1 /*
2  * Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2012, 2021 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #ifndef CPU_PPC_MACROASSEMBLER_PPC_HPP
27 #define CPU_PPC_MACROASSEMBLER_PPC_HPP
28 
29 #include "asm/assembler.hpp"
30 #include "oops/accessDecorators.hpp"
31 #include "runtime/rtmLocking.hpp"
32 #include "utilities/macros.hpp"
33 
34 // MacroAssembler extends Assembler by a few frequently used macros.
35 
36 class ciTypeArray;
37 
38 class MacroAssembler: public Assembler {
39  public:
MacroAssembler(CodeBuffer * code)40   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
41 
42   // Indicates whether and, if so, which registers must be preserved when calling runtime code.
43   enum PreservationLevel {
44     PRESERVATION_NONE,
45     PRESERVATION_FRAME_LR,
46     PRESERVATION_FRAME_LR_GP_REGS,
47     PRESERVATION_FRAME_LR_GP_FP_REGS
48   };
49 
50   //
51   // Optimized instruction emitters
52   //
53 
largeoffset_si16_si16_hi(int si31)54   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
largeoffset_si16_si16_lo(int si31)55   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
56 
57   // load d = *[a+si31]
58   // Emits several instructions if the offset is not encodable in one instruction.
59   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
60   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
61   inline static bool is_ld_largeoffset(address a);
62   inline static int get_ld_largeoffset_offset(address a);
63 
64   inline void round_to(Register r, int modulus);
65 
66   // Load/store with type given by parameter.
67   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
68   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
69 
70   // Move register if destination register and target register are different
71   inline void mr_if_needed(Register rd, Register rs);
72   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
73   // This is dedicated for emitting scheduled mach nodes. For better
74   // readability of the ad file I put it here.
75   // Endgroups are not needed if
76   //  - the scheduler is off
77   //  - the scheduler found that there is a natural group end, in that
78   //    case it reduced the size of the instruction used in the test
79   //    yielding 'needed'.
80   inline void endgroup_if_needed(bool needed);
81 
82   // Memory barriers.
83   inline void membar(int bits);
84   inline void release();
85   inline void acquire();
86   inline void fence();
87 
88   // nop padding
89   void align(int modulus, int max = 252, int rem = 0);
90 
91   //
92   // Constants, loading constants, TOC support
93   //
94 
95   // Address of the global TOC.
96   inline static address global_toc();
97   // Offset of given address to the global TOC.
98   inline static int offset_to_global_toc(const address addr);
99 
100   // Address of TOC of the current method.
101   inline address method_toc();
102   // Offset of given address to TOC of the current method.
103   inline int offset_to_method_toc(const address addr);
104 
105   // Global TOC.
106   void calculate_address_from_global_toc(Register dst, address addr,
107                                          bool hi16 = true, bool lo16 = true,
108                                          bool add_relocation = true, bool emit_dummy_addr = false);
calculate_address_from_global_toc_hi16only(Register dst,address addr)109   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
110     calculate_address_from_global_toc(dst, addr, true, false);
111   };
calculate_address_from_global_toc_lo16only(Register dst,address addr)112   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
113     calculate_address_from_global_toc(dst, addr, false, true);
114   };
115 
116   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
117   // Returns address of first instruction in sequence.
118   static address patch_calculate_address_from_global_toc_at(address a, address bound, address addr);
119   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
120 
121 #ifdef _LP64
122   // Patch narrow oop constant.
123   inline static bool is_set_narrow_oop(address a, address bound);
124   // Returns address of first instruction in sequence.
125   static address patch_set_narrow_oop(address a, address bound, narrowOop data);
126   static narrowOop get_narrow_oop(address a, address bound);
127 #endif
128 
129   inline static bool is_load_const_at(address a);
130 
131   // Emits an oop const to the constant pool, loads the constant, and
132   // sets a relocation info with address current_pc.
133   // Returns true if successful.
134   bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false);
135 
136   static bool is_load_const_from_method_toc_at(address a);
137   static int get_offset_of_load_const_from_method_toc_at(address a);
138 
139   // Get the 64 bit constant from a `load_const' sequence.
140   static long get_const(address load_const);
141 
142   // Patch the 64 bit constant of a `load_const' sequence. This is a
143   // low level procedure. It neither flushes the instruction cache nor
144   // is it atomic.
145   static void patch_const(address load_const, long x);
146 
147   // Metadata in code that we have to keep track of.
148   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
149   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
150   // Oops used directly in compiled code are stored in the constant pool,
151   // and loaded from there.
152   // Allocate new entry for oop in constant pool. Generate relocation.
153   AddressLiteral allocate_oop_address(jobject obj);
154   // Find oop obj in constant pool. Return relocation with it's index.
155   AddressLiteral constant_oop_address(jobject obj);
156 
157   // Find oop in constant pool and emit instructions to load it.
158   // Uses constant_oop_address.
159   inline void set_oop_constant(jobject obj, Register d);
160   // Same as load_address.
161   inline void set_oop         (AddressLiteral obj_addr, Register d);
162 
163   //
164   // branch, jump
165   //
166   // set dst to -1, 0, +1 as follows: if CCR0bi is "greater than", dst is set to 1,
167   // if CCR0bi is "equal", dst is set to 0, otherwise it's set to -1.
168   void inline set_cmp3(Register dst);
169   // set dst to (treat_unordered_like_less ? -1 : +1)
170   void inline set_cmpu3(Register dst, bool treat_unordered_like_less);
171 
172   inline void pd_patch_instruction(address branch, address target, const char* file, int line);
173   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
174 
175   // Conditional far branch for destinations encodable in 24+2 bits.
176   // Same interface as bc, e.g. no inverse boint-field.
177   enum {
178     bc_far_optimize_not         = 0,
179     bc_far_optimize_on_relocate = 1
180   };
181   // optimize: flag for telling the conditional far branch to optimize
182   //           itself when relocated.
183   void bc_far(int boint, int biint, Label& dest, int optimize);
184   void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions
185   // Relocation of conditional far branches.
186   static bool    is_bc_far_at(address instruction_addr);
187   static address get_dest_of_bc_far_at(address instruction_addr);
188   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
189  private:
190   static bool inline is_bc_far_variant1_at(address instruction_addr);
191   static bool inline is_bc_far_variant2_at(address instruction_addr);
192   static bool inline is_bc_far_variant3_at(address instruction_addr);
193  public:
194 
195   // Convenience bc_far versions.
196   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
197   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
198   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
199   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
200   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
201   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
202   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
203   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
204 
205   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
206  private:
207   enum {
208     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
209     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
210     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
211   };
212   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
213   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
214   // Does the instruction use a pc-relative encoding of the destination?
215   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
216   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
217   // Load destination relative to global toc.
218   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
219   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
220   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
221   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
222 
223  public:
224   // call
225   enum {
226     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
227     bl64_patchable_size              = bxx64_patchable_size,
228     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
229   };
bl64_patchable(address target,relocInfo::relocType rt)230   inline void bl64_patchable(address target, relocInfo::relocType rt) {
231     bxx64_patchable(target, rt, /*link=*/true);
232   }
is_bl64_patchable_at(address instruction_addr)233   inline static bool is_bl64_patchable_at(address instruction_addr) {
234     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
235   }
is_bl64_patchable_pcrelative_at(address instruction_addr)236   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
237     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
238   }
set_dest_of_bl64_patchable_at(address instruction_addr,address target)239   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
240     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
241   }
get_dest_of_bl64_patchable_at(address instruction_addr)242   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
243     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
244   }
245   // jump
246   enum {
247     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
248     b64_patchable_size              = bxx64_patchable_size,
249   };
b64_patchable(address target,relocInfo::relocType rt)250   inline void b64_patchable(address target, relocInfo::relocType rt) {
251     bxx64_patchable(target, rt, /*link=*/false);
252   }
is_b64_patchable_at(address instruction_addr)253   inline static bool is_b64_patchable_at(address instruction_addr) {
254     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
255   }
is_b64_patchable_pcrelative_at(address instruction_addr)256   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
257     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
258   }
set_dest_of_b64_patchable_at(address instruction_addr,address target)259   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
260     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
261   }
get_dest_of_b64_patchable_at(address instruction_addr)262   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
263     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
264   }
265 
266   //
267   // Support for frame handling
268   //
269 
270   // some ABI-related functions
271 
272   // Clobbers all volatile, (non-floating-point) general-purpose registers for debugging purposes.
273   // This is especially useful for making calls to the JRT in places in which this hasn't been done before;
274   // e.g. with the introduction of LRBs (load reference barriers) for concurrent garbage collection.
275   void clobber_volatile_gprs(Register excluded_register = noreg);
276   void clobber_carg_stack_slots(Register tmp);
277 
278   void save_nonvolatile_gprs(   Register dst_base, int offset);
279   void restore_nonvolatile_gprs(Register src_base, int offset);
280 
281   enum {
282     num_volatile_gp_regs = 11,
283     num_volatile_fp_regs = 14,
284     num_volatile_regs = num_volatile_gp_regs + num_volatile_fp_regs
285   };
286 
287   void save_volatile_gprs(   Register dst_base, int offset,
288                              bool include_fp_regs = true, bool include_R3_RET_reg = true);
289   void restore_volatile_gprs(Register src_base, int offset,
290                              bool include_fp_regs = true, bool include_R3_RET_reg = true);
291   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
292   void restore_LR_CR(Register tmp);
293 
294   // Get current PC using bl-next-instruction trick.
295   address get_PC_trash_LR(Register result);
296 
297   // Resize current frame either relatively wrt to current SP or absolute.
298   void resize_frame(Register offset, Register tmp);
299   void resize_frame(int      offset, Register tmp);
300   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
301 
302   // Push a frame of size bytes.
303   void push_frame(Register bytes, Register tmp);
304 
305   // Push a frame of size `bytes'. No abi space provided.
306   void push_frame(unsigned int bytes, Register tmp);
307 
308   // Push a frame of size `bytes' plus abi_reg_args on top.
309   void push_frame_reg_args(unsigned int bytes, Register tmp);
310 
311   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
312   // space for local variables
313   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
314 
315   // pop current C frame
316   void pop_frame();
317 
318   //
319   // Calls
320   //
321 
322  private:
323   address _last_calls_return_pc;
324 
325 #if defined(ABI_ELFv2)
326   // Generic version of a call to C function.
327   // Updates and returns _last_calls_return_pc.
328   address branch_to(Register function_entry, bool and_link);
329 #else
330   // Generic version of a call to C function via a function descriptor
331   // with variable support for C calling conventions (TOC, ENV, etc.).
332   // updates and returns _last_calls_return_pc.
333   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
334                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
335 #endif
336 
337  public:
338 
339   // Get the pc where the last call will return to. returns _last_calls_return_pc.
340   inline address last_calls_return_pc();
341 
342 #if defined(ABI_ELFv2)
343   // Call a C function via a function descriptor and use full C
344   // calling conventions. Updates and returns _last_calls_return_pc.
345   address call_c(Register function_entry);
346   // For tail calls: only branch, don't link, so callee returns to caller of this function.
347   address call_c_and_return_to_caller(Register function_entry);
348   address call_c(address function_entry, relocInfo::relocType rt);
349 #else
350   // Call a C function via a function descriptor and use full C
351   // calling conventions. Updates and returns _last_calls_return_pc.
352   address call_c(Register function_descriptor);
353   // For tail calls: only branch, don't link, so callee returns to caller of this function.
354   address call_c_and_return_to_caller(Register function_descriptor);
355   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
356   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
357                            Register toc);
358 #endif
359 
360  protected:
361 
362   // It is imperative that all calls into the VM are handled via the
363   // call_VM macros. They make sure that the stack linkage is setup
364   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
365   // while call_VM_leaf's correspond to LEAF entry points.
366   //
367   // This is the base routine called by the different versions of
368   // call_VM. The interpreter may customize this version by overriding
369   // it for its purposes (e.g., to save/restore additional registers
370   // when doing a VM call).
371   //
372   // If no last_java_sp is specified (noreg) then SP will be used instead.
373   virtual void call_VM_base(
374      // where an oop-result ends up if any; use noreg otherwise
375     Register        oop_result,
376     // to set up last_Java_frame in stubs; use noreg otherwise
377     Register        last_java_sp,
378     // the entry point
379     address         entry_point,
380     // flag which indicates if exception should be checked
381     bool            check_exception = true
382   );
383 
384   // Support for VM calls. This is the base routine called by the
385   // different versions of call_VM_leaf. The interpreter may customize
386   // this version by overriding it for its purposes (e.g., to
387   // save/restore additional registers when doing a VM call).
388   void call_VM_leaf_base(address entry_point);
389 
390  public:
391   // Call into the VM.
392   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
393   // Makes sure oop return values are visible to the GC.
394   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
395   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
396   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
397   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
398   void call_VM_leaf(address entry_point);
399   void call_VM_leaf(address entry_point, Register arg_1);
400   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
401   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
402 
403   // Call a stub function via a function descriptor, but don't save
404   // TOC before call, don't setup TOC and ENV for call, and don't
405   // restore TOC after call. Updates and returns _last_calls_return_pc.
406   inline address call_stub(Register function_entry);
407   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
408 
409   //
410   // Java utilities
411   //
412 
413   // Read from the polling page, its address is already in a register.
414   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
415   // Check whether instruction is a read access to the polling page
416   // which was emitted by load_from_polling_page(..).
417   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
418                                         address* polling_address_ptr = NULL);
419 
420   // Support for NULL-checks
421   //
422   // Generates code that causes a NULL OS exception if the content of reg is NULL.
423   // If the accessed location is M[reg + offset] and the offset is known, provide the
424   // offset. No explicit code generation is needed if the offset is within a certain
425   // range (0 <= offset <= page_size).
426 
427   // Stack overflow checking
428   void bang_stack_with_offset(int offset);
429 
430   // If instruction is a stack bang of the form ld, stdu, or
431   // stdux, return the banged address. Otherwise, return 0.
432   static address get_stack_bang_address(int instruction, void* ucontext);
433 
434   // Check for reserved stack access in method being exited. If the reserved
435   // stack area was accessed, protect it again and throw StackOverflowError.
436   void reserved_stack_check(Register return_pc);
437 
438   // Atomics
439   // CmpxchgX sets condition register to cmpX(current, compare).
440   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
441   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
cmpxchgx_hint_acquire_lock()442   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
443   // The stxcx will probably not be succeeded by a releasing store.
cmpxchgx_hint_release_lock()444   static inline bool cmpxchgx_hint_release_lock()  { return false; }
cmpxchgx_hint_atomic_update()445   static inline bool cmpxchgx_hint_atomic_update() { return false; }
446 
447   // Cmpxchg semantics
448   enum {
449     MemBarNone = 0,
450     MemBarRel  = 1,
451     MemBarAcq  = 2,
452     MemBarFenceAfter = 4 // use powers of 2
453   };
454  private:
455   // Helper functions for word/sub-word atomics.
456   void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
457                                      Register addr_base, Register tmp1, Register tmp2, Register tmp3,
458                                      bool cmpxchgx_hint, bool is_add, int size);
459   void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
460                          Register compare_value, Register exchange_value,
461                          Register addr_base, Register tmp1, Register tmp2,
462                          Label &retry, Label &failed, bool cmpxchgx_hint, int size);
463   void cmpxchg_generic(ConditionRegister flag,
464                        Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
465                        Register tmp1, Register tmp2,
466                        int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size);
467  public:
468   // Temps and addr_base are killed if processor does not support Power 8 instructions.
469   // Result will be sign extended.
getandsetb(Register dest_current_value,Register exchange_value,Register addr_base,Register tmp1,Register tmp2,Register tmp3,bool cmpxchgx_hint)470   void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base,
471                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
472     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1);
473   }
474   // Temps and addr_base are killed if processor does not support Power 8 instructions.
475   // Result will be sign extended.
getandseth(Register dest_current_value,Register exchange_value,Register addr_base,Register tmp1,Register tmp2,Register tmp3,bool cmpxchgx_hint)476   void getandseth(Register dest_current_value, Register exchange_value, Register addr_base,
477                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
478     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2);
479   }
getandsetw(Register dest_current_value,Register exchange_value,Register addr_base,bool cmpxchgx_hint)480   void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base,
481                   bool cmpxchgx_hint) {
482     atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4);
483   }
484   void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
485                   bool cmpxchgx_hint);
486   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
487   // Result will be sign extended.
getandaddb(Register dest_current_value,Register inc_value,Register addr_base,Register tmp1,Register tmp2,Register tmp3,bool cmpxchgx_hint)488   void getandaddb(Register dest_current_value, Register inc_value, Register addr_base,
489                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
490     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1);
491   }
492   // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed).
493   // Result will be sign extended.
getandaddh(Register dest_current_value,Register inc_value,Register addr_base,Register tmp1,Register tmp2,Register tmp3,bool cmpxchgx_hint)494   void getandaddh(Register dest_current_value, Register inc_value, Register addr_base,
495                   Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) {
496     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2);
497   }
getandaddw(Register dest_current_value,Register inc_value,Register addr_base,Register tmp1,bool cmpxchgx_hint)498   void getandaddw(Register dest_current_value, Register inc_value, Register addr_base,
499                   Register tmp1, bool cmpxchgx_hint) {
500     atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4);
501   }
502   void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base,
503                   Register tmp, bool cmpxchgx_hint);
504   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
505   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
cmpxchgb(ConditionRegister flag,Register dest_current_value,Register compare_value,Register exchange_value,Register addr_base,Register tmp1,Register tmp2,int semantics,bool cmpxchgx_hint=false,Register int_flag_success=noreg,bool contention_hint=false,bool weak=false)506   void cmpxchgb(ConditionRegister flag,
507                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
508                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
509                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
510     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
511                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1);
512   }
513   // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions.
514   // compare_value must be at least 32 bit sign extended. Result will be sign extended.
cmpxchgh(ConditionRegister flag,Register dest_current_value,Register compare_value,Register exchange_value,Register addr_base,Register tmp1,Register tmp2,int semantics,bool cmpxchgx_hint=false,Register int_flag_success=noreg,bool contention_hint=false,bool weak=false)515   void cmpxchgh(ConditionRegister flag,
516                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
517                 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false,
518                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
519     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
520                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2);
521   }
cmpxchgw(ConditionRegister flag,Register dest_current_value,Register compare_value,Register exchange_value,Register addr_base,int semantics,bool cmpxchgx_hint=false,Register int_flag_success=noreg,bool contention_hint=false,bool weak=false)522   void cmpxchgw(ConditionRegister flag,
523                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
524                 int semantics, bool cmpxchgx_hint = false,
525                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) {
526     cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg,
527                     semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4);
528   }
529   void cmpxchgd(ConditionRegister flag,
530                 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
531                 Register addr_base, int semantics, bool cmpxchgx_hint = false,
532                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false, bool weak = false);
533 
534   // interface method calling
535   void lookup_interface_method(Register recv_klass,
536                                Register intf_klass,
537                                RegisterOrConstant itable_index,
538                                Register method_result,
539                                Register temp_reg, Register temp2_reg,
540                                Label& no_such_interface,
541                                bool return_method = true);
542 
543   // virtual method calling
544   void lookup_virtual_method(Register recv_klass,
545                              RegisterOrConstant vtable_index,
546                              Register method_result);
547 
548   // Test sub_klass against super_klass, with fast and slow paths.
549 
550   // The fast path produces a tri-state answer: yes / no / maybe-slow.
551   // One of the three labels can be NULL, meaning take the fall-through.
552   // If super_check_offset is -1, the value is loaded up from super_klass.
553   // No registers are killed, except temp_reg and temp2_reg.
554   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
555   void check_klass_subtype_fast_path(Register sub_klass,
556                                      Register super_klass,
557                                      Register temp1_reg,
558                                      Register temp2_reg,
559                                      Label* L_success,
560                                      Label* L_failure,
561                                      Label* L_slow_path = NULL, // default fall through
562                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
563 
564   // The rest of the type check; must be wired to a corresponding fast path.
565   // It does not repeat the fast path logic, so don't use it standalone.
566   // The temp_reg can be noreg, if no temps are available.
567   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
568   // Updates the sub's secondary super cache as necessary.
569   void check_klass_subtype_slow_path(Register sub_klass,
570                                      Register super_klass,
571                                      Register temp1_reg,
572                                      Register temp2_reg,
573                                      Label* L_success = NULL,
574                                      Register result_reg = noreg);
575 
576   // Simplified, combined version, good for typical uses.
577   // Falls through on failure.
578   void check_klass_subtype(Register sub_klass,
579                            Register super_klass,
580                            Register temp1_reg,
581                            Register temp2_reg,
582                            Label& L_success);
583 
584   void clinit_barrier(Register klass,
585                       Register thread,
586                       Label* L_fast_path = NULL,
587                       Label* L_slow_path = NULL);
588 
589   // Method handle support (JSR 292).
590   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
591 
592   // Biased locking support
593   // Upon entry,obj_reg must contain the target object, and mark_reg
594   // must contain the target object's header.
595   // Destroys mark_reg if an attempt is made to bias an anonymously
596   // biased lock. In this case a failure will go either to the slow
597   // case or fall through with the notEqual condition code set with
598   // the expectation that the slow case in the runtime will be called.
599   // In the fall-through case where the CAS-based lock is done,
600   // mark_reg is not destroyed.
601   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
602                             Register temp2_reg, Label& done, Label* slow_case = NULL);
603   // Upon entry, the base register of mark_addr must contain the oop.
604   // Destroys temp_reg.
605   // If allow_delay_slot_filling is set to true, the next instruction
606   // emitted after this one will go in an annulled delay slot if the
607   // biased locking exit case failed.
608   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
609 
610   // allocation (for C1)
611   void eden_allocate(
612     Register obj,                      // result: pointer to object after successful allocation
613     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
614     int      con_size_in_bytes,        // object size in bytes if   known at compile time
615     Register t1,                       // temp register
616     Register t2,                       // temp register
617     Label&   slow_case                 // continuation point if fast allocation fails
618   );
619   void tlab_allocate(
620     Register obj,                      // result: pointer to object after successful allocation
621     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
622     int      con_size_in_bytes,        // object size in bytes if   known at compile time
623     Register t1,                       // temp register
624     Label&   slow_case                 // continuation point if fast allocation fails
625   );
626   void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2);
627 
628   enum { trampoline_stub_size = 6 * 4 };
629   address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg);
630 
631   void atomic_inc_ptr(Register addr, Register result, int simm16 = 1);
632   void atomic_ori_int(Register addr, Register result, int uimm16);
633 
634 #if INCLUDE_RTM_OPT
635   void rtm_counters_update(Register abort_status, Register rtm_counters);
636   void branch_on_random_using_tb(Register tmp, int count, Label& brLabel);
637   void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters,
638                                    Metadata* method_data);
639   void rtm_profiling(Register abort_status_Reg, Register temp_Reg,
640                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
641   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status,
642                                Label& retryLabel, Label* checkRetry = NULL);
643   void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel);
644   void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp,
645                          Register retry_on_abort_count,
646                          RTMLockingCounters* stack_rtm_counters,
647                          Metadata* method_data, bool profile_rtm,
648                          Label& DONE_LABEL, Label& IsInflated);
649   void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box,
650                             Register retry_on_busy_count, Register retry_on_abort_count,
651                             RTMLockingCounters* rtm_counters,
652                             Metadata* method_data, bool profile_rtm,
653                             Label& DONE_LABEL);
654 #endif
655 
656   void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
657                                  Register tmp1, Register tmp2, Register tmp3,
658                                  bool try_bias = UseBiasedLocking,
659                                  RTMLockingCounters* rtm_counters = NULL,
660                                  RTMLockingCounters* stack_rtm_counters = NULL,
661                                  Metadata* method_data = NULL,
662                                  bool use_rtm = false, bool profile_rtm = false);
663 
664   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
665                                    Register tmp1, Register tmp2, Register tmp3,
666                                    bool try_bias = UseBiasedLocking, bool use_rtm = false);
667 
668   // Check if safepoint requested and if so branch
669   void safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod);
670 
671   void resolve_jobject(Register value, Register tmp1, Register tmp2,
672                        MacroAssembler::PreservationLevel preservation_level);
673 
674   // Support for managing the JavaThread pointer (i.e.; the reference to
675   // thread-local information).
676 
677   // Support for last Java frame (but use call_VM instead where possible):
678   // access R16_thread->last_Java_sp.
679   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
680   void reset_last_Java_frame(void);
681   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
682 
683   // Read vm result from thread: oop_result = R16_thread->result;
684   void get_vm_result  (Register oop_result);
685   void get_vm_result_2(Register metadata_result);
686 
687   static bool needs_explicit_null_check(intptr_t offset);
688   static bool uses_implicit_null_check(void* address);
689 
690   // Trap-instruction-based checks.
691   // Range checks can be distinguished from zero checks as they check 32 bit,
692   // zero checks all 64 bits (tw, td).
693   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
is_trap_null_check(int x)694   static bool is_trap_null_check(int x) {
695     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
696            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
697   }
698 
699   inline void trap_ic_miss_check(Register a, Register b);
is_trap_ic_miss_check(int x)700   static bool is_trap_ic_miss_check(int x) {
701     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
702   }
703 
704   // Implicit or explicit null check, jumps to static address exception_entry.
705   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
706   inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided
707 
708   // Access heap oop, handle encoding and GC barriers.
709   // Some GC barriers call C so use needs_frame = true if an extra frame is needed at the current call site.
710  private:
711   inline void access_store_at(BasicType type, DecoratorSet decorators,
712                               Register base, RegisterOrConstant ind_or_offs, Register val,
713                               Register tmp1, Register tmp2, Register tmp3,
714                               MacroAssembler::PreservationLevel preservation_level);
715   inline void access_load_at(BasicType type, DecoratorSet decorators,
716                              Register base, RegisterOrConstant ind_or_offs, Register dst,
717                              Register tmp1, Register tmp2,
718                              MacroAssembler::PreservationLevel preservation_level, Label *L_handle_null = NULL);
719 
720  public:
721   // Specify tmp1 for better code in certain compressed oops cases. Specify Label to bail out on null oop.
722   // tmp1, tmp2 and needs_frame are used with decorators ON_PHANTOM_OOP_REF or ON_WEAK_OOP_REF.
723   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1,
724                             Register tmp1, Register tmp2,
725                             MacroAssembler::PreservationLevel preservation_level,
726                             DecoratorSet decorators = 0, Label *L_handle_null = NULL);
727 
728   inline void store_heap_oop(Register d, RegisterOrConstant offs, Register s1,
729                              Register tmp1, Register tmp2, Register tmp3,
730                              MacroAssembler::PreservationLevel preservation_level, DecoratorSet decorators = 0);
731 
732   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
733   // src == d allowed.
734   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
735   inline Register decode_heap_oop_not_null(Register d, Register src = noreg);
736 
737   // Null allowed.
738   inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier!
739   inline void decode_heap_oop(Register d);
740 
741   // Load/Store klass oop from klass field. Compress.
742   void load_klass(Register dst, Register src);
743   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
744   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
745 
746   void resolve_oop_handle(Register result, Register tmp1, Register tmp2,
747                           MacroAssembler::PreservationLevel preservation_level);
748   void resolve_weak_handle(Register result, Register tmp1, Register tmp2,
749                            MacroAssembler::PreservationLevel preservation_level);
750   void load_method_holder(Register holder, Register method);
751 
752   static int instr_size_for_decode_klass_not_null();
753   void decode_klass_not_null(Register dst, Register src = noreg);
754   Register encode_klass_not_null(Register dst, Register src = noreg);
755 
756   // SIGTRAP-based range checks for arrays.
757   inline void trap_range_check_l(Register a, Register b);
758   inline void trap_range_check_l(Register a, int si16);
is_trap_range_check_l(int x)759   static bool is_trap_range_check_l(int x) {
760     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
761             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
762   }
763   inline void trap_range_check_le(Register a, int si16);
is_trap_range_check_le(int x)764   static bool is_trap_range_check_le(int x) {
765     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
766   }
767   inline void trap_range_check_g(Register a, int si16);
is_trap_range_check_g(int x)768   static bool is_trap_range_check_g(int x) {
769     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
770   }
771   inline void trap_range_check_ge(Register a, Register b);
772   inline void trap_range_check_ge(Register a, int si16);
is_trap_range_check_ge(int x)773   static bool is_trap_range_check_ge(int x) {
774     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
775             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
776   }
is_trap_range_check(int x)777   static bool is_trap_range_check(int x) {
778     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
779            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
780   }
781 
782   void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0);
783   void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0);
784   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1);
785 
786   // Emitters for BigInteger.multiplyToLen intrinsic.
787   inline void multiply64(Register dest_hi, Register dest_lo,
788                          Register x, Register y);
789   void add2_with_carry(Register dest_hi, Register dest_lo,
790                        Register src1, Register src2);
791   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
792                              Register y, Register y_idx, Register z,
793                              Register carry, Register product_high, Register product,
794                              Register idx, Register kdx, Register tmp);
795   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
796                               Register yz_idx, Register idx, Register carry,
797                               Register product_high, Register product, Register tmp,
798                               int offset);
799   void multiply_128_x_128_loop(Register x_xstart,
800                                Register y, Register z,
801                                Register yz_idx, Register idx, Register carry,
802                                Register product_high, Register product,
803                                Register carry2, Register tmp);
804   void muladd(Register out, Register in, Register offset, Register len, Register k,
805               Register tmp1, Register tmp2, Register carry);
806   void multiply_to_len(Register x, Register xlen,
807                        Register y, Register ylen,
808                        Register z, Register zlen,
809                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
810                        Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10,
811                        Register tmp11, Register tmp12, Register tmp13);
812 
813   // Emitters for CRC32 calculation.
814   // A note on invertCRC:
815   //   Unfortunately, internal representation of crc differs between CRC32 and CRC32C.
816   //   CRC32 holds it's current crc value in the externally visible representation.
817   //   CRC32C holds it's current crc value in internal format, ready for updating.
818   //   Thus, the crc value must be bit-flipped before updating it in the CRC32 case.
819   //   In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()).
820   //   The bool invertCRC parameter indicates whether bit-flipping is required before updates.
821   void load_reverse_32(Register dst, Register src);
822   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
823   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
824   void update_byte_crc32(Register crc, Register val, Register table);
825   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
826                              Register data, bool loopAlignment);
827   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
828                           Register t0,  Register t1,  Register t2,  Register t3,
829                           Register tc0, Register tc1, Register tc2, Register tc3);
830   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
831                           Register t0,  Register t1,  Register t2,  Register t3,
832                           Register tc0, Register tc1, Register tc2, Register tc3,
833                           bool invertCRC);
834   void kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants,
835                            Register t0, Register t1, Register t2, Register t3, Register t4,
836                            Register t5, Register t6, bool invertCRC);
837   void kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants,
838                                    Register t0, Register t1, Register t2, Register t3, Register t4,
839                                    Register t5, Register t6);
840   // Version which internally decides what to use.
841   void crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2,
842              Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c);
843 
844   void kernel_crc32_singleByteReg(Register crc, Register val, Register table,
845                                   bool invertCRC);
846 
847   // SHA-2 auxiliary functions and public interfaces
848  private:
849   void sha256_deque(const VectorRegister src,
850       const VectorRegister dst1, const VectorRegister dst2, const VectorRegister dst3);
851   void sha256_load_h_vec(const VectorRegister a, const VectorRegister e, const Register hptr);
852   void sha256_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
853   void sha256_load_w_plus_k_vec(const Register buf_in, const VectorRegister* ws,
854       const int total_ws, const Register k, const VectorRegister* kpws,
855       const int total_kpws);
856   void sha256_calc_4w(const VectorRegister w0, const VectorRegister w1,
857       const VectorRegister w2, const VectorRegister w3, const VectorRegister kpw0,
858       const VectorRegister kpw1, const VectorRegister kpw2, const VectorRegister kpw3,
859       const Register j, const Register k);
860   void sha256_update_sha_state(const VectorRegister a, const VectorRegister b,
861       const VectorRegister c, const VectorRegister d, const VectorRegister e,
862       const VectorRegister f, const VectorRegister g, const VectorRegister h,
863       const Register hptr);
864 
865   void sha512_load_w_vec(const Register buf_in, const VectorRegister* ws, const int total_ws);
866   void sha512_update_sha_state(const Register state, const VectorRegister* hs, const int total_hs);
867   void sha512_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
868   void sha512_load_h_vec(const Register state, const VectorRegister* hs, const int total_hs);
869   void sha512_calc_2w(const VectorRegister w0, const VectorRegister w1,
870       const VectorRegister w2, const VectorRegister w3,
871       const VectorRegister w4, const VectorRegister w5,
872       const VectorRegister w6, const VectorRegister w7,
873       const VectorRegister kpw0, const VectorRegister kpw1, const Register j,
874       const VectorRegister vRb, const Register k);
875 
876  public:
877   void sha256(bool multi_block);
878   void sha512(bool multi_block);
879 
880   void cache_wb(Address line);
881   void cache_wbsync(bool is_presync);
882 
883   //
884   // Debugging
885   //
886 
887   // assert on cr0
888   void asm_assert(bool check_equal, const char* msg);
asm_assert_eq(const char * msg)889   void asm_assert_eq(const char* msg) { asm_assert(true, msg); }
asm_assert_ne(const char * msg)890   void asm_assert_ne(const char* msg) { asm_assert(false, msg); }
891 
892  private:
893   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
894                             const char* msg);
895 
896  public:
897 
asm_assert_mem8_is_zero(int mem_offset,Register mem_base,const char * msg)898   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg) {
899     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg);
900   }
asm_assert_mem8_isnot_zero(int mem_offset,Register mem_base,const char * msg)901   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg) {
902     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg);
903   }
904 
905   // Verify R16_thread contents.
906   void verify_thread();
907 
908   // Calls verify_oop. If UseCompressedOops is on, decodes the oop.
909   // Preserves reg.
910   void verify_coop(Register reg, const char*);
911   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
912   void verify_oop(Register reg, const char* s = "broken oop");
913   void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop");
914 
915   // TODO: verify method and klass metadata (compare against vptr?)
_verify_method_ptr(Register reg,const char * msg,const char * file,int line)916   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
_verify_klass_ptr(Register reg,const char * msg,const char * file,int line)917   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
918 
919   // Convenience method returning function entry. For the ELFv1 case
920   // creates function descriptor at the current address and returs
921   // the pointer to it. For the ELFv2 case returns the current address.
922   inline address function_entry();
923 
924 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
925 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
926 
927  private:
928   void stop(int type, const char* msg);
929 
930  public:
931   enum {
932     stop_stop               = 0,
933     stop_untested           = 1,
934     stop_unimplemented      = 2,
935     stop_shouldnotreachhere = 3,
936     stop_msg_present        = -0x8000
937   };
938 
939   // Prints msg, dumps registers and stops execution.
stop(const char * msg=NULL)940   void stop                 (const char* msg = NULL) { stop(stop_stop,               msg); }
untested(const char * msg=NULL)941   void untested             (const char* msg = NULL) { stop(stop_untested,           msg); }
unimplemented(const char * msg=NULL)942   void unimplemented        (const char* msg = NULL) { stop(stop_unimplemented,      msg); }
should_not_reach_here(const char * msg=NULL)943   void should_not_reach_here(const char* msg = NULL) { stop(stop_shouldnotreachhere, msg); }
944 
945   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
946 };
947 
948 // class SkipIfEqualZero:
949 //
950 // Instantiating this class will result in assembly code being output that will
951 // jump around any code emitted between the creation of the instance and it's
952 // automatic destruction at the end of a scope block, depending on the value of
953 // the flag passed to the constructor, which will be checked at run-time.
954 class SkipIfEqualZero : public StackObj {
955  private:
956   MacroAssembler* _masm;
957   Label _label;
958 
959  public:
960    // 'Temp' is a temp register that this object can use (and trash).
961    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
962    static void skip_to_label_if_equal_zero(MacroAssembler*, Register temp,
963                                            const bool* flag_addr, Label& label);
964    ~SkipIfEqualZero();
965 };
966 
967 #endif // CPU_PPC_MACROASSEMBLER_PPC_HPP
968