xref: /openbsd/lib/libc/gdtoa/gdtoaimp.h (revision 2c53affb)
1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* This is a variation on dtoa.c that converts arbitrary binary
30    floating-point formats to and from decimal notation.  It uses
31    double-precision arithmetic internally, so there are still
32    various #ifdefs that adapt the calculations to the native
33    double-precision arithmetic (any of IEEE, VAX D_floating,
34    or IBM mainframe arithmetic).
35 
36    Please send bug reports to David M. Gay (dmg at acm dot org,
37    with " at " changed at "@" and " dot " changed to ".").
38  */
39 
40 /* On a machine with IEEE extended-precision registers, it is
41  * necessary to specify double-precision (53-bit) rounding precision
42  * before invoking strtod or dtoa.  If the machine uses (the equivalent
43  * of) Intel 80x87 arithmetic, the call
44  *	_control87(PC_53, MCW_PC);
45  * does this with many compilers.  Whether this or another call is
46  * appropriate depends on the compiler; for this to work, it may be
47  * necessary to #include "float.h" or another system-dependent header
48  * file.
49  */
50 
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52  *
53  * This strtod returns a nearest machine number to the input decimal
54  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
55  * broken by the IEEE round-even rule.  Otherwise ties are broken by
56  * biased rounding (add half and chop).
57  *
58  * Inspired loosely by William D. Clinger's paper "How to Read Floating
59  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60  *
61  * Modifications:
62  *
63  *	1. We only require IEEE, IBM, or VAX double-precision
64  *		arithmetic (not IEEE double-extended).
65  *	2. We get by with floating-point arithmetic in a case that
66  *		Clinger missed -- when we're computing d * 10^n
67  *		for a small integer d and the integer n is not too
68  *		much larger than 22 (the maximum integer k for which
69  *		we can represent 10^k exactly), we may be able to
70  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
71  *	3. Rather than a bit-at-a-time adjustment of the binary
72  *		result in the hard case, we use floating-point
73  *		arithmetic to determine the adjustment to within
74  *		one bit; only in really hard cases do we need to
75  *		compute a second residual.
76  *	4. Because of 3., we don't need a large table of powers of 10
77  *		for ten-to-e (just some small tables, e.g. of 10^k
78  *		for 0 <= k <= 22).
79  */
80 
81 /*
82  * #define IEEE_8087 for IEEE-arithmetic machines where the least
83  *	significant byte has the lowest address.
84  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85  *	significant byte has the lowest address.
86  * #define Long int on machines with 32-bit ints and 64-bit longs.
87  * #define Sudden_Underflow for IEEE-format machines without gradual
88  *	underflow (i.e., that flush to zero on underflow).
89  * #define IBM for IBM mainframe-style floating-point arithmetic.
90  * #define VAX for VAX-style floating-point arithmetic (D_floating).
91  * #define No_leftright to omit left-right logic in fast floating-point
92  *	computation of dtoa and gdtoa.  This will cause modes 4 and 5 to be
93  *	treated the same as modes 2 and 3 for some inputs.
94  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
95  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
96  *	that use extended-precision instructions to compute rounded
97  *	products and quotients) with IBM.
98  * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
99  *	that rounds toward +Infinity.
100  * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
101  *	rounding when the underlying floating-point arithmetic uses
102  *	unbiased rounding.  This prevent using ordinary floating-point
103  *	arithmetic when the result could be computed with one rounding error.
104  * #define Inaccurate_Divide for IEEE-format with correctly rounded
105  *	products but inaccurate quotients, e.g., for Intel i860.
106  * #define NO_LONG_LONG on machines that do not have a "long long"
107  *	integer type (of >= 64 bits).  On such machines, you can
108  *	#define Just_16 to store 16 bits per 32-bit Long when doing
109  *	high-precision integer arithmetic.  Whether this speeds things
110  *	up or slows things down depends on the machine and the number
111  *	being converted.  If long long is available and the name is
112  *	something other than "long long", #define Llong to be the name,
113  *	and if "unsigned Llong" does not work as an unsigned version of
114  *	Llong, #define #ULLong to be the corresponding unsigned type.
115  * #define KR_headers for old-style C function headers.
116  * #define Bad_float_h if your system lacks a float.h or if it does not
117  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
118  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
119  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
120  *	if memory is available and otherwise does something you deem
121  *	appropriate.  If MALLOC is undefined, malloc will be invoked
122  *	directly -- and assumed always to succeed.  Similarly, if you
123  *	want something other than the system's free() to be called to
124  *	recycle memory acquired from MALLOC, #define FREE to be the
125  *	name of the alternate routine.  (FREE or free is only called in
126  *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
127  *	mode 3 with thousands of digits requested.)
128  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
129  *	memory allocations from a private pool of memory when possible.
130  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
131  *	unless #defined to be a different length.  This default length
132  *	suffices to get rid of MALLOC calls except for unusual cases,
133  *	such as decimal-to-binary conversion of a very long string of
134  *	digits.  When converting IEEE double precision values, the
135  *	longest string gdtoa can return is about 751 bytes long.  For
136  *	conversions by strtod of strings of 800 digits and all gdtoa
137  *	conversions of IEEE doubles in single-threaded executions with
138  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
139  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
140  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
141  *	#defined automatically on IEEE systems.  On such systems,
142  *	when INFNAN_CHECK is #defined, strtod checks
143  *	for Infinity and NaN (case insensitively).
144  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
145  *	strtodg also accepts (case insensitively) strings of the form
146  *	NaN(x), where x is a string of hexadecimal digits (optionally
147  *	preceded by 0x or 0X) and spaces; if there is only one string
148  *	of hexadecimal digits, it is taken for the fraction bits of the
149  *	resulting NaN; if there are two or more strings of hexadecimal
150  *	digits, each string is assigned to the next available sequence
151  *	of 32-bit words of fractions bits (starting with the most
152  *	significant), right-aligned in each sequence.
153  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
154  *	is consumed even when ... has the wrong form (in which case the
155  *	"(...)" is consumed but ignored).
156  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
157  *	multiple threads.  In this case, you must provide (or suitably
158  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
159  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
160  *	in pow5mult, ensures lazy evaluation of only one copy of high
161  *	powers of 5; omitting this lock would introduce a small
162  *	probability of wasting memory, but would otherwise be harmless.)
163  *	You must also invoke freedtoa(s) to free the value s returned by
164  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
165  * #define IMPRECISE_INEXACT if you do not care about the setting of
166  *	the STRTOG_Inexact bits in the special case of doing IEEE double
167  *	precision conversions (which could also be done by the strtod in
168  *	dtoa.c).
169  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
170  *	floating-point constants.
171  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
172  *	strtodg.c).
173  * #define NO_STRING_H to use private versions of memcpy.
174  *	On some K&R systems, it may also be necessary to
175  *	#define DECLARE_SIZE_T in this case.
176  * #define USE_LOCALE to use the current locale's decimal_point value.
177  */
178 
179 #ifndef GDTOAIMP_H_INCLUDED
180 #define GDTOAIMP_H_INCLUDED
181 #include "gdtoa.h"
182 #include "gd_qnan.h"
183 #ifdef Honor_FLT_ROUNDS
184 #include <fenv.h>
185 #endif
186 
187 #ifdef DEBUG
188 #include "stdio.h"
189 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
190 #endif
191 
192 #include "stdlib.h"
193 #include "string.h"
194 
195 #ifdef KR_headers
196 #define Char char
197 #else
198 #define Char void
199 #endif
200 
201 #ifdef MALLOC
202 extern Char *MALLOC ANSI((size_t));
203 #else
204 #define MALLOC malloc
205 #endif
206 
207 #undef IEEE_Arith
208 #undef Avoid_Underflow
209 #ifdef IEEE_MC68k
210 #define IEEE_Arith
211 #endif
212 #ifdef IEEE_8087
213 #define IEEE_Arith
214 #endif
215 
216 #include "errno.h"
217 #ifdef Bad_float_h
218 
219 #ifdef IEEE_Arith
220 #define DBL_DIG 15
221 #define DBL_MAX_10_EXP 308
222 #define DBL_MAX_EXP 1024
223 #define FLT_RADIX 2
224 #define DBL_MAX 1.7976931348623157e+308
225 #endif
226 
227 #ifdef IBM
228 #define DBL_DIG 16
229 #define DBL_MAX_10_EXP 75
230 #define DBL_MAX_EXP 63
231 #define FLT_RADIX 16
232 #define DBL_MAX 7.2370055773322621e+75
233 #endif
234 
235 #ifdef VAX
236 #define DBL_DIG 16
237 #define DBL_MAX_10_EXP 38
238 #define DBL_MAX_EXP 127
239 #define FLT_RADIX 2
240 #define DBL_MAX 1.7014118346046923e+38
241 #define n_bigtens 2
242 #endif
243 
244 #ifndef LONG_MAX
245 #define LONG_MAX 2147483647
246 #endif
247 
248 #else /* ifndef Bad_float_h */
249 #include "float.h"
250 #endif /* Bad_float_h */
251 
252 #ifdef IEEE_Arith
253 #define Scale_Bit 0x10
254 #define n_bigtens 5
255 #endif
256 
257 #ifdef IBM
258 #define n_bigtens 3
259 #endif
260 
261 #ifdef VAX
262 #define n_bigtens 2
263 #endif
264 
265 #ifndef __MATH_H__
266 #include "math.h"
267 #endif
268 
269 #ifdef __cplusplus
270 extern "C" {
271 #endif
272 
273 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
274 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
275 #endif
276 
277 typedef union { double d; ULong L[2]; } U;
278 
279 #ifdef IEEE_8087
280 #define word0(x) (x)->L[1]
281 #define word1(x) (x)->L[0]
282 #else
283 #define word0(x) (x)->L[0]
284 #define word1(x) (x)->L[1]
285 #endif
286 #define dval(x) (x)->d
287 
288 /* The following definition of Storeinc is appropriate for MIPS processors.
289  * An alternative that might be better on some machines is
290  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
291  */
292 #if defined(IEEE_8087) + defined(VAX)
293 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
294 ((unsigned short *)a)[0] = (unsigned short)c, a++)
295 #else
296 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
297 ((unsigned short *)a)[1] = (unsigned short)c, a++)
298 #endif
299 
300 /* #define P DBL_MANT_DIG */
301 /* Ten_pmax = floor(P*log(2)/log(5)) */
302 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
303 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
304 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
305 
306 #ifdef IEEE_Arith
307 #define Exp_shift  20
308 #define Exp_shift1 20
309 #define Exp_msk1    0x100000
310 #define Exp_msk11   0x100000
311 #define Exp_mask  0x7ff00000
312 #define P 53
313 #define Bias 1023
314 #define Emin (-1022)
315 #define Exp_1  0x3ff00000
316 #define Exp_11 0x3ff00000
317 #define Ebits 11
318 #define Frac_mask  0xfffff
319 #define Frac_mask1 0xfffff
320 #define Ten_pmax 22
321 #define Bletch 0x10
322 #define Bndry_mask  0xfffff
323 #define Bndry_mask1 0xfffff
324 #define LSB 1
325 #define Sign_bit 0x80000000
326 #define Log2P 1
327 #define Tiny0 0
328 #define Tiny1 1
329 #define Quick_max 14
330 #define Int_max 14
331 
332 #ifndef Flt_Rounds
333 #ifdef FLT_ROUNDS
334 #define Flt_Rounds FLT_ROUNDS
335 #else
336 #define Flt_Rounds 1
337 #endif
338 #endif /*Flt_Rounds*/
339 
340 #else /* ifndef IEEE_Arith */
341 #undef  Sudden_Underflow
342 #define Sudden_Underflow
343 #ifdef IBM
344 #undef Flt_Rounds
345 #define Flt_Rounds 0
346 #define Exp_shift  24
347 #define Exp_shift1 24
348 #define Exp_msk1   0x1000000
349 #define Exp_msk11  0x1000000
350 #define Exp_mask  0x7f000000
351 #define P 14
352 #define Bias 65
353 #define Exp_1  0x41000000
354 #define Exp_11 0x41000000
355 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
356 #define Frac_mask  0xffffff
357 #define Frac_mask1 0xffffff
358 #define Bletch 4
359 #define Ten_pmax 22
360 #define Bndry_mask  0xefffff
361 #define Bndry_mask1 0xffffff
362 #define LSB 1
363 #define Sign_bit 0x80000000
364 #define Log2P 4
365 #define Tiny0 0x100000
366 #define Tiny1 0
367 #define Quick_max 14
368 #define Int_max 15
369 #else /* VAX */
370 #undef Flt_Rounds
371 #define Flt_Rounds 1
372 #define Exp_shift  23
373 #define Exp_shift1 7
374 #define Exp_msk1    0x80
375 #define Exp_msk11   0x800000
376 #define Exp_mask  0x7f80
377 #define P 56
378 #define Bias 129
379 #define Emin (-127)
380 #define Exp_1  0x40800000
381 #define Exp_11 0x4080
382 #define Ebits 8
383 #define Frac_mask  0x7fffff
384 #define Frac_mask1 0xffff007f
385 #define Ten_pmax 24
386 #define Bletch 2
387 #define Bndry_mask  0xffff007f
388 #define Bndry_mask1 0xffff007f
389 #define LSB 0x10000
390 #define Sign_bit 0x8000
391 #define Log2P 1
392 #define Tiny0 0x80
393 #define Tiny1 0
394 #define Quick_max 15
395 #define Int_max 15
396 #endif /* IBM, VAX */
397 #endif /* IEEE_Arith */
398 
399 #ifndef IEEE_Arith
400 #define ROUND_BIASED
401 #else
402 #ifdef ROUND_BIASED_without_Round_Up
403 #undef  ROUND_BIASED
404 #define ROUND_BIASED
405 #endif
406 #endif
407 
408 #ifdef RND_PRODQUOT
409 #define rounded_product(a,b) a = rnd_prod(a, b)
410 #define rounded_quotient(a,b) a = rnd_quot(a, b)
411 #ifdef KR_headers
412 extern double rnd_prod(), rnd_quot();
413 #else
414 extern double rnd_prod(double, double), rnd_quot(double, double);
415 #endif
416 #else
417 #define rounded_product(a,b) a *= b
418 #define rounded_quotient(a,b) a /= b
419 #endif
420 
421 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
422 #define Big1 0xffffffff
423 
424 #undef  Pack_16
425 #ifndef Pack_32
426 #define Pack_32
427 #endif
428 
429 #ifdef NO_LONG_LONG
430 #undef ULLong
431 #ifdef Just_16
432 #undef Pack_32
433 #define Pack_16
434 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
435  * This makes some inner loops simpler and sometimes saves work
436  * during multiplications, but it often seems to make things slightly
437  * slower.  Hence the default is now to store 32 bits per Long.
438  */
439 #endif
440 #else	/* long long available */
441 #ifndef Llong
442 #define Llong long long
443 #endif
444 #ifndef ULLong
445 #define ULLong unsigned Llong
446 #endif
447 #endif /* NO_LONG_LONG */
448 
449 #ifdef Pack_32
450 #define ULbits 32
451 #define kshift 5
452 #define kmask 31
453 #define ALL_ON 0xffffffff
454 #else
455 #define ULbits 16
456 #define kshift 4
457 #define kmask 15
458 #define ALL_ON 0xffff
459 #endif
460 
461 #ifndef MULTIPLE_THREADS
462 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
463 #define FREE_DTOA_LOCK(n)	/*nothing*/
464 #else
465 #include "thread_private.h"
466 #define ACQUIRE_DTOA_LOCK(n)	_MUTEX_LOCK(&__dtoa_locks[n])
467 #define FREE_DTOA_LOCK(n)	_MUTEX_UNLOCK(&__dtoa_locks[n])
468 #endif
469 
470 #define Kmax 9
471 
472  struct
473 Bigint {
474 	struct Bigint *next;
475 	int k, maxwds, sign, wds;
476 	ULong x[1];
477 	};
478 
479  typedef struct Bigint Bigint;
480 
481 #ifdef NO_STRING_H
482 #ifdef DECLARE_SIZE_T
483 typedef unsigned int size_t;
484 #endif
485 extern void memcpy_D2A ANSI((void*, const void*, size_t));
486 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
487 #else /* !NO_STRING_H */
488 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
489 #endif /* NO_STRING_H */
490 
491 #define dtoa __dtoa
492 #define gdtoa __gdtoa
493 #define freedtoa __freedtoa
494 #define strtodg __strtodg
495 #define g_ddfmt __g_ddfmt
496 #define g_dfmt __g_dfmt
497 #define g_ffmt __g_ffmt
498 #define g_Qfmt __g_Qfmt
499 #define g_xfmt __g_xfmt
500 #define g_xLfmt __g_xLfmt
501 #define strtoId __strtoId
502 #define strtoIdd __strtoIdd
503 #define strtoIf __strtoIf
504 #define strtoIQ __strtoIQ
505 #define strtoIx __strtoIx
506 #define strtoIxL __strtoIxL
507 #define strtord __strtord
508 #define strtordd __strtordd
509 #define strtorf __strtorf
510 #define strtorQ __strtorQ
511 #define strtorx __strtorx
512 #define strtorxL __strtorxL
513 #define strtodI __strtodI
514 #define strtopd __strtopd
515 #define strtopdd __strtopdd
516 #define strtopf __strtopf
517 #define strtopQ __strtopQ
518 #define strtopx __strtopx
519 #define strtopxL __strtopxL
520 
521 #define Balloc __Balloc_D2A
522 #define Bfree __Bfree_D2A
523 #define ULtoQ __ULtoQ_D2A
524 #define ULtof __ULtof_D2A
525 #define ULtod __ULtod_D2A
526 #define ULtodd __ULtodd_D2A
527 #define ULtox __ULtox_D2A
528 #define ULtoxL __ULtoxL_D2A
529 #define any_on __any_on_D2A
530 #define b2d __b2d_D2A
531 #define bigtens __bigtens_D2A
532 #define cmp __cmp_D2A
533 #define copybits __copybits_D2A
534 #define d2b __d2b_D2A
535 #define decrement __decrement_D2A
536 #define diff __diff_D2A
537 #define dtoa_result __dtoa_result_D2A
538 #define g__fmt __g__fmt_D2A
539 #define gethex __gethex_D2A
540 #define hexdig __hexdig_D2A
541 #define hexnan __hexnan_D2A
542 #define hi0bits(x) __hi0bits_D2A((ULong)(x))
543 #define hi0bits_D2A __hi0bits_D2A
544 #define i2b __i2b_D2A
545 #define increment __increment_D2A
546 #define lo0bits __lo0bits_D2A
547 #define lshift __lshift_D2A
548 #define match __match_D2A
549 #define mult __mult_D2A
550 #define multadd __multadd_D2A
551 #define nrv_alloc __nrv_alloc_D2A
552 #define pow5mult __pow5mult_D2A
553 #define quorem __quorem_D2A
554 #define ratio __ratio_D2A
555 #define rshift __rshift_D2A
556 #define rv_alloc __rv_alloc_D2A
557 #define s2b __s2b_D2A
558 #define set_ones __set_ones_D2A
559 #define strcp __strcp_D2A
560 #define strtoIg __strtoIg_D2A
561 #define sulp __sulp_D2A
562 #define sum __sum_D2A
563 #define tens __tens_D2A
564 #define tinytens __tinytens_D2A
565 #define tinytens __tinytens_D2A
566 #define trailz __trailz_D2A
567 #define ulp __ulp_D2A
568 
569 __BEGIN_HIDDEN_DECLS
570  extern char *dtoa_result;
571  extern CONST double bigtens[], tens[], tinytens[];
572  extern unsigned char hexdig[];
573 
574  extern Bigint *Balloc ANSI((int));
575  extern void Bfree ANSI((Bigint*));
576  extern void ULtof ANSI((ULong*, ULong*, Long, int));
577  extern void ULtod ANSI((ULong*, ULong*, Long, int));
578  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
579  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
580  extern void ULtox ANSI((UShort*, ULong*, Long, int));
581  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
582  extern ULong any_on ANSI((Bigint*, int));
583  extern double b2d ANSI((Bigint*, int*));
584  extern int cmp ANSI((Bigint*, Bigint*));
585  extern void copybits ANSI((ULong*, int, Bigint*));
586  extern Bigint *d2b ANSI((double, int*, int*));
587  extern void decrement ANSI((Bigint*));
588  extern Bigint *diff ANSI((Bigint*, Bigint*));
589  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
590  extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
591  extern void __hexdig_init_D2A(Void);
592  extern int hexnan ANSI((CONST char**, FPI*, ULong*));
593  extern int hi0bits_D2A ANSI((ULong));
594  extern Bigint *i2b ANSI((int));
595  extern Bigint *increment ANSI((Bigint*));
596  extern int lo0bits ANSI((ULong*));
597  extern Bigint *lshift ANSI((Bigint*, int));
598  extern int match ANSI((CONST char**, char*));
599  extern Bigint *mult ANSI((Bigint*, Bigint*));
600  extern Bigint *multadd ANSI((Bigint*, int, int));
601  extern char *nrv_alloc ANSI((char*, char **, int));
602  extern Bigint *pow5mult ANSI((Bigint*, int));
603  extern int quorem ANSI((Bigint*, Bigint*));
604  extern double ratio ANSI((Bigint*, Bigint*));
605  extern void rshift ANSI((Bigint*, int));
606  extern char *rv_alloc ANSI((int));
607  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
608  extern Bigint *set_ones ANSI((Bigint*, int));
609  extern char *strcp ANSI((char*, const char*));
610  extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
611  extern Bigint *sum ANSI((Bigint*, Bigint*));
612  extern int trailz ANSI((Bigint*));
613  extern double ulp ANSI((U*));
614 __END_HIDDEN_DECLS
615 
616 #ifdef __cplusplus
617 }
618 #endif
619 /*
620  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
621  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
622  * respectively), but now are determined by compiling and running
623  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
624  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
625  * and -DNAN_WORD1=...  values if necessary.  This should still work.
626  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
627  */
628 #ifdef IEEE_Arith
629 #ifndef NO_INFNAN_CHECK
630 #undef INFNAN_CHECK
631 #define INFNAN_CHECK
632 #endif
633 #ifdef IEEE_MC68k
634 #define _0 0
635 #define _1 1
636 #ifndef NAN_WORD0
637 #define NAN_WORD0 d_QNAN0
638 #endif
639 #ifndef NAN_WORD1
640 #define NAN_WORD1 d_QNAN1
641 #endif
642 #else
643 #define _0 1
644 #define _1 0
645 #ifndef NAN_WORD0
646 #define NAN_WORD0 d_QNAN1
647 #endif
648 #ifndef NAN_WORD1
649 #define NAN_WORD1 d_QNAN0
650 #endif
651 #endif
652 #else
653 #undef INFNAN_CHECK
654 #endif
655 
656 #undef SI
657 #ifdef Sudden_Underflow
658 #define SI 1
659 #else
660 #define SI 0
661 #endif
662 
663 #endif /* GDTOAIMP_H_INCLUDED */
664