1 /**********************************************************************
2  * File:        degradeimage.cpp
3  * Description: Function to degrade an image (usually of text) as if it
4  *              has been printed and then scanned.
5  * Authors:     Ray Smith
6  *
7  * (C) Copyright 2013, Google Inc.
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  * http://www.apache.org/licenses/LICENSE-2.0
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  *
18  **********************************************************************/
19 
20 #include "degradeimage.h"
21 
22 #include <allheaders.h> // from leptonica
23 #include <cstdlib>
24 #include "helpers.h" // For TRand.
25 #include "rect.h"
26 
27 namespace tesseract {
28 
29 // A randomized perspective distortion can be applied to synthetic input.
30 // The perspective distortion comes from leptonica, which uses 2 sets of 4
31 // corners to determine the distortion. There are random values for each of
32 // the x numbers x0..x3 and y0..y3, except for x2 and x3 which are instead
33 // defined in terms of a single shear value. This reduces the degrees of
34 // freedom enough to make the distortion more realistic than it would otherwise
35 // be if all 8 coordinates could move independently.
36 // One additional factor is used for the color of the pixels that don't exist
37 // in the source image.
38 // Name for each of the randomizing factors.
39 enum FactorNames {
40   FN_INCOLOR,
41   FN_Y0,
42   FN_Y1,
43   FN_Y2,
44   FN_Y3,
45   FN_X0,
46   FN_X1,
47   FN_SHEAR,
48   // x2 = x1 - shear
49   // x3 = x0 + shear
50   FN_NUM_FACTORS
51 };
52 
53 // Rotation is +/- kRotationRange radians.
54 const float kRotationRange = 0.02f;
55 // Number of grey levels to shift by for each exposure step.
56 const int kExposureFactor = 16;
57 // Salt and pepper noise is +/- kSaltnPepper.
58 const int kSaltnPepper = 5;
59 // Min sum of width + height on which to operate the ramp.
60 const int kMinRampSize = 1000;
61 
62 // Degrade the pix as if by a print/copy/scan cycle with exposure > 0
63 // corresponding to darkening on the copier and <0 lighter and 0 not copied.
64 // Exposures in [-2,2] are most useful, with -3 and 3 being extreme.
65 // If rotation is nullptr, rotation is skipped. If *rotation is non-zero, the
66 // pix is rotated by *rotation else it is randomly rotated and *rotation is
67 // modified.
68 //
69 // HOW IT WORKS:
70 // Most of the process is really dictated by the fact that the minimum
71 // available convolution is 3X3, which is too big really to simulate a
72 // good quality print/scan process. (2X2 would be better.)
73 // 1 pixel wide inputs are heavily smeared by the 3X3 convolution, making the
74 // images generally biased to being too light, so most of the work is to make
75 // them darker. 3 levels of thickening/darkening are achieved with 2 dilations,
76 // (using a greyscale erosion) one heavy (by being before convolution) and one
77 // light (after convolution).
78 // With no dilation, after covolution, the images are so light that a heavy
79 // constant offset is required to make the 0 image look reasonable. A simple
80 // constant offset multiple of exposure to undo this value is enough to achieve
81 // all the required lighting. This gives the advantage that exposure level 1
82 // with a single dilation gives a good impression of the broken-yet-too-dark
83 // problem that is often seen in scans.
84 // A small random rotation gives some varying greyscale values on the edges,
85 // and some random salt and pepper noise on top helps to realistically jaggy-up
86 // the edges.
87 // Finally a greyscale ramp provides a continuum of effects between exposure
88 // levels.
DegradeImage(Image input,int exposure,TRand * randomizer,float * rotation)89 Image DegradeImage(Image input, int exposure, TRand *randomizer, float *rotation) {
90   Image pix = pixConvertTo8(input, false);
91   input.destroy();
92   input = pix;
93   int width = pixGetWidth(input);
94   int height = pixGetHeight(input);
95 
96   if (exposure >= 2) {
97     // An erosion simulates the spreading darkening of a dark copy.
98     // This is backwards to binary morphology,
99     // see http://www.leptonica.com/grayscale-morphology.html
100     pix = input;
101     input = pixErodeGray(pix, 3, 3);
102     pix.destroy();
103   }
104   // A convolution is essential to any mode as no scanner produces an
105   // image as sharp as the electronic image.
106   pix = pixBlockconv(input, 1, 1);
107   input.destroy();
108   // A small random rotation helps to make the edges jaggy in a realistic way.
109   if (rotation != nullptr) {
110     float radians_clockwise = 0.0f;
111     if (*rotation) {
112       radians_clockwise = *rotation;
113     } else if (randomizer != nullptr) {
114       radians_clockwise = randomizer->SignedRand(kRotationRange);
115     }
116 
117     input = pixRotate(pix, radians_clockwise, L_ROTATE_AREA_MAP, L_BRING_IN_WHITE, 0, 0);
118     // Rotate the boxes to match.
119     *rotation = radians_clockwise;
120     pix.destroy();
121   } else {
122     input = pix;
123   }
124 
125   if (exposure >= 3 || exposure == 1) {
126     // Erosion after the convolution is not as heavy as before, so it is
127     // good for level 1 and in addition as a level 3.
128     // This is backwards to binary morphology,
129     // see http://www.leptonica.com/grayscale-morphology.html
130     pix = input;
131     input = pixErodeGray(pix, 3, 3);
132     pix.destroy();
133   }
134   // The convolution really needed to be 2x2 to be realistic enough, but
135   // we only have 3x3, so we have to bias the image darker or lose thin
136   // strokes.
137   int erosion_offset = 0;
138   // For light and 0 exposure, there is no dilation, so compensate for the
139   // convolution with a big darkening bias which is undone for lighter
140   // exposures.
141   if (exposure <= 0) {
142     erosion_offset = -3 * kExposureFactor;
143   }
144   // Add in a general offset of the greyscales for the exposure level so
145   // a threshold of 128 gives a reasonable binary result.
146   erosion_offset -= exposure * kExposureFactor;
147   // Add a gradual fade over the page and a small amount of salt and pepper
148   // noise to simulate noise in the sensor/paper fibres and varying
149   // illumination.
150   l_uint32 *data = pixGetData(input);
151   for (int y = 0; y < height; ++y) {
152     for (int x = 0; x < width; ++x) {
153       int pixel = GET_DATA_BYTE(data, x);
154       if (randomizer != nullptr) {
155         pixel += randomizer->IntRand() % (kSaltnPepper * 2 + 1) - kSaltnPepper;
156       }
157       if (height + width > kMinRampSize) {
158         pixel -= (2 * x + y) * 32 / (height + width);
159       }
160       pixel += erosion_offset;
161       if (pixel < 0) {
162         pixel = 0;
163       }
164       if (pixel > 255) {
165         pixel = 255;
166       }
167       SET_DATA_BYTE(data, x, pixel);
168     }
169     data += input->wpl;
170   }
171   return input;
172 }
173 
174 // Creates and returns a Pix distorted by various means according to the bool
175 // flags. If boxes is not nullptr, the boxes are resized/positioned according to
176 // any spatial distortion and also by the integer reduction factor box_scale
177 // so they will match what the network will output.
178 // Returns nullptr on error. The returned Pix must be pixDestroyed.
PrepareDistortedPix(const Image pix,bool perspective,bool invert,bool white_noise,bool smooth_noise,bool blur,int box_reduction,TRand * randomizer,std::vector<TBOX> * boxes)179 Image PrepareDistortedPix(const Image pix, bool perspective, bool invert, bool white_noise,
180                          bool smooth_noise, bool blur, int box_reduction, TRand *randomizer,
181                          std::vector<TBOX> *boxes) {
182   Image distorted = pix.copy();
183   // Things to do to synthetic training data.
184   if ((white_noise || smooth_noise) && randomizer->SignedRand(1.0) > 0.0) {
185     // TODO(rays) Cook noise in a more thread-safe manner than rand().
186     // Attempt to make the sequences reproducible.
187     srand(randomizer->IntRand());
188     Image pixn = pixAddGaussianNoise(distorted, 8.0);
189     distorted.destroy();
190     if (smooth_noise) {
191       distorted = pixBlockconv(pixn, 1, 1);
192       pixn.destroy();
193     } else {
194       distorted = pixn;
195     }
196   }
197   if (blur && randomizer->SignedRand(1.0) > 0.0) {
198     Image blurred = pixBlockconv(distorted, 1, 1);
199     distorted.destroy();
200     distorted = blurred;
201   }
202   if (perspective) {
203     GeneratePerspectiveDistortion(0, 0, randomizer, &distorted, boxes);
204   }
205   if (boxes != nullptr) {
206     for (auto &b : *boxes) {
207       b.scale(1.0f / box_reduction);
208       if (b.width() <= 0) {
209         b.set_right(b.left() + 1);
210       }
211     }
212   }
213   if (invert && randomizer->SignedRand(1.0) < -0) {
214     pixInvert(distorted, distorted);
215   }
216   return distorted;
217 }
218 
219 // Distorts anything that has a non-null pointer with the same pseudo-random
220 // perspective distortion. Width and height only need to be set if there
221 // is no pix. If there is a pix, then they will be taken from there.
GeneratePerspectiveDistortion(int width,int height,TRand * randomizer,Image * pix,std::vector<TBOX> * boxes)222 void GeneratePerspectiveDistortion(int width, int height, TRand *randomizer, Image *pix,
223                                    std::vector<TBOX> *boxes) {
224   if (pix != nullptr && *pix != nullptr) {
225     width = pixGetWidth(*pix);
226     height = pixGetHeight(*pix);
227   }
228   float *im_coeffs = nullptr;
229   float *box_coeffs = nullptr;
230   l_int32 incolor = ProjectiveCoeffs(width, height, randomizer, &im_coeffs, &box_coeffs);
231   if (pix != nullptr && *pix != nullptr) {
232     // Transform the image.
233     Image transformed = pixProjective(*pix, im_coeffs, incolor);
234     if (transformed == nullptr) {
235       tprintf("Projective transformation failed!!\n");
236       return;
237     }
238     pix->destroy();
239     *pix = transformed;
240   }
241   if (boxes != nullptr) {
242     // Transform the boxes.
243     for (auto &b : *boxes) {
244       int x1, y1, x2, y2;
245       const TBOX &box = b;
246       projectiveXformSampledPt(box_coeffs, box.left(), height - box.top(), &x1, &y1);
247       projectiveXformSampledPt(box_coeffs, box.right(), height - box.bottom(), &x2, &y2);
248       TBOX new_box1(x1, height - y2, x2, height - y1);
249       projectiveXformSampledPt(box_coeffs, box.left(), height - box.bottom(), &x1, &y1);
250       projectiveXformSampledPt(box_coeffs, box.right(), height - box.top(), &x2, &y2);
251       TBOX new_box2(x1, height - y1, x2, height - y2);
252       b = new_box1.bounding_union(new_box2);
253     }
254   }
255   lept_free(im_coeffs);
256   lept_free(box_coeffs);
257 }
258 
259 // Computes the coefficients of a randomized projective transformation.
260 // The image transform requires backward transformation coefficient, and the
261 // box transform the forward coefficients.
262 // Returns the incolor arg to pixProjective.
ProjectiveCoeffs(int width,int height,TRand * randomizer,float ** im_coeffs,float ** box_coeffs)263 int ProjectiveCoeffs(int width, int height, TRand *randomizer, float **im_coeffs,
264                      float **box_coeffs) {
265   // Setup "from" points.
266   Pta *src_pts = ptaCreate(4);
267   ptaAddPt(src_pts, 0.0f, 0.0f);
268   ptaAddPt(src_pts, width, 0.0f);
269   ptaAddPt(src_pts, width, height);
270   ptaAddPt(src_pts, 0.0f, height);
271   // Extract factors from pseudo-random sequence.
272   float factors[FN_NUM_FACTORS];
273   float shear = 0.0f; // Shear is signed.
274   for (int i = 0; i < FN_NUM_FACTORS; ++i) {
275     // Everything is squared to make wild values rarer.
276     if (i == FN_SHEAR) {
277       // Shear is signed.
278       shear = randomizer->SignedRand(0.5 / 3.0);
279       shear = shear >= 0.0 ? shear * shear : -shear * shear;
280       // Keep the sheared points within the original rectangle.
281       if (shear < -factors[FN_X0]) {
282         shear = -factors[FN_X0];
283       }
284       if (shear > factors[FN_X1]) {
285         shear = factors[FN_X1];
286       }
287       factors[i] = shear;
288     } else if (i != FN_INCOLOR) {
289       factors[i] = fabs(randomizer->SignedRand(1.0));
290       if (i <= FN_Y3) {
291         factors[i] *= 5.0 / 8.0;
292       } else {
293         factors[i] *= 0.5;
294       }
295       factors[i] *= factors[i];
296     }
297   }
298   // Setup "to" points.
299   Pta *dest_pts = ptaCreate(4);
300   ptaAddPt(dest_pts, factors[FN_X0] * width, factors[FN_Y0] * height);
301   ptaAddPt(dest_pts, (1.0f - factors[FN_X1]) * width, factors[FN_Y1] * height);
302   ptaAddPt(dest_pts, (1.0f - factors[FN_X1] + shear) * width, (1 - factors[FN_Y2]) * height);
303   ptaAddPt(dest_pts, (factors[FN_X0] + shear) * width, (1 - factors[FN_Y3]) * height);
304   getProjectiveXformCoeffs(dest_pts, src_pts, im_coeffs);
305   getProjectiveXformCoeffs(src_pts, dest_pts, box_coeffs);
306   ptaDestroy(&src_pts);
307   ptaDestroy(&dest_pts);
308   return factors[FN_INCOLOR] > 0.5f ? L_BRING_IN_WHITE : L_BRING_IN_BLACK;
309 }
310 
311 } // namespace tesseract
312