.  A pointer to a void
136        type is a generic pointer.  */
137     TYPE_CODE_VOID,
138 
139     TYPE_CODE_SET,		/**< Pascal sets */
140     TYPE_CODE_RANGE,		/**< Range (integers within spec'd bounds).  */
141 
142     /* * A string type which is like an array of character but prints
143        differently.  It does not contain a length field as Pascal
144        strings (for many Pascals, anyway) do; if we want to deal with
145        such strings, we should use a new type code.  */
146     TYPE_CODE_STRING,
147 
148     /* * Unknown type.  The length field is valid if we were able to
149        deduce that much about the type, or 0 if we don't even know
150        that.  */
151     TYPE_CODE_ERROR,
152 
153     /* C++ */
154     TYPE_CODE_METHOD,		/**< Method type */
155 
156     /* * Pointer-to-member-function type.  This describes how to access a
157        particular member function of a class (possibly a virtual
158        member function).  The representation may vary between different
159        C++ ABIs.  */
160     TYPE_CODE_METHODPTR,
161 
162     /* * Pointer-to-member type.  This is the offset within a class to
163        some particular data member.  The only currently supported
164        representation uses an unbiased offset, with -1 representing
165        NULL; this is used by the Itanium C++ ABI (used by GCC on all
166        platforms).  */
167     TYPE_CODE_MEMBERPTR,
168 
169     TYPE_CODE_REF,		/**< C++ Reference types */
170 
171     TYPE_CODE_RVALUE_REF,	/**< C++ rvalue reference types */
172 
173     TYPE_CODE_CHAR,		/**< *real* character type */
174 
175     /* * Boolean type.  0 is false, 1 is true, and other values are
176        non-boolean (e.g. FORTRAN "logical" used as unsigned int).  */
177     TYPE_CODE_BOOL,
178 
179     /* Fortran */
180     TYPE_CODE_COMPLEX,		/**< Complex float */
181 
182     TYPE_CODE_TYPEDEF,
183 
184     TYPE_CODE_NAMESPACE,	/**< C++ namespace.  */
185 
186     TYPE_CODE_DECFLOAT,		/**< Decimal floating point.  */
187 
188     TYPE_CODE_MODULE,		/**< Fortran module.  */
189 
190     /* * Internal function type.  */
191     TYPE_CODE_INTERNAL_FUNCTION,
192 
193     /* * Methods implemented in extension languages.  */
194     TYPE_CODE_XMETHOD,
195 
196     /* * Fixed Point type.  */
197     TYPE_CODE_FIXED_POINT,
198   };
199 
200 /* * Some bits for the type's instance_flags word.  See the macros
201    below for documentation on each bit.  */
202 
203 enum type_instance_flag_value : unsigned
204 {
205   TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206   TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207   TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208   TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209   TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210   TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211   TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212   TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213   TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215 
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217 
218 /* * Not textual.  By default, GDB treats all single byte integers as
219    characters (or elements of strings) unless this flag is set.  */
220 
221 #define TYPE_NOTTEXT(t)	(((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222 
223 /* * Constant type.  If this is set, the corresponding type has a
224    const modifier.  */
225 
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
227 
228 /* * Volatile type.  If this is set, the corresponding type has a
229    volatile modifier.  */
230 
231 #define TYPE_VOLATILE(t) \
232   ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
233 
234 /* * Restrict type.  If this is set, the corresponding type has a
235    restrict modifier.  */
236 
237 #define TYPE_RESTRICT(t) \
238   ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
239 
240 /* * Atomic type.  If this is set, the corresponding type has an
241    _Atomic modifier.  */
242 
243 #define TYPE_ATOMIC(t) \
244   ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
245 
246 /* * True if this type represents either an lvalue or lvalue reference type.  */
247 
248 #define TYPE_IS_REFERENCE(t) \
249   ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
250 
251 /* * True if this type is allocatable.  */
252 #define TYPE_IS_ALLOCATABLE(t) \
253   ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
254 
255 /* * True if this type has variant parts.  */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257   ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
258 
259 /* * True if this type has a dynamic length.  */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261   ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
262 
263 /* * Instruction-space delimited type.  This is for Harvard architectures
264    which have separate instruction and data address spaces (and perhaps
265    others).
266 
267    GDB usually defines a flat address space that is a superset of the
268    architecture's two (or more) address spaces, but this is an extension
269    of the architecture's model.
270 
271    If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272    resides in instruction memory, even if its address (in the extended
273    flat address space) does not reflect this.
274 
275    Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276    corresponding type resides in the data memory space, even if
277    this is not indicated by its (flat address space) address.
278 
279    If neither flag is set, the default space for functions / methods
280    is instruction space, and for data objects is data memory.  */
281 
282 #define TYPE_CODE_SPACE(t) \
283   ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
284 
285 #define TYPE_DATA_SPACE(t) \
286   ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
287 
288 /* * Address class flags.  Some environments provide for pointers
289    whose size is different from that of a normal pointer or address
290    types where the bits are interpreted differently than normal
291    addresses.  The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292    target specific ways to represent these different types of address
293    classes.  */
294 
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 				 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 				 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300   (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 				   & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
303 
304 /* * Information about a single discriminant.  */
305 
306 struct discriminant_range
307 {
308   /* * The range of values for the variant.  This is an inclusive
309      range.  */
310   ULONGEST low, high;
311 
312   /* * Return true if VALUE is contained in this range.  IS_UNSIGNED
313      is true if this should be an unsigned comparison; false for
314      signed.  */
containsdiscriminant_range315   bool contains (ULONGEST value, bool is_unsigned) const
316   {
317     if (is_unsigned)
318       return value >= low && value <= high;
319     LONGEST valuel = (LONGEST) value;
320     return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
321   }
322 };
323 
324 struct variant_part;
325 
326 /* * A single variant.  A variant has a list of discriminant values.
327    When the discriminator matches one of these, the variant is
328    enabled.  Each variant controls zero or more fields; and may also
329    control other variant parts as well.  This struct corresponds to
330    DW_TAG_variant in DWARF.  */
331 
332 struct variant : allocate_on_obstack
333 {
334   /* * The discriminant ranges for this variant.  */
335   gdb::array_view<discriminant_range> discriminants;
336 
337   /* * The fields controlled by this variant.  This is inclusive on
338      the low end and exclusive on the high end.  A variant may not
339      control any fields, in which case the two values will be equal.
340      These are indexes into the type's array of fields.  */
341   int first_field;
342   int last_field;
343 
344   /* * Variant parts controlled by this variant.  */
345   gdb::array_view<variant_part> parts;
346 
347   /* * Return true if this is the default variant.  The default
348      variant can be recognized because it has no associated
349      discriminants.  */
is_defaultvariant350   bool is_default () const
351   {
352     return discriminants.empty ();
353   }
354 
355   /* * Return true if this variant matches VALUE.  IS_UNSIGNED is true
356      if this should be an unsigned comparison; false for signed.  */
357   bool matches (ULONGEST value, bool is_unsigned) const;
358 };
359 
360 /* * A variant part.  Each variant part has an optional discriminant
361    and holds an array of variants.  This struct corresponds to
362    DW_TAG_variant_part in DWARF.  */
363 
364 struct variant_part : allocate_on_obstack
365 {
366   /* * The index of the discriminant field in the outer type.  This is
367      an index into the type's array of fields.  If this is -1, there
368      is no discriminant, and only the default variant can be
369      considered to be selected.  */
370   int discriminant_index;
371 
372   /* * True if this discriminant is unsigned; false if signed.  This
373      comes from the type of the discriminant.  */
374   bool is_unsigned;
375 
376   /* * The variants that are controlled by this variant part.  Note
377      that these will always be sorted by field number.  */
378   gdb::array_view<variant> variants;
379 };
380 
381 
382 enum dynamic_prop_kind
383 {
384   PROP_UNDEFINED, /* Not defined.  */
385   PROP_CONST,     /* Constant.  */
386   PROP_ADDR_OFFSET, /* Address offset.  */
387   PROP_LOCEXPR,   /* Location expression.  */
388   PROP_LOCLIST,    /* Location list.  */
389   PROP_VARIANT_PARTS, /* Variant parts.  */
390   PROP_TYPE,	   /* Type.  */
391   PROP_VARIABLE_NAME, /* Variable name.  */
392 };
393 
394 union dynamic_prop_data
395 {
396   /* Storage for constant property.  */
397 
398   LONGEST const_val;
399 
400   /* Storage for dynamic property.  */
401 
402   void *baton;
403 
404   /* Storage of variant parts for a type.  A type with variant parts
405      has all its fields "linearized" -- stored in a single field
406      array, just as if they had all been declared that way.  The
407      variant parts are attached via a dynamic property, and then are
408      used to control which fields end up in the final type during
409      dynamic type resolution.  */
410 
411   const gdb::array_view<variant_part> *variant_parts;
412 
413   /* Once a variant type is resolved, we may want to be able to go
414      from the resolved type to the original type.  In this case we
415      rewrite the property's kind and set this field.  */
416 
417   struct type *original_type;
418 
419   /* Name of a variable to look up; the variable holds the value of
420      this property.  */
421 
422   const char *variable_name;
423 };
424 
425 /* * Used to store a dynamic property.  */
426 
427 struct dynamic_prop
428 {
kinddynamic_prop429   dynamic_prop_kind kind () const
430   {
431     return m_kind;
432   }
433 
set_undefineddynamic_prop434   void set_undefined ()
435   {
436     m_kind = PROP_UNDEFINED;
437   }
438 
const_valdynamic_prop439   LONGEST const_val () const
440   {
441     gdb_assert (m_kind == PROP_CONST);
442 
443     return m_data.const_val;
444   }
445 
set_const_valdynamic_prop446   void set_const_val (LONGEST const_val)
447   {
448     m_kind = PROP_CONST;
449     m_data.const_val = const_val;
450   }
451 
batondynamic_prop452   void *baton () const
453   {
454     gdb_assert (m_kind == PROP_LOCEXPR
455 		|| m_kind == PROP_LOCLIST
456 		|| m_kind == PROP_ADDR_OFFSET);
457 
458     return m_data.baton;
459   }
460 
set_locexprdynamic_prop461   void set_locexpr (void *baton)
462   {
463     m_kind = PROP_LOCEXPR;
464     m_data.baton = baton;
465   }
466 
set_loclistdynamic_prop467   void set_loclist (void *baton)
468   {
469     m_kind = PROP_LOCLIST;
470     m_data.baton = baton;
471   }
472 
set_addr_offsetdynamic_prop473   void set_addr_offset (void *baton)
474   {
475     m_kind = PROP_ADDR_OFFSET;
476     m_data.baton = baton;
477   }
478 
variant_partsdynamic_prop479   const gdb::array_view<variant_part> *variant_parts () const
480   {
481     gdb_assert (m_kind == PROP_VARIANT_PARTS);
482 
483     return m_data.variant_parts;
484   }
485 
set_variant_partsdynamic_prop486   void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487   {
488     m_kind = PROP_VARIANT_PARTS;
489     m_data.variant_parts = variant_parts;
490   }
491 
original_typedynamic_prop492   struct type *original_type () const
493   {
494     gdb_assert (m_kind == PROP_TYPE);
495 
496     return m_data.original_type;
497   }
498 
set_original_typedynamic_prop499   void set_original_type (struct type *original_type)
500   {
501     m_kind = PROP_TYPE;
502     m_data.original_type = original_type;
503   }
504 
505   /* Return the name of the variable that holds this property's value.
506      Only valid for PROP_VARIABLE_NAME.  */
variable_namedynamic_prop507   const char *variable_name () const
508   {
509     gdb_assert (m_kind == PROP_VARIABLE_NAME);
510     return m_data.variable_name;
511   }
512 
513   /* Set the name of the variable that holds this property's value,
514      and set this property to be of kind PROP_VARIABLE_NAME.  */
set_variable_namedynamic_prop515   void set_variable_name (const char *name)
516   {
517     m_kind = PROP_VARIABLE_NAME;
518     m_data.variable_name = name;
519   }
520 
521   /* Determine which field of the union dynamic_prop.data is used.  */
522   enum dynamic_prop_kind m_kind;
523 
524   /* Storage for dynamic or static value.  */
525   union dynamic_prop_data m_data;
526 };
527 
528 /* Compare two dynamic_prop objects for equality.  dynamic_prop
529    instances are equal iff they have the same type and storage.  */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531 
532 /* Compare two dynamic_prop objects for inequality.  */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535   return !(l == r);
536 }
537 
538 /* * Define a type's dynamic property node kind.  */
539 enum dynamic_prop_node_kind
540 {
541   /* A property providing a type's data location.
542      Evaluating this field yields to the location of an object's data.  */
543   DYN_PROP_DATA_LOCATION,
544 
545   /* A property representing DW_AT_allocated.  The presence of this attribute
546      indicates that the object of the type can be allocated/deallocated.  */
547   DYN_PROP_ALLOCATED,
548 
549   /* A property representing DW_AT_associated.  The presence of this attribute
550      indicated that the object of the type can be associated.  */
551   DYN_PROP_ASSOCIATED,
552 
553   /* A property providing an array's byte stride.  */
554   DYN_PROP_BYTE_STRIDE,
555 
556   /* A property holding variant parts.  */
557   DYN_PROP_VARIANT_PARTS,
558 
559   /* A property holding the size of the type.  */
560   DYN_PROP_BYTE_SIZE,
561 };
562 
563 /* * List for dynamic type attributes.  */
564 struct dynamic_prop_list
565 {
566   /* The kind of dynamic prop in this node.  */
567   enum dynamic_prop_node_kind prop_kind;
568 
569   /* The dynamic property itself.  */
570   struct dynamic_prop prop;
571 
572   /* A pointer to the next dynamic property.  */
573   struct dynamic_prop_list *next;
574 };
575 
576 /* * Determine which field of the union main_type.fields[x].loc is
577    used.  */
578 
579 enum field_loc_kind
580   {
581     FIELD_LOC_KIND_BITPOS,	/**< bitpos */
582     FIELD_LOC_KIND_ENUMVAL,	/**< enumval */
583     FIELD_LOC_KIND_PHYSADDR,	/**< physaddr */
584     FIELD_LOC_KIND_PHYSNAME,	/**< physname */
585     FIELD_LOC_KIND_DWARF_BLOCK	/**< dwarf_block */
586   };
587 
588 /* * A discriminant to determine which field in the
589    main_type.type_specific union is being used, if any.
590 
591    For types such as TYPE_CODE_FLT, the use of this
592    discriminant is really redundant, as we know from the type code
593    which field is going to be used.  As such, it would be possible to
594    reduce the size of this enum in order to save a bit or two for
595    other fields of struct main_type.  But, since we still have extra
596    room , and for the sake of clarity and consistency, we treat all fields
597    of the union the same way.  */
598 
599 enum type_specific_kind
600 {
601   TYPE_SPECIFIC_NONE,
602   TYPE_SPECIFIC_CPLUS_STUFF,
603   TYPE_SPECIFIC_GNAT_STUFF,
604   TYPE_SPECIFIC_FLOATFORMAT,
605   /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD.  */
606   TYPE_SPECIFIC_FUNC,
607   TYPE_SPECIFIC_SELF_TYPE,
608   TYPE_SPECIFIC_INT,
609   TYPE_SPECIFIC_FIXED_POINT,
610 };
611 
612 union type_owner
613 {
614   struct objfile *objfile;
615   struct gdbarch *gdbarch;
616 };
617 
618 union field_location
619 {
620   /* * Position of this field, counting in bits from start of
621      containing structure.  For big-endian targets, it is the bit
622      offset to the MSB.  For little-endian targets, it is the bit
623      offset to the LSB.  */
624 
625   LONGEST bitpos;
626 
627   /* * Enum value.  */
628   LONGEST enumval;
629 
630   /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631      physaddr is the location (in the target) of the static
632      field.  Otherwise, physname is the mangled label of the
633      static field.  */
634 
635   CORE_ADDR physaddr;
636   const char *physname;
637 
638   /* * The field location can be computed by evaluating the
639      following DWARF block.  Its DATA is allocated on
640      objfile_obstack - no CU load is needed to access it.  */
641 
642   struct dwarf2_locexpr_baton *dwarf_block;
643 };
644 
645 struct field
646 {
typefield647   struct type *type () const
648   {
649     return this->m_type;
650   }
651 
set_typefield652   void set_type (struct type *type)
653   {
654     this->m_type = type;
655   }
656 
657   union field_location loc;
658 
659   /* * For a function or member type, this is 1 if the argument is
660      marked artificial.  Artificial arguments should not be shown
661      to the user.  For TYPE_CODE_RANGE it is set if the specific
662      bound is not defined.  */
663 
664   unsigned int artificial : 1;
665 
666   /* * Discriminant for union field_location.  */
667 
668   ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
669 
670   /* * Size of this field, in bits, or zero if not packed.
671      If non-zero in an array type, indicates the element size in
672      bits (used only in Ada at the moment).
673      For an unpacked field, the field's type's length
674      says how many bytes the field occupies.  */
675 
676   unsigned int bitsize : 28;
677 
678   /* * In a struct or union type, type of this field.
679      - In a function or member type, type of this argument.
680      - In an array type, the domain-type of the array.  */
681 
682   struct type *m_type;
683 
684   /* * Name of field, value or argument.
685      NULL for range bounds, array domains, and member function
686      arguments.  */
687 
688   const char *name;
689 };
690 
691 struct range_bounds
692 {
bit_striderange_bounds693   ULONGEST bit_stride () const
694   {
695     if (this->flag_is_byte_stride)
696       return this->stride.const_val () * 8;
697     else
698       return this->stride.const_val ();
699   }
700 
701   /* * Low bound of range.  */
702 
703   struct dynamic_prop low;
704 
705   /* * High bound of range.  */
706 
707   struct dynamic_prop high;
708 
709   /* The stride value for this range.  This can be stored in bits or bytes
710      based on the value of BYTE_STRIDE_P.  It is optional to have a stride
711      value, if this range has no stride value defined then this will be set
712      to the constant zero.  */
713 
714   struct dynamic_prop stride;
715 
716   /* * The bias.  Sometimes a range value is biased before storage.
717      The bias is added to the stored bits to form the true value.  */
718 
719   LONGEST bias;
720 
721   /* True if HIGH range bound contains the number of elements in the
722      subrange.  This affects how the final high bound is computed.  */
723 
724   unsigned int flag_upper_bound_is_count : 1;
725 
726   /* True if LOW or/and HIGH are resolved into a static bound from
727      a dynamic one.  */
728 
729   unsigned int flag_bound_evaluated : 1;
730 
731   /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits.  */
732 
733   unsigned int flag_is_byte_stride : 1;
734 };
735 
736 /* Compare two range_bounds objects for equality.  Simply does
737    memberwise comparison.  */
738 extern bool operator== (const range_bounds &l, const range_bounds &r);
739 
740 /* Compare two range_bounds objects for inequality.  */
741 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
742 {
743   return !(l == r);
744 }
745 
746 union type_specific
747 {
748   /* * CPLUS_STUFF is for TYPE_CODE_STRUCT.  It is initialized to
749      point to cplus_struct_default, a default static instance of a
750      struct cplus_struct_type.  */
751 
752   struct cplus_struct_type *cplus_stuff;
753 
754   /* * GNAT_STUFF is for types for which the GNAT Ada compiler
755      provides additional information.  */
756 
757   struct gnat_aux_type *gnat_stuff;
758 
759   /* * FLOATFORMAT is for TYPE_CODE_FLT.  It is a pointer to a
760      floatformat object that describes the floating-point value
761      that resides within the type.  */
762 
763   const struct floatformat *floatformat;
764 
765   /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
766 
767   struct func_type *func_stuff;
768 
769   /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
770      TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
771      is a member of.  */
772 
773   struct type *self_type;
774 
775   /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
776      values of that type.  */
777   struct fixed_point_type_info *fixed_point_info;
778 
779   /* * An integer-like scalar type may be stored in just part of its
780      enclosing storage bytes.  This structure describes this
781      situation.  */
782   struct
783   {
784     /* * The bit size of the integer.  This can be 0.  For integers
785        that fill their storage (the ordinary case), this field holds
786        the byte size times 8.  */
787     unsigned short bit_size;
788     /* * The bit offset of the integer.  This is ordinarily 0, and can
789        only be non-zero if the bit size is less than the storage
790        size.  */
791     unsigned short bit_offset;
792   } int_stuff;
793 };
794 
795 /* * Main structure representing a type in GDB.
796 
797    This structure is space-critical.  Its layout has been tweaked to
798    reduce the space used.  */
799 
800 struct main_type
801 {
802   /* * Code for kind of type.  */
803 
804   ENUM_BITFIELD(type_code) code : 8;
805 
806   /* * Flags about this type.  These fields appear at this location
807      because they packs nicely here.  See the TYPE_* macros for
808      documentation about these fields.  */
809 
810   unsigned int m_flag_unsigned : 1;
811   unsigned int m_flag_nosign : 1;
812   unsigned int m_flag_stub : 1;
813   unsigned int m_flag_target_stub : 1;
814   unsigned int m_flag_prototyped : 1;
815   unsigned int m_flag_varargs : 1;
816   unsigned int m_flag_vector : 1;
817   unsigned int m_flag_stub_supported : 1;
818   unsigned int m_flag_gnu_ifunc : 1;
819   unsigned int m_flag_fixed_instance : 1;
820   unsigned int m_flag_objfile_owned : 1;
821   unsigned int m_flag_endianity_not_default : 1;
822 
823   /* * True if this type was declared with "class" rather than
824      "struct".  */
825 
826   unsigned int m_flag_declared_class : 1;
827 
828   /* * True if this is an enum type with disjoint values.  This
829      affects how the enum is printed.  */
830 
831   unsigned int m_flag_flag_enum : 1;
832 
833   /* * A discriminant telling us which field of the type_specific
834      union is being used for this type, if any.  */
835 
836   ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
837 
838   /* * Number of fields described for this type.  This field appears
839      at this location because it packs nicely here.  */
840 
841   short nfields;
842 
843   /* * Name of this type, or NULL if none.
844 
845      This is used for printing only.  For looking up a name, look for
846      a symbol in the VAR_DOMAIN.  This is generally allocated in the
847      objfile's obstack.  However coffread.c uses malloc.  */
848 
849   const char *name;
850 
851   /* * Every type is now associated with a particular objfile, and the
852      type is allocated on the objfile_obstack for that objfile.  One
853      problem however, is that there are times when gdb allocates new
854      types while it is not in the process of reading symbols from a
855      particular objfile.  Fortunately, these happen when the type
856      being created is a derived type of an existing type, such as in
857      lookup_pointer_type().  So we can just allocate the new type
858      using the same objfile as the existing type, but to do this we
859      need a backpointer to the objfile from the existing type.  Yes
860      this is somewhat ugly, but without major overhaul of the internal
861      type system, it can't be avoided for now.  */
862 
863   union type_owner m_owner;
864 
865   /* * For a pointer type, describes the type of object pointed to.
866      - For an array type, describes the type of the elements.
867      - For a function or method type, describes the type of the return value.
868      - For a range type, describes the type of the full range.
869      - For a complex type, describes the type of each coordinate.
870      - For a special record or union type encoding a dynamic-sized type
871      in GNAT, a memoized pointer to a corresponding static version of
872      the type.
873      - Unused otherwise.  */
874 
875   struct type *target_type;
876 
877   /* * For structure and union types, a description of each field.
878      For set and pascal array types, there is one "field",
879      whose type is the domain type of the set or array.
880      For range types, there are two "fields",
881      the minimum and maximum values (both inclusive).
882      For enum types, each possible value is described by one "field".
883      For a function or method type, a "field" for each parameter.
884      For C++ classes, there is one field for each base class (if it is
885      a derived class) plus one field for each class data member.  Member
886      functions are recorded elsewhere.
887 
888      Using a pointer to a separate array of fields
889      allows all types to have the same size, which is useful
890      because we can allocate the space for a type before
891      we know what to put in it.  */
892 
893   union
894   {
895     struct field *fields;
896 
897     /* * Union member used for range types.  */
898 
899     struct range_bounds *bounds;
900 
901     /* If this is a scalar type, then this is its corresponding
902        complex type.  */
903     struct type *complex_type;
904 
905   } flds_bnds;
906 
907   /* * Slot to point to additional language-specific fields of this
908      type.  */
909 
910   union type_specific type_specific;
911 
912   /* * Contains all dynamic type properties.  */
913   struct dynamic_prop_list *dyn_prop_list;
914 };
915 
916 /* * Number of bits allocated for alignment.  */
917 
918 #define TYPE_ALIGN_BITS 8
919 
920 /* * A ``struct type'' describes a particular instance of a type, with
921    some particular qualification.  */
922 
923 struct type
924 {
925   /* Get the type code of this type.
926 
927      Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
928      type, you need to do `check_typedef (type)->code ()`.  */
codetype929   type_code code () const
930   {
931     return this->main_type->code;
932   }
933 
934   /* Set the type code of this type.  */
set_codetype935   void set_code (type_code code)
936   {
937     this->main_type->code = code;
938   }
939 
940   /* Get the name of this type.  */
nametype941   const char *name () const
942   {
943     return this->main_type->name;
944   }
945 
946   /* Set the name of this type.  */
set_nametype947   void set_name (const char *name)
948   {
949     this->main_type->name = name;
950   }
951 
952   /* Get the number of fields of this type.  */
num_fieldstype953   int num_fields () const
954   {
955     return this->main_type->nfields;
956   }
957 
958   /* Set the number of fields of this type.  */
set_num_fieldstype959   void set_num_fields (int num_fields)
960   {
961     this->main_type->nfields = num_fields;
962   }
963 
964   /* Get the fields array of this type.  */
fieldstype965   struct field *fields () const
966   {
967     return this->main_type->flds_bnds.fields;
968   }
969 
970   /* Get the field at index IDX.  */
fieldtype971   struct field &field (int idx) const
972   {
973     return this->fields ()[idx];
974   }
975 
976   /* Set the fields array of this type.  */
set_fieldstype977   void set_fields (struct field *fields)
978   {
979     this->main_type->flds_bnds.fields = fields;
980   }
981 
index_typetype982   type *index_type () const
983   {
984     return this->field (0).type ();
985   }
986 
set_index_typetype987   void set_index_type (type *index_type)
988   {
989     this->field (0).set_type (index_type);
990   }
991 
992   /* Return the instance flags converted to the correct type.  */
instance_flagstype993   const type_instance_flags instance_flags () const
994   {
995     return (enum type_instance_flag_value) this->m_instance_flags;
996   }
997 
998   /* Set the instance flags.  */
set_instance_flagstype999   void set_instance_flags (type_instance_flags flags)
1000   {
1001     this->m_instance_flags = flags;
1002   }
1003 
1004   /* Get the bounds bounds of this type.  The type must be a range type.  */
boundstype1005   range_bounds *bounds () const
1006   {
1007     switch (this->code ())
1008       {
1009       case TYPE_CODE_RANGE:
1010 	return this->main_type->flds_bnds.bounds;
1011 
1012       case TYPE_CODE_ARRAY:
1013       case TYPE_CODE_STRING:
1014 	return this->index_type ()->bounds ();
1015 
1016       default:
1017 	gdb_assert_not_reached
1018 	  ("type::bounds called on type with invalid code");
1019       }
1020   }
1021 
1022   /* Set the bounds of this type.  The type must be a range type.  */
set_boundstype1023   void set_bounds (range_bounds *bounds)
1024   {
1025     gdb_assert (this->code () == TYPE_CODE_RANGE);
1026 
1027     this->main_type->flds_bnds.bounds = bounds;
1028   }
1029 
bit_stridetype1030   ULONGEST bit_stride () const
1031   {
1032     return this->bounds ()->bit_stride ();
1033   }
1034 
1035   /* Unsigned integer type.  If this is not set for a TYPE_CODE_INT,
1036      the type is signed (unless TYPE_NOSIGN is set).  */
1037 
is_unsignedtype1038   bool is_unsigned () const
1039   {
1040     return this->main_type->m_flag_unsigned;
1041   }
1042 
set_is_unsignedtype1043   void set_is_unsigned (bool is_unsigned)
1044   {
1045     this->main_type->m_flag_unsigned = is_unsigned;
1046   }
1047 
1048   /* No sign for this type.  In C++, "char", "signed char", and
1049      "unsigned char" are distinct types; so we need an extra flag to
1050      indicate the absence of a sign!  */
1051 
has_no_signednesstype1052   bool has_no_signedness () const
1053   {
1054     return this->main_type->m_flag_nosign;
1055   }
1056 
set_has_no_signednesstype1057   void set_has_no_signedness (bool has_no_signedness)
1058   {
1059     this->main_type->m_flag_nosign = has_no_signedness;
1060   }
1061 
1062   /* This appears in a type's flags word if it is a stub type (e.g.,
1063      if someone referenced a type that wasn't defined in a source file
1064      via (struct sir_not_appearing_in_this_film *)).  */
1065 
is_stubtype1066   bool is_stub () const
1067   {
1068     return this->main_type->m_flag_stub;
1069   }
1070 
set_is_stubtype1071   void set_is_stub (bool is_stub)
1072   {
1073     this->main_type->m_flag_stub = is_stub;
1074   }
1075 
1076   /* The target type of this type is a stub type, and this type needs
1077      to be updated if it gets un-stubbed in check_typedef.  Used for
1078      arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1079      based on the TYPE_LENGTH of the target type.  Also, set for
1080      TYPE_CODE_TYPEDEF.  */
1081 
target_is_stubtype1082   bool target_is_stub () const
1083   {
1084     return this->main_type->m_flag_target_stub;
1085   }
1086 
set_target_is_stubtype1087   void set_target_is_stub (bool target_is_stub)
1088   {
1089     this->main_type->m_flag_target_stub = target_is_stub;
1090   }
1091 
1092   /* This is a function type which appears to have a prototype.  We
1093      need this for function calls in order to tell us if it's necessary
1094      to coerce the args, or to just do the standard conversions.  This
1095      is used with a short field.  */
1096 
is_prototypedtype1097   bool is_prototyped () const
1098   {
1099     return this->main_type->m_flag_prototyped;
1100   }
1101 
set_is_prototypedtype1102   void set_is_prototyped (bool is_prototyped)
1103   {
1104     this->main_type->m_flag_prototyped = is_prototyped;
1105   }
1106 
1107   /* FIXME drow/2002-06-03:  Only used for methods, but applies as well
1108      to functions.  */
1109 
has_varargstype1110   bool has_varargs () const
1111   {
1112     return this->main_type->m_flag_varargs;
1113   }
1114 
set_has_varargstype1115   void set_has_varargs (bool has_varargs)
1116   {
1117     this->main_type->m_flag_varargs = has_varargs;
1118   }
1119 
1120   /* Identify a vector type.  Gcc is handling this by adding an extra
1121      attribute to the array type.  We slurp that in as a new flag of a
1122      type.  This is used only in dwarf2read.c.  */
1123 
is_vectortype1124   bool is_vector () const
1125   {
1126     return this->main_type->m_flag_vector;
1127   }
1128 
set_is_vectortype1129   void set_is_vector (bool is_vector)
1130   {
1131     this->main_type->m_flag_vector = is_vector;
1132   }
1133 
1134   /* This debug target supports TYPE_STUB(t).  In the unsupported case
1135      we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1136      TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1137      guessed the TYPE_STUB(t) value (see dwarfread.c).  */
1138 
stub_is_supportedtype1139   bool stub_is_supported () const
1140   {
1141     return this->main_type->m_flag_stub_supported;
1142   }
1143 
set_stub_is_supportedtype1144   void set_stub_is_supported (bool stub_is_supported)
1145   {
1146     this->main_type->m_flag_stub_supported = stub_is_supported;
1147   }
1148 
1149   /* Used only for TYPE_CODE_FUNC where it specifies the real function
1150      address is returned by this function call.  TYPE_TARGET_TYPE
1151      determines the final returned function type to be presented to
1152      user.  */
1153 
is_gnu_ifunctype1154   bool is_gnu_ifunc () const
1155   {
1156     return this->main_type->m_flag_gnu_ifunc;
1157   }
1158 
set_is_gnu_ifunctype1159   void set_is_gnu_ifunc (bool is_gnu_ifunc)
1160   {
1161     this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1162   }
1163 
1164   /* The debugging formats (especially STABS) do not contain enough
1165      information to represent all Ada types---especially those whose
1166      size depends on dynamic quantities.  Therefore, the GNAT Ada
1167      compiler includes extra information in the form of additional type
1168      definitions connected by naming conventions.  This flag indicates
1169      that the type is an ordinary (unencoded) GDB type that has been
1170      created from the necessary run-time information, and does not need
1171      further interpretation.  Optionally marks ordinary, fixed-size GDB
1172      type.  */
1173 
is_fixed_instancetype1174   bool is_fixed_instance () const
1175   {
1176     return this->main_type->m_flag_fixed_instance;
1177   }
1178 
set_is_fixed_instancetype1179   void set_is_fixed_instance (bool is_fixed_instance)
1180   {
1181     this->main_type->m_flag_fixed_instance = is_fixed_instance;
1182   }
1183 
1184   /* A compiler may supply dwarf instrumentation that indicates the desired
1185      endian interpretation of the variable differs from the native endian
1186      representation. */
1187 
endianity_is_not_defaulttype1188   bool endianity_is_not_default () const
1189   {
1190     return this->main_type->m_flag_endianity_not_default;
1191   }
1192 
set_endianity_is_not_defaulttype1193   void set_endianity_is_not_default (bool endianity_is_not_default)
1194   {
1195     this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1196   }
1197 
1198 
1199   /* True if this type was declared using the "class" keyword.  This is
1200      only valid for C++ structure and enum types.  If false, a structure
1201      was declared as a "struct"; if true it was declared "class".  For
1202      enum types, this is true when "enum class" or "enum struct" was
1203      used to declare the type.  */
1204 
is_declared_classtype1205   bool is_declared_class () const
1206   {
1207     return this->main_type->m_flag_declared_class;
1208   }
1209 
set_is_declared_classtype1210   void set_is_declared_class (bool is_declared_class) const
1211   {
1212     this->main_type->m_flag_declared_class = is_declared_class;
1213   }
1214 
1215   /* True if this type is a "flag" enum.  A flag enum is one where all
1216      the values are pairwise disjoint when "and"ed together.  This
1217      affects how enum values are printed.  */
1218 
is_flag_enumtype1219   bool is_flag_enum () const
1220   {
1221     return this->main_type->m_flag_flag_enum;
1222   }
1223 
set_is_flag_enumtype1224   void set_is_flag_enum (bool is_flag_enum)
1225   {
1226     this->main_type->m_flag_flag_enum = is_flag_enum;
1227   }
1228 
1229   /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1230      to this type's fixed_point_info.  */
1231 
fixed_point_infotype1232   struct fixed_point_type_info &fixed_point_info () const
1233   {
1234     gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1235     gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1236 
1237     return *this->main_type->type_specific.fixed_point_info;
1238   }
1239 
1240   /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1241      fixed_point_info to INFO.  */
1242 
set_fixed_point_infotype1243   void set_fixed_point_info (struct fixed_point_type_info *info) const
1244   {
1245     gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1246 
1247     this->main_type->type_specific.fixed_point_info = info;
1248   }
1249 
1250   /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1251 
1252      In other words, this returns the type after having peeled all
1253      intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1254      The TYPE_CODE of the type returned is guaranteed to be
1255      a TYPE_CODE_FIXED_POINT.  */
1256 
1257   struct type *fixed_point_type_base_type ();
1258 
1259   /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1260      factor.  */
1261 
1262   const gdb_mpq &fixed_point_scaling_factor ();
1263 
1264   /* * Return the dynamic property of the requested KIND from this type's
1265      list of dynamic properties.  */
1266   dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1267 
1268   /* * Given a dynamic property PROP of a given KIND, add this dynamic
1269      property to this type.
1270 
1271      This function assumes that this type is objfile-owned.  */
1272   void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1273 
1274   /* * Remove dynamic property of kind KIND from this type, if it exists.  */
1275   void remove_dyn_prop (dynamic_prop_node_kind kind);
1276 
1277   /* Return true if this type is owned by an objfile.  Return false if it is
1278      owned by an architecture.  */
is_objfile_ownedtype1279   bool is_objfile_owned () const
1280   {
1281     return this->main_type->m_flag_objfile_owned;
1282   }
1283 
1284   /* Set the owner of the type to be OBJFILE.  */
set_ownertype1285   void set_owner (objfile *objfile)
1286   {
1287     gdb_assert (objfile != nullptr);
1288 
1289     this->main_type->m_owner.objfile = objfile;
1290     this->main_type->m_flag_objfile_owned = true;
1291   }
1292 
1293   /* Set the owner of the type to be ARCH.  */
set_ownertype1294   void set_owner (gdbarch *arch)
1295   {
1296     gdb_assert (arch != nullptr);
1297 
1298     this->main_type->m_owner.gdbarch = arch;
1299     this->main_type->m_flag_objfile_owned = false;
1300   }
1301 
1302   /* Return the objfile owner of this type.
1303 
1304      Return nullptr if this type is not objfile-owned.  */
objfile_ownertype1305   struct objfile *objfile_owner () const
1306   {
1307     if (!this->is_objfile_owned ())
1308       return nullptr;
1309 
1310     return this->main_type->m_owner.objfile;
1311   }
1312 
1313   /* Return the gdbarch owner of this type.
1314 
1315      Return nullptr if this type is not gdbarch-owned.  */
arch_ownertype1316   gdbarch *arch_owner () const
1317   {
1318     if (this->is_objfile_owned ())
1319       return nullptr;
1320 
1321     return this->main_type->m_owner.gdbarch;
1322   }
1323 
1324   /* Return the type's architecture.  For types owned by an
1325      architecture, that architecture is returned.  For types owned by an
1326      objfile, that objfile's architecture is returned.
1327 
1328      The return value is always non-nullptr.  */
1329   gdbarch *arch () const;
1330 
1331   /* * Return true if this is an integer type whose logical (bit) size
1332      differs from its storage size; false otherwise.  Always return
1333      false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types.  */
bit_size_differs_ptype1334   bool bit_size_differs_p () const
1335   {
1336     return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1337 	    && main_type->type_specific.int_stuff.bit_size != 8 * length);
1338   }
1339 
1340   /* * Return the logical (bit) size for this integer type.  Only
1341      valid for integer (TYPE_SPECIFIC_INT) types.  */
bit_sizetype1342   unsigned short bit_size () const
1343   {
1344     gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1345     return main_type->type_specific.int_stuff.bit_size;
1346   }
1347 
1348   /* * Return the bit offset for this integer type.  Only valid for
1349      integer (TYPE_SPECIFIC_INT) types.  */
bit_offsettype1350   unsigned short bit_offset () const
1351   {
1352     gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1353     return main_type->type_specific.int_stuff.bit_offset;
1354   }
1355 
1356   /* * Type that is a pointer to this type.
1357      NULL if no such pointer-to type is known yet.
1358      The debugger may add the address of such a type
1359      if it has to construct one later.  */
1360 
1361   struct type *pointer_type;
1362 
1363   /* * C++: also need a reference type.  */
1364 
1365   struct type *reference_type;
1366 
1367   /* * A C++ rvalue reference type added in C++11. */
1368 
1369   struct type *rvalue_reference_type;
1370 
1371   /* * Variant chain.  This points to a type that differs from this
1372      one only in qualifiers and length.  Currently, the possible
1373      qualifiers are const, volatile, code-space, data-space, and
1374      address class.  The length may differ only when one of the
1375      address class flags are set.  The variants are linked in a
1376      circular ring and share MAIN_TYPE.  */
1377 
1378   struct type *chain;
1379 
1380   /* * The alignment for this type.  Zero means that the alignment was
1381      not specified in the debug info.  Note that this is stored in a
1382      funny way: as the log base 2 (plus 1) of the alignment; so a
1383      value of 1 means the alignment is 1, and a value of 9 means the
1384      alignment is 256.  */
1385 
1386   unsigned align_log2 : TYPE_ALIGN_BITS;
1387 
1388   /* * Flags specific to this instance of the type, indicating where
1389      on the ring we are.
1390 
1391      For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1392      binary or-ed with the target type, with a special case for
1393      address class and space class.  For example if this typedef does
1394      not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1395      instance flags are completely inherited from the target type.  No
1396      qualifiers can be cleared by the typedef.  See also
1397      check_typedef.  */
1398   unsigned m_instance_flags : 9;
1399 
1400   /* * Length of storage for a value of this type.  The value is the
1401      expression in host bytes of what sizeof(type) would return.  This
1402      size includes padding.  For example, an i386 extended-precision
1403      floating point value really only occupies ten bytes, but most
1404      ABI's declare its size to be 12 bytes, to preserve alignment.
1405      A `struct type' representing such a floating-point type would
1406      have a `length' value of 12, even though the last two bytes are
1407      unused.
1408 
1409      Since this field is expressed in host bytes, its value is appropriate
1410      to pass to memcpy and such (it is assumed that GDB itself always runs
1411      on an 8-bits addressable architecture).  However, when using it for
1412      target address arithmetic (e.g. adding it to a target address), the
1413      type_length_units function should be used in order to get the length
1414      expressed in target addressable memory units.  */
1415 
1416   ULONGEST length;
1417 
1418   /* * Core type, shared by a group of qualified types.  */
1419 
1420   struct main_type *main_type;
1421 };
1422 
1423 struct fn_fieldlist
1424 {
1425 
1426   /* * The overloaded name.
1427      This is generally allocated in the objfile's obstack.
1428      However stabsread.c sometimes uses malloc.  */
1429 
1430   const char *name;
1431 
1432   /* * The number of methods with this name.  */
1433 
1434   int length;
1435 
1436   /* * The list of methods.  */
1437 
1438   struct fn_field *fn_fields;
1439 };
1440 
1441 
1442 
1443 struct fn_field
1444 {
1445   /* * If is_stub is clear, this is the mangled name which we can look
1446      up to find the address of the method (FIXME: it would be cleaner
1447      to have a pointer to the struct symbol here instead).
1448 
1449      If is_stub is set, this is the portion of the mangled name which
1450      specifies the arguments.  For example, "ii", if there are two int
1451      arguments, or "" if there are no arguments.  See gdb_mangle_name
1452      for the conversion from this format to the one used if is_stub is
1453      clear.  */
1454 
1455   const char *physname;
1456 
1457   /* * The function type for the method.
1458 
1459      (This comment used to say "The return value of the method", but
1460      that's wrong.  The function type is expected here, i.e. something
1461      with TYPE_CODE_METHOD, and *not* the return-value type).  */
1462 
1463   struct type *type;
1464 
1465   /* * For virtual functions.  First baseclass that defines this
1466      virtual function.  */
1467 
1468   struct type *fcontext;
1469 
1470   /* Attributes.  */
1471 
1472   unsigned int is_const:1;
1473   unsigned int is_volatile:1;
1474   unsigned int is_private:1;
1475   unsigned int is_protected:1;
1476   unsigned int is_artificial:1;
1477 
1478   /* * A stub method only has some fields valid (but they are enough
1479      to reconstruct the rest of the fields).  */
1480 
1481   unsigned int is_stub:1;
1482 
1483   /* * True if this function is a constructor, false otherwise.  */
1484 
1485   unsigned int is_constructor : 1;
1486 
1487   /* * True if this function is deleted, false otherwise.  */
1488 
1489   unsigned int is_deleted : 1;
1490 
1491   /* * DW_AT_defaulted attribute for this function.  The value is one
1492      of the DW_DEFAULTED constants.  */
1493 
1494   ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1495 
1496   /* * Unused.  */
1497 
1498   unsigned int dummy:6;
1499 
1500   /* * Index into that baseclass's virtual function table, minus 2;
1501      else if static: VOFFSET_STATIC; else: 0.  */
1502 
1503   unsigned int voffset:16;
1504 
1505 #define VOFFSET_STATIC 1
1506 
1507 };
1508 
1509 struct decl_field
1510 {
1511   /* * Unqualified name to be prefixed by owning class qualified
1512      name.  */
1513 
1514   const char *name;
1515 
1516   /* * Type this typedef named NAME represents.  */
1517 
1518   struct type *type;
1519 
1520   /* * True if this field was declared protected, false otherwise.  */
1521   unsigned int is_protected : 1;
1522 
1523   /* * True if this field was declared private, false otherwise.  */
1524   unsigned int is_private : 1;
1525 };
1526 
1527 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1528    TYPE_CODE_UNION nodes.  */
1529 
1530 struct cplus_struct_type
1531   {
1532     /* * Number of base classes this type derives from.  The
1533        baseclasses are stored in the first N_BASECLASSES fields
1534        (i.e. the `fields' field of the struct type).  The only fields
1535        of struct field that are used are: type, name, loc.bitpos.  */
1536 
1537     short n_baseclasses;
1538 
1539     /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1540        All access to this field must be through TYPE_VPTR_FIELDNO as one
1541        thing it does is check whether the field has been initialized.
1542        Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1543        which for portability reasons doesn't initialize this field.
1544        TYPE_VPTR_FIELDNO returns -1 for this case.
1545 
1546        If -1, we were unable to find the virtual function table pointer in
1547        initial symbol reading, and get_vptr_fieldno should be called to find
1548        it if possible.  get_vptr_fieldno will update this field if possible.
1549        Otherwise the value is left at -1.
1550 
1551        Unused if this type does not have virtual functions.  */
1552 
1553     short vptr_fieldno;
1554 
1555     /* * Number of methods with unique names.  All overloaded methods
1556        with the same name count only once.  */
1557 
1558     short nfn_fields;
1559 
1560     /* * Number of template arguments.  */
1561 
1562     unsigned short n_template_arguments;
1563 
1564     /* * One if this struct is a dynamic class, as defined by the
1565        Itanium C++ ABI: if it requires a virtual table pointer,
1566        because it or any of its base classes have one or more virtual
1567        member functions or virtual base classes.  Minus one if not
1568        dynamic.  Zero if not yet computed.  */
1569 
1570     int is_dynamic : 2;
1571 
1572     /* * The calling convention for this type, fetched from the
1573        DW_AT_calling_convention attribute.  The value is one of the
1574        DW_CC constants.  */
1575 
1576     ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1577 
1578     /* * The base class which defined the virtual function table pointer.  */
1579 
1580     struct type *vptr_basetype;
1581 
1582     /* * For derived classes, the number of base classes is given by
1583        n_baseclasses and virtual_field_bits is a bit vector containing
1584        one bit per base class.  If the base class is virtual, the
1585        corresponding bit will be set.
1586        I.E, given:
1587 
1588        class A{};
1589        class B{};
1590        class C : public B, public virtual A {};
1591 
1592        B is a baseclass of C; A is a virtual baseclass for C.
1593        This is a C++ 2.0 language feature.  */
1594 
1595     B_TYPE *virtual_field_bits;
1596 
1597     /* * For classes with private fields, the number of fields is
1598        given by nfields and private_field_bits is a bit vector
1599        containing one bit per field.
1600 
1601        If the field is private, the corresponding bit will be set.  */
1602 
1603     B_TYPE *private_field_bits;
1604 
1605     /* * For classes with protected fields, the number of fields is
1606        given by nfields and protected_field_bits is a bit vector
1607        containing one bit per field.
1608 
1609        If the field is private, the corresponding bit will be set.  */
1610 
1611     B_TYPE *protected_field_bits;
1612 
1613     /* * For classes with fields to be ignored, either this is
1614        optimized out or this field has length 0.  */
1615 
1616     B_TYPE *ignore_field_bits;
1617 
1618     /* * For classes, structures, and unions, a description of each
1619        field, which consists of an overloaded name, followed by the
1620        types of arguments that the method expects, and then the name
1621        after it has been renamed to make it distinct.
1622 
1623        fn_fieldlists points to an array of nfn_fields of these.  */
1624 
1625     struct fn_fieldlist *fn_fieldlists;
1626 
1627     /* * typedefs defined inside this class.  typedef_field points to
1628        an array of typedef_field_count elements.  */
1629 
1630     struct decl_field *typedef_field;
1631 
1632     unsigned typedef_field_count;
1633 
1634     /* * The nested types defined by this type.  nested_types points to
1635        an array of nested_types_count elements.  */
1636 
1637     struct decl_field *nested_types;
1638 
1639     unsigned nested_types_count;
1640 
1641     /* * The template arguments.  This is an array with
1642        N_TEMPLATE_ARGUMENTS elements.  This is NULL for non-template
1643        classes.  */
1644 
1645     struct symbol **template_arguments;
1646   };
1647 
1648 /* * Struct used to store conversion rankings.  */
1649 
1650 struct rank
1651   {
1652     short rank;
1653 
1654     /* * When two conversions are of the same type and therefore have
1655        the same rank, subrank is used to differentiate the two.
1656 
1657        Eg: Two derived-class-pointer to base-class-pointer conversions
1658        would both have base pointer conversion rank, but the
1659        conversion with the shorter distance to the ancestor is
1660        preferable.  'subrank' would be used to reflect that.  */
1661 
1662     short subrank;
1663   };
1664 
1665 /* * Used for ranking a function for overload resolution.  */
1666 
1667 typedef std::vector<rank> badness_vector;
1668 
1669 /* * GNAT Ada-specific information for various Ada types.  */
1670 
1671 struct gnat_aux_type
1672   {
1673     /* * Parallel type used to encode information about dynamic types
1674        used in Ada (such as variant records, variable-size array,
1675        etc).  */
1676     struct type* descriptive_type;
1677   };
1678 
1679 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types.  */
1680 
1681 struct func_type
1682   {
1683     /* * The calling convention for targets supporting multiple ABIs.
1684        Right now this is only fetched from the Dwarf-2
1685        DW_AT_calling_convention attribute.  The value is one of the
1686        DW_CC constants.  */
1687 
1688     ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1689 
1690     /* * Whether this function normally returns to its caller.  It is
1691        set from the DW_AT_noreturn attribute if set on the
1692        DW_TAG_subprogram.  */
1693 
1694     unsigned int is_noreturn : 1;
1695 
1696     /* * Only those DW_TAG_call_site's in this function that have
1697        DW_AT_call_tail_call set are linked in this list.  Function
1698        without its tail call list complete
1699        (DW_AT_call_all_tail_calls or its superset
1700        DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1701        DW_TAG_call_site's exist in such function. */
1702 
1703     struct call_site *tail_call_list;
1704 
1705     /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1706        contains the method.  */
1707 
1708     struct type *self_type;
1709   };
1710 
1711 /* struct call_site_parameter can be referenced in callees by several ways.  */
1712 
1713 enum call_site_parameter_kind
1714 {
1715   /* * Use field call_site_parameter.u.dwarf_reg.  */
1716   CALL_SITE_PARAMETER_DWARF_REG,
1717 
1718   /* * Use field call_site_parameter.u.fb_offset.  */
1719   CALL_SITE_PARAMETER_FB_OFFSET,
1720 
1721   /* * Use field call_site_parameter.u.param_offset.  */
1722   CALL_SITE_PARAMETER_PARAM_OFFSET
1723 };
1724 
1725 struct call_site_target
1726 {
1727   union field_location loc;
1728 
1729   /* * Discriminant for union field_location.  */
1730 
1731   ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1732 };
1733 
1734 union call_site_parameter_u
1735 {
1736   /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1737      as DWARF register number, for register passed
1738      parameters.  */
1739 
1740   int dwarf_reg;
1741 
1742   /* * Offset from the callee's frame base, for stack passed
1743      parameters.  This equals offset from the caller's stack
1744      pointer.  */
1745 
1746   CORE_ADDR fb_offset;
1747 
1748   /* * Offset relative to the start of this PER_CU to
1749      DW_TAG_formal_parameter which is referenced by both
1750      caller and the callee.  */
1751 
1752   cu_offset param_cu_off;
1753 };
1754 
1755 struct call_site_parameter
1756 {
1757   ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1758 
1759   union call_site_parameter_u u;
1760 
1761   /* * DW_TAG_formal_parameter's DW_AT_call_value.  It is never NULL.  */
1762 
1763   const gdb_byte *value;
1764   size_t value_size;
1765 
1766   /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1767      It may be NULL if not provided by DWARF.  */
1768 
1769   const gdb_byte *data_value;
1770   size_t data_value_size;
1771 };
1772 
1773 /* * A place where a function gets called from, represented by
1774    DW_TAG_call_site.  It can be looked up from symtab->call_site_htab.  */
1775 
1776 struct call_site
1777   {
1778     /* * Address of the first instruction after this call.  It must be
1779        the first field as we overload core_addr_hash and core_addr_eq
1780        for it.  */
1781 
1782     CORE_ADDR pc;
1783 
1784     /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST.  */
1785 
1786     struct call_site *tail_call_next;
1787 
1788     /* * Describe DW_AT_call_target.  Missing attribute uses
1789        FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL.  */
1790 
1791     struct call_site_target target;
1792 
1793     /* * Size of the PARAMETER array.  */
1794 
1795     unsigned parameter_count;
1796 
1797     /* * CU of the function where the call is located.  It gets used
1798        for DWARF blocks execution in the parameter array below.  */
1799 
1800     dwarf2_per_cu_data *per_cu;
1801 
1802     /* objfile of the function where the call is located.  */
1803 
1804     dwarf2_per_objfile *per_objfile;
1805 
1806     /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter.  */
1807 
1808     struct call_site_parameter parameter[1];
1809   };
1810 
1811 /* The type-specific info for TYPE_CODE_FIXED_POINT types.  */
1812 
1813 struct fixed_point_type_info
1814 {
1815   /* The fixed point type's scaling factor.  */
1816   gdb_mpq scaling_factor;
1817 };
1818 
1819 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1820    static structure.  */
1821 
1822 extern const struct cplus_struct_type cplus_struct_default;
1823 
1824 extern void allocate_cplus_struct_type (struct type *);
1825 
1826 #define INIT_CPLUS_SPECIFIC(type) \
1827   (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1828    TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1829    &cplus_struct_default)
1830 
1831 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1832 
1833 #define HAVE_CPLUS_STRUCT(type) \
1834   (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1835    && TYPE_RAW_CPLUS_SPECIFIC (type) !=  &cplus_struct_default)
1836 
1837 #define INIT_NONE_SPECIFIC(type) \
1838   (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1839    TYPE_MAIN_TYPE (type)->type_specific = {})
1840 
1841 extern const struct gnat_aux_type gnat_aux_default;
1842 
1843 extern void allocate_gnat_aux_type (struct type *);
1844 
1845 #define INIT_GNAT_SPECIFIC(type) \
1846   (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1847    TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1848 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1849 /* * A macro that returns non-zero if the type-specific data should be
1850    read as "gnat-stuff".  */
1851 #define HAVE_GNAT_AUX_INFO(type) \
1852   (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1853 
1854 /* * True if TYPE is known to be an Ada type of some kind.  */
1855 #define ADA_TYPE_P(type)					\
1856   (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF	\
1857     || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE	\
1858 	&& (type)->is_fixed_instance ()))
1859 
1860 #define INIT_FUNC_SPECIFIC(type)					       \
1861   (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC,			       \
1862    TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *)      \
1863      TYPE_ZALLOC (type,							       \
1864 		  sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1865 
1866 /* "struct fixed_point_type_info" has a field that has a destructor.
1867    See allocate_fixed_point_type_info to understand how this is
1868    handled.  */
1869 #define INIT_FIXED_POINT_SPECIFIC(type) \
1870   (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1871    allocate_fixed_point_type_info (type))
1872 
1873 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1874 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1875 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1876 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1877 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1878 #define TYPE_CHAIN(thistype) (thistype)->chain
1879 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1880    But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1881    so you only have to call check_typedef once.  Since allocate_value
1882    calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe.  */
1883 #define TYPE_LENGTH(thistype) (thistype)->length
1884 
1885 /* * Return the alignment of the type in target addressable memory
1886    units, or 0 if no alignment was specified.  */
1887 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1888 
1889 /* * Return the alignment of the type in target addressable memory
1890    units, or 0 if no alignment was specified.  */
1891 extern unsigned type_raw_align (struct type *);
1892 
1893 /* * Return the alignment of the type in target addressable memory
1894    units.  Return 0 if the alignment cannot be determined; but note
1895    that this makes an effort to compute the alignment even it it was
1896    not specified in the debug info.  */
1897 extern unsigned type_align (struct type *);
1898 
1899 /* * Set the alignment of the type.  The alignment must be a power of
1900    2.  Returns false if the given value does not fit in the available
1901    space in struct type.  */
1902 extern bool set_type_align (struct type *, ULONGEST);
1903 
1904 /* Property accessors for the type data location.  */
1905 #define TYPE_DATA_LOCATION(thistype) \
1906   ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1907 #define TYPE_DATA_LOCATION_BATON(thistype) \
1908   TYPE_DATA_LOCATION (thistype)->data.baton
1909 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1910   (TYPE_DATA_LOCATION (thistype)->const_val ())
1911 #define TYPE_DATA_LOCATION_KIND(thistype) \
1912   (TYPE_DATA_LOCATION (thistype)->kind ())
1913 #define TYPE_DYNAMIC_LENGTH(thistype) \
1914   ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1915 
1916 /* Property accessors for the type allocated/associated.  */
1917 #define TYPE_ALLOCATED_PROP(thistype) \
1918   ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1919 #define TYPE_ASSOCIATED_PROP(thistype) \
1920   ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1921 
1922 /* C++ */
1923 
1924 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1925 /* Do not call this, use TYPE_SELF_TYPE.  */
1926 extern struct type *internal_type_self_type (struct type *);
1927 extern void set_type_self_type (struct type *, struct type *);
1928 
1929 extern int internal_type_vptr_fieldno (struct type *);
1930 extern void set_type_vptr_fieldno (struct type *, int);
1931 extern struct type *internal_type_vptr_basetype (struct type *);
1932 extern void set_type_vptr_basetype (struct type *, struct type *);
1933 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1934 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1935 
1936 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1937 #define TYPE_SPECIFIC_FIELD(thistype) \
1938   TYPE_MAIN_TYPE(thistype)->type_specific_field
1939 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1940    where we're trying to print an Ada array using the C language.
1941    In that case, there is no "cplus_stuff", but the C language assumes
1942    that there is.  What we do, in that case, is pretend that there is
1943    an implicit one which is the default cplus stuff.  */
1944 #define TYPE_CPLUS_SPECIFIC(thistype) \
1945    (!HAVE_CPLUS_STRUCT(thistype) \
1946     ? (struct cplus_struct_type*)&cplus_struct_default \
1947     : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1948 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1949 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1950   TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1951 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1952 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1953 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1954 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1955 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1956 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1957 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1958 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1959 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1960 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1961 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1962   ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1963 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1964 
1965 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1966   (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1967     : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1968 
1969 #define FIELD_NAME(thisfld) ((thisfld).name)
1970 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1971 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1972 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1973 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1974 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1975 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1976 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1977 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1978 #define SET_FIELD_BITPOS(thisfld, bitpos)			\
1979   (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS,		\
1980    FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1981 #define SET_FIELD_ENUMVAL(thisfld, enumval)			\
1982   (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL,		\
1983    FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1984 #define SET_FIELD_PHYSNAME(thisfld, name)			\
1985   (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME,		\
1986    FIELD_STATIC_PHYSNAME (thisfld) = (name))
1987 #define SET_FIELD_PHYSADDR(thisfld, addr)			\
1988   (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR,		\
1989    FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1990 #define SET_FIELD_DWARF_BLOCK(thisfld, addr)			\
1991   (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK,	\
1992    FIELD_DWARF_BLOCK (thisfld) = (addr))
1993 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1994 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1995 
1996 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1997 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1998 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1999 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
2000 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
2001 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
2002 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
2003 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2004 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2005 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2006 
2007 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2008   TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2009 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2010   TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2011 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2012   TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2013 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2014   TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2015 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2016   B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2017 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2018   B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2019 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2020   B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2021 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2022   B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2023 #define TYPE_FIELD_PRIVATE(thistype, n) \
2024   (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2025     : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2026 #define TYPE_FIELD_PROTECTED(thistype, n) \
2027   (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2028     : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2029 #define TYPE_FIELD_IGNORE(thistype, n) \
2030   (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2031     : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2032 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2033   (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2034     : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2035 
2036 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2037 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2038 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2039 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2040 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2041 
2042 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2043   TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2044 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2045   TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2046 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2047   TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2048 
2049 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2050 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2051 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2052 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2053 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2054 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2055 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2056 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2057 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2058 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2059 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2060 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2061 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2062 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2063 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2064 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2065 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2066 
2067 /* Accessors for typedefs defined by a class.  */
2068 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2069   TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2070 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2071   TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2072 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2073   TYPE_TYPEDEF_FIELD (thistype, n).name
2074 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2075   TYPE_TYPEDEF_FIELD (thistype, n).type
2076 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2077   TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2078 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2079   TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2080 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n)        \
2081   TYPE_TYPEDEF_FIELD (thistype, n).is_private
2082 
2083 #define TYPE_NESTED_TYPES_ARRAY(thistype)	\
2084   TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2085 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2086   TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2087 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2088   TYPE_NESTED_TYPES_FIELD (thistype, n).name
2089 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2090   TYPE_NESTED_TYPES_FIELD (thistype, n).type
2091 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2092   TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2093 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2094   TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2095 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n)	\
2096   TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2097 
2098 #define TYPE_IS_OPAQUE(thistype) \
2099   ((((thistype)->code () == TYPE_CODE_STRUCT) \
2100     || ((thistype)->code () == TYPE_CODE_UNION)) \
2101    && ((thistype)->num_fields () == 0) \
2102    && (!HAVE_CPLUS_STRUCT (thistype) \
2103        || TYPE_NFN_FIELDS (thistype) == 0) \
2104    && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2105 
2106 /* * A helper macro that returns the name of a type or "unnamed type"
2107    if the type has no name.  */
2108 
2109 #define TYPE_SAFE_NAME(type) \
2110   (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2111 
2112 /* * A helper macro that returns the name of an error type.  If the
2113    type has a name, it is used; otherwise, a default is used.  */
2114 
2115 #define TYPE_ERROR_NAME(type) \
2116   (type->name () ? type->name () : _("<error type>"))
2117 
2118 /* Given TYPE, return its floatformat.  */
2119 const struct floatformat *floatformat_from_type (const struct type *type);
2120 
2121 struct builtin_type
2122 {
2123   /* Integral types.  */
2124 
2125   /* Implicit size/sign (based on the architecture's ABI).  */
2126   struct type *builtin_void;
2127   struct type *builtin_char;
2128   struct type *builtin_short;
2129   struct type *builtin_int;
2130   struct type *builtin_long;
2131   struct type *builtin_signed_char;
2132   struct type *builtin_unsigned_char;
2133   struct type *builtin_unsigned_short;
2134   struct type *builtin_unsigned_int;
2135   struct type *builtin_unsigned_long;
2136   struct type *builtin_bfloat16;
2137   struct type *builtin_half;
2138   struct type *builtin_float;
2139   struct type *builtin_double;
2140   struct type *builtin_long_double;
2141   struct type *builtin_complex;
2142   struct type *builtin_double_complex;
2143   struct type *builtin_string;
2144   struct type *builtin_bool;
2145   struct type *builtin_long_long;
2146   struct type *builtin_unsigned_long_long;
2147   struct type *builtin_decfloat;
2148   struct type *builtin_decdouble;
2149   struct type *builtin_declong;
2150 
2151   /* "True" character types.
2152       We use these for the '/c' print format, because c_char is just a
2153       one-byte integral type, which languages less laid back than C
2154       will print as ... well, a one-byte integral type.  */
2155   struct type *builtin_true_char;
2156   struct type *builtin_true_unsigned_char;
2157 
2158   /* Explicit sizes - see C9X <intypes.h> for naming scheme.  The "int0"
2159      is for when an architecture needs to describe a register that has
2160      no size.  */
2161   struct type *builtin_int0;
2162   struct type *builtin_int8;
2163   struct type *builtin_uint8;
2164   struct type *builtin_int16;
2165   struct type *builtin_uint16;
2166   struct type *builtin_int24;
2167   struct type *builtin_uint24;
2168   struct type *builtin_int32;
2169   struct type *builtin_uint32;
2170   struct type *builtin_int64;
2171   struct type *builtin_uint64;
2172   struct type *builtin_int128;
2173   struct type *builtin_uint128;
2174 
2175   /* Wide character types.  */
2176   struct type *builtin_char16;
2177   struct type *builtin_char32;
2178   struct type *builtin_wchar;
2179 
2180   /* Pointer types.  */
2181 
2182   /* * `pointer to data' type.  Some target platforms use an implicitly
2183      {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA.  */
2184   struct type *builtin_data_ptr;
2185 
2186   /* * `pointer to function (returning void)' type.  Harvard
2187      architectures mean that ABI function and code pointers are not
2188      interconvertible.  Similarly, since ANSI, C standards have
2189      explicitly said that pointers to functions and pointers to data
2190      are not interconvertible --- that is, you can't cast a function
2191      pointer to void * and back, and expect to get the same value.
2192      However, all function pointer types are interconvertible, so void
2193      (*) () can server as a generic function pointer.  */
2194 
2195   struct type *builtin_func_ptr;
2196 
2197   /* * `function returning pointer to function (returning void)' type.
2198      The final void return type is not significant for it.  */
2199 
2200   struct type *builtin_func_func;
2201 
2202   /* Special-purpose types.  */
2203 
2204   /* * This type is used to represent a GDB internal function.  */
2205 
2206   struct type *internal_fn;
2207 
2208   /* * This type is used to represent an xmethod.  */
2209   struct type *xmethod;
2210 };
2211 
2212 /* * Return the type table for the specified architecture.  */
2213 
2214 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2215 
2216 /* * Per-objfile types used by symbol readers.  */
2217 
2218 struct objfile_type
2219 {
2220   /* Basic types based on the objfile architecture.  */
2221   struct type *builtin_void;
2222   struct type *builtin_char;
2223   struct type *builtin_short;
2224   struct type *builtin_int;
2225   struct type *builtin_long;
2226   struct type *builtin_long_long;
2227   struct type *builtin_signed_char;
2228   struct type *builtin_unsigned_char;
2229   struct type *builtin_unsigned_short;
2230   struct type *builtin_unsigned_int;
2231   struct type *builtin_unsigned_long;
2232   struct type *builtin_unsigned_long_long;
2233   struct type *builtin_half;
2234   struct type *builtin_float;
2235   struct type *builtin_double;
2236   struct type *builtin_long_double;
2237 
2238   /* * This type is used to represent symbol addresses.  */
2239   struct type *builtin_core_addr;
2240 
2241   /* * This type represents a type that was unrecognized in symbol
2242      read-in.  */
2243   struct type *builtin_error;
2244 
2245   /* * Types used for symbols with no debug information.  */
2246   struct type *nodebug_text_symbol;
2247   struct type *nodebug_text_gnu_ifunc_symbol;
2248   struct type *nodebug_got_plt_symbol;
2249   struct type *nodebug_data_symbol;
2250   struct type *nodebug_unknown_symbol;
2251   struct type *nodebug_tls_symbol;
2252 };
2253 
2254 /* * Return the type table for the specified objfile.  */
2255 
2256 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2257 
2258 /* Explicit floating-point formats.  See "floatformat.h".  */
2259 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2260 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2261 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2262 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2263 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2264 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2265 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2266 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2267 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2268 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2269 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2270 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2271 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2272 
2273 /* Allocate space for storing data associated with a particular
2274    type.  We ensure that the space is allocated using the same
2275    mechanism that was used to allocate the space for the type
2276    structure itself.  I.e.  if the type is on an objfile's
2277    objfile_obstack, then the space for data associated with that type
2278    will also be allocated on the objfile_obstack.  If the type is
2279    associated with a gdbarch, then the space for data associated with that
2280    type will also be allocated on the gdbarch_obstack.
2281 
2282    If a type is not associated with neither an objfile or a gdbarch then
2283    you should not use this macro to allocate space for data, instead you
2284    should call xmalloc directly, and ensure the memory is correctly freed
2285    when it is no longer needed.  */
2286 
2287 #define TYPE_ALLOC(t,size)                                              \
2288   (obstack_alloc (((t)->is_objfile_owned ()                             \
2289 		   ? &((t)->objfile_owner ()->objfile_obstack)          \
2290 		   : gdbarch_obstack ((t)->arch_owner ())),             \
2291 		  size))
2292 
2293 
2294 /* See comment on TYPE_ALLOC.  */
2295 
2296 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2297 
2298 /* Use alloc_type to allocate a type owned by an objfile.  Use
2299    alloc_type_arch to allocate a type owned by an architecture.  Use
2300    alloc_type_copy to allocate a type with the same owner as a
2301    pre-existing template type, no matter whether objfile or
2302    gdbarch.  */
2303 extern struct type *alloc_type (struct objfile *);
2304 extern struct type *alloc_type_arch (struct gdbarch *);
2305 extern struct type *alloc_type_copy (const struct type *);
2306 
2307 /* * This returns the target type (or NULL) of TYPE, also skipping
2308    past typedefs.  */
2309 
2310 extern struct type *get_target_type (struct type *type);
2311 
2312 /* Return the equivalent of TYPE_LENGTH, but in number of target
2313    addressable memory units of the associated gdbarch instead of bytes.  */
2314 
2315 extern unsigned int type_length_units (struct type *type);
2316 
2317 /* * Helper function to construct objfile-owned types.  */
2318 
2319 extern struct type *init_type (struct objfile *, enum type_code, int,
2320 			       const char *);
2321 extern struct type *init_integer_type (struct objfile *, int, int,
2322 				       const char *);
2323 extern struct type *init_character_type (struct objfile *, int, int,
2324 					 const char *);
2325 extern struct type *init_boolean_type (struct objfile *, int, int,
2326 				       const char *);
2327 extern struct type *init_float_type (struct objfile *, int, const char *,
2328 				     const struct floatformat **,
2329 				     enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2330 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2331 extern bool can_create_complex_type (struct type *);
2332 extern struct type *init_complex_type (const char *, struct type *);
2333 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2334 				       struct type *);
2335 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2336 					   const char *);
2337 
2338 /* Helper functions to construct architecture-owned types.  */
2339 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2340 			       const char *);
2341 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2342 				       const char *);
2343 extern struct type *arch_character_type (struct gdbarch *, int, int,
2344 					 const char *);
2345 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2346 				       const char *);
2347 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2348 				     const struct floatformat **);
2349 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2350 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2351 				       struct type *);
2352 
2353 /* Helper functions to construct a struct or record type.  An
2354    initially empty type is created using arch_composite_type().
2355    Fields are then added using append_composite_type_field*().  A union
2356    type has its size set to the largest field.  A struct type has each
2357    field packed against the previous.  */
2358 
2359 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2360 					 const char *name, enum type_code code);
2361 extern void append_composite_type_field (struct type *t, const char *name,
2362 					 struct type *field);
2363 extern void append_composite_type_field_aligned (struct type *t,
2364 						 const char *name,
2365 						 struct type *field,
2366 						 int alignment);
2367 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2368 					       struct type *field);
2369 
2370 /* Helper functions to construct a bit flags type.  An initially empty
2371    type is created using arch_flag_type().  Flags are then added using
2372    append_flag_type_field() and append_flag_type_flag().  */
2373 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2374 				     const char *name, int bit);
2375 extern void append_flags_type_field (struct type *type,
2376 				     int start_bitpos, int nr_bits,
2377 				     struct type *field_type, const char *name);
2378 extern void append_flags_type_flag (struct type *type, int bitpos,
2379 				    const char *name);
2380 
2381 extern void make_vector_type (struct type *array_type);
2382 extern struct type *init_vector_type (struct type *elt_type, int n);
2383 
2384 extern struct type *lookup_reference_type (struct type *, enum type_code);
2385 extern struct type *lookup_lvalue_reference_type (struct type *);
2386 extern struct type *lookup_rvalue_reference_type (struct type *);
2387 
2388 
2389 extern struct type *make_reference_type (struct type *, struct type **,
2390 					 enum type_code);
2391 
2392 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2393 
2394 extern struct type *make_restrict_type (struct type *);
2395 
2396 extern struct type *make_unqualified_type (struct type *);
2397 
2398 extern struct type *make_atomic_type (struct type *);
2399 
2400 extern void replace_type (struct type *, struct type *);
2401 
2402 extern type_instance_flags address_space_name_to_type_instance_flags
2403   (struct gdbarch *, const char *);
2404 
2405 extern const char *address_space_type_instance_flags_to_name
2406   (struct gdbarch *, type_instance_flags);
2407 
2408 extern struct type *make_type_with_address_space
2409   (struct type *type, type_instance_flags space_identifier);
2410 
2411 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2412 
2413 extern struct type *lookup_methodptr_type (struct type *);
2414 
2415 extern void smash_to_method_type (struct type *type, struct type *self_type,
2416 				  struct type *to_type, struct field *args,
2417 				  int nargs, int varargs);
2418 
2419 extern void smash_to_memberptr_type (struct type *, struct type *,
2420 				     struct type *);
2421 
2422 extern void smash_to_methodptr_type (struct type *, struct type *);
2423 
2424 extern struct type *allocate_stub_method (struct type *);
2425 
2426 extern const char *type_name_or_error (struct type *type);
2427 
2428 struct struct_elt
2429 {
2430   /* The field of the element, or NULL if no element was found.  */
2431   struct field *field;
2432 
2433   /* The bit offset of the element in the parent structure.  */
2434   LONGEST offset;
2435 };
2436 
2437 /* Given a type TYPE, lookup the field and offset of the component named
2438    NAME.
2439 
2440    TYPE can be either a struct or union, or a pointer or reference to
2441    a struct or union.  If it is a pointer or reference, its target
2442    type is automatically used.  Thus '.' and '->' are interchangable,
2443    as specified for the definitions of the expression element types
2444    STRUCTOP_STRUCT and STRUCTOP_PTR.
2445 
2446    If NOERR is nonzero, the returned structure will have field set to
2447    NULL if there is no component named NAME.
2448 
2449    If the component NAME is a field in an anonymous substructure of
2450    TYPE, the returned offset is a "global" offset relative to TYPE
2451    rather than an offset within the substructure.  */
2452 
2453 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2454 
2455 /* Given a type TYPE, lookup the type of the component named NAME.
2456 
2457    TYPE can be either a struct or union, or a pointer or reference to
2458    a struct or union.  If it is a pointer or reference, its target
2459    type is automatically used.  Thus '.' and '->' are interchangable,
2460    as specified for the definitions of the expression element types
2461    STRUCTOP_STRUCT and STRUCTOP_PTR.
2462 
2463    If NOERR is nonzero, return NULL if there is no component named
2464    NAME.  */
2465 
2466 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2467 
2468 extern struct type *make_pointer_type (struct type *, struct type **);
2469 
2470 extern struct type *lookup_pointer_type (struct type *);
2471 
2472 extern struct type *make_function_type (struct type *, struct type **);
2473 
2474 extern struct type *lookup_function_type (struct type *);
2475 
2476 extern struct type *lookup_function_type_with_arguments (struct type *,
2477 							 int,
2478 							 struct type **);
2479 
2480 extern struct type *create_static_range_type (struct type *, struct type *,
2481 					      LONGEST, LONGEST);
2482 
2483 
2484 extern struct type *create_array_type_with_stride
2485   (struct type *, struct type *, struct type *,
2486    struct dynamic_prop *, unsigned int);
2487 
2488 extern struct type *create_range_type (struct type *, struct type *,
2489 				       const struct dynamic_prop *,
2490 				       const struct dynamic_prop *,
2491 				       LONGEST);
2492 
2493 /* Like CREATE_RANGE_TYPE but also sets up a stride.  When BYTE_STRIDE_P
2494    is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2495    stride.  */
2496 
2497 extern struct type * create_range_type_with_stride
2498   (struct type *result_type, struct type *index_type,
2499    const struct dynamic_prop *low_bound,
2500    const struct dynamic_prop *high_bound, LONGEST bias,
2501    const struct dynamic_prop *stride, bool byte_stride_p);
2502 
2503 extern struct type *create_array_type (struct type *, struct type *,
2504 				       struct type *);
2505 
2506 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2507 
2508 extern struct type *create_string_type (struct type *, struct type *,
2509 					struct type *);
2510 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2511 
2512 extern struct type *create_set_type (struct type *, struct type *);
2513 
2514 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2515 					      const char *);
2516 
2517 extern struct type *lookup_signed_typename (const struct language_defn *,
2518 					    const char *);
2519 
2520 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2521 
2522 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2523 
2524 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2525    ADDR specifies the location of the variable the type is bound to.
2526    If TYPE has no dynamic properties return TYPE; otherwise a new type with
2527    static properties is returned.  */
2528 extern struct type *resolve_dynamic_type
2529   (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2530    CORE_ADDR addr);
2531 
2532 /* * Predicate if the type has dynamic values, which are not resolved yet.  */
2533 extern int is_dynamic_type (struct type *type);
2534 
2535 extern struct type *check_typedef (struct type *);
2536 
2537 extern void check_stub_method_group (struct type *, int);
2538 
2539 extern char *gdb_mangle_name (struct type *, int, int);
2540 
2541 extern struct type *lookup_typename (const struct language_defn *,
2542 				     const char *, const struct block *, int);
2543 
2544 extern struct type *lookup_template_type (const char *, struct type *,
2545 					  const struct block *);
2546 
2547 extern int get_vptr_fieldno (struct type *, struct type **);
2548 
2549 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2550    TYPE.
2551 
2552    Return true if the two bounds are available, false otherwise.  */
2553 
2554 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2555 				 LONGEST *highp);
2556 
2557 /* If TYPE's low bound is a known constant, return it, else return nullopt.  */
2558 
2559 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2560 
2561 /* If TYPE's high bound is a known constant, return it, else return nullopt.  */
2562 
2563 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2564 
2565 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2566    and lower bound.  Save the low bound into LOW_BOUND if not NULL.
2567    Save the high bound into HIGH_BOUND if not NULL.
2568 
2569    Return true if the operation was successful.  Return false otherwise,
2570    in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.  */
2571 
2572 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2573 			      LONGEST *high_bound);
2574 
2575 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2576 						 LONGEST val);
2577 
2578 extern int class_types_same_p (const struct type *, const struct type *);
2579 
2580 extern int is_ancestor (struct type *, struct type *);
2581 
2582 extern int is_public_ancestor (struct type *, struct type *);
2583 
2584 extern int is_unique_ancestor (struct type *, struct value *);
2585 
2586 /* Overload resolution */
2587 
2588 /* * Badness if parameter list length doesn't match arg list length.  */
2589 extern const struct rank LENGTH_MISMATCH_BADNESS;
2590 
2591 /* * Dummy badness value for nonexistent parameter positions.  */
2592 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2593 /* * Badness if no conversion among types.  */
2594 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2595 
2596 /* * Badness of an exact match.  */
2597 extern const struct rank EXACT_MATCH_BADNESS;
2598 
2599 /* * Badness of integral promotion.  */
2600 extern const struct rank INTEGER_PROMOTION_BADNESS;
2601 /* * Badness of floating promotion.  */
2602 extern const struct rank FLOAT_PROMOTION_BADNESS;
2603 /* * Badness of converting a derived class pointer
2604    to a base class pointer.  */
2605 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2606 /* * Badness of integral conversion.  */
2607 extern const struct rank INTEGER_CONVERSION_BADNESS;
2608 /* * Badness of floating conversion.  */
2609 extern const struct rank FLOAT_CONVERSION_BADNESS;
2610 /* * Badness of integer<->floating conversions.  */
2611 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2612 /* * Badness of conversion of pointer to void pointer.  */
2613 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2614 /* * Badness of conversion to boolean.  */
2615 extern const struct rank BOOL_CONVERSION_BADNESS;
2616 /* * Badness of converting derived to base class.  */
2617 extern const struct rank BASE_CONVERSION_BADNESS;
2618 /* * Badness of converting from non-reference to reference.  Subrank
2619    is the type of reference conversion being done.  */
2620 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2621 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2622 /* * Conversion to rvalue reference.  */
2623 #define REFERENCE_CONVERSION_RVALUE 1
2624 /* * Conversion to const lvalue reference.  */
2625 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2626 
2627 /* * Badness of converting integer 0 to NULL pointer.  */
2628 extern const struct rank NULL_POINTER_CONVERSION;
2629 /* * Badness of cv-conversion.  Subrank is a flag describing the conversions
2630    being done.  */
2631 extern const struct rank CV_CONVERSION_BADNESS;
2632 #define CV_CONVERSION_CONST 1
2633 #define CV_CONVERSION_VOLATILE 2
2634 
2635 /* Non-standard conversions allowed by the debugger */
2636 
2637 /* * Converting a pointer to an int is usually OK.  */
2638 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2639 
2640 /* * Badness of converting a (non-zero) integer constant
2641    to a pointer.  */
2642 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2643 
2644 extern struct rank sum_ranks (struct rank a, struct rank b);
2645 extern int compare_ranks (struct rank a, struct rank b);
2646 
2647 extern int compare_badness (const badness_vector &,
2648 			    const badness_vector &);
2649 
2650 extern badness_vector rank_function (gdb::array_view<type *> parms,
2651 				     gdb::array_view<value *> args);
2652 
2653 extern struct rank rank_one_type (struct type *, struct type *,
2654 				  struct value *);
2655 
2656 extern void recursive_dump_type (struct type *, int);
2657 
2658 extern int field_is_static (struct field *);
2659 
2660 /* printcmd.c */
2661 
2662 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2663 				    const struct value_print_options *,
2664 				    int, struct ui_file *);
2665 
2666 extern int can_dereference (struct type *);
2667 
2668 extern int is_integral_type (struct type *);
2669 
2670 extern int is_floating_type (struct type *);
2671 
2672 extern int is_scalar_type (struct type *type);
2673 
2674 extern int is_scalar_type_recursive (struct type *);
2675 
2676 extern int class_or_union_p (const struct type *);
2677 
2678 extern void maintenance_print_type (const char *, int);
2679 
2680 extern htab_up create_copied_types_hash (struct objfile *objfile);
2681 
2682 extern struct type *copy_type_recursive (struct objfile *objfile,
2683 					 struct type *type,
2684 					 htab_t copied_types);
2685 
2686 extern struct type *copy_type (const struct type *type);
2687 
2688 extern bool types_equal (struct type *, struct type *);
2689 
2690 extern bool types_deeply_equal (struct type *, struct type *);
2691 
2692 extern int type_not_allocated (const struct type *type);
2693 
2694 extern int type_not_associated (const struct type *type);
2695 
2696 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2697    a range type whose base type is a TYPE_CODE_FIXED_POINT.  */
2698 extern bool is_fixed_point_type (struct type *type);
2699 
2700 /* Allocate a fixed-point type info for TYPE.  This should only be
2701    called by INIT_FIXED_POINT_SPECIFIC.  */
2702 extern void allocate_fixed_point_type_info (struct type *type);
2703 
2704 /* * When the type includes explicit byte ordering, return that.
2705    Otherwise, the byte ordering from gdbarch_byte_order for
2706    the type's arch is returned.  */
2707 
2708 extern enum bfd_endian type_byte_order (const struct type *type);
2709 
2710 /* A flag to enable printing of debugging information of C++
2711    overloading.  */
2712 
2713 extern unsigned int overload_debug;
2714 
2715 #endif /* GDBTYPES_H */
2716